| #include "env.h" |
| #include "async_wrap.h" |
| #include "base_object-inl.h" |
| #include "debug_utils-inl.h" |
| #include "diagnosticfilename-inl.h" |
| #include "memory_tracker-inl.h" |
| #include "node_buffer.h" |
| #include "node_context_data.h" |
| #include "node_errors.h" |
| #include "node_internals.h" |
| #include "node_options-inl.h" |
| #include "node_process-inl.h" |
| #include "node_v8_platform-inl.h" |
| #include "node_worker.h" |
| #include "req_wrap-inl.h" |
| #include "stream_base.h" |
| #include "tracing/agent.h" |
| #include "tracing/traced_value.h" |
| #include "util-inl.h" |
| #include "v8-profiler.h" |
| |
| #include <algorithm> |
| #include <atomic> |
| #include <cinttypes> |
| #include <cstdio> |
| #include <iostream> |
| #include <limits> |
| #include <memory> |
| |
| namespace node { |
| |
| using errors::TryCatchScope; |
| using v8::Array; |
| using v8::Boolean; |
| using v8::Context; |
| using v8::EmbedderGraph; |
| using v8::EscapableHandleScope; |
| using v8::Function; |
| using v8::FunctionCallbackInfo; |
| using v8::FunctionTemplate; |
| using v8::HandleScope; |
| using v8::HeapSpaceStatistics; |
| using v8::Integer; |
| using v8::Isolate; |
| using v8::Local; |
| using v8::MaybeLocal; |
| using v8::NewStringType; |
| using v8::Number; |
| using v8::Object; |
| using v8::Private; |
| using v8::Script; |
| using v8::SnapshotCreator; |
| using v8::StackTrace; |
| using v8::String; |
| using v8::Symbol; |
| using v8::TracingController; |
| using v8::TryCatch; |
| using v8::Undefined; |
| using v8::Value; |
| using v8::WeakCallbackInfo; |
| using v8::WeakCallbackType; |
| using worker::Worker; |
| |
| int const Environment::kNodeContextTag = 0x6e6f64; |
| void* const Environment::kNodeContextTagPtr = const_cast<void*>( |
| static_cast<const void*>(&Environment::kNodeContextTag)); |
| |
| void AsyncHooks::SetJSPromiseHooks(Local<Function> init, |
| Local<Function> before, |
| Local<Function> after, |
| Local<Function> resolve) { |
| js_promise_hooks_[0].Reset(env()->isolate(), init); |
| js_promise_hooks_[1].Reset(env()->isolate(), before); |
| js_promise_hooks_[2].Reset(env()->isolate(), after); |
| js_promise_hooks_[3].Reset(env()->isolate(), resolve); |
| for (auto it = contexts_.begin(); it != contexts_.end(); it++) { |
| if (it->IsEmpty()) { |
| contexts_.erase(it--); |
| continue; |
| } |
| PersistentToLocal::Weak(env()->isolate(), *it) |
| ->SetPromiseHooks(init, before, after, resolve); |
| } |
| } |
| |
| // Remember to keep this code aligned with pushAsyncContext() in JS. |
| void AsyncHooks::push_async_context(double async_id, |
| double trigger_async_id, |
| Local<Object> resource) { |
| // Since async_hooks is experimental, do only perform the check |
| // when async_hooks is enabled. |
| if (fields_[kCheck] > 0) { |
| CHECK_GE(async_id, -1); |
| CHECK_GE(trigger_async_id, -1); |
| } |
| |
| uint32_t offset = fields_[kStackLength]; |
| if (offset * 2 >= async_ids_stack_.Length()) grow_async_ids_stack(); |
| async_ids_stack_[2 * offset] = async_id_fields_[kExecutionAsyncId]; |
| async_ids_stack_[2 * offset + 1] = async_id_fields_[kTriggerAsyncId]; |
| fields_[kStackLength] += 1; |
| async_id_fields_[kExecutionAsyncId] = async_id; |
| async_id_fields_[kTriggerAsyncId] = trigger_async_id; |
| |
| #ifdef DEBUG |
| for (uint32_t i = offset; i < native_execution_async_resources_.size(); i++) |
| CHECK(native_execution_async_resources_[i].IsEmpty()); |
| #endif |
| |
| // When this call comes from JS (as a way of increasing the stack size), |
| // `resource` will be empty, because JS caches these values anyway. |
| if (!resource.IsEmpty()) { |
| native_execution_async_resources_.resize(offset + 1); |
| // Caveat: This is a v8::Local<> assignment, we do not keep a v8::Global<>! |
| native_execution_async_resources_[offset] = resource; |
| } |
| } |
| |
| // Remember to keep this code aligned with popAsyncContext() in JS. |
| bool AsyncHooks::pop_async_context(double async_id) { |
| // In case of an exception then this may have already been reset, if the |
| // stack was multiple MakeCallback()'s deep. |
| if (UNLIKELY(fields_[kStackLength] == 0)) return false; |
| |
| // Ask for the async_id to be restored as a check that the stack |
| // hasn't been corrupted. |
| if (UNLIKELY(fields_[kCheck] > 0 && |
| async_id_fields_[kExecutionAsyncId] != async_id)) { |
| FailWithCorruptedAsyncStack(async_id); |
| } |
| |
| uint32_t offset = fields_[kStackLength] - 1; |
| async_id_fields_[kExecutionAsyncId] = async_ids_stack_[2 * offset]; |
| async_id_fields_[kTriggerAsyncId] = async_ids_stack_[2 * offset + 1]; |
| fields_[kStackLength] = offset; |
| |
| if (LIKELY(offset < native_execution_async_resources_.size() && |
| !native_execution_async_resources_[offset].IsEmpty())) { |
| #ifdef DEBUG |
| for (uint32_t i = offset + 1; i < native_execution_async_resources_.size(); |
| i++) { |
| CHECK(native_execution_async_resources_[i].IsEmpty()); |
| } |
| #endif |
| native_execution_async_resources_.resize(offset); |
| if (native_execution_async_resources_.size() < |
| native_execution_async_resources_.capacity() / 2 && |
| native_execution_async_resources_.size() > 16) { |
| native_execution_async_resources_.shrink_to_fit(); |
| } |
| } |
| |
| if (UNLIKELY(js_execution_async_resources()->Length() > offset)) { |
| HandleScope handle_scope(env()->isolate()); |
| USE(js_execution_async_resources()->Set( |
| env()->context(), |
| env()->length_string(), |
| Integer::NewFromUnsigned(env()->isolate(), offset))); |
| } |
| |
| return fields_[kStackLength] > 0; |
| } |
| |
| void AsyncHooks::clear_async_id_stack() { |
| Isolate* isolate = env()->isolate(); |
| HandleScope handle_scope(isolate); |
| if (!js_execution_async_resources_.IsEmpty()) { |
| USE(PersistentToLocal::Strong(js_execution_async_resources_) |
| ->Set(env()->context(), |
| env()->length_string(), |
| Integer::NewFromUnsigned(isolate, 0))); |
| } |
| native_execution_async_resources_.clear(); |
| native_execution_async_resources_.shrink_to_fit(); |
| |
| async_id_fields_[kExecutionAsyncId] = 0; |
| async_id_fields_[kTriggerAsyncId] = 0; |
| fields_[kStackLength] = 0; |
| } |
| |
| void AsyncHooks::AddContext(Local<Context> ctx) { |
| ctx->SetPromiseHooks(js_promise_hooks_[0].IsEmpty() |
| ? Local<Function>() |
| : PersistentToLocal::Strong(js_promise_hooks_[0]), |
| js_promise_hooks_[1].IsEmpty() |
| ? Local<Function>() |
| : PersistentToLocal::Strong(js_promise_hooks_[1]), |
| js_promise_hooks_[2].IsEmpty() |
| ? Local<Function>() |
| : PersistentToLocal::Strong(js_promise_hooks_[2]), |
| js_promise_hooks_[3].IsEmpty() |
| ? Local<Function>() |
| : PersistentToLocal::Strong(js_promise_hooks_[3])); |
| |
| size_t id = contexts_.size(); |
| contexts_.resize(id + 1); |
| contexts_[id].Reset(env()->isolate(), ctx); |
| contexts_[id].SetWeak(); |
| } |
| |
| void AsyncHooks::RemoveContext(Local<Context> ctx) { |
| Isolate* isolate = env()->isolate(); |
| HandleScope handle_scope(isolate); |
| contexts_.erase(std::remove_if(contexts_.begin(), |
| contexts_.end(), |
| [&](auto&& el) { return el.IsEmpty(); }), |
| contexts_.end()); |
| for (auto it = contexts_.begin(); it != contexts_.end(); it++) { |
| Local<Context> saved_context = PersistentToLocal::Weak(isolate, *it); |
| if (saved_context == ctx) { |
| it->Reset(); |
| contexts_.erase(it); |
| break; |
| } |
| } |
| } |
| |
| AsyncHooks::DefaultTriggerAsyncIdScope::DefaultTriggerAsyncIdScope( |
| Environment* env, double default_trigger_async_id) |
| : async_hooks_(env->async_hooks()) { |
| if (env->async_hooks()->fields()[AsyncHooks::kCheck] > 0) { |
| CHECK_GE(default_trigger_async_id, 0); |
| } |
| |
| old_default_trigger_async_id_ = |
| async_hooks_->async_id_fields()[AsyncHooks::kDefaultTriggerAsyncId]; |
| async_hooks_->async_id_fields()[AsyncHooks::kDefaultTriggerAsyncId] = |
| default_trigger_async_id; |
| } |
| |
| AsyncHooks::DefaultTriggerAsyncIdScope::~DefaultTriggerAsyncIdScope() { |
| async_hooks_->async_id_fields()[AsyncHooks::kDefaultTriggerAsyncId] = |
| old_default_trigger_async_id_; |
| } |
| |
| AsyncHooks::DefaultTriggerAsyncIdScope::DefaultTriggerAsyncIdScope( |
| AsyncWrap* async_wrap) |
| : DefaultTriggerAsyncIdScope(async_wrap->env(), |
| async_wrap->get_async_id()) {} |
| |
| std::ostream& operator<<(std::ostream& output, |
| const std::vector<SnapshotIndex>& v) { |
| output << "{ "; |
| for (const SnapshotIndex i : v) { |
| output << i << ", "; |
| } |
| output << " }"; |
| return output; |
| } |
| |
| std::ostream& operator<<(std::ostream& output, |
| const IsolateDataSerializeInfo& i) { |
| output << "{\n" |
| << "// -- primitive begins --\n" |
| << i.primitive_values << ",\n" |
| << "// -- primitive ends --\n" |
| << "// -- template_values begins --\n" |
| << i.template_values << ",\n" |
| << "// -- template_values ends --\n" |
| << "}"; |
| return output; |
| } |
| |
| std::ostream& operator<<(std::ostream& output, const SnapshotMetadata& i) { |
| output << "{\n" |
| << " " |
| << (i.type == SnapshotMetadata::Type::kDefault |
| ? "SnapshotMetadata::Type::kDefault" |
| : "SnapshotMetadata::Type::kFullyCustomized") |
| << ", // type\n" |
| << " \"" << i.node_version << "\", // node_version\n" |
| << " \"" << i.node_arch << "\", // node_arch\n" |
| << " \"" << i.node_platform << "\", // node_platform\n" |
| << " " << i.v8_cache_version_tag << ", // v8_cache_version_tag\n" |
| << "}"; |
| return output; |
| } |
| |
| IsolateDataSerializeInfo IsolateData::Serialize(SnapshotCreator* creator) { |
| Isolate* isolate = creator->GetIsolate(); |
| IsolateDataSerializeInfo info; |
| HandleScope handle_scope(isolate); |
| // XXX(joyeecheung): technically speaking, the indexes here should be |
| // consecutive and we could just return a range instead of an array, |
| // but that's not part of the V8 API contract so we use an array |
| // just to be safe. |
| |
| #define VP(PropertyName, StringValue) V(Private, PropertyName) |
| #define VY(PropertyName, StringValue) V(Symbol, PropertyName) |
| #define VS(PropertyName, StringValue) V(String, PropertyName) |
| #define V(TypeName, PropertyName) \ |
| info.primitive_values.push_back( \ |
| creator->AddData(PropertyName##_.Get(isolate))); |
| PER_ISOLATE_PRIVATE_SYMBOL_PROPERTIES(VP) |
| PER_ISOLATE_SYMBOL_PROPERTIES(VY) |
| PER_ISOLATE_STRING_PROPERTIES(VS) |
| #undef V |
| #undef VY |
| #undef VS |
| #undef VP |
| |
| for (size_t i = 0; i < AsyncWrap::PROVIDERS_LENGTH; i++) |
| info.primitive_values.push_back(creator->AddData(async_wrap_provider(i))); |
| |
| uint32_t id = 0; |
| #define V(PropertyName, TypeName) \ |
| do { \ |
| Local<TypeName> field = PropertyName(); \ |
| if (!field.IsEmpty()) { \ |
| size_t index = creator->AddData(field); \ |
| info.template_values.push_back({#PropertyName, id, index}); \ |
| } \ |
| id++; \ |
| } while (0); |
| PER_ISOLATE_TEMPLATE_PROPERTIES(V) |
| #undef V |
| |
| return info; |
| } |
| |
| void IsolateData::DeserializeProperties(const IsolateDataSerializeInfo* info) { |
| size_t i = 0; |
| HandleScope handle_scope(isolate_); |
| |
| #define VP(PropertyName, StringValue) V(Private, PropertyName) |
| #define VY(PropertyName, StringValue) V(Symbol, PropertyName) |
| #define VS(PropertyName, StringValue) V(String, PropertyName) |
| #define V(TypeName, PropertyName) \ |
| do { \ |
| MaybeLocal<TypeName> maybe_field = \ |
| isolate_->GetDataFromSnapshotOnce<TypeName>( \ |
| info->primitive_values[i++]); \ |
| Local<TypeName> field; \ |
| if (!maybe_field.ToLocal(&field)) { \ |
| fprintf(stderr, "Failed to deserialize " #PropertyName "\n"); \ |
| } \ |
| PropertyName##_.Set(isolate_, field); \ |
| } while (0); |
| PER_ISOLATE_PRIVATE_SYMBOL_PROPERTIES(VP) |
| PER_ISOLATE_SYMBOL_PROPERTIES(VY) |
| PER_ISOLATE_STRING_PROPERTIES(VS) |
| #undef V |
| #undef VY |
| #undef VS |
| #undef VP |
| |
| for (size_t j = 0; j < AsyncWrap::PROVIDERS_LENGTH; j++) { |
| MaybeLocal<String> maybe_field = |
| isolate_->GetDataFromSnapshotOnce<String>(info->primitive_values[i++]); |
| Local<String> field; |
| if (!maybe_field.ToLocal(&field)) { |
| fprintf(stderr, "Failed to deserialize AsyncWrap provider %zu\n", j); |
| } |
| async_wrap_providers_[j].Set(isolate_, field); |
| } |
| |
| const std::vector<PropInfo>& values = info->template_values; |
| i = 0; // index to the array |
| uint32_t id = 0; |
| #define V(PropertyName, TypeName) \ |
| do { \ |
| if (values.size() > i && id == values[i].id) { \ |
| const PropInfo& d = values[i]; \ |
| DCHECK_EQ(d.name, #PropertyName); \ |
| MaybeLocal<TypeName> maybe_field = \ |
| isolate_->GetDataFromSnapshotOnce<TypeName>(d.index); \ |
| Local<TypeName> field; \ |
| if (!maybe_field.ToLocal(&field)) { \ |
| fprintf(stderr, \ |
| "Failed to deserialize isolate data template " #PropertyName \ |
| "\n"); \ |
| } \ |
| set_##PropertyName(field); \ |
| i++; \ |
| } \ |
| id++; \ |
| } while (0); |
| |
| PER_ISOLATE_TEMPLATE_PROPERTIES(V); |
| #undef V |
| } |
| |
| void IsolateData::CreateProperties() { |
| // Create string and private symbol properties as internalized one byte |
| // strings after the platform is properly initialized. |
| // |
| // Internalized because it makes property lookups a little faster and |
| // because the string is created in the old space straight away. It's going |
| // to end up in the old space sooner or later anyway but now it doesn't go |
| // through v8::Eternal's new space handling first. |
| // |
| // One byte because our strings are ASCII and we can safely skip V8's UTF-8 |
| // decoding step. |
| |
| HandleScope handle_scope(isolate_); |
| |
| #define V(PropertyName, StringValue) \ |
| PropertyName##_.Set( \ |
| isolate_, \ |
| Private::New(isolate_, \ |
| String::NewFromOneByte( \ |
| isolate_, \ |
| reinterpret_cast<const uint8_t*>(StringValue), \ |
| NewStringType::kInternalized, \ |
| sizeof(StringValue) - 1) \ |
| .ToLocalChecked())); |
| PER_ISOLATE_PRIVATE_SYMBOL_PROPERTIES(V) |
| #undef V |
| #define V(PropertyName, StringValue) \ |
| PropertyName##_.Set( \ |
| isolate_, \ |
| Symbol::New(isolate_, \ |
| String::NewFromOneByte( \ |
| isolate_, \ |
| reinterpret_cast<const uint8_t*>(StringValue), \ |
| NewStringType::kInternalized, \ |
| sizeof(StringValue) - 1) \ |
| .ToLocalChecked())); |
| PER_ISOLATE_SYMBOL_PROPERTIES(V) |
| #undef V |
| #define V(PropertyName, StringValue) \ |
| PropertyName##_.Set( \ |
| isolate_, \ |
| String::NewFromOneByte(isolate_, \ |
| reinterpret_cast<const uint8_t*>(StringValue), \ |
| NewStringType::kInternalized, \ |
| sizeof(StringValue) - 1) \ |
| .ToLocalChecked()); |
| PER_ISOLATE_STRING_PROPERTIES(V) |
| #undef V |
| |
| // Create all the provider strings that will be passed to JS. Place them in |
| // an array so the array index matches the PROVIDER id offset. This way the |
| // strings can be retrieved quickly. |
| #define V(Provider) \ |
| async_wrap_providers_[AsyncWrap::PROVIDER_ ## Provider].Set( \ |
| isolate_, \ |
| String::NewFromOneByte( \ |
| isolate_, \ |
| reinterpret_cast<const uint8_t*>(#Provider), \ |
| NewStringType::kInternalized, \ |
| sizeof(#Provider) - 1).ToLocalChecked()); |
| NODE_ASYNC_PROVIDER_TYPES(V) |
| #undef V |
| |
| // TODO(legendecas): eagerly create per isolate templates. |
| } |
| |
| IsolateData::IsolateData(Isolate* isolate, |
| uv_loop_t* event_loop, |
| MultiIsolatePlatform* platform, |
| ArrayBufferAllocator* node_allocator, |
| const IsolateDataSerializeInfo* isolate_data_info) |
| : isolate_(isolate), |
| event_loop_(event_loop), |
| node_allocator_(node_allocator == nullptr ? nullptr |
| : node_allocator->GetImpl()), |
| platform_(platform) { |
| options_.reset( |
| new PerIsolateOptions(*(per_process::cli_options->per_isolate))); |
| |
| if (isolate_data_info == nullptr) { |
| CreateProperties(); |
| } else { |
| DeserializeProperties(isolate_data_info); |
| } |
| } |
| |
| void IsolateData::MemoryInfo(MemoryTracker* tracker) const { |
| #define V(PropertyName, StringValue) \ |
| tracker->TrackField(#PropertyName, PropertyName()); |
| PER_ISOLATE_SYMBOL_PROPERTIES(V) |
| |
| PER_ISOLATE_STRING_PROPERTIES(V) |
| #undef V |
| |
| tracker->TrackField("async_wrap_providers", async_wrap_providers_); |
| |
| if (node_allocator_ != nullptr) { |
| tracker->TrackFieldWithSize( |
| "node_allocator", sizeof(*node_allocator_), "NodeArrayBufferAllocator"); |
| } |
| tracker->TrackFieldWithSize( |
| "platform", sizeof(*platform_), "MultiIsolatePlatform"); |
| // TODO(joyeecheung): implement MemoryRetainer in the option classes. |
| } |
| |
| void TrackingTraceStateObserver::UpdateTraceCategoryState() { |
| if (!env_->owns_process_state() || !env_->can_call_into_js()) { |
| // Ideally, we’d have a consistent story that treats all threads/Environment |
| // instances equally here. However, tracing is essentially global, and this |
| // callback is called from whichever thread calls `StartTracing()` or |
| // `StopTracing()`. The only way to do this in a threadsafe fashion |
| // seems to be only tracking this from the main thread, and only allowing |
| // these state modifications from the main thread. |
| return; |
| } |
| |
| bool async_hooks_enabled = (*(TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED( |
| TRACING_CATEGORY_NODE1(async_hooks)))) != 0; |
| |
| Isolate* isolate = env_->isolate(); |
| HandleScope handle_scope(isolate); |
| Local<Function> cb = env_->trace_category_state_function(); |
| if (cb.IsEmpty()) |
| return; |
| TryCatchScope try_catch(env_); |
| try_catch.SetVerbose(true); |
| Local<Value> args[] = {Boolean::New(isolate, async_hooks_enabled)}; |
| USE(cb->Call(env_->context(), Undefined(isolate), arraysize(args), args)); |
| } |
| |
| void Environment::AssignToContext(Local<v8::Context> context, |
| const ContextInfo& info) { |
| context->SetAlignedPointerInEmbedderData(ContextEmbedderIndex::kEnvironment, |
| this); |
| // Used by Environment::GetCurrent to know that we are on a node context. |
| context->SetAlignedPointerInEmbedderData(ContextEmbedderIndex::kContextTag, |
| Environment::kNodeContextTagPtr); |
| // Used to retrieve bindings |
| context->SetAlignedPointerInEmbedderData( |
| ContextEmbedderIndex::kBindingListIndex, &(this->bindings_)); |
| |
| #if HAVE_INSPECTOR |
| inspector_agent()->ContextCreated(context, info); |
| #endif // HAVE_INSPECTOR |
| |
| this->async_hooks()->AddContext(context); |
| } |
| |
| void Environment::TryLoadAddon( |
| const char* filename, |
| int flags, |
| const std::function<bool(binding::DLib*)>& was_loaded) { |
| loaded_addons_.emplace_back(filename, flags); |
| if (!was_loaded(&loaded_addons_.back())) { |
| loaded_addons_.pop_back(); |
| } |
| } |
| |
| std::string Environment::GetCwd() { |
| char cwd[PATH_MAX_BYTES]; |
| size_t size = PATH_MAX_BYTES; |
| const int err = uv_cwd(cwd, &size); |
| |
| if (err == 0) { |
| CHECK_GT(size, 0); |
| return cwd; |
| } |
| |
| // This can fail if the cwd is deleted. In that case, fall back to |
| // exec_path. |
| const std::string& exec_path = exec_path_; |
| return exec_path.substr(0, exec_path.find_last_of(kPathSeparator)); |
| } |
| |
| void Environment::add_refs(int64_t diff) { |
| task_queues_async_refs_ += diff; |
| CHECK_GE(task_queues_async_refs_, 0); |
| if (task_queues_async_refs_ == 0) |
| uv_unref(reinterpret_cast<uv_handle_t*>(&task_queues_async_)); |
| else |
| uv_ref(reinterpret_cast<uv_handle_t*>(&task_queues_async_)); |
| } |
| |
| uv_buf_t Environment::allocate_managed_buffer(const size_t suggested_size) { |
| NoArrayBufferZeroFillScope no_zero_fill_scope(isolate_data()); |
| std::unique_ptr<v8::BackingStore> bs = |
| v8::ArrayBuffer::NewBackingStore(isolate(), suggested_size); |
| uv_buf_t buf = uv_buf_init(static_cast<char*>(bs->Data()), bs->ByteLength()); |
| released_allocated_buffers_.emplace(buf.base, std::move(bs)); |
| return buf; |
| } |
| |
| std::unique_ptr<v8::BackingStore> Environment::release_managed_buffer( |
| const uv_buf_t& buf) { |
| std::unique_ptr<v8::BackingStore> bs; |
| if (buf.base != nullptr) { |
| auto it = released_allocated_buffers_.find(buf.base); |
| CHECK_NE(it, released_allocated_buffers_.end()); |
| bs = std::move(it->second); |
| released_allocated_buffers_.erase(it); |
| } |
| return bs; |
| } |
| |
| void Environment::CreateProperties() { |
| HandleScope handle_scope(isolate_); |
| Local<Context> ctx = context(); |
| |
| { |
| Context::Scope context_scope(ctx); |
| Local<FunctionTemplate> templ = FunctionTemplate::New(isolate()); |
| templ->InstanceTemplate()->SetInternalFieldCount( |
| BaseObject::kInternalFieldCount); |
| templ->Inherit(BaseObject::GetConstructorTemplate(this)); |
| |
| set_binding_data_ctor_template(templ); |
| } |
| |
| // Store primordials setup by the per-context script in the environment. |
| Local<Object> per_context_bindings = |
| GetPerContextExports(ctx).ToLocalChecked(); |
| Local<Value> primordials = |
| per_context_bindings->Get(ctx, primordials_string()).ToLocalChecked(); |
| CHECK(primordials->IsObject()); |
| set_primordials(primordials.As<Object>()); |
| |
| Local<String> prototype_string = |
| FIXED_ONE_BYTE_STRING(isolate(), "prototype"); |
| |
| #define V(EnvPropertyName, PrimordialsPropertyName) \ |
| { \ |
| Local<Value> ctor = \ |
| primordials.As<Object>() \ |
| ->Get(ctx, \ |
| FIXED_ONE_BYTE_STRING(isolate(), PrimordialsPropertyName)) \ |
| .ToLocalChecked(); \ |
| CHECK(ctor->IsObject()); \ |
| Local<Value> prototype = \ |
| ctor.As<Object>()->Get(ctx, prototype_string).ToLocalChecked(); \ |
| CHECK(prototype->IsObject()); \ |
| set_##EnvPropertyName(prototype.As<Object>()); \ |
| } |
| |
| V(primordials_safe_map_prototype_object, "SafeMap"); |
| V(primordials_safe_set_prototype_object, "SafeSet"); |
| V(primordials_safe_weak_map_prototype_object, "SafeWeakMap"); |
| V(primordials_safe_weak_set_prototype_object, "SafeWeakSet"); |
| #undef V |
| |
| Local<Object> process_object = |
| node::CreateProcessObject(this).FromMaybe(Local<Object>()); |
| set_process_object(process_object); |
| } |
| |
| std::string GetExecPath(const std::vector<std::string>& argv) { |
| char exec_path_buf[2 * PATH_MAX]; |
| size_t exec_path_len = sizeof(exec_path_buf); |
| std::string exec_path; |
| if (uv_exepath(exec_path_buf, &exec_path_len) == 0) { |
| exec_path = std::string(exec_path_buf, exec_path_len); |
| } else { |
| exec_path = argv[0]; |
| } |
| |
| // On OpenBSD process.execPath will be relative unless we |
| // get the full path before process.execPath is used. |
| #if defined(__OpenBSD__) |
| uv_fs_t req; |
| req.ptr = nullptr; |
| if (0 == |
| uv_fs_realpath(nullptr, &req, exec_path.c_str(), nullptr)) { |
| CHECK_NOT_NULL(req.ptr); |
| exec_path = std::string(static_cast<char*>(req.ptr)); |
| } |
| uv_fs_req_cleanup(&req); |
| #endif |
| |
| return exec_path; |
| } |
| |
| Environment::Environment(IsolateData* isolate_data, |
| Isolate* isolate, |
| const std::vector<std::string>& args, |
| const std::vector<std::string>& exec_args, |
| const EnvSerializeInfo* env_info, |
| EnvironmentFlags::Flags flags, |
| ThreadId thread_id) |
| : isolate_(isolate), |
| isolate_data_(isolate_data), |
| async_hooks_(isolate, MAYBE_FIELD_PTR(env_info, async_hooks)), |
| immediate_info_(isolate, MAYBE_FIELD_PTR(env_info, immediate_info)), |
| tick_info_(isolate, MAYBE_FIELD_PTR(env_info, tick_info)), |
| timer_base_(uv_now(isolate_data->event_loop())), |
| exec_argv_(exec_args), |
| argv_(args), |
| exec_path_(GetExecPath(args)), |
| exiting_(isolate_, 1, MAYBE_FIELD_PTR(env_info, exiting)), |
| should_abort_on_uncaught_toggle_( |
| isolate_, |
| 1, |
| MAYBE_FIELD_PTR(env_info, should_abort_on_uncaught_toggle)), |
| stream_base_state_(isolate_, |
| StreamBase::kNumStreamBaseStateFields, |
| MAYBE_FIELD_PTR(env_info, stream_base_state)), |
| time_origin_(PERFORMANCE_NOW()), |
| time_origin_timestamp_(GetCurrentTimeInMicroseconds()), |
| flags_(flags), |
| thread_id_(thread_id.id == static_cast<uint64_t>(-1) |
| ? AllocateEnvironmentThreadId().id |
| : thread_id.id) { |
| // We'll be creating new objects so make sure we've entered the context. |
| HandleScope handle_scope(isolate); |
| |
| // Set some flags if only kDefaultFlags was passed. This can make API version |
| // transitions easier for embedders. |
| if (flags_ & EnvironmentFlags::kDefaultFlags) { |
| flags_ = flags_ | |
| EnvironmentFlags::kOwnsProcessState | |
| EnvironmentFlags::kOwnsInspector; |
| } |
| |
| set_env_vars(per_process::system_environment); |
| enabled_debug_list_.Parse(env_vars(), isolate); |
| |
| // We create new copies of the per-Environment option sets, so that it is |
| // easier to modify them after Environment creation. The defaults are |
| // part of the per-Isolate option set, for which in turn the defaults are |
| // part of the per-process option set. |
| options_ = std::make_shared<EnvironmentOptions>( |
| *isolate_data->options()->per_env); |
| inspector_host_port_ = std::make_shared<ExclusiveAccess<HostPort>>( |
| options_->debug_options().host_port); |
| |
| if (!(flags_ & EnvironmentFlags::kOwnsProcessState)) { |
| set_abort_on_uncaught_exception(false); |
| } |
| |
| #if HAVE_INSPECTOR |
| // We can only create the inspector agent after having cloned the options. |
| inspector_agent_ = std::make_unique<inspector::Agent>(this); |
| #endif |
| |
| if (tracing::AgentWriterHandle* writer = GetTracingAgentWriter()) { |
| trace_state_observer_ = std::make_unique<TrackingTraceStateObserver>(this); |
| if (TracingController* tracing_controller = writer->GetTracingController()) |
| tracing_controller->AddTraceStateObserver(trace_state_observer_.get()); |
| } |
| |
| destroy_async_id_list_.reserve(512); |
| |
| performance_state_ = std::make_unique<performance::PerformanceState>( |
| isolate, MAYBE_FIELD_PTR(env_info, performance_state)); |
| |
| if (*TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED( |
| TRACING_CATEGORY_NODE1(environment)) != 0) { |
| auto traced_value = tracing::TracedValue::Create(); |
| traced_value->BeginArray("args"); |
| for (const std::string& arg : args) traced_value->AppendString(arg); |
| traced_value->EndArray(); |
| traced_value->BeginArray("exec_args"); |
| for (const std::string& arg : exec_args) traced_value->AppendString(arg); |
| traced_value->EndArray(); |
| TRACE_EVENT_NESTABLE_ASYNC_BEGIN1(TRACING_CATEGORY_NODE1(environment), |
| "Environment", |
| this, |
| "args", |
| std::move(traced_value)); |
| } |
| } |
| |
| Environment::Environment(IsolateData* isolate_data, |
| Local<Context> context, |
| const std::vector<std::string>& args, |
| const std::vector<std::string>& exec_args, |
| const EnvSerializeInfo* env_info, |
| EnvironmentFlags::Flags flags, |
| ThreadId thread_id) |
| : Environment(isolate_data, |
| context->GetIsolate(), |
| args, |
| exec_args, |
| env_info, |
| flags, |
| thread_id) { |
| InitializeMainContext(context, env_info); |
| } |
| |
| void Environment::InitializeMainContext(Local<Context> context, |
| const EnvSerializeInfo* env_info) { |
| context_.Reset(context->GetIsolate(), context); |
| AssignToContext(context, ContextInfo("")); |
| if (env_info != nullptr) { |
| DeserializeProperties(env_info); |
| } else { |
| CreateProperties(); |
| } |
| |
| if (!options_->force_async_hooks_checks) { |
| async_hooks_.no_force_checks(); |
| } |
| |
| // By default, always abort when --abort-on-uncaught-exception was passed. |
| should_abort_on_uncaught_toggle_[0] = 1; |
| |
| // The process is not exiting by default. |
| set_exiting(false); |
| |
| performance_state_->Mark(performance::NODE_PERFORMANCE_MILESTONE_ENVIRONMENT, |
| time_origin_); |
| performance_state_->Mark(performance::NODE_PERFORMANCE_MILESTONE_NODE_START, |
| per_process::node_start_time); |
| |
| if (per_process::v8_initialized) { |
| performance_state_->Mark(performance::NODE_PERFORMANCE_MILESTONE_V8_START, |
| performance::performance_v8_start); |
| } |
| } |
| |
| Environment::~Environment() { |
| if (Environment** interrupt_data = interrupt_data_.load()) { |
| // There are pending RequestInterrupt() callbacks. Tell them not to run, |
| // then force V8 to run interrupts by compiling and running an empty script |
| // so as not to leak memory. |
| *interrupt_data = nullptr; |
| |
| Isolate::AllowJavascriptExecutionScope allow_js_here(isolate()); |
| HandleScope handle_scope(isolate()); |
| TryCatch try_catch(isolate()); |
| Context::Scope context_scope(context()); |
| |
| #ifdef DEBUG |
| bool consistency_check = false; |
| isolate()->RequestInterrupt([](Isolate*, void* data) { |
| *static_cast<bool*>(data) = true; |
| }, &consistency_check); |
| #endif |
| |
| Local<Script> script; |
| if (Script::Compile(context(), String::Empty(isolate())).ToLocal(&script)) |
| USE(script->Run(context())); |
| |
| DCHECK(consistency_check); |
| } |
| |
| // FreeEnvironment() should have set this. |
| CHECK(is_stopping()); |
| |
| if (options_->heap_snapshot_near_heap_limit > heap_limit_snapshot_taken_) { |
| isolate_->RemoveNearHeapLimitCallback(Environment::NearHeapLimitCallback, |
| 0); |
| } |
| |
| isolate()->GetHeapProfiler()->RemoveBuildEmbedderGraphCallback( |
| BuildEmbedderGraph, this); |
| |
| HandleScope handle_scope(isolate()); |
| |
| #if HAVE_INSPECTOR |
| // Destroy inspector agent before erasing the context. The inspector |
| // destructor depends on the context still being accessible. |
| inspector_agent_.reset(); |
| #endif |
| |
| context()->SetAlignedPointerInEmbedderData(ContextEmbedderIndex::kEnvironment, |
| nullptr); |
| |
| if (trace_state_observer_) { |
| tracing::AgentWriterHandle* writer = GetTracingAgentWriter(); |
| CHECK_NOT_NULL(writer); |
| if (TracingController* tracing_controller = writer->GetTracingController()) |
| tracing_controller->RemoveTraceStateObserver(trace_state_observer_.get()); |
| } |
| |
| TRACE_EVENT_NESTABLE_ASYNC_END0( |
| TRACING_CATEGORY_NODE1(environment), "Environment", this); |
| |
| // Do not unload addons on the main thread. Some addons need to retain memory |
| // beyond the Environment's lifetime, and unloading them early would break |
| // them; with Worker threads, we have the opportunity to be stricter. |
| // Also, since the main thread usually stops just before the process exits, |
| // this is far less relevant here. |
| if (!is_main_thread()) { |
| // Dereference all addons that were loaded into this environment. |
| for (binding::DLib& addon : loaded_addons_) { |
| addon.Close(); |
| } |
| } |
| |
| CHECK_EQ(base_object_count_, 0); |
| } |
| |
| void Environment::InitializeLibuv() { |
| HandleScope handle_scope(isolate()); |
| Context::Scope context_scope(context()); |
| |
| CHECK_EQ(0, uv_timer_init(event_loop(), timer_handle())); |
| uv_unref(reinterpret_cast<uv_handle_t*>(timer_handle())); |
| |
| CHECK_EQ(0, uv_check_init(event_loop(), immediate_check_handle())); |
| uv_unref(reinterpret_cast<uv_handle_t*>(immediate_check_handle())); |
| |
| CHECK_EQ(0, uv_idle_init(event_loop(), immediate_idle_handle())); |
| |
| CHECK_EQ(0, uv_check_start(immediate_check_handle(), CheckImmediate)); |
| |
| // Inform V8's CPU profiler when we're idle. The profiler is sampling-based |
| // but not all samples are created equal; mark the wall clock time spent in |
| // epoll_wait() and friends so profiling tools can filter it out. The samples |
| // still end up in v8.log but with state=IDLE rather than state=EXTERNAL. |
| CHECK_EQ(0, uv_prepare_init(event_loop(), &idle_prepare_handle_)); |
| CHECK_EQ(0, uv_check_init(event_loop(), &idle_check_handle_)); |
| |
| CHECK_EQ(0, uv_async_init( |
| event_loop(), |
| &task_queues_async_, |
| [](uv_async_t* async) { |
| Environment* env = ContainerOf( |
| &Environment::task_queues_async_, async); |
| HandleScope handle_scope(env->isolate()); |
| Context::Scope context_scope(env->context()); |
| env->RunAndClearNativeImmediates(); |
| })); |
| uv_unref(reinterpret_cast<uv_handle_t*>(&idle_prepare_handle_)); |
| uv_unref(reinterpret_cast<uv_handle_t*>(&idle_check_handle_)); |
| uv_unref(reinterpret_cast<uv_handle_t*>(&task_queues_async_)); |
| |
| { |
| Mutex::ScopedLock lock(native_immediates_threadsafe_mutex_); |
| task_queues_async_initialized_ = true; |
| if (native_immediates_threadsafe_.size() > 0 || |
| native_immediates_interrupts_.size() > 0) { |
| uv_async_send(&task_queues_async_); |
| } |
| } |
| |
| // Register clean-up cb to be called to clean up the handles |
| // when the environment is freed, note that they are not cleaned in |
| // the one environment per process setup, but will be called in |
| // FreeEnvironment. |
| RegisterHandleCleanups(); |
| |
| StartProfilerIdleNotifier(); |
| } |
| |
| void Environment::ExitEnv() { |
| set_can_call_into_js(false); |
| set_stopping(true); |
| isolate_->TerminateExecution(); |
| SetImmediateThreadsafe([](Environment* env) { uv_stop(env->event_loop()); }); |
| } |
| |
| void Environment::RegisterHandleCleanups() { |
| HandleCleanupCb close_and_finish = [](Environment* env, uv_handle_t* handle, |
| void* arg) { |
| handle->data = env; |
| |
| env->CloseHandle(handle, [](uv_handle_t* handle) { |
| #ifdef DEBUG |
| memset(handle, 0xab, uv_handle_size(handle->type)); |
| #endif |
| }); |
| }; |
| |
| auto register_handle = [&](uv_handle_t* handle) { |
| RegisterHandleCleanup(handle, close_and_finish, nullptr); |
| }; |
| register_handle(reinterpret_cast<uv_handle_t*>(timer_handle())); |
| register_handle(reinterpret_cast<uv_handle_t*>(immediate_check_handle())); |
| register_handle(reinterpret_cast<uv_handle_t*>(immediate_idle_handle())); |
| register_handle(reinterpret_cast<uv_handle_t*>(&idle_prepare_handle_)); |
| register_handle(reinterpret_cast<uv_handle_t*>(&idle_check_handle_)); |
| register_handle(reinterpret_cast<uv_handle_t*>(&task_queues_async_)); |
| } |
| |
| void Environment::CleanupHandles() { |
| { |
| Mutex::ScopedLock lock(native_immediates_threadsafe_mutex_); |
| task_queues_async_initialized_ = false; |
| } |
| |
| Isolate::DisallowJavascriptExecutionScope disallow_js(isolate(), |
| Isolate::DisallowJavascriptExecutionScope::THROW_ON_FAILURE); |
| |
| RunAndClearNativeImmediates(true /* skip unrefed SetImmediate()s */); |
| |
| for (ReqWrapBase* request : req_wrap_queue_) |
| request->Cancel(); |
| |
| for (HandleWrap* handle : handle_wrap_queue_) |
| handle->Close(); |
| |
| for (HandleCleanup& hc : handle_cleanup_queue_) |
| hc.cb_(this, hc.handle_, hc.arg_); |
| handle_cleanup_queue_.clear(); |
| |
| while (handle_cleanup_waiting_ != 0 || |
| request_waiting_ != 0 || |
| !handle_wrap_queue_.IsEmpty()) { |
| uv_run(event_loop(), UV_RUN_ONCE); |
| } |
| } |
| |
| void Environment::StartProfilerIdleNotifier() { |
| uv_prepare_start(&idle_prepare_handle_, [](uv_prepare_t* handle) { |
| Environment* env = ContainerOf(&Environment::idle_prepare_handle_, handle); |
| env->isolate()->SetIdle(true); |
| }); |
| uv_check_start(&idle_check_handle_, [](uv_check_t* handle) { |
| Environment* env = ContainerOf(&Environment::idle_check_handle_, handle); |
| env->isolate()->SetIdle(false); |
| }); |
| } |
| |
| void Environment::PrintSyncTrace() const { |
| if (!trace_sync_io_) return; |
| |
| HandleScope handle_scope(isolate()); |
| |
| fprintf( |
| stderr, "(node:%d) WARNING: Detected use of sync API\n", uv_os_getpid()); |
| PrintStackTrace(isolate(), |
| StackTrace::CurrentStackTrace( |
| isolate(), stack_trace_limit(), StackTrace::kDetailed)); |
| } |
| |
| MaybeLocal<Value> Environment::RunSnapshotSerializeCallback() const { |
| EscapableHandleScope handle_scope(isolate()); |
| if (!snapshot_serialize_callback().IsEmpty()) { |
| Context::Scope context_scope(context()); |
| return handle_scope.EscapeMaybe(snapshot_serialize_callback()->Call( |
| context(), v8::Undefined(isolate()), 0, nullptr)); |
| } |
| return handle_scope.Escape(Undefined(isolate())); |
| } |
| |
| MaybeLocal<Value> Environment::RunSnapshotDeserializeMain() const { |
| EscapableHandleScope handle_scope(isolate()); |
| if (!snapshot_deserialize_main().IsEmpty()) { |
| Context::Scope context_scope(context()); |
| return handle_scope.EscapeMaybe(snapshot_deserialize_main()->Call( |
| context(), v8::Undefined(isolate()), 0, nullptr)); |
| } |
| return handle_scope.Escape(Undefined(isolate())); |
| } |
| |
| void Environment::RunCleanup() { |
| started_cleanup_ = true; |
| TRACE_EVENT0(TRACING_CATEGORY_NODE1(environment), "RunCleanup"); |
| bindings_.clear(); |
| CleanupHandles(); |
| |
| while (!cleanup_hooks_.empty() || |
| native_immediates_.size() > 0 || |
| native_immediates_threadsafe_.size() > 0 || |
| native_immediates_interrupts_.size() > 0) { |
| // Copy into a vector, since we can't sort an unordered_set in-place. |
| std::vector<CleanupHookCallback> callbacks( |
| cleanup_hooks_.begin(), cleanup_hooks_.end()); |
| // We can't erase the copied elements from `cleanup_hooks_` yet, because we |
| // need to be able to check whether they were un-scheduled by another hook. |
| |
| std::sort(callbacks.begin(), callbacks.end(), |
| [](const CleanupHookCallback& a, const CleanupHookCallback& b) { |
| // Sort in descending order so that the most recently inserted callbacks |
| // are run first. |
| return a.insertion_order_counter_ > b.insertion_order_counter_; |
| }); |
| |
| for (const CleanupHookCallback& cb : callbacks) { |
| if (cleanup_hooks_.count(cb) == 0) { |
| // This hook was removed from the `cleanup_hooks_` set during another |
| // hook that was run earlier. Nothing to do here. |
| continue; |
| } |
| |
| cb.fn_(cb.arg_); |
| cleanup_hooks_.erase(cb); |
| } |
| CleanupHandles(); |
| } |
| |
| for (const int fd : unmanaged_fds_) { |
| uv_fs_t close_req; |
| uv_fs_close(nullptr, &close_req, fd, nullptr); |
| uv_fs_req_cleanup(&close_req); |
| } |
| } |
| |
| void Environment::RunAtExitCallbacks() { |
| TRACE_EVENT0(TRACING_CATEGORY_NODE1(environment), "AtExit"); |
| for (ExitCallback at_exit : at_exit_functions_) { |
| at_exit.cb_(at_exit.arg_); |
| } |
| at_exit_functions_.clear(); |
| } |
| |
| void Environment::AtExit(void (*cb)(void* arg), void* arg) { |
| at_exit_functions_.push_front(ExitCallback{cb, arg}); |
| } |
| |
| void Environment::RunAndClearInterrupts() { |
| while (native_immediates_interrupts_.size() > 0) { |
| NativeImmediateQueue queue; |
| { |
| Mutex::ScopedLock lock(native_immediates_threadsafe_mutex_); |
| queue.ConcatMove(std::move(native_immediates_interrupts_)); |
| } |
| DebugSealHandleScope seal_handle_scope(isolate()); |
| |
| while (auto head = queue.Shift()) |
| head->Call(this); |
| } |
| } |
| |
| void Environment::RunAndClearNativeImmediates(bool only_refed) { |
| TRACE_EVENT0(TRACING_CATEGORY_NODE1(environment), |
| "RunAndClearNativeImmediates"); |
| HandleScope handle_scope(isolate_); |
| InternalCallbackScope cb_scope(this, Object::New(isolate_), { 0, 0 }); |
| |
| size_t ref_count = 0; |
| |
| // Handle interrupts first. These functions are not allowed to throw |
| // exceptions, so we do not need to handle that. |
| RunAndClearInterrupts(); |
| |
| auto drain_list = [&](NativeImmediateQueue* queue) { |
| TryCatchScope try_catch(this); |
| DebugSealHandleScope seal_handle_scope(isolate()); |
| while (auto head = queue->Shift()) { |
| bool is_refed = head->flags() & CallbackFlags::kRefed; |
| if (is_refed) |
| ref_count++; |
| |
| if (is_refed || !only_refed) |
| head->Call(this); |
| |
| head.reset(); // Destroy now so that this is also observed by try_catch. |
| |
| if (UNLIKELY(try_catch.HasCaught())) { |
| if (!try_catch.HasTerminated() && can_call_into_js()) |
| errors::TriggerUncaughtException(isolate(), try_catch); |
| |
| return true; |
| } |
| } |
| return false; |
| }; |
| while (drain_list(&native_immediates_)) {} |
| |
| immediate_info()->ref_count_dec(ref_count); |
| |
| if (immediate_info()->ref_count() == 0) |
| ToggleImmediateRef(false); |
| |
| // It is safe to check .size() first, because there is a causal relationship |
| // between pushes to the threadsafe immediate list and this function being |
| // called. For the common case, it's worth checking the size first before |
| // establishing a mutex lock. |
| // This is intentionally placed after the `ref_count` handling, because when |
| // refed threadsafe immediates are created, they are not counted towards the |
| // count in immediate_info() either. |
| NativeImmediateQueue threadsafe_immediates; |
| if (native_immediates_threadsafe_.size() > 0) { |
| Mutex::ScopedLock lock(native_immediates_threadsafe_mutex_); |
| threadsafe_immediates.ConcatMove(std::move(native_immediates_threadsafe_)); |
| } |
| while (drain_list(&threadsafe_immediates)) {} |
| } |
| |
| void Environment::RequestInterruptFromV8() { |
| // The Isolate may outlive the Environment, so some logic to handle the |
| // situation in which the Environment is destroyed before the handler runs |
| // is required. |
| |
| // We allocate a new pointer to a pointer to this Environment instance, and |
| // try to set it as interrupt_data_. If interrupt_data_ was already set, then |
| // callbacks are already scheduled to run and we can delete our own pointer |
| // and just return. If it was nullptr previously, the Environment** is stored; |
| // ~Environment sets the Environment* contained in it to nullptr, so that |
| // the callback can check whether ~Environment has already run and it is thus |
| // not safe to access the Environment instance itself. |
| Environment** interrupt_data = new Environment*(this); |
| Environment** dummy = nullptr; |
| if (!interrupt_data_.compare_exchange_strong(dummy, interrupt_data)) { |
| delete interrupt_data; |
| return; // Already scheduled. |
| } |
| |
| isolate()->RequestInterrupt([](Isolate* isolate, void* data) { |
| std::unique_ptr<Environment*> env_ptr { static_cast<Environment**>(data) }; |
| Environment* env = *env_ptr; |
| if (env == nullptr) { |
| // The Environment has already been destroyed. That should be okay; any |
| // callback added before the Environment shuts down would have been |
| // handled during cleanup. |
| return; |
| } |
| env->interrupt_data_.store(nullptr); |
| env->RunAndClearInterrupts(); |
| }, interrupt_data); |
| } |
| |
| void Environment::ScheduleTimer(int64_t duration_ms) { |
| if (started_cleanup_) return; |
| uv_timer_start(timer_handle(), RunTimers, duration_ms, 0); |
| } |
| |
| void Environment::ToggleTimerRef(bool ref) { |
| if (started_cleanup_) return; |
| |
| if (ref) { |
| uv_ref(reinterpret_cast<uv_handle_t*>(timer_handle())); |
| } else { |
| uv_unref(reinterpret_cast<uv_handle_t*>(timer_handle())); |
| } |
| } |
| |
| void Environment::RunTimers(uv_timer_t* handle) { |
| Environment* env = Environment::from_timer_handle(handle); |
| TRACE_EVENT0(TRACING_CATEGORY_NODE1(environment), "RunTimers"); |
| |
| if (!env->can_call_into_js()) |
| return; |
| |
| HandleScope handle_scope(env->isolate()); |
| Context::Scope context_scope(env->context()); |
| |
| Local<Object> process = env->process_object(); |
| InternalCallbackScope scope(env, process, {0, 0}); |
| |
| Local<Function> cb = env->timers_callback_function(); |
| MaybeLocal<Value> ret; |
| Local<Value> arg = env->GetNow(); |
| // This code will loop until all currently due timers will process. It is |
| // impossible for us to end up in an infinite loop due to how the JS-side |
| // is structured. |
| do { |
| TryCatchScope try_catch(env); |
| try_catch.SetVerbose(true); |
| ret = cb->Call(env->context(), process, 1, &arg); |
| } while (ret.IsEmpty() && env->can_call_into_js()); |
| |
| // NOTE(apapirovski): If it ever becomes possible that `call_into_js` above |
| // is reset back to `true` after being previously set to `false` then this |
| // code becomes invalid and needs to be rewritten. Otherwise catastrophic |
| // timers corruption will occur and all timers behaviour will become |
| // entirely unpredictable. |
| if (ret.IsEmpty()) |
| return; |
| |
| // To allow for less JS-C++ boundary crossing, the value returned from JS |
| // serves a few purposes: |
| // 1. If it's 0, no more timers exist and the handle should be unrefed |
| // 2. If it's > 0, the value represents the next timer's expiry and there |
| // is at least one timer remaining that is refed. |
| // 3. If it's < 0, the absolute value represents the next timer's expiry |
| // and there are no timers that are refed. |
| int64_t expiry_ms = |
| ret.ToLocalChecked()->IntegerValue(env->context()).FromJust(); |
| |
| uv_handle_t* h = reinterpret_cast<uv_handle_t*>(handle); |
| |
| if (expiry_ms != 0) { |
| int64_t duration_ms = |
| llabs(expiry_ms) - (uv_now(env->event_loop()) - env->timer_base()); |
| |
| env->ScheduleTimer(duration_ms > 0 ? duration_ms : 1); |
| |
| if (expiry_ms > 0) |
| uv_ref(h); |
| else |
| uv_unref(h); |
| } else { |
| uv_unref(h); |
| } |
| } |
| |
| |
| void Environment::CheckImmediate(uv_check_t* handle) { |
| Environment* env = Environment::from_immediate_check_handle(handle); |
| TRACE_EVENT0(TRACING_CATEGORY_NODE1(environment), "CheckImmediate"); |
| |
| HandleScope scope(env->isolate()); |
| Context::Scope context_scope(env->context()); |
| |
| env->RunAndClearNativeImmediates(); |
| |
| if (env->immediate_info()->count() == 0 || !env->can_call_into_js()) |
| return; |
| |
| do { |
| MakeCallback(env->isolate(), |
| env->process_object(), |
| env->immediate_callback_function(), |
| 0, |
| nullptr, |
| {0, 0}).ToLocalChecked(); |
| } while (env->immediate_info()->has_outstanding() && env->can_call_into_js()); |
| |
| if (env->immediate_info()->ref_count() == 0) |
| env->ToggleImmediateRef(false); |
| } |
| |
| void Environment::ToggleImmediateRef(bool ref) { |
| if (started_cleanup_) return; |
| |
| if (ref) { |
| // Idle handle is needed only to stop the event loop from blocking in poll. |
| uv_idle_start(immediate_idle_handle(), [](uv_idle_t*){ }); |
| } else { |
| uv_idle_stop(immediate_idle_handle()); |
| } |
| } |
| |
| |
| Local<Value> Environment::GetNow() { |
| uv_update_time(event_loop()); |
| uint64_t now = uv_now(event_loop()); |
| CHECK_GE(now, timer_base()); |
| now -= timer_base(); |
| if (now <= 0xffffffff) |
| return Integer::NewFromUnsigned(isolate(), static_cast<uint32_t>(now)); |
| else |
| return Number::New(isolate(), static_cast<double>(now)); |
| } |
| |
| void CollectExceptionInfo(Environment* env, |
| Local<Object> obj, |
| int errorno, |
| const char* err_string, |
| const char* syscall, |
| const char* message, |
| const char* path, |
| const char* dest) { |
| obj->Set(env->context(), |
| env->errno_string(), |
| Integer::New(env->isolate(), errorno)).Check(); |
| |
| obj->Set(env->context(), env->code_string(), |
| OneByteString(env->isolate(), err_string)).Check(); |
| |
| if (message != nullptr) { |
| obj->Set(env->context(), env->message_string(), |
| OneByteString(env->isolate(), message)).Check(); |
| } |
| |
| Local<Value> path_buffer; |
| if (path != nullptr) { |
| path_buffer = |
| Buffer::Copy(env->isolate(), path, strlen(path)).ToLocalChecked(); |
| obj->Set(env->context(), env->path_string(), path_buffer).Check(); |
| } |
| |
| Local<Value> dest_buffer; |
| if (dest != nullptr) { |
| dest_buffer = |
| Buffer::Copy(env->isolate(), dest, strlen(dest)).ToLocalChecked(); |
| obj->Set(env->context(), env->dest_string(), dest_buffer).Check(); |
| } |
| |
| if (syscall != nullptr) { |
| obj->Set(env->context(), env->syscall_string(), |
| OneByteString(env->isolate(), syscall)).Check(); |
| } |
| } |
| |
| void Environment::CollectUVExceptionInfo(Local<Value> object, |
| int errorno, |
| const char* syscall, |
| const char* message, |
| const char* path, |
| const char* dest) { |
| if (!object->IsObject() || errorno == 0) |
| return; |
| |
| Local<Object> obj = object.As<Object>(); |
| const char* err_string = uv_err_name(errorno); |
| |
| if (message == nullptr || message[0] == '\0') { |
| message = uv_strerror(errorno); |
| } |
| |
| node::CollectExceptionInfo(this, obj, errorno, err_string, |
| syscall, message, path, dest); |
| } |
| |
| ImmediateInfo::ImmediateInfo(Isolate* isolate, const SerializeInfo* info) |
| : fields_(isolate, kFieldsCount, MAYBE_FIELD_PTR(info, fields)) {} |
| |
| ImmediateInfo::SerializeInfo ImmediateInfo::Serialize( |
| Local<Context> context, SnapshotCreator* creator) { |
| return {fields_.Serialize(context, creator)}; |
| } |
| |
| void ImmediateInfo::Deserialize(Local<Context> context) { |
| fields_.Deserialize(context); |
| } |
| |
| std::ostream& operator<<(std::ostream& output, |
| const ImmediateInfo::SerializeInfo& i) { |
| output << "{ " << i.fields << " }"; |
| return output; |
| } |
| |
| void ImmediateInfo::MemoryInfo(MemoryTracker* tracker) const { |
| tracker->TrackField("fields", fields_); |
| } |
| |
| TickInfo::SerializeInfo TickInfo::Serialize(Local<Context> context, |
| SnapshotCreator* creator) { |
| return {fields_.Serialize(context, creator)}; |
| } |
| |
| void TickInfo::Deserialize(Local<Context> context) { |
| fields_.Deserialize(context); |
| } |
| |
| std::ostream& operator<<(std::ostream& output, |
| const TickInfo::SerializeInfo& i) { |
| output << "{ " << i.fields << " }"; |
| return output; |
| } |
| |
| void TickInfo::MemoryInfo(MemoryTracker* tracker) const { |
| tracker->TrackField("fields", fields_); |
| } |
| |
| TickInfo::TickInfo(Isolate* isolate, const SerializeInfo* info) |
| : fields_( |
| isolate, kFieldsCount, info == nullptr ? nullptr : &(info->fields)) {} |
| |
| AsyncHooks::AsyncHooks(Isolate* isolate, const SerializeInfo* info) |
| : async_ids_stack_(isolate, 16 * 2, MAYBE_FIELD_PTR(info, async_ids_stack)), |
| fields_(isolate, kFieldsCount, MAYBE_FIELD_PTR(info, fields)), |
| async_id_fields_( |
| isolate, kUidFieldsCount, MAYBE_FIELD_PTR(info, async_id_fields)), |
| info_(info) { |
| HandleScope handle_scope(isolate); |
| if (info == nullptr) { |
| clear_async_id_stack(); |
| |
| // Always perform async_hooks checks, not just when async_hooks is enabled. |
| // TODO(AndreasMadsen): Consider removing this for LTS releases. |
| // See discussion in https://github.com/nodejs/node/pull/15454 |
| // When removing this, do it by reverting the commit. Otherwise the test |
| // and flag changes won't be included. |
| fields_[kCheck] = 1; |
| |
| // kDefaultTriggerAsyncId should be -1, this indicates that there is no |
| // specified default value and it should fallback to the executionAsyncId. |
| // 0 is not used as the magic value, because that indicates a missing |
| // context which is different from a default context. |
| async_id_fields_[AsyncHooks::kDefaultTriggerAsyncId] = -1; |
| |
| // kAsyncIdCounter should start at 1 because that'll be the id the execution |
| // context during bootstrap (code that runs before entering uv_run()). |
| async_id_fields_[AsyncHooks::kAsyncIdCounter] = 1; |
| } |
| } |
| |
| void AsyncHooks::Deserialize(Local<Context> context) { |
| async_ids_stack_.Deserialize(context); |
| fields_.Deserialize(context); |
| async_id_fields_.Deserialize(context); |
| |
| Local<Array> js_execution_async_resources; |
| if (info_->js_execution_async_resources != 0) { |
| js_execution_async_resources = |
| context->GetDataFromSnapshotOnce<Array>( |
| info_->js_execution_async_resources).ToLocalChecked(); |
| } else { |
| js_execution_async_resources = Array::New(context->GetIsolate()); |
| } |
| js_execution_async_resources_.Reset( |
| context->GetIsolate(), js_execution_async_resources); |
| |
| // The native_execution_async_resources_ field requires v8::Local<> instances |
| // for async calls whose resources were on the stack as JS objects when they |
| // were entered. We cannot recreate this here; however, storing these values |
| // on the JS equivalent gives the same result, so we do that instead. |
| for (size_t i = 0; i < info_->native_execution_async_resources.size(); ++i) { |
| if (info_->native_execution_async_resources[i] == SIZE_MAX) |
| continue; |
| Local<Object> obj = context->GetDataFromSnapshotOnce<Object>( |
| info_->native_execution_async_resources[i]) |
| .ToLocalChecked(); |
| js_execution_async_resources->Set(context, i, obj).Check(); |
| } |
| info_ = nullptr; |
| } |
| |
| std::ostream& operator<<(std::ostream& output, |
| const AsyncHooks::SerializeInfo& i) { |
| output << "{\n" |
| << " " << i.async_ids_stack << ", // async_ids_stack\n" |
| << " " << i.fields << ", // fields\n" |
| << " " << i.async_id_fields << ", // async_id_fields\n" |
| << " " << i.js_execution_async_resources |
| << ", // js_execution_async_resources\n" |
| << " " << i.native_execution_async_resources |
| << ", // native_execution_async_resources\n" |
| << "}"; |
| return output; |
| } |
| |
| AsyncHooks::SerializeInfo AsyncHooks::Serialize(Local<Context> context, |
| SnapshotCreator* creator) { |
| SerializeInfo info; |
| // TODO(joyeecheung): some of these probably don't need to be serialized. |
| info.async_ids_stack = async_ids_stack_.Serialize(context, creator); |
| info.fields = fields_.Serialize(context, creator); |
| info.async_id_fields = async_id_fields_.Serialize(context, creator); |
| if (!js_execution_async_resources_.IsEmpty()) { |
| info.js_execution_async_resources = creator->AddData( |
| context, js_execution_async_resources_.Get(context->GetIsolate())); |
| CHECK_NE(info.js_execution_async_resources, 0); |
| } else { |
| info.js_execution_async_resources = 0; |
| } |
| |
| info.native_execution_async_resources.resize( |
| native_execution_async_resources_.size()); |
| for (size_t i = 0; i < native_execution_async_resources_.size(); i++) { |
| info.native_execution_async_resources[i] = |
| native_execution_async_resources_[i].IsEmpty() ? SIZE_MAX : |
| creator->AddData( |
| context, |
| native_execution_async_resources_[i]); |
| } |
| CHECK_EQ(contexts_.size(), 1); |
| CHECK_EQ(contexts_[0], env()->context()); |
| CHECK(js_promise_hooks_[0].IsEmpty()); |
| CHECK(js_promise_hooks_[1].IsEmpty()); |
| CHECK(js_promise_hooks_[2].IsEmpty()); |
| CHECK(js_promise_hooks_[3].IsEmpty()); |
| |
| return info; |
| } |
| |
| void AsyncHooks::MemoryInfo(MemoryTracker* tracker) const { |
| tracker->TrackField("async_ids_stack", async_ids_stack_); |
| tracker->TrackField("fields", fields_); |
| tracker->TrackField("async_id_fields", async_id_fields_); |
| tracker->TrackField("js_promise_hooks", js_promise_hooks_); |
| } |
| |
| void AsyncHooks::grow_async_ids_stack() { |
| async_ids_stack_.reserve(async_ids_stack_.Length() * 3); |
| |
| env()->async_hooks_binding()->Set( |
| env()->context(), |
| env()->async_ids_stack_string(), |
| async_ids_stack_.GetJSArray()).Check(); |
| } |
| |
| void AsyncHooks::FailWithCorruptedAsyncStack(double expected_async_id) { |
| fprintf(stderr, |
| "Error: async hook stack has become corrupted (" |
| "actual: %.f, expected: %.f)\n", |
| async_id_fields_.GetValue(kExecutionAsyncId), |
| expected_async_id); |
| DumpBacktrace(stderr); |
| fflush(stderr); |
| if (!env()->abort_on_uncaught_exception()) |
| exit(1); |
| fprintf(stderr, "\n"); |
| fflush(stderr); |
| ABORT_NO_BACKTRACE(); |
| } |
| |
| void Environment::Exit(int exit_code) { |
| if (options()->trace_exit) { |
| HandleScope handle_scope(isolate()); |
| Isolate::DisallowJavascriptExecutionScope disallow_js( |
| isolate(), Isolate::DisallowJavascriptExecutionScope::CRASH_ON_FAILURE); |
| |
| if (is_main_thread()) { |
| fprintf(stderr, "(node:%d) ", uv_os_getpid()); |
| } else { |
| fprintf(stderr, "(node:%d, thread:%" PRIu64 ") ", |
| uv_os_getpid(), thread_id()); |
| } |
| |
| fprintf( |
| stderr, "WARNING: Exited the environment with code %d\n", exit_code); |
| PrintStackTrace(isolate(), |
| StackTrace::CurrentStackTrace( |
| isolate(), stack_trace_limit(), StackTrace::kDetailed)); |
| } |
| process_exit_handler_(this, exit_code); |
| } |
| |
| void Environment::stop_sub_worker_contexts() { |
| DCHECK_EQ(Isolate::GetCurrent(), isolate()); |
| |
| while (!sub_worker_contexts_.empty()) { |
| Worker* w = *sub_worker_contexts_.begin(); |
| remove_sub_worker_context(w); |
| w->Exit(1); |
| w->JoinThread(); |
| } |
| } |
| |
| Environment* Environment::worker_parent_env() const { |
| if (worker_context() == nullptr) return nullptr; |
| return worker_context()->env(); |
| } |
| |
| void Environment::AddUnmanagedFd(int fd) { |
| if (!tracks_unmanaged_fds()) return; |
| auto result = unmanaged_fds_.insert(fd); |
| if (!result.second) { |
| ProcessEmitWarning( |
| this, "File descriptor %d opened in unmanaged mode twice", fd); |
| } |
| } |
| |
| void Environment::RemoveUnmanagedFd(int fd) { |
| if (!tracks_unmanaged_fds()) return; |
| size_t removed_count = unmanaged_fds_.erase(fd); |
| if (removed_count == 0) { |
| ProcessEmitWarning( |
| this, "File descriptor %d closed but not opened in unmanaged mode", fd); |
| } |
| } |
| |
| void Environment::PrintInfoForSnapshotIfDebug() { |
| if (enabled_debug_list()->enabled(DebugCategory::MKSNAPSHOT)) { |
| fprintf(stderr, "BaseObjects at the exit of the Environment:\n"); |
| PrintAllBaseObjects(); |
| fprintf(stderr, "\nNative modules without cache:\n"); |
| for (const auto& s : builtins_without_cache) { |
| fprintf(stderr, "%s\n", s.c_str()); |
| } |
| fprintf(stderr, "\nNative modules with cache:\n"); |
| for (const auto& s : builtins_with_cache) { |
| fprintf(stderr, "%s\n", s.c_str()); |
| } |
| fprintf(stderr, "\nStatic bindings (need to be registered):\n"); |
| for (const auto mod : internal_bindings) { |
| fprintf(stderr, "%s:%s\n", mod->nm_filename, mod->nm_modname); |
| } |
| } |
| } |
| |
| void Environment::PrintAllBaseObjects() { |
| size_t i = 0; |
| std::cout << "BaseObjects\n"; |
| ForEachBaseObject([&](BaseObject* obj) { |
| std::cout << "#" << i++ << " " << obj << ": " << |
| obj->MemoryInfoName() << "\n"; |
| }); |
| } |
| |
| void Environment::VerifyNoStrongBaseObjects() { |
| // When a process exits cleanly, i.e. because the event loop ends up without |
| // things to wait for, the Node.js objects that are left on the heap should |
| // be: |
| // |
| // 1. weak, i.e. ready for garbage collection once no longer referenced, or |
| // 2. detached, i.e. scheduled for destruction once no longer referenced, or |
| // 3. an unrefed libuv handle, i.e. does not keep the event loop alive, or |
| // 4. an inactive libuv handle (essentially the same here) |
| // |
| // There are a few exceptions to this rule, but generally, if there are |
| // C++-backed Node.js objects on the heap that do not fall into the above |
| // categories, we may be looking at a potential memory leak. Most likely, |
| // the cause is a missing MakeWeak() call on the corresponding object. |
| // |
| // In order to avoid this kind of problem, we check the list of BaseObjects |
| // for these criteria. Currently, we only do so when explicitly instructed to |
| // or when in debug mode (where --verify-base-objects is always-on). |
| |
| if (!options()->verify_base_objects) return; |
| |
| ForEachBaseObject([](BaseObject* obj) { |
| if (obj->IsNotIndicativeOfMemoryLeakAtExit()) return; |
| fprintf(stderr, "Found bad BaseObject during clean exit: %s\n", |
| obj->MemoryInfoName().c_str()); |
| fflush(stderr); |
| ABORT(); |
| }); |
| } |
| |
| EnvSerializeInfo Environment::Serialize(SnapshotCreator* creator) { |
| EnvSerializeInfo info; |
| Local<Context> ctx = context(); |
| |
| SerializeBindingData(this, creator, &info); |
| // Currently all modules are compiled without cache in builtin snapshot |
| // builder. |
| info.builtins = std::vector<std::string>(builtins_without_cache.begin(), |
| builtins_without_cache.end()); |
| |
| info.async_hooks = async_hooks_.Serialize(ctx, creator); |
| info.immediate_info = immediate_info_.Serialize(ctx, creator); |
| info.tick_info = tick_info_.Serialize(ctx, creator); |
| info.performance_state = performance_state_->Serialize(ctx, creator); |
| info.exiting = exiting_.Serialize(ctx, creator); |
| info.stream_base_state = stream_base_state_.Serialize(ctx, creator); |
| info.should_abort_on_uncaught_toggle = |
| should_abort_on_uncaught_toggle_.Serialize(ctx, creator); |
| |
| uint32_t id = 0; |
| #define V(PropertyName, TypeName) \ |
| do { \ |
| Local<TypeName> field = PropertyName(); \ |
| if (!field.IsEmpty()) { \ |
| size_t index = creator->AddData(ctx, field); \ |
| info.persistent_values.push_back({#PropertyName, id, index}); \ |
| } \ |
| id++; \ |
| } while (0); |
| ENVIRONMENT_STRONG_PERSISTENT_VALUES(V) |
| #undef V |
| |
| info.context = creator->AddData(ctx, context()); |
| return info; |
| } |
| |
| std::ostream& operator<<(std::ostream& output, |
| const std::vector<PropInfo>& vec) { |
| output << "{\n"; |
| for (const auto& info : vec) { |
| output << " " << info << ",\n"; |
| } |
| output << "}"; |
| return output; |
| } |
| |
| std::ostream& operator<<(std::ostream& output, const PropInfo& info) { |
| output << "{ \"" << info.name << "\", " << std::to_string(info.id) << ", " |
| << std::to_string(info.index) << " }"; |
| return output; |
| } |
| |
| std::ostream& operator<<(std::ostream& output, |
| const std::vector<std::string>& vec) { |
| output << "{\n"; |
| for (const auto& info : vec) { |
| output << " \"" << info << "\",\n"; |
| } |
| output << "}"; |
| return output; |
| } |
| |
| std::ostream& operator<<(std::ostream& output, const EnvSerializeInfo& i) { |
| output << "{\n" |
| << "// -- bindings begins --\n" |
| << i.bindings << ",\n" |
| << "// -- bindings ends --\n" |
| << "// -- builtins begins --\n" |
| << i.builtins << ",\n" |
| << "// -- builtins ends --\n" |
| << "// -- async_hooks begins --\n" |
| << i.async_hooks << ",\n" |
| << "// -- async_hooks ends --\n" |
| << i.tick_info << ", // tick_info\n" |
| << i.immediate_info << ", // immediate_info\n" |
| << "// -- performance_state begins --\n" |
| << i.performance_state << ",\n" |
| << "// -- performance_state ends --\n" |
| << i.exiting << ", // exiting\n" |
| << i.stream_base_state << ", // stream_base_state\n" |
| << i.should_abort_on_uncaught_toggle |
| << ", // should_abort_on_uncaught_toggle\n" |
| << "// -- persistent_values begins --\n" |
| << i.persistent_values << ",\n" |
| << "// -- persistent_values ends --\n" |
| << i.context << ", // context\n" |
| << "}"; |
| return output; |
| } |
| |
| void Environment::EnqueueDeserializeRequest(DeserializeRequestCallback cb, |
| Local<Object> holder, |
| int index, |
| InternalFieldInfo* info) { |
| DCHECK_EQ(index, BaseObject::kEmbedderType); |
| DeserializeRequest request{cb, {isolate(), holder}, index, info}; |
| deserialize_requests_.push_back(std::move(request)); |
| } |
| |
| void Environment::RunDeserializeRequests() { |
| HandleScope scope(isolate()); |
| Local<Context> ctx = context(); |
| Isolate* is = isolate(); |
| while (!deserialize_requests_.empty()) { |
| DeserializeRequest request(std::move(deserialize_requests_.front())); |
| deserialize_requests_.pop_front(); |
| Local<Object> holder = request.holder.Get(is); |
| request.cb(ctx, holder, request.index, request.info); |
| request.holder.Reset(); |
| request.info->Delete(); |
| } |
| } |
| |
| void Environment::DeserializeProperties(const EnvSerializeInfo* info) { |
| Local<Context> ctx = context(); |
| |
| RunDeserializeRequests(); |
| |
| builtins_in_snapshot = info->builtins; |
| async_hooks_.Deserialize(ctx); |
| immediate_info_.Deserialize(ctx); |
| tick_info_.Deserialize(ctx); |
| performance_state_->Deserialize(ctx); |
| exiting_.Deserialize(ctx); |
| stream_base_state_.Deserialize(ctx); |
| should_abort_on_uncaught_toggle_.Deserialize(ctx); |
| |
| if (enabled_debug_list_.enabled(DebugCategory::MKSNAPSHOT)) { |
| fprintf(stderr, "deserializing...\n"); |
| std::cerr << *info << "\n"; |
| } |
| |
| const std::vector<PropInfo>& values = info->persistent_values; |
| size_t i = 0; // index to the array |
| uint32_t id = 0; |
| #define V(PropertyName, TypeName) \ |
| do { \ |
| if (values.size() > i && id == values[i].id) { \ |
| const PropInfo& d = values[i]; \ |
| DCHECK_EQ(d.name, #PropertyName); \ |
| MaybeLocal<TypeName> maybe_field = \ |
| ctx->GetDataFromSnapshotOnce<TypeName>(d.index); \ |
| Local<TypeName> field; \ |
| if (!maybe_field.ToLocal(&field)) { \ |
| fprintf(stderr, \ |
| "Failed to deserialize environment value " #PropertyName \ |
| "\n"); \ |
| } \ |
| set_##PropertyName(field); \ |
| i++; \ |
| } \ |
| id++; \ |
| } while (0); |
| |
| ENVIRONMENT_STRONG_PERSISTENT_VALUES(V); |
| #undef V |
| |
| MaybeLocal<Context> maybe_ctx_from_snapshot = |
| ctx->GetDataFromSnapshotOnce<Context>(info->context); |
| Local<Context> ctx_from_snapshot; |
| if (!maybe_ctx_from_snapshot.ToLocal(&ctx_from_snapshot)) { |
| fprintf(stderr, |
| "Failed to deserialize context back reference from the snapshot\n"); |
| } |
| CHECK_EQ(ctx_from_snapshot, ctx); |
| } |
| |
| uint64_t GuessMemoryAvailableToTheProcess() { |
| uint64_t free_in_system = uv_get_free_memory(); |
| size_t allowed = uv_get_constrained_memory(); |
| if (allowed == 0) { |
| return free_in_system; |
| } |
| size_t rss; |
| int err = uv_resident_set_memory(&rss); |
| if (err) { |
| return free_in_system; |
| } |
| if (allowed < rss) { |
| // Something is probably wrong. Fallback to the free memory. |
| return free_in_system; |
| } |
| // There may still be room for swap, but we will just leave it here. |
| return allowed - rss; |
| } |
| |
| void Environment::BuildEmbedderGraph(Isolate* isolate, |
| EmbedderGraph* graph, |
| void* data) { |
| MemoryTracker tracker(isolate, graph); |
| Environment* env = static_cast<Environment*>(data); |
| tracker.Track(env); |
| env->ForEachBaseObject([&](BaseObject* obj) { |
| if (obj->IsDoneInitializing()) |
| tracker.Track(obj); |
| }); |
| } |
| |
| size_t Environment::NearHeapLimitCallback(void* data, |
| size_t current_heap_limit, |
| size_t initial_heap_limit) { |
| Environment* env = static_cast<Environment*>(data); |
| |
| Debug(env, |
| DebugCategory::DIAGNOSTICS, |
| "Invoked NearHeapLimitCallback, processing=%d, " |
| "current_limit=%" PRIu64 ", " |
| "initial_limit=%" PRIu64 "\n", |
| env->is_processing_heap_limit_callback_, |
| static_cast<uint64_t>(current_heap_limit), |
| static_cast<uint64_t>(initial_heap_limit)); |
| |
| size_t max_young_gen_size = env->isolate_data()->max_young_gen_size; |
| size_t young_gen_size = 0; |
| size_t old_gen_size = 0; |
| |
| HeapSpaceStatistics stats; |
| size_t num_heap_spaces = env->isolate()->NumberOfHeapSpaces(); |
| for (size_t i = 0; i < num_heap_spaces; ++i) { |
| env->isolate()->GetHeapSpaceStatistics(&stats, i); |
| if (strcmp(stats.space_name(), "new_space") == 0 || |
| strcmp(stats.space_name(), "new_large_object_space") == 0) { |
| young_gen_size += stats.space_used_size(); |
| } else { |
| old_gen_size += stats.space_used_size(); |
| } |
| } |
| |
| Debug(env, |
| DebugCategory::DIAGNOSTICS, |
| "max_young_gen_size=%" PRIu64 ", " |
| "young_gen_size=%" PRIu64 ", " |
| "old_gen_size=%" PRIu64 ", " |
| "total_size=%" PRIu64 "\n", |
| static_cast<uint64_t>(max_young_gen_size), |
| static_cast<uint64_t>(young_gen_size), |
| static_cast<uint64_t>(old_gen_size), |
| static_cast<uint64_t>(young_gen_size + old_gen_size)); |
| |
| uint64_t available = GuessMemoryAvailableToTheProcess(); |
| // TODO(joyeecheung): get a better estimate about the native memory |
| // usage into the overhead, e.g. based on the count of objects. |
| uint64_t estimated_overhead = max_young_gen_size; |
| Debug(env, |
| DebugCategory::DIAGNOSTICS, |
| "Estimated available memory=%" PRIu64 ", " |
| "estimated overhead=%" PRIu64 "\n", |
| static_cast<uint64_t>(available), |
| static_cast<uint64_t>(estimated_overhead)); |
| |
| // This might be hit when the snapshot is being taken in another |
| // NearHeapLimitCallback invocation. |
| // When taking the snapshot, objects in the young generation may be |
| // promoted to the old generation, result in increased heap usage, |
| // but it should be no more than the young generation size. |
| // Ideally, this should be as small as possible - the heap limit |
| // can only be restored when the heap usage falls down below the |
| // new limit, so in a heap with unbounded growth the isolate |
| // may eventually crash with this new limit - effectively raising |
| // the heap limit to the new one. |
| if (env->is_processing_heap_limit_callback_) { |
| size_t new_limit = current_heap_limit + max_young_gen_size; |
| Debug(env, |
| DebugCategory::DIAGNOSTICS, |
| "Not generating snapshots in nested callback. " |
| "new_limit=%" PRIu64 "\n", |
| static_cast<uint64_t>(new_limit)); |
| return new_limit; |
| } |
| |
| // Estimate whether the snapshot is going to use up all the memory |
| // available to the process. If so, just give up to prevent the system |
| // from killing the process for a system OOM. |
| if (estimated_overhead > available) { |
| Debug(env, |
| DebugCategory::DIAGNOSTICS, |
| "Not generating snapshots because it's too risky.\n"); |
| env->isolate()->RemoveNearHeapLimitCallback(NearHeapLimitCallback, |
| initial_heap_limit); |
| // The new limit must be higher than current_heap_limit or V8 might |
| // crash. |
| return current_heap_limit + 1; |
| } |
| |
| // Take the snapshot synchronously. |
| env->is_processing_heap_limit_callback_ = true; |
| |
| std::string dir = env->options()->diagnostic_dir; |
| if (dir.empty()) { |
| dir = env->GetCwd(); |
| } |
| DiagnosticFilename name(env, "Heap", "heapsnapshot"); |
| std::string filename = dir + kPathSeparator + (*name); |
| |
| Debug(env, DebugCategory::DIAGNOSTICS, "Start generating %s...\n", *name); |
| |
| // Remove the callback first in case it's triggered when generating |
| // the snapshot. |
| env->isolate()->RemoveNearHeapLimitCallback(NearHeapLimitCallback, |
| initial_heap_limit); |
| |
| heap::WriteSnapshot(env, filename.c_str()); |
| env->heap_limit_snapshot_taken_ += 1; |
| |
| // Don't take more snapshots than the number specified by |
| // --heapsnapshot-near-heap-limit. |
| if (env->heap_limit_snapshot_taken_ < |
| env->options_->heap_snapshot_near_heap_limit) { |
| env->isolate()->AddNearHeapLimitCallback(NearHeapLimitCallback, env); |
| } |
| |
| FPrintF(stderr, "Wrote snapshot to %s\n", filename.c_str()); |
| // Tell V8 to reset the heap limit once the heap usage falls down to |
| // 95% of the initial limit. |
| env->isolate()->AutomaticallyRestoreInitialHeapLimit(0.95); |
| |
| env->is_processing_heap_limit_callback_ = false; |
| |
| // The new limit must be higher than current_heap_limit or V8 might |
| // crash. |
| return current_heap_limit + 1; |
| } |
| |
| inline size_t Environment::SelfSize() const { |
| size_t size = sizeof(*this); |
| // Remove non pointer fields that will be tracked in MemoryInfo() |
| // TODO(joyeecheung): refactor the MemoryTracker interface so |
| // this can be done for common types within the Track* calls automatically |
| // if a certain scope is entered. |
| size -= sizeof(async_hooks_); |
| size -= sizeof(tick_info_); |
| size -= sizeof(immediate_info_); |
| return size; |
| } |
| |
| void Environment::MemoryInfo(MemoryTracker* tracker) const { |
| // Iteratable STLs have their own sizes subtracted from the parent |
| // by default. |
| tracker->TrackField("isolate_data", isolate_data_); |
| tracker->TrackField("builtins_with_cache", builtins_with_cache); |
| tracker->TrackField("builtins_without_cache", builtins_without_cache); |
| tracker->TrackField("destroy_async_id_list", destroy_async_id_list_); |
| tracker->TrackField("exec_argv", exec_argv_); |
| tracker->TrackField("exiting", exiting_); |
| tracker->TrackField("should_abort_on_uncaught_toggle", |
| should_abort_on_uncaught_toggle_); |
| tracker->TrackField("stream_base_state", stream_base_state_); |
| tracker->TrackFieldWithSize( |
| "cleanup_hooks", cleanup_hooks_.size() * sizeof(CleanupHookCallback)); |
| tracker->TrackField("async_hooks", async_hooks_); |
| tracker->TrackField("immediate_info", immediate_info_); |
| tracker->TrackField("tick_info", tick_info_); |
| |
| #define V(PropertyName, TypeName) \ |
| tracker->TrackField(#PropertyName, PropertyName()); |
| ENVIRONMENT_STRONG_PERSISTENT_VALUES(V) |
| #undef V |
| |
| // FIXME(joyeecheung): track other fields in Environment. |
| // Currently MemoryTracker is unable to track these |
| // correctly: |
| // - Internal types that do not implement MemoryRetainer yet |
| // - STL containers with MemoryRetainer* inside |
| // - STL containers with numeric types inside that should not have their |
| // nodes elided e.g. numeric keys in maps. |
| // We also need to make sure that when we add a non-pointer field as its own |
| // node, we shift its sizeof() size out of the Environment node. |
| } |
| |
| void Environment::RunWeakRefCleanup() { |
| isolate()->ClearKeptObjects(); |
| } |
| |
| // Not really any better place than env.cc at this moment. |
| BaseObject::BaseObject(Environment* env, Local<Object> object) |
| : persistent_handle_(env->isolate(), object), env_(env) { |
| CHECK_EQ(false, object.IsEmpty()); |
| CHECK_GE(object->InternalFieldCount(), BaseObject::kInternalFieldCount); |
| object->SetAlignedPointerInInternalField(BaseObject::kEmbedderType, |
| &kNodeEmbedderId); |
| object->SetAlignedPointerInInternalField(BaseObject::kSlot, |
| static_cast<void*>(this)); |
| env->AddCleanupHook(DeleteMe, static_cast<void*>(this)); |
| env->modify_base_object_count(1); |
| } |
| |
| BaseObject::~BaseObject() { |
| env()->modify_base_object_count(-1); |
| env()->RemoveCleanupHook(DeleteMe, static_cast<void*>(this)); |
| |
| if (UNLIKELY(has_pointer_data())) { |
| PointerData* metadata = pointer_data(); |
| CHECK_EQ(metadata->strong_ptr_count, 0); |
| metadata->self = nullptr; |
| if (metadata->weak_ptr_count == 0) delete metadata; |
| } |
| |
| if (persistent_handle_.IsEmpty()) { |
| // This most likely happened because the weak callback below cleared it. |
| return; |
| } |
| |
| { |
| HandleScope handle_scope(env()->isolate()); |
| object()->SetAlignedPointerInInternalField(BaseObject::kSlot, nullptr); |
| } |
| } |
| |
| void BaseObject::MakeWeak() { |
| if (has_pointer_data()) { |
| pointer_data()->wants_weak_jsobj = true; |
| if (pointer_data()->strong_ptr_count > 0) return; |
| } |
| |
| persistent_handle_.SetWeak( |
| this, |
| [](const WeakCallbackInfo<BaseObject>& data) { |
| BaseObject* obj = data.GetParameter(); |
| // Clear the persistent handle so that ~BaseObject() doesn't attempt |
| // to mess with internal fields, since the JS object may have |
| // transitioned into an invalid state. |
| // Refs: https://github.com/nodejs/node/issues/18897 |
| obj->persistent_handle_.Reset(); |
| CHECK_IMPLIES(obj->has_pointer_data(), |
| obj->pointer_data()->strong_ptr_count == 0); |
| obj->OnGCCollect(); |
| }, |
| WeakCallbackType::kParameter); |
| } |
| |
| // This just has to be different from the Chromium ones: |
| // https://source.chromium.org/chromium/chromium/src/+/main:gin/public/gin_embedders.h;l=18-23;drc=5a758a97032f0b656c3c36a3497560762495501a |
| // Otherwise, when Node is loaded in an isolate which uses cppgc, cppgc will |
| // misinterpret the data stored in the embedder fields and try to garbage |
| // collect them. |
| uint16_t kNodeEmbedderId = 0x90de; |
| |
| void BaseObject::LazilyInitializedJSTemplateConstructor( |
| const FunctionCallbackInfo<Value>& args) { |
| DCHECK(args.IsConstructCall()); |
| CHECK_GE(args.This()->InternalFieldCount(), BaseObject::kInternalFieldCount); |
| args.This()->SetAlignedPointerInInternalField(BaseObject::kEmbedderType, |
| &kNodeEmbedderId); |
| args.This()->SetAlignedPointerInInternalField(BaseObject::kSlot, nullptr); |
| } |
| |
| Local<FunctionTemplate> BaseObject::MakeLazilyInitializedJSTemplate( |
| Environment* env) { |
| Local<FunctionTemplate> t = NewFunctionTemplate( |
| env->isolate(), LazilyInitializedJSTemplateConstructor); |
| t->Inherit(BaseObject::GetConstructorTemplate(env)); |
| t->InstanceTemplate()->SetInternalFieldCount(BaseObject::kInternalFieldCount); |
| return t; |
| } |
| |
| BaseObject::PointerData* BaseObject::pointer_data() { |
| if (!has_pointer_data()) { |
| PointerData* metadata = new PointerData(); |
| metadata->wants_weak_jsobj = persistent_handle_.IsWeak(); |
| metadata->self = this; |
| pointer_data_ = metadata; |
| } |
| CHECK(has_pointer_data()); |
| return pointer_data_; |
| } |
| |
| void BaseObject::decrease_refcount() { |
| CHECK(has_pointer_data()); |
| PointerData* metadata = pointer_data(); |
| CHECK_GT(metadata->strong_ptr_count, 0); |
| unsigned int new_refcount = --metadata->strong_ptr_count; |
| if (new_refcount == 0) { |
| if (metadata->is_detached) { |
| OnGCCollect(); |
| } else if (metadata->wants_weak_jsobj && !persistent_handle_.IsEmpty()) { |
| MakeWeak(); |
| } |
| } |
| } |
| |
| void BaseObject::increase_refcount() { |
| unsigned int prev_refcount = pointer_data()->strong_ptr_count++; |
| if (prev_refcount == 0 && !persistent_handle_.IsEmpty()) |
| persistent_handle_.ClearWeak(); |
| } |
| |
| void BaseObject::DeleteMe(void* data) { |
| BaseObject* self = static_cast<BaseObject*>(data); |
| if (self->has_pointer_data() && |
| self->pointer_data()->strong_ptr_count > 0) { |
| return self->Detach(); |
| } |
| delete self; |
| } |
| |
| bool BaseObject::IsDoneInitializing() const { return true; } |
| |
| Local<Object> BaseObject::WrappedObject() const { |
| return object(); |
| } |
| |
| bool BaseObject::IsRootNode() const { |
| return !persistent_handle_.IsWeak(); |
| } |
| |
| Local<FunctionTemplate> BaseObject::GetConstructorTemplate(Environment* env) { |
| Local<FunctionTemplate> tmpl = env->base_object_ctor_template(); |
| if (tmpl.IsEmpty()) { |
| tmpl = NewFunctionTemplate(env->isolate(), nullptr); |
| tmpl->SetClassName(FIXED_ONE_BYTE_STRING(env->isolate(), "BaseObject")); |
| env->set_base_object_ctor_template(tmpl); |
| } |
| return tmpl; |
| } |
| |
| bool BaseObject::IsNotIndicativeOfMemoryLeakAtExit() const { |
| return IsWeakOrDetached(); |
| } |
| |
| } // namespace node |