blob: e79e5842a1c7c63f84a57e90e4ba96429589f9aa [file] [log] [blame]
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for training routines."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util as tf_test_util
from tensorflow.python.keras import metrics as metrics_module
from tensorflow.python.keras import testing_utils
from tensorflow.python.ops.losses import losses_impl
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training.rmsprop import RMSPropOptimizer
class TestTrainingWithDatasetIterators(test.TestCase, parameterized.TestCase):
@parameterized.parameters(
{'model': 'functional'},
{'model': 'subclass'},
)
@tf_test_util.run_in_graph_and_eager_modes
def test_training_and_eval_methods_on_iterators_single_io(self, model):
if model == 'functional':
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
elif model == 'subclass':
model = testing_utils.get_small_sequential_mlp(1, 4)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae', metrics_module.CategoricalAccuracy()]
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
iterator = dataset.make_one_shot_iterator()
model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=1)
model.evaluate(iterator, steps=2, verbose=1)
model.predict(iterator, steps=2)
# Test with validation data
model.fit(iterator,
epochs=1, steps_per_epoch=2, verbose=0,
validation_data=iterator, validation_steps=2)
# Test with validation split
with self.assertRaisesRegexp(
ValueError, '`validation_split` argument is not supported '
'when input `x` is a dataset or a dataset iterator'):
model.fit(iterator,
epochs=1, steps_per_epoch=2, verbose=0,
validation_split=0.5, validation_steps=2)
# Test with sample weight.
sample_weight = np.random.random((10,))
with self.assertRaisesRegexp(
ValueError, '`sample_weight` argument is not supported '
'when input `x` is a dataset or a dataset iterator'):
model.fit(
iterator,
epochs=1,
steps_per_epoch=2,
verbose=0,
sample_weight=sample_weight)
# Test invalid usage
with self.assertRaisesRegexp(ValueError,
'you should not specify a target'):
model.fit(iterator, iterator,
epochs=1, steps_per_epoch=2, verbose=0)
with self.assertRaisesRegexp(
ValueError, 'you should specify the `steps_per_epoch` argument'):
model.fit(iterator, epochs=1, verbose=0)
with self.assertRaisesRegexp(ValueError,
'you should specify the `steps` argument'):
model.evaluate(iterator, verbose=0)
with self.assertRaisesRegexp(ValueError,
'you should specify the `steps` argument'):
model.predict(iterator, verbose=0)
@tf_test_util.run_in_graph_and_eager_modes
def test_get_next_op_created_once(self):
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
iterator = dataset.make_one_shot_iterator()
model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=1)
# Finalize graph to make sure we are not appending another iterator
# get_next op in the graph.
ops.get_default_graph().finalize()
model.fit(iterator, epochs=1, steps_per_epoch=2, verbose=1)
@tf_test_util.run_in_graph_and_eager_modes
def test_iterators_running_out_of_data(self):
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(2)
dataset = dataset.batch(10)
iterator = dataset.make_one_shot_iterator()
with test.mock.patch.object(logging, 'warning') as mock_log:
model.fit(iterator, epochs=1, steps_per_epoch=3, verbose=0)
self.assertRegexpMatches(
str(mock_log.call_args),
'dataset iterator ran out of data')
class TestTrainingWithDataset(test.TestCase, parameterized.TestCase):
@tf_test_util.run_in_graph_and_eager_modes
def test_calling_model_on_same_dataset(self):
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
# Call fit with validation data
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0,
validation_data=dataset, validation_steps=2)
# Finalize the graph to make sure new ops aren't added when calling on the
# same dataset
ops.get_default_graph().finalize()
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0,
validation_data=dataset, validation_steps=2)
@tf_test_util.run_in_graph_and_eager_modes
def test_training_and_eval_methods_on_dataset(self):
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae', metrics_module.CategoricalAccuracy()]
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
model.evaluate(dataset, steps=2, verbose=1)
model.predict(dataset, steps=2)
# Test with validation data
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=0,
validation_data=dataset, validation_steps=2)
# Test with validation split
with self.assertRaisesRegexp(
ValueError, '`validation_split` argument is not supported '
'when input `x` is a dataset or a dataset iterator'):
model.fit(dataset,
epochs=1, steps_per_epoch=2, verbose=0,
validation_split=0.5, validation_steps=2)
# Test with sample weight.
sample_weight = np.random.random((10,))
with self.assertRaisesRegexp(
ValueError, '`sample_weight` argument is not supported '
'when input `x` is a dataset or a dataset iterator'):
model.fit(
dataset,
epochs=1,
steps_per_epoch=2,
verbose=0,
sample_weight=sample_weight)
# Test invalid usage
with self.assertRaisesRegexp(ValueError,
'you should not specify a target'):
model.fit(dataset, dataset,
epochs=1, steps_per_epoch=2, verbose=0)
with self.assertRaisesRegexp(
ValueError, 'you should specify the `steps_per_epoch` argument'):
model.fit(dataset, epochs=1, verbose=0)
with self.assertRaisesRegexp(ValueError,
'you should specify the `steps` argument'):
model.evaluate(dataset, verbose=0)
with self.assertRaisesRegexp(ValueError,
'you should specify the `steps` argument'):
model.predict(dataset, verbose=0)
@tf_test_util.run_in_graph_and_eager_modes
def test_dataset_with_sample_weights(self):
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae', metrics_module.CategoricalAccuracy()]
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3), np.float32)
targets = np.zeros((10, 4), np.float32)
sample_weights = np.ones((10), np.float32)
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets,
sample_weights))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
model.evaluate(dataset, steps=2, verbose=1)
model.predict(dataset, steps=2)
@parameterized.parameters(
{'model': 'functional'},
{'model': 'subclass'},
)
@tf_test_util.run_in_graph_and_eager_modes
def test_dataset_with_sparse_labels(self, model):
if model == 'functional':
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
elif model == 'subclass':
model = testing_utils.get_small_sequential_mlp(1, 4)
for loss in ['sparse_categorical_crossentropy',
losses_impl.sparse_softmax_cross_entropy]:
optimizer = RMSPropOptimizer(learning_rate=0.001)
model.compile(optimizer, loss)
inputs = np.zeros((10, 3), dtype=np.float32)
targets = np.random.randint(0, 4, size=10, dtype=np.int32)
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
def test_dataset_input_shape_validation(self):
with self.cached_session():
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
model.compile(optimizer=RMSPropOptimizer(learning_rate=0.001), loss='mse')
# User forgets to batch the dataset
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
with self.assertRaisesRegexp(
ValueError,
r'expected (.*?) to have shape \(3,\) but got array with shape \(1,\)'
):
model.train_on_batch(dataset)
# Wrong input shape
inputs = np.zeros((10, 5))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
with self.assertRaisesRegexp(ValueError,
r'expected (.*?) to have shape \(3,\)'):
model.train_on_batch(dataset)
class TestMetricsWithDatasetIterators(test.TestCase):
@tf_test_util.run_in_graph_and_eager_modes
def test_metrics_correctness_with_iterator(self):
model = keras.Sequential()
model.add(
keras.layers.Dense(
8, activation='relu', input_dim=4, kernel_initializer='ones'))
model.add(
keras.layers.Dense(
1, activation='sigmoid', kernel_initializer='ones'))
model.compile(
loss='binary_crossentropy',
metrics=['accuracy', metrics_module.BinaryAccuracy()],
optimizer=RMSPropOptimizer(learning_rate=0.001))
np.random.seed(123)
x = np.random.randint(10, size=(100, 4)).astype(np.float32)
y = np.random.randint(2, size=(100, 1)).astype(np.float32)
dataset = dataset_ops.Dataset.from_tensor_slices((x, y))
dataset = dataset.batch(10)
iterator = dataset.make_one_shot_iterator()
outs = model.evaluate(iterator, steps=10)
self.assertEqual(np.around(outs[1], decimals=1), 0.5)
self.assertEqual(np.around(outs[2], decimals=1), 0.5)
y = np.zeros((100, 1), dtype=np.float32)
dataset = dataset_ops.Dataset.from_tensor_slices((x, y))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
iterator = dataset.make_one_shot_iterator()
outs = model.evaluate(iterator, steps=10)
self.assertEqual(outs[1], 0.)
self.assertEqual(outs[2], 0.)
if __name__ == '__main__':
test.main()