blob: c9dfefa0dec7bd18efe485e1611d66d563c8402a [file] [log] [blame]
//===-- Predicate.h ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef liblldb_Predicate_h_
#define liblldb_Predicate_h_
// C Includes
#include <stdint.h>
#include <time.h>
// C++ Includes
#include <condition_variable>
#include <mutex>
// Other libraries and framework includes
// Project includes
#include "lldb/lldb-defines.h"
//#define DB_PTHREAD_LOG_EVENTS
//----------------------------------------------------------------------
/// Enumerations for broadcasting.
//----------------------------------------------------------------------
namespace lldb_private {
typedef enum {
eBroadcastNever, ///< No broadcast will be sent when the value is modified.
eBroadcastAlways, ///< Always send a broadcast when the value is modified.
eBroadcastOnChange ///< Only broadcast if the value changes when the value is
///modified.
} PredicateBroadcastType;
//----------------------------------------------------------------------
/// @class Predicate Predicate.h "lldb/Host/Predicate.h"
/// @brief A C++ wrapper class for providing threaded access to a value
/// of type T.
///
/// A templatized class that provides multi-threaded access to a value
/// of type T. Threads can efficiently wait for bits within T to be set
/// or reset, or wait for T to be set to be equal/not equal to a
/// specified values.
//----------------------------------------------------------------------
template <class T> class Predicate {
public:
//------------------------------------------------------------------
/// Default constructor.
///
/// Initializes the mutex, condition and value with their default
/// constructors.
//------------------------------------------------------------------
Predicate() : m_value(), m_mutex(), m_condition() {}
//------------------------------------------------------------------
/// Construct with initial T value \a initial_value.
///
/// Initializes the mutex and condition with their default
/// constructors, and initializes the value with \a initial_value.
///
/// @param[in] initial_value
/// The initial value for our T object.
//------------------------------------------------------------------
Predicate(T initial_value)
: m_value(initial_value), m_mutex(), m_condition() {}
//------------------------------------------------------------------
/// Destructor.
///
/// Destroy the condition, mutex, and T objects.
//------------------------------------------------------------------
~Predicate() = default;
//------------------------------------------------------------------
/// Value get accessor.
///
/// Copies the current \a m_value in a thread safe manor and returns
/// the copied value.
///
/// @return
/// A copy of the current value.
//------------------------------------------------------------------
T GetValue() const {
std::lock_guard<std::mutex> guard(m_mutex);
T value = m_value;
return value;
}
//------------------------------------------------------------------
/// Value set accessor.
///
/// Set the contained \a m_value to \a new_value in a thread safe
/// way and broadcast if needed.
///
/// @param[in] value
/// The new value to set.
///
/// @param[in] broadcast_type
/// A value indicating when and if to broadcast. See the
/// PredicateBroadcastType enumeration for details.
///
/// @see Predicate::Broadcast()
//------------------------------------------------------------------
void SetValue(T value, PredicateBroadcastType broadcast_type) {
std::lock_guard<std::mutex> guard(m_mutex);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (value = 0x%8.8x, broadcast_type = %i)\n", __FUNCTION__, value,
broadcast_type);
#endif
const T old_value = m_value;
m_value = value;
Broadcast(old_value, broadcast_type);
}
//------------------------------------------------------------------
/// Set some bits in \a m_value.
///
/// Logically set the bits \a bits in the contained \a m_value in a
/// thread safe way and broadcast if needed.
///
/// @param[in] bits
/// The bits to set in \a m_value.
///
/// @param[in] broadcast_type
/// A value indicating when and if to broadcast. See the
/// PredicateBroadcastType enumeration for details.
///
/// @see Predicate::Broadcast()
//------------------------------------------------------------------
void SetValueBits(T bits, PredicateBroadcastType broadcast_type) {
std::lock_guard<std::mutex> guard(m_mutex);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (bits = 0x%8.8x, broadcast_type = %i)\n", __FUNCTION__, bits,
broadcast_type);
#endif
const T old_value = m_value;
m_value |= bits;
Broadcast(old_value, broadcast_type);
}
//------------------------------------------------------------------
/// Reset some bits in \a m_value.
///
/// Logically reset (clear) the bits \a bits in the contained
/// \a m_value in a thread safe way and broadcast if needed.
///
/// @param[in] bits
/// The bits to clear in \a m_value.
///
/// @param[in] broadcast_type
/// A value indicating when and if to broadcast. See the
/// PredicateBroadcastType enumeration for details.
///
/// @see Predicate::Broadcast()
//------------------------------------------------------------------
void ResetValueBits(T bits, PredicateBroadcastType broadcast_type) {
std::lock_guard<std::mutex> guard(m_mutex);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (bits = 0x%8.8x, broadcast_type = %i)\n", __FUNCTION__, bits,
broadcast_type);
#endif
const T old_value = m_value;
m_value &= ~bits;
Broadcast(old_value, broadcast_type);
}
//------------------------------------------------------------------
/// Wait for bits to be set in \a m_value.
///
/// Waits in a thread safe way for any bits in \a bits to get
/// logically set in \a m_value. If any bits are already set in
/// \a m_value, this function will return without waiting.
///
/// It is possible for the value to be changed between the time
/// the bits are set and the time the waiting thread wakes up.
/// If the bits are no longer set when the waiting thread wakes
/// up, it will go back into a wait state. It may be necessary
/// for the calling code to use additional thread synchronization
/// methods to detect transitory states.
///
/// @param[in] bits
/// The bits we are waiting to be set in \a m_value.
///
/// @param[in] abstime
/// If non-nullptr, the absolute time at which we should stop
/// waiting, else wait an infinite amount of time.
///
/// @return
/// Any bits of the requested bits that actually were set within
/// the time specified. Zero if a timeout or unrecoverable error
/// occurred.
//------------------------------------------------------------------
T WaitForSetValueBits(T bits, const std::chrono::microseconds &timeout =
std::chrono::microseconds(0)) {
// pthread_cond_timedwait() or pthread_cond_wait() will atomically unlock
// the mutex and wait for the condition to be set. When either function
// returns, they will re-lock the mutex. We use an auto lock/unlock class
// (std::lock_guard) to allow us to return at any point in this function
// and not have to worry about unlocking the mutex.
std::unique_lock<std::mutex> lock(m_mutex);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (bits = 0x%8.8x, timeout = %llu), m_value = 0x%8.8x\n",
__FUNCTION__, bits, timeout.count(), m_value);
#endif
while ((m_value & bits) == 0) {
if (timeout == std::chrono::microseconds(0)) {
m_condition.wait(lock);
} else {
std::cv_status result = m_condition.wait_for(lock, timeout);
if (result == std::cv_status::timeout)
break;
}
}
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (bits = 0x%8.8x), m_value = 0x%8.8x, returning 0x%8.8x\n",
__FUNCTION__, bits, m_value, m_value & bits);
#endif
return m_value & bits;
}
//------------------------------------------------------------------
/// Wait for bits to be reset in \a m_value.
///
/// Waits in a thread safe way for any bits in \a bits to get
/// logically reset in \a m_value. If all bits are already reset in
/// \a m_value, this function will return without waiting.
///
/// It is possible for the value to be changed between the time
/// the bits are reset and the time the waiting thread wakes up.
/// If the bits are no set when the waiting thread wakes up, it will
/// go back into a wait state. It may be necessary for the calling
/// code to use additional thread synchronization methods to detect
/// transitory states.
///
/// @param[in] bits
/// The bits we are waiting to be reset in \a m_value.
///
/// @param[in] abstime
/// If non-nullptr, the absolute time at which we should stop
/// waiting, else wait an infinite amount of time.
///
/// @return
/// Zero on successful waits, or non-zero if a timeout or
/// unrecoverable error occurs.
//------------------------------------------------------------------
T WaitForResetValueBits(T bits, const std::chrono::microseconds &timeout =
std::chrono::microseconds(0)) {
// pthread_cond_timedwait() or pthread_cond_wait() will atomically unlock
// the mutex and wait for the condition to be set. When either function
// returns, they will re-lock the mutex. We use an auto lock/unlock class
// (std::lock_guard) to allow us to return at any point in this function
// and not have to worry about unlocking the mutex.
std::unique_lock<std::mutex> lock(m_mutex);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (bits = 0x%8.8x, timeout = %llu), m_value = 0x%8.8x\n",
__FUNCTION__, bits, timeout.count(), m_value);
#endif
while ((m_value & bits) != 0) {
if (timeout == std::chrono::microseconds(0)) {
m_condition.wait(lock);
} else {
std::cv_status result = m_condition.wait_for(lock, timeout);
if (result == std::cv_status::timeout)
break;
}
}
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (bits = 0x%8.8x), m_value = 0x%8.8x, returning 0x%8.8x\n",
__FUNCTION__, bits, m_value, m_value & bits);
#endif
return m_value & bits;
}
//------------------------------------------------------------------
/// Wait for \a m_value to be equal to \a value.
///
/// Waits in a thread safe way for \a m_value to be equal to \a
/// value. If \a m_value is already equal to \a value, this
/// function will return without waiting.
///
/// It is possible for the value to be changed between the time
/// the value is set and the time the waiting thread wakes up.
/// If the value no longer matches the requested value when the
/// waiting thread wakes up, it will go back into a wait state. It
/// may be necessary for the calling code to use additional thread
/// synchronization methods to detect transitory states.
///
/// @param[in] value
/// The value we want \a m_value to be equal to.
///
/// @param[in] abstime
/// If non-nullptr, the absolute time at which we should stop
/// waiting, else wait an infinite amount of time.
///
/// @param[out] timed_out
/// If not null, set to true if we return because of a time out,
/// and false if the value was set.
///
/// @return
/// @li \b true if the \a m_value is equal to \a value
/// @li \b false otherwise
//------------------------------------------------------------------
bool WaitForValueEqualTo(T value, const std::chrono::microseconds &timeout =
std::chrono::microseconds(0),
bool *timed_out = nullptr) {
// pthread_cond_timedwait() or pthread_cond_wait() will atomically unlock
// the mutex and wait for the condition to be set. When either function
// returns, they will re-lock the mutex. We use an auto lock/unlock class
// (std::lock_guard) to allow us to return at any point in this function
// and not have to worry about unlocking the mutex.
std::unique_lock<std::mutex> lock(m_mutex);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (value = 0x%8.8x, timeout = %llu), m_value = 0x%8.8x\n",
__FUNCTION__, value, timeout.count(), m_value);
#endif
if (timed_out)
*timed_out = false;
while (m_value != value) {
if (timeout == std::chrono::microseconds(0)) {
m_condition.wait(lock);
} else {
std::cv_status result = m_condition.wait_for(lock, timeout);
if (result == std::cv_status::timeout) {
if (timed_out)
*timed_out = true;
break;
}
}
}
return m_value == value;
}
//------------------------------------------------------------------
/// Wait for \a m_value to be equal to \a value and then set it to
/// a new value.
///
/// Waits in a thread safe way for \a m_value to be equal to \a
/// value and then sets \a m_value to \a new_value. If \a m_value
/// is already equal to \a value, this function will immediately
/// set \a m_value to \a new_value and return without waiting.
///
/// It is possible for the value to be changed between the time
/// the value is set and the time the waiting thread wakes up.
/// If the value no longer matches the requested value when the
/// waiting thread wakes up, it will go back into a wait state. It
/// may be necessary for the calling code to use additional thread
/// synchronization methods to detect transitory states.
///
/// @param[in] value
/// The value we want \a m_value to be equal to.
///
/// @param[in] new_value
/// The value to which \a m_value will be set if \b true is
/// returned.
///
/// @param[in] abstime
/// If non-nullptr, the absolute time at which we should stop
/// waiting, else wait an infinite amount of time.
///
/// @param[out] timed_out
/// If not null, set to true if we return because of a time out,
/// and false if the value was set.
///
/// @return
/// @li \b true if the \a m_value became equal to \a value
/// @li \b false otherwise
//------------------------------------------------------------------
bool WaitForValueEqualToAndSetValueTo(
T wait_value, T new_value,
const std::chrono::microseconds &timeout = std::chrono::microseconds(0),
bool *timed_out = nullptr) {
// pthread_cond_timedwait() or pthread_cond_wait() will atomically unlock
// the mutex and wait for the condition to be set. When either function
// returns, they will re-lock the mutex. We use an auto lock/unlock class
// (std::lock_guard) to allow us to return at any point in this function
// and not have to worry about unlocking the mutex.
std::unique_lock<std::mutex> lock(m_mutex);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (wait_value = 0x%8.8x, new_value = 0x%8.8x, timeout = %llu), "
"m_value = 0x%8.8x\n",
__FUNCTION__, wait_value, new_value, timeout.count(), m_value);
#endif
if (timed_out)
*timed_out = false;
while (m_value != wait_value) {
if (timeout == std::chrono::microseconds(0)) {
m_condition.wait(lock);
} else {
std::cv_status result = m_condition.wait_for(lock, timeout);
if (result == std::cv_status::timeout) {
if (timed_out)
*timed_out = true;
break;
}
}
}
if (m_value == wait_value) {
m_value = new_value;
return true;
}
return false;
}
//------------------------------------------------------------------
/// Wait for \a m_value to not be equal to \a value.
///
/// Waits in a thread safe way for \a m_value to not be equal to \a
/// value. If \a m_value is already not equal to \a value, this
/// function will return without waiting.
///
/// It is possible for the value to be changed between the time
/// the value is set and the time the waiting thread wakes up.
/// If the value is equal to the test value when the waiting thread
/// wakes up, it will go back into a wait state. It may be
/// necessary for the calling code to use additional thread
/// synchronization methods to detect transitory states.
///
/// @param[in] value
/// The value we want \a m_value to not be equal to.
///
/// @param[out] new_value
/// The new value if \b true is returned.
///
/// @param[in] abstime
/// If non-nullptr, the absolute time at which we should stop
/// waiting, else wait an infinite amount of time.
///
/// @return
/// @li \b true if the \a m_value is equal to \a value
/// @li \b false otherwise
//------------------------------------------------------------------
bool WaitForValueNotEqualTo(
T value, T &new_value,
const std::chrono::microseconds &timeout = std::chrono::microseconds(0)) {
// pthread_cond_timedwait() or pthread_cond_wait() will atomically unlock
// the mutex and wait for the condition to be set. When either function
// returns, they will re-lock the mutex. We use an auto lock/unlock class
// (std::lock_guard) to allow us to return at any point in this function
// and not have to worry about unlocking the mutex.
std::unique_lock<std::mutex> lock(m_mutex);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (value = 0x%8.8x, timeout = %llu), m_value = 0x%8.8x\n",
__FUNCTION__, value, timeout.count(), m_value);
#endif
while (m_value == value) {
if (timeout == std::chrono::microseconds(0)) {
m_condition.wait(lock);
} else {
std::cv_status result = m_condition.wait_for(lock, timeout);
if (result == std::cv_status::timeout)
break;
}
}
if (m_value != value) {
new_value = m_value;
return true;
}
return false;
}
protected:
//----------------------------------------------------------------------
// pthread condition and mutex variable to control access and allow blocking
// between the main thread and the spotlight index thread.
//----------------------------------------------------------------------
T m_value; ///< The templatized value T that we are protecting access to
mutable std::mutex m_mutex; ///< The mutex to use when accessing the data
std::condition_variable m_condition; ///< The pthread condition variable to
///use for signaling that data available
///or changed.
private:
//------------------------------------------------------------------
/// Broadcast if needed.
///
/// Check to see if we need to broadcast to our condition variable
/// depending on the \a old_value and on the \a broadcast_type.
///
/// If \a broadcast_type is eBroadcastNever, no broadcast will be
/// sent.
///
/// If \a broadcast_type is eBroadcastAlways, the condition variable
/// will always be broadcast.
///
/// If \a broadcast_type is eBroadcastOnChange, the condition
/// variable be broadcast if the owned value changes.
//------------------------------------------------------------------
void Broadcast(T old_value, PredicateBroadcastType broadcast_type) {
bool broadcast =
(broadcast_type == eBroadcastAlways) ||
((broadcast_type == eBroadcastOnChange) && old_value != m_value);
#ifdef DB_PTHREAD_LOG_EVENTS
printf("%s (old_value = 0x%8.8x, broadcast_type = %i) m_value = 0x%8.8x, "
"broadcast = %u\n",
__FUNCTION__, old_value, broadcast_type, m_value, broadcast);
#endif
if (broadcast)
m_condition.notify_all();
}
DISALLOW_COPY_AND_ASSIGN(Predicate);
};
} // namespace lldb_private
#endif // liblldb_Predicate_h_