blob: fee8ef51ac698f70a15618e677c7a0aacbf61e6b [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <iterator>
#include <numeric>
template <class Iterator>
std::reverse_iterator<Iterator> make_reverse_iterator(Iterator i) {
return std::reverse_iterator<Iterator>(i);
}
using std::is_sorted;
template <typename XprType>
bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType>&) {
return true;
}
template <typename XprType>
bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType>&) {
return true;
}
template <typename Iter>
bool is_default_constructible_and_assignable(const Iter& it) {
VERIFY(std::is_default_constructible<Iter>::value);
VERIFY(std::is_nothrow_default_constructible<Iter>::value);
Iter it2;
it2 = it;
return (it == it2);
}
template <typename Xpr>
void check_begin_end_for_loop(Xpr xpr) {
const Xpr& cxpr(xpr);
Index i = 0;
i = 0;
for (typename Xpr::iterator it = xpr.begin(); it != xpr.end(); ++it) {
VERIFY_IS_EQUAL(*it, xpr[i++]);
}
i = 0;
for (typename Xpr::const_iterator it = xpr.cbegin(); it != xpr.cend(); ++it) {
VERIFY_IS_EQUAL(*it, xpr[i++]);
}
i = 0;
for (typename Xpr::const_iterator it = cxpr.begin(); it != cxpr.end(); ++it) {
VERIFY_IS_EQUAL(*it, xpr[i++]);
}
i = 0;
for (typename Xpr::const_iterator it = xpr.begin(); it != xpr.end(); ++it) {
VERIFY_IS_EQUAL(*it, xpr[i++]);
}
{
// simple API check
typename Xpr::const_iterator cit = xpr.begin();
cit = xpr.cbegin();
auto tmp1 = xpr.begin();
VERIFY(tmp1 == xpr.begin());
auto tmp2 = xpr.cbegin();
VERIFY(tmp2 == xpr.cbegin());
}
VERIFY(xpr.end() - xpr.begin() == xpr.size());
VERIFY(xpr.cend() - xpr.begin() == xpr.size());
VERIFY(xpr.end() - xpr.cbegin() == xpr.size());
VERIFY(xpr.cend() - xpr.cbegin() == xpr.size());
if (xpr.size() > 0) {
VERIFY(xpr.begin() != xpr.end());
VERIFY(xpr.begin() < xpr.end());
VERIFY(xpr.begin() <= xpr.end());
VERIFY(!(xpr.begin() == xpr.end()));
VERIFY(!(xpr.begin() > xpr.end()));
VERIFY(!(xpr.begin() >= xpr.end()));
VERIFY(xpr.cbegin() != xpr.end());
VERIFY(xpr.cbegin() < xpr.end());
VERIFY(xpr.cbegin() <= xpr.end());
VERIFY(!(xpr.cbegin() == xpr.end()));
VERIFY(!(xpr.cbegin() > xpr.end()));
VERIFY(!(xpr.cbegin() >= xpr.end()));
VERIFY(xpr.begin() != xpr.cend());
VERIFY(xpr.begin() < xpr.cend());
VERIFY(xpr.begin() <= xpr.cend());
VERIFY(!(xpr.begin() == xpr.cend()));
VERIFY(!(xpr.begin() > xpr.cend()));
VERIFY(!(xpr.begin() >= xpr.cend()));
}
}
template <typename Scalar, int Rows, int Cols>
void test_stl_iterators(int rows = Rows, int cols = Cols) {
typedef Matrix<Scalar, Rows, 1> VectorType;
typedef Matrix<Scalar, 1, Cols> RowVectorType;
typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMatrixType;
typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMatrixType;
VectorType v = VectorType::Random(rows);
const VectorType& cv(v);
ColMatrixType A = ColMatrixType::Random(rows, cols);
const ColMatrixType& cA(A);
RowMatrixType B = RowMatrixType::Random(rows, cols);
using Eigen::placeholders::last;
Index i, j;
// Verify that iterators are default constructible (See bug #1900)
{
VERIFY(is_default_constructible_and_assignable(v.begin()));
VERIFY(is_default_constructible_and_assignable(v.end()));
VERIFY(is_default_constructible_and_assignable(cv.begin()));
VERIFY(is_default_constructible_and_assignable(cv.end()));
VERIFY(is_default_constructible_and_assignable(A.row(0).begin()));
VERIFY(is_default_constructible_and_assignable(A.row(0).end()));
VERIFY(is_default_constructible_and_assignable(cA.row(0).begin()));
VERIFY(is_default_constructible_and_assignable(cA.row(0).end()));
VERIFY(is_default_constructible_and_assignable(B.row(0).begin()));
VERIFY(is_default_constructible_and_assignable(B.row(0).end()));
}
// Check we got a fast pointer-based iterator when expected
{
VERIFY(is_pointer_based_stl_iterator(v.begin()));
VERIFY(is_pointer_based_stl_iterator(v.end()));
VERIFY(is_pointer_based_stl_iterator(cv.begin()));
VERIFY(is_pointer_based_stl_iterator(cv.end()));
j = internal::random<Index>(0, A.cols() - 1);
VERIFY(is_pointer_based_stl_iterator(A.col(j).begin()));
VERIFY(is_pointer_based_stl_iterator(A.col(j).end()));
VERIFY(is_pointer_based_stl_iterator(cA.col(j).begin()));
VERIFY(is_pointer_based_stl_iterator(cA.col(j).end()));
i = internal::random<Index>(0, A.rows() - 1);
VERIFY(is_pointer_based_stl_iterator(A.row(i).begin()));
VERIFY(is_pointer_based_stl_iterator(A.row(i).end()));
VERIFY(is_pointer_based_stl_iterator(cA.row(i).begin()));
VERIFY(is_pointer_based_stl_iterator(cA.row(i).end()));
VERIFY(is_pointer_based_stl_iterator(A.reshaped().begin()));
VERIFY(is_pointer_based_stl_iterator(A.reshaped().end()));
VERIFY(is_pointer_based_stl_iterator(cA.reshaped().begin()));
VERIFY(is_pointer_based_stl_iterator(cA.reshaped().end()));
VERIFY(is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()));
VERIFY(is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()));
VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()));
VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()));
}
{
check_begin_end_for_loop(v);
check_begin_end_for_loop(A.col(internal::random<Index>(0, A.cols() - 1)));
check_begin_end_for_loop(A.row(internal::random<Index>(0, A.rows() - 1)));
check_begin_end_for_loop(v + v);
}
// check swappable
{
using std::swap;
// pointer-based
{
VectorType v_copy = v;
auto a = v.begin();
auto b = v.end() - 1;
swap(a, b);
VERIFY_IS_EQUAL(v, v_copy);
VERIFY_IS_EQUAL(*b, *v.begin());
VERIFY_IS_EQUAL(*b, v(0));
VERIFY_IS_EQUAL(*a, v.end()[-1]);
VERIFY_IS_EQUAL(*a, v(last));
}
// generic
{
RowMatrixType B_copy = B;
auto Br = B.reshaped();
auto a = Br.begin();
auto b = Br.end() - 1;
swap(a, b);
VERIFY_IS_EQUAL(B, B_copy);
VERIFY_IS_EQUAL(*b, *Br.begin());
VERIFY_IS_EQUAL(*b, Br(0));
VERIFY_IS_EQUAL(*a, Br.end()[-1]);
VERIFY_IS_EQUAL(*a, Br(last));
}
}
// check non-const iterator with for-range loops
{
i = 0;
for (auto x : v) {
VERIFY_IS_EQUAL(x, v[i++]);
}
j = internal::random<Index>(0, A.cols() - 1);
i = 0;
for (auto x : A.col(j)) {
VERIFY_IS_EQUAL(x, A(i++, j));
}
i = 0;
for (auto x : (v + A.col(j))) {
VERIFY_IS_APPROX(x, v(i) + A(i, j));
++i;
}
j = 0;
i = internal::random<Index>(0, A.rows() - 1);
for (auto x : A.row(i)) {
VERIFY_IS_EQUAL(x, A(i, j++));
}
i = 0;
for (auto x : A.reshaped()) {
VERIFY_IS_EQUAL(x, A(i++));
}
}
// same for const_iterator
{
i = 0;
for (auto x : cv) {
VERIFY_IS_EQUAL(x, v[i++]);
}
i = 0;
for (auto x : cA.reshaped()) {
VERIFY_IS_EQUAL(x, A(i++));
}
j = 0;
i = internal::random<Index>(0, A.rows() - 1);
for (auto x : cA.row(i)) {
VERIFY_IS_EQUAL(x, A(i, j++));
}
}
// check reshaped() on row-major
{
i = 0;
Matrix<Scalar, Dynamic, Dynamic, ColMajor> Bc = B;
for (auto x : B.reshaped()) {
VERIFY_IS_EQUAL(x, Bc(i++));
}
}
// check write access
{
VectorType w(v.size());
i = 0;
for (auto& x : w) {
x = v(i++);
}
VERIFY_IS_EQUAL(v, w);
}
// check for dangling pointers
{
// no dangling because pointer-based
{
j = internal::random<Index>(0, A.cols() - 1);
auto it = A.col(j).begin();
for (i = 0; i < rows; ++i) {
VERIFY_IS_EQUAL(it[i], A(i, j));
}
}
// no dangling because pointer-based
{
i = internal::random<Index>(0, A.rows() - 1);
auto it = A.row(i).begin();
for (j = 0; j < cols; ++j) {
VERIFY_IS_EQUAL(it[j], A(i, j));
}
}
{
j = internal::random<Index>(0, A.cols() - 1);
// this would produce a dangling pointer:
// auto it = (A+2*A).col(j).begin();
// we need to name the temporary expression:
auto tmp = (A + 2 * A).col(j);
auto it = tmp.begin();
for (i = 0; i < rows; ++i) {
VERIFY_IS_APPROX(it[i], 3 * A(i, j));
}
}
}
{
// check basic for loop on vector-wise iterators
j = 0;
for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
VERIFY_IS_APPROX(it->coeff(0), A(0, j));
VERIFY_IS_APPROX((*it).coeff(0), A(0, j));
}
j = 0;
for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) {
(*it).coeffRef(0) = (*it).coeff(0); // compilation check
it->coeffRef(0) = it->coeff(0); // compilation check
VERIFY_IS_APPROX(it->coeff(0), A(0, j));
VERIFY_IS_APPROX((*it).coeff(0), A(0, j));
}
// check valuetype gives us a copy
j = 0;
for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) {
typename decltype(it)::value_type tmp = *it;
VERIFY_IS_NOT_EQUAL(tmp.data(), it->data());
VERIFY_IS_APPROX(tmp, A.col(j));
}
}
if (rows >= 3) {
VERIFY_IS_EQUAL((v.begin() + rows / 2)[1], v(rows / 2 + 1));
VERIFY_IS_EQUAL((A.rowwise().begin() + rows / 2)[1], A.row(rows / 2 + 1));
}
if (cols >= 3) {
VERIFY_IS_EQUAL((A.colwise().begin() + cols / 2)[1], A.col(cols / 2 + 1));
}
// check std::sort
{
// first check that is_sorted returns false when required
if (rows >= 2) {
v(1) = v(0) - Scalar(1);
VERIFY(!is_sorted(std::begin(v), std::end(v)));
}
// on a vector
{
std::sort(v.begin(), v.end());
VERIFY(is_sorted(v.begin(), v.end()));
VERIFY(!::is_sorted(make_reverse_iterator(v.end()), make_reverse_iterator(v.begin())));
}
// on a column of a column-major matrix -> pointer-based iterator and default increment
{
j = internal::random<Index>(0, A.cols() - 1);
// std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators
typename ColMatrixType::ColXpr Acol = A.col(j);
std::sort(Acol.begin(), Acol.end());
VERIFY(is_sorted(Acol.cbegin(), Acol.cend()));
A.setRandom();
std::sort(A.col(j).begin(), A.col(j).end());
VERIFY(is_sorted(A.col(j).cbegin(), A.col(j).cend()));
A.setRandom();
}
// on a row of a rowmajor matrix -> pointer-based iterator and runtime increment
{
i = internal::random<Index>(0, A.rows() - 1);
typename ColMatrixType::RowXpr Arow = A.row(i);
VERIFY_IS_EQUAL(std::distance(Arow.begin(), Arow.end()), cols);
std::sort(Arow.begin(), Arow.end());
VERIFY(is_sorted(Arow.cbegin(), Arow.cend()));
A.setRandom();
std::sort(A.row(i).begin(), A.row(i).end());
VERIFY(is_sorted(A.row(i).cbegin(), A.row(i).cend()));
A.setRandom();
}
// with a generic iterator
{
Reshaped<RowMatrixType, RowMatrixType::SizeAtCompileTime, 1> B1 = B.reshaped();
std::sort(B1.begin(), B1.end());
VERIFY(is_sorted(B1.cbegin(), B1.cend()));
B.setRandom();
// assertion because nested expressions are different
// std::sort(B.reshaped().begin(),B.reshaped().end());
// VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend()));
// B.setRandom();
}
}
// check with partial_sum
{
j = internal::random<Index>(0, A.cols() - 1);
typename ColMatrixType::ColXpr Acol = A.col(j);
std::partial_sum(Acol.begin(), Acol.end(), v.begin());
VERIFY_IS_APPROX(v(seq(1, last)), v(seq(0, last - 1)) + Acol(seq(1, last)));
// inplace
std::partial_sum(Acol.begin(), Acol.end(), Acol.begin());
VERIFY_IS_APPROX(v, Acol);
}
// stress random access as required by std::nth_element
if (rows >= 3) {
v.setRandom();
VectorType v1 = v;
std::sort(v1.begin(), v1.end());
std::nth_element(v.begin(), v.begin() + rows / 2, v.end());
VERIFY_IS_APPROX(v1(rows / 2), v(rows / 2));
v.setRandom();
v1 = v;
std::sort(v1.begin() + rows / 2, v1.end());
std::nth_element(v.begin() + rows / 2, v.begin() + rows / 4, v.end());
VERIFY_IS_APPROX(v1(rows / 4), v(rows / 4));
}
// check rows/cols iterators with range-for loops
{
j = 0;
for (auto c : A.colwise()) {
VERIFY_IS_APPROX(c.sum(), A.col(j).sum());
++j;
}
j = 0;
for (auto c : B.colwise()) {
VERIFY_IS_APPROX(c.sum(), B.col(j).sum());
++j;
}
j = 0;
for (auto c : B.colwise()) {
i = 0;
for (auto& x : c) {
VERIFY_IS_EQUAL(x, B(i, j));
x = A(i, j);
++i;
}
++j;
}
VERIFY_IS_APPROX(A, B);
B.setRandom();
i = 0;
for (auto r : A.rowwise()) {
VERIFY_IS_APPROX(r.sum(), A.row(i).sum());
++i;
}
i = 0;
for (auto r : B.rowwise()) {
VERIFY_IS_APPROX(r.sum(), B.row(i).sum());
++i;
}
}
// check rows/cols iterators with STL algorithms
{
RowVectorType row = RowVectorType::Random(cols);
VectorType col = VectorType::Random(rows);
// Prevent overflows for integer types.
if (Eigen::NumTraits<Scalar>::IsInteger) {
Scalar kMaxVal = Scalar(1000);
row.array() = row.array() - kMaxVal * (row.array() / kMaxVal);
col.array() = col.array() - kMaxVal * (col.array() / kMaxVal);
}
A.rowwise() = row;
VERIFY(std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) {
return internal::isApprox(x.squaredNorm(), row.squaredNorm());
}));
VERIFY(std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) {
return internal::isApprox(x.squaredNorm(), row.squaredNorm());
}));
A.colwise() = col;
VERIFY(std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) {
return internal::isApprox(x.squaredNorm(), col.squaredNorm());
}));
VERIFY(std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) {
return internal::isApprox(x.squaredNorm(), col.squaredNorm());
}));
VERIFY(std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) {
return internal::isApprox(x.squaredNorm(), col.squaredNorm());
}));
VERIFY(std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) {
return internal::isApprox(x.squaredNorm(), col.squaredNorm());
}));
i = internal::random<Index>(0, A.rows() - 1);
A.setRandom();
A.row(i).setZero();
VERIFY_IS_EQUAL(
std::find_if(A.rowwise().begin(), A.rowwise().end(),
[](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) -
A.rowwise().begin(),
i);
VERIFY_IS_EQUAL(
std::find_if(A.rowwise().rbegin(), A.rowwise().rend(),
[](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) -
A.rowwise().rbegin(),
(A.rows() - 1) - i);
j = internal::random<Index>(0, A.cols() - 1);
A.setRandom();
A.col(j).setZero();
VERIFY_IS_EQUAL(
std::find_if(A.colwise().begin(), A.colwise().end(),
[](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) -
A.colwise().begin(),
j);
VERIFY_IS_EQUAL(
std::find_if(A.colwise().rbegin(), A.colwise().rend(),
[](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) -
A.colwise().rbegin(),
(A.cols() - 1) - j);
}
{
using VecOp = VectorwiseOp<ArrayXXi, 0>;
STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value));
STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend())>::value));
STATIC_CHECK(
(internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value));
STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::cend(std::declval<const VecOp&>()))>::value));
}
}
// When the compiler sees expression IsContainerTest<C>(0), if C is an
// STL-style container class, the first overload of IsContainerTest
// will be viable (since both C::iterator* and C::const_iterator* are
// valid types and NULL can be implicitly converted to them). It will
// be picked over the second overload as 'int' is a perfect match for
// the type of argument 0. If C::iterator or C::const_iterator is not
// a valid type, the first overload is not viable, and the second
// overload will be picked.
template <class C, class Iterator = decltype(::std::declval<const C&>().begin()),
class = decltype(::std::declval<const C&>().end()), class = decltype(++::std::declval<Iterator&>()),
class = decltype(*::std::declval<Iterator>()), class = typename C::const_iterator>
bool IsContainerType(int /* dummy */) {
return true;
}
template <class C>
bool IsContainerType(long /* dummy */) {
return false;
}
template <typename Scalar, int Rows, int Cols>
void test_stl_container_detection(int rows = Rows, int cols = Cols) {
typedef Matrix<Scalar, Rows, 1> VectorType;
typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMatrixType;
typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMatrixType;
ColMatrixType A = ColMatrixType::Random(rows, cols);
RowMatrixType B = RowMatrixType::Random(rows, cols);
Index i = 1;
using ColMatrixColType = decltype(A.col(i));
using ColMatrixRowType = decltype(A.row(i));
using RowMatrixColType = decltype(B.col(i));
using RowMatrixRowType = decltype(B.row(i));
// Vector and matrix col/row are valid Stl-style container.
VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true);
VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true);
VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true);
VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true);
VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true);
// But the matrix itself is not a valid Stl-style container.
VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1);
VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1);
}
EIGEN_DECLARE_TEST(stl_iterators) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1((test_stl_iterators<double, 2, 3>()));
CALL_SUBTEST_1((test_stl_iterators<float, 7, 5>()));
CALL_SUBTEST_1(
(test_stl_iterators<int, Dynamic, Dynamic>(internal::random<int>(5, 10), internal::random<int>(5, 10))));
CALL_SUBTEST_1(
(test_stl_iterators<int, Dynamic, Dynamic>(internal::random<int>(10, 200), internal::random<int>(10, 200))));
}
CALL_SUBTEST_1((test_stl_container_detection<float, 1, 1>()));
CALL_SUBTEST_1((test_stl_container_detection<float, 5, 5>()));
}