blob: ab7db7a2390905afb21d4dfc1c6a3adf5170456e [file] [log] [blame] [edit]
/***************************************************************
******************************************************************
**** Gaussian Elimination with partial pivoting. ****
**** This file contains the solution routine SGESL ****
******************************************************************
****************************************************************/
#include "ge.h"
static char SGESLSid[] = "@(#)sgesl.c 1.1 2/4/86";
int sgesl( a, ipvt, b, job )
struct FULL *a;
int *ipvt, job;
float b[];
/*
PURPOSE
SGESL solves the real system
a * x = b or trans(a) * x = b
using the factors computed by SGECO or SGEFA.
INPUT
a A pointer to the FULL matrix structure containing the factored
matrix. See the definition of FULL in ge.h.
ipvt The pivot vector (of length a->cd) from SGECO or SGEFA.
b The right hand side vector (of length a->cd).
job = 0 to solve a*x = b ,
= nonzero to solve trans(a)*x = b where
trans(a) is the transpose.
OUTPUT
b The solution vector x.
REMARKS
Error condition:
A division by zero will occur if the input factor contains a
zero on the diagonal. Technically this indicates singularity
but it is often caused by improper arguments or improper
setting of lda . It will not occur if the subroutines are
called correctly and if sgeco has set rcond .gt. 0.0
or sgefa has set info .eq. 0 .
*/
{
float t;
float *akk, *mik, *uik, *bi;
register int i, k;
int l, n, nm1;
n = a->cd;
nm1 = n - 1;
/* job = 0 , solve a * x = b. */
if( job == 0 ) {
/* Forward elimination. Solve l*y = b. */
for( k=0; k<nm1; k++, ipvt++ ) {
akk = a->pd[k] + k; /* akk points to a(k,k). */
/* Interchange b[k] and b[l] if necessary. */
l = *ipvt;
t = b[l];
if( l != k ) {
b[l] = b[k];
b[k] = t;
}
for( i=k+1, mik=akk+1; i<n; i++, mik++ )
b[i] += (*mik)*t;
}
/* Back substitution. Solve u*x = y. */
for( k=nm1; k>=0; k-- ) {
akk = a->pd[k] +k;
b[k] /= (*akk);
for( i=0, uik=a->pd[k]; i<k; i++, uik++ )
b[i] -= (*uik)*b[k];
}
return;
}
/* job = nonzero. Solve trans(a) * x = b. */
/* First solve trans(u)*y = b. */
for( k=0; k<n; k++ ) {
akk = a->pd[k] + k;
for( i=0, t=0.0, uik=a->pd[k], bi=b; i<k; i++, uik++, bi++ )
t += (*uik)*(*bi);
b[k] = (b[k] - t) / (*akk);
}
/* b now contains y. */
/* Solve trans(l)*x = y. */
ipvt += n-2;
for( k=n-2; k>=0; k--, ipvt-- ) {
for( i=k+1, t=0.0, mik=a->pd[k]+k+1, bi=b+k+1; i<n; i++, mik++, bi++ )
t += (*mik)*(*bi);
b[k] += t;
/* Interchange b(k) and b(ipvt(k)) if necessary. */
l = *ipvt;
if( l == k ) continue;
t = b[l];
b[l] = b[k];
b[k] = t;
}
return;
}