| /* |
| ** 2014 May 31 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ****************************************************************************** |
| ** |
| */ |
| |
| #ifdef SQLITE_ENABLE_FTS5 |
| |
| |
| #include "fts5Int.h" |
| #include "fts5parse.h" |
| |
| /* |
| ** All token types in the generated fts5parse.h file are greater than 0. |
| */ |
| #define FTS5_EOF 0 |
| |
| typedef struct Fts5ExprTerm Fts5ExprTerm; |
| |
| /* |
| ** Functions generated by lemon from fts5parse.y. |
| */ |
| void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64)); |
| void sqlite3Fts5ParserFree(void*, void (*freeProc)(void*)); |
| void sqlite3Fts5Parser(void*, int, Fts5Token, Fts5Parse*); |
| |
| struct Fts5Expr { |
| Fts5Index *pIndex; |
| Fts5ExprNode *pRoot; |
| int bDesc; /* Iterate in descending docid order */ |
| int nPhrase; /* Number of phrases in expression */ |
| Fts5ExprPhrase **apExprPhrase; /* Pointers to phrase objects */ |
| }; |
| |
| /* |
| ** eType: |
| ** Expression node type. Always one of: |
| ** |
| ** FTS5_AND (nChild, apChild valid) |
| ** FTS5_OR (nChild, apChild valid) |
| ** FTS5_NOT (nChild, apChild valid) |
| ** FTS5_STRING (pNear valid) |
| ** FTS5_TERM (pNear valid) |
| */ |
| struct Fts5ExprNode { |
| int eType; /* Node type */ |
| int bEof; /* True at EOF */ |
| int bNomatch; /* True if entry is not a match */ |
| |
| i64 iRowid; /* Current rowid */ |
| Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */ |
| |
| /* Child nodes. For a NOT node, this array always contains 2 entries. For |
| ** AND or OR nodes, it contains 2 or more entries. */ |
| int nChild; /* Number of child nodes */ |
| Fts5ExprNode *apChild[0]; /* Array of child nodes */ |
| }; |
| |
| #define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING) |
| |
| /* |
| ** An instance of the following structure represents a single search term |
| ** or term prefix. |
| */ |
| struct Fts5ExprTerm { |
| int bPrefix; /* True for a prefix term */ |
| char *zTerm; /* nul-terminated term */ |
| Fts5IndexIter *pIter; /* Iterator for this term */ |
| }; |
| |
| /* |
| ** A phrase. One or more terms that must appear in a contiguous sequence |
| ** within a document for it to match. |
| */ |
| struct Fts5ExprPhrase { |
| Fts5ExprNode *pNode; /* FTS5_STRING node this phrase is part of */ |
| Fts5Buffer poslist; /* Current position list */ |
| int nTerm; /* Number of entries in aTerm[] */ |
| Fts5ExprTerm aTerm[0]; /* Terms that make up this phrase */ |
| }; |
| |
| /* |
| ** If a NEAR() clump may only match a specific set of columns, then |
| ** Fts5ExprNearset.pColset points to an object of the following type. |
| ** Each entry in the aiCol[] array |
| */ |
| struct Fts5ExprColset { |
| int nCol; |
| int aiCol[1]; |
| }; |
| |
| /* |
| ** One or more phrases that must appear within a certain token distance of |
| ** each other within each matching document. |
| */ |
| struct Fts5ExprNearset { |
| int nNear; /* NEAR parameter */ |
| Fts5ExprColset *pColset; /* Columns to search (NULL -> all columns) */ |
| int nPhrase; /* Number of entries in aPhrase[] array */ |
| Fts5ExprPhrase *apPhrase[0]; /* Array of phrase pointers */ |
| }; |
| |
| |
| /* |
| ** Parse context. |
| */ |
| struct Fts5Parse { |
| Fts5Config *pConfig; |
| char *zErr; |
| int rc; |
| int nPhrase; /* Size of apPhrase array */ |
| Fts5ExprPhrase **apPhrase; /* Array of all phrases */ |
| Fts5ExprNode *pExpr; /* Result of a successful parse */ |
| }; |
| |
| void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){ |
| va_list ap; |
| va_start(ap, zFmt); |
| if( pParse->rc==SQLITE_OK ){ |
| pParse->zErr = sqlite3_vmprintf(zFmt, ap); |
| pParse->rc = SQLITE_ERROR; |
| } |
| va_end(ap); |
| } |
| |
| static int fts5ExprIsspace(char t){ |
| return t==' ' || t=='\t' || t=='\n' || t=='\r'; |
| } |
| |
| /* |
| ** Read the first token from the nul-terminated string at *pz. |
| */ |
| static int fts5ExprGetToken( |
| Fts5Parse *pParse, |
| const char **pz, /* IN/OUT: Pointer into buffer */ |
| Fts5Token *pToken |
| ){ |
| const char *z = *pz; |
| int tok; |
| |
| /* Skip past any whitespace */ |
| while( fts5ExprIsspace(*z) ) z++; |
| |
| pToken->p = z; |
| pToken->n = 1; |
| switch( *z ){ |
| case '(': tok = FTS5_LP; break; |
| case ')': tok = FTS5_RP; break; |
| case '{': tok = FTS5_LCP; break; |
| case '}': tok = FTS5_RCP; break; |
| case ':': tok = FTS5_COLON; break; |
| case ',': tok = FTS5_COMMA; break; |
| case '+': tok = FTS5_PLUS; break; |
| case '*': tok = FTS5_STAR; break; |
| case '\0': tok = FTS5_EOF; break; |
| |
| case '"': { |
| const char *z2; |
| tok = FTS5_STRING; |
| |
| for(z2=&z[1]; 1; z2++){ |
| if( z2[0]=='"' ){ |
| z2++; |
| if( z2[0]!='"' ) break; |
| } |
| if( z2[0]=='\0' ){ |
| sqlite3Fts5ParseError(pParse, "unterminated string"); |
| return FTS5_EOF; |
| } |
| } |
| pToken->n = (z2 - z); |
| break; |
| } |
| |
| default: { |
| const char *z2; |
| tok = FTS5_STRING; |
| for(z2=&z[1]; sqlite3Fts5IsBareword(*z2); z2++); |
| pToken->n = (z2 - z); |
| if( pToken->n==2 && memcmp(pToken->p, "OR", 2)==0 ) tok = FTS5_OR; |
| if( pToken->n==3 && memcmp(pToken->p, "NOT", 3)==0 ) tok = FTS5_NOT; |
| if( pToken->n==3 && memcmp(pToken->p, "AND", 3)==0 ) tok = FTS5_AND; |
| break; |
| } |
| } |
| |
| *pz = &pToken->p[pToken->n]; |
| return tok; |
| } |
| |
| static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc((int)t); } |
| static void fts5ParseFree(void *p){ sqlite3_free(p); } |
| |
| int sqlite3Fts5ExprNew( |
| Fts5Config *pConfig, /* FTS5 Configuration */ |
| const char *zExpr, /* Expression text */ |
| Fts5Expr **ppNew, |
| char **pzErr |
| ){ |
| Fts5Parse sParse; |
| Fts5Token token; |
| const char *z = zExpr; |
| int t; /* Next token type */ |
| void *pEngine; |
| Fts5Expr *pNew; |
| |
| *ppNew = 0; |
| *pzErr = 0; |
| memset(&sParse, 0, sizeof(sParse)); |
| pEngine = sqlite3Fts5ParserAlloc(fts5ParseAlloc); |
| if( pEngine==0 ){ return SQLITE_NOMEM; } |
| sParse.pConfig = pConfig; |
| |
| do { |
| t = fts5ExprGetToken(&sParse, &z, &token); |
| sqlite3Fts5Parser(pEngine, t, token, &sParse); |
| }while( sParse.rc==SQLITE_OK && t!=FTS5_EOF ); |
| sqlite3Fts5ParserFree(pEngine, fts5ParseFree); |
| |
| assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 ); |
| if( sParse.rc==SQLITE_OK ){ |
| *ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr)); |
| if( pNew==0 ){ |
| sParse.rc = SQLITE_NOMEM; |
| sqlite3Fts5ParseNodeFree(sParse.pExpr); |
| }else{ |
| pNew->pRoot = sParse.pExpr; |
| pNew->pIndex = 0; |
| pNew->apExprPhrase = sParse.apPhrase; |
| pNew->nPhrase = sParse.nPhrase; |
| sParse.apPhrase = 0; |
| } |
| } |
| |
| sqlite3_free(sParse.apPhrase); |
| *pzErr = sParse.zErr; |
| return sParse.rc; |
| } |
| |
| /* |
| ** Create a new FTS5 expression by cloning phrase iPhrase of the |
| ** expression passed as the second argument. |
| */ |
| int sqlite3Fts5ExprPhraseExpr( |
| Fts5Config *pConfig, |
| Fts5Expr *pExpr, |
| int iPhrase, |
| Fts5Expr **ppNew |
| ){ |
| int rc = SQLITE_OK; /* Return code */ |
| Fts5ExprPhrase *pOrig; /* The phrase extracted from pExpr */ |
| Fts5ExprPhrase *pCopy; /* Copy of pOrig */ |
| Fts5Expr *pNew = 0; /* Expression to return via *ppNew */ |
| |
| pOrig = pExpr->apExprPhrase[iPhrase]; |
| pCopy = (Fts5ExprPhrase*)sqlite3Fts5MallocZero(&rc, |
| sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * pOrig->nTerm |
| ); |
| if( pCopy ){ |
| int i; /* Used to iterate through phrase terms */ |
| Fts5ExprPhrase **apPhrase; |
| Fts5ExprNode *pNode; |
| Fts5ExprNearset *pNear; |
| |
| pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr)); |
| apPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc, |
| sizeof(Fts5ExprPhrase*) |
| ); |
| pNode = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprNode)); |
| pNear = (Fts5ExprNearset*)sqlite3Fts5MallocZero(&rc, |
| sizeof(Fts5ExprNearset) + sizeof(Fts5ExprPhrase*) |
| ); |
| |
| for(i=0; i<pOrig->nTerm; i++){ |
| pCopy->aTerm[i].zTerm = sqlite3Fts5Strndup(&rc, pOrig->aTerm[i].zTerm,-1); |
| pCopy->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix; |
| } |
| |
| if( rc==SQLITE_OK ){ |
| /* All the allocations succeeded. Put the expression object together. */ |
| pNew->pIndex = pExpr->pIndex; |
| pNew->pRoot = pNode; |
| pNew->nPhrase = 1; |
| pNew->apExprPhrase = apPhrase; |
| pNew->apExprPhrase[0] = pCopy; |
| |
| pNode->eType = (pOrig->nTerm==1 ? FTS5_TERM : FTS5_STRING); |
| pNode->pNear = pNear; |
| |
| pNear->nPhrase = 1; |
| pNear->apPhrase[0] = pCopy; |
| |
| pCopy->nTerm = pOrig->nTerm; |
| pCopy->pNode = pNode; |
| }else{ |
| /* At least one allocation failed. Free them all. */ |
| for(i=0; i<pOrig->nTerm; i++){ |
| sqlite3_free(pCopy->aTerm[i].zTerm); |
| } |
| sqlite3_free(pCopy); |
| sqlite3_free(pNear); |
| sqlite3_free(pNode); |
| sqlite3_free(apPhrase); |
| sqlite3_free(pNew); |
| pNew = 0; |
| } |
| } |
| |
| *ppNew = pNew; |
| return rc; |
| } |
| |
| /* |
| ** Free the expression node object passed as the only argument. |
| */ |
| void sqlite3Fts5ParseNodeFree(Fts5ExprNode *p){ |
| if( p ){ |
| int i; |
| for(i=0; i<p->nChild; i++){ |
| sqlite3Fts5ParseNodeFree(p->apChild[i]); |
| } |
| sqlite3Fts5ParseNearsetFree(p->pNear); |
| sqlite3_free(p); |
| } |
| } |
| |
| /* |
| ** Free the expression object passed as the only argument. |
| */ |
| void sqlite3Fts5ExprFree(Fts5Expr *p){ |
| if( p ){ |
| sqlite3Fts5ParseNodeFree(p->pRoot); |
| sqlite3_free(p->apExprPhrase); |
| sqlite3_free(p); |
| } |
| } |
| |
| static int fts5ExprColsetTest(Fts5ExprColset *pColset, int iCol){ |
| int i; |
| for(i=0; i<pColset->nCol; i++){ |
| if( pColset->aiCol[i]==iCol ) return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** All individual term iterators in pPhrase are guaranteed to be valid and |
| ** pointing to the same rowid when this function is called. This function |
| ** checks if the current rowid really is a match, and if so populates |
| ** the pPhrase->poslist buffer accordingly. Output parameter *pbMatch |
| ** is set to true if this is really a match, or false otherwise. |
| ** |
| ** SQLITE_OK is returned if an error occurs, or an SQLite error code |
| ** otherwise. It is not considered an error code if the current rowid is |
| ** not a match. |
| */ |
| static int fts5ExprPhraseIsMatch( |
| Fts5Expr *pExpr, /* Expression pPhrase belongs to */ |
| Fts5ExprColset *pColset, /* Restrict matches to these columns */ |
| Fts5ExprPhrase *pPhrase, /* Phrase object to initialize */ |
| int *pbMatch /* OUT: Set to true if really a match */ |
| ){ |
| Fts5PoslistWriter writer = {0}; |
| Fts5PoslistReader aStatic[4]; |
| Fts5PoslistReader *aIter = aStatic; |
| int i; |
| int rc = SQLITE_OK; |
| int iCol = -1; |
| |
| if( pColset && pColset->nCol==1 ){ |
| iCol = pColset->aiCol[0]; |
| pColset = 0; |
| } |
| |
| fts5BufferZero(&pPhrase->poslist); |
| |
| /* If the aStatic[] array is not large enough, allocate a large array |
| ** using sqlite3_malloc(). This approach could be improved upon. */ |
| if( pPhrase->nTerm>(sizeof(aStatic) / sizeof(aStatic[0])) ){ |
| int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm; |
| aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte); |
| if( !aIter ) return SQLITE_NOMEM; |
| } |
| |
| /* Initialize a term iterator for each term in the phrase */ |
| for(i=0; i<pPhrase->nTerm; i++){ |
| i64 dummy; |
| int n; |
| const u8 *a; |
| rc = sqlite3Fts5IterPoslist(pPhrase->aTerm[i].pIter, &a, &n, &dummy); |
| if( rc || sqlite3Fts5PoslistReaderInit(iCol, a, n, &aIter[i]) ){ |
| goto ismatch_out; |
| } |
| } |
| |
| while( 1 ){ |
| int bMatch; |
| i64 iPos = aIter[0].iPos; |
| do { |
| bMatch = 1; |
| for(i=0; i<pPhrase->nTerm; i++){ |
| Fts5PoslistReader *pPos = &aIter[i]; |
| i64 iAdj = iPos + i; |
| if( pPos->iPos!=iAdj ){ |
| bMatch = 0; |
| while( pPos->iPos<iAdj ){ |
| if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out; |
| } |
| if( pPos->iPos>iAdj ) iPos = pPos->iPos-i; |
| } |
| } |
| }while( bMatch==0 ); |
| |
| if( pColset==0 || fts5ExprColsetTest(pColset, FTS5_POS2COLUMN(iPos)) ){ |
| /* Append position iPos to the output */ |
| rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos); |
| if( rc!=SQLITE_OK ) goto ismatch_out; |
| } |
| |
| for(i=0; i<pPhrase->nTerm; i++){ |
| if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out; |
| } |
| } |
| |
| ismatch_out: |
| *pbMatch = (pPhrase->poslist.n>0); |
| if( aIter!=aStatic ) sqlite3_free(aIter); |
| return rc; |
| } |
| |
| typedef struct Fts5LookaheadReader Fts5LookaheadReader; |
| struct Fts5LookaheadReader { |
| const u8 *a; /* Buffer containing position list */ |
| int n; /* Size of buffer a[] in bytes */ |
| int i; /* Current offset in position list */ |
| i64 iPos; /* Current position */ |
| i64 iLookahead; /* Next position */ |
| }; |
| |
| #define FTS5_LOOKAHEAD_EOF (((i64)1) << 62) |
| |
| static int fts5LookaheadReaderNext(Fts5LookaheadReader *p){ |
| p->iPos = p->iLookahead; |
| if( sqlite3Fts5PoslistNext64(p->a, p->n, &p->i, &p->iLookahead) ){ |
| p->iLookahead = FTS5_LOOKAHEAD_EOF; |
| } |
| return (p->iPos==FTS5_LOOKAHEAD_EOF); |
| } |
| |
| static int fts5LookaheadReaderInit( |
| const u8 *a, int n, /* Buffer to read position list from */ |
| Fts5LookaheadReader *p /* Iterator object to initialize */ |
| ){ |
| memset(p, 0, sizeof(Fts5LookaheadReader)); |
| p->a = a; |
| p->n = n; |
| fts5LookaheadReaderNext(p); |
| return fts5LookaheadReaderNext(p); |
| } |
| |
| #if 0 |
| static int fts5LookaheadReaderEof(Fts5LookaheadReader *p){ |
| return (p->iPos==FTS5_LOOKAHEAD_EOF); |
| } |
| #endif |
| |
| typedef struct Fts5NearTrimmer Fts5NearTrimmer; |
| struct Fts5NearTrimmer { |
| Fts5LookaheadReader reader; /* Input iterator */ |
| Fts5PoslistWriter writer; /* Writer context */ |
| Fts5Buffer *pOut; /* Output poslist */ |
| }; |
| |
| /* |
| ** The near-set object passed as the first argument contains more than |
| ** one phrase. All phrases currently point to the same row. The |
| ** Fts5ExprPhrase.poslist buffers are populated accordingly. This function |
| ** tests if the current row contains instances of each phrase sufficiently |
| ** close together to meet the NEAR constraint. Non-zero is returned if it |
| ** does, or zero otherwise. |
| ** |
| ** If in/out parameter (*pRc) is set to other than SQLITE_OK when this |
| ** function is called, it is a no-op. Or, if an error (e.g. SQLITE_NOMEM) |
| ** occurs within this function (*pRc) is set accordingly before returning. |
| ** The return value is undefined in both these cases. |
| ** |
| ** If no error occurs and non-zero (a match) is returned, the position-list |
| ** of each phrase object is edited to contain only those entries that |
| ** meet the constraint before returning. |
| */ |
| static int fts5ExprNearIsMatch(int *pRc, Fts5ExprNearset *pNear){ |
| Fts5NearTrimmer aStatic[4]; |
| Fts5NearTrimmer *a = aStatic; |
| Fts5ExprPhrase **apPhrase = pNear->apPhrase; |
| |
| int i; |
| int rc = *pRc; |
| int bMatch; |
| |
| assert( pNear->nPhrase>1 ); |
| |
| /* If the aStatic[] array is not large enough, allocate a large array |
| ** using sqlite3_malloc(). This approach could be improved upon. */ |
| if( pNear->nPhrase>(sizeof(aStatic) / sizeof(aStatic[0])) ){ |
| int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase; |
| a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte); |
| }else{ |
| memset(aStatic, 0, sizeof(aStatic)); |
| } |
| if( rc!=SQLITE_OK ){ |
| *pRc = rc; |
| return 0; |
| } |
| |
| /* Initialize a lookahead iterator for each phrase. After passing the |
| ** buffer and buffer size to the lookaside-reader init function, zero |
| ** the phrase poslist buffer. The new poslist for the phrase (containing |
| ** the same entries as the original with some entries removed on account |
| ** of the NEAR constraint) is written over the original even as it is |
| ** being read. This is safe as the entries for the new poslist are a |
| ** subset of the old, so it is not possible for data yet to be read to |
| ** be overwritten. */ |
| for(i=0; i<pNear->nPhrase; i++){ |
| Fts5Buffer *pPoslist = &apPhrase[i]->poslist; |
| fts5LookaheadReaderInit(pPoslist->p, pPoslist->n, &a[i].reader); |
| pPoslist->n = 0; |
| a[i].pOut = pPoslist; |
| } |
| |
| while( 1 ){ |
| int iAdv; |
| i64 iMin; |
| i64 iMax; |
| |
| /* This block advances the phrase iterators until they point to a set of |
| ** entries that together comprise a match. */ |
| iMax = a[0].reader.iPos; |
| do { |
| bMatch = 1; |
| for(i=0; i<pNear->nPhrase; i++){ |
| Fts5LookaheadReader *pPos = &a[i].reader; |
| iMin = iMax - pNear->apPhrase[i]->nTerm - pNear->nNear; |
| if( pPos->iPos<iMin || pPos->iPos>iMax ){ |
| bMatch = 0; |
| while( pPos->iPos<iMin ){ |
| if( fts5LookaheadReaderNext(pPos) ) goto ismatch_out; |
| } |
| if( pPos->iPos>iMax ) iMax = pPos->iPos; |
| } |
| } |
| }while( bMatch==0 ); |
| |
| /* Add an entry to each output position list */ |
| for(i=0; i<pNear->nPhrase; i++){ |
| i64 iPos = a[i].reader.iPos; |
| Fts5PoslistWriter *pWriter = &a[i].writer; |
| if( a[i].pOut->n==0 || iPos!=pWriter->iPrev ){ |
| sqlite3Fts5PoslistWriterAppend(a[i].pOut, pWriter, iPos); |
| } |
| } |
| |
| iAdv = 0; |
| iMin = a[0].reader.iLookahead; |
| for(i=0; i<pNear->nPhrase; i++){ |
| if( a[i].reader.iLookahead < iMin ){ |
| iMin = a[i].reader.iLookahead; |
| iAdv = i; |
| } |
| } |
| if( fts5LookaheadReaderNext(&a[iAdv].reader) ) goto ismatch_out; |
| } |
| |
| ismatch_out: { |
| int bRet = a[0].pOut->n>0; |
| *pRc = rc; |
| if( a!=aStatic ) sqlite3_free(a); |
| return bRet; |
| } |
| } |
| |
| /* |
| ** Advance the first term iterator in the first phrase of pNear. Set output |
| ** variable *pbEof to true if it reaches EOF or if an error occurs. |
| ** |
| ** Return SQLITE_OK if successful, or an SQLite error code if an error |
| ** occurs. |
| */ |
| static int fts5ExprNearAdvanceFirst( |
| Fts5Expr *pExpr, /* Expression pPhrase belongs to */ |
| Fts5ExprNode *pNode, /* FTS5_STRING or FTS5_TERM node */ |
| int bFromValid, |
| i64 iFrom |
| ){ |
| Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter; |
| int rc; |
| |
| assert( Fts5NodeIsString(pNode) ); |
| if( bFromValid ){ |
| rc = sqlite3Fts5IterNextFrom(pIter, iFrom); |
| }else{ |
| rc = sqlite3Fts5IterNext(pIter); |
| } |
| |
| pNode->bEof = (rc || sqlite3Fts5IterEof(pIter)); |
| return rc; |
| } |
| |
| /* |
| ** Advance iterator pIter until it points to a value equal to or laster |
| ** than the initial value of *piLast. If this means the iterator points |
| ** to a value laster than *piLast, update *piLast to the new lastest value. |
| ** |
| ** If the iterator reaches EOF, set *pbEof to true before returning. If |
| ** an error occurs, set *pRc to an error code. If either *pbEof or *pRc |
| ** are set, return a non-zero value. Otherwise, return zero. |
| */ |
| static int fts5ExprAdvanceto( |
| Fts5IndexIter *pIter, /* Iterator to advance */ |
| int bDesc, /* True if iterator is "rowid DESC" */ |
| i64 *piLast, /* IN/OUT: Lastest rowid seen so far */ |
| int *pRc, /* OUT: Error code */ |
| int *pbEof /* OUT: Set to true if EOF */ |
| ){ |
| i64 iLast = *piLast; |
| i64 iRowid; |
| |
| iRowid = sqlite3Fts5IterRowid(pIter); |
| if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){ |
| int rc = sqlite3Fts5IterNextFrom(pIter, iLast); |
| if( rc || sqlite3Fts5IterEof(pIter) ){ |
| *pRc = rc; |
| *pbEof = 1; |
| return 1; |
| } |
| iRowid = sqlite3Fts5IterRowid(pIter); |
| assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) ); |
| } |
| *piLast = iRowid; |
| |
| return 0; |
| } |
| |
| /* |
| ** IN/OUT parameter (*pa) points to a position list n bytes in size. If |
| ** the position list contains entries for column iCol, then (*pa) is set |
| ** to point to the sub-position-list for that column and the number of |
| ** bytes in it returned. Or, if the argument position list does not |
| ** contain any entries for column iCol, return 0. |
| */ |
| static int fts5ExprExtractCol( |
| const u8 **pa, /* IN/OUT: Pointer to poslist */ |
| int n, /* IN: Size of poslist in bytes */ |
| int iCol /* Column to extract from poslist */ |
| ){ |
| int iCurrent = 0; |
| const u8 *p = *pa; |
| const u8 *pEnd = &p[n]; /* One byte past end of position list */ |
| u8 prev = 0; |
| |
| while( iCol!=iCurrent ){ |
| /* Advance pointer p until it points to pEnd or an 0x01 byte that is |
| ** not part of a varint */ |
| while( (prev & 0x80) || *p!=0x01 ){ |
| prev = *p++; |
| if( p==pEnd ) return 0; |
| } |
| *pa = p++; |
| p += fts5GetVarint32(p, iCurrent); |
| } |
| |
| /* Advance pointer p until it points to pEnd or an 0x01 byte that is |
| ** not part of a varint */ |
| assert( (prev & 0x80)==0 ); |
| while( p<pEnd && ((prev & 0x80) || *p!=0x01) ){ |
| prev = *p++; |
| } |
| return p - (*pa); |
| } |
| |
| static int fts5ExprExtractColset ( |
| Fts5ExprColset *pColset, /* Colset to filter on */ |
| const u8 *pPos, int nPos, /* Position list */ |
| Fts5Buffer *pBuf /* Output buffer */ |
| ){ |
| int rc = SQLITE_OK; |
| int i; |
| |
| fts5BufferZero(pBuf); |
| for(i=0; i<pColset->nCol; i++){ |
| const u8 *pSub = pPos; |
| int nSub = fts5ExprExtractCol(&pSub, nPos, pColset->aiCol[i]); |
| if( nSub ){ |
| fts5BufferAppendBlob(&rc, pBuf, nSub, pSub); |
| } |
| } |
| return rc; |
| } |
| |
| static int fts5ExprNearTest( |
| int *pRc, |
| Fts5Expr *pExpr, /* Expression that pNear is a part of */ |
| Fts5ExprNode *pNode /* The "NEAR" node (FTS5_STRING) */ |
| ){ |
| Fts5ExprNearset *pNear = pNode->pNear; |
| int rc = *pRc; |
| int i; |
| |
| /* Check that each phrase in the nearset matches the current row. |
| ** Populate the pPhrase->poslist buffers at the same time. If any |
| ** phrase is not a match, break out of the loop early. */ |
| for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){ |
| Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; |
| if( pPhrase->nTerm>1 || pNear->pColset ){ |
| int bMatch = 0; |
| rc = fts5ExprPhraseIsMatch(pExpr, pNear->pColset, pPhrase, &bMatch); |
| if( bMatch==0 ) break; |
| }else{ |
| rc = sqlite3Fts5IterPoslistBuffer( |
| pPhrase->aTerm[0].pIter, &pPhrase->poslist |
| ); |
| } |
| } |
| |
| *pRc = rc; |
| if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){ |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int fts5ExprTokenTest( |
| Fts5Expr *pExpr, /* Expression that pNear is a part of */ |
| Fts5ExprNode *pNode /* The "NEAR" node (FTS5_TERM) */ |
| ){ |
| /* As this "NEAR" object is actually a single phrase that consists |
| ** of a single term only, grab pointers into the poslist managed by the |
| ** fts5_index.c iterator object. This is much faster than synthesizing |
| ** a new poslist the way we have to for more complicated phrase or NEAR |
| ** expressions. */ |
| Fts5ExprNearset *pNear = pNode->pNear; |
| Fts5ExprPhrase *pPhrase = pNear->apPhrase[0]; |
| Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter; |
| Fts5ExprColset *pColset = pNear->pColset; |
| const u8 *pPos; |
| int nPos; |
| int rc; |
| |
| assert( pNode->eType==FTS5_TERM ); |
| assert( pNear->nPhrase==1 && pPhrase->nTerm==1 ); |
| |
| rc = sqlite3Fts5IterPoslist(pIter, &pPos, &nPos, &pNode->iRowid); |
| |
| /* If the term may match any column, then this must be a match. |
| ** Return immediately in this case. Otherwise, try to find the |
| ** part of the poslist that corresponds to the required column. |
| ** If it can be found, return. If it cannot, the next iteration |
| ** of the loop will test the next rowid in the database for this |
| ** term. */ |
| if( pColset==0 ){ |
| assert( pPhrase->poslist.nSpace==0 ); |
| pPhrase->poslist.p = (u8*)pPos; |
| pPhrase->poslist.n = nPos; |
| }else if( pColset->nCol==1 ){ |
| assert( pPhrase->poslist.nSpace==0 ); |
| pPhrase->poslist.n = fts5ExprExtractCol(&pPos, nPos, pColset->aiCol[0]); |
| pPhrase->poslist.p = (u8*)pPos; |
| }else if( rc==SQLITE_OK ){ |
| rc = fts5ExprExtractColset(pColset, pPos, nPos, &pPhrase->poslist); |
| } |
| |
| pNode->bNomatch = (pPhrase->poslist.n==0); |
| return rc; |
| } |
| |
| /* |
| ** All individual term iterators in pNear are guaranteed to be valid when |
| ** this function is called. This function checks if all term iterators |
| ** point to the same rowid, and if not, advances them until they do. |
| ** If an EOF is reached before this happens, *pbEof is set to true before |
| ** returning. |
| ** |
| ** SQLITE_OK is returned if an error occurs, or an SQLite error code |
| ** otherwise. It is not considered an error code if an iterator reaches |
| ** EOF. |
| */ |
| static int fts5ExprNearNextMatch( |
| Fts5Expr *pExpr, /* Expression pPhrase belongs to */ |
| Fts5ExprNode *pNode |
| ){ |
| Fts5ExprNearset *pNear = pNode->pNear; |
| Fts5ExprPhrase *pLeft = pNear->apPhrase[0]; |
| int rc = SQLITE_OK; |
| i64 iLast; /* Lastest rowid any iterator points to */ |
| int i, j; /* Phrase and token index, respectively */ |
| int bMatch; /* True if all terms are at the same rowid */ |
| |
| assert( pNear->nPhrase>1 || pNear->apPhrase[0]->nTerm>1 ); |
| |
| /* Initialize iLast, the "lastest" rowid any iterator points to. If the |
| ** iterator skips through rowids in the default ascending order, this means |
| ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it |
| ** means the minimum rowid. */ |
| iLast = sqlite3Fts5IterRowid(pLeft->aTerm[0].pIter); |
| |
| do { |
| bMatch = 1; |
| for(i=0; i<pNear->nPhrase; i++){ |
| Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; |
| for(j=0; j<pPhrase->nTerm; j++){ |
| Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter; |
| i64 iRowid = sqlite3Fts5IterRowid(pIter); |
| if( iRowid!=iLast ) bMatch = 0; |
| if( fts5ExprAdvanceto(pIter, pExpr->bDesc, &iLast,&rc,&pNode->bEof) ){ |
| return rc; |
| } |
| } |
| } |
| }while( bMatch==0 ); |
| |
| pNode->bNomatch = (0==fts5ExprNearTest(&rc, pExpr, pNode)); |
| pNode->iRowid = iLast; |
| |
| return rc; |
| } |
| |
| /* |
| ** Initialize all term iterators in the pNear object. If any term is found |
| ** to match no documents at all, set *pbEof to true and return immediately, |
| ** without initializing any further iterators. |
| */ |
| static int fts5ExprNearInitAll( |
| Fts5Expr *pExpr, |
| Fts5ExprNode *pNode |
| ){ |
| Fts5ExprNearset *pNear = pNode->pNear; |
| Fts5ExprTerm *pTerm; |
| Fts5ExprPhrase *pPhrase; |
| int i, j; |
| int rc = SQLITE_OK; |
| |
| for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){ |
| pPhrase = pNear->apPhrase[i]; |
| for(j=0; j<pPhrase->nTerm; j++){ |
| pTerm = &pPhrase->aTerm[j]; |
| if( pTerm->pIter ){ |
| sqlite3Fts5IterClose(pTerm->pIter); |
| pTerm->pIter = 0; |
| } |
| rc = sqlite3Fts5IndexQuery( |
| pExpr->pIndex, pTerm->zTerm, strlen(pTerm->zTerm), |
| (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) | |
| (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0), |
| &pTerm->pIter |
| ); |
| assert( rc==SQLITE_OK || pTerm->pIter==0 ); |
| if( pTerm->pIter==0 || sqlite3Fts5IterEof(pTerm->pIter) ){ |
| pNode->bEof = 1; |
| break; |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* fts5ExprNodeNext() calls fts5ExprNodeNextMatch(). And vice-versa. */ |
| static int fts5ExprNodeNextMatch(Fts5Expr*, Fts5ExprNode*); |
| |
| |
| /* |
| ** If pExpr is an ASC iterator, this function returns a value with the |
| ** same sign as: |
| ** |
| ** (iLhs - iRhs) |
| ** |
| ** Otherwise, if this is a DESC iterator, the opposite is returned: |
| ** |
| ** (iRhs - iLhs) |
| */ |
| static int fts5RowidCmp( |
| Fts5Expr *pExpr, |
| i64 iLhs, |
| i64 iRhs |
| ){ |
| assert( pExpr->bDesc==0 || pExpr->bDesc==1 ); |
| if( pExpr->bDesc==0 ){ |
| if( iLhs<iRhs ) return -1; |
| return (iLhs > iRhs); |
| }else{ |
| if( iLhs>iRhs ) return -1; |
| return (iLhs < iRhs); |
| } |
| } |
| |
| static void fts5ExprSetEof(Fts5ExprNode *pNode){ |
| int i; |
| pNode->bEof = 1; |
| for(i=0; i<pNode->nChild; i++){ |
| fts5ExprSetEof(pNode->apChild[i]); |
| } |
| } |
| |
| static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){ |
| if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){ |
| Fts5ExprNearset *pNear = pNode->pNear; |
| int i; |
| for(i=0; i<pNear->nPhrase; i++){ |
| Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; |
| pPhrase->poslist.n = 0; |
| } |
| }else{ |
| int i; |
| for(i=0; i<pNode->nChild; i++){ |
| fts5ExprNodeZeroPoslist(pNode->apChild[i]); |
| } |
| } |
| } |
| |
| |
| static int fts5ExprNodeNext(Fts5Expr*, Fts5ExprNode*, int, i64); |
| |
| /* |
| ** Argument pNode is an FTS5_AND node. |
| */ |
| static int fts5ExprAndNextRowid( |
| Fts5Expr *pExpr, /* Expression pPhrase belongs to */ |
| Fts5ExprNode *pAnd /* FTS5_AND node to advance */ |
| ){ |
| int iChild; |
| i64 iLast = pAnd->iRowid; |
| int rc = SQLITE_OK; |
| int bMatch; |
| |
| assert( pAnd->bEof==0 ); |
| do { |
| pAnd->bNomatch = 0; |
| bMatch = 1; |
| for(iChild=0; iChild<pAnd->nChild; iChild++){ |
| Fts5ExprNode *pChild = pAnd->apChild[iChild]; |
| if( 0 && pChild->eType==FTS5_STRING ){ |
| /* TODO */ |
| }else{ |
| int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid); |
| if( cmp>0 ){ |
| /* Advance pChild until it points to iLast or laster */ |
| rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| } |
| |
| /* If the child node is now at EOF, so is the parent AND node. Otherwise, |
| ** the child node is guaranteed to have advanced at least as far as |
| ** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the |
| ** new lastest rowid seen so far. */ |
| assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 ); |
| if( pChild->bEof ){ |
| fts5ExprSetEof(pAnd); |
| bMatch = 1; |
| break; |
| }else if( iLast!=pChild->iRowid ){ |
| bMatch = 0; |
| iLast = pChild->iRowid; |
| } |
| |
| if( pChild->bNomatch ){ |
| pAnd->bNomatch = 1; |
| } |
| } |
| }while( bMatch==0 ); |
| |
| if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){ |
| fts5ExprNodeZeroPoslist(pAnd); |
| } |
| pAnd->iRowid = iLast; |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Compare the values currently indicated by the two nodes as follows: |
| ** |
| ** res = (*p1) - (*p2) |
| ** |
| ** Nodes that point to values that come later in the iteration order are |
| ** considered to be larger. Nodes at EOF are the largest of all. |
| ** |
| ** This means that if the iteration order is ASC, then numerically larger |
| ** rowids are considered larger. Or if it is the default DESC, numerically |
| ** smaller rowids are larger. |
| */ |
| static int fts5NodeCompare( |
| Fts5Expr *pExpr, |
| Fts5ExprNode *p1, |
| Fts5ExprNode *p2 |
| ){ |
| if( p2->bEof ) return -1; |
| if( p1->bEof ) return +1; |
| return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid); |
| } |
| |
| /* |
| ** Advance node iterator pNode, part of expression pExpr. If argument |
| ** bFromValid is zero, then pNode is advanced exactly once. Or, if argument |
| ** bFromValid is non-zero, then pNode is advanced until it is at or past |
| ** rowid value iFrom. Whether "past" means "less than" or "greater than" |
| ** depends on whether this is an ASC or DESC iterator. |
| */ |
| static int fts5ExprNodeNext( |
| Fts5Expr *pExpr, |
| Fts5ExprNode *pNode, |
| int bFromValid, |
| i64 iFrom |
| ){ |
| int rc = SQLITE_OK; |
| |
| if( pNode->bEof==0 ){ |
| switch( pNode->eType ){ |
| case FTS5_STRING: { |
| rc = fts5ExprNearAdvanceFirst(pExpr, pNode, bFromValid, iFrom); |
| break; |
| }; |
| |
| case FTS5_TERM: { |
| rc = fts5ExprNearAdvanceFirst(pExpr, pNode, bFromValid, iFrom); |
| if( pNode->bEof==0 ){ |
| assert( rc==SQLITE_OK ); |
| rc = fts5ExprTokenTest(pExpr, pNode); |
| } |
| return rc; |
| }; |
| |
| case FTS5_AND: { |
| Fts5ExprNode *pLeft = pNode->apChild[0]; |
| rc = fts5ExprNodeNext(pExpr, pLeft, bFromValid, iFrom); |
| break; |
| } |
| |
| case FTS5_OR: { |
| int i; |
| i64 iLast = pNode->iRowid; |
| |
| for(i=0; rc==SQLITE_OK && i<pNode->nChild; i++){ |
| Fts5ExprNode *p1 = pNode->apChild[i]; |
| assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 ); |
| if( p1->bEof==0 ){ |
| if( (p1->iRowid==iLast) |
| || (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0) |
| ){ |
| rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom); |
| } |
| } |
| } |
| |
| break; |
| } |
| |
| default: assert( pNode->eType==FTS5_NOT ); { |
| assert( pNode->nChild==2 ); |
| rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom); |
| break; |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = fts5ExprNodeNextMatch(pExpr, pNode); |
| } |
| } |
| |
| /* Assert that if bFromValid was true, either: |
| ** |
| ** a) an error occurred, or |
| ** b) the node is now at EOF, or |
| ** c) the node is now at or past rowid iFrom. |
| */ |
| assert( bFromValid==0 |
| || rc!=SQLITE_OK /* a */ |
| || pNode->bEof /* b */ |
| || pNode->iRowid==iFrom || pExpr->bDesc==(pNode->iRowid<iFrom) /* c */ |
| ); |
| |
| return rc; |
| } |
| |
| |
| /* |
| ** If pNode currently points to a match, this function returns SQLITE_OK |
| ** without modifying it. Otherwise, pNode is advanced until it does point |
| ** to a match or EOF is reached. |
| */ |
| static int fts5ExprNodeNextMatch( |
| Fts5Expr *pExpr, /* Expression of which pNode is a part */ |
| Fts5ExprNode *pNode /* Expression node to test */ |
| ){ |
| int rc = SQLITE_OK; |
| if( pNode->bEof==0 ){ |
| switch( pNode->eType ){ |
| |
| case FTS5_STRING: { |
| /* Advance the iterators until they all point to the same rowid */ |
| rc = fts5ExprNearNextMatch(pExpr, pNode); |
| break; |
| } |
| |
| case FTS5_TERM: { |
| rc = fts5ExprTokenTest(pExpr, pNode); |
| break; |
| } |
| |
| case FTS5_AND: { |
| rc = fts5ExprAndNextRowid(pExpr, pNode); |
| break; |
| } |
| |
| case FTS5_OR: { |
| Fts5ExprNode *pNext = pNode->apChild[0]; |
| int i; |
| |
| for(i=1; i<pNode->nChild; i++){ |
| Fts5ExprNode *pChild = pNode->apChild[i]; |
| int cmp = fts5NodeCompare(pExpr, pNext, pChild); |
| if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){ |
| pNext = pChild; |
| } |
| } |
| pNode->iRowid = pNext->iRowid; |
| pNode->bEof = pNext->bEof; |
| pNode->bNomatch = pNext->bNomatch; |
| break; |
| } |
| |
| default: assert( pNode->eType==FTS5_NOT ); { |
| Fts5ExprNode *p1 = pNode->apChild[0]; |
| Fts5ExprNode *p2 = pNode->apChild[1]; |
| assert( pNode->nChild==2 ); |
| |
| while( rc==SQLITE_OK && p1->bEof==0 ){ |
| int cmp = fts5NodeCompare(pExpr, p1, p2); |
| if( cmp>0 ){ |
| rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid); |
| cmp = fts5NodeCompare(pExpr, p1, p2); |
| } |
| assert( rc!=SQLITE_OK || cmp<=0 ); |
| if( cmp || p2->bNomatch ) break; |
| rc = fts5ExprNodeNext(pExpr, p1, 0, 0); |
| } |
| pNode->bEof = p1->bEof; |
| pNode->iRowid = p1->iRowid; |
| break; |
| } |
| } |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Set node pNode, which is part of expression pExpr, to point to the first |
| ** match. If there are no matches, set the Node.bEof flag to indicate EOF. |
| ** |
| ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. |
| ** It is not an error if there are no matches. |
| */ |
| static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){ |
| int rc = SQLITE_OK; |
| pNode->bEof = 0; |
| |
| if( Fts5NodeIsString(pNode) ){ |
| /* Initialize all term iterators in the NEAR object. */ |
| rc = fts5ExprNearInitAll(pExpr, pNode); |
| }else{ |
| int i; |
| for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){ |
| rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]); |
| } |
| pNode->iRowid = pNode->apChild[0]->iRowid; |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = fts5ExprNodeNextMatch(pExpr, pNode); |
| } |
| return rc; |
| } |
| |
| |
| /* |
| ** Begin iterating through the set of documents in index pIdx matched by |
| ** the MATCH expression passed as the first argument. If the "bDesc" |
| ** parameter is passed a non-zero value, iteration is in descending rowid |
| ** order. Or, if it is zero, in ascending order. |
| ** |
| ** If iterating in ascending rowid order (bDesc==0), the first document |
| ** visited is that with the smallest rowid that is larger than or equal |
| ** to parameter iFirst. Or, if iterating in ascending order (bDesc==1), |
| ** then the first document visited must have a rowid smaller than or |
| ** equal to iFirst. |
| ** |
| ** Return SQLITE_OK if successful, or an SQLite error code otherwise. It |
| ** is not considered an error if the query does not match any documents. |
| */ |
| int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){ |
| Fts5ExprNode *pRoot = p->pRoot; |
| int rc = SQLITE_OK; |
| if( pRoot ){ |
| p->pIndex = pIdx; |
| p->bDesc = bDesc; |
| rc = fts5ExprNodeFirst(p, pRoot); |
| |
| /* If not at EOF but the current rowid occurs earlier than iFirst in |
| ** the iteration order, move to document iFirst or later. */ |
| if( pRoot->bEof==0 && fts5RowidCmp(p, pRoot->iRowid, iFirst)<0 ){ |
| rc = fts5ExprNodeNext(p, pRoot, 1, iFirst); |
| } |
| |
| /* If the iterator is not at a real match, skip forward until it is. */ |
| while( pRoot->bNomatch && rc==SQLITE_OK && pRoot->bEof==0 ){ |
| rc = fts5ExprNodeNext(p, pRoot, 0, 0); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Move to the next document |
| ** |
| ** Return SQLITE_OK if successful, or an SQLite error code otherwise. It |
| ** is not considered an error if the query does not match any documents. |
| */ |
| int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){ |
| int rc; |
| Fts5ExprNode *pRoot = p->pRoot; |
| do { |
| rc = fts5ExprNodeNext(p, pRoot, 0, 0); |
| }while( pRoot->bNomatch && pRoot->bEof==0 && rc==SQLITE_OK ); |
| if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){ |
| pRoot->bEof = 1; |
| } |
| return rc; |
| } |
| |
| int sqlite3Fts5ExprEof(Fts5Expr *p){ |
| return (p->pRoot==0 || p->pRoot->bEof); |
| } |
| |
| i64 sqlite3Fts5ExprRowid(Fts5Expr *p){ |
| return p->pRoot->iRowid; |
| } |
| |
| static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){ |
| int rc = SQLITE_OK; |
| *pz = sqlite3Fts5Strndup(&rc, pToken->p, pToken->n); |
| return rc; |
| } |
| |
| /* |
| ** Free the phrase object passed as the only argument. |
| */ |
| static void fts5ExprPhraseFree(Fts5ExprPhrase *pPhrase){ |
| if( pPhrase ){ |
| int i; |
| for(i=0; i<pPhrase->nTerm; i++){ |
| Fts5ExprTerm *pTerm = &pPhrase->aTerm[i]; |
| sqlite3_free(pTerm->zTerm); |
| if( pTerm->pIter ){ |
| sqlite3Fts5IterClose(pTerm->pIter); |
| } |
| } |
| if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist); |
| sqlite3_free(pPhrase); |
| } |
| } |
| |
| /* |
| ** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated |
| ** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is |
| ** appended to it and the results returned. |
| ** |
| ** If an OOM error occurs, both the pNear and pPhrase objects are freed and |
| ** NULL returned. |
| */ |
| Fts5ExprNearset *sqlite3Fts5ParseNearset( |
| Fts5Parse *pParse, /* Parse context */ |
| Fts5ExprNearset *pNear, /* Existing nearset, or NULL */ |
| Fts5ExprPhrase *pPhrase /* Recently parsed phrase */ |
| ){ |
| const int SZALLOC = 8; |
| Fts5ExprNearset *pRet = 0; |
| |
| if( pParse->rc==SQLITE_OK ){ |
| if( pPhrase==0 ){ |
| return pNear; |
| } |
| if( pNear==0 ){ |
| int nByte = sizeof(Fts5ExprNearset) + SZALLOC * sizeof(Fts5ExprPhrase*); |
| pRet = sqlite3_malloc(nByte); |
| if( pRet==0 ){ |
| pParse->rc = SQLITE_NOMEM; |
| }else{ |
| memset(pRet, 0, nByte); |
| } |
| }else if( (pNear->nPhrase % SZALLOC)==0 ){ |
| int nNew = pNear->nPhrase + SZALLOC; |
| int nByte = sizeof(Fts5ExprNearset) + nNew * sizeof(Fts5ExprPhrase*); |
| |
| pRet = (Fts5ExprNearset*)sqlite3_realloc(pNear, nByte); |
| if( pRet==0 ){ |
| pParse->rc = SQLITE_NOMEM; |
| } |
| }else{ |
| pRet = pNear; |
| } |
| } |
| |
| if( pRet==0 ){ |
| assert( pParse->rc!=SQLITE_OK ); |
| sqlite3Fts5ParseNearsetFree(pNear); |
| sqlite3Fts5ParsePhraseFree(pPhrase); |
| }else{ |
| pRet->apPhrase[pRet->nPhrase++] = pPhrase; |
| } |
| return pRet; |
| } |
| |
| typedef struct TokenCtx TokenCtx; |
| struct TokenCtx { |
| Fts5ExprPhrase *pPhrase; |
| }; |
| |
| /* |
| ** Callback for tokenizing terms used by ParseTerm(). |
| */ |
| static int fts5ParseTokenize( |
| void *pContext, /* Pointer to Fts5InsertCtx object */ |
| const char *pToken, /* Buffer containing token */ |
| int nToken, /* Size of token in bytes */ |
| int iStart, /* Start offset of token */ |
| int iEnd /* End offset of token */ |
| ){ |
| int rc = SQLITE_OK; |
| const int SZALLOC = 8; |
| TokenCtx *pCtx = (TokenCtx*)pContext; |
| Fts5ExprPhrase *pPhrase = pCtx->pPhrase; |
| Fts5ExprTerm *pTerm; |
| |
| if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){ |
| Fts5ExprPhrase *pNew; |
| int nNew = SZALLOC + (pPhrase ? pPhrase->nTerm : 0); |
| |
| pNew = (Fts5ExprPhrase*)sqlite3_realloc(pPhrase, |
| sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * nNew |
| ); |
| if( pNew==0 ) return SQLITE_NOMEM; |
| if( pPhrase==0 ) memset(pNew, 0, sizeof(Fts5ExprPhrase)); |
| pCtx->pPhrase = pPhrase = pNew; |
| pNew->nTerm = nNew - SZALLOC; |
| } |
| |
| pTerm = &pPhrase->aTerm[pPhrase->nTerm++]; |
| memset(pTerm, 0, sizeof(Fts5ExprTerm)); |
| pTerm->zTerm = sqlite3Fts5Strndup(&rc, pToken, nToken); |
| |
| return rc; |
| } |
| |
| |
| /* |
| ** Free the phrase object passed as the only argument. |
| */ |
| void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase *pPhrase){ |
| fts5ExprPhraseFree(pPhrase); |
| } |
| |
| /* |
| ** Free the phrase object passed as the second argument. |
| */ |
| void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset *pNear){ |
| if( pNear ){ |
| int i; |
| for(i=0; i<pNear->nPhrase; i++){ |
| fts5ExprPhraseFree(pNear->apPhrase[i]); |
| } |
| sqlite3_free(pNear->pColset); |
| sqlite3_free(pNear); |
| } |
| } |
| |
| void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p){ |
| assert( pParse->pExpr==0 ); |
| pParse->pExpr = p; |
| } |
| |
| /* |
| ** This function is called by the parser to process a string token. The |
| ** string may or may not be quoted. In any case it is tokenized and a |
| ** phrase object consisting of all tokens returned. |
| */ |
| Fts5ExprPhrase *sqlite3Fts5ParseTerm( |
| Fts5Parse *pParse, /* Parse context */ |
| Fts5ExprPhrase *pAppend, /* Phrase to append to */ |
| Fts5Token *pToken, /* String to tokenize */ |
| int bPrefix /* True if there is a trailing "*" */ |
| ){ |
| Fts5Config *pConfig = pParse->pConfig; |
| TokenCtx sCtx; /* Context object passed to callback */ |
| int rc; /* Tokenize return code */ |
| char *z = 0; |
| |
| memset(&sCtx, 0, sizeof(TokenCtx)); |
| sCtx.pPhrase = pAppend; |
| |
| rc = fts5ParseStringFromToken(pToken, &z); |
| if( rc==SQLITE_OK ){ |
| sqlite3Fts5Dequote(z); |
| rc = sqlite3Fts5Tokenize(pConfig, z, strlen(z), &sCtx, fts5ParseTokenize); |
| } |
| sqlite3_free(z); |
| if( rc ){ |
| pParse->rc = rc; |
| fts5ExprPhraseFree(sCtx.pPhrase); |
| sCtx.pPhrase = 0; |
| }else if( sCtx.pPhrase ){ |
| |
| if( pAppend==0 ){ |
| if( (pParse->nPhrase % 8)==0 ){ |
| int nByte = sizeof(Fts5ExprPhrase*) * (pParse->nPhrase + 8); |
| Fts5ExprPhrase **apNew; |
| apNew = (Fts5ExprPhrase**)sqlite3_realloc(pParse->apPhrase, nByte); |
| if( apNew==0 ){ |
| pParse->rc = SQLITE_NOMEM; |
| fts5ExprPhraseFree(sCtx.pPhrase); |
| return 0; |
| } |
| pParse->apPhrase = apNew; |
| } |
| pParse->nPhrase++; |
| } |
| |
| pParse->apPhrase[pParse->nPhrase-1] = sCtx.pPhrase; |
| assert( sCtx.pPhrase->nTerm>0 ); |
| sCtx.pPhrase->aTerm[sCtx.pPhrase->nTerm-1].bPrefix = bPrefix; |
| } |
| |
| return sCtx.pPhrase; |
| } |
| |
| /* |
| ** Token pTok has appeared in a MATCH expression where the NEAR operator |
| ** is expected. If token pTok does not contain "NEAR", store an error |
| ** in the pParse object. |
| */ |
| void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token *pTok){ |
| if( pTok->n!=4 || memcmp("NEAR", pTok->p, 4) ){ |
| sqlite3Fts5ParseError( |
| pParse, "fts5: syntax error near \"%.*s\"", pTok->n, pTok->p |
| ); |
| } |
| } |
| |
| void sqlite3Fts5ParseSetDistance( |
| Fts5Parse *pParse, |
| Fts5ExprNearset *pNear, |
| Fts5Token *p |
| ){ |
| int nNear = 0; |
| int i; |
| if( p->n ){ |
| for(i=0; i<p->n; i++){ |
| char c = (char)p->p[i]; |
| if( c<'0' || c>'9' ){ |
| sqlite3Fts5ParseError( |
| pParse, "expected integer, got \"%.*s\"", p->n, p->p |
| ); |
| return; |
| } |
| nNear = nNear * 10 + (p->p[i] - '0'); |
| } |
| }else{ |
| nNear = FTS5_DEFAULT_NEARDIST; |
| } |
| pNear->nNear = nNear; |
| } |
| |
| /* |
| ** The second argument passed to this function may be NULL, or it may be |
| ** an existing Fts5ExprColset object. This function returns a pointer to |
| ** a new colset object containing the contents of (p) with new value column |
| ** number iCol appended. |
| ** |
| ** If an OOM error occurs, store an error code in pParse and return NULL. |
| ** The old colset object (if any) is not freed in this case. |
| */ |
| static Fts5ExprColset *fts5ParseColset( |
| Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */ |
| Fts5ExprColset *p, /* Existing colset object */ |
| int iCol /* New column to add to colset object */ |
| ){ |
| int nCol = p ? p->nCol : 0; /* Num. columns already in colset object */ |
| Fts5ExprColset *pNew; /* New colset object to return */ |
| |
| assert( pParse->rc==SQLITE_OK ); |
| assert( iCol>=0 && iCol<pParse->pConfig->nCol ); |
| |
| pNew = sqlite3_realloc(p, sizeof(Fts5ExprColset) + sizeof(int)*nCol); |
| if( pNew==0 ){ |
| pParse->rc = SQLITE_NOMEM; |
| }else{ |
| int *aiCol = pNew->aiCol; |
| int i, j; |
| for(i=0; i<nCol; i++){ |
| if( aiCol[i]==iCol ) return pNew; |
| if( aiCol[i]>iCol ) break; |
| } |
| for(j=nCol; j>i; j--){ |
| aiCol[j] = aiCol[j-1]; |
| } |
| aiCol[i] = iCol; |
| pNew->nCol = nCol+1; |
| |
| #ifndef NDEBUG |
| /* Check that the array is in order and contains no duplicate entries. */ |
| for(i=1; i<pNew->nCol; i++) assert( pNew->aiCol[i]>pNew->aiCol[i-1] ); |
| #endif |
| } |
| |
| return pNew; |
| } |
| |
| Fts5ExprColset *sqlite3Fts5ParseColset( |
| Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */ |
| Fts5ExprColset *pColset, /* Existing colset object */ |
| Fts5Token *p |
| ){ |
| Fts5ExprColset *pRet = 0; |
| int iCol; |
| char *z; /* Dequoted copy of token p */ |
| |
| z = sqlite3Fts5Strndup(&pParse->rc, p->p, p->n); |
| if( pParse->rc==SQLITE_OK ){ |
| Fts5Config *pConfig = pParse->pConfig; |
| sqlite3Fts5Dequote(z); |
| for(iCol=0; iCol<pConfig->nCol; iCol++){ |
| if( 0==sqlite3_stricmp(pConfig->azCol[iCol], z) ) break; |
| } |
| if( iCol==pConfig->nCol ){ |
| sqlite3Fts5ParseError(pParse, "no such column: %s", z); |
| }else{ |
| pRet = fts5ParseColset(pParse, pColset, iCol); |
| } |
| sqlite3_free(z); |
| } |
| |
| if( pRet==0 ){ |
| assert( pParse->rc!=SQLITE_OK ); |
| sqlite3_free(pColset); |
| } |
| |
| return pRet; |
| } |
| |
| void sqlite3Fts5ParseSetColset( |
| Fts5Parse *pParse, |
| Fts5ExprNearset *pNear, |
| Fts5ExprColset *pColset |
| ){ |
| if( pNear ){ |
| pNear->pColset = pColset; |
| }else{ |
| sqlite3_free(pColset); |
| } |
| } |
| |
| static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){ |
| if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){ |
| int nByte = sizeof(Fts5ExprNode*) * pSub->nChild; |
| memcpy(&p->apChild[p->nChild], pSub->apChild, nByte); |
| p->nChild += pSub->nChild; |
| sqlite3_free(pSub); |
| }else{ |
| p->apChild[p->nChild++] = pSub; |
| } |
| } |
| |
| /* |
| ** Allocate and return a new expression object. If anything goes wrong (i.e. |
| ** OOM error), leave an error code in pParse and return NULL. |
| */ |
| Fts5ExprNode *sqlite3Fts5ParseNode( |
| Fts5Parse *pParse, /* Parse context */ |
| int eType, /* FTS5_STRING, AND, OR or NOT */ |
| Fts5ExprNode *pLeft, /* Left hand child expression */ |
| Fts5ExprNode *pRight, /* Right hand child expression */ |
| Fts5ExprNearset *pNear /* For STRING expressions, the near cluster */ |
| ){ |
| Fts5ExprNode *pRet = 0; |
| |
| if( pParse->rc==SQLITE_OK ){ |
| int nChild = 0; /* Number of children of returned node */ |
| int nByte; /* Bytes of space to allocate for this node */ |
| |
| assert( (eType!=FTS5_STRING && !pNear) |
| || (eType==FTS5_STRING && !pLeft && !pRight) |
| ); |
| if( eType==FTS5_STRING && pNear==0 ) return 0; |
| if( eType!=FTS5_STRING && pLeft==0 ) return pRight; |
| if( eType!=FTS5_STRING && pRight==0 ) return pLeft; |
| |
| if( eType==FTS5_NOT ){ |
| nChild = 2; |
| }else if( eType==FTS5_AND || eType==FTS5_OR ){ |
| nChild = 2; |
| if( pLeft->eType==eType ) nChild += pLeft->nChild-1; |
| if( pRight->eType==eType ) nChild += pRight->nChild-1; |
| } |
| |
| nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*nChild; |
| pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte); |
| |
| if( pRet ){ |
| pRet->eType = eType; |
| pRet->pNear = pNear; |
| if( eType==FTS5_STRING ){ |
| int iPhrase; |
| for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){ |
| pNear->apPhrase[iPhrase]->pNode = pRet; |
| } |
| if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 ){ |
| pRet->eType = FTS5_TERM; |
| } |
| }else{ |
| fts5ExprAddChildren(pRet, pLeft); |
| fts5ExprAddChildren(pRet, pRight); |
| } |
| } |
| } |
| |
| if( pRet==0 ){ |
| assert( pParse->rc!=SQLITE_OK ); |
| sqlite3Fts5ParseNodeFree(pLeft); |
| sqlite3Fts5ParseNodeFree(pRight); |
| sqlite3Fts5ParseNearsetFree(pNear); |
| } |
| return pRet; |
| } |
| |
| static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){ |
| char *zQuoted = sqlite3_malloc(strlen(pTerm->zTerm) * 2 + 3 + 2); |
| if( zQuoted ){ |
| int i = 0; |
| char *zIn = pTerm->zTerm; |
| zQuoted[i++] = '"'; |
| while( *zIn ){ |
| if( *zIn=='"' ) zQuoted[i++] = '"'; |
| zQuoted[i++] = *zIn++; |
| } |
| zQuoted[i++] = '"'; |
| if( pTerm->bPrefix ){ |
| zQuoted[i++] = ' '; |
| zQuoted[i++] = '*'; |
| } |
| zQuoted[i++] = '\0'; |
| } |
| return zQuoted; |
| } |
| |
| static char *fts5PrintfAppend(char *zApp, const char *zFmt, ...){ |
| char *zNew; |
| va_list ap; |
| va_start(ap, zFmt); |
| zNew = sqlite3_vmprintf(zFmt, ap); |
| va_end(ap); |
| if( zApp && zNew ){ |
| char *zNew2 = sqlite3_mprintf("%s%s", zApp, zNew); |
| sqlite3_free(zNew); |
| zNew = zNew2; |
| } |
| sqlite3_free(zApp); |
| return zNew; |
| } |
| |
| /* |
| ** Compose a tcl-readable representation of expression pExpr. Return a |
| ** pointer to a buffer containing that representation. It is the |
| ** responsibility of the caller to at some point free the buffer using |
| ** sqlite3_free(). |
| */ |
| static char *fts5ExprPrintTcl( |
| Fts5Config *pConfig, |
| const char *zNearsetCmd, |
| Fts5ExprNode *pExpr |
| ){ |
| char *zRet = 0; |
| if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){ |
| Fts5ExprNearset *pNear = pExpr->pNear; |
| int i; |
| int iTerm; |
| |
| zRet = fts5PrintfAppend(zRet, "%s ", zNearsetCmd); |
| if( zRet==0 ) return 0; |
| if( pNear->pColset ){ |
| int *aiCol = pNear->pColset->aiCol; |
| int nCol = pNear->pColset->nCol; |
| if( nCol==1 ){ |
| zRet = fts5PrintfAppend(zRet, "-col %d ", aiCol[0]); |
| }else{ |
| zRet = fts5PrintfAppend(zRet, "-col {%d", aiCol[0]); |
| for(i=1; i<pNear->pColset->nCol; i++){ |
| zRet = fts5PrintfAppend(zRet, " %d", aiCol[i]); |
| } |
| zRet = fts5PrintfAppend(zRet, "} "); |
| } |
| if( zRet==0 ) return 0; |
| } |
| |
| if( pNear->nPhrase>1 ){ |
| zRet = fts5PrintfAppend(zRet, "-near %d ", pNear->nNear); |
| if( zRet==0 ) return 0; |
| } |
| |
| zRet = fts5PrintfAppend(zRet, "--"); |
| if( zRet==0 ) return 0; |
| |
| for(i=0; i<pNear->nPhrase; i++){ |
| Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; |
| |
| zRet = fts5PrintfAppend(zRet, " {"); |
| for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){ |
| char *zTerm = pPhrase->aTerm[iTerm].zTerm; |
| zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" ", zTerm); |
| } |
| |
| if( zRet ) zRet = fts5PrintfAppend(zRet, "}"); |
| if( zRet==0 ) return 0; |
| } |
| |
| }else{ |
| char const *zOp = 0; |
| int i; |
| switch( pExpr->eType ){ |
| case FTS5_AND: zOp = "AND"; break; |
| case FTS5_NOT: zOp = "NOT"; break; |
| default: |
| assert( pExpr->eType==FTS5_OR ); |
| zOp = "OR"; |
| break; |
| } |
| |
| zRet = sqlite3_mprintf("%s", zOp); |
| for(i=0; zRet && i<pExpr->nChild; i++){ |
| char *z = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->apChild[i]); |
| if( !z ){ |
| sqlite3_free(zRet); |
| zRet = 0; |
| }else{ |
| zRet = fts5PrintfAppend(zRet, " [%z]", z); |
| } |
| } |
| } |
| |
| return zRet; |
| } |
| |
| static char *fts5ExprPrint(Fts5Config *pConfig, Fts5ExprNode *pExpr){ |
| char *zRet = 0; |
| if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){ |
| Fts5ExprNearset *pNear = pExpr->pNear; |
| int i; |
| int iTerm; |
| |
| if( pNear->pColset ){ |
| int iCol = pNear->pColset->aiCol[0]; |
| zRet = fts5PrintfAppend(zRet, "%s : ", pConfig->azCol[iCol]); |
| if( zRet==0 ) return 0; |
| } |
| |
| if( pNear->nPhrase>1 ){ |
| zRet = fts5PrintfAppend(zRet, "NEAR("); |
| if( zRet==0 ) return 0; |
| } |
| |
| for(i=0; i<pNear->nPhrase; i++){ |
| Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; |
| if( i!=0 ){ |
| zRet = fts5PrintfAppend(zRet, " "); |
| if( zRet==0 ) return 0; |
| } |
| for(iTerm=0; iTerm<pPhrase->nTerm; iTerm++){ |
| char *zTerm = fts5ExprTermPrint(&pPhrase->aTerm[iTerm]); |
| if( zTerm ){ |
| zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" + ", zTerm); |
| sqlite3_free(zTerm); |
| } |
| if( zTerm==0 || zRet==0 ){ |
| sqlite3_free(zRet); |
| return 0; |
| } |
| } |
| } |
| |
| if( pNear->nPhrase>1 ){ |
| zRet = fts5PrintfAppend(zRet, ", %d)", pNear->nNear); |
| if( zRet==0 ) return 0; |
| } |
| |
| }else{ |
| char const *zOp = 0; |
| int i; |
| |
| switch( pExpr->eType ){ |
| case FTS5_AND: zOp = " AND "; break; |
| case FTS5_NOT: zOp = " NOT "; break; |
| default: |
| assert( pExpr->eType==FTS5_OR ); |
| zOp = " OR "; |
| break; |
| } |
| |
| for(i=0; i<pExpr->nChild; i++){ |
| char *z = fts5ExprPrint(pConfig, pExpr->apChild[i]); |
| if( z==0 ){ |
| sqlite3_free(zRet); |
| zRet = 0; |
| }else{ |
| int e = pExpr->apChild[i]->eType; |
| int b = (e!=FTS5_STRING && e!=FTS5_TERM); |
| zRet = fts5PrintfAppend(zRet, "%s%s%z%s", |
| (i==0 ? "" : zOp), |
| (b?"(":""), z, (b?")":"") |
| ); |
| } |
| if( zRet==0 ) break; |
| } |
| } |
| |
| return zRet; |
| } |
| |
| /* |
| ** The implementation of user-defined scalar functions fts5_expr() (bTcl==0) |
| ** and fts5_expr_tcl() (bTcl!=0). |
| */ |
| static void fts5ExprFunction( |
| sqlite3_context *pCtx, /* Function call context */ |
| int nArg, /* Number of args */ |
| sqlite3_value **apVal, /* Function arguments */ |
| int bTcl |
| ){ |
| Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx); |
| sqlite3 *db = sqlite3_context_db_handle(pCtx); |
| const char *zExpr = 0; |
| char *zErr = 0; |
| Fts5Expr *pExpr = 0; |
| int rc; |
| int i; |
| |
| const char **azConfig; /* Array of arguments for Fts5Config */ |
| const char *zNearsetCmd = "nearset"; |
| int nConfig; /* Size of azConfig[] */ |
| Fts5Config *pConfig = 0; |
| int iArg = 1; |
| |
| if( bTcl && nArg>1 ){ |
| zNearsetCmd = (const char*)sqlite3_value_text(apVal[1]); |
| iArg = 2; |
| } |
| |
| nConfig = 3 + (nArg-iArg); |
| azConfig = (const char**)sqlite3_malloc(sizeof(char*) * nConfig); |
| if( azConfig==0 ){ |
| sqlite3_result_error_nomem(pCtx); |
| return; |
| } |
| azConfig[0] = 0; |
| azConfig[1] = "main"; |
| azConfig[2] = "tbl"; |
| for(i=3; iArg<nArg; iArg++){ |
| azConfig[i++] = (const char*)sqlite3_value_text(apVal[iArg]); |
| } |
| |
| zExpr = (const char*)sqlite3_value_text(apVal[0]); |
| |
| rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3Fts5ExprNew(pConfig, zExpr, &pExpr, &zErr); |
| } |
| if( rc==SQLITE_OK ){ |
| char *zText; |
| if( pExpr->pRoot==0 ){ |
| zText = sqlite3_mprintf(""); |
| }else if( bTcl ){ |
| zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot); |
| }else{ |
| zText = fts5ExprPrint(pConfig, pExpr->pRoot); |
| } |
| if( zText==0 ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| sqlite3_result_text(pCtx, zText, -1, SQLITE_TRANSIENT); |
| sqlite3_free(zText); |
| } |
| } |
| |
| if( rc!=SQLITE_OK ){ |
| if( zErr ){ |
| sqlite3_result_error(pCtx, zErr, -1); |
| sqlite3_free(zErr); |
| }else{ |
| sqlite3_result_error_code(pCtx, rc); |
| } |
| } |
| sqlite3_free((void *)azConfig); |
| sqlite3Fts5ConfigFree(pConfig); |
| sqlite3Fts5ExprFree(pExpr); |
| } |
| |
| static void fts5ExprFunctionHr( |
| sqlite3_context *pCtx, /* Function call context */ |
| int nArg, /* Number of args */ |
| sqlite3_value **apVal /* Function arguments */ |
| ){ |
| fts5ExprFunction(pCtx, nArg, apVal, 0); |
| } |
| static void fts5ExprFunctionTcl( |
| sqlite3_context *pCtx, /* Function call context */ |
| int nArg, /* Number of args */ |
| sqlite3_value **apVal /* Function arguments */ |
| ){ |
| fts5ExprFunction(pCtx, nArg, apVal, 1); |
| } |
| |
| /* |
| ** The implementation of an SQLite user-defined-function that accepts a |
| ** single integer as an argument. If the integer is an alpha-numeric |
| ** unicode code point, 1 is returned. Otherwise 0. |
| */ |
| static void fts5ExprIsAlnum( |
| sqlite3_context *pCtx, /* Function call context */ |
| int nArg, /* Number of args */ |
| sqlite3_value **apVal /* Function arguments */ |
| ){ |
| int iCode; |
| if( nArg!=1 ){ |
| sqlite3_result_error(pCtx, |
| "wrong number of arguments to function fts5_isalnum", -1 |
| ); |
| return; |
| } |
| iCode = sqlite3_value_int(apVal[0]); |
| sqlite3_result_int(pCtx, sqlite3Fts5UnicodeIsalnum(iCode)); |
| } |
| |
| static void fts5ExprFold( |
| sqlite3_context *pCtx, /* Function call context */ |
| int nArg, /* Number of args */ |
| sqlite3_value **apVal /* Function arguments */ |
| ){ |
| if( nArg!=1 && nArg!=2 ){ |
| sqlite3_result_error(pCtx, |
| "wrong number of arguments to function fts5_fold", -1 |
| ); |
| }else{ |
| int iCode; |
| int bRemoveDiacritics = 0; |
| iCode = sqlite3_value_int(apVal[0]); |
| if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]); |
| sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics)); |
| } |
| } |
| |
| /* |
| ** This is called during initialization to register the fts5_expr() scalar |
| ** UDF with the SQLite handle passed as the only argument. |
| */ |
| int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){ |
| struct Fts5ExprFunc { |
| const char *z; |
| void (*x)(sqlite3_context*,int,sqlite3_value**); |
| } aFunc[] = { |
| { "fts5_expr", fts5ExprFunctionHr }, |
| { "fts5_expr_tcl", fts5ExprFunctionTcl }, |
| { "fts5_isalnum", fts5ExprIsAlnum }, |
| { "fts5_fold", fts5ExprFold }, |
| }; |
| int i; |
| int rc = SQLITE_OK; |
| void *pCtx = (void*)pGlobal; |
| |
| for(i=0; rc==SQLITE_OK && i<(sizeof(aFunc) / sizeof(aFunc[0])); i++){ |
| struct Fts5ExprFunc *p = &aFunc[i]; |
| rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Return the number of phrases in expression pExpr. |
| */ |
| int sqlite3Fts5ExprPhraseCount(Fts5Expr *pExpr){ |
| return pExpr->nPhrase; |
| } |
| |
| /* |
| ** Return the number of terms in the iPhrase'th phrase in pExpr. |
| */ |
| int sqlite3Fts5ExprPhraseSize(Fts5Expr *pExpr, int iPhrase){ |
| if( iPhrase<0 || iPhrase>=pExpr->nPhrase ) return 0; |
| return pExpr->apExprPhrase[iPhrase]->nTerm; |
| } |
| |
| /* |
| ** This function is used to access the current position list for phrase |
| ** iPhrase. |
| */ |
| int sqlite3Fts5ExprPoslist(Fts5Expr *pExpr, int iPhrase, const u8 **pa){ |
| int nRet; |
| Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase]; |
| Fts5ExprNode *pNode = pPhrase->pNode; |
| if( pNode->bEof==0 && pNode->iRowid==pExpr->pRoot->iRowid ){ |
| *pa = pPhrase->poslist.p; |
| nRet = pPhrase->poslist.n; |
| }else{ |
| *pa = 0; |
| nRet = 0; |
| } |
| return nRet; |
| } |
| |
| #endif /* SQLITE_ENABLE_FTS5 */ |