| #include <Windows.h> |
| #include <algorithm> |
| #include <cstdint> |
| #include <fstream> |
| #include <iostream> |
| #include <memory> |
| #include <vector> |
| |
| // This executable takes a Windows DLL and uses it to generate |
| // a module-definition file [1] which forwards all the exported |
| // symbols from the DLL and redirects them back to the DLL. |
| // This allows node.exe to export the same symbols as libnode.dll |
| // when building Node.js as a shared library. This is conceptually |
| // similary to the create_expfile.sh script used on AIX. |
| // |
| // Generating this .def file requires parsing data out of the |
| // PE32/PE32+ file format. Helper structs are defined in <Windows.h> |
| // hence why this is an executable and not a script. See [2] for |
| // details on the PE format. |
| // |
| // [1]: https://docs.microsoft.com/en-us/cpp/build/reference/module-definition-dot-def-files |
| // [2]: https://docs.microsoft.com/en-us/windows/win32/debug/pe-format |
| |
| // The PE32 format encodes pointers as Relative Virtual Addresses |
| // which are 32 bit offsets from the start of the image. This helper |
| // class hides the mess of the pointer arithmetic |
| struct RelativeAddress { |
| uintptr_t root; |
| uintptr_t offset = 0; |
| |
| RelativeAddress(HMODULE handle) noexcept |
| : root(reinterpret_cast<uintptr_t>(handle)) {} |
| |
| RelativeAddress(HMODULE handle, uintptr_t offset) noexcept |
| : root(reinterpret_cast<uintptr_t>(handle)), offset(offset) {} |
| |
| RelativeAddress(uintptr_t root, uintptr_t offset) noexcept |
| : root(root), offset(offset) {} |
| |
| template <typename T> |
| const T* AsPtrTo() const noexcept { |
| return reinterpret_cast<const T*>(root + offset); |
| } |
| |
| template <typename T> |
| T Read() const noexcept { |
| return *AsPtrTo<T>(); |
| } |
| |
| RelativeAddress AtOffset(uintptr_t amount) const noexcept { |
| return {root, offset + amount}; |
| } |
| |
| RelativeAddress operator+(uintptr_t amount) const noexcept { |
| return {root, offset + amount}; |
| } |
| |
| RelativeAddress ReadRelativeAddress() const noexcept { |
| return {root, Read<uint32_t>()}; |
| } |
| }; |
| |
| // A wrapper around a dynamically loaded Windows DLL. This steps through the |
| // PE file structure to find the export directory and pulls out a list of |
| // all the exported symbol names. |
| struct Library { |
| HMODULE library; |
| std::string libraryName; |
| std::vector<std::string> exportedSymbols; |
| |
| Library(HMODULE library) : library(library) { |
| auto libnode = RelativeAddress(library); |
| |
| // At relative offset 0x3C is a 32 bit offset to the COFF signature, 4 bytes |
| // after that is the start of the COFF header. |
| auto coffHeaderPtr = |
| libnode.AtOffset(0x3C).ReadRelativeAddress().AtOffset(4); |
| auto coffHeader = coffHeaderPtr.AsPtrTo<IMAGE_FILE_HEADER>(); |
| |
| // After the coff header is the Optional Header (which is not optional). We |
| // don't know what type of optional header we have without examining the |
| // magic number |
| auto optionalHeaderPtr = coffHeaderPtr.AtOffset(sizeof(IMAGE_FILE_HEADER)); |
| auto optionalHeader = optionalHeaderPtr.AsPtrTo<IMAGE_OPTIONAL_HEADER>(); |
| |
| auto exportDirectory = |
| (optionalHeader->Magic == 0x20b) ? optionalHeaderPtr.AsPtrTo<IMAGE_OPTIONAL_HEADER64>() |
| ->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT] |
| : optionalHeaderPtr.AsPtrTo<IMAGE_OPTIONAL_HEADER32>() |
| ->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]; |
| |
| auto exportTable = libnode.AtOffset(exportDirectory.VirtualAddress) |
| .AsPtrTo<IMAGE_EXPORT_DIRECTORY>(); |
| |
| // This is the name of the library without the suffix, this is more robust |
| // than parsing the filename as this is what the linker uses. |
| libraryName = libnode.AtOffset(exportTable->Name).AsPtrTo<char>(); |
| libraryName = libraryName.substr(0, libraryName.size() - 4); |
| |
| const uint32_t* functionNameTable = |
| libnode.AtOffset(exportTable->AddressOfNames).AsPtrTo<uint32_t>(); |
| |
| // Given an RVA, parse it as a std::string. The resulting string is empty |
| // if the symbol does not have a name (i.e. it is ordinal only). |
| auto nameRvaToName = [&](uint32_t rva) -> std::string { |
| auto namePtr = libnode.AtOffset(rva).AsPtrTo<char>(); |
| if (namePtr == nullptr) return {}; |
| return {namePtr}; |
| }; |
| std::transform(functionNameTable, |
| functionNameTable + exportTable->NumberOfNames, |
| std::back_inserter(exportedSymbols), |
| nameRvaToName); |
| } |
| |
| ~Library() { FreeLibrary(library); } |
| }; |
| |
| bool IsPageExecutable(void* address) { |
| MEMORY_BASIC_INFORMATION memoryInformation; |
| size_t rc = VirtualQuery( |
| address, &memoryInformation, sizeof(MEMORY_BASIC_INFORMATION)); |
| |
| if (rc != 0 && memoryInformation.Protect != 0) { |
| return memoryInformation.Protect == PAGE_EXECUTE || |
| memoryInformation.Protect == PAGE_EXECUTE_READ || |
| memoryInformation.Protect == PAGE_EXECUTE_READWRITE || |
| memoryInformation.Protect == PAGE_EXECUTE_WRITECOPY; |
| } |
| return false; |
| } |
| |
| Library LoadLibraryOrExit(const char* dllPath) { |
| auto library = LoadLibrary(dllPath); |
| if (library != nullptr) return library; |
| |
| auto error = GetLastError(); |
| std::cerr << "ERROR: Failed to load " << dllPath << std::endl; |
| LPCSTR buffer = nullptr; |
| auto rc = FormatMessageA( |
| FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM, |
| nullptr, |
| error, |
| LANG_USER_DEFAULT, |
| (LPSTR)&buffer, |
| 0, |
| nullptr); |
| if (rc != 0) { |
| std::cerr << buffer << std::endl; |
| LocalFree((HLOCAL)buffer); |
| } |
| exit(1); |
| } |
| |
| int main(int argc, char** argv) { |
| if (argc != 3) { |
| std::cerr << "Usage: " << argv[0] |
| << " path\\to\\libnode.dll path\\to\\node.def" << std::endl; |
| return 1; |
| } |
| |
| auto libnode = LoadLibraryOrExit(argv[1]); |
| auto defFile = std::ofstream(argv[2]); |
| defFile << "EXPORTS" << std::endl; |
| |
| for (const std::string& functionName : libnode.exportedSymbols) { |
| // If a symbol doesn't have a name then it has been exported as an |
| // ordinal only. We assume that only named symbols are exported. |
| if (functionName.empty()) continue; |
| |
| // Every name in the exported symbols table should be resolvable |
| // to an address because we have actually loaded the library into |
| // our address space. |
| auto address = GetProcAddress(libnode.library, functionName.c_str()); |
| if (address == nullptr) { |
| std::cerr << "WARNING: " << functionName |
| << " appears in export table but is not a valid symbol" |
| << std::endl; |
| continue; |
| } |
| |
| defFile << " " << functionName << " = " << libnode.libraryName << "." |
| << functionName; |
| |
| // Nothing distinguishes exported global data from exported functions |
| // with C linkage. If we do not specify the DATA keyword for such symbols |
| // then consumers of the .def file will get a linker error. This manifests |
| // as nodedbg_ symbols not being found. We assert that if the symbol is in |
| // an executable page in this process then it is a function, not data. |
| if (!IsPageExecutable(address)) { |
| defFile << " DATA"; |
| } |
| defFile << std::endl; |
| } |
| |
| return 0; |
| } |