| # Copyright 2015 The TensorFlow Authors. All Rights Reserved. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # ============================================================================== |
| |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| |
| import numpy as np |
| |
| from tensorflow.python.framework import ops |
| from tensorflow.python.ops import array_ops |
| from tensorflow.python.platform import test |
| |
| |
| class SparseMaskTest(test.TestCase): |
| |
| def testBasic(self): |
| values = np.random.rand(4, 4).astype(np.single) |
| indices = np.array([0, 2, 3, 4], dtype=np.int32) |
| mask_indices = np.array([0], dtype=np.int32) |
| |
| out_values = values[1:, :] |
| out_indices = np.array([2, 3, 4], dtype=np.int32) |
| |
| with self.test_session() as sess: |
| values_tensor = ops.convert_to_tensor(values) |
| indices_tensor = ops.convert_to_tensor(indices) |
| mask_indices_tensor = ops.convert_to_tensor(mask_indices) |
| |
| t = ops.IndexedSlices(values_tensor, indices_tensor) |
| masked_t = array_ops.sparse_mask(t, mask_indices_tensor) |
| |
| tf_out_values, tf_out_indices = sess.run( |
| [masked_t.values, masked_t.indices]) |
| |
| self.assertAllEqual(tf_out_values, out_values) |
| self.assertAllEqual(tf_out_indices, out_indices) |
| |
| |
| if __name__ == "__main__": |
| test.main() |