blob: f16308544598cc5c0e601c15df84cb787627af11 [file] [log] [blame]
/*
** 2003 October 31
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement date and time
** functions for SQLite.
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** SQLite processes all times and dates as julian day numbers. The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system.
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
** This implementation requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar. Historians usually
** use the julian calendar for dates prior to 1582-10-15 and for some
** dates afterwards, depending on locale. Beware of this difference.
**
** The conversion algorithms are implemented based on descriptions
** in the following text:
**
** Jean Meeus
** Astronomical Algorithms, 2nd Edition, 1998
** ISBN 0-943396-61-1
** Willmann-Bell, Inc
** Richmond, Virginia (USA)
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <assert.h>
#include <time.h>
#ifndef SQLITE_OMIT_DATETIME_FUNCS
/*
** The MSVC CRT on Windows CE may not have a localtime() function.
** So declare a substitute. The substitute function itself is
** defined in "os_win.c".
*/
#if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
(!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
struct tm *__cdecl localtime(const time_t *);
#endif
/*
** A structure for holding a single date and time.
*/
typedef struct DateTime DateTime;
struct DateTime {
sqlite3_int64 iJD; /* The julian day number times 86400000 */
int Y, M, D; /* Year, month, and day */
int h, m; /* Hour and minutes */
int tz; /* Timezone offset in minutes */
double s; /* Seconds */
char validJD; /* True (1) if iJD is valid */
char rawS; /* Raw numeric value stored in s */
char validYMD; /* True (1) if Y,M,D are valid */
char validHMS; /* True (1) if h,m,s are valid */
char validTZ; /* True (1) if tz is valid */
char tzSet; /* Timezone was set explicitly */
char isError; /* An overflow has occurred */
char useSubsec; /* Display subsecond precision */
};
/*
** Convert zDate into one or more integers according to the conversion
** specifier zFormat.
**
** zFormat[] contains 4 characters for each integer converted, except for
** the last integer which is specified by three characters. The meaning
** of a four-character format specifiers ABCD is:
**
** A: number of digits to convert. Always "2" or "4".
** B: minimum value. Always "0" or "1".
** C: maximum value, decoded as:
** a: 12
** b: 14
** c: 24
** d: 31
** e: 59
** f: 9999
** D: the separator character, or \000 to indicate this is the
** last number to convert.
**
** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
** the 2-digit day which is the last integer in the set.
**
** The function returns the number of successful conversions.
*/
static int getDigits(const char *zDate, const char *zFormat, ...){
/* The aMx[] array translates the 3rd character of each format
** spec into a max size: a b c d e f */
static const u16 aMx[] = { 12, 14, 24, 31, 59, 14712 };
va_list ap;
int cnt = 0;
char nextC;
va_start(ap, zFormat);
do{
char N = zFormat[0] - '0';
char min = zFormat[1] - '0';
int val = 0;
u16 max;
assert( zFormat[2]>='a' && zFormat[2]<='f' );
max = aMx[zFormat[2] - 'a'];
nextC = zFormat[3];
val = 0;
while( N-- ){
if( !sqlite3Isdigit(*zDate) ){
goto end_getDigits;
}
val = val*10 + *zDate - '0';
zDate++;
}
if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
goto end_getDigits;
}
*va_arg(ap,int*) = val;
zDate++;
cnt++;
zFormat += 4;
}while( nextC );
end_getDigits:
va_end(ap);
return cnt;
}
/*
** Parse a timezone extension on the end of a date-time.
** The extension is of the form:
**
** (+/-)HH:MM
**
** Or the "zulu" notation:
**
** Z
**
** If the parse is successful, write the number of minutes
** of change in p->tz and return 0. If a parser error occurs,
** return non-zero.
**
** A missing specifier is not considered an error.
*/
static int parseTimezone(const char *zDate, DateTime *p){
int sgn = 0;
int nHr, nMn;
int c;
while( sqlite3Isspace(*zDate) ){ zDate++; }
p->tz = 0;
c = *zDate;
if( c=='-' ){
sgn = -1;
}else if( c=='+' ){
sgn = +1;
}else if( c=='Z' || c=='z' ){
zDate++;
goto zulu_time;
}else{
return c!=0;
}
zDate++;
if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
return 1;
}
zDate += 5;
p->tz = sgn*(nMn + nHr*60);
zulu_time:
while( sqlite3Isspace(*zDate) ){ zDate++; }
p->tzSet = 1;
return *zDate!=0;
}
/*
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
** The HH, MM, and SS must each be exactly 2 digits. The
** fractional seconds FFFF can be one or more digits.
**
** Return 1 if there is a parsing error and 0 on success.
*/
static int parseHhMmSs(const char *zDate, DateTime *p){
int h, m, s;
double ms = 0.0;
if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
return 1;
}
zDate += 5;
if( *zDate==':' ){
zDate++;
if( getDigits(zDate, "20e", &s)!=1 ){
return 1;
}
zDate += 2;
if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
double rScale = 1.0;
zDate++;
while( sqlite3Isdigit(*zDate) ){
ms = ms*10.0 + *zDate - '0';
rScale *= 10.0;
zDate++;
}
ms /= rScale;
}
}else{
s = 0;
}
p->validJD = 0;
p->rawS = 0;
p->validHMS = 1;
p->h = h;
p->m = m;
p->s = s + ms;
if( parseTimezone(zDate, p) ) return 1;
p->validTZ = (p->tz!=0)?1:0;
return 0;
}
/*
** Put the DateTime object into its error state.
*/
static void datetimeError(DateTime *p){
memset(p, 0, sizeof(*p));
p->isError = 1;
}
/*
** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
** that the YYYY-MM-DD is according to the Gregorian calendar.
**
** Reference: Meeus page 61
*/
static void computeJD(DateTime *p){
int Y, M, D, A, B, X1, X2;
if( p->validJD ) return;
if( p->validYMD ){
Y = p->Y;
M = p->M;
D = p->D;
}else{
Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
M = 1;
D = 1;
}
if( Y<-4713 || Y>9999 || p->rawS ){
datetimeError(p);
return;
}
if( M<=2 ){
Y--;
M += 12;
}
A = Y/100;
B = 2 - A + (A/4);
X1 = 36525*(Y+4716)/100;
X2 = 306001*(M+1)/10000;
p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
p->validJD = 1;
if( p->validHMS ){
p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000 + 0.5);
if( p->validTZ ){
p->iJD -= p->tz*60000;
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
}
}
}
/*
** Parse dates of the form
**
** YYYY-MM-DD HH:MM:SS.FFF
** YYYY-MM-DD HH:MM:SS
** YYYY-MM-DD HH:MM
** YYYY-MM-DD
**
** Write the result into the DateTime structure and return 0
** on success and 1 if the input string is not a well-formed
** date.
*/
static int parseYyyyMmDd(const char *zDate, DateTime *p){
int Y, M, D, neg;
if( zDate[0]=='-' ){
zDate++;
neg = 1;
}else{
neg = 0;
}
if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
return 1;
}
zDate += 10;
while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
if( parseHhMmSs(zDate, p)==0 ){
/* We got the time */
}else if( *zDate==0 ){
p->validHMS = 0;
}else{
return 1;
}
p->validJD = 0;
p->validYMD = 1;
p->Y = neg ? -Y : Y;
p->M = M;
p->D = D;
if( p->validTZ ){
computeJD(p);
}
return 0;
}
/*
** Set the time to the current time reported by the VFS.
**
** Return the number of errors.
*/
static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
p->iJD = sqlite3StmtCurrentTime(context);
if( p->iJD>0 ){
p->validJD = 1;
return 0;
}else{
return 1;
}
}
/*
** Input "r" is a numeric quantity which might be a julian day number,
** or the number of seconds since 1970. If the value if r is within
** range of a julian day number, install it as such and set validJD.
** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
*/
static void setRawDateNumber(DateTime *p, double r){
p->s = r;
p->rawS = 1;
if( r>=0.0 && r<5373484.5 ){
p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
p->validJD = 1;
}
}
/*
** Attempt to parse the given string into a julian day number. Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
** DDDD.DD
** now
**
** In the first form, the +/-HH:MM is always optional. The fractional
** seconds extension (the ".FFF") is optional. The seconds portion
** (":SS.FFF") is option. The year and date can be omitted as long
** as there is a time string. The time string can be omitted as long
** as there is a year and date.
*/
static int parseDateOrTime(
sqlite3_context *context,
const char *zDate,
DateTime *p
){
double r;
if( parseYyyyMmDd(zDate,p)==0 ){
return 0;
}else if( parseHhMmSs(zDate, p)==0 ){
return 0;
}else if( sqlite3StrICmp(zDate,"now")==0 && sqlite3NotPureFunc(context) ){
return setDateTimeToCurrent(context, p);
}else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8)>0 ){
setRawDateNumber(p, r);
return 0;
}else if( (sqlite3StrICmp(zDate,"subsec")==0
|| sqlite3StrICmp(zDate,"subsecond")==0)
&& sqlite3NotPureFunc(context) ){
p->useSubsec = 1;
return setDateTimeToCurrent(context, p);
}
return 1;
}
/* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
** Multiplying this by 86400000 gives 464269060799999 as the maximum value
** for DateTime.iJD.
**
** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
** such a large integer literal, so we have to encode it.
*/
#define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
/*
** Return TRUE if the given julian day number is within range.
**
** The input is the JulianDay times 86400000.
*/
static int validJulianDay(sqlite3_int64 iJD){
return iJD>=0 && iJD<=INT_464269060799999;
}
/*
** Compute the Year, Month, and Day from the julian day number.
*/
static void computeYMD(DateTime *p){
int Z, A, B, C, D, E, X1;
if( p->validYMD ) return;
if( !p->validJD ){
p->Y = 2000;
p->M = 1;
p->D = 1;
}else if( !validJulianDay(p->iJD) ){
datetimeError(p);
return;
}else{
Z = (int)((p->iJD + 43200000)/86400000);
A = (int)((Z - 1867216.25)/36524.25);
A = Z + 1 + A - (A/4);
B = A + 1524;
C = (int)((B - 122.1)/365.25);
D = (36525*(C&32767))/100;
E = (int)((B-D)/30.6001);
X1 = (int)(30.6001*E);
p->D = B - D - X1;
p->M = E<14 ? E-1 : E-13;
p->Y = p->M>2 ? C - 4716 : C - 4715;
}
p->validYMD = 1;
}
/*
** Compute the Hour, Minute, and Seconds from the julian day number.
*/
static void computeHMS(DateTime *p){
int day_ms, day_min; /* milliseconds, minutes into the day */
if( p->validHMS ) return;
computeJD(p);
day_ms = (int)((p->iJD + 43200000) % 86400000);
p->s = (day_ms % 60000)/1000.0;
day_min = day_ms/60000;
p->m = day_min % 60;
p->h = day_min / 60;
p->rawS = 0;
p->validHMS = 1;
}
/*
** Compute both YMD and HMS
*/
static void computeYMD_HMS(DateTime *p){
computeYMD(p);
computeHMS(p);
}
/*
** Clear the YMD and HMS and the TZ
*/
static void clearYMD_HMS_TZ(DateTime *p){
p->validYMD = 0;
p->validHMS = 0;
p->validTZ = 0;
}
#ifndef SQLITE_OMIT_LOCALTIME
/*
** On recent Windows platforms, the localtime_s() function is available
** as part of the "Secure CRT". It is essentially equivalent to
** localtime_r() available under most POSIX platforms, except that the
** order of the parameters is reversed.
**
** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
**
** If the user has not indicated to use localtime_r() or localtime_s()
** already, check for an MSVC build environment that provides
** localtime_s().
*/
#if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
&& defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
#undef HAVE_LOCALTIME_S
#define HAVE_LOCALTIME_S 1
#endif
/*
** The following routine implements the rough equivalent of localtime_r()
** using whatever operating-system specific localtime facility that
** is available. This routine returns 0 on success and
** non-zero on any kind of error.
**
** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this
** routine will always fail. If bLocaltimeFault is nonzero and
** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is
** invoked in place of the OS-defined localtime() function.
**
** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
** library function localtime_r() is used to assist in the calculation of
** local time.
*/
static int osLocaltime(time_t *t, struct tm *pTm){
int rc;
#if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
struct tm *pX;
#if SQLITE_THREADSAFE>0
sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
#endif
sqlite3_mutex_enter(mutex);
pX = localtime(t);
#ifndef SQLITE_UNTESTABLE
if( sqlite3GlobalConfig.bLocaltimeFault ){
if( sqlite3GlobalConfig.xAltLocaltime!=0
&& 0==sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm)
){
pX = pTm;
}else{
pX = 0;
}
}
#endif
if( pX ) *pTm = *pX;
#if SQLITE_THREADSAFE>0
sqlite3_mutex_leave(mutex);
#endif
rc = pX==0;
#else
#ifndef SQLITE_UNTESTABLE
if( sqlite3GlobalConfig.bLocaltimeFault ){
if( sqlite3GlobalConfig.xAltLocaltime!=0 ){
return sqlite3GlobalConfig.xAltLocaltime((const void*)t,(void*)pTm);
}else{
return 1;
}
}
#endif
#if HAVE_LOCALTIME_R
rc = localtime_r(t, pTm)==0;
#else
rc = localtime_s(pTm, t);
#endif /* HAVE_LOCALTIME_R */
#endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
return rc;
}
#endif /* SQLITE_OMIT_LOCALTIME */
#ifndef SQLITE_OMIT_LOCALTIME
/*
** Assuming the input DateTime is UTC, move it to its localtime equivalent.
*/
static int toLocaltime(
DateTime *p, /* Date at which to calculate offset */
sqlite3_context *pCtx /* Write error here if one occurs */
){
time_t t;
struct tm sLocal;
int iYearDiff;
/* Initialize the contents of sLocal to avoid a compiler warning. */
memset(&sLocal, 0, sizeof(sLocal));
computeJD(p);
if( p->iJD<2108667600*(i64)100000 /* 1970-01-01 */
|| p->iJD>2130141456*(i64)100000 /* 2038-01-18 */
){
/* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
** works for years between 1970 and 2037. For dates outside this range,
** SQLite attempts to map the year into an equivalent year within this
** range, do the calculation, then map the year back.
*/
DateTime x = *p;
computeYMD_HMS(&x);
iYearDiff = (2000 + x.Y%4) - x.Y;
x.Y += iYearDiff;
x.validJD = 0;
computeJD(&x);
t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
}else{
iYearDiff = 0;
t = (time_t)(p->iJD/1000 - 21086676*(i64)10000);
}
if( osLocaltime(&t, &sLocal) ){
sqlite3_result_error(pCtx, "local time unavailable", -1);
return SQLITE_ERROR;
}
p->Y = sLocal.tm_year + 1900 - iYearDiff;
p->M = sLocal.tm_mon + 1;
p->D = sLocal.tm_mday;
p->h = sLocal.tm_hour;
p->m = sLocal.tm_min;
p->s = sLocal.tm_sec + (p->iJD%1000)*0.001;
p->validYMD = 1;
p->validHMS = 1;
p->validJD = 0;
p->rawS = 0;
p->validTZ = 0;
p->isError = 0;
return SQLITE_OK;
}
#endif /* SQLITE_OMIT_LOCALTIME */
/*
** The following table defines various date transformations of the form
**
** 'NNN days'
**
** Where NNN is an arbitrary floating-point number and "days" can be one
** of several units of time.
*/
static const struct {
u8 nName; /* Length of the name */
char zName[7]; /* Name of the transformation */
float rLimit; /* Maximum NNN value for this transform */
float rXform; /* Constant used for this transform */
} aXformType[] = {
{ 6, "second", 4.6427e+14, 1.0 },
{ 6, "minute", 7.7379e+12, 60.0 },
{ 4, "hour", 1.2897e+11, 3600.0 },
{ 3, "day", 5373485.0, 86400.0 },
{ 5, "month", 176546.0, 2592000.0 },
{ 4, "year", 14713.0, 31536000.0 },
};
/*
** If the DateTime p is raw number, try to figure out if it is
** a julian day number of a unix timestamp. Set the p value
** appropriately.
*/
static void autoAdjustDate(DateTime *p){
if( !p->rawS || p->validJD ){
p->rawS = 0;
}else if( p->s>=-21086676*(i64)10000 /* -4713-11-24 12:00:00 */
&& p->s<=(25340230*(i64)10000)+799 /* 9999-12-31 23:59:59 */
){
double r = p->s*1000.0 + 210866760000000.0;
clearYMD_HMS_TZ(p);
p->iJD = (sqlite3_int64)(r + 0.5);
p->validJD = 1;
p->rawS = 0;
}
}
/*
** Process a modifier to a date-time stamp. The modifiers are
** as follows:
**
** NNN days
** NNN hours
** NNN minutes
** NNN.NNNN seconds
** NNN months
** NNN years
** start of month
** start of year
** start of week
** start of day
** weekday N
** unixepoch
** localtime
** utc
**
** Return 0 on success and 1 if there is any kind of error. If the error
** is in a system call (i.e. localtime()), then an error message is written
** to context pCtx. If the error is an unrecognized modifier, no error is
** written to pCtx.
*/
static int parseModifier(
sqlite3_context *pCtx, /* Function context */
const char *z, /* The text of the modifier */
int n, /* Length of zMod in bytes */
DateTime *p, /* The date/time value to be modified */
int idx /* Parameter index of the modifier */
){
int rc = 1;
double r;
switch(sqlite3UpperToLower[(u8)z[0]] ){
case 'a': {
/*
** auto
**
** If rawS is available, then interpret as a julian day number, or
** a unix timestamp, depending on its magnitude.
*/
if( sqlite3_stricmp(z, "auto")==0 ){
if( idx>1 ) return 1; /* IMP: R-33611-57934 */
autoAdjustDate(p);
rc = 0;
}
break;
}
case 'j': {
/*
** julianday
**
** Always interpret the prior number as a julian-day value. If this
** is not the first modifier, or if the prior argument is not a numeric
** value in the allowed range of julian day numbers understood by
** SQLite (0..5373484.5) then the result will be NULL.
*/
if( sqlite3_stricmp(z, "julianday")==0 ){
if( idx>1 ) return 1; /* IMP: R-31176-64601 */
if( p->validJD && p->rawS ){
rc = 0;
p->rawS = 0;
}
}
break;
}
#ifndef SQLITE_OMIT_LOCALTIME
case 'l': {
/* localtime
**
** Assuming the current time value is UTC (a.k.a. GMT), shift it to
** show local time.
*/
if( sqlite3_stricmp(z, "localtime")==0 && sqlite3NotPureFunc(pCtx) ){
rc = toLocaltime(p, pCtx);
}
break;
}
#endif
case 'u': {
/*
** unixepoch
**
** Treat the current value of p->s as the number of
** seconds since 1970. Convert to a real julian day number.
*/
if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
if( idx>1 ) return 1; /* IMP: R-49255-55373 */
r = p->s*1000.0 + 210866760000000.0;
if( r>=0.0 && r<464269060800000.0 ){
clearYMD_HMS_TZ(p);
p->iJD = (sqlite3_int64)(r + 0.5);
p->validJD = 1;
p->rawS = 0;
rc = 0;
}
}
#ifndef SQLITE_OMIT_LOCALTIME
else if( sqlite3_stricmp(z, "utc")==0 && sqlite3NotPureFunc(pCtx) ){
if( p->tzSet==0 ){
i64 iOrigJD; /* Original localtime */
i64 iGuess; /* Guess at the corresponding utc time */
int cnt = 0; /* Safety to prevent infinite loop */
i64 iErr; /* Guess is off by this much */
computeJD(p);
iGuess = iOrigJD = p->iJD;
iErr = 0;
do{
DateTime new;
memset(&new, 0, sizeof(new));
iGuess -= iErr;
new.iJD = iGuess;
new.validJD = 1;
rc = toLocaltime(&new, pCtx);
if( rc ) return rc;
computeJD(&new);
iErr = new.iJD - iOrigJD;
}while( iErr && cnt++<3 );
memset(p, 0, sizeof(*p));
p->iJD = iGuess;
p->validJD = 1;
p->tzSet = 1;
}
rc = SQLITE_OK;
}
#endif
break;
}
case 'w': {
/*
** weekday N
**
** Move the date to the same time on the next occurrence of
** weekday N where 0==Sunday, 1==Monday, and so forth. If the
** date is already on the appropriate weekday, this is a no-op.
*/
if( sqlite3_strnicmp(z, "weekday ", 8)==0
&& sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)>0
&& r>=0.0 && r<7.0 && (n=(int)r)==r ){
sqlite3_int64 Z;
computeYMD_HMS(p);
p->validTZ = 0;
p->validJD = 0;
computeJD(p);
Z = ((p->iJD + 129600000)/86400000) % 7;
if( Z>n ) Z -= 7;
p->iJD += (n - Z)*86400000;
clearYMD_HMS_TZ(p);
rc = 0;
}
break;
}
case 's': {
/*
** start of TTTTT
**
** Move the date backwards to the beginning of the current day,
** or month or year.
**
** subsecond
** subsec
**
** Show subsecond precision in the output of datetime() and
** unixepoch() and strftime('%s').
*/
if( sqlite3_strnicmp(z, "start of ", 9)!=0 ){
if( sqlite3_stricmp(z, "subsec")==0
|| sqlite3_stricmp(z, "subsecond")==0
){
p->useSubsec = 1;
rc = 0;
}
break;
}
if( !p->validJD && !p->validYMD && !p->validHMS ) break;
z += 9;
computeYMD(p);
p->validHMS = 1;
p->h = p->m = 0;
p->s = 0.0;
p->rawS = 0;
p->validTZ = 0;
p->validJD = 0;
if( sqlite3_stricmp(z,"month")==0 ){
p->D = 1;
rc = 0;
}else if( sqlite3_stricmp(z,"year")==0 ){
p->M = 1;
p->D = 1;
rc = 0;
}else if( sqlite3_stricmp(z,"day")==0 ){
rc = 0;
}
break;
}
case '+':
case '-':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': {
double rRounder;
int i;
int Y,M,D,h,m,x;
const char *z2 = z;
char z0 = z[0];
for(n=1; z[n]; n++){
if( z[n]==':' ) break;
if( sqlite3Isspace(z[n]) ) break;
if( z[n]=='-' ){
if( n==5 && getDigits(&z[1], "40f", &Y)==1 ) break;
if( n==6 && getDigits(&z[1], "50f", &Y)==1 ) break;
}
}
if( sqlite3AtoF(z, &r, n, SQLITE_UTF8)<=0 ){
assert( rc==1 );
break;
}
if( z[n]=='-' ){
/* A modifier of the form (+|-)YYYY-MM-DD adds or subtracts the
** specified number of years, months, and days. MM is limited to
** the range 0-11 and DD is limited to 0-30.
*/
if( z0!='+' && z0!='-' ) break; /* Must start with +/- */
if( n==5 ){
if( getDigits(&z[1], "40f-20a-20d", &Y, &M, &D)!=3 ) break;
}else{
assert( n==6 );
if( getDigits(&z[1], "50f-20a-20d", &Y, &M, &D)!=3 ) break;
z++;
}
if( M>=12 ) break; /* M range 0..11 */
if( D>=31 ) break; /* D range 0..30 */
computeYMD_HMS(p);
p->validJD = 0;
if( z0=='-' ){
p->Y -= Y;
p->M -= M;
D = -D;
}else{
p->Y += Y;
p->M += M;
}
x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
p->Y += x;
p->M -= x*12;
computeJD(p);
p->validHMS = 0;
p->validYMD = 0;
p->iJD += (i64)D*86400000;
if( z[11]==0 ){
rc = 0;
break;
}
if( sqlite3Isspace(z[11])
&& getDigits(&z[12], "20c:20e", &h, &m)==2
){
z2 = &z[12];
n = 2;
}else{
break;
}
}
if( z2[n]==':' ){
/* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
** specified number of hours, minutes, seconds, and fractional seconds
** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
** omitted.
*/
DateTime tx;
sqlite3_int64 day;
if( !sqlite3Isdigit(*z2) ) z2++;
memset(&tx, 0, sizeof(tx));
if( parseHhMmSs(z2, &tx) ) break;
computeJD(&tx);
tx.iJD -= 43200000;
day = tx.iJD/86400000;
tx.iJD -= day*86400000;
if( z0=='-' ) tx.iJD = -tx.iJD;
computeJD(p);
clearYMD_HMS_TZ(p);
p->iJD += tx.iJD;
rc = 0;
break;
}
/* If control reaches this point, it means the transformation is
** one of the forms like "+NNN days". */
z += n;
while( sqlite3Isspace(*z) ) z++;
n = sqlite3Strlen30(z);
if( n>10 || n<3 ) break;
if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
computeJD(p);
assert( rc==1 );
rRounder = r<0 ? -0.5 : +0.5;
for(i=0; i<ArraySize(aXformType); i++){
if( aXformType[i].nName==n
&& sqlite3_strnicmp(aXformType[i].zName, z, n)==0
&& r>-aXformType[i].rLimit && r<aXformType[i].rLimit
){
switch( i ){
case 4: { /* Special processing to add months */
assert( strcmp(aXformType[i].zName,"month")==0 );
computeYMD_HMS(p);
p->M += (int)r;
x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
p->Y += x;
p->M -= x*12;
p->validJD = 0;
r -= (int)r;
break;
}
case 5: { /* Special processing to add years */
int y = (int)r;
assert( strcmp(aXformType[i].zName,"year")==0 );
computeYMD_HMS(p);
p->Y += y;
p->validJD = 0;
r -= (int)r;
break;
}
}
computeJD(p);
p->iJD += (sqlite3_int64)(r*1000.0*aXformType[i].rXform + rRounder);
rc = 0;
break;
}
}
clearYMD_HMS_TZ(p);
break;
}
default: {
break;
}
}
return rc;
}
/*
** Process time function arguments. argv[0] is a date-time stamp.
** argv[1] and following are modifiers. Parse them all and write
** the resulting time into the DateTime structure p. Return 0
** on success and 1 if there are any errors.
**
** If there are zero parameters (if even argv[0] is undefined)
** then assume a default value of "now" for argv[0].
*/
static int isDate(
sqlite3_context *context,
int argc,
sqlite3_value **argv,
DateTime *p
){
int i, n;
const unsigned char *z;
int eType;
memset(p, 0, sizeof(*p));
if( argc==0 ){
if( !sqlite3NotPureFunc(context) ) return 1;
return setDateTimeToCurrent(context, p);
}
if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
|| eType==SQLITE_INTEGER ){
setRawDateNumber(p, sqlite3_value_double(argv[0]));
}else{
z = sqlite3_value_text(argv[0]);
if( !z || parseDateOrTime(context, (char*)z, p) ){
return 1;
}
}
for(i=1; i<argc; i++){
z = sqlite3_value_text(argv[i]);
n = sqlite3_value_bytes(argv[i]);
if( z==0 || parseModifier(context, (char*)z, n, p, i) ) return 1;
}
computeJD(p);
if( p->isError || !validJulianDay(p->iJD) ) return 1;
return 0;
}
/*
** The following routines implement the various date and time functions
** of SQLite.
*/
/*
** julianday( TIMESTRING, MOD, MOD, ...)
**
** Return the julian day number of the date specified in the arguments
*/
static void juliandayFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
DateTime x;
if( isDate(context, argc, argv, &x)==0 ){
computeJD(&x);
sqlite3_result_double(context, x.iJD/86400000.0);
}
}
/*
** unixepoch( TIMESTRING, MOD, MOD, ...)
**
** Return the number of seconds (including fractional seconds) since
** the unix epoch of 1970-01-01 00:00:00 GMT.
*/
static void unixepochFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
DateTime x;
if( isDate(context, argc, argv, &x)==0 ){
computeJD(&x);
if( x.useSubsec ){
sqlite3_result_double(context, (x.iJD - 21086676*(i64)10000000)/1000.0);
}else{
sqlite3_result_int64(context, x.iJD/1000 - 21086676*(i64)10000);
}
}
}
/*
** datetime( TIMESTRING, MOD, MOD, ...)
**
** Return YYYY-MM-DD HH:MM:SS
*/
static void datetimeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
DateTime x;
if( isDate(context, argc, argv, &x)==0 ){
int Y, s, n;
char zBuf[32];
computeYMD_HMS(&x);
Y = x.Y;
if( Y<0 ) Y = -Y;
zBuf[1] = '0' + (Y/1000)%10;
zBuf[2] = '0' + (Y/100)%10;
zBuf[3] = '0' + (Y/10)%10;
zBuf[4] = '0' + (Y)%10;
zBuf[5] = '-';
zBuf[6] = '0' + (x.M/10)%10;
zBuf[7] = '0' + (x.M)%10;
zBuf[8] = '-';
zBuf[9] = '0' + (x.D/10)%10;
zBuf[10] = '0' + (x.D)%10;
zBuf[11] = ' ';
zBuf[12] = '0' + (x.h/10)%10;
zBuf[13] = '0' + (x.h)%10;
zBuf[14] = ':';
zBuf[15] = '0' + (x.m/10)%10;
zBuf[16] = '0' + (x.m)%10;
zBuf[17] = ':';
if( x.useSubsec ){
s = (int)(1000.0*x.s + 0.5);
zBuf[18] = '0' + (s/10000)%10;
zBuf[19] = '0' + (s/1000)%10;
zBuf[20] = '.';
zBuf[21] = '0' + (s/100)%10;
zBuf[22] = '0' + (s/10)%10;
zBuf[23] = '0' + (s)%10;
zBuf[24] = 0;
n = 24;
}else{
s = (int)x.s;
zBuf[18] = '0' + (s/10)%10;
zBuf[19] = '0' + (s)%10;
zBuf[20] = 0;
n = 20;
}
if( x.Y<0 ){
zBuf[0] = '-';
sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT);
}else{
sqlite3_result_text(context, &zBuf[1], n-1, SQLITE_TRANSIENT);
}
}
}
/*
** time( TIMESTRING, MOD, MOD, ...)
**
** Return HH:MM:SS
*/
static void timeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
DateTime x;
if( isDate(context, argc, argv, &x)==0 ){
int s, n;
char zBuf[16];
computeHMS(&x);
zBuf[0] = '0' + (x.h/10)%10;
zBuf[1] = '0' + (x.h)%10;
zBuf[2] = ':';
zBuf[3] = '0' + (x.m/10)%10;
zBuf[4] = '0' + (x.m)%10;
zBuf[5] = ':';
if( x.useSubsec ){
s = (int)(1000.0*x.s + 0.5);
zBuf[6] = '0' + (s/10000)%10;
zBuf[7] = '0' + (s/1000)%10;
zBuf[8] = '.';
zBuf[9] = '0' + (s/100)%10;
zBuf[10] = '0' + (s/10)%10;
zBuf[11] = '0' + (s)%10;
zBuf[12] = 0;
n = 12;
}else{
s = (int)x.s;
zBuf[6] = '0' + (s/10)%10;
zBuf[7] = '0' + (s)%10;
zBuf[8] = 0;
n = 8;
}
sqlite3_result_text(context, zBuf, n, SQLITE_TRANSIENT);
}
}
/*
** date( TIMESTRING, MOD, MOD, ...)
**
** Return YYYY-MM-DD
*/
static void dateFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
DateTime x;
if( isDate(context, argc, argv, &x)==0 ){
int Y;
char zBuf[16];
computeYMD(&x);
Y = x.Y;
if( Y<0 ) Y = -Y;
zBuf[1] = '0' + (Y/1000)%10;
zBuf[2] = '0' + (Y/100)%10;
zBuf[3] = '0' + (Y/10)%10;
zBuf[4] = '0' + (Y)%10;
zBuf[5] = '-';
zBuf[6] = '0' + (x.M/10)%10;
zBuf[7] = '0' + (x.M)%10;
zBuf[8] = '-';
zBuf[9] = '0' + (x.D/10)%10;
zBuf[10] = '0' + (x.D)%10;
zBuf[11] = 0;
if( x.Y<0 ){
zBuf[0] = '-';
sqlite3_result_text(context, zBuf, 11, SQLITE_TRANSIENT);
}else{
sqlite3_result_text(context, &zBuf[1], 10, SQLITE_TRANSIENT);
}
}
}
/*
** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
**
** Return a string described by FORMAT. Conversions as follows:
**
** %d day of month
** %f ** fractional seconds SS.SSS
** %H hour 00-24
** %j day of year 000-366
** %J ** julian day number
** %m month 01-12
** %M minute 00-59
** %s seconds since 1970-01-01
** %S seconds 00-59
** %w day of week 0-6 Sunday==0
** %W week of year 00-53
** %Y year 0000-9999
** %% %
*/
static void strftimeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
DateTime x;
size_t i,j;
sqlite3 *db;
const char *zFmt;
sqlite3_str sRes;
if( argc==0 ) return;
zFmt = (const char*)sqlite3_value_text(argv[0]);
if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
db = sqlite3_context_db_handle(context);
sqlite3StrAccumInit(&sRes, 0, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
computeJD(&x);
computeYMD_HMS(&x);
for(i=j=0; zFmt[i]; i++){
char cf;
if( zFmt[i]!='%' ) continue;
if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
i++;
j = i + 1;
cf = zFmt[i];
switch( cf ){
case 'd': /* Fall thru */
case 'e': {
sqlite3_str_appendf(&sRes, cf=='d' ? "%02d" : "%2d", x.D);
break;
}
case 'f': {
double s = x.s;
if( s>59.999 ) s = 59.999;
sqlite3_str_appendf(&sRes, "%06.3f", s);
break;
}
case 'F': {
sqlite3_str_appendf(&sRes, "%04d-%02d-%02d", x.Y, x.M, x.D);
break;
}
case 'H':
case 'k': {
sqlite3_str_appendf(&sRes, cf=='H' ? "%02d" : "%2d", x.h);
break;
}
case 'I': /* Fall thru */
case 'l': {
int h = x.h;
if( h>12 ) h -= 12;
if( h==0 ) h = 12;
sqlite3_str_appendf(&sRes, cf=='I' ? "%02d" : "%2d", h);
break;
}
case 'W': /* Fall thru */
case 'j': {
int nDay; /* Number of days since 1st day of year */
DateTime y = x;
y.validJD = 0;
y.M = 1;
y.D = 1;
computeJD(&y);
nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
if( cf=='W' ){
int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
wd = (int)(((x.iJD+43200000)/86400000)%7);
sqlite3_str_appendf(&sRes,"%02d",(nDay+7-wd)/7);
}else{
sqlite3_str_appendf(&sRes,"%03d",nDay+1);
}
break;
}
case 'J': {
sqlite3_str_appendf(&sRes,"%.16g",x.iJD/86400000.0);
break;
}
case 'm': {
sqlite3_str_appendf(&sRes,"%02d",x.M);
break;
}
case 'M': {
sqlite3_str_appendf(&sRes,"%02d",x.m);
break;
}
case 'p': /* Fall thru */
case 'P': {
if( x.h>=12 ){
sqlite3_str_append(&sRes, cf=='p' ? "PM" : "pm", 2);
}else{
sqlite3_str_append(&sRes, cf=='p' ? "AM" : "am", 2);
}
break;
}
case 'R': {
sqlite3_str_appendf(&sRes, "%02d:%02d", x.h, x.m);
break;
}
case 's': {
if( x.useSubsec ){
sqlite3_str_appendf(&sRes,"%.3f",
(x.iJD - 21086676*(i64)10000000)/1000.0);
}else{
i64 iS = (i64)(x.iJD/1000 - 21086676*(i64)10000);
sqlite3_str_appendf(&sRes,"%lld",iS);
}
break;
}
case 'S': {
sqlite3_str_appendf(&sRes,"%02d",(int)x.s);
break;
}
case 'T': {
sqlite3_str_appendf(&sRes,"%02d:%02d:%02d", x.h, x.m, (int)x.s);
break;
}
case 'u': /* Fall thru */
case 'w': {
char c = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
if( c=='0' && cf=='u' ) c = '7';
sqlite3_str_appendchar(&sRes, 1, c);
break;
}
case 'Y': {
sqlite3_str_appendf(&sRes,"%04d",x.Y);
break;
}
case '%': {
sqlite3_str_appendchar(&sRes, 1, '%');
break;
}
default: {
sqlite3_str_reset(&sRes);
return;
}
}
}
if( j<i ) sqlite3_str_append(&sRes, zFmt+j, (int)(i-j));
sqlite3ResultStrAccum(context, &sRes);
}
/*
** current_time()
**
** This function returns the same value as time('now').
*/
static void ctimeFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
timeFunc(context, 0, 0);
}
/*
** current_date()
**
** This function returns the same value as date('now').
*/
static void cdateFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
dateFunc(context, 0, 0);
}
/*
** timediff(DATE1, DATE2)
**
** Return the amount of time that must be added to DATE2 in order to
** convert it into DATE2. The time difference format is:
**
** +YYYY-MM-DD HH:MM:SS.SSS
**
** The initial "+" becomes "-" if DATE1 occurs before DATE2. For
** date/time values A and B, the following invariant should hold:
**
** datetime(A) == (datetime(B, timediff(A,B))
**
** Both DATE arguments must be either a julian day number, or an
** ISO-8601 string. The unix timestamps are not supported by this
** routine.
*/
static void timediffFunc(
sqlite3_context *context,
int NotUsed1,
sqlite3_value **argv
){
char sign;
int Y, M;
DateTime d1, d2;
sqlite3_str sRes;
UNUSED_PARAMETER(NotUsed1);
if( isDate(context, 1, &argv[0], &d1) ) return;
if( isDate(context, 1, &argv[1], &d2) ) return;
computeYMD_HMS(&d1);
computeYMD_HMS(&d2);
if( d1.iJD>=d2.iJD ){
sign = '+';
Y = d1.Y - d2.Y;
if( Y ){
d2.Y = d1.Y;
d2.validJD = 0;
computeJD(&d2);
}
M = d1.M - d2.M;
if( M<0 ){
Y--;
M += 12;
}
if( M!=0 ){
d2.M = d1.M;
d2.validJD = 0;
computeJD(&d2);
}
while( d1.iJD<d2.iJD ){
M--;
if( M<0 ){
M = 11;
Y--;
}
d2.M--;
if( d2.M<1 ){
d2.M = 12;
d2.Y--;
}
d2.validJD = 0;
computeJD(&d2);
}
d1.iJD -= d2.iJD;
d1.iJD += (u64)1486995408 * (u64)100000;
}else /* d1<d2 */{
sign = '-';
Y = d2.Y - d1.Y;
if( Y ){
d2.Y = d1.Y;
d2.validJD = 0;
computeJD(&d2);
}
M = d2.M - d1.M;
if( M<0 ){
Y--;
M += 12;
}
if( M!=0 ){
d2.M = d1.M;
d2.validJD = 0;
computeJD(&d2);
}
while( d1.iJD>d2.iJD ){
M--;
if( M<0 ){
M = 11;
Y--;
}
d2.M++;
if( d2.M>12 ){
d2.M = 1;
d2.Y++;
}
d2.validJD = 0;
computeJD(&d2);
}
d1.iJD = d2.iJD - d1.iJD;
d1.iJD += (u64)1486995408 * (u64)100000;
}
d1.validYMD = 0;
d1.validHMS = 0;
d1.validTZ = 0;
computeYMD_HMS(&d1);
sqlite3StrAccumInit(&sRes, 0, 0, 0, 100);
sqlite3_str_appendf(&sRes, "%c%04d-%02d-%02d %02d:%02d:%06.3f",
sign, Y, M, d1.D-1, d1.h, d1.m, d1.s);
sqlite3ResultStrAccum(context, &sRes);
}
/*
** current_timestamp()
**
** This function returns the same value as datetime('now').
*/
static void ctimestampFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
datetimeFunc(context, 0, 0);
}
#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
#ifdef SQLITE_OMIT_DATETIME_FUNCS
/*
** If the library is compiled to omit the full-scale date and time
** handling (to get a smaller binary), the following minimal version
** of the functions current_time(), current_date() and current_timestamp()
** are included instead. This is to support column declarations that
** include "DEFAULT CURRENT_TIME" etc.
**
** This function uses the C-library functions time(), gmtime()
** and strftime(). The format string to pass to strftime() is supplied
** as the user-data for the function.
*/
static void currentTimeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
time_t t;
char *zFormat = (char *)sqlite3_user_data(context);
sqlite3_int64 iT;
struct tm *pTm;
struct tm sNow;
char zBuf[20];
UNUSED_PARAMETER(argc);
UNUSED_PARAMETER(argv);
iT = sqlite3StmtCurrentTime(context);
if( iT<=0 ) return;
t = iT/1000 - 10000*(sqlite3_int64)21086676;
#if HAVE_GMTIME_R
pTm = gmtime_r(&t, &sNow);
#else
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
pTm = gmtime(&t);
if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN));
#endif
if( pTm ){
strftime(zBuf, 20, zFormat, &sNow);
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
}
#endif
/*
** This function registered all of the above C functions as SQL
** functions. This should be the only routine in this file with
** external linkage.
*/
void sqlite3RegisterDateTimeFunctions(void){
static FuncDef aDateTimeFuncs[] = {
#ifndef SQLITE_OMIT_DATETIME_FUNCS
PURE_DATE(julianday, -1, 0, 0, juliandayFunc ),
PURE_DATE(unixepoch, -1, 0, 0, unixepochFunc ),
PURE_DATE(date, -1, 0, 0, dateFunc ),
PURE_DATE(time, -1, 0, 0, timeFunc ),
PURE_DATE(datetime, -1, 0, 0, datetimeFunc ),
PURE_DATE(strftime, -1, 0, 0, strftimeFunc ),
PURE_DATE(timediff, 2, 0, 0, timediffFunc ),
DFUNCTION(current_time, 0, 0, 0, ctimeFunc ),
DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
DFUNCTION(current_date, 0, 0, 0, cdateFunc ),
#else
STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
#endif
};
sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
}