|  | /* This is the Linux kernel elf-loading code, ported into user space */ | 
|  | #include "qemu/osdep.h" | 
|  | #include <sys/param.h> | 
|  |  | 
|  | #include <sys/resource.h> | 
|  |  | 
|  | #include "qemu.h" | 
|  | #include "disas/disas.h" | 
|  | #include "qemu/path.h" | 
|  |  | 
|  | #ifdef _ARCH_PPC64 | 
|  | #undef ARCH_DLINFO | 
|  | #undef ELF_PLATFORM | 
|  | #undef ELF_HWCAP | 
|  | #undef ELF_HWCAP2 | 
|  | #undef ELF_CLASS | 
|  | #undef ELF_DATA | 
|  | #undef ELF_ARCH | 
|  | #endif | 
|  |  | 
|  | #define ELF_OSABI   ELFOSABI_SYSV | 
|  |  | 
|  | /* from personality.h */ | 
|  |  | 
|  | /* | 
|  | * Flags for bug emulation. | 
|  | * | 
|  | * These occupy the top three bytes. | 
|  | */ | 
|  | enum { | 
|  | ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */ | 
|  | FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to | 
|  | descriptors (signal handling) */ | 
|  | MMAP_PAGE_ZERO =    0x0100000, | 
|  | ADDR_COMPAT_LAYOUT = 0x0200000, | 
|  | READ_IMPLIES_EXEC = 0x0400000, | 
|  | ADDR_LIMIT_32BIT =  0x0800000, | 
|  | SHORT_INODE =       0x1000000, | 
|  | WHOLE_SECONDS =     0x2000000, | 
|  | STICKY_TIMEOUTS =   0x4000000, | 
|  | ADDR_LIMIT_3GB =    0x8000000, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Personality types. | 
|  | * | 
|  | * These go in the low byte.  Avoid using the top bit, it will | 
|  | * conflict with error returns. | 
|  | */ | 
|  | enum { | 
|  | PER_LINUX =         0x0000, | 
|  | PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT, | 
|  | PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS, | 
|  | PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | 
|  | PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | 
|  | PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | 
|  | PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | 
|  | PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | 
|  | PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS, | 
|  | PER_BSD =           0x0006, | 
|  | PER_SUNOS =         0x0006 | STICKY_TIMEOUTS, | 
|  | PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | 
|  | PER_LINUX32 =       0x0008, | 
|  | PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB, | 
|  | PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | 
|  | PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | 
|  | PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | 
|  | PER_RISCOS =        0x000c, | 
|  | PER_SOLARIS =       0x000d | STICKY_TIMEOUTS, | 
|  | PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | 
|  | PER_OSF4 =          0x000f,                  /* OSF/1 v4 */ | 
|  | PER_HPUX =          0x0010, | 
|  | PER_MASK =          0x00ff, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return the base personality without flags. | 
|  | */ | 
|  | #define personality(pers)       (pers & PER_MASK) | 
|  |  | 
|  | int info_is_fdpic(struct image_info *info) | 
|  | { | 
|  | return info->personality == PER_LINUX_FDPIC; | 
|  | } | 
|  |  | 
|  | /* this flag is uneffective under linux too, should be deleted */ | 
|  | #ifndef MAP_DENYWRITE | 
|  | #define MAP_DENYWRITE 0 | 
|  | #endif | 
|  |  | 
|  | /* should probably go in elf.h */ | 
|  | #ifndef ELIBBAD | 
|  | #define ELIBBAD 80 | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_WORDS_BIGENDIAN | 
|  | #define ELF_DATA        ELFDATA2MSB | 
|  | #else | 
|  | #define ELF_DATA        ELFDATA2LSB | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_ABI_MIPSN32 | 
|  | typedef abi_ullong      target_elf_greg_t; | 
|  | #define tswapreg(ptr)   tswap64(ptr) | 
|  | #else | 
|  | typedef abi_ulong       target_elf_greg_t; | 
|  | #define tswapreg(ptr)   tswapal(ptr) | 
|  | #endif | 
|  |  | 
|  | #ifdef USE_UID16 | 
|  | typedef abi_ushort      target_uid_t; | 
|  | typedef abi_ushort      target_gid_t; | 
|  | #else | 
|  | typedef abi_uint        target_uid_t; | 
|  | typedef abi_uint        target_gid_t; | 
|  | #endif | 
|  | typedef abi_int         target_pid_t; | 
|  |  | 
|  | #ifdef TARGET_I386 | 
|  |  | 
|  | #define ELF_PLATFORM get_elf_platform() | 
|  |  | 
|  | static const char *get_elf_platform(void) | 
|  | { | 
|  | static char elf_platform[] = "i386"; | 
|  | int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); | 
|  | if (family > 6) | 
|  | family = 6; | 
|  | if (family >= 3) | 
|  | elf_platform[1] = '0' + family; | 
|  | return elf_platform; | 
|  | } | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | X86CPU *cpu = X86_CPU(thread_cpu); | 
|  |  | 
|  | return cpu->env.features[FEAT_1_EDX]; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_X86_64 | 
|  | #define ELF_START_MMAP 0x2aaaaab000ULL | 
|  |  | 
|  | #define ELF_CLASS      ELFCLASS64 | 
|  | #define ELF_ARCH       EM_X86_64 | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | 
|  | { | 
|  | regs->rax = 0; | 
|  | regs->rsp = infop->start_stack; | 
|  | regs->rip = infop->entry; | 
|  | } | 
|  |  | 
|  | #define ELF_NREG    27 | 
|  | typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* | 
|  | * Note that ELF_NREG should be 29 as there should be place for | 
|  | * TRAPNO and ERR "registers" as well but linux doesn't dump | 
|  | * those. | 
|  | * | 
|  | * See linux kernel: arch/x86/include/asm/elf.h | 
|  | */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) | 
|  | { | 
|  | (*regs)[0] = env->regs[15]; | 
|  | (*regs)[1] = env->regs[14]; | 
|  | (*regs)[2] = env->regs[13]; | 
|  | (*regs)[3] = env->regs[12]; | 
|  | (*regs)[4] = env->regs[R_EBP]; | 
|  | (*regs)[5] = env->regs[R_EBX]; | 
|  | (*regs)[6] = env->regs[11]; | 
|  | (*regs)[7] = env->regs[10]; | 
|  | (*regs)[8] = env->regs[9]; | 
|  | (*regs)[9] = env->regs[8]; | 
|  | (*regs)[10] = env->regs[R_EAX]; | 
|  | (*regs)[11] = env->regs[R_ECX]; | 
|  | (*regs)[12] = env->regs[R_EDX]; | 
|  | (*regs)[13] = env->regs[R_ESI]; | 
|  | (*regs)[14] = env->regs[R_EDI]; | 
|  | (*regs)[15] = env->regs[R_EAX]; /* XXX */ | 
|  | (*regs)[16] = env->eip; | 
|  | (*regs)[17] = env->segs[R_CS].selector & 0xffff; | 
|  | (*regs)[18] = env->eflags; | 
|  | (*regs)[19] = env->regs[R_ESP]; | 
|  | (*regs)[20] = env->segs[R_SS].selector & 0xffff; | 
|  | (*regs)[21] = env->segs[R_FS].selector & 0xffff; | 
|  | (*regs)[22] = env->segs[R_GS].selector & 0xffff; | 
|  | (*regs)[23] = env->segs[R_DS].selector & 0xffff; | 
|  | (*regs)[24] = env->segs[R_ES].selector & 0xffff; | 
|  | (*regs)[25] = env->segs[R_FS].selector & 0xffff; | 
|  | (*regs)[26] = env->segs[R_GS].selector & 0xffff; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | /* | 
|  | * This is used to ensure we don't load something for the wrong architecture. | 
|  | */ | 
|  | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | 
|  |  | 
|  | /* | 
|  | * These are used to set parameters in the core dumps. | 
|  | */ | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_386 | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->esp = infop->start_stack; | 
|  | regs->eip = infop->entry; | 
|  |  | 
|  | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | 
|  | starts %edx contains a pointer to a function which might be | 
|  | registered using `atexit'.  This provides a mean for the | 
|  | dynamic linker to call DT_FINI functions for shared libraries | 
|  | that have been loaded before the code runs. | 
|  |  | 
|  | A value of 0 tells we have no such handler.  */ | 
|  | regs->edx = 0; | 
|  | } | 
|  |  | 
|  | #define ELF_NREG    17 | 
|  | typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* | 
|  | * Note that ELF_NREG should be 19 as there should be place for | 
|  | * TRAPNO and ERR "registers" as well but linux doesn't dump | 
|  | * those. | 
|  | * | 
|  | * See linux kernel: arch/x86/include/asm/elf.h | 
|  | */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) | 
|  | { | 
|  | (*regs)[0] = env->regs[R_EBX]; | 
|  | (*regs)[1] = env->regs[R_ECX]; | 
|  | (*regs)[2] = env->regs[R_EDX]; | 
|  | (*regs)[3] = env->regs[R_ESI]; | 
|  | (*regs)[4] = env->regs[R_EDI]; | 
|  | (*regs)[5] = env->regs[R_EBP]; | 
|  | (*regs)[6] = env->regs[R_EAX]; | 
|  | (*regs)[7] = env->segs[R_DS].selector & 0xffff; | 
|  | (*regs)[8] = env->segs[R_ES].selector & 0xffff; | 
|  | (*regs)[9] = env->segs[R_FS].selector & 0xffff; | 
|  | (*regs)[10] = env->segs[R_GS].selector & 0xffff; | 
|  | (*regs)[11] = env->regs[R_EAX]; /* XXX */ | 
|  | (*regs)[12] = env->eip; | 
|  | (*regs)[13] = env->segs[R_CS].selector & 0xffff; | 
|  | (*regs)[14] = env->eflags; | 
|  | (*regs)[15] = env->regs[R_ESP]; | 
|  | (*regs)[16] = env->segs[R_SS].selector & 0xffff; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_ARM | 
|  |  | 
|  | #ifndef TARGET_AARCH64 | 
|  | /* 32 bit ARM definitions */ | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #define ELF_ARCH        EM_ARM | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | abi_long stack = infop->start_stack; | 
|  | memset(regs, 0, sizeof(*regs)); | 
|  |  | 
|  | regs->uregs[16] = ARM_CPU_MODE_USR; | 
|  | if (infop->entry & 1) { | 
|  | regs->uregs[16] |= CPSR_T; | 
|  | } | 
|  | regs->uregs[15] = infop->entry & 0xfffffffe; | 
|  | regs->uregs[13] = infop->start_stack; | 
|  | /* FIXME - what to for failure of get_user()? */ | 
|  | get_user_ual(regs->uregs[2], stack + 8); /* envp */ | 
|  | get_user_ual(regs->uregs[1], stack + 4); /* envp */ | 
|  | /* XXX: it seems that r0 is zeroed after ! */ | 
|  | regs->uregs[0] = 0; | 
|  | /* For uClinux PIC binaries.  */ | 
|  | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ | 
|  | regs->uregs[10] = infop->start_data; | 
|  |  | 
|  | /* Support ARM FDPIC.  */ | 
|  | if (info_is_fdpic(infop)) { | 
|  | /* As described in the ABI document, r7 points to the loadmap info | 
|  | * prepared by the kernel. If an interpreter is needed, r8 points | 
|  | * to the interpreter loadmap and r9 points to the interpreter | 
|  | * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and | 
|  | * r9 points to the main program PT_DYNAMIC info. | 
|  | */ | 
|  | regs->uregs[7] = infop->loadmap_addr; | 
|  | if (infop->interpreter_loadmap_addr) { | 
|  | /* Executable is dynamically loaded.  */ | 
|  | regs->uregs[8] = infop->interpreter_loadmap_addr; | 
|  | regs->uregs[9] = infop->interpreter_pt_dynamic_addr; | 
|  | } else { | 
|  | regs->uregs[8] = 0; | 
|  | regs->uregs[9] = infop->pt_dynamic_addr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define ELF_NREG    18 | 
|  | typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) | 
|  | { | 
|  | (*regs)[0] = tswapreg(env->regs[0]); | 
|  | (*regs)[1] = tswapreg(env->regs[1]); | 
|  | (*regs)[2] = tswapreg(env->regs[2]); | 
|  | (*regs)[3] = tswapreg(env->regs[3]); | 
|  | (*regs)[4] = tswapreg(env->regs[4]); | 
|  | (*regs)[5] = tswapreg(env->regs[5]); | 
|  | (*regs)[6] = tswapreg(env->regs[6]); | 
|  | (*regs)[7] = tswapreg(env->regs[7]); | 
|  | (*regs)[8] = tswapreg(env->regs[8]); | 
|  | (*regs)[9] = tswapreg(env->regs[9]); | 
|  | (*regs)[10] = tswapreg(env->regs[10]); | 
|  | (*regs)[11] = tswapreg(env->regs[11]); | 
|  | (*regs)[12] = tswapreg(env->regs[12]); | 
|  | (*regs)[13] = tswapreg(env->regs[13]); | 
|  | (*regs)[14] = tswapreg(env->regs[14]); | 
|  | (*regs)[15] = tswapreg(env->regs[15]); | 
|  |  | 
|  | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); | 
|  | (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | enum | 
|  | { | 
|  | ARM_HWCAP_ARM_SWP       = 1 << 0, | 
|  | ARM_HWCAP_ARM_HALF      = 1 << 1, | 
|  | ARM_HWCAP_ARM_THUMB     = 1 << 2, | 
|  | ARM_HWCAP_ARM_26BIT     = 1 << 3, | 
|  | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | 
|  | ARM_HWCAP_ARM_FPA       = 1 << 5, | 
|  | ARM_HWCAP_ARM_VFP       = 1 << 6, | 
|  | ARM_HWCAP_ARM_EDSP      = 1 << 7, | 
|  | ARM_HWCAP_ARM_JAVA      = 1 << 8, | 
|  | ARM_HWCAP_ARM_IWMMXT    = 1 << 9, | 
|  | ARM_HWCAP_ARM_CRUNCH    = 1 << 10, | 
|  | ARM_HWCAP_ARM_THUMBEE   = 1 << 11, | 
|  | ARM_HWCAP_ARM_NEON      = 1 << 12, | 
|  | ARM_HWCAP_ARM_VFPv3     = 1 << 13, | 
|  | ARM_HWCAP_ARM_VFPv3D16  = 1 << 14, | 
|  | ARM_HWCAP_ARM_TLS       = 1 << 15, | 
|  | ARM_HWCAP_ARM_VFPv4     = 1 << 16, | 
|  | ARM_HWCAP_ARM_IDIVA     = 1 << 17, | 
|  | ARM_HWCAP_ARM_IDIVT     = 1 << 18, | 
|  | ARM_HWCAP_ARM_VFPD32    = 1 << 19, | 
|  | ARM_HWCAP_ARM_LPAE      = 1 << 20, | 
|  | ARM_HWCAP_ARM_EVTSTRM   = 1 << 21, | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | ARM_HWCAP2_ARM_AES      = 1 << 0, | 
|  | ARM_HWCAP2_ARM_PMULL    = 1 << 1, | 
|  | ARM_HWCAP2_ARM_SHA1     = 1 << 2, | 
|  | ARM_HWCAP2_ARM_SHA2     = 1 << 3, | 
|  | ARM_HWCAP2_ARM_CRC32    = 1 << 4, | 
|  | }; | 
|  |  | 
|  | /* The commpage only exists for 32 bit kernels */ | 
|  |  | 
|  | /* Return 1 if the proposed guest space is suitable for the guest. | 
|  | * Return 0 if the proposed guest space isn't suitable, but another | 
|  | * address space should be tried. | 
|  | * Return -1 if there is no way the proposed guest space can be | 
|  | * valid regardless of the base. | 
|  | * The guest code may leave a page mapped and populate it if the | 
|  | * address is suitable. | 
|  | */ | 
|  | static int init_guest_commpage(unsigned long guest_base, | 
|  | unsigned long guest_size) | 
|  | { | 
|  | unsigned long real_start, test_page_addr; | 
|  |  | 
|  | /* We need to check that we can force a fault on access to the | 
|  | * commpage at 0xffff0fxx | 
|  | */ | 
|  | test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); | 
|  |  | 
|  | /* If the commpage lies within the already allocated guest space, | 
|  | * then there is no way we can allocate it. | 
|  | * | 
|  | * You may be thinking that that this check is redundant because | 
|  | * we already validated the guest size against MAX_RESERVED_VA; | 
|  | * but if qemu_host_page_mask is unusually large, then | 
|  | * test_page_addr may be lower. | 
|  | */ | 
|  | if (test_page_addr >= guest_base | 
|  | && test_page_addr < (guest_base + guest_size)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Note it needs to be writeable to let us initialise it */ | 
|  | real_start = (unsigned long) | 
|  | mmap((void *)test_page_addr, qemu_host_page_size, | 
|  | PROT_READ | PROT_WRITE, | 
|  | MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | 
|  |  | 
|  | /* If we can't map it then try another address */ | 
|  | if (real_start == -1ul) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (real_start != test_page_addr) { | 
|  | /* OS didn't put the page where we asked - unmap and reject */ | 
|  | munmap((void *)real_start, qemu_host_page_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Leave the page mapped | 
|  | * Populate it (mmap should have left it all 0'd) | 
|  | */ | 
|  |  | 
|  | /* Kernel helper versions */ | 
|  | __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); | 
|  |  | 
|  | /* Now it's populated make it RO */ | 
|  | if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { | 
|  | perror("Protecting guest commpage"); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | return 1; /* All good */ | 
|  | } | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  | #define ELF_HWCAP2 get_elf_hwcap2() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  | uint32_t hwcaps = 0; | 
|  |  | 
|  | hwcaps |= ARM_HWCAP_ARM_SWP; | 
|  | hwcaps |= ARM_HWCAP_ARM_HALF; | 
|  | hwcaps |= ARM_HWCAP_ARM_THUMB; | 
|  | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; | 
|  |  | 
|  | /* probe for the extra features */ | 
|  | #define GET_FEATURE(feat, hwcap) \ | 
|  | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) | 
|  | /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ | 
|  | GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); | 
|  | GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); | 
|  | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); | 
|  | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); | 
|  | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); | 
|  | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); | 
|  | GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); | 
|  | GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); | 
|  | GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); | 
|  | GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); | 
|  | /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. | 
|  | * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of | 
|  | * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated | 
|  | * to our VFP_FP16 feature bit. | 
|  | */ | 
|  | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); | 
|  | GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); | 
|  |  | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | static uint32_t get_elf_hwcap2(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  | uint32_t hwcaps = 0; | 
|  |  | 
|  | GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); | 
|  | GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); | 
|  | GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); | 
|  | GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); | 
|  | GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | #undef GET_FEATURE | 
|  |  | 
|  | #else | 
|  | /* 64 bit ARM definitions */ | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #define ELF_ARCH        EM_AARCH64 | 
|  | #define ELF_CLASS       ELFCLASS64 | 
|  | #define ELF_PLATFORM    "aarch64" | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | abi_long stack = infop->start_stack; | 
|  | memset(regs, 0, sizeof(*regs)); | 
|  |  | 
|  | regs->pc = infop->entry & ~0x3ULL; | 
|  | regs->sp = stack; | 
|  | } | 
|  |  | 
|  | #define ELF_NREG    34 | 
|  | typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUARMState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | (*regs)[i] = tswapreg(env->xregs[i]); | 
|  | } | 
|  | (*regs)[32] = tswapreg(env->pc); | 
|  | (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | enum { | 
|  | ARM_HWCAP_A64_FP            = 1 << 0, | 
|  | ARM_HWCAP_A64_ASIMD         = 1 << 1, | 
|  | ARM_HWCAP_A64_EVTSTRM       = 1 << 2, | 
|  | ARM_HWCAP_A64_AES           = 1 << 3, | 
|  | ARM_HWCAP_A64_PMULL         = 1 << 4, | 
|  | ARM_HWCAP_A64_SHA1          = 1 << 5, | 
|  | ARM_HWCAP_A64_SHA2          = 1 << 6, | 
|  | ARM_HWCAP_A64_CRC32         = 1 << 7, | 
|  | ARM_HWCAP_A64_ATOMICS       = 1 << 8, | 
|  | ARM_HWCAP_A64_FPHP          = 1 << 9, | 
|  | ARM_HWCAP_A64_ASIMDHP       = 1 << 10, | 
|  | ARM_HWCAP_A64_CPUID         = 1 << 11, | 
|  | ARM_HWCAP_A64_ASIMDRDM      = 1 << 12, | 
|  | ARM_HWCAP_A64_JSCVT         = 1 << 13, | 
|  | ARM_HWCAP_A64_FCMA          = 1 << 14, | 
|  | ARM_HWCAP_A64_LRCPC         = 1 << 15, | 
|  | ARM_HWCAP_A64_DCPOP         = 1 << 16, | 
|  | ARM_HWCAP_A64_SHA3          = 1 << 17, | 
|  | ARM_HWCAP_A64_SM3           = 1 << 18, | 
|  | ARM_HWCAP_A64_SM4           = 1 << 19, | 
|  | ARM_HWCAP_A64_ASIMDDP       = 1 << 20, | 
|  | ARM_HWCAP_A64_SHA512        = 1 << 21, | 
|  | ARM_HWCAP_A64_SVE           = 1 << 22, | 
|  | }; | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  | uint32_t hwcaps = 0; | 
|  |  | 
|  | hwcaps |= ARM_HWCAP_A64_FP; | 
|  | hwcaps |= ARM_HWCAP_A64_ASIMD; | 
|  |  | 
|  | /* probe for the extra features */ | 
|  | #define GET_FEATURE(feat, hwcap) \ | 
|  | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) | 
|  | GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); | 
|  | GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); | 
|  | GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); | 
|  | GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); | 
|  | GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); | 
|  | GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3); | 
|  | GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3); | 
|  | GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4); | 
|  | GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512); | 
|  | GET_FEATURE(ARM_FEATURE_V8_FP16, | 
|  | ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); | 
|  | GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS); | 
|  | GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM); | 
|  | GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP); | 
|  | GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA); | 
|  | GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE); | 
|  | #undef GET_FEATURE | 
|  |  | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | #endif /* not TARGET_AARCH64 */ | 
|  | #endif /* TARGET_ARM */ | 
|  |  | 
|  | #ifdef TARGET_SPARC | 
|  | #ifdef TARGET_SPARC64 | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  | #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ | 
|  | | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) | 
|  | #ifndef TARGET_ABI32 | 
|  | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) | 
|  | #else | 
|  | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) | 
|  | #endif | 
|  |  | 
|  | #define ELF_CLASS   ELFCLASS64 | 
|  | #define ELF_ARCH    EM_SPARCV9 | 
|  |  | 
|  | #define STACK_BIAS              2047 | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | #ifndef TARGET_ABI32 | 
|  | regs->tstate = 0; | 
|  | #endif | 
|  | regs->pc = infop->entry; | 
|  | regs->npc = regs->pc + 4; | 
|  | regs->y = 0; | 
|  | #ifdef TARGET_ABI32 | 
|  | regs->u_regs[14] = infop->start_stack - 16 * 4; | 
|  | #else | 
|  | if (personality(infop->personality) == PER_LINUX32) | 
|  | regs->u_regs[14] = infop->start_stack - 16 * 4; | 
|  | else | 
|  | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #else | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  | #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ | 
|  | | HWCAP_SPARC_MULDIV) | 
|  |  | 
|  | #define ELF_CLASS   ELFCLASS32 | 
|  | #define ELF_ARCH    EM_SPARC | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->psr = 0; | 
|  | regs->pc = infop->entry; | 
|  | regs->npc = regs->pc + 4; | 
|  | regs->y = 0; | 
|  | regs->u_regs[14] = infop->start_stack - 16 * 4; | 
|  | } | 
|  |  | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_PPC | 
|  |  | 
|  | #define ELF_MACHINE    PPC_ELF_MACHINE | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) | 
|  |  | 
|  | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS64 | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define ELF_ARCH        EM_PPC | 
|  |  | 
|  | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). | 
|  | See arch/powerpc/include/asm/cputable.h.  */ | 
|  | enum { | 
|  | QEMU_PPC_FEATURE_32 = 0x80000000, | 
|  | QEMU_PPC_FEATURE_64 = 0x40000000, | 
|  | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | 
|  | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | 
|  | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | 
|  | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | 
|  | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | 
|  | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | 
|  | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | 
|  | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | 
|  | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | 
|  | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | 
|  | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | 
|  | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | 
|  | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | 
|  | QEMU_PPC_FEATURE_CELL = 0x00010000, | 
|  | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | 
|  | QEMU_PPC_FEATURE_SMT = 0x00004000, | 
|  | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | 
|  | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | 
|  | QEMU_PPC_FEATURE_PA6T = 0x00000800, | 
|  | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | 
|  | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | 
|  | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | 
|  | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | 
|  | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | 
|  |  | 
|  | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | 
|  | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | 
|  |  | 
|  | /* Feature definitions in AT_HWCAP2.  */ | 
|  | QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ | 
|  | QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ | 
|  | QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ | 
|  | QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ | 
|  | QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ | 
|  | QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ | 
|  | }; | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | 
|  | uint32_t features = 0; | 
|  |  | 
|  | /* We don't have to be terribly complete here; the high points are | 
|  | Altivec/FP/SPE support.  Anything else is just a bonus.  */ | 
|  | #define GET_FEATURE(flag, feature)                                      \ | 
|  | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | 
|  | #define GET_FEATURE2(flags, feature) \ | 
|  | do { \ | 
|  | if ((cpu->env.insns_flags2 & flags) == flags) { \ | 
|  | features |= feature; \ | 
|  | } \ | 
|  | } while (0) | 
|  | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); | 
|  | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | 
|  | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | 
|  | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | 
|  | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | 
|  | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | 
|  | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | 
|  | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | 
|  | GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); | 
|  | GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); | 
|  | GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | | 
|  | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), | 
|  | QEMU_PPC_FEATURE_ARCH_2_06); | 
|  | #undef GET_FEATURE | 
|  | #undef GET_FEATURE2 | 
|  |  | 
|  | return features; | 
|  | } | 
|  |  | 
|  | #define ELF_HWCAP2 get_elf_hwcap2() | 
|  |  | 
|  | static uint32_t get_elf_hwcap2(void) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | 
|  | uint32_t features = 0; | 
|  |  | 
|  | #define GET_FEATURE(flag, feature)                                      \ | 
|  | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | 
|  | #define GET_FEATURE2(flag, feature)                                      \ | 
|  | do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) | 
|  |  | 
|  | GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); | 
|  | GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); | 
|  | GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | | 
|  | PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); | 
|  |  | 
|  | #undef GET_FEATURE | 
|  | #undef GET_FEATURE2 | 
|  |  | 
|  | return features; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The requirements here are: | 
|  | * - keep the final alignment of sp (sp & 0xf) | 
|  | * - make sure the 32-bit value at the first 16 byte aligned position of | 
|  | *   AUXV is greater than 16 for glibc compatibility. | 
|  | *   AT_IGNOREPPC is used for that. | 
|  | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | 
|  | *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | 
|  | */ | 
|  | #define DLINFO_ARCH_ITEMS       5 | 
|  | #define ARCH_DLINFO                                     \ | 
|  | do {                                                \ | 
|  | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \ | 
|  | /*                                              \ | 
|  | * Handle glibc compatibility: these magic entries must \ | 
|  | * be at the lowest addresses in the final auxv.        \ | 
|  | */                                             \ | 
|  | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \ | 
|  | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \ | 
|  | NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ | 
|  | NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ | 
|  | NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \ | 
|  | } while (0) | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) | 
|  | { | 
|  | _regs->gpr[1] = infop->start_stack; | 
|  | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) | 
|  | if (get_ppc64_abi(infop) < 2) { | 
|  | uint64_t val; | 
|  | get_user_u64(val, infop->entry + 8); | 
|  | _regs->gpr[2] = val + infop->load_bias; | 
|  | get_user_u64(val, infop->entry); | 
|  | infop->entry = val + infop->load_bias; | 
|  | } else { | 
|  | _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */ | 
|  | } | 
|  | #endif | 
|  | _regs->nip = infop->entry; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/powerpc/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 48 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) | 
|  | { | 
|  | int i; | 
|  | target_ulong ccr = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | 
|  | (*regs)[i] = tswapreg(env->gpr[i]); | 
|  | } | 
|  |  | 
|  | (*regs)[32] = tswapreg(env->nip); | 
|  | (*regs)[33] = tswapreg(env->msr); | 
|  | (*regs)[35] = tswapreg(env->ctr); | 
|  | (*regs)[36] = tswapreg(env->lr); | 
|  | (*regs)[37] = tswapreg(env->xer); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { | 
|  | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); | 
|  | } | 
|  | (*regs)[38] = tswapreg(ccr); | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_MIPS | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #ifdef TARGET_MIPS64 | 
|  | #define ELF_CLASS   ELFCLASS64 | 
|  | #else | 
|  | #define ELF_CLASS   ELFCLASS32 | 
|  | #endif | 
|  | #define ELF_ARCH    EM_MIPS | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->cp0_status = 2 << CP0St_KSU; | 
|  | regs->cp0_epc = infop->entry; | 
|  | regs->regs[29] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/mips/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 45 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* See linux kernel: arch/mips/include/asm/reg.h.  */ | 
|  | enum { | 
|  | #ifdef TARGET_MIPS64 | 
|  | TARGET_EF_R0 = 0, | 
|  | #else | 
|  | TARGET_EF_R0 = 6, | 
|  | #endif | 
|  | TARGET_EF_R26 = TARGET_EF_R0 + 26, | 
|  | TARGET_EF_R27 = TARGET_EF_R0 + 27, | 
|  | TARGET_EF_LO = TARGET_EF_R0 + 32, | 
|  | TARGET_EF_HI = TARGET_EF_R0 + 33, | 
|  | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | 
|  | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | 
|  | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | 
|  | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | 
|  | }; | 
|  |  | 
|  | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < TARGET_EF_R0; i++) { | 
|  | (*regs)[i] = 0; | 
|  | } | 
|  | (*regs)[TARGET_EF_R0] = 0; | 
|  |  | 
|  | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | 
|  | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); | 
|  | } | 
|  |  | 
|  | (*regs)[TARGET_EF_R26] = 0; | 
|  | (*regs)[TARGET_EF_R27] = 0; | 
|  | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); | 
|  | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); | 
|  | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); | 
|  | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); | 
|  | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); | 
|  | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE        4096 | 
|  |  | 
|  | /* See arch/mips/include/uapi/asm/hwcap.h.  */ | 
|  | enum { | 
|  | HWCAP_MIPS_R6           = (1 << 0), | 
|  | HWCAP_MIPS_MSA          = (1 << 1), | 
|  | }; | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | MIPSCPU *cpu = MIPS_CPU(thread_cpu); | 
|  | uint32_t hwcaps = 0; | 
|  |  | 
|  | #define GET_FEATURE(flag, hwcap) \ | 
|  | do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) | 
|  |  | 
|  | GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); | 
|  | GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); | 
|  |  | 
|  | #undef GET_FEATURE | 
|  |  | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | #endif /* TARGET_MIPS */ | 
|  |  | 
|  | #ifdef TARGET_MICROBLAZE | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) | 
|  |  | 
|  | #define ELF_CLASS   ELFCLASS32 | 
|  | #define ELF_ARCH    EM_MICROBLAZE | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->pc = infop->entry; | 
|  | regs->r1 = infop->start_stack; | 
|  |  | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE        4096 | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_NREG 38 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) | 
|  | { | 
|  | int i, pos = 0; | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | (*regs)[pos++] = tswapreg(env->regs[i]); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 6; i++) { | 
|  | (*regs)[pos++] = tswapreg(env->sregs[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* TARGET_MICROBLAZE */ | 
|  |  | 
|  | #ifdef TARGET_NIOS2 | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) | 
|  |  | 
|  | #define ELF_CLASS   ELFCLASS32 | 
|  | #define ELF_ARCH    EM_ALTERA_NIOS2 | 
|  |  | 
|  | static void init_thread(struct target_pt_regs *regs, struct image_info *infop) | 
|  | { | 
|  | regs->ea = infop->entry; | 
|  | regs->sp = infop->start_stack; | 
|  | regs->estatus = 0x3; | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE        4096 | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_NREG 49 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUNios2State *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | (*regs)[0] = -1; | 
|  | for (i = 1; i < 8; i++)    /* r0-r7 */ | 
|  | (*regs)[i] = tswapreg(env->regs[i + 7]); | 
|  |  | 
|  | for (i = 8; i < 16; i++)   /* r8-r15 */ | 
|  | (*regs)[i] = tswapreg(env->regs[i - 8]); | 
|  |  | 
|  | for (i = 16; i < 24; i++)  /* r16-r23 */ | 
|  | (*regs)[i] = tswapreg(env->regs[i + 7]); | 
|  | (*regs)[24] = -1;    /* R_ET */ | 
|  | (*regs)[25] = -1;    /* R_BT */ | 
|  | (*regs)[26] = tswapreg(env->regs[R_GP]); | 
|  | (*regs)[27] = tswapreg(env->regs[R_SP]); | 
|  | (*regs)[28] = tswapreg(env->regs[R_FP]); | 
|  | (*regs)[29] = tswapreg(env->regs[R_EA]); | 
|  | (*regs)[30] = -1;    /* R_SSTATUS */ | 
|  | (*regs)[31] = tswapreg(env->regs[R_RA]); | 
|  |  | 
|  | (*regs)[32] = tswapreg(env->regs[R_PC]); | 
|  |  | 
|  | (*regs)[33] = -1; /* R_STATUS */ | 
|  | (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); | 
|  |  | 
|  | for (i = 35; i < 49; i++)    /* ... */ | 
|  | (*regs)[i] = -1; | 
|  | } | 
|  |  | 
|  | #endif /* TARGET_NIOS2 */ | 
|  |  | 
|  | #ifdef TARGET_OPENRISC | 
|  |  | 
|  | #define ELF_START_MMAP 0x08000000 | 
|  |  | 
|  | #define ELF_ARCH EM_OPENRISC | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #define ELF_DATA  ELFDATA2MSB | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->pc = infop->entry; | 
|  | regs->gpr[1] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE 8192 | 
|  |  | 
|  | /* See linux kernel arch/openrisc/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 34 /* gprs and pc, sr */ | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUOpenRISCState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); | 
|  | } | 
|  | (*regs)[32] = tswapreg(env->pc); | 
|  | (*regs)[33] = tswapreg(cpu_get_sr(env)); | 
|  | } | 
|  | #define ELF_HWCAP 0 | 
|  | #define ELF_PLATFORM NULL | 
|  |  | 
|  | #endif /* TARGET_OPENRISC */ | 
|  |  | 
|  | #ifdef TARGET_SH4 | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #define ELF_ARCH  EM_SH | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | /* Check other registers XXXXX */ | 
|  | regs->pc = infop->entry; | 
|  | regs->regs[15] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/sh/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 23 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* See linux kernel: arch/sh/include/asm/ptrace.h.  */ | 
|  | enum { | 
|  | TARGET_REG_PC = 16, | 
|  | TARGET_REG_PR = 17, | 
|  | TARGET_REG_SR = 18, | 
|  | TARGET_REG_GBR = 19, | 
|  | TARGET_REG_MACH = 20, | 
|  | TARGET_REG_MACL = 21, | 
|  | TARGET_REG_SYSCALL = 22 | 
|  | }; | 
|  |  | 
|  | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUSH4State *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | (*regs)[i] = tswapreg(env->gregs[i]); | 
|  | } | 
|  |  | 
|  | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | 
|  | (*regs)[TARGET_REG_PR] = tswapreg(env->pr); | 
|  | (*regs)[TARGET_REG_SR] = tswapreg(env->sr); | 
|  | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); | 
|  | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); | 
|  | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); | 
|  | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE        4096 | 
|  |  | 
|  | enum { | 
|  | SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */ | 
|  | SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */ | 
|  | SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ | 
|  | SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */ | 
|  | SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */ | 
|  | SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */ | 
|  | SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */ | 
|  | SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */ | 
|  | SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */ | 
|  | SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */ | 
|  | }; | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | SuperHCPU *cpu = SUPERH_CPU(thread_cpu); | 
|  | uint32_t hwcap = 0; | 
|  |  | 
|  | hwcap |= SH_CPU_HAS_FPU; | 
|  |  | 
|  | if (cpu->env.features & SH_FEATURE_SH4A) { | 
|  | hwcap |= SH_CPU_HAS_LLSC; | 
|  | } | 
|  |  | 
|  | return hwcap; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_CRIS | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #define ELF_ARCH  EM_CRIS | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->erp = infop->entry; | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE        8192 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_M68K | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_68K | 
|  |  | 
|  | /* ??? Does this need to do anything? | 
|  | #define ELF_PLAT_INIT(_r) */ | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->usp = infop->start_stack; | 
|  | regs->sr = 0; | 
|  | regs->pc = infop->entry; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/m68k/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 20 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) | 
|  | { | 
|  | (*regs)[0] = tswapreg(env->dregs[1]); | 
|  | (*regs)[1] = tswapreg(env->dregs[2]); | 
|  | (*regs)[2] = tswapreg(env->dregs[3]); | 
|  | (*regs)[3] = tswapreg(env->dregs[4]); | 
|  | (*regs)[4] = tswapreg(env->dregs[5]); | 
|  | (*regs)[5] = tswapreg(env->dregs[6]); | 
|  | (*regs)[6] = tswapreg(env->dregs[7]); | 
|  | (*regs)[7] = tswapreg(env->aregs[0]); | 
|  | (*regs)[8] = tswapreg(env->aregs[1]); | 
|  | (*regs)[9] = tswapreg(env->aregs[2]); | 
|  | (*regs)[10] = tswapreg(env->aregs[3]); | 
|  | (*regs)[11] = tswapreg(env->aregs[4]); | 
|  | (*regs)[12] = tswapreg(env->aregs[5]); | 
|  | (*regs)[13] = tswapreg(env->aregs[6]); | 
|  | (*regs)[14] = tswapreg(env->dregs[0]); | 
|  | (*regs)[15] = tswapreg(env->aregs[7]); | 
|  | (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ | 
|  | (*regs)[17] = tswapreg(env->sr); | 
|  | (*regs)[18] = tswapreg(env->pc); | 
|  | (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */ | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       8192 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_ALPHA | 
|  |  | 
|  | #define ELF_START_MMAP (0x30000000000ULL) | 
|  |  | 
|  | #define ELF_CLASS      ELFCLASS64 | 
|  | #define ELF_ARCH       EM_ALPHA | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->pc = infop->entry; | 
|  | regs->ps = 8; | 
|  | regs->usp = infop->start_stack; | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE        8192 | 
|  |  | 
|  | #endif /* TARGET_ALPHA */ | 
|  |  | 
|  | #ifdef TARGET_S390X | 
|  |  | 
|  | #define ELF_START_MMAP (0x20000000000ULL) | 
|  |  | 
|  | #define ELF_CLASS	ELFCLASS64 | 
|  | #define ELF_DATA	ELFDATA2MSB | 
|  | #define ELF_ARCH	EM_S390 | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | 
|  | { | 
|  | regs->psw.addr = infop->entry; | 
|  | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; | 
|  | regs->gprs[15] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | #endif /* TARGET_S390X */ | 
|  |  | 
|  | #ifdef TARGET_TILEGX | 
|  |  | 
|  | /* 42 bits real used address, a half for user mode */ | 
|  | #define ELF_START_MMAP (0x00000020000000000ULL) | 
|  |  | 
|  | #define elf_check_arch(x) ((x) == EM_TILEGX) | 
|  |  | 
|  | #define ELF_CLASS   ELFCLASS64 | 
|  | #define ELF_DATA    ELFDATA2LSB | 
|  | #define ELF_ARCH    EM_TILEGX | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->pc = infop->entry; | 
|  | regs->sp = infop->start_stack; | 
|  |  | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */ | 
|  |  | 
|  | #endif /* TARGET_TILEGX */ | 
|  |  | 
|  | #ifdef TARGET_RISCV | 
|  |  | 
|  | #define ELF_START_MMAP 0x80000000 | 
|  | #define ELF_ARCH  EM_RISCV | 
|  |  | 
|  | #ifdef TARGET_RISCV32 | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #else | 
|  | #define ELF_CLASS ELFCLASS64 | 
|  | #endif | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->sepc = infop->entry; | 
|  | regs->sp = infop->start_stack; | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE 4096 | 
|  |  | 
|  | #endif /* TARGET_RISCV */ | 
|  |  | 
|  | #ifdef TARGET_HPPA | 
|  |  | 
|  | #define ELF_START_MMAP  0x80000000 | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_PARISC | 
|  | #define ELF_PLATFORM    "PARISC" | 
|  | #define STACK_GROWS_DOWN 0 | 
|  | #define STACK_ALIGNMENT  64 | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->iaoq[0] = infop->entry; | 
|  | regs->iaoq[1] = infop->entry + 4; | 
|  | regs->gr[23] = 0; | 
|  | regs->gr[24] = infop->arg_start; | 
|  | regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); | 
|  | /* The top-of-stack contains a linkage buffer.  */ | 
|  | regs->gr[30] = infop->start_stack + 64; | 
|  | regs->gr[31] = infop->entry; | 
|  | } | 
|  |  | 
|  | #endif /* TARGET_HPPA */ | 
|  |  | 
|  | #ifdef TARGET_XTENSA | 
|  |  | 
|  | #define ELF_START_MMAP 0x20000000 | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_XTENSA | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->windowbase = 0; | 
|  | regs->windowstart = 1; | 
|  | regs->areg[1] = infop->start_stack; | 
|  | regs->pc = infop->entry; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/xtensa/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 128 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | enum { | 
|  | TARGET_REG_PC, | 
|  | TARGET_REG_PS, | 
|  | TARGET_REG_LBEG, | 
|  | TARGET_REG_LEND, | 
|  | TARGET_REG_LCOUNT, | 
|  | TARGET_REG_SAR, | 
|  | TARGET_REG_WINDOWSTART, | 
|  | TARGET_REG_WINDOWBASE, | 
|  | TARGET_REG_THREADPTR, | 
|  | TARGET_REG_AR0 = 64, | 
|  | }; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUXtensaState *env) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | 
|  | (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); | 
|  | (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); | 
|  | (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); | 
|  | (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); | 
|  | (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); | 
|  | (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); | 
|  | (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); | 
|  | (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); | 
|  | xtensa_sync_phys_from_window((CPUXtensaState *)env); | 
|  | for (i = 0; i < env->config->nareg; ++i) { | 
|  | (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | #endif /* TARGET_XTENSA */ | 
|  |  | 
|  | #ifndef ELF_PLATFORM | 
|  | #define ELF_PLATFORM (NULL) | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_MACHINE | 
|  | #define ELF_MACHINE ELF_ARCH | 
|  | #endif | 
|  |  | 
|  | #ifndef elf_check_arch | 
|  | #define elf_check_arch(x) ((x) == ELF_ARCH) | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_HWCAP | 
|  | #define ELF_HWCAP 0 | 
|  | #endif | 
|  |  | 
|  | #ifndef STACK_GROWS_DOWN | 
|  | #define STACK_GROWS_DOWN 1 | 
|  | #endif | 
|  |  | 
|  | #ifndef STACK_ALIGNMENT | 
|  | #define STACK_ALIGNMENT 16 | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_ABI32 | 
|  | #undef ELF_CLASS | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #undef bswaptls | 
|  | #define bswaptls(ptr) bswap32s(ptr) | 
|  | #endif | 
|  |  | 
|  | #include "elf.h" | 
|  |  | 
|  | struct exec | 
|  | { | 
|  | unsigned int a_info;   /* Use macros N_MAGIC, etc for access */ | 
|  | unsigned int a_text;   /* length of text, in bytes */ | 
|  | unsigned int a_data;   /* length of data, in bytes */ | 
|  | unsigned int a_bss;    /* length of uninitialized data area, in bytes */ | 
|  | unsigned int a_syms;   /* length of symbol table data in file, in bytes */ | 
|  | unsigned int a_entry;  /* start address */ | 
|  | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | 
|  | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | 
|  | #define OMAGIC 0407 | 
|  | #define NMAGIC 0410 | 
|  | #define ZMAGIC 0413 | 
|  | #define QMAGIC 0314 | 
|  |  | 
|  | /* Necessary parameters */ | 
|  | #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE | 
|  | #define TARGET_ELF_PAGESTART(_v) ((_v) & \ | 
|  | ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) | 
|  | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) | 
|  |  | 
|  | #define DLINFO_ITEMS 15 | 
|  |  | 
|  | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) | 
|  | { | 
|  | memcpy(to, from, n); | 
|  | } | 
|  |  | 
|  | #ifdef BSWAP_NEEDED | 
|  | static void bswap_ehdr(struct elfhdr *ehdr) | 
|  | { | 
|  | bswap16s(&ehdr->e_type);            /* Object file type */ | 
|  | bswap16s(&ehdr->e_machine);         /* Architecture */ | 
|  | bswap32s(&ehdr->e_version);         /* Object file version */ | 
|  | bswaptls(&ehdr->e_entry);           /* Entry point virtual address */ | 
|  | bswaptls(&ehdr->e_phoff);           /* Program header table file offset */ | 
|  | bswaptls(&ehdr->e_shoff);           /* Section header table file offset */ | 
|  | bswap32s(&ehdr->e_flags);           /* Processor-specific flags */ | 
|  | bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */ | 
|  | bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */ | 
|  | bswap16s(&ehdr->e_phnum);           /* Program header table entry count */ | 
|  | bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */ | 
|  | bswap16s(&ehdr->e_shnum);           /* Section header table entry count */ | 
|  | bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */ | 
|  | } | 
|  |  | 
|  | static void bswap_phdr(struct elf_phdr *phdr, int phnum) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < phnum; ++i, ++phdr) { | 
|  | bswap32s(&phdr->p_type);        /* Segment type */ | 
|  | bswap32s(&phdr->p_flags);       /* Segment flags */ | 
|  | bswaptls(&phdr->p_offset);      /* Segment file offset */ | 
|  | bswaptls(&phdr->p_vaddr);       /* Segment virtual address */ | 
|  | bswaptls(&phdr->p_paddr);       /* Segment physical address */ | 
|  | bswaptls(&phdr->p_filesz);      /* Segment size in file */ | 
|  | bswaptls(&phdr->p_memsz);       /* Segment size in memory */ | 
|  | bswaptls(&phdr->p_align);       /* Segment alignment */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bswap_shdr(struct elf_shdr *shdr, int shnum) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < shnum; ++i, ++shdr) { | 
|  | bswap32s(&shdr->sh_name); | 
|  | bswap32s(&shdr->sh_type); | 
|  | bswaptls(&shdr->sh_flags); | 
|  | bswaptls(&shdr->sh_addr); | 
|  | bswaptls(&shdr->sh_offset); | 
|  | bswaptls(&shdr->sh_size); | 
|  | bswap32s(&shdr->sh_link); | 
|  | bswap32s(&shdr->sh_info); | 
|  | bswaptls(&shdr->sh_addralign); | 
|  | bswaptls(&shdr->sh_entsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bswap_sym(struct elf_sym *sym) | 
|  | { | 
|  | bswap32s(&sym->st_name); | 
|  | bswaptls(&sym->st_value); | 
|  | bswaptls(&sym->st_size); | 
|  | bswap16s(&sym->st_shndx); | 
|  | } | 
|  | #else | 
|  | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | 
|  | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | 
|  | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | 
|  | static inline void bswap_sym(struct elf_sym *sym) { } | 
|  | #endif | 
|  |  | 
|  | #ifdef USE_ELF_CORE_DUMP | 
|  | static int elf_core_dump(int, const CPUArchState *); | 
|  | #endif /* USE_ELF_CORE_DUMP */ | 
|  | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); | 
|  |  | 
|  | /* Verify the portions of EHDR within E_IDENT for the target. | 
|  | This can be performed before bswapping the entire header.  */ | 
|  | static bool elf_check_ident(struct elfhdr *ehdr) | 
|  | { | 
|  | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | 
|  | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | 
|  | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | 
|  | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | 
|  | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | 
|  | && ehdr->e_ident[EI_DATA] == ELF_DATA | 
|  | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | 
|  | } | 
|  |  | 
|  | /* Verify the portions of EHDR outside of E_IDENT for the target. | 
|  | This has to wait until after bswapping the header.  */ | 
|  | static bool elf_check_ehdr(struct elfhdr *ehdr) | 
|  | { | 
|  | return (elf_check_arch(ehdr->e_machine) | 
|  | && ehdr->e_ehsize == sizeof(struct elfhdr) | 
|  | && ehdr->e_phentsize == sizeof(struct elf_phdr) | 
|  | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'copy_elf_strings()' copies argument/envelope strings from user | 
|  | * memory to free pages in kernel mem. These are in a format ready | 
|  | * to be put directly into the top of new user memory. | 
|  | * | 
|  | */ | 
|  | static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, | 
|  | abi_ulong p, abi_ulong stack_limit) | 
|  | { | 
|  | char *tmp; | 
|  | int len, i; | 
|  | abi_ulong top = p; | 
|  |  | 
|  | if (!p) { | 
|  | return 0;       /* bullet-proofing */ | 
|  | } | 
|  |  | 
|  | if (STACK_GROWS_DOWN) { | 
|  | int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; | 
|  | for (i = argc - 1; i >= 0; --i) { | 
|  | tmp = argv[i]; | 
|  | if (!tmp) { | 
|  | fprintf(stderr, "VFS: argc is wrong"); | 
|  | exit(-1); | 
|  | } | 
|  | len = strlen(tmp) + 1; | 
|  | tmp += len; | 
|  |  | 
|  | if (len > (p - stack_limit)) { | 
|  | return 0; | 
|  | } | 
|  | while (len) { | 
|  | int bytes_to_copy = (len > offset) ? offset : len; | 
|  | tmp -= bytes_to_copy; | 
|  | p -= bytes_to_copy; | 
|  | offset -= bytes_to_copy; | 
|  | len -= bytes_to_copy; | 
|  |  | 
|  | memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); | 
|  |  | 
|  | if (offset == 0) { | 
|  | memcpy_to_target(p, scratch, top - p); | 
|  | top = p; | 
|  | offset = TARGET_PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (p != top) { | 
|  | memcpy_to_target(p, scratch + offset, top - p); | 
|  | } | 
|  | } else { | 
|  | int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); | 
|  | for (i = 0; i < argc; ++i) { | 
|  | tmp = argv[i]; | 
|  | if (!tmp) { | 
|  | fprintf(stderr, "VFS: argc is wrong"); | 
|  | exit(-1); | 
|  | } | 
|  | len = strlen(tmp) + 1; | 
|  | if (len > (stack_limit - p)) { | 
|  | return 0; | 
|  | } | 
|  | while (len) { | 
|  | int bytes_to_copy = (len > remaining) ? remaining : len; | 
|  |  | 
|  | memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); | 
|  |  | 
|  | tmp += bytes_to_copy; | 
|  | remaining -= bytes_to_copy; | 
|  | p += bytes_to_copy; | 
|  | len -= bytes_to_copy; | 
|  |  | 
|  | if (remaining == 0) { | 
|  | memcpy_to_target(top, scratch, p - top); | 
|  | top = p; | 
|  | remaining = TARGET_PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (p != top) { | 
|  | memcpy_to_target(top, scratch, p - top); | 
|  | } | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of | 
|  | * argument/environment space. Newer kernels (>2.6.33) allow more, | 
|  | * dependent on stack size, but guarantee at least 32 pages for | 
|  | * backwards compatibility. | 
|  | */ | 
|  | #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) | 
|  |  | 
|  | static abi_ulong setup_arg_pages(struct linux_binprm *bprm, | 
|  | struct image_info *info) | 
|  | { | 
|  | abi_ulong size, error, guard; | 
|  |  | 
|  | size = guest_stack_size; | 
|  | if (size < STACK_LOWER_LIMIT) { | 
|  | size = STACK_LOWER_LIMIT; | 
|  | } | 
|  | guard = TARGET_PAGE_SIZE; | 
|  | if (guard < qemu_real_host_page_size) { | 
|  | guard = qemu_real_host_page_size; | 
|  | } | 
|  |  | 
|  | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, | 
|  | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | 
|  | if (error == -1) { | 
|  | perror("mmap stack"); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | /* We reserve one extra page at the top of the stack as guard.  */ | 
|  | if (STACK_GROWS_DOWN) { | 
|  | target_mprotect(error, guard, PROT_NONE); | 
|  | info->stack_limit = error + guard; | 
|  | return info->stack_limit + size - sizeof(void *); | 
|  | } else { | 
|  | target_mprotect(error + size, guard, PROT_NONE); | 
|  | info->stack_limit = error + size; | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Map and zero the bss.  We need to explicitly zero any fractional pages | 
|  | after the data section (i.e. bss).  */ | 
|  | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) | 
|  | { | 
|  | uintptr_t host_start, host_map_start, host_end; | 
|  |  | 
|  | last_bss = TARGET_PAGE_ALIGN(last_bss); | 
|  |  | 
|  | /* ??? There is confusion between qemu_real_host_page_size and | 
|  | qemu_host_page_size here and elsewhere in target_mmap, which | 
|  | may lead to the end of the data section mapping from the file | 
|  | not being mapped.  At least there was an explicit test and | 
|  | comment for that here, suggesting that "the file size must | 
|  | be known".  The comment probably pre-dates the introduction | 
|  | of the fstat system call in target_mmap which does in fact | 
|  | find out the size.  What isn't clear is if the workaround | 
|  | here is still actually needed.  For now, continue with it, | 
|  | but merge it with the "normal" mmap that would allocate the bss.  */ | 
|  |  | 
|  | host_start = (uintptr_t) g2h(elf_bss); | 
|  | host_end = (uintptr_t) g2h(last_bss); | 
|  | host_map_start = REAL_HOST_PAGE_ALIGN(host_start); | 
|  |  | 
|  | if (host_map_start < host_end) { | 
|  | void *p = mmap((void *)host_map_start, host_end - host_map_start, | 
|  | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | 
|  | if (p == MAP_FAILED) { | 
|  | perror("cannot mmap brk"); | 
|  | exit(-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ensure that the bss page(s) are valid */ | 
|  | if ((page_get_flags(last_bss-1) & prot) != prot) { | 
|  | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); | 
|  | } | 
|  |  | 
|  | if (host_start < host_map_start) { | 
|  | memset((void *)host_start, 0, host_map_start - host_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_ARM | 
|  | static int elf_is_fdpic(struct elfhdr *exec) | 
|  | { | 
|  | return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; | 
|  | } | 
|  | #else | 
|  | /* Default implementation, always false.  */ | 
|  | static int elf_is_fdpic(struct elfhdr *exec) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) | 
|  | { | 
|  | uint16_t n; | 
|  | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | 
|  |  | 
|  | /* elf32_fdpic_loadseg */ | 
|  | n = info->nsegs; | 
|  | while (n--) { | 
|  | sp -= 12; | 
|  | put_user_u32(loadsegs[n].addr, sp+0); | 
|  | put_user_u32(loadsegs[n].p_vaddr, sp+4); | 
|  | put_user_u32(loadsegs[n].p_memsz, sp+8); | 
|  | } | 
|  |  | 
|  | /* elf32_fdpic_loadmap */ | 
|  | sp -= 4; | 
|  | put_user_u16(0, sp+0); /* version */ | 
|  | put_user_u16(info->nsegs, sp+2); /* nsegs */ | 
|  |  | 
|  | info->personality = PER_LINUX_FDPIC; | 
|  | info->loadmap_addr = sp; | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, | 
|  | struct elfhdr *exec, | 
|  | struct image_info *info, | 
|  | struct image_info *interp_info) | 
|  | { | 
|  | abi_ulong sp; | 
|  | abi_ulong u_argc, u_argv, u_envp, u_auxv; | 
|  | int size; | 
|  | int i; | 
|  | abi_ulong u_rand_bytes; | 
|  | uint8_t k_rand_bytes[16]; | 
|  | abi_ulong u_platform; | 
|  | const char *k_platform; | 
|  | const int n = sizeof(elf_addr_t); | 
|  |  | 
|  | sp = p; | 
|  |  | 
|  | /* Needs to be before we load the env/argc/... */ | 
|  | if (elf_is_fdpic(exec)) { | 
|  | /* Need 4 byte alignment for these structs */ | 
|  | sp &= ~3; | 
|  | sp = loader_build_fdpic_loadmap(info, sp); | 
|  | info->other_info = interp_info; | 
|  | if (interp_info) { | 
|  | interp_info->other_info = info; | 
|  | sp = loader_build_fdpic_loadmap(interp_info, sp); | 
|  | info->interpreter_loadmap_addr = interp_info->loadmap_addr; | 
|  | info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; | 
|  | } else { | 
|  | info->interpreter_loadmap_addr = 0; | 
|  | info->interpreter_pt_dynamic_addr = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | u_platform = 0; | 
|  | k_platform = ELF_PLATFORM; | 
|  | if (k_platform) { | 
|  | size_t len = strlen(k_platform) + 1; | 
|  | if (STACK_GROWS_DOWN) { | 
|  | sp -= (len + n - 1) & ~(n - 1); | 
|  | u_platform = sp; | 
|  | /* FIXME - check return value of memcpy_to_target() for failure */ | 
|  | memcpy_to_target(sp, k_platform, len); | 
|  | } else { | 
|  | memcpy_to_target(sp, k_platform, len); | 
|  | u_platform = sp; | 
|  | sp += len + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Provide 16 byte alignment for the PRNG, and basic alignment for | 
|  | * the argv and envp pointers. | 
|  | */ | 
|  | if (STACK_GROWS_DOWN) { | 
|  | sp = QEMU_ALIGN_DOWN(sp, 16); | 
|  | } else { | 
|  | sp = QEMU_ALIGN_UP(sp, 16); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate 16 random bytes for userspace PRNG seeding (not | 
|  | * cryptically secure but it's not the aim of QEMU). | 
|  | */ | 
|  | for (i = 0; i < 16; i++) { | 
|  | k_rand_bytes[i] = rand(); | 
|  | } | 
|  | if (STACK_GROWS_DOWN) { | 
|  | sp -= 16; | 
|  | u_rand_bytes = sp; | 
|  | /* FIXME - check return value of memcpy_to_target() for failure */ | 
|  | memcpy_to_target(sp, k_rand_bytes, 16); | 
|  | } else { | 
|  | memcpy_to_target(sp, k_rand_bytes, 16); | 
|  | u_rand_bytes = sp; | 
|  | sp += 16; | 
|  | } | 
|  |  | 
|  | size = (DLINFO_ITEMS + 1) * 2; | 
|  | if (k_platform) | 
|  | size += 2; | 
|  | #ifdef DLINFO_ARCH_ITEMS | 
|  | size += DLINFO_ARCH_ITEMS * 2; | 
|  | #endif | 
|  | #ifdef ELF_HWCAP2 | 
|  | size += 2; | 
|  | #endif | 
|  | info->auxv_len = size * n; | 
|  |  | 
|  | size += envc + argc + 2; | 
|  | size += 1;  /* argc itself */ | 
|  | size *= n; | 
|  |  | 
|  | /* Allocate space and finalize stack alignment for entry now.  */ | 
|  | if (STACK_GROWS_DOWN) { | 
|  | u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); | 
|  | sp = u_argc; | 
|  | } else { | 
|  | u_argc = sp; | 
|  | sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); | 
|  | } | 
|  |  | 
|  | u_argv = u_argc + n; | 
|  | u_envp = u_argv + (argc + 1) * n; | 
|  | u_auxv = u_envp + (envc + 1) * n; | 
|  | info->saved_auxv = u_auxv; | 
|  | info->arg_start = u_argv; | 
|  | info->arg_end = u_argv + argc * n; | 
|  |  | 
|  | /* This is correct because Linux defines | 
|  | * elf_addr_t as Elf32_Off / Elf64_Off | 
|  | */ | 
|  | #define NEW_AUX_ENT(id, val) do {               \ | 
|  | put_user_ual(id, u_auxv);  u_auxv += n; \ | 
|  | put_user_ual(val, u_auxv); u_auxv += n; \ | 
|  | } while(0) | 
|  |  | 
|  | #ifdef ARCH_DLINFO | 
|  | /* | 
|  | * ARCH_DLINFO must come first so platform specific code can enforce | 
|  | * special alignment requirements on the AUXV if necessary (eg. PPC). | 
|  | */ | 
|  | ARCH_DLINFO; | 
|  | #endif | 
|  | /* There must be exactly DLINFO_ITEMS entries here, or the assert | 
|  | * on info->auxv_len will trigger. | 
|  | */ | 
|  | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); | 
|  | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); | 
|  | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | 
|  | if ((info->alignment & ~qemu_host_page_mask) != 0) { | 
|  | /* Target doesn't support host page size alignment */ | 
|  | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | 
|  | } else { | 
|  | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, | 
|  | qemu_host_page_size))); | 
|  | } | 
|  | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); | 
|  | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); | 
|  | NEW_AUX_ENT(AT_ENTRY, info->entry); | 
|  | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); | 
|  | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | 
|  | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | 
|  | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | 
|  | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | 
|  | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | 
|  | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); | 
|  | NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); | 
|  |  | 
|  | #ifdef ELF_HWCAP2 | 
|  | NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); | 
|  | #endif | 
|  |  | 
|  | if (u_platform) { | 
|  | NEW_AUX_ENT(AT_PLATFORM, u_platform); | 
|  | } | 
|  | NEW_AUX_ENT (AT_NULL, 0); | 
|  | #undef NEW_AUX_ENT | 
|  |  | 
|  | /* Check that our initial calculation of the auxv length matches how much | 
|  | * we actually put into it. | 
|  | */ | 
|  | assert(info->auxv_len == u_auxv - info->saved_auxv); | 
|  |  | 
|  | put_user_ual(argc, u_argc); | 
|  |  | 
|  | p = info->arg_strings; | 
|  | for (i = 0; i < argc; ++i) { | 
|  | put_user_ual(p, u_argv); | 
|  | u_argv += n; | 
|  | p += target_strlen(p) + 1; | 
|  | } | 
|  | put_user_ual(0, u_argv); | 
|  |  | 
|  | p = info->env_strings; | 
|  | for (i = 0; i < envc; ++i) { | 
|  | put_user_ual(p, u_envp); | 
|  | u_envp += n; | 
|  | p += target_strlen(p) + 1; | 
|  | } | 
|  | put_user_ual(0, u_envp); | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | unsigned long init_guest_space(unsigned long host_start, | 
|  | unsigned long host_size, | 
|  | unsigned long guest_start, | 
|  | bool fixed) | 
|  | { | 
|  | unsigned long current_start, aligned_start; | 
|  | int flags; | 
|  |  | 
|  | assert(host_start || host_size); | 
|  |  | 
|  | /* If just a starting address is given, then just verify that | 
|  | * address.  */ | 
|  | if (host_start && !host_size) { | 
|  | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) | 
|  | if (init_guest_commpage(host_start, host_size) != 1) { | 
|  | return (unsigned long)-1; | 
|  | } | 
|  | #endif | 
|  | return host_start; | 
|  | } | 
|  |  | 
|  | /* Setup the initial flags and start address.  */ | 
|  | current_start = host_start & qemu_host_page_mask; | 
|  | flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; | 
|  | if (fixed) { | 
|  | flags |= MAP_FIXED; | 
|  | } | 
|  |  | 
|  | /* Otherwise, a non-zero size region of memory needs to be mapped | 
|  | * and validated.  */ | 
|  |  | 
|  | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) | 
|  | /* On 32-bit ARM, we need to map not just the usable memory, but | 
|  | * also the commpage.  Try to find a suitable place by allocating | 
|  | * a big chunk for all of it.  If host_start, then the naive | 
|  | * strategy probably does good enough. | 
|  | */ | 
|  | if (!host_start) { | 
|  | unsigned long guest_full_size, host_full_size, real_start; | 
|  |  | 
|  | guest_full_size = | 
|  | (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; | 
|  | host_full_size = guest_full_size - guest_start; | 
|  | real_start = (unsigned long) | 
|  | mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); | 
|  | if (real_start == (unsigned long)-1) { | 
|  | if (host_size < host_full_size - qemu_host_page_size) { | 
|  | /* We failed to map a continous segment, but we're | 
|  | * allowed to have a gap between the usable memory and | 
|  | * the commpage where other things can be mapped. | 
|  | * This sparseness gives us more flexibility to find | 
|  | * an address range. | 
|  | */ | 
|  | goto naive; | 
|  | } | 
|  | return (unsigned long)-1; | 
|  | } | 
|  | munmap((void *)real_start, host_full_size); | 
|  | if (real_start & ~qemu_host_page_mask) { | 
|  | /* The same thing again, but with an extra qemu_host_page_size | 
|  | * so that we can shift around alignment. | 
|  | */ | 
|  | unsigned long real_size = host_full_size + qemu_host_page_size; | 
|  | real_start = (unsigned long) | 
|  | mmap(NULL, real_size, PROT_NONE, flags, -1, 0); | 
|  | if (real_start == (unsigned long)-1) { | 
|  | if (host_size < host_full_size - qemu_host_page_size) { | 
|  | goto naive; | 
|  | } | 
|  | return (unsigned long)-1; | 
|  | } | 
|  | munmap((void *)real_start, real_size); | 
|  | real_start = HOST_PAGE_ALIGN(real_start); | 
|  | } | 
|  | current_start = real_start; | 
|  | } | 
|  | naive: | 
|  | #endif | 
|  |  | 
|  | while (1) { | 
|  | unsigned long real_start, real_size, aligned_size; | 
|  | aligned_size = real_size = host_size; | 
|  |  | 
|  | /* Do not use mmap_find_vma here because that is limited to the | 
|  | * guest address space.  We are going to make the | 
|  | * guest address space fit whatever we're given. | 
|  | */ | 
|  | real_start = (unsigned long) | 
|  | mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); | 
|  | if (real_start == (unsigned long)-1) { | 
|  | return (unsigned long)-1; | 
|  | } | 
|  |  | 
|  | /* Check to see if the address is valid.  */ | 
|  | if (host_start && real_start != current_start) { | 
|  | goto try_again; | 
|  | } | 
|  |  | 
|  | /* Ensure the address is properly aligned.  */ | 
|  | if (real_start & ~qemu_host_page_mask) { | 
|  | /* Ideally, we adjust like | 
|  | * | 
|  | *    pages: [  ][  ][  ][  ][  ] | 
|  | *      old:   [   real   ] | 
|  | *             [ aligned  ] | 
|  | *      new:   [     real     ] | 
|  | *               [ aligned  ] | 
|  | * | 
|  | * But if there is something else mapped right after it, | 
|  | * then obviously it won't have room to grow, and the | 
|  | * kernel will put the new larger real someplace else with | 
|  | * unknown alignment (if we made it to here, then | 
|  | * fixed=false).  Which is why we grow real by a full page | 
|  | * size, instead of by part of one; so that even if we get | 
|  | * moved, we can still guarantee alignment.  But this does | 
|  | * mean that there is a padding of < 1 page both before | 
|  | * and after the aligned range; the "after" could could | 
|  | * cause problems for ARM emulation where it could butt in | 
|  | * to where we need to put the commpage. | 
|  | */ | 
|  | munmap((void *)real_start, host_size); | 
|  | real_size = aligned_size + qemu_host_page_size; | 
|  | real_start = (unsigned long) | 
|  | mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); | 
|  | if (real_start == (unsigned long)-1) { | 
|  | return (unsigned long)-1; | 
|  | } | 
|  | aligned_start = HOST_PAGE_ALIGN(real_start); | 
|  | } else { | 
|  | aligned_start = real_start; | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) | 
|  | /* On 32-bit ARM, we need to also be able to map the commpage.  */ | 
|  | int valid = init_guest_commpage(aligned_start - guest_start, | 
|  | aligned_size + guest_start); | 
|  | if (valid == -1) { | 
|  | munmap((void *)real_start, real_size); | 
|  | return (unsigned long)-1; | 
|  | } else if (valid == 0) { | 
|  | goto try_again; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* If nothing has said `return -1` or `goto try_again` yet, | 
|  | * then the address we have is good. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | try_again: | 
|  | /* That address didn't work.  Unmap and try a different one. | 
|  | * The address the host picked because is typically right at | 
|  | * the top of the host address space and leaves the guest with | 
|  | * no usable address space.  Resort to a linear search.  We | 
|  | * already compensated for mmap_min_addr, so this should not | 
|  | * happen often.  Probably means we got unlucky and host | 
|  | * address space randomization put a shared library somewhere | 
|  | * inconvenient. | 
|  | * | 
|  | * This is probably a good strategy if host_start, but is | 
|  | * probably a bad strategy if not, which means we got here | 
|  | * because of trouble with ARM commpage setup. | 
|  | */ | 
|  | munmap((void *)real_start, real_size); | 
|  | current_start += qemu_host_page_size; | 
|  | if (host_start == current_start) { | 
|  | /* Theoretically possible if host doesn't have any suitably | 
|  | * aligned areas.  Normally the first mmap will fail. | 
|  | */ | 
|  | return (unsigned long)-1; | 
|  | } | 
|  | } | 
|  |  | 
|  | qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); | 
|  |  | 
|  | return aligned_start; | 
|  | } | 
|  |  | 
|  | static void probe_guest_base(const char *image_name, | 
|  | abi_ulong loaddr, abi_ulong hiaddr) | 
|  | { | 
|  | /* Probe for a suitable guest base address, if the user has not set | 
|  | * it explicitly, and set guest_base appropriately. | 
|  | * In case of error we will print a suitable message and exit. | 
|  | */ | 
|  | const char *errmsg; | 
|  | if (!have_guest_base && !reserved_va) { | 
|  | unsigned long host_start, real_start, host_size; | 
|  |  | 
|  | /* Round addresses to page boundaries.  */ | 
|  | loaddr &= qemu_host_page_mask; | 
|  | hiaddr = HOST_PAGE_ALIGN(hiaddr); | 
|  |  | 
|  | if (loaddr < mmap_min_addr) { | 
|  | host_start = HOST_PAGE_ALIGN(mmap_min_addr); | 
|  | } else { | 
|  | host_start = loaddr; | 
|  | if (host_start != loaddr) { | 
|  | errmsg = "Address overflow loading ELF binary"; | 
|  | goto exit_errmsg; | 
|  | } | 
|  | } | 
|  | host_size = hiaddr - loaddr; | 
|  |  | 
|  | /* Setup the initial guest memory space with ranges gleaned from | 
|  | * the ELF image that is being loaded. | 
|  | */ | 
|  | real_start = init_guest_space(host_start, host_size, loaddr, false); | 
|  | if (real_start == (unsigned long)-1) { | 
|  | errmsg = "Unable to find space for application"; | 
|  | goto exit_errmsg; | 
|  | } | 
|  | guest_base = real_start - loaddr; | 
|  |  | 
|  | qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" | 
|  | TARGET_ABI_FMT_lx " to 0x%lx\n", | 
|  | loaddr, real_start); | 
|  | } | 
|  | return; | 
|  |  | 
|  | exit_errmsg: | 
|  | fprintf(stderr, "%s: %s\n", image_name, errmsg); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Load an ELF image into the address space. | 
|  |  | 
|  | IMAGE_NAME is the filename of the image, to use in error messages. | 
|  | IMAGE_FD is the open file descriptor for the image. | 
|  |  | 
|  | BPRM_BUF is a copy of the beginning of the file; this of course | 
|  | contains the elf file header at offset 0.  It is assumed that this | 
|  | buffer is sufficiently aligned to present no problems to the host | 
|  | in accessing data at aligned offsets within the buffer. | 
|  |  | 
|  | On return: INFO values will be filled in, as necessary or available.  */ | 
|  |  | 
|  | static void load_elf_image(const char *image_name, int image_fd, | 
|  | struct image_info *info, char **pinterp_name, | 
|  | char bprm_buf[BPRM_BUF_SIZE]) | 
|  | { | 
|  | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; | 
|  | struct elf_phdr *phdr; | 
|  | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | 
|  | int i, retval; | 
|  | const char *errmsg; | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | errmsg = "Invalid ELF image for this architecture"; | 
|  | if (!elf_check_ident(ehdr)) { | 
|  | goto exit_errmsg; | 
|  | } | 
|  | bswap_ehdr(ehdr); | 
|  | if (!elf_check_ehdr(ehdr)) { | 
|  | goto exit_errmsg; | 
|  | } | 
|  |  | 
|  | i = ehdr->e_phnum * sizeof(struct elf_phdr); | 
|  | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { | 
|  | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); | 
|  | } else { | 
|  | phdr = (struct elf_phdr *) alloca(i); | 
|  | retval = pread(image_fd, phdr, i, ehdr->e_phoff); | 
|  | if (retval != i) { | 
|  | goto exit_read; | 
|  | } | 
|  | } | 
|  | bswap_phdr(phdr, ehdr->e_phnum); | 
|  |  | 
|  | info->nsegs = 0; | 
|  | info->pt_dynamic_addr = 0; | 
|  |  | 
|  | mmap_lock(); | 
|  |  | 
|  | /* Find the maximum size of the image and allocate an appropriate | 
|  | amount of memory to handle that.  */ | 
|  | loaddr = -1, hiaddr = 0; | 
|  | info->alignment = 0; | 
|  | for (i = 0; i < ehdr->e_phnum; ++i) { | 
|  | if (phdr[i].p_type == PT_LOAD) { | 
|  | abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; | 
|  | if (a < loaddr) { | 
|  | loaddr = a; | 
|  | } | 
|  | a = phdr[i].p_vaddr + phdr[i].p_memsz; | 
|  | if (a > hiaddr) { | 
|  | hiaddr = a; | 
|  | } | 
|  | ++info->nsegs; | 
|  | info->alignment |= phdr[i].p_align; | 
|  | } | 
|  | } | 
|  |  | 
|  | load_addr = loaddr; | 
|  | if (ehdr->e_type == ET_DYN) { | 
|  | /* The image indicates that it can be loaded anywhere.  Find a | 
|  | location that can hold the memory space required.  If the | 
|  | image is pre-linked, LOADDR will be non-zero.  Since we do | 
|  | not supply MAP_FIXED here we'll use that address if and | 
|  | only if it remains available.  */ | 
|  | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, | 
|  | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, | 
|  | -1, 0); | 
|  | if (load_addr == -1) { | 
|  | goto exit_perror; | 
|  | } | 
|  | } else if (pinterp_name != NULL) { | 
|  | /* This is the main executable.  Make sure that the low | 
|  | address does not conflict with MMAP_MIN_ADDR or the | 
|  | QEMU application itself.  */ | 
|  | probe_guest_base(image_name, loaddr, hiaddr); | 
|  | } | 
|  | load_bias = load_addr - loaddr; | 
|  |  | 
|  | if (elf_is_fdpic(ehdr)) { | 
|  | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = | 
|  | g_malloc(sizeof(*loadsegs) * info->nsegs); | 
|  |  | 
|  | for (i = 0; i < ehdr->e_phnum; ++i) { | 
|  | switch (phdr[i].p_type) { | 
|  | case PT_DYNAMIC: | 
|  | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | 
|  | break; | 
|  | case PT_LOAD: | 
|  | loadsegs->addr = phdr[i].p_vaddr + load_bias; | 
|  | loadsegs->p_vaddr = phdr[i].p_vaddr; | 
|  | loadsegs->p_memsz = phdr[i].p_memsz; | 
|  | ++loadsegs; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | info->load_bias = load_bias; | 
|  | info->load_addr = load_addr; | 
|  | info->entry = ehdr->e_entry + load_bias; | 
|  | info->start_code = -1; | 
|  | info->end_code = 0; | 
|  | info->start_data = -1; | 
|  | info->end_data = 0; | 
|  | info->brk = 0; | 
|  | info->elf_flags = ehdr->e_flags; | 
|  |  | 
|  | for (i = 0; i < ehdr->e_phnum; i++) { | 
|  | struct elf_phdr *eppnt = phdr + i; | 
|  | if (eppnt->p_type == PT_LOAD) { | 
|  | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; | 
|  | int elf_prot = 0; | 
|  |  | 
|  | if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ; | 
|  | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | 
|  | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | 
|  |  | 
|  | vaddr = load_bias + eppnt->p_vaddr; | 
|  | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); | 
|  | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); | 
|  |  | 
|  | error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, | 
|  | elf_prot, MAP_PRIVATE | MAP_FIXED, | 
|  | image_fd, eppnt->p_offset - vaddr_po); | 
|  | if (error == -1) { | 
|  | goto exit_perror; | 
|  | } | 
|  |  | 
|  | vaddr_ef = vaddr + eppnt->p_filesz; | 
|  | vaddr_em = vaddr + eppnt->p_memsz; | 
|  |  | 
|  | /* If the load segment requests extra zeros (e.g. bss), map it.  */ | 
|  | if (vaddr_ef < vaddr_em) { | 
|  | zero_bss(vaddr_ef, vaddr_em, elf_prot); | 
|  | } | 
|  |  | 
|  | /* Find the full program boundaries.  */ | 
|  | if (elf_prot & PROT_EXEC) { | 
|  | if (vaddr < info->start_code) { | 
|  | info->start_code = vaddr; | 
|  | } | 
|  | if (vaddr_ef > info->end_code) { | 
|  | info->end_code = vaddr_ef; | 
|  | } | 
|  | } | 
|  | if (elf_prot & PROT_WRITE) { | 
|  | if (vaddr < info->start_data) { | 
|  | info->start_data = vaddr; | 
|  | } | 
|  | if (vaddr_ef > info->end_data) { | 
|  | info->end_data = vaddr_ef; | 
|  | } | 
|  | if (vaddr_em > info->brk) { | 
|  | info->brk = vaddr_em; | 
|  | } | 
|  | } | 
|  | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { | 
|  | char *interp_name; | 
|  |  | 
|  | if (*pinterp_name) { | 
|  | errmsg = "Multiple PT_INTERP entries"; | 
|  | goto exit_errmsg; | 
|  | } | 
|  | interp_name = malloc(eppnt->p_filesz); | 
|  | if (!interp_name) { | 
|  | goto exit_perror; | 
|  | } | 
|  |  | 
|  | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | 
|  | memcpy(interp_name, bprm_buf + eppnt->p_offset, | 
|  | eppnt->p_filesz); | 
|  | } else { | 
|  | retval = pread(image_fd, interp_name, eppnt->p_filesz, | 
|  | eppnt->p_offset); | 
|  | if (retval != eppnt->p_filesz) { | 
|  | goto exit_perror; | 
|  | } | 
|  | } | 
|  | if (interp_name[eppnt->p_filesz - 1] != 0) { | 
|  | errmsg = "Invalid PT_INTERP entry"; | 
|  | goto exit_errmsg; | 
|  | } | 
|  | *pinterp_name = interp_name; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (info->end_data == 0) { | 
|  | info->start_data = info->end_code; | 
|  | info->end_data = info->end_code; | 
|  | info->brk = info->end_code; | 
|  | } | 
|  |  | 
|  | if (qemu_log_enabled()) { | 
|  | load_symbols(ehdr, image_fd, load_bias); | 
|  | } | 
|  |  | 
|  | mmap_unlock(); | 
|  |  | 
|  | close(image_fd); | 
|  | return; | 
|  |  | 
|  | exit_read: | 
|  | if (retval >= 0) { | 
|  | errmsg = "Incomplete read of file header"; | 
|  | goto exit_errmsg; | 
|  | } | 
|  | exit_perror: | 
|  | errmsg = strerror(errno); | 
|  | exit_errmsg: | 
|  | fprintf(stderr, "%s: %s\n", image_name, errmsg); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | static void load_elf_interp(const char *filename, struct image_info *info, | 
|  | char bprm_buf[BPRM_BUF_SIZE]) | 
|  | { | 
|  | int fd, retval; | 
|  |  | 
|  | fd = open(path(filename), O_RDONLY); | 
|  | if (fd < 0) { | 
|  | goto exit_perror; | 
|  | } | 
|  |  | 
|  | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); | 
|  | if (retval < 0) { | 
|  | goto exit_perror; | 
|  | } | 
|  | if (retval < BPRM_BUF_SIZE) { | 
|  | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); | 
|  | } | 
|  |  | 
|  | load_elf_image(filename, fd, info, NULL, bprm_buf); | 
|  | return; | 
|  |  | 
|  | exit_perror: | 
|  | fprintf(stderr, "%s: %s\n", filename, strerror(errno)); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | static int symfind(const void *s0, const void *s1) | 
|  | { | 
|  | target_ulong addr = *(target_ulong *)s0; | 
|  | struct elf_sym *sym = (struct elf_sym *)s1; | 
|  | int result = 0; | 
|  | if (addr < sym->st_value) { | 
|  | result = -1; | 
|  | } else if (addr >= sym->st_value + sym->st_size) { | 
|  | result = 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) | 
|  | { | 
|  | #if ELF_CLASS == ELFCLASS32 | 
|  | struct elf_sym *syms = s->disas_symtab.elf32; | 
|  | #else | 
|  | struct elf_sym *syms = s->disas_symtab.elf64; | 
|  | #endif | 
|  |  | 
|  | // binary search | 
|  | struct elf_sym *sym; | 
|  |  | 
|  | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); | 
|  | if (sym != NULL) { | 
|  | return s->disas_strtab + sym->st_name; | 
|  | } | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | /* FIXME: This should use elf_ops.h  */ | 
|  | static int symcmp(const void *s0, const void *s1) | 
|  | { | 
|  | struct elf_sym *sym0 = (struct elf_sym *)s0; | 
|  | struct elf_sym *sym1 = (struct elf_sym *)s1; | 
|  | return (sym0->st_value < sym1->st_value) | 
|  | ? -1 | 
|  | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | 
|  | } | 
|  |  | 
|  | /* Best attempt to load symbols from this ELF object. */ | 
|  | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) | 
|  | { | 
|  | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; | 
|  | uint64_t segsz; | 
|  | struct elf_shdr *shdr; | 
|  | char *strings = NULL; | 
|  | struct syminfo *s = NULL; | 
|  | struct elf_sym *new_syms, *syms = NULL; | 
|  |  | 
|  | shnum = hdr->e_shnum; | 
|  | i = shnum * sizeof(struct elf_shdr); | 
|  | shdr = (struct elf_shdr *)alloca(i); | 
|  | if (pread(fd, shdr, i, hdr->e_shoff) != i) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | bswap_shdr(shdr, shnum); | 
|  | for (i = 0; i < shnum; ++i) { | 
|  | if (shdr[i].sh_type == SHT_SYMTAB) { | 
|  | sym_idx = i; | 
|  | str_idx = shdr[i].sh_link; | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* There will be no symbol table if the file was stripped.  */ | 
|  | return; | 
|  |  | 
|  | found: | 
|  | /* Now know where the strtab and symtab are.  Snarf them.  */ | 
|  | s = g_try_new(struct syminfo, 1); | 
|  | if (!s) { | 
|  | goto give_up; | 
|  | } | 
|  |  | 
|  | segsz = shdr[str_idx].sh_size; | 
|  | s->disas_strtab = strings = g_try_malloc(segsz); | 
|  | if (!strings || | 
|  | pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { | 
|  | goto give_up; | 
|  | } | 
|  |  | 
|  | segsz = shdr[sym_idx].sh_size; | 
|  | syms = g_try_malloc(segsz); | 
|  | if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { | 
|  | goto give_up; | 
|  | } | 
|  |  | 
|  | if (segsz / sizeof(struct elf_sym) > INT_MAX) { | 
|  | /* Implausibly large symbol table: give up rather than ploughing | 
|  | * on with the number of symbols calculation overflowing | 
|  | */ | 
|  | goto give_up; | 
|  | } | 
|  | nsyms = segsz / sizeof(struct elf_sym); | 
|  | for (i = 0; i < nsyms; ) { | 
|  | bswap_sym(syms + i); | 
|  | /* Throw away entries which we do not need.  */ | 
|  | if (syms[i].st_shndx == SHN_UNDEF | 
|  | || syms[i].st_shndx >= SHN_LORESERVE | 
|  | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | 
|  | if (i < --nsyms) { | 
|  | syms[i] = syms[nsyms]; | 
|  | } | 
|  | } else { | 
|  | #if defined(TARGET_ARM) || defined (TARGET_MIPS) | 
|  | /* The bottom address bit marks a Thumb or MIPS16 symbol.  */ | 
|  | syms[i].st_value &= ~(target_ulong)1; | 
|  | #endif | 
|  | syms[i].st_value += load_bias; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No "useful" symbol.  */ | 
|  | if (nsyms == 0) { | 
|  | goto give_up; | 
|  | } | 
|  |  | 
|  | /* Attempt to free the storage associated with the local symbols | 
|  | that we threw away.  Whether or not this has any effect on the | 
|  | memory allocation depends on the malloc implementation and how | 
|  | many symbols we managed to discard.  */ | 
|  | new_syms = g_try_renew(struct elf_sym, syms, nsyms); | 
|  | if (new_syms == NULL) { | 
|  | goto give_up; | 
|  | } | 
|  | syms = new_syms; | 
|  |  | 
|  | qsort(syms, nsyms, sizeof(*syms), symcmp); | 
|  |  | 
|  | s->disas_num_syms = nsyms; | 
|  | #if ELF_CLASS == ELFCLASS32 | 
|  | s->disas_symtab.elf32 = syms; | 
|  | #else | 
|  | s->disas_symtab.elf64 = syms; | 
|  | #endif | 
|  | s->lookup_symbol = lookup_symbolxx; | 
|  | s->next = syminfos; | 
|  | syminfos = s; | 
|  |  | 
|  | return; | 
|  |  | 
|  | give_up: | 
|  | g_free(s); | 
|  | g_free(strings); | 
|  | g_free(syms); | 
|  | } | 
|  |  | 
|  | uint32_t get_elf_eflags(int fd) | 
|  | { | 
|  | struct elfhdr ehdr; | 
|  | off_t offset; | 
|  | int ret; | 
|  |  | 
|  | /* Read ELF header */ | 
|  | offset = lseek(fd, 0, SEEK_SET); | 
|  | if (offset == (off_t) -1) { | 
|  | return 0; | 
|  | } | 
|  | ret = read(fd, &ehdr, sizeof(ehdr)); | 
|  | if (ret < sizeof(ehdr)) { | 
|  | return 0; | 
|  | } | 
|  | offset = lseek(fd, offset, SEEK_SET); | 
|  | if (offset == (off_t) -1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check ELF signature */ | 
|  | if (!elf_check_ident(&ehdr)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check header */ | 
|  | bswap_ehdr(&ehdr); | 
|  | if (!elf_check_ehdr(&ehdr)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* return architecture id */ | 
|  | return ehdr.e_flags; | 
|  | } | 
|  |  | 
|  | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) | 
|  | { | 
|  | struct image_info interp_info; | 
|  | struct elfhdr elf_ex; | 
|  | char *elf_interpreter = NULL; | 
|  | char *scratch; | 
|  |  | 
|  | info->start_mmap = (abi_ulong)ELF_START_MMAP; | 
|  |  | 
|  | load_elf_image(bprm->filename, bprm->fd, info, | 
|  | &elf_interpreter, bprm->buf); | 
|  |  | 
|  | /* ??? We need a copy of the elf header for passing to create_elf_tables. | 
|  | If we do nothing, we'll have overwritten this when we re-use bprm->buf | 
|  | when we load the interpreter.  */ | 
|  | elf_ex = *(struct elfhdr *)bprm->buf; | 
|  |  | 
|  | /* Do this so that we can load the interpreter, if need be.  We will | 
|  | change some of these later */ | 
|  | bprm->p = setup_arg_pages(bprm, info); | 
|  |  | 
|  | scratch = g_new0(char, TARGET_PAGE_SIZE); | 
|  | if (STACK_GROWS_DOWN) { | 
|  | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->file_string = bprm->p; | 
|  | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->env_strings = bprm->p; | 
|  | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->arg_strings = bprm->p; | 
|  | } else { | 
|  | info->arg_strings = bprm->p; | 
|  | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->env_strings = bprm->p; | 
|  | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->file_string = bprm->p; | 
|  | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | } | 
|  |  | 
|  | g_free(scratch); | 
|  |  | 
|  | if (!bprm->p) { | 
|  | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | if (elf_interpreter) { | 
|  | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | 
|  |  | 
|  | /* If the program interpreter is one of these two, then assume | 
|  | an iBCS2 image.  Otherwise assume a native linux image.  */ | 
|  |  | 
|  | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | 
|  | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | 
|  | info->personality = PER_SVR4; | 
|  |  | 
|  | /* Why this, you ask???  Well SVr4 maps page 0 as read-only, | 
|  | and some applications "depend" upon this behavior.  Since | 
|  | we do not have the power to recompile these, we emulate | 
|  | the SVr4 behavior.  Sigh.  */ | 
|  | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, | 
|  | info, (elf_interpreter ? &interp_info : NULL)); | 
|  | info->start_stack = bprm->p; | 
|  |  | 
|  | /* If we have an interpreter, set that as the program's entry point. | 
|  | Copy the load_bias as well, to help PPC64 interpret the entry | 
|  | point as a function descriptor.  Do this after creating elf tables | 
|  | so that we copy the original program entry point into the AUXV.  */ | 
|  | if (elf_interpreter) { | 
|  | info->load_bias = interp_info.load_bias; | 
|  | info->entry = interp_info.entry; | 
|  | free(elf_interpreter); | 
|  | } | 
|  |  | 
|  | #ifdef USE_ELF_CORE_DUMP | 
|  | bprm->core_dump = &elf_core_dump; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef USE_ELF_CORE_DUMP | 
|  | /* | 
|  | * Definitions to generate Intel SVR4-like core files. | 
|  | * These mostly have the same names as the SVR4 types with "target_elf_" | 
|  | * tacked on the front to prevent clashes with linux definitions, | 
|  | * and the typedef forms have been avoided.  This is mostly like | 
|  | * the SVR4 structure, but more Linuxy, with things that Linux does | 
|  | * not support and which gdb doesn't really use excluded. | 
|  | * | 
|  | * Fields we don't dump (their contents is zero) in linux-user qemu | 
|  | * are marked with XXX. | 
|  | * | 
|  | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | 
|  | * | 
|  | * Porting ELF coredump for target is (quite) simple process.  First you | 
|  | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for | 
|  | * the target resides): | 
|  | * | 
|  | * #define USE_ELF_CORE_DUMP | 
|  | * | 
|  | * Next you define type of register set used for dumping.  ELF specification | 
|  | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | 
|  | * | 
|  | * typedef <target_regtype> target_elf_greg_t; | 
|  | * #define ELF_NREG <number of registers> | 
|  | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  | * | 
|  | * Last step is to implement target specific function that copies registers | 
|  | * from given cpu into just specified register set.  Prototype is: | 
|  | * | 
|  | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, | 
|  | *                                const CPUArchState *env); | 
|  | * | 
|  | * Parameters: | 
|  | *     regs - copy register values into here (allocated and zeroed by caller) | 
|  | *     env - copy registers from here | 
|  | * | 
|  | * Example for ARM target is provided in this file. | 
|  | */ | 
|  |  | 
|  | /* An ELF note in memory */ | 
|  | struct memelfnote { | 
|  | const char *name; | 
|  | size_t     namesz; | 
|  | size_t     namesz_rounded; | 
|  | int        type; | 
|  | size_t     datasz; | 
|  | size_t     datasz_rounded; | 
|  | void       *data; | 
|  | size_t     notesz; | 
|  | }; | 
|  |  | 
|  | struct target_elf_siginfo { | 
|  | abi_int    si_signo; /* signal number */ | 
|  | abi_int    si_code;  /* extra code */ | 
|  | abi_int    si_errno; /* errno */ | 
|  | }; | 
|  |  | 
|  | struct target_elf_prstatus { | 
|  | struct target_elf_siginfo pr_info;      /* Info associated with signal */ | 
|  | abi_short          pr_cursig;    /* Current signal */ | 
|  | abi_ulong          pr_sigpend;   /* XXX */ | 
|  | abi_ulong          pr_sighold;   /* XXX */ | 
|  | target_pid_t       pr_pid; | 
|  | target_pid_t       pr_ppid; | 
|  | target_pid_t       pr_pgrp; | 
|  | target_pid_t       pr_sid; | 
|  | struct target_timeval pr_utime;  /* XXX User time */ | 
|  | struct target_timeval pr_stime;  /* XXX System time */ | 
|  | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | 
|  | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | 
|  | target_elf_gregset_t      pr_reg;       /* GP registers */ | 
|  | abi_int            pr_fpvalid;   /* XXX */ | 
|  | }; | 
|  |  | 
|  | #define ELF_PRARGSZ     (80) /* Number of chars for args */ | 
|  |  | 
|  | struct target_elf_prpsinfo { | 
|  | char         pr_state;       /* numeric process state */ | 
|  | char         pr_sname;       /* char for pr_state */ | 
|  | char         pr_zomb;        /* zombie */ | 
|  | char         pr_nice;        /* nice val */ | 
|  | abi_ulong    pr_flag;        /* flags */ | 
|  | target_uid_t pr_uid; | 
|  | target_gid_t pr_gid; | 
|  | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | 
|  | /* Lots missing */ | 
|  | char    pr_fname[16];           /* filename of executable */ | 
|  | char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | 
|  | }; | 
|  |  | 
|  | /* Here is the structure in which status of each thread is captured. */ | 
|  | struct elf_thread_status { | 
|  | QTAILQ_ENTRY(elf_thread_status)  ets_link; | 
|  | struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */ | 
|  | #if 0 | 
|  | elf_fpregset_t fpu;             /* NT_PRFPREG */ | 
|  | struct task_struct *thread; | 
|  | elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */ | 
|  | #endif | 
|  | struct memelfnote notes[1]; | 
|  | int num_notes; | 
|  | }; | 
|  |  | 
|  | struct elf_note_info { | 
|  | struct memelfnote   *notes; | 
|  | struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */ | 
|  | struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */ | 
|  |  | 
|  | QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; | 
|  | #if 0 | 
|  | /* | 
|  | * Current version of ELF coredump doesn't support | 
|  | * dumping fp regs etc. | 
|  | */ | 
|  | elf_fpregset_t *fpu; | 
|  | elf_fpxregset_t *xfpu; | 
|  | int thread_status_size; | 
|  | #endif | 
|  | int notes_size; | 
|  | int numnote; | 
|  | }; | 
|  |  | 
|  | struct vm_area_struct { | 
|  | target_ulong   vma_start;  /* start vaddr of memory region */ | 
|  | target_ulong   vma_end;    /* end vaddr of memory region */ | 
|  | abi_ulong      vma_flags;  /* protection etc. flags for the region */ | 
|  | QTAILQ_ENTRY(vm_area_struct) vma_link; | 
|  | }; | 
|  |  | 
|  | struct mm_struct { | 
|  | QTAILQ_HEAD(, vm_area_struct) mm_mmap; | 
|  | int mm_count;           /* number of mappings */ | 
|  | }; | 
|  |  | 
|  | static struct mm_struct *vma_init(void); | 
|  | static void vma_delete(struct mm_struct *); | 
|  | static int vma_add_mapping(struct mm_struct *, target_ulong, | 
|  | target_ulong, abi_ulong); | 
|  | static int vma_get_mapping_count(const struct mm_struct *); | 
|  | static struct vm_area_struct *vma_first(const struct mm_struct *); | 
|  | static struct vm_area_struct *vma_next(struct vm_area_struct *); | 
|  | static abi_ulong vma_dump_size(const struct vm_area_struct *); | 
|  | static int vma_walker(void *priv, target_ulong start, target_ulong end, | 
|  | unsigned long flags); | 
|  |  | 
|  | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); | 
|  | static void fill_note(struct memelfnote *, const char *, int, | 
|  | unsigned int, void *); | 
|  | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); | 
|  | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); | 
|  | static void fill_auxv_note(struct memelfnote *, const TaskState *); | 
|  | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); | 
|  | static size_t note_size(const struct memelfnote *); | 
|  | static void free_note_info(struct elf_note_info *); | 
|  | static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); | 
|  | static void fill_thread_info(struct elf_note_info *, const CPUArchState *); | 
|  | static int core_dump_filename(const TaskState *, char *, size_t); | 
|  |  | 
|  | static int dump_write(int, const void *, size_t); | 
|  | static int write_note(struct memelfnote *, int); | 
|  | static int write_note_info(struct elf_note_info *, int); | 
|  |  | 
|  | #ifdef BSWAP_NEEDED | 
|  | static void bswap_prstatus(struct target_elf_prstatus *prstatus) | 
|  | { | 
|  | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); | 
|  | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); | 
|  | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); | 
|  | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); | 
|  | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); | 
|  | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); | 
|  | prstatus->pr_pid = tswap32(prstatus->pr_pid); | 
|  | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | 
|  | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | 
|  | prstatus->pr_sid = tswap32(prstatus->pr_sid); | 
|  | /* cpu times are not filled, so we skip them */ | 
|  | /* regs should be in correct format already */ | 
|  | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | 
|  | } | 
|  |  | 
|  | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) | 
|  | { | 
|  | psinfo->pr_flag = tswapal(psinfo->pr_flag); | 
|  | psinfo->pr_uid = tswap16(psinfo->pr_uid); | 
|  | psinfo->pr_gid = tswap16(psinfo->pr_gid); | 
|  | psinfo->pr_pid = tswap32(psinfo->pr_pid); | 
|  | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | 
|  | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | 
|  | psinfo->pr_sid = tswap32(psinfo->pr_sid); | 
|  | } | 
|  |  | 
|  | static void bswap_note(struct elf_note *en) | 
|  | { | 
|  | bswap32s(&en->n_namesz); | 
|  | bswap32s(&en->n_descsz); | 
|  | bswap32s(&en->n_type); | 
|  | } | 
|  | #else | 
|  | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | 
|  | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | 
|  | static inline void bswap_note(struct elf_note *en) { } | 
|  | #endif /* BSWAP_NEEDED */ | 
|  |  | 
|  | /* | 
|  | * Minimal support for linux memory regions.  These are needed | 
|  | * when we are finding out what memory exactly belongs to | 
|  | * emulated process.  No locks needed here, as long as | 
|  | * thread that received the signal is stopped. | 
|  | */ | 
|  |  | 
|  | static struct mm_struct *vma_init(void) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  |  | 
|  | if ((mm = g_malloc(sizeof (*mm))) == NULL) | 
|  | return (NULL); | 
|  |  | 
|  | mm->mm_count = 0; | 
|  | QTAILQ_INIT(&mm->mm_mmap); | 
|  |  | 
|  | return (mm); | 
|  | } | 
|  |  | 
|  | static void vma_delete(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | while ((vma = vma_first(mm)) != NULL) { | 
|  | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); | 
|  | g_free(vma); | 
|  | } | 
|  | g_free(mm); | 
|  | } | 
|  |  | 
|  | static int vma_add_mapping(struct mm_struct *mm, target_ulong start, | 
|  | target_ulong end, abi_ulong flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if ((vma = g_malloc0(sizeof (*vma))) == NULL) | 
|  | return (-1); | 
|  |  | 
|  | vma->vma_start = start; | 
|  | vma->vma_end = end; | 
|  | vma->vma_flags = flags; | 
|  |  | 
|  | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); | 
|  | mm->mm_count++; | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static struct vm_area_struct *vma_first(const struct mm_struct *mm) | 
|  | { | 
|  | return (QTAILQ_FIRST(&mm->mm_mmap)); | 
|  | } | 
|  |  | 
|  | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) | 
|  | { | 
|  | return (QTAILQ_NEXT(vma, vma_link)); | 
|  | } | 
|  |  | 
|  | static int vma_get_mapping_count(const struct mm_struct *mm) | 
|  | { | 
|  | return (mm->mm_count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate file (dump) size of given memory region. | 
|  | */ | 
|  | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) | 
|  | { | 
|  | /* if we cannot even read the first page, skip it */ | 
|  | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) | 
|  | return (0); | 
|  |  | 
|  | /* | 
|  | * Usually we don't dump executable pages as they contain | 
|  | * non-writable code that debugger can read directly from | 
|  | * target library etc.  However, thread stacks are marked | 
|  | * also executable so we read in first page of given region | 
|  | * and check whether it contains elf header.  If there is | 
|  | * no elf header, we dump it. | 
|  | */ | 
|  | if (vma->vma_flags & PROT_EXEC) { | 
|  | char page[TARGET_PAGE_SIZE]; | 
|  |  | 
|  | copy_from_user(page, vma->vma_start, sizeof (page)); | 
|  | if ((page[EI_MAG0] == ELFMAG0) && | 
|  | (page[EI_MAG1] == ELFMAG1) && | 
|  | (page[EI_MAG2] == ELFMAG2) && | 
|  | (page[EI_MAG3] == ELFMAG3)) { | 
|  | /* | 
|  | * Mappings are possibly from ELF binary.  Don't dump | 
|  | * them. | 
|  | */ | 
|  | return (0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return (vma->vma_end - vma->vma_start); | 
|  | } | 
|  |  | 
|  | static int vma_walker(void *priv, target_ulong start, target_ulong end, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = (struct mm_struct *)priv; | 
|  |  | 
|  | vma_add_mapping(mm, start, end, flags); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static void fill_note(struct memelfnote *note, const char *name, int type, | 
|  | unsigned int sz, void *data) | 
|  | { | 
|  | unsigned int namesz; | 
|  |  | 
|  | namesz = strlen(name) + 1; | 
|  | note->name = name; | 
|  | note->namesz = namesz; | 
|  | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); | 
|  | note->type = type; | 
|  | note->datasz = sz; | 
|  | note->datasz_rounded = roundup(sz, sizeof (int32_t)); | 
|  |  | 
|  | note->data = data; | 
|  |  | 
|  | /* | 
|  | * We calculate rounded up note size here as specified by | 
|  | * ELF document. | 
|  | */ | 
|  | note->notesz = sizeof (struct elf_note) + | 
|  | note->namesz_rounded + note->datasz_rounded; | 
|  | } | 
|  |  | 
|  | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | 
|  | uint32_t flags) | 
|  | { | 
|  | (void) memset(elf, 0, sizeof(*elf)); | 
|  |  | 
|  | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
|  | elf->e_ident[EI_CLASS] = ELF_CLASS; | 
|  | elf->e_ident[EI_DATA] = ELF_DATA; | 
|  | elf->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf->e_ident[EI_OSABI] = ELF_OSABI; | 
|  |  | 
|  | elf->e_type = ET_CORE; | 
|  | elf->e_machine = machine; | 
|  | elf->e_version = EV_CURRENT; | 
|  | elf->e_phoff = sizeof(struct elfhdr); | 
|  | elf->e_flags = flags; | 
|  | elf->e_ehsize = sizeof(struct elfhdr); | 
|  | elf->e_phentsize = sizeof(struct elf_phdr); | 
|  | elf->e_phnum = segs; | 
|  |  | 
|  | bswap_ehdr(elf); | 
|  | } | 
|  |  | 
|  | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | 
|  | { | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_offset = offset; | 
|  | phdr->p_vaddr = 0; | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = sz; | 
|  | phdr->p_memsz = 0; | 
|  | phdr->p_flags = 0; | 
|  | phdr->p_align = 0; | 
|  |  | 
|  | bswap_phdr(phdr, 1); | 
|  | } | 
|  |  | 
|  | static size_t note_size(const struct memelfnote *note) | 
|  | { | 
|  | return (note->notesz); | 
|  | } | 
|  |  | 
|  | static void fill_prstatus(struct target_elf_prstatus *prstatus, | 
|  | const TaskState *ts, int signr) | 
|  | { | 
|  | (void) memset(prstatus, 0, sizeof (*prstatus)); | 
|  | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | 
|  | prstatus->pr_pid = ts->ts_tid; | 
|  | prstatus->pr_ppid = getppid(); | 
|  | prstatus->pr_pgrp = getpgrp(); | 
|  | prstatus->pr_sid = getsid(0); | 
|  |  | 
|  | bswap_prstatus(prstatus); | 
|  | } | 
|  |  | 
|  | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) | 
|  | { | 
|  | char *base_filename; | 
|  | unsigned int i, len; | 
|  |  | 
|  | (void) memset(psinfo, 0, sizeof (*psinfo)); | 
|  |  | 
|  | len = ts->info->arg_end - ts->info->arg_start; | 
|  | if (len >= ELF_PRARGSZ) | 
|  | len = ELF_PRARGSZ - 1; | 
|  | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) | 
|  | return -EFAULT; | 
|  | for (i = 0; i < len; i++) | 
|  | if (psinfo->pr_psargs[i] == 0) | 
|  | psinfo->pr_psargs[i] = ' '; | 
|  | psinfo->pr_psargs[len] = 0; | 
|  |  | 
|  | psinfo->pr_pid = getpid(); | 
|  | psinfo->pr_ppid = getppid(); | 
|  | psinfo->pr_pgrp = getpgrp(); | 
|  | psinfo->pr_sid = getsid(0); | 
|  | psinfo->pr_uid = getuid(); | 
|  | psinfo->pr_gid = getgid(); | 
|  |  | 
|  | base_filename = g_path_get_basename(ts->bprm->filename); | 
|  | /* | 
|  | * Using strncpy here is fine: at max-length, | 
|  | * this field is not NUL-terminated. | 
|  | */ | 
|  | (void) strncpy(psinfo->pr_fname, base_filename, | 
|  | sizeof(psinfo->pr_fname)); | 
|  |  | 
|  | g_free(base_filename); | 
|  | bswap_psinfo(psinfo); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) | 
|  | { | 
|  | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; | 
|  | elf_addr_t orig_auxv = auxv; | 
|  | void *ptr; | 
|  | int len = ts->info->auxv_len; | 
|  |  | 
|  | /* | 
|  | * Auxiliary vector is stored in target process stack.  It contains | 
|  | * {type, value} pairs that we need to dump into note.  This is not | 
|  | * strictly necessary but we do it here for sake of completeness. | 
|  | */ | 
|  |  | 
|  | /* read in whole auxv vector and copy it to memelfnote */ | 
|  | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); | 
|  | if (ptr != NULL) { | 
|  | fill_note(note, "CORE", NT_AUXV, len, ptr); | 
|  | unlock_user(ptr, auxv, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Constructs name of coredump file.  We have following convention | 
|  | * for the name: | 
|  | *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | 
|  | * | 
|  | * Returns 0 in case of success, -1 otherwise (errno is set). | 
|  | */ | 
|  | static int core_dump_filename(const TaskState *ts, char *buf, | 
|  | size_t bufsize) | 
|  | { | 
|  | char timestamp[64]; | 
|  | char *base_filename = NULL; | 
|  | struct timeval tv; | 
|  | struct tm tm; | 
|  |  | 
|  | assert(bufsize >= PATH_MAX); | 
|  |  | 
|  | if (gettimeofday(&tv, NULL) < 0) { | 
|  | (void) fprintf(stderr, "unable to get current timestamp: %s", | 
|  | strerror(errno)); | 
|  | return (-1); | 
|  | } | 
|  |  | 
|  | base_filename = g_path_get_basename(ts->bprm->filename); | 
|  | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", | 
|  | localtime_r(&tv.tv_sec, &tm)); | 
|  | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", | 
|  | base_filename, timestamp, (int)getpid()); | 
|  | g_free(base_filename); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static int dump_write(int fd, const void *ptr, size_t size) | 
|  | { | 
|  | const char *bufp = (const char *)ptr; | 
|  | ssize_t bytes_written, bytes_left; | 
|  | struct rlimit dumpsize; | 
|  | off_t pos; | 
|  |  | 
|  | bytes_written = 0; | 
|  | getrlimit(RLIMIT_CORE, &dumpsize); | 
|  | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { | 
|  | if (errno == ESPIPE) { /* not a seekable stream */ | 
|  | bytes_left = size; | 
|  | } else { | 
|  | return pos; | 
|  | } | 
|  | } else { | 
|  | if (dumpsize.rlim_cur <= pos) { | 
|  | return -1; | 
|  | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { | 
|  | bytes_left = size; | 
|  | } else { | 
|  | size_t limit_left=dumpsize.rlim_cur - pos; | 
|  | bytes_left = limit_left >= size ? size : limit_left ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In normal conditions, single write(2) should do but | 
|  | * in case of socket etc. this mechanism is more portable. | 
|  | */ | 
|  | do { | 
|  | bytes_written = write(fd, bufp, bytes_left); | 
|  | if (bytes_written < 0) { | 
|  | if (errno == EINTR) | 
|  | continue; | 
|  | return (-1); | 
|  | } else if (bytes_written == 0) { /* eof */ | 
|  | return (-1); | 
|  | } | 
|  | bufp += bytes_written; | 
|  | bytes_left -= bytes_written; | 
|  | } while (bytes_left > 0); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static int write_note(struct memelfnote *men, int fd) | 
|  | { | 
|  | struct elf_note en; | 
|  |  | 
|  | en.n_namesz = men->namesz; | 
|  | en.n_type = men->type; | 
|  | en.n_descsz = men->datasz; | 
|  |  | 
|  | bswap_note(&en); | 
|  |  | 
|  | if (dump_write(fd, &en, sizeof(en)) != 0) | 
|  | return (-1); | 
|  | if (dump_write(fd, men->name, men->namesz_rounded) != 0) | 
|  | return (-1); | 
|  | if (dump_write(fd, men->data, men->datasz_rounded) != 0) | 
|  | return (-1); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); | 
|  | TaskState *ts = (TaskState *)cpu->opaque; | 
|  | struct elf_thread_status *ets; | 
|  |  | 
|  | ets = g_malloc0(sizeof (*ets)); | 
|  | ets->num_notes = 1; /* only prstatus is dumped */ | 
|  | fill_prstatus(&ets->prstatus, ts, 0); | 
|  | elf_core_copy_regs(&ets->prstatus.pr_reg, env); | 
|  | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), | 
|  | &ets->prstatus); | 
|  |  | 
|  | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); | 
|  |  | 
|  | info->notes_size += note_size(&ets->notes[0]); | 
|  | } | 
|  |  | 
|  | static void init_note_info(struct elf_note_info *info) | 
|  | { | 
|  | /* Initialize the elf_note_info structure so that it is at | 
|  | * least safe to call free_note_info() on it. Must be | 
|  | * called before calling fill_note_info(). | 
|  | */ | 
|  | memset(info, 0, sizeof (*info)); | 
|  | QTAILQ_INIT(&info->thread_list); | 
|  | } | 
|  |  | 
|  | static int fill_note_info(struct elf_note_info *info, | 
|  | long signr, const CPUArchState *env) | 
|  | { | 
|  | #define NUMNOTES 3 | 
|  | CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); | 
|  | TaskState *ts = (TaskState *)cpu->opaque; | 
|  | int i; | 
|  |  | 
|  | info->notes = g_new0(struct memelfnote, NUMNOTES); | 
|  | if (info->notes == NULL) | 
|  | return (-ENOMEM); | 
|  | info->prstatus = g_malloc0(sizeof (*info->prstatus)); | 
|  | if (info->prstatus == NULL) | 
|  | return (-ENOMEM); | 
|  | info->psinfo = g_malloc0(sizeof (*info->psinfo)); | 
|  | if (info->prstatus == NULL) | 
|  | return (-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * First fill in status (and registers) of current thread | 
|  | * including process info & aux vector. | 
|  | */ | 
|  | fill_prstatus(info->prstatus, ts, signr); | 
|  | elf_core_copy_regs(&info->prstatus->pr_reg, env); | 
|  | fill_note(&info->notes[0], "CORE", NT_PRSTATUS, | 
|  | sizeof (*info->prstatus), info->prstatus); | 
|  | fill_psinfo(info->psinfo, ts); | 
|  | fill_note(&info->notes[1], "CORE", NT_PRPSINFO, | 
|  | sizeof (*info->psinfo), info->psinfo); | 
|  | fill_auxv_note(&info->notes[2], ts); | 
|  | info->numnote = 3; | 
|  |  | 
|  | info->notes_size = 0; | 
|  | for (i = 0; i < info->numnote; i++) | 
|  | info->notes_size += note_size(&info->notes[i]); | 
|  |  | 
|  | /* read and fill status of all threads */ | 
|  | cpu_list_lock(); | 
|  | CPU_FOREACH(cpu) { | 
|  | if (cpu == thread_cpu) { | 
|  | continue; | 
|  | } | 
|  | fill_thread_info(info, (CPUArchState *)cpu->env_ptr); | 
|  | } | 
|  | cpu_list_unlock(); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static void free_note_info(struct elf_note_info *info) | 
|  | { | 
|  | struct elf_thread_status *ets; | 
|  |  | 
|  | while (!QTAILQ_EMPTY(&info->thread_list)) { | 
|  | ets = QTAILQ_FIRST(&info->thread_list); | 
|  | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); | 
|  | g_free(ets); | 
|  | } | 
|  |  | 
|  | g_free(info->prstatus); | 
|  | g_free(info->psinfo); | 
|  | g_free(info->notes); | 
|  | } | 
|  |  | 
|  | static int write_note_info(struct elf_note_info *info, int fd) | 
|  | { | 
|  | struct elf_thread_status *ets; | 
|  | int i, error = 0; | 
|  |  | 
|  | /* write prstatus, psinfo and auxv for current thread */ | 
|  | for (i = 0; i < info->numnote; i++) | 
|  | if ((error = write_note(&info->notes[i], fd)) != 0) | 
|  | return (error); | 
|  |  | 
|  | /* write prstatus for each thread */ | 
|  | QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { | 
|  | if ((error = write_note(&ets->notes[0], fd)) != 0) | 
|  | return (error); | 
|  | } | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out ELF coredump. | 
|  | * | 
|  | * See documentation of ELF object file format in: | 
|  | * http://www.caldera.com/developers/devspecs/gabi41.pdf | 
|  | * | 
|  | * Coredump format in linux is following: | 
|  | * | 
|  | * 0   +----------------------+         \ | 
|  | *     | ELF header           | ET_CORE  | | 
|  | *     +----------------------+          | | 
|  | *     | ELF program headers  |          |--- headers | 
|  | *     | - NOTE section       |          | | 
|  | *     | - PT_LOAD sections   |          | | 
|  | *     +----------------------+         / | 
|  | *     | NOTEs:               | | 
|  | *     | - NT_PRSTATUS        | | 
|  | *     | - NT_PRSINFO         | | 
|  | *     | - NT_AUXV            | | 
|  | *     +----------------------+ <-- aligned to target page | 
|  | *     | Process memory dump  | | 
|  | *     :                      : | 
|  | *     .                      . | 
|  | *     :                      : | 
|  | *     |                      | | 
|  | *     +----------------------+ | 
|  | * | 
|  | * NT_PRSTATUS -> struct elf_prstatus (per thread) | 
|  | * NT_PRSINFO  -> struct elf_prpsinfo | 
|  | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | 
|  | * | 
|  | * Format follows System V format as close as possible.  Current | 
|  | * version limitations are as follows: | 
|  | *     - no floating point registers are dumped | 
|  | * | 
|  | * Function returns 0 in case of success, negative errno otherwise. | 
|  | * | 
|  | * TODO: make this work also during runtime: it should be | 
|  | * possible to force coredump from running process and then | 
|  | * continue processing.  For example qemu could set up SIGUSR2 | 
|  | * handler (provided that target process haven't registered | 
|  | * handler for that) that does the dump when signal is received. | 
|  | */ | 
|  | static int elf_core_dump(int signr, const CPUArchState *env) | 
|  | { | 
|  | const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); | 
|  | const TaskState *ts = (const TaskState *)cpu->opaque; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | char corefile[PATH_MAX]; | 
|  | struct elf_note_info info; | 
|  | struct elfhdr elf; | 
|  | struct elf_phdr phdr; | 
|  | struct rlimit dumpsize; | 
|  | struct mm_struct *mm = NULL; | 
|  | off_t offset = 0, data_offset = 0; | 
|  | int segs = 0; | 
|  | int fd = -1; | 
|  |  | 
|  | init_note_info(&info); | 
|  |  | 
|  | errno = 0; | 
|  | getrlimit(RLIMIT_CORE, &dumpsize); | 
|  | if (dumpsize.rlim_cur == 0) | 
|  | return 0; | 
|  |  | 
|  | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) | 
|  | return (-errno); | 
|  |  | 
|  | if ((fd = open(corefile, O_WRONLY | O_CREAT, | 
|  | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) | 
|  | return (-errno); | 
|  |  | 
|  | /* | 
|  | * Walk through target process memory mappings and | 
|  | * set up structure containing this information.  After | 
|  | * this point vma_xxx functions can be used. | 
|  | */ | 
|  | if ((mm = vma_init()) == NULL) | 
|  | goto out; | 
|  |  | 
|  | walk_memory_regions(mm, vma_walker); | 
|  | segs = vma_get_mapping_count(mm); | 
|  |  | 
|  | /* | 
|  | * Construct valid coredump ELF header.  We also | 
|  | * add one more segment for notes. | 
|  | */ | 
|  | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); | 
|  | if (dump_write(fd, &elf, sizeof (elf)) != 0) | 
|  | goto out; | 
|  |  | 
|  | /* fill in the in-memory version of notes */ | 
|  | if (fill_note_info(&info, signr, env) < 0) | 
|  | goto out; | 
|  |  | 
|  | offset += sizeof (elf);                             /* elf header */ | 
|  | offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */ | 
|  |  | 
|  | /* write out notes program header */ | 
|  | fill_elf_note_phdr(&phdr, info.notes_size, offset); | 
|  |  | 
|  | offset += info.notes_size; | 
|  | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * ELF specification wants data to start at page boundary so | 
|  | * we align it here. | 
|  | */ | 
|  | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); | 
|  |  | 
|  | /* | 
|  | * Write program headers for memory regions mapped in | 
|  | * the target process. | 
|  | */ | 
|  | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | 
|  | (void) memset(&phdr, 0, sizeof (phdr)); | 
|  |  | 
|  | phdr.p_type = PT_LOAD; | 
|  | phdr.p_offset = offset; | 
|  | phdr.p_vaddr = vma->vma_start; | 
|  | phdr.p_paddr = 0; | 
|  | phdr.p_filesz = vma_dump_size(vma); | 
|  | offset += phdr.p_filesz; | 
|  | phdr.p_memsz = vma->vma_end - vma->vma_start; | 
|  | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; | 
|  | if (vma->vma_flags & PROT_WRITE) | 
|  | phdr.p_flags |= PF_W; | 
|  | if (vma->vma_flags & PROT_EXEC) | 
|  | phdr.p_flags |= PF_X; | 
|  | phdr.p_align = ELF_EXEC_PAGESIZE; | 
|  |  | 
|  | bswap_phdr(&phdr, 1); | 
|  | if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Next we write notes just after program headers.  No | 
|  | * alignment needed here. | 
|  | */ | 
|  | if (write_note_info(&info, fd) < 0) | 
|  | goto out; | 
|  |  | 
|  | /* align data to page boundary */ | 
|  | if (lseek(fd, data_offset, SEEK_SET) != data_offset) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Finally we can dump process memory into corefile as well. | 
|  | */ | 
|  | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | 
|  | abi_ulong addr; | 
|  | abi_ulong end; | 
|  |  | 
|  | end = vma->vma_start + vma_dump_size(vma); | 
|  |  | 
|  | for (addr = vma->vma_start; addr < end; | 
|  | addr += TARGET_PAGE_SIZE) { | 
|  | char page[TARGET_PAGE_SIZE]; | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | *  Read in page from target process memory and | 
|  | *  write it to coredump file. | 
|  | */ | 
|  | error = copy_from_user(page, addr, sizeof (page)); | 
|  | if (error != 0) { | 
|  | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", | 
|  | addr); | 
|  | errno = -error; | 
|  | goto out; | 
|  | } | 
|  | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | free_note_info(&info); | 
|  | if (mm != NULL) | 
|  | vma_delete(mm); | 
|  | (void) close(fd); | 
|  |  | 
|  | if (errno != 0) | 
|  | return (-errno); | 
|  | return (0); | 
|  | } | 
|  | #endif /* USE_ELF_CORE_DUMP */ | 
|  |  | 
|  | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) | 
|  | { | 
|  | init_thread(regs, infop); | 
|  | } |