blob: be0b2de270405f8ff663fe7572fc5aa3ac75f2de [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "maps.h"
#include <errno.h>
#include <fcntl.h>
#include <linux/unistd.h>
#include <signal.h>
#include <stdarg.h>
#include <stdlib.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "library.h"
#include "sandbox_impl.h"
namespace playground {
Maps::Maps(int proc_self_maps) :
proc_self_maps_(proc_self_maps),
begin_iter_(this, true, false),
end_iter_(this, false, true),
vsyscall_(0) {
Sandbox::SysCalls sys;
if (proc_self_maps_ >= 0 &&
!sys.lseek(proc_self_maps_, 0, SEEK_SET)) {
char buf[256] = { 0 };
int len = 0, rc = 1;
bool long_line = false;
do {
if (rc > 0) {
rc = Sandbox::read(sys, proc_self_maps_, buf + len,
sizeof(buf) - len - 1);
if (rc > 0) {
len += rc;
}
}
char *ptr = buf;
if (!long_line) {
long_line = true;
unsigned long start = strtoul(ptr, &ptr, 16);
unsigned long stop = strtoul(ptr + 1, &ptr, 16);
while (*ptr == ' ' || *ptr == '\t') ++ptr;
char *perm_ptr = ptr;
while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr;
string perm(perm_ptr, ptr - perm_ptr);
unsigned long offset = strtoul(ptr, &ptr, 16);
while (*ptr == ' ' || *ptr == '\t') ++ptr;
char *id_ptr = ptr;
while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr;
while (*ptr == ' ' || *ptr == '\t') ++ptr;
while (*ptr && *ptr != ' ' && *ptr != '\t') ++ptr;
string id(id_ptr, ptr - id_ptr);
while (*ptr == ' ' || *ptr == '\t') ++ptr;
char *library_ptr = ptr;
while (*ptr && *ptr != ' ' && *ptr != '\t' && *ptr != '\n') ++ptr;
string library(library_ptr, ptr - library_ptr);
bool isVDSO = false;
if (library == "[vdso]") {
// /proc/self/maps has a misleading file offset in the [vdso] entry.
// Override it with a sane value.
offset = 0;
isVDSO = true;
} else if (library == "[vsyscall]") {
vsyscall_ = reinterpret_cast<char *>(start);
} else if (library.empty() || library[0] == '[') {
goto skip_entry;
}
int prot = 0;
if (perm.find('r') != string::npos) {
prot |= PROT_READ;
}
if (perm.find('w') != string::npos) {
prot |= PROT_WRITE;
}
if (perm.find('x') != string::npos) {
prot |= PROT_EXEC;
}
if ((prot & (PROT_EXEC | PROT_READ)) == 0) {
goto skip_entry;
}
Library* lib = &libs_[id + ' ' + library];
lib->setLibraryInfo(this);
lib->addMemoryRange(reinterpret_cast<void *>(start),
reinterpret_cast<void *>(stop),
Elf_Addr(offset),
prot, isVDSO);
}
skip_entry:
for (;;) {
if (!*ptr || *ptr++ == '\n') {
long_line = false;
memmove(buf, ptr, len - (ptr - buf));
memset(buf + len - (ptr - buf), 0, ptr - buf);
len -= (ptr - buf);
break;
}
}
} while (len || long_line);
}
}
Maps::~Maps() {
}
Maps::Iterator::Iterator(Maps* maps, bool at_beginning, bool at_end)
: maps_(maps),
at_beginning_(at_beginning),
at_end_(at_end) {
}
Maps::LibraryMap::iterator& Maps::Iterator::getIterator() const {
if (at_beginning_) {
iter_ = maps_->libs_.begin();
} else if (at_end_) {
iter_ = maps_->libs_.end();
}
return iter_;
}
Maps::Iterator Maps::Iterator::begin() {
return maps_->begin_iter_;
}
Maps::Iterator Maps::Iterator::end() {
return maps_->end_iter_;
}
Maps::Iterator& Maps::Iterator::operator++() {
getIterator().operator++();
at_beginning_ = false;
return *this;
}
Maps::Iterator Maps::Iterator::operator++(int i) {
getIterator().operator++(i);
at_beginning_ = false;
return *this;
}
Library* Maps::Iterator::operator*() const {
return &getIterator().operator*().second;
}
bool Maps::Iterator::operator==(const Maps::Iterator& iter) const {
return getIterator() == iter.getIterator();
}
bool Maps::Iterator::operator!=(const Maps::Iterator& iter) const {
return !operator==(iter);
}
const Maps::string& Maps::Iterator::name() const {
return getIterator()->first;
}
// Test whether a line ends with "[stack]"; used for identifying the
// stack entry of /proc/self/maps.
static bool isStackLine(char* buf, char* end) {
char* ptr = buf;
for ( ; *ptr != '\n' && ptr < end; ++ptr)
;
if (ptr < end && ptr - 7 > buf) {
return (memcmp(ptr - 7, "[stack]", 7) == 0);
}
return false;
}
char* Maps::allocNearAddr(char* addr_target, size_t size, int prot) const {
// We try to allocate memory within 1.5GB of a target address. This means,
// we will be able to perform relative 32bit jumps from the target address.
const unsigned long kMaxDistance = 1536 << 20;
// In most of the code below, we just care about the numeric value of
// the address.
const long addr = reinterpret_cast<long>(addr_target);
size = (size + 4095) & ~4095;
Sandbox::SysCalls sys;
if (sys.lseek(proc_self_maps_, 0, SEEK_SET)) {
return NULL;
}
// Iterate through lines of /proc/self/maps to consider each mapped
// region one at a time, looking for a gap between regions to allocate.
char buf[256] = { 0 };
int len = 0, rc = 1;
bool long_line = false;
unsigned long gap_start = 0x10000;
void* new_addr;
do {
if (rc > 0) {
do {
rc = Sandbox::read(sys, proc_self_maps_, buf + len,
sizeof(buf) - len - 1);
if (rc > 0) {
len += rc;
}
} while (rc > 0 && len < (int)sizeof(buf) - 1);
}
char *ptr = buf;
if (!long_line) {
long_line = true;
// Maps lines have the form "<start address>-<end address> ... <name>".
unsigned long gap_end = strtoul(ptr, &ptr, 16);
unsigned long map_end = strtoul(ptr + 1, &ptr, 16);
// gap_start to gap_end now covers the region of empty space before
// the current line. Now we try to see if there's a place within the
// gap we can use.
if (gap_end - gap_start >= size) {
// Is the gap before our target address?
if (addr - static_cast<long>(gap_end) >= 0) {
if (addr - (gap_end - size) < kMaxDistance) {
unsigned long position;
if (isStackLine(ptr, buf + len)) {
// If we're adjacent to the stack, try to stay away from
// the GROWS_DOWN region. Pick the farthest away region that
// is still within the gap.
if (static_cast<unsigned long>(addr) < kMaxDistance || // Underflow protection.
static_cast<unsigned long>(addr) - kMaxDistance < gap_start) {
position = gap_start;
} else {
position = (addr - kMaxDistance) & ~4095;
if (position < gap_start) {
position = gap_start;
}
}
} else {
// Otherwise, take the end of the region.
position = gap_end - size;
}
new_addr = reinterpret_cast<char *>(sys.MMAP
(reinterpret_cast<void *>(position), size, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0));
if (new_addr != MAP_FAILED) {
goto done;
}
}
} else if (gap_start + size - addr < kMaxDistance) {
// Gap is after the address. Above checks that we can wrap around
// through 0 to a space we'd use.
new_addr = reinterpret_cast<char *>(sys.MMAP
(reinterpret_cast<void *>(gap_start), size, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1 ,0));
if (new_addr != MAP_FAILED) {
goto done;
}
}
}
gap_start = map_end;
}
for (;;) {
if (!*ptr || *ptr++ == '\n') {
long_line = false;
memmove(buf, ptr, len - (ptr - buf));
memset(buf + len - (ptr - buf), 0, ptr - buf);
len -= (ptr - buf);
break;
}
}
} while (len || long_line);
new_addr = NULL;
done:
return reinterpret_cast<char*>(new_addr);
}
} // namespace