| # Copyright 2015 The TensorFlow Authors. All Rights Reserved. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # ============================================================================== |
| """Classes and functions used to construct graphs.""" |
| # pylint: disable=g-bad-name |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| |
| import collections |
| |
| from tensorflow.python import pywrap_tensorflow |
| from tensorflow.python.framework import dtypes |
| from tensorflow.python.framework import ops |
| from tensorflow.python.framework import tensor_util |
| from tensorflow.python.util.tf_export import tf_export |
| |
| # pylint: disable=protected-access |
| _TensorLike = ops._TensorLike |
| _eval_using_default_session = ops._eval_using_default_session |
| _override_helper = ops._override_helper |
| # pylint: enable=protected-access |
| |
| |
| @tf_export("SparseTensor") |
| class SparseTensor(_TensorLike): |
| """Represents a sparse tensor. |
| |
| TensorFlow represents a sparse tensor as three separate dense tensors: |
| `indices`, `values`, and `dense_shape`. In Python, the three tensors are |
| collected into a `SparseTensor` class for ease of use. If you have separate |
| `indices`, `values`, and `dense_shape` tensors, wrap them in a `SparseTensor` |
| object before passing to the ops below. |
| |
| Concretely, the sparse tensor `SparseTensor(indices, values, dense_shape)` |
| comprises the following components, where `N` and `ndims` are the number |
| of values and number of dimensions in the `SparseTensor`, respectively: |
| |
| * `indices`: A 2-D int64 tensor of dense_shape `[N, ndims]`, which specifies |
| the indices of the elements in the sparse tensor that contain nonzero |
| values (elements are zero-indexed). For example, `indices=[[1,3], [2,4]]` |
| specifies that the elements with indexes of [1,3] and [2,4] have |
| nonzero values. |
| |
| * `values`: A 1-D tensor of any type and dense_shape `[N]`, which supplies the |
| values for each element in `indices`. For example, given |
| `indices=[[1,3], [2,4]]`, the parameter `values=[18, 3.6]` specifies |
| that element [1,3] of the sparse tensor has a value of 18, and element |
| [2,4] of the tensor has a value of 3.6. |
| |
| * `dense_shape`: A 1-D int64 tensor of dense_shape `[ndims]`, which specifies |
| the dense_shape of the sparse tensor. Takes a list indicating the number of |
| elements in each dimension. For example, `dense_shape=[3,6]` specifies a |
| two-dimensional 3x6 tensor, `dense_shape=[2,3,4]` specifies a |
| three-dimensional 2x3x4 tensor, and `dense_shape=[9]` specifies a |
| one-dimensional tensor with 9 elements. |
| |
| The corresponding dense tensor satisfies: |
| |
| ```python |
| dense.shape = dense_shape |
| dense[tuple(indices[i])] = values[i] |
| ``` |
| |
| By convention, `indices` should be sorted in row-major order (or equivalently |
| lexicographic order on the tuples `indices[i]`). This is not enforced when |
| `SparseTensor` objects are constructed, but most ops assume correct ordering. |
| If the ordering of sparse tensor `st` is wrong, a fixed version can be |
| obtained by calling `tf.sparse_reorder(st)`. |
| |
| Example: The sparse tensor |
| |
| ```python |
| SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) |
| ``` |
| |
| represents the dense tensor |
| |
| ```python |
| [[1, 0, 0, 0] |
| [0, 0, 2, 0] |
| [0, 0, 0, 0]] |
| ``` |
| """ |
| |
| @classmethod |
| def from_value(cls, sparse_tensor_value): |
| if not is_sparse(sparse_tensor_value): |
| raise TypeError("Neither a SparseTensor nor SparseTensorValue: %s." % |
| sparse_tensor_value) |
| return SparseTensor( |
| indices=sparse_tensor_value.indices, |
| values=sparse_tensor_value.values, |
| dense_shape=sparse_tensor_value.dense_shape) |
| |
| def __init__(self, indices, values, dense_shape): |
| """Creates a `SparseTensor`. |
| |
| Args: |
| indices: A 2-D int64 tensor of shape `[N, ndims]`. |
| values: A 1-D tensor of any type and shape `[N]`. |
| dense_shape: A 1-D int64 tensor of shape `[ndims]`. |
| |
| """ |
| with ops.name_scope(None, "SparseTensor", |
| [indices, values, dense_shape]): |
| indices = ops.convert_to_tensor( |
| indices, name="indices", dtype=dtypes.int64) |
| # Always pass as_ref=True because we want to be able to update |
| # values later if it is a VariableOp. |
| # TODO(touts): Consider adding mutable_values() when 'values' |
| # is a VariableOp and updating users of SparseTensor. |
| values = ops.internal_convert_to_tensor( |
| values, name="values", as_ref=True) |
| dense_shape = ops.convert_to_tensor( |
| dense_shape, name="dense_shape", dtype=dtypes.int64) |
| self._indices = indices |
| self._values = values |
| self._dense_shape = dense_shape |
| |
| indices_shape = indices.get_shape().with_rank(2) |
| values_shape = values.get_shape().with_rank(1) |
| dense_shape_shape = dense_shape.get_shape().with_rank(1) |
| |
| # Assert number of rows in indices match the number of elements in values. |
| indices_shape[0].merge_with(values_shape[0]) |
| # Assert number of columns in indices matches the number of elements in |
| # dense_shape. |
| indices_shape[1].merge_with(dense_shape_shape[0]) |
| |
| def get_shape(self): |
| """Get the `TensorShape` representing the shape of the dense tensor. |
| |
| Returns: |
| A `TensorShape` object. |
| """ |
| return tensor_util.constant_value_as_shape(self._dense_shape) |
| |
| @property |
| def indices(self): |
| """The indices of non-zero values in the represented dense tensor. |
| |
| Returns: |
| A 2-D Tensor of int64 with dense_shape `[N, ndims]`, where `N` is the |
| number of non-zero values in the tensor, and `ndims` is the rank. |
| """ |
| return self._indices |
| |
| @property |
| def values(self): |
| """The non-zero values in the represented dense tensor. |
| |
| Returns: |
| A 1-D Tensor of any data type. |
| """ |
| return self._values |
| |
| @property |
| def op(self): |
| """The `Operation` that produces `values` as an output.""" |
| return self.values.op |
| |
| @property |
| def dtype(self): |
| """The `DType` of elements in this tensor.""" |
| return self._values.dtype |
| |
| @property |
| def dense_shape(self): |
| """A 1-D Tensor of int64 representing the shape of the dense tensor.""" |
| return self._dense_shape |
| |
| @property |
| def shape(self): |
| """Get the `TensorShape` representing the shape of the dense tensor. |
| |
| Returns: |
| A `TensorShape` object. |
| """ |
| return tensor_util.constant_value_as_shape(self._dense_shape) |
| |
| @property |
| def graph(self): |
| """The `Graph` that contains the index, value, and dense_shape tensors.""" |
| return self._indices.graph |
| |
| def consumers(self): |
| """Returns a list of `Operation`s that consume this `SparseTensor`. |
| |
| Returns: |
| A list of `Operation`s. |
| """ |
| values_consumers = set(self._values.consumers()) |
| indices_consumers = set(self._indices.consumers()) |
| dense_shape_consumers = set(self._dense_shape.consumers()) |
| return list(values_consumers \ |
| .union(indices_consumers, dense_shape_consumers)) |
| |
| def __str__(self): |
| return "SparseTensor(indices=%s, values=%s, dense_shape=%s)" % ( |
| self._indices, self._values, self._dense_shape) |
| |
| def eval(self, feed_dict=None, session=None): |
| """Evaluates this sparse tensor in a `Session`. |
| |
| Calling this method will execute all preceding operations that |
| produce the inputs needed for the operation that produces this |
| tensor. |
| |
| *N.B.* Before invoking `SparseTensor.eval()`, its graph must have been |
| launched in a session, and either a default session must be |
| available, or `session` must be specified explicitly. |
| |
| Args: |
| feed_dict: A dictionary that maps `Tensor` objects to feed values. |
| See `tf.Session.run` for a |
| description of the valid feed values. |
| session: (Optional.) The `Session` to be used to evaluate this sparse |
| tensor. If none, the default session will be used. |
| |
| Returns: |
| A `SparseTensorValue` object. |
| """ |
| indices, values, dense_shape = _eval_using_default_session( |
| [self.indices, self.values, self.dense_shape], feed_dict, self.graph, |
| session) |
| return SparseTensorValue(indices, values, dense_shape) |
| |
| @staticmethod |
| def _override_operator(operator, func): |
| _override_helper(SparseTensor, operator, func) |
| |
| |
| SparseTensorValue = collections.namedtuple( |
| "SparseTensorValue", ["indices", "values", "dense_shape"]) |
| tf_export("SparseTensorValue")(SparseTensorValue) |
| pywrap_tensorflow.RegisterSparseTensorValueClass(SparseTensorValue) |
| |
| |
| @tf_export("convert_to_tensor_or_sparse_tensor") |
| def convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None): |
| """Converts value to a `SparseTensor` or `Tensor`. |
| |
| Args: |
| value: A `SparseTensor`, `SparseTensorValue`, or an object whose type has a |
| registered `Tensor` conversion function. |
| dtype: Optional element type for the returned tensor. If missing, the |
| type is inferred from the type of `value`. |
| name: Optional name to use if a new `Tensor` is created. |
| |
| Returns: |
| A `SparseTensor` or `Tensor` based on `value`. |
| |
| Raises: |
| RuntimeError: If result type is incompatible with `dtype`. |
| """ |
| if dtype is not None: |
| dtype = dtypes.as_dtype(dtype) |
| if isinstance(value, SparseTensorValue): |
| value = SparseTensor.from_value(value) |
| if isinstance(value, SparseTensor): |
| if dtype and not dtype.is_compatible_with(value.dtype): |
| raise RuntimeError( |
| "Sparse dtype: requested = %s, actual = %s" % ( |
| dtype.name, value.dtype.name)) |
| return value |
| return ops.internal_convert_to_tensor( |
| value, dtype=dtype, name=name) |
| |
| |
| def is_sparse(x): |
| """Check whether `x` is sparse. |
| |
| Check whether an object is a `tf.SparseTensor` or `tf.SparseTensorValue`. |
| |
| Args: |
| x: A python object to check. |
| |
| Returns: |
| `True` iff `x` is a `tf.SparseTensor` or `tf.SparseTensorValue`. |
| """ |
| return isinstance(x, (SparseTensor, SparseTensorValue)) |