| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| #include "hydrogen.h" |
| |
| #include "codegen.h" |
| #include "full-codegen.h" |
| #include "hashmap.h" |
| #include "lithium-allocator.h" |
| #include "parser.h" |
| #include "scopeinfo.h" |
| #include "scopes.h" |
| #include "stub-cache.h" |
| |
| #if V8_TARGET_ARCH_IA32 |
| #include "ia32/lithium-codegen-ia32.h" |
| #elif V8_TARGET_ARCH_X64 |
| #include "x64/lithium-codegen-x64.h" |
| #elif V8_TARGET_ARCH_ARM |
| #include "arm/lithium-codegen-arm.h" |
| #elif V8_TARGET_ARCH_MIPS |
| #include "mips/lithium-codegen-mips.h" |
| #else |
| #error Unsupported target architecture. |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| HBasicBlock::HBasicBlock(HGraph* graph) |
| : block_id_(graph->GetNextBlockID()), |
| graph_(graph), |
| phis_(4, graph->zone()), |
| first_(NULL), |
| last_(NULL), |
| end_(NULL), |
| loop_information_(NULL), |
| predecessors_(2, graph->zone()), |
| dominator_(NULL), |
| dominated_blocks_(4, graph->zone()), |
| last_environment_(NULL), |
| argument_count_(-1), |
| first_instruction_index_(-1), |
| last_instruction_index_(-1), |
| deleted_phis_(4, graph->zone()), |
| parent_loop_header_(NULL), |
| is_inline_return_target_(false), |
| is_deoptimizing_(false), |
| dominates_loop_successors_(false) { } |
| |
| |
| void HBasicBlock::AttachLoopInformation() { |
| ASSERT(!IsLoopHeader()); |
| loop_information_ = new(zone()) HLoopInformation(this, zone()); |
| } |
| |
| |
| void HBasicBlock::DetachLoopInformation() { |
| ASSERT(IsLoopHeader()); |
| loop_information_ = NULL; |
| } |
| |
| |
| void HBasicBlock::AddPhi(HPhi* phi) { |
| ASSERT(!IsStartBlock()); |
| phis_.Add(phi, zone()); |
| phi->SetBlock(this); |
| } |
| |
| |
| void HBasicBlock::RemovePhi(HPhi* phi) { |
| ASSERT(phi->block() == this); |
| ASSERT(phis_.Contains(phi)); |
| ASSERT(phi->HasNoUses() || !phi->is_live()); |
| phi->Kill(); |
| phis_.RemoveElement(phi); |
| phi->SetBlock(NULL); |
| } |
| |
| |
| void HBasicBlock::AddInstruction(HInstruction* instr) { |
| ASSERT(!IsStartBlock() || !IsFinished()); |
| ASSERT(!instr->IsLinked()); |
| ASSERT(!IsFinished()); |
| if (first_ == NULL) { |
| HBlockEntry* entry = new(zone()) HBlockEntry(); |
| entry->InitializeAsFirst(this); |
| first_ = last_ = entry; |
| } |
| instr->InsertAfter(last_); |
| } |
| |
| |
| HDeoptimize* HBasicBlock::CreateDeoptimize( |
| HDeoptimize::UseEnvironment has_uses) { |
| ASSERT(HasEnvironment()); |
| if (has_uses == HDeoptimize::kNoUses) |
| return new(zone()) HDeoptimize(0, zone()); |
| |
| HEnvironment* environment = last_environment(); |
| HDeoptimize* instr = new(zone()) HDeoptimize(environment->length(), zone()); |
| for (int i = 0; i < environment->length(); i++) { |
| HValue* val = environment->values()->at(i); |
| instr->AddEnvironmentValue(val, zone()); |
| } |
| |
| return instr; |
| } |
| |
| |
| HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id, |
| RemovableSimulate removable) { |
| ASSERT(HasEnvironment()); |
| HEnvironment* environment = last_environment(); |
| ASSERT(ast_id.IsNone() || |
| ast_id == BailoutId::StubEntry() || |
| environment->closure()->shared()->VerifyBailoutId(ast_id)); |
| |
| int push_count = environment->push_count(); |
| int pop_count = environment->pop_count(); |
| |
| HSimulate* instr = |
| new(zone()) HSimulate(ast_id, pop_count, zone(), removable); |
| // Order of pushed values: newest (top of stack) first. This allows |
| // HSimulate::MergeInto() to easily append additional pushed values |
| // that are older (from further down the stack). |
| for (int i = 0; i < push_count; ++i) { |
| instr->AddPushedValue(environment->ExpressionStackAt(i)); |
| } |
| for (GrowableBitVector::Iterator it(environment->assigned_variables(), |
| zone()); |
| !it.Done(); |
| it.Advance()) { |
| int index = it.Current(); |
| instr->AddAssignedValue(index, environment->Lookup(index)); |
| } |
| environment->ClearHistory(); |
| return instr; |
| } |
| |
| |
| void HBasicBlock::Finish(HControlInstruction* end) { |
| ASSERT(!IsFinished()); |
| AddInstruction(end); |
| end_ = end; |
| for (HSuccessorIterator it(end); !it.Done(); it.Advance()) { |
| it.Current()->RegisterPredecessor(this); |
| } |
| } |
| |
| |
| void HBasicBlock::Goto(HBasicBlock* block, FunctionState* state) { |
| bool drop_extra = state != NULL && |
| state->inlining_kind() == DROP_EXTRA_ON_RETURN; |
| |
| if (block->IsInlineReturnTarget()) { |
| AddInstruction(new(zone()) HLeaveInlined()); |
| last_environment_ = last_environment()->DiscardInlined(drop_extra); |
| } |
| |
| AddSimulate(BailoutId::None()); |
| HGoto* instr = new(zone()) HGoto(block); |
| Finish(instr); |
| } |
| |
| |
| void HBasicBlock::AddLeaveInlined(HValue* return_value, |
| FunctionState* state) { |
| HBasicBlock* target = state->function_return(); |
| bool drop_extra = state->inlining_kind() == DROP_EXTRA_ON_RETURN; |
| |
| ASSERT(target->IsInlineReturnTarget()); |
| ASSERT(return_value != NULL); |
| AddInstruction(new(zone()) HLeaveInlined()); |
| last_environment_ = last_environment()->DiscardInlined(drop_extra); |
| last_environment()->Push(return_value); |
| AddSimulate(BailoutId::None()); |
| HGoto* instr = new(zone()) HGoto(target); |
| Finish(instr); |
| } |
| |
| |
| void HBasicBlock::SetInitialEnvironment(HEnvironment* env) { |
| ASSERT(!HasEnvironment()); |
| ASSERT(first() == NULL); |
| UpdateEnvironment(env); |
| } |
| |
| |
| void HBasicBlock::SetJoinId(BailoutId ast_id) { |
| int length = predecessors_.length(); |
| ASSERT(length > 0); |
| for (int i = 0; i < length; i++) { |
| HBasicBlock* predecessor = predecessors_[i]; |
| ASSERT(predecessor->end()->IsGoto()); |
| HSimulate* simulate = HSimulate::cast(predecessor->end()->previous()); |
| // We only need to verify the ID once. |
| ASSERT(i != 0 || |
| (predecessor->last_environment()->closure().is_null() || |
| predecessor->last_environment()->closure()->shared() |
| ->VerifyBailoutId(ast_id))); |
| simulate->set_ast_id(ast_id); |
| } |
| } |
| |
| |
| bool HBasicBlock::Dominates(HBasicBlock* other) const { |
| HBasicBlock* current = other->dominator(); |
| while (current != NULL) { |
| if (current == this) return true; |
| current = current->dominator(); |
| } |
| return false; |
| } |
| |
| |
| int HBasicBlock::LoopNestingDepth() const { |
| const HBasicBlock* current = this; |
| int result = (current->IsLoopHeader()) ? 1 : 0; |
| while (current->parent_loop_header() != NULL) { |
| current = current->parent_loop_header(); |
| result++; |
| } |
| return result; |
| } |
| |
| |
| void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) { |
| ASSERT(IsLoopHeader()); |
| |
| SetJoinId(stmt->EntryId()); |
| if (predecessors()->length() == 1) { |
| // This is a degenerated loop. |
| DetachLoopInformation(); |
| return; |
| } |
| |
| // Only the first entry into the loop is from outside the loop. All other |
| // entries must be back edges. |
| for (int i = 1; i < predecessors()->length(); ++i) { |
| loop_information()->RegisterBackEdge(predecessors()->at(i)); |
| } |
| } |
| |
| |
| void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) { |
| if (HasPredecessor()) { |
| // Only loop header blocks can have a predecessor added after |
| // instructions have been added to the block (they have phis for all |
| // values in the environment, these phis may be eliminated later). |
| ASSERT(IsLoopHeader() || first_ == NULL); |
| HEnvironment* incoming_env = pred->last_environment(); |
| if (IsLoopHeader()) { |
| ASSERT(phis()->length() == incoming_env->length()); |
| for (int i = 0; i < phis_.length(); ++i) { |
| phis_[i]->AddInput(incoming_env->values()->at(i)); |
| } |
| } else { |
| last_environment()->AddIncomingEdge(this, pred->last_environment()); |
| } |
| } else if (!HasEnvironment() && !IsFinished()) { |
| ASSERT(!IsLoopHeader()); |
| SetInitialEnvironment(pred->last_environment()->Copy()); |
| } |
| |
| predecessors_.Add(pred, zone()); |
| } |
| |
| |
| void HBasicBlock::AddDominatedBlock(HBasicBlock* block) { |
| ASSERT(!dominated_blocks_.Contains(block)); |
| // Keep the list of dominated blocks sorted such that if there is two |
| // succeeding block in this list, the predecessor is before the successor. |
| int index = 0; |
| while (index < dominated_blocks_.length() && |
| dominated_blocks_[index]->block_id() < block->block_id()) { |
| ++index; |
| } |
| dominated_blocks_.InsertAt(index, block, zone()); |
| } |
| |
| |
| void HBasicBlock::AssignCommonDominator(HBasicBlock* other) { |
| if (dominator_ == NULL) { |
| dominator_ = other; |
| other->AddDominatedBlock(this); |
| } else if (other->dominator() != NULL) { |
| HBasicBlock* first = dominator_; |
| HBasicBlock* second = other; |
| |
| while (first != second) { |
| if (first->block_id() > second->block_id()) { |
| first = first->dominator(); |
| } else { |
| second = second->dominator(); |
| } |
| ASSERT(first != NULL && second != NULL); |
| } |
| |
| if (dominator_ != first) { |
| ASSERT(dominator_->dominated_blocks_.Contains(this)); |
| dominator_->dominated_blocks_.RemoveElement(this); |
| dominator_ = first; |
| first->AddDominatedBlock(this); |
| } |
| } |
| } |
| |
| |
| void HBasicBlock::AssignLoopSuccessorDominators() { |
| // Mark blocks that dominate all subsequent reachable blocks inside their |
| // loop. Exploit the fact that blocks are sorted in reverse post order. When |
| // the loop is visited in increasing block id order, if the number of |
| // non-loop-exiting successor edges at the dominator_candidate block doesn't |
| // exceed the number of previously encountered predecessor edges, there is no |
| // path from the loop header to any block with higher id that doesn't go |
| // through the dominator_candidate block. In this case, the |
| // dominator_candidate block is guaranteed to dominate all blocks reachable |
| // from it with higher ids. |
| HBasicBlock* last = loop_information()->GetLastBackEdge(); |
| int outstanding_successors = 1; // one edge from the pre-header |
| // Header always dominates everything. |
| MarkAsLoopSuccessorDominator(); |
| for (int j = block_id(); j <= last->block_id(); ++j) { |
| HBasicBlock* dominator_candidate = graph_->blocks()->at(j); |
| for (HPredecessorIterator it(dominator_candidate); !it.Done(); |
| it.Advance()) { |
| HBasicBlock* predecessor = it.Current(); |
| // Don't count back edges. |
| if (predecessor->block_id() < dominator_candidate->block_id()) { |
| outstanding_successors--; |
| } |
| } |
| |
| // If more successors than predecessors have been seen in the loop up to |
| // now, it's not possible to guarantee that the current block dominates |
| // all of the blocks with higher IDs. In this case, assume conservatively |
| // that those paths through loop that don't go through the current block |
| // contain all of the loop's dependencies. Also be careful to record |
| // dominator information about the current loop that's being processed, |
| // and not nested loops, which will be processed when |
| // AssignLoopSuccessorDominators gets called on their header. |
| ASSERT(outstanding_successors >= 0); |
| HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header(); |
| if (outstanding_successors == 0 && |
| (parent_loop_header == this && !dominator_candidate->IsLoopHeader())) { |
| dominator_candidate->MarkAsLoopSuccessorDominator(); |
| } |
| HControlInstruction* end = dominator_candidate->end(); |
| for (HSuccessorIterator it(end); !it.Done(); it.Advance()) { |
| HBasicBlock* successor = it.Current(); |
| // Only count successors that remain inside the loop and don't loop back |
| // to a loop header. |
| if (successor->block_id() > dominator_candidate->block_id() && |
| successor->block_id() <= last->block_id()) { |
| // Backwards edges must land on loop headers. |
| ASSERT(successor->block_id() > dominator_candidate->block_id() || |
| successor->IsLoopHeader()); |
| outstanding_successors++; |
| } |
| } |
| } |
| } |
| |
| |
| int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const { |
| for (int i = 0; i < predecessors_.length(); ++i) { |
| if (predecessors_[i] == predecessor) return i; |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| |
| #ifdef DEBUG |
| void HBasicBlock::Verify() { |
| // Check that every block is finished. |
| ASSERT(IsFinished()); |
| ASSERT(block_id() >= 0); |
| |
| // Check that the incoming edges are in edge split form. |
| if (predecessors_.length() > 1) { |
| for (int i = 0; i < predecessors_.length(); ++i) { |
| ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL); |
| } |
| } |
| } |
| #endif |
| |
| |
| void HLoopInformation::RegisterBackEdge(HBasicBlock* block) { |
| this->back_edges_.Add(block, block->zone()); |
| AddBlock(block); |
| } |
| |
| |
| HBasicBlock* HLoopInformation::GetLastBackEdge() const { |
| int max_id = -1; |
| HBasicBlock* result = NULL; |
| for (int i = 0; i < back_edges_.length(); ++i) { |
| HBasicBlock* cur = back_edges_[i]; |
| if (cur->block_id() > max_id) { |
| max_id = cur->block_id(); |
| result = cur; |
| } |
| } |
| return result; |
| } |
| |
| |
| void HLoopInformation::AddBlock(HBasicBlock* block) { |
| if (block == loop_header()) return; |
| if (block->parent_loop_header() == loop_header()) return; |
| if (block->parent_loop_header() != NULL) { |
| AddBlock(block->parent_loop_header()); |
| } else { |
| block->set_parent_loop_header(loop_header()); |
| blocks_.Add(block, block->zone()); |
| for (int i = 0; i < block->predecessors()->length(); ++i) { |
| AddBlock(block->predecessors()->at(i)); |
| } |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| |
| // Checks reachability of the blocks in this graph and stores a bit in |
| // the BitVector "reachable()" for every block that can be reached |
| // from the start block of the graph. If "dont_visit" is non-null, the given |
| // block is treated as if it would not be part of the graph. "visited_count()" |
| // returns the number of reachable blocks. |
| class ReachabilityAnalyzer BASE_EMBEDDED { |
| public: |
| ReachabilityAnalyzer(HBasicBlock* entry_block, |
| int block_count, |
| HBasicBlock* dont_visit) |
| : visited_count_(0), |
| stack_(16, entry_block->zone()), |
| reachable_(block_count, entry_block->zone()), |
| dont_visit_(dont_visit) { |
| PushBlock(entry_block); |
| Analyze(); |
| } |
| |
| int visited_count() const { return visited_count_; } |
| const BitVector* reachable() const { return &reachable_; } |
| |
| private: |
| void PushBlock(HBasicBlock* block) { |
| if (block != NULL && block != dont_visit_ && |
| !reachable_.Contains(block->block_id())) { |
| reachable_.Add(block->block_id()); |
| stack_.Add(block, block->zone()); |
| visited_count_++; |
| } |
| } |
| |
| void Analyze() { |
| while (!stack_.is_empty()) { |
| HControlInstruction* end = stack_.RemoveLast()->end(); |
| for (HSuccessorIterator it(end); !it.Done(); it.Advance()) { |
| PushBlock(it.Current()); |
| } |
| } |
| } |
| |
| int visited_count_; |
| ZoneList<HBasicBlock*> stack_; |
| BitVector reachable_; |
| HBasicBlock* dont_visit_; |
| }; |
| |
| |
| void HGraph::Verify(bool do_full_verify) const { |
| // Allow dereferencing for debug mode verification. |
| AllowHandleDereference allow_handle_deref; |
| for (int i = 0; i < blocks_.length(); i++) { |
| HBasicBlock* block = blocks_.at(i); |
| |
| block->Verify(); |
| |
| // Check that every block contains at least one node and that only the last |
| // node is a control instruction. |
| HInstruction* current = block->first(); |
| ASSERT(current != NULL && current->IsBlockEntry()); |
| while (current != NULL) { |
| ASSERT((current->next() == NULL) == current->IsControlInstruction()); |
| ASSERT(current->block() == block); |
| current->Verify(); |
| current = current->next(); |
| } |
| |
| // Check that successors are correctly set. |
| HBasicBlock* first = block->end()->FirstSuccessor(); |
| HBasicBlock* second = block->end()->SecondSuccessor(); |
| ASSERT(second == NULL || first != NULL); |
| |
| // Check that the predecessor array is correct. |
| if (first != NULL) { |
| ASSERT(first->predecessors()->Contains(block)); |
| if (second != NULL) { |
| ASSERT(second->predecessors()->Contains(block)); |
| } |
| } |
| |
| // Check that phis have correct arguments. |
| for (int j = 0; j < block->phis()->length(); j++) { |
| HPhi* phi = block->phis()->at(j); |
| phi->Verify(); |
| } |
| |
| // Check that all join blocks have predecessors that end with an |
| // unconditional goto and agree on their environment node id. |
| if (block->predecessors()->length() >= 2) { |
| BailoutId id = |
| block->predecessors()->first()->last_environment()->ast_id(); |
| for (int k = 0; k < block->predecessors()->length(); k++) { |
| HBasicBlock* predecessor = block->predecessors()->at(k); |
| ASSERT(predecessor->end()->IsGoto()); |
| ASSERT(predecessor->last_environment()->ast_id() == id); |
| } |
| } |
| } |
| |
| // Check special property of first block to have no predecessors. |
| ASSERT(blocks_.at(0)->predecessors()->is_empty()); |
| |
| if (do_full_verify) { |
| // Check that the graph is fully connected. |
| ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL); |
| ASSERT(analyzer.visited_count() == blocks_.length()); |
| |
| // Check that entry block dominator is NULL. |
| ASSERT(entry_block_->dominator() == NULL); |
| |
| // Check dominators. |
| for (int i = 0; i < blocks_.length(); ++i) { |
| HBasicBlock* block = blocks_.at(i); |
| if (block->dominator() == NULL) { |
| // Only start block may have no dominator assigned to. |
| ASSERT(i == 0); |
| } else { |
| // Assert that block is unreachable if dominator must not be visited. |
| ReachabilityAnalyzer dominator_analyzer(entry_block_, |
| blocks_.length(), |
| block->dominator()); |
| ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id())); |
| } |
| } |
| } |
| } |
| |
| #endif |
| |
| |
| HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer, |
| Handle<Object> value) { |
| if (!pointer->is_set()) { |
| HConstant* constant = new(zone()) HConstant(value, |
| Representation::Tagged()); |
| constant->InsertAfter(GetConstantUndefined()); |
| pointer->set(constant); |
| } |
| return pointer->get(); |
| } |
| |
| |
| HConstant* HGraph::GetConstantInt32(SetOncePointer<HConstant>* pointer, |
| int32_t value) { |
| if (!pointer->is_set()) { |
| HConstant* constant = |
| new(zone()) HConstant(value, Representation::Integer32()); |
| constant->InsertAfter(GetConstantUndefined()); |
| pointer->set(constant); |
| } |
| return pointer->get(); |
| } |
| |
| |
| HConstant* HGraph::GetConstant0() { |
| return GetConstantInt32(&constant_0_, 0); |
| } |
| |
| |
| HConstant* HGraph::GetConstant1() { |
| return GetConstantInt32(&constant_1_, 1); |
| } |
| |
| |
| HConstant* HGraph::GetConstantMinus1() { |
| return GetConstantInt32(&constant_minus1_, -1); |
| } |
| |
| |
| HConstant* HGraph::GetConstantTrue() { |
| return GetConstant(&constant_true_, isolate()->factory()->true_value()); |
| } |
| |
| |
| HConstant* HGraph::GetConstantFalse() { |
| return GetConstant(&constant_false_, isolate()->factory()->false_value()); |
| } |
| |
| |
| HConstant* HGraph::GetConstantHole() { |
| return GetConstant(&constant_hole_, isolate()->factory()->the_hole_value()); |
| } |
| |
| |
| HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder, BailoutId id) |
| : builder_(builder), |
| finished_(false), |
| id_(id) { |
| HEnvironment* env = builder->environment(); |
| HEnvironment* true_env = env->Copy(); |
| HEnvironment* false_env = env->Copy(); |
| HEnvironment* merge_env = env->Copy(); |
| true_block_ = builder->CreateBasicBlock(true_env); |
| false_block_ = builder->CreateBasicBlock(false_env); |
| merge_block_ = builder->CreateBasicBlock(merge_env); |
| } |
| |
| |
| void HGraphBuilder::IfBuilder::BeginTrue(HValue* left, |
| HValue* right, |
| Token::Value token) { |
| HCompareIDAndBranch* compare = |
| new(zone()) HCompareIDAndBranch(left, right, token); |
| compare->ChangeRepresentation(Representation::Integer32()); |
| compare->SetSuccessorAt(0, true_block_); |
| compare->SetSuccessorAt(1, false_block_); |
| builder_->current_block()->Finish(compare); |
| builder_->set_current_block(true_block_); |
| } |
| |
| |
| void HGraphBuilder::IfBuilder::BeginFalse() { |
| builder_->current_block()->Goto(merge_block_); |
| builder_->set_current_block(false_block_); |
| } |
| |
| |
| void HGraphBuilder::IfBuilder::End() { |
| ASSERT(!finished_); |
| builder_->current_block()->Goto(merge_block_); |
| builder_->set_current_block(merge_block_); |
| merge_block_->SetJoinId(id_); |
| finished_ = true; |
| } |
| |
| |
| HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder, |
| HValue* context, |
| LoopBuilder::Direction direction, |
| BailoutId id) |
| : builder_(builder), |
| context_(context), |
| direction_(direction), |
| id_(id), |
| finished_(false) { |
| HEnvironment* env = builder_->environment(); |
| HEnvironment* body_env = env->Copy(); |
| HEnvironment* exit_env = env->Copy(); |
| header_block_ = builder->CreateLoopHeaderBlock(); |
| body_block_ = builder->CreateBasicBlock(body_env); |
| exit_block_ = builder->CreateBasicBlock(exit_env); |
| } |
| |
| |
| HValue* HGraphBuilder::LoopBuilder::BeginBody(HValue* initial, |
| HValue* terminating, |
| Token::Value token) { |
| phi_ = new(zone()) HPhi(0, zone()); |
| header_block_->AddPhi(phi_); |
| phi_->AddInput(initial); |
| phi_->ChangeRepresentation(Representation::Integer32()); |
| HEnvironment* env = builder_->environment(); |
| env->Push(initial); |
| builder_->current_block()->Goto(header_block_); |
| builder_->set_current_block(header_block_); |
| |
| builder_->set_current_block(header_block_); |
| HCompareIDAndBranch* compare = |
| new(zone()) HCompareIDAndBranch(phi_, terminating, token); |
| compare->ChangeRepresentation(Representation::Integer32()); |
| compare->SetSuccessorAt(0, body_block_); |
| compare->SetSuccessorAt(1, exit_block_); |
| builder_->current_block()->Finish(compare); |
| |
| builder_->set_current_block(body_block_); |
| if (direction_ == kPreIncrement || direction_ == kPreDecrement) { |
| HValue* one = builder_->graph()->GetConstant1(); |
| if (direction_ == kPreIncrement) { |
| increment_ = new(zone()) HAdd(context_, phi_, one); |
| } else { |
| increment_ = new(zone()) HSub(context_, phi_, one); |
| } |
| increment_->ClearFlag(HValue::kCanOverflow); |
| increment_->ChangeRepresentation(Representation::Integer32()); |
| builder_->AddInstruction(increment_); |
| return increment_; |
| } else { |
| return phi_; |
| } |
| } |
| |
| |
| void HGraphBuilder::LoopBuilder::EndBody() { |
| ASSERT(!finished_); |
| |
| if (direction_ == kPostIncrement || direction_ == kPostDecrement) { |
| HValue* one = builder_->graph()->GetConstant1(); |
| if (direction_ == kPostIncrement) { |
| increment_ = new(zone()) HAdd(context_, phi_, one); |
| } else { |
| increment_ = new(zone()) HSub(context_, phi_, one); |
| } |
| increment_->ClearFlag(HValue::kCanOverflow); |
| increment_->ChangeRepresentation(Representation::Integer32()); |
| builder_->AddInstruction(increment_); |
| } |
| |
| builder_->environment()->Push(increment_); |
| builder_->current_block()->Goto(header_block_); |
| header_block_->loop_information()->RegisterBackEdge(body_block_); |
| header_block_->SetJoinId(BailoutId::StubEntry()); |
| builder_->set_current_block(exit_block_); |
| finished_ = true; |
| } |
| |
| |
| HGraph* HGraphBuilder::CreateGraph() { |
| graph_ = new(zone()) HGraph(info_); |
| if (FLAG_hydrogen_stats) HStatistics::Instance()->Initialize(info_); |
| HPhase phase("H_Block building"); |
| set_current_block(graph()->entry_block()); |
| if (!BuildGraph()) return NULL; |
| return graph_; |
| } |
| |
| |
| HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) { |
| ASSERT(current_block() != NULL); |
| current_block()->AddInstruction(instr); |
| return instr; |
| } |
| |
| |
| void HGraphBuilder::AddSimulate(BailoutId id, |
| RemovableSimulate removable) { |
| ASSERT(current_block() != NULL); |
| current_block()->AddSimulate(id, removable); |
| } |
| |
| |
| HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) { |
| HBasicBlock* b = graph()->CreateBasicBlock(); |
| b->SetInitialEnvironment(env); |
| return b; |
| } |
| |
| |
| HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() { |
| HBasicBlock* header = graph()->CreateBasicBlock(); |
| HEnvironment* entry_env = environment()->CopyAsLoopHeader(header); |
| header->SetInitialEnvironment(entry_env); |
| header->AttachLoopInformation(); |
| return header; |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildExternalArrayElementAccess( |
| HValue* external_elements, |
| HValue* checked_key, |
| HValue* val, |
| HValue* dependency, |
| ElementsKind elements_kind, |
| bool is_store) { |
| Zone* zone = this->zone(); |
| if (is_store) { |
| ASSERT(val != NULL); |
| switch (elements_kind) { |
| case EXTERNAL_PIXEL_ELEMENTS: { |
| val = AddInstruction(new(zone) HClampToUint8(val)); |
| break; |
| } |
| case EXTERNAL_BYTE_ELEMENTS: |
| case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: |
| case EXTERNAL_SHORT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: |
| case EXTERNAL_INT_ELEMENTS: |
| case EXTERNAL_UNSIGNED_INT_ELEMENTS: { |
| break; |
| } |
| case EXTERNAL_FLOAT_ELEMENTS: |
| case EXTERNAL_DOUBLE_ELEMENTS: |
| break; |
| case FAST_SMI_ELEMENTS: |
| case FAST_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case FAST_HOLEY_SMI_ELEMENTS: |
| case FAST_HOLEY_ELEMENTS: |
| case FAST_HOLEY_DOUBLE_ELEMENTS: |
| case DICTIONARY_ELEMENTS: |
| case NON_STRICT_ARGUMENTS_ELEMENTS: |
| UNREACHABLE(); |
| break; |
| } |
| return new(zone) HStoreKeyed(external_elements, checked_key, |
| val, elements_kind); |
| } else { |
| ASSERT(val == NULL); |
| HLoadKeyed* load = |
| new(zone) HLoadKeyed( |
| external_elements, checked_key, dependency, elements_kind); |
| if (FLAG_opt_safe_uint32_operations && |
| elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) { |
| graph()->RecordUint32Instruction(load); |
| } |
| return load; |
| } |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildFastElementAccess( |
| HValue* elements, |
| HValue* checked_key, |
| HValue* val, |
| HValue* load_dependency, |
| ElementsKind elements_kind, |
| bool is_store) { |
| Zone* zone = this->zone(); |
| if (is_store) { |
| ASSERT(val != NULL); |
| switch (elements_kind) { |
| case FAST_SMI_ELEMENTS: |
| case FAST_HOLEY_SMI_ELEMENTS: |
| // Smi-only arrays need a smi check. |
| AddInstruction(new(zone) HCheckSmi(val)); |
| // Fall through. |
| case FAST_ELEMENTS: |
| case FAST_HOLEY_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case FAST_HOLEY_DOUBLE_ELEMENTS: |
| return new(zone) HStoreKeyed(elements, checked_key, val, elements_kind); |
| default: |
| UNREACHABLE(); |
| return NULL; |
| } |
| } |
| // It's an element load (!is_store). |
| return new(zone) HLoadKeyed(elements, |
| checked_key, |
| load_dependency, |
| elements_kind); |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess( |
| HValue* object, |
| HValue* key, |
| HValue* val, |
| HCheckMaps* mapcheck, |
| bool is_js_array, |
| ElementsKind elements_kind, |
| bool is_store, |
| Representation checked_index_representation) { |
| Zone* zone = this->zone(); |
| // No GVNFlag is necessary for ElementsKind if there is an explicit dependency |
| // on a HElementsTransition instruction. The flag can also be removed if the |
| // map to check has FAST_HOLEY_ELEMENTS, since there can be no further |
| // ElementsKind transitions. Finally, the dependency can be removed for stores |
| // for FAST_ELEMENTS, since a transition to HOLEY elements won't change the |
| // generated store code. |
| if ((elements_kind == FAST_HOLEY_ELEMENTS) || |
| (elements_kind == FAST_ELEMENTS && is_store)) { |
| if (mapcheck != NULL) { |
| mapcheck->ClearGVNFlag(kDependsOnElementsKind); |
| } |
| } |
| bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind); |
| bool fast_elements = IsFastObjectElementsKind(elements_kind); |
| HInstruction* elements = |
| AddInstruction(new(zone) HLoadElements(object, mapcheck)); |
| if (is_store && (fast_elements || fast_smi_only_elements)) { |
| HCheckMaps* check_cow_map = new(zone) HCheckMaps( |
| elements, Isolate::Current()->factory()->fixed_array_map(), zone); |
| check_cow_map->ClearGVNFlag(kDependsOnElementsKind); |
| AddInstruction(check_cow_map); |
| } |
| HInstruction* length = NULL; |
| HInstruction* checked_key = NULL; |
| if (IsExternalArrayElementsKind(elements_kind)) { |
| length = AddInstruction(new(zone) HFixedArrayBaseLength(elements)); |
| checked_key = AddInstruction(new(zone) HBoundsCheck( |
| key, length, ALLOW_SMI_KEY, checked_index_representation)); |
| HLoadExternalArrayPointer* external_elements = |
| new(zone) HLoadExternalArrayPointer(elements); |
| AddInstruction(external_elements); |
| return BuildExternalArrayElementAccess( |
| external_elements, checked_key, val, mapcheck, |
| elements_kind, is_store); |
| } |
| ASSERT(fast_smi_only_elements || |
| fast_elements || |
| IsFastDoubleElementsKind(elements_kind)); |
| if (is_js_array) { |
| length = AddInstruction(new(zone) HJSArrayLength(object, mapcheck, |
| HType::Smi())); |
| } else { |
| length = AddInstruction(new(zone) HFixedArrayBaseLength(elements)); |
| } |
| checked_key = AddInstruction(new(zone) HBoundsCheck( |
| key, length, ALLOW_SMI_KEY, checked_index_representation)); |
| return BuildFastElementAccess(elements, checked_key, val, mapcheck, |
| elements_kind, is_store); |
| } |
| |
| |
| HValue* HGraphBuilder::BuildAllocateElements(HContext* context, |
| ElementsKind kind, |
| HValue* capacity) { |
| Zone* zone = this->zone(); |
| |
| int elements_size = IsFastDoubleElementsKind(kind) |
| ? kDoubleSize : kPointerSize; |
| HConstant* elements_size_value = |
| new(zone) HConstant(elements_size, Representation::Integer32()); |
| AddInstruction(elements_size_value); |
| HValue* mul = AddInstruction( |
| new(zone) HMul(context, capacity, elements_size_value)); |
| mul->ChangeRepresentation(Representation::Integer32()); |
| mul->ClearFlag(HValue::kCanOverflow); |
| |
| HConstant* header_size = |
| new(zone) HConstant(FixedArray::kHeaderSize, Representation::Integer32()); |
| AddInstruction(header_size); |
| HValue* total_size = AddInstruction( |
| new(zone) HAdd(context, mul, header_size)); |
| total_size->ChangeRepresentation(Representation::Integer32()); |
| total_size->ClearFlag(HValue::kCanOverflow); |
| |
| HAllocate::Flags flags = HAllocate::CAN_ALLOCATE_IN_NEW_SPACE; |
| if (IsFastDoubleElementsKind(kind)) { |
| flags = static_cast<HAllocate::Flags>( |
| flags | HAllocate::ALLOCATE_DOUBLE_ALIGNED); |
| } |
| |
| HValue* elements = |
| AddInstruction(new(zone) HAllocate(context, total_size, |
| HType::JSArray(), flags)); |
| Isolate* isolate = graph()->isolate(); |
| |
| Factory* factory = isolate->factory(); |
| Handle<Map> map = IsFastDoubleElementsKind(kind) |
| ? factory->fixed_double_array_map() |
| : factory->fixed_array_map(); |
| BuildStoreMap(elements, map, BailoutId::StubEntry()); |
| |
| Handle<String> fixed_array_length_field_name = |
| isolate->factory()->length_field_symbol(); |
| HInstruction* store_length = |
| new(zone) HStoreNamedField(elements, fixed_array_length_field_name, |
| capacity, true, FixedArray::kLengthOffset); |
| AddInstruction(store_length); |
| AddSimulate(BailoutId::StubEntry(), FIXED_SIMULATE); |
| |
| return elements; |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreMap(HValue* object, |
| HValue* map, |
| BailoutId id) { |
| Zone* zone = this->zone(); |
| Isolate* isolate = graph()->isolate(); |
| Factory* factory = isolate->factory(); |
| Handle<String> map_field_name = factory->map_field_symbol(); |
| HInstruction* store_map = |
| new(zone) HStoreNamedField(object, map_field_name, map, |
| true, JSObject::kMapOffset); |
| store_map->SetGVNFlag(kChangesMaps); |
| AddInstruction(store_map); |
| AddSimulate(id, FIXED_SIMULATE); |
| return store_map; |
| } |
| |
| |
| HInstruction* HGraphBuilder::BuildStoreMap(HValue* object, |
| Handle<Map> map, |
| BailoutId id) { |
| Zone* zone = this->zone(); |
| HValue* map_constant = |
| AddInstruction(new(zone) HConstant(map, Representation::Tagged())); |
| return BuildStoreMap(object, map_constant, id); |
| } |
| |
| |
| void HGraphBuilder::BuildCopyElements(HContext* context, |
| HValue* from_elements, |
| ElementsKind from_elements_kind, |
| HValue* to_elements, |
| ElementsKind to_elements_kind, |
| HValue* length) { |
| LoopBuilder builder(this, context, LoopBuilder::kPostIncrement); |
| |
| HValue* key = builder.BeginBody(graph()->GetConstant0(), |
| length, Token::LT); |
| |
| HValue* element = |
| AddInstruction(new(zone()) HLoadKeyed(from_elements, key, NULL, |
| from_elements_kind, |
| ALLOW_RETURN_HOLE)); |
| |
| AddInstruction(new(zone()) HStoreKeyed(to_elements, key, element, |
| to_elements_kind)); |
| AddSimulate(BailoutId::StubEntry(), REMOVABLE_SIMULATE); |
| |
| builder.EndBody(); |
| } |
| |
| |
| HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info, |
| TypeFeedbackOracle* oracle) |
| : HGraphBuilder(info), |
| function_state_(NULL), |
| initial_function_state_(this, info, oracle, NORMAL_RETURN), |
| ast_context_(NULL), |
| break_scope_(NULL), |
| inlined_count_(0), |
| globals_(10, info->zone()), |
| inline_bailout_(false) { |
| // This is not initialized in the initializer list because the |
| // constructor for the initial state relies on function_state_ == NULL |
| // to know it's the initial state. |
| function_state_= &initial_function_state_; |
| InitializeAstVisitor(); |
| } |
| |
| |
| HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first, |
| HBasicBlock* second, |
| BailoutId join_id) { |
| if (first == NULL) { |
| return second; |
| } else if (second == NULL) { |
| return first; |
| } else { |
| HBasicBlock* join_block = graph()->CreateBasicBlock(); |
| first->Goto(join_block); |
| second->Goto(join_block); |
| join_block->SetJoinId(join_id); |
| return join_block; |
| } |
| } |
| |
| |
| HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement, |
| HBasicBlock* exit_block, |
| HBasicBlock* continue_block) { |
| if (continue_block != NULL) { |
| if (exit_block != NULL) exit_block->Goto(continue_block); |
| continue_block->SetJoinId(statement->ContinueId()); |
| return continue_block; |
| } |
| return exit_block; |
| } |
| |
| |
| HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement, |
| HBasicBlock* loop_entry, |
| HBasicBlock* body_exit, |
| HBasicBlock* loop_successor, |
| HBasicBlock* break_block) { |
| if (body_exit != NULL) body_exit->Goto(loop_entry); |
| loop_entry->PostProcessLoopHeader(statement); |
| if (break_block != NULL) { |
| if (loop_successor != NULL) loop_successor->Goto(break_block); |
| break_block->SetJoinId(statement->ExitId()); |
| return break_block; |
| } |
| return loop_successor; |
| } |
| |
| |
| void HBasicBlock::FinishExit(HControlInstruction* instruction) { |
| Finish(instruction); |
| ClearEnvironment(); |
| } |
| |
| |
| HGraph::HGraph(CompilationInfo* info) |
| : isolate_(info->isolate()), |
| next_block_id_(0), |
| entry_block_(NULL), |
| blocks_(8, info->zone()), |
| values_(16, info->zone()), |
| phi_list_(NULL), |
| uint32_instructions_(NULL), |
| info_(info), |
| zone_(info->zone()), |
| is_recursive_(false), |
| use_optimistic_licm_(false), |
| has_soft_deoptimize_(false), |
| type_change_checksum_(0) { |
| if (info->IsStub()) { |
| start_environment_ = |
| new(zone_) HEnvironment(zone_); |
| } else { |
| start_environment_ = |
| new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_); |
| } |
| start_environment_->set_ast_id(BailoutId::FunctionEntry()); |
| entry_block_ = CreateBasicBlock(); |
| entry_block_->SetInitialEnvironment(start_environment_); |
| } |
| |
| |
| HBasicBlock* HGraph::CreateBasicBlock() { |
| HBasicBlock* result = new(zone()) HBasicBlock(this); |
| blocks_.Add(result, zone()); |
| return result; |
| } |
| |
| |
| void HGraph::Canonicalize() { |
| if (!FLAG_use_canonicalizing) return; |
| HPhase phase("H_Canonicalize", this); |
| for (int i = 0; i < blocks()->length(); ++i) { |
| HInstruction* instr = blocks()->at(i)->first(); |
| while (instr != NULL) { |
| HValue* value = instr->Canonicalize(); |
| if (value != instr) instr->DeleteAndReplaceWith(value); |
| instr = instr->next(); |
| } |
| } |
| } |
| |
| // Block ordering was implemented with two mutually recursive methods, |
| // HGraph::Postorder and HGraph::PostorderLoopBlocks. |
| // The recursion could lead to stack overflow so the algorithm has been |
| // implemented iteratively. |
| // At a high level the algorithm looks like this: |
| // |
| // Postorder(block, loop_header) : { |
| // if (block has already been visited or is of another loop) return; |
| // mark block as visited; |
| // if (block is a loop header) { |
| // VisitLoopMembers(block, loop_header); |
| // VisitSuccessorsOfLoopHeader(block); |
| // } else { |
| // VisitSuccessors(block) |
| // } |
| // put block in result list; |
| // } |
| // |
| // VisitLoopMembers(block, outer_loop_header) { |
| // foreach (block b in block loop members) { |
| // VisitSuccessorsOfLoopMember(b, outer_loop_header); |
| // if (b is loop header) VisitLoopMembers(b); |
| // } |
| // } |
| // |
| // VisitSuccessorsOfLoopMember(block, outer_loop_header) { |
| // foreach (block b in block successors) Postorder(b, outer_loop_header) |
| // } |
| // |
| // VisitSuccessorsOfLoopHeader(block) { |
| // foreach (block b in block successors) Postorder(b, block) |
| // } |
| // |
| // VisitSuccessors(block, loop_header) { |
| // foreach (block b in block successors) Postorder(b, loop_header) |
| // } |
| // |
| // The ordering is started calling Postorder(entry, NULL). |
| // |
| // Each instance of PostorderProcessor represents the "stack frame" of the |
| // recursion, and particularly keeps the state of the loop (iteration) of the |
| // "Visit..." function it represents. |
| // To recycle memory we keep all the frames in a double linked list but |
| // this means that we cannot use constructors to initialize the frames. |
| // |
| class PostorderProcessor : public ZoneObject { |
| public: |
| // Back link (towards the stack bottom). |
| PostorderProcessor* parent() {return father_; } |
| // Forward link (towards the stack top). |
| PostorderProcessor* child() {return child_; } |
| HBasicBlock* block() { return block_; } |
| HLoopInformation* loop() { return loop_; } |
| HBasicBlock* loop_header() { return loop_header_; } |
| |
| static PostorderProcessor* CreateEntryProcessor(Zone* zone, |
| HBasicBlock* block, |
| BitVector* visited) { |
| PostorderProcessor* result = new(zone) PostorderProcessor(NULL); |
| return result->SetupSuccessors(zone, block, NULL, visited); |
| } |
| |
| PostorderProcessor* PerformStep(Zone* zone, |
| BitVector* visited, |
| ZoneList<HBasicBlock*>* order) { |
| PostorderProcessor* next = |
| PerformNonBacktrackingStep(zone, visited, order); |
| if (next != NULL) { |
| return next; |
| } else { |
| return Backtrack(zone, visited, order); |
| } |
| } |
| |
| private: |
| explicit PostorderProcessor(PostorderProcessor* father) |
| : father_(father), child_(NULL), successor_iterator(NULL) { } |
| |
| // Each enum value states the cycle whose state is kept by this instance. |
| enum LoopKind { |
| NONE, |
| SUCCESSORS, |
| SUCCESSORS_OF_LOOP_HEADER, |
| LOOP_MEMBERS, |
| SUCCESSORS_OF_LOOP_MEMBER |
| }; |
| |
| // Each "Setup..." method is like a constructor for a cycle state. |
| PostorderProcessor* SetupSuccessors(Zone* zone, |
| HBasicBlock* block, |
| HBasicBlock* loop_header, |
| BitVector* visited) { |
| if (block == NULL || visited->Contains(block->block_id()) || |
| block->parent_loop_header() != loop_header) { |
| kind_ = NONE; |
| block_ = NULL; |
| loop_ = NULL; |
| loop_header_ = NULL; |
| return this; |
| } else { |
| block_ = block; |
| loop_ = NULL; |
| visited->Add(block->block_id()); |
| |
| if (block->IsLoopHeader()) { |
| kind_ = SUCCESSORS_OF_LOOP_HEADER; |
| loop_header_ = block; |
| InitializeSuccessors(); |
| PostorderProcessor* result = Push(zone); |
| return result->SetupLoopMembers(zone, block, block->loop_information(), |
| loop_header); |
| } else { |
| ASSERT(block->IsFinished()); |
| kind_ = SUCCESSORS; |
| loop_header_ = loop_header; |
| InitializeSuccessors(); |
| return this; |
| } |
| } |
| } |
| |
| PostorderProcessor* SetupLoopMembers(Zone* zone, |
| HBasicBlock* block, |
| HLoopInformation* loop, |
| HBasicBlock* loop_header) { |
| kind_ = LOOP_MEMBERS; |
| block_ = block; |
| loop_ = loop; |
| loop_header_ = loop_header; |
| InitializeLoopMembers(); |
| return this; |
| } |
| |
| PostorderProcessor* SetupSuccessorsOfLoopMember( |
| HBasicBlock* block, |
| HLoopInformation* loop, |
| HBasicBlock* loop_header) { |
| kind_ = SUCCESSORS_OF_LOOP_MEMBER; |
| block_ = block; |
| loop_ = loop; |
| loop_header_ = loop_header; |
| InitializeSuccessors(); |
| return this; |
| } |
| |
| // This method "allocates" a new stack frame. |
| PostorderProcessor* Push(Zone* zone) { |
| if (child_ == NULL) { |
| child_ = new(zone) PostorderProcessor(this); |
| } |
| return child_; |
| } |
| |
| void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) { |
| ASSERT(block_->end()->FirstSuccessor() == NULL || |
| order->Contains(block_->end()->FirstSuccessor()) || |
| block_->end()->FirstSuccessor()->IsLoopHeader()); |
| ASSERT(block_->end()->SecondSuccessor() == NULL || |
| order->Contains(block_->end()->SecondSuccessor()) || |
| block_->end()->SecondSuccessor()->IsLoopHeader()); |
| order->Add(block_, zone); |
| } |
| |
| // This method is the basic block to walk up the stack. |
| PostorderProcessor* Pop(Zone* zone, |
| BitVector* visited, |
| ZoneList<HBasicBlock*>* order) { |
| switch (kind_) { |
| case SUCCESSORS: |
| case SUCCESSORS_OF_LOOP_HEADER: |
| ClosePostorder(order, zone); |
| return father_; |
| case LOOP_MEMBERS: |
| return father_; |
| case SUCCESSORS_OF_LOOP_MEMBER: |
| if (block()->IsLoopHeader() && block() != loop_->loop_header()) { |
| // In this case we need to perform a LOOP_MEMBERS cycle so we |
| // initialize it and return this instead of father. |
| return SetupLoopMembers(zone, block(), |
| block()->loop_information(), loop_header_); |
| } else { |
| return father_; |
| } |
| case NONE: |
| return father_; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| // Walks up the stack. |
| PostorderProcessor* Backtrack(Zone* zone, |
| BitVector* visited, |
| ZoneList<HBasicBlock*>* order) { |
| PostorderProcessor* parent = Pop(zone, visited, order); |
| while (parent != NULL) { |
| PostorderProcessor* next = |
| parent->PerformNonBacktrackingStep(zone, visited, order); |
| if (next != NULL) { |
| return next; |
| } else { |
| parent = parent->Pop(zone, visited, order); |
| } |
| } |
| return NULL; |
| } |
| |
| PostorderProcessor* PerformNonBacktrackingStep( |
| Zone* zone, |
| BitVector* visited, |
| ZoneList<HBasicBlock*>* order) { |
| HBasicBlock* next_block; |
| switch (kind_) { |
| case SUCCESSORS: |
| next_block = AdvanceSuccessors(); |
| if (next_block != NULL) { |
| PostorderProcessor* result = Push(zone); |
| return result->SetupSuccessors(zone, next_block, |
| loop_header_, visited); |
| } |
| break; |
| case SUCCESSORS_OF_LOOP_HEADER: |
| next_block = AdvanceSuccessors(); |
| if (next_block != NULL) { |
| PostorderProcessor* result = Push(zone); |
| return result->SetupSuccessors(zone, next_block, |
| block(), visited); |
| } |
| break; |
| case LOOP_MEMBERS: |
| next_block = AdvanceLoopMembers(); |
| if (next_block != NULL) { |
| PostorderProcessor* result = Push(zone); |
| return result->SetupSuccessorsOfLoopMember(next_block, |
| loop_, loop_header_); |
| } |
| break; |
| case SUCCESSORS_OF_LOOP_MEMBER: |
| next_block = AdvanceSuccessors(); |
| if (next_block != NULL) { |
| PostorderProcessor* result = Push(zone); |
| return result->SetupSuccessors(zone, next_block, |
| loop_header_, visited); |
| } |
| break; |
| case NONE: |
| return NULL; |
| } |
| return NULL; |
| } |
| |
| // The following two methods implement a "foreach b in successors" cycle. |
| void InitializeSuccessors() { |
| loop_index = 0; |
| loop_length = 0; |
| successor_iterator = HSuccessorIterator(block_->end()); |
| } |
| |
| HBasicBlock* AdvanceSuccessors() { |
| if (!successor_iterator.Done()) { |
| HBasicBlock* result = successor_iterator.Current(); |
| successor_iterator.Advance(); |
| return result; |
| } |
| return NULL; |
| } |
| |
| // The following two methods implement a "foreach b in loop members" cycle. |
| void InitializeLoopMembers() { |
| loop_index = 0; |
| loop_length = loop_->blocks()->length(); |
| } |
| |
| HBasicBlock* AdvanceLoopMembers() { |
| if (loop_index < loop_length) { |
| HBasicBlock* result = loop_->blocks()->at(loop_index); |
| loop_index++; |
| return result; |
| } else { |
| return NULL; |
| } |
| } |
| |
| LoopKind kind_; |
| PostorderProcessor* father_; |
| PostorderProcessor* child_; |
| HLoopInformation* loop_; |
| HBasicBlock* block_; |
| HBasicBlock* loop_header_; |
| int loop_index; |
| int loop_length; |
| HSuccessorIterator successor_iterator; |
| }; |
| |
| |
| void HGraph::OrderBlocks() { |
| HPhase phase("H_Block ordering"); |
| BitVector visited(blocks_.length(), zone()); |
| |
| ZoneList<HBasicBlock*> reverse_result(8, zone()); |
| HBasicBlock* start = blocks_[0]; |
| PostorderProcessor* postorder = |
| PostorderProcessor::CreateEntryProcessor(zone(), start, &visited); |
| while (postorder != NULL) { |
| postorder = postorder->PerformStep(zone(), &visited, &reverse_result); |
| } |
| blocks_.Rewind(0); |
| int index = 0; |
| for (int i = reverse_result.length() - 1; i >= 0; --i) { |
| HBasicBlock* b = reverse_result[i]; |
| blocks_.Add(b, zone()); |
| b->set_block_id(index++); |
| } |
| } |
| |
| |
| void HGraph::AssignDominators() { |
| HPhase phase("H_Assign dominators", this); |
| for (int i = 0; i < blocks_.length(); ++i) { |
| HBasicBlock* block = blocks_[i]; |
| if (block->IsLoopHeader()) { |
| // Only the first predecessor of a loop header is from outside the loop. |
| // All others are back edges, and thus cannot dominate the loop header. |
| block->AssignCommonDominator(block->predecessors()->first()); |
| block->AssignLoopSuccessorDominators(); |
| } else { |
| for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) { |
| blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j)); |
| } |
| } |
| } |
| } |
| |
| |
| // Mark all blocks that are dominated by an unconditional soft deoptimize to |
| // prevent code motion across those blocks. |
| void HGraph::PropagateDeoptimizingMark() { |
| HPhase phase("H_Propagate deoptimizing mark", this); |
| // Skip this phase if there is nothing to be done anyway. |
| if (!has_soft_deoptimize()) return; |
| MarkAsDeoptimizingRecursively(entry_block()); |
| NullifyUnreachableInstructions(); |
| } |
| |
| |
| void HGraph::MarkAsDeoptimizingRecursively(HBasicBlock* block) { |
| for (int i = 0; i < block->dominated_blocks()->length(); ++i) { |
| HBasicBlock* dominated = block->dominated_blocks()->at(i); |
| if (block->IsDeoptimizing()) dominated->MarkAsDeoptimizing(); |
| MarkAsDeoptimizingRecursively(dominated); |
| } |
| } |
| |
| |
| void HGraph::NullifyUnreachableInstructions() { |
| if (!FLAG_unreachable_code_elimination) return; |
| int block_count = blocks_.length(); |
| for (int i = 0; i < block_count; ++i) { |
| HBasicBlock* block = blocks_.at(i); |
| bool nullify = false; |
| const ZoneList<HBasicBlock*>* predecessors = block->predecessors(); |
| int predecessors_length = predecessors->length(); |
| bool all_predecessors_deoptimizing = (predecessors_length > 0); |
| for (int j = 0; j < predecessors_length; ++j) { |
| if (!predecessors->at(j)->IsDeoptimizing()) { |
| all_predecessors_deoptimizing = false; |
| break; |
| } |
| } |
| if (all_predecessors_deoptimizing) nullify = true; |
| for (HInstruction* instr = block->first(); instr != NULL; |
| instr = instr->next()) { |
| // Leave the basic structure of the graph intact. |
| if (instr->IsBlockEntry()) continue; |
| if (instr->IsControlInstruction()) continue; |
| if (instr->IsSimulate()) continue; |
| if (instr->IsEnterInlined()) continue; |
| if (instr->IsLeaveInlined()) continue; |
| if (nullify) { |
| HInstruction* last_dummy = NULL; |
| for (int j = 0; j < instr->OperandCount(); ++j) { |
| HValue* operand = instr->OperandAt(j); |
| // Insert an HDummyUse for each operand, unless the operand |
| // is an HDummyUse itself. If it's even from the same block, |
| // remember it as a potential replacement for the instruction. |
| if (operand->IsDummyUse()) { |
| if (operand->block() == instr->block() && |
| last_dummy == NULL) { |
| last_dummy = HInstruction::cast(operand); |
| } |
| continue; |
| } |
| if (operand->IsControlInstruction()) { |
| // Inserting a dummy use for a value that's not defined anywhere |
| // will fail. Some instructions define fake inputs on such |
| // values as control flow dependencies. |
| continue; |
| } |
| HDummyUse* dummy = new(zone()) HDummyUse(operand); |
| dummy->InsertBefore(instr); |
| last_dummy = dummy; |
| } |
| if (last_dummy == NULL) last_dummy = GetConstant1(); |
| instr->DeleteAndReplaceWith(last_dummy); |
| continue; |
| } |
| if (instr->IsSoftDeoptimize()) { |
| ASSERT(block->IsDeoptimizing()); |
| nullify = true; |
| } |
| } |
| } |
| } |
| |
| |
| // Replace all phis consisting of a single non-loop operand plus any number of |
| // loop operands by that single non-loop operand. |
| void HGraph::EliminateRedundantPhis() { |
| HPhase phase("H_Redundant phi elimination", this); |
| |
| // We do a simple fixed point iteration without any work list, because |
| // machine-generated JavaScript can lead to a very dense Hydrogen graph with |
| // an enormous work list and will consequently result in OOM. Experiments |
| // showed that this simple algorithm is good enough, and even e.g. tracking |
| // the set or range of blocks to consider is not a real improvement. |
| bool need_another_iteration; |
| ZoneList<HPhi*> redundant_phis(blocks_.length(), zone()); |
| do { |
| need_another_iteration = false; |
| for (int i = 0; i < blocks_.length(); ++i) { |
| HBasicBlock* block = blocks_[i]; |
| for (int j = 0; j < block->phis()->length(); j++) { |
| HPhi* phi = block->phis()->at(j); |
| HValue* replacement = phi->GetRedundantReplacement(); |
| if (replacement != NULL) { |
| // Remember phi to avoid concurrent modification of the block's phis. |
| redundant_phis.Add(phi, zone()); |
| for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) { |
| HValue* value = it.value(); |
| value->SetOperandAt(it.index(), replacement); |
| need_another_iteration |= value->IsPhi(); |
| } |
| } |
| } |
| for (int i = 0; i < redundant_phis.length(); i++) { |
| block->RemovePhi(redundant_phis[i]); |
| } |
| redundant_phis.Clear(); |
| } |
| } while (need_another_iteration); |
| |
| #if DEBUG |
| // Make sure that we *really* removed all redundant phis. |
| for (int i = 0; i < blocks_.length(); ++i) { |
| for (int j = 0; j < blocks_[i]->phis()->length(); j++) { |
| ASSERT(blocks_[i]->phis()->at(j)->GetRedundantReplacement() == NULL); |
| } |
| } |
| #endif |
| } |
| |
| |
| void HGraph::EliminateUnreachablePhis() { |
| HPhase phase("H_Unreachable phi elimination", this); |
| |
| // Initialize worklist. |
| ZoneList<HPhi*> phi_list(blocks_.length(), zone()); |
| ZoneList<HPhi*> worklist(blocks_.length(), zone()); |
| for (int i = 0; i < blocks_.length(); ++i) { |
| for (int j = 0; j < blocks_[i]->phis()->length(); j++) { |
| HPhi* phi = blocks_[i]->phis()->at(j); |
| phi_list.Add(phi, zone()); |
| // We can't eliminate phis in the receiver position in the environment |
| // because in case of throwing an error we need this value to |
| // construct a stack trace. |
| if (phi->HasRealUses() || phi->IsReceiver()) { |
| phi->set_is_live(true); |
| worklist.Add(phi, zone()); |
| } |
| } |
| } |
| |
| // Iteratively mark live phis. |
| while (!worklist.is_empty()) { |
| HPhi* phi = worklist.RemoveLast(); |
| for (int i = 0; i < phi->OperandCount(); i++) { |
| HValue* operand = phi->OperandAt(i); |
| if (operand->IsPhi() && !HPhi::cast(operand)->is_live()) { |
| HPhi::cast(operand)->set_is_live(true); |
| worklist.Add(HPhi::cast(operand), zone()); |
| } |
| } |
| } |
| |
| // Remove unreachable phis. |
| for (int i = 0; i < phi_list.length(); i++) { |
| HPhi* phi = phi_list[i]; |
| if (!phi->is_live()) { |
| HBasicBlock* block = phi->block(); |
| block->RemovePhi(phi); |
| block->RecordDeletedPhi(phi->merged_index()); |
| } |
| } |
| } |
| |
| |
| bool HGraph::CheckArgumentsPhiUses() { |
| int block_count = blocks_.length(); |
| for (int i = 0; i < block_count; ++i) { |
| for (int j = 0; j < blocks_[i]->phis()->length(); ++j) { |
| HPhi* phi = blocks_[i]->phis()->at(j); |
| // We don't support phi uses of arguments for now. |
| if (phi->CheckFlag(HValue::kIsArguments)) return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| bool HGraph::CheckConstPhiUses() { |
| int block_count = blocks_.length(); |
| for (int i = 0; i < block_count; ++i) { |
| for (int j = 0; j < blocks_[i]->phis()->length(); ++j) { |
| HPhi* phi = blocks_[i]->phis()->at(j); |
| // Check for the hole value (from an uninitialized const). |
| for (int k = 0; k < phi->OperandCount(); k++) { |
| if (phi->OperandAt(k) == GetConstantHole()) return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| |
| void HGraph::CollectPhis() { |
| int block_count = blocks_.length(); |
| phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone()); |
| for (int i = 0; i < block_count; ++i) { |
| for (int j = 0; j < blocks_[i]->phis()->length(); ++j) { |
| HPhi* phi = blocks_[i]->phis()->at(j); |
| phi_list_->Add(phi, zone()); |
| } |
| } |
| } |
| |
| |
| void HGraph::InferTypes(ZoneList<HValue*>* worklist) { |
| BitVector in_worklist(GetMaximumValueID(), zone()); |
| for (int i = 0; i < worklist->length(); ++i) { |
| ASSERT(!in_worklist.Contains(worklist->at(i)->id())); |
| in_worklist.Add(worklist->at(i)->id()); |
| } |
| |
| while (!worklist->is_empty()) { |
| HValue* current = worklist->RemoveLast(); |
| in_worklist.Remove(current->id()); |
| if (current->UpdateInferredType()) { |
| for (HUseIterator it(current->uses()); !it.Done(); it.Advance()) { |
| HValue* use = it.value(); |
| if (!in_worklist.Contains(use->id())) { |
| in_worklist.Add(use->id()); |
| worklist->Add(use, zone()); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| class HRangeAnalysis BASE_EMBEDDED { |
| public: |
| explicit HRangeAnalysis(HGraph* graph) : |
| graph_(graph), zone_(graph->zone()), changed_ranges_(16, zone_) { } |
| |
| void Analyze(); |
| |
| private: |
| void TraceRange(const char* msg, ...); |
| void Analyze(HBasicBlock* block); |
| void InferControlFlowRange(HCompareIDAndBranch* test, HBasicBlock* dest); |
| void UpdateControlFlowRange(Token::Value op, HValue* value, HValue* other); |
| void InferRange(HValue* value); |
| void RollBackTo(int index); |
| void AddRange(HValue* value, Range* range); |
| |
| HGraph* graph_; |
| Zone* zone_; |
| ZoneList<HValue*> changed_ranges_; |
| }; |
| |
| |
| void HRangeAnalysis::TraceRange(const char* msg, ...) { |
| if (FLAG_trace_range) { |
| va_list arguments; |
| va_start(arguments, msg); |
| OS::VPrint(msg, arguments); |
| va_end(arguments); |
| } |
| } |
| |
| |
| void HRangeAnalysis::Analyze() { |
| HPhase phase("H_Range analysis", graph_); |
| Analyze(graph_->entry_block()); |
| } |
| |
| |
| void HRangeAnalysis::Analyze(HBasicBlock* block) { |
| TraceRange("Analyzing block B%d\n", block->block_id()); |
| |
| int last_changed_range = changed_ranges_.length() - 1; |
| |
| // Infer range based on control flow. |
| if (block->predecessors()->length() == 1) { |
| HBasicBlock* pred = block->predecessors()->first(); |
| if (pred->end()->IsCompareIDAndBranch()) { |
| InferControlFlowRange(HCompareIDAndBranch::cast(pred->end()), block); |
| } |
| } |
| |
| // Process phi instructions. |
| for (int i = 0; i < block->phis()->length(); ++i) { |
| HPhi* phi = block->phis()->at(i); |
| InferRange(phi); |
| } |
| |
| // Go through all instructions of the current block. |
| HInstruction* instr = block->first(); |
| while (instr != block->end()) { |
| InferRange(instr); |
| instr = instr->next(); |
| } |
| |
| // Continue analysis in all dominated blocks. |
| for (int i = 0; i < block->dominated_blocks()->length(); ++i) { |
| Analyze(block->dominated_blocks()->at(i)); |
| } |
| |
| RollBackTo(last_changed_range); |
| } |
| |
| |
| void HRangeAnalysis::InferControlFlowRange(HCompareIDAndBranch* test, |
| HBasicBlock* dest) { |
| ASSERT((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest)); |
| if (test->representation().IsInteger32()) { |
| Token::Value op = test->token(); |
| if (test->SecondSuccessor() == dest) { |
| op = Token::NegateCompareOp(op); |
| } |
| Token::Value inverted_op = Token::ReverseCompareOp(op); |
| UpdateControlFlowRange(op, test->left(), test->right()); |
| UpdateControlFlowRange(inverted_op, test->right(), test->left()); |
| } |
| } |
| |
| |
| // We know that value [op] other. Use this information to update the range on |
| // value. |
| void HRangeAnalysis::UpdateControlFlowRange(Token::Value op, |
| HValue* value, |
| HValue* other) { |
| Range temp_range; |
| Range* range = other->range() != NULL ? other->range() : &temp_range; |
| Range* new_range = NULL; |
| |
| TraceRange("Control flow range infer %d %s %d\n", |
| value->id(), |
| Token::Name(op), |
| other->id()); |
| |
| if (op == Token::EQ || op == Token::EQ_STRICT) { |
| // The same range has to apply for value. |
| new_range = range->Copy(zone_); |
| } else if (op == Token::LT || op == Token::LTE) { |
| new_range = range->CopyClearLower(zone_); |
| if (op == Token::LT) { |
| new_range->AddConstant(-1); |
| } |
| } else if (op == Token::GT || op == Token::GTE) { |
| new_range = range->CopyClearUpper(zone_); |
| if (op == Token::GT) { |
| new_range->AddConstant(1); |
| } |
| } |
| |
| if (new_range != NULL && !new_range->IsMostGeneric()) { |
| AddRange(value, new_range); |
| } |
| } |
| |
| |
| void HRangeAnalysis::InferRange(HValue* value) { |
| ASSERT(!value->HasRange()); |
| if (!value->representation().IsNone()) { |
| value->ComputeInitialRange(zone_); |
| Range* range = value->range(); |
| TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n", |
| value->id(), |
| value->Mnemonic(), |
| range->lower(), |
| range->upper()); |
| } |
| } |
| |
| |
| void HRangeAnalysis::RollBackTo(int index) { |
| for (int i = index + 1; i < changed_ranges_.length(); ++i) { |
| changed_ranges_[i]->RemoveLastAddedRange(); |
| } |
| changed_ranges_.Rewind(index + 1); |
| } |
| |
| |
| void HRangeAnalysis::AddRange(HValue* value, Range* range) { |
| Range* original_range = value->range(); |
| value->AddNewRange(range, zone_); |
| changed_ranges_.Add(value, zone_); |
| Range* new_range = value->range(); |
| TraceRange("Updated range of %d set to [%d,%d]\n", |
| value->id(), |
| new_range->lower(), |
| new_range->upper()); |
| if (original_range != NULL) { |
| TraceRange("Original range was [%d,%d]\n", |
| original_range->lower(), |
| original_range->upper()); |
| } |
| TraceRange("New information was [%d,%d]\n", |
| range->lower(), |
| range->upper()); |
| } |
| |
| |
| void TraceGVN(const char* msg, ...) { |
| va_list arguments; |
| va_start(arguments, msg); |
| OS::VPrint(msg, arguments); |
| va_end(arguments); |
| } |
| |
| // Wrap TraceGVN in macros to avoid the expense of evaluating its arguments when |
| // --trace-gvn is off. |
| #define TRACE_GVN_1(msg, a1) \ |
| if (FLAG_trace_gvn) { \ |
| TraceGVN(msg, a1); \ |
| } |
| |
| #define TRACE_GVN_2(msg, a1, a2) \ |
| if (FLAG_trace_gvn) { \ |
| TraceGVN(msg, a1, a2); \ |
| } |
| |
| #define TRACE_GVN_3(msg, a1, a2, a3) \ |
| if (FLAG_trace_gvn) { \ |
| TraceGVN(msg, a1, a2, a3); \ |
| } |
| |
| #define TRACE_GVN_4(msg, a1, a2, a3, a4) \ |
| if (FLAG_trace_gvn) { \ |
| TraceGVN(msg, a1, a2, a3, a4); \ |
| } |
| |
| #define TRACE_GVN_5(msg, a1, a2, a3, a4, a5) \ |
| if (FLAG_trace_gvn) { \ |
| TraceGVN(msg, a1, a2, a3, a4, a5); \ |
| } |
| |
| |
| HValueMap::HValueMap(Zone* zone, const HValueMap* other) |
| : array_size_(other->array_size_), |
| lists_size_(other->lists_size_), |
| count_(other->count_), |
| present_flags_(other->present_flags_), |
| array_(zone->NewArray<HValueMapListElement>(other->array_size_)), |
| lists_(zone->NewArray<HValueMapListElement>(other->lists_size_)), |
| free_list_head_(other->free_list_head_) { |
| memcpy(array_, other->array_, array_size_ * sizeof(HValueMapListElement)); |
| memcpy(lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement)); |
| } |
| |
| |
| void HValueMap::Kill(GVNFlagSet flags) { |
| GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(flags); |
| if (!present_flags_.ContainsAnyOf(depends_flags)) return; |
| present_flags_.RemoveAll(); |
| for (int i = 0; i < array_size_; ++i) { |
| HValue* value = array_[i].value; |
| if (value != NULL) { |
| // Clear list of collisions first, so we know if it becomes empty. |
| int kept = kNil; // List of kept elements. |
| int next; |
| for (int current = array_[i].next; current != kNil; current = next) { |
| next = lists_[current].next; |
| HValue* value = lists_[current].value; |
| if (value->gvn_flags().ContainsAnyOf(depends_flags)) { |
| // Drop it. |
| count_--; |
| lists_[current].next = free_list_head_; |
| free_list_head_ = current; |
| } else { |
| // Keep it. |
| lists_[current].next = kept; |
| kept = current; |
| present_flags_.Add(value->gvn_flags()); |
| } |
| } |
| array_[i].next = kept; |
| |
| // Now possibly drop directly indexed element. |
| value = array_[i].value; |
| if (value->gvn_flags().ContainsAnyOf(depends_flags)) { // Drop it. |
| count_--; |
| int head = array_[i].next; |
| if (head == kNil) { |
| array_[i].value = NULL; |
| } else { |
| array_[i].value = lists_[head].value; |
| array_[i].next = lists_[head].next; |
| lists_[head].next = free_list_head_; |
| free_list_head_ = head; |
| } |
| } else { |
| present_flags_.Add(value->gvn_flags()); // Keep it. |
| } |
| } |
| } |
| } |
| |
| |
| HValue* HValueMap::Lookup(HValue* value) const { |
| uint32_t hash = static_cast<uint32_t>(value->Hashcode()); |
| uint32_t pos = Bound(hash); |
| if (array_[pos].value != NULL) { |
| if (array_[pos].value->Equals(value)) return array_[pos].value; |
| int next = array_[pos].next; |
| while (next != kNil) { |
| if (lists_[next].value->Equals(value)) return lists_[next].value; |
| next = lists_[next].next; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| void HValueMap::Resize(int new_size, Zone* zone) { |
| ASSERT(new_size > count_); |
| // Hashing the values into the new array has no more collisions than in the |
| // old hash map, so we can use the existing lists_ array, if we are careful. |
| |
| // Make sure we have at least one free element. |
| if (free_list_head_ == kNil) { |
| ResizeLists(lists_size_ << 1, zone); |
| } |
| |
| HValueMapListElement* new_array = |
| zone->NewArray<HValueMapListElement>(new_size); |
| memset(new_array, 0, sizeof(HValueMapListElement) * new_size); |
| |
| HValueMapListElement* old_array = array_; |
| int old_size = array_size_; |
| |
| int old_count = count_; |
| count_ = 0; |
| // Do not modify present_flags_. It is currently correct. |
| array_size_ = new_size; |
| array_ = new_array; |
| |
| if (old_array != NULL) { |
| // Iterate over all the elements in lists, rehashing them. |
| for (int i = 0; i < old_size; ++i) { |
| if (old_array[i].value != NULL) { |
| int current = old_array[i].next; |
| while (current != kNil) { |
| Insert(lists_[current].value, zone); |
| int next = lists_[current].next; |
| lists_[current].next = free_list_head_; |
| free_list_head_ = current; |
| current = next; |
| } |
| // Rehash the directly stored value. |
| Insert(old_array[i].value, zone); |
| } |
| } |
| } |
| USE(old_count); |
| ASSERT(count_ == old_count); |
| } |
| |
| |
| void HValueMap::ResizeLists(int new_size, Zone* zone) { |
| ASSERT(new_size > lists_size_); |
| |
| HValueMapListElement* new_lists = |
| zone->NewArray<HValueMapListElement>(new_size); |
| memset(new_lists, 0, sizeof(HValueMapListElement) * new_size); |
| |
| HValueMapListElement* old_lists = lists_; |
| int old_size = lists_size_; |
| |
| lists_size_ = new_size; |
| lists_ = new_lists; |
| |
| if (old_lists != NULL) { |
| memcpy(lists_, old_lists, old_size * sizeof(HValueMapListElement)); |
| } |
| for (int i = old_size; i < lists_size_; ++i) { |
| lists_[i].next = free_list_head_; |
| free_list_head_ = i; |
| } |
| } |
| |
| |
| void HValueMap::Insert(HValue* value, Zone* zone) { |
| ASSERT(value != NULL); |
| // Resizing when half of the hashtable is filled up. |
| if (count_ >= array_size_ >> 1) Resize(array_size_ << 1, zone); |
| ASSERT(count_ < array_size_); |
| count_++; |
| uint32_t pos = Bound(static_cast<uint32_t>(value->Hashcode())); |
| if (array_[pos].value == NULL) { |
| array_[pos].value = value; |
| array_[pos].next = kNil; |
| } else { |
| if (free_list_head_ == kNil) { |
| ResizeLists(lists_size_ << 1, zone); |
| } |
| int new_element_pos = free_list_head_; |
| ASSERT(new_element_pos != kNil); |
| free_list_head_ = lists_[free_list_head_].next; |
| lists_[new_element_pos].value = value; |
| lists_[new_element_pos].next = array_[pos].next; |
| ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL); |
| array_[pos].next = new_element_pos; |
| } |
| } |
| |
| |
| HSideEffectMap::HSideEffectMap() : count_(0) { |
| memset(data_, 0, kNumberOfTrackedSideEffects * kPointerSize); |
| } |
| |
| |
| HSideEffectMap::HSideEffectMap(HSideEffectMap* other) : count_(other->count_) { |
| *this = *other; // Calls operator=. |
| } |
| |
| |
| HSideEffectMap& HSideEffectMap::operator= (const HSideEffectMap& other) { |
| if (this != &other) { |
| memcpy(data_, other.data_, kNumberOfTrackedSideEffects * kPointerSize); |
| } |
| return *this; |
| } |
| |
| void HSideEffectMap::Kill(GVNFlagSet flags) { |
| for (int i = 0; i < kNumberOfTrackedSideEffects; i++) { |
| GVNFlag changes_flag = HValue::ChangesFlagFromInt(i); |
| if (flags.Contains(changes_flag)) { |
| if (data_[i] != NULL) count_--; |
| data_[i] = NULL; |
| } |
| } |
| } |
| |
| |
| void HSideEffectMap::Store(GVNFlagSet flags, HInstruction* instr) { |
| for (int i = 0; i < kNumberOfTrackedSideEffects; i++) { |
| GVNFlag changes_flag = HValue::ChangesFlagFromInt(i); |
| if (flags.Contains(changes_flag)) { |
| if (data_[i] == NULL) count_++; |
| data_[i] = instr; |
| } |
| } |
| } |
| |
| |
| class HStackCheckEliminator BASE_EMBEDDED { |
| public: |
| explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { } |
| |
| void Process(); |
| |
| private: |
| HGraph* graph_; |
| }; |
| |
| |
| void HStackCheckEliminator::Process() { |
| // For each loop block walk the dominator tree from the backwards branch to |
| // the loop header. If a call instruction is encountered the backwards branch |
| // is dominated by a call and the stack check in the backwards branch can be |
| // removed. |
| for (int i = 0; i < graph_->blocks()->length(); i++) { |
| HBasicBlock* block = graph_->blocks()->at(i); |
| if (block->IsLoopHeader()) { |
| HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge(); |
| HBasicBlock* dominator = back_edge; |
| while (true) { |
| HInstruction* instr = dominator->first(); |
| while (instr != NULL) { |
| if (instr->IsCall()) { |
| block->loop_information()->stack_check()->Eliminate(); |
| break; |
| } |
| instr = instr->next(); |
| } |
| |
| // Done when the loop header is processed. |
| if (dominator == block) break; |
| |
| // Move up the dominator tree. |
| dominator = dominator->dominator(); |
| } |
| } |
| } |
| } |
| |
| |
| // Simple sparse set with O(1) add, contains, and clear. |
| class SparseSet { |
| public: |
| SparseSet(Zone* zone, int capacity) |
| : capacity_(capacity), |
| length_(0), |
| dense_(zone->NewArray<int>(capacity)), |
| sparse_(zone->NewArray<int>(capacity)) { |
| #ifndef NVALGRIND |
| // Initialize the sparse array to make valgrind happy. |
| memset(sparse_, 0, sizeof(sparse_[0]) * capacity); |
| #endif |
| } |
| |
| bool Contains(int n) const { |
| ASSERT(0 <= n && n < capacity_); |
| int d = sparse_[n]; |
| return 0 <= d && d < length_ && dense_[d] == n; |
| } |
| |
| bool Add(int n) { |
| if (Contains(n)) return false; |
| dense_[length_] = n; |
| sparse_[n] = length_; |
| ++length_; |
| return true; |
| } |
| |
| void Clear() { length_ = 0; } |
| |
| private: |
| int capacity_; |
| int length_; |
| int* dense_; |
| int* sparse_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SparseSet); |
| }; |
| |
| |
| class HGlobalValueNumberer BASE_EMBEDDED { |
| public: |
| explicit HGlobalValueNumberer(HGraph* graph, CompilationInfo* info) |
| : graph_(graph), |
| info_(info), |
| removed_side_effects_(false), |
| block_side_effects_(graph->blocks()->length(), graph->zone()), |
| loop_side_effects_(graph->blocks()->length(), graph->zone()), |
| visited_on_paths_(graph->zone(), graph->blocks()->length()) { |
| #ifdef DEBUG |
| ASSERT(info->isolate()->optimizing_compiler_thread()->IsOptimizerThread() || |
| !info->isolate()->heap()->IsAllocationAllowed()); |
| #endif |
| block_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length(), |
| graph_->zone()); |
| loop_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length(), |
| graph_->zone()); |
| } |
| |
| // Returns true if values with side effects are removed. |
| bool Analyze(); |
| |
| private: |
| GVNFlagSet CollectSideEffectsOnPathsToDominatedBlock( |
| HBasicBlock* dominator, |
| HBasicBlock* dominated); |
| void AnalyzeGraph(); |
| void ComputeBlockSideEffects(); |
| void LoopInvariantCodeMotion(); |
| void ProcessLoopBlock(HBasicBlock* block, |
| HBasicBlock* before_loop, |
| GVNFlagSet loop_kills, |
| GVNFlagSet* accumulated_first_time_depends, |
| GVNFlagSet* accumulated_first_time_changes); |
| bool AllowCodeMotion(); |
| bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header); |
| |
| HGraph* graph() { return graph_; } |
| CompilationInfo* info() { return info_; } |
| Zone* zone() const { return graph_->zone(); } |
| |
| HGraph* graph_; |
| CompilationInfo* info_; |
| bool removed_side_effects_; |
| |
| // A map of block IDs to their side effects. |
| ZoneList<GVNFlagSet> block_side_effects_; |
| |
| // A map of loop header block IDs to their loop's side effects. |
| ZoneList<GVNFlagSet> loop_side_effects_; |
| |
| // Used when collecting side effects on paths from dominator to |
| // dominated. |
| SparseSet visited_on_paths_; |
| }; |
| |
| |
| bool HGlobalValueNumberer::Analyze() { |
| removed_side_effects_ = false; |
| ComputeBlockSideEffects(); |
| if (FLAG_loop_invariant_code_motion) { |
| LoopInvariantCodeMotion(); |
| } |
| AnalyzeGraph(); |
| return removed_side_effects_; |
| } |
| |
| |
| void HGlobalValueNumberer::ComputeBlockSideEffects() { |
| // The Analyze phase of GVN can be called multiple times. Clear loop side |
| // effects before computing them to erase the contents from previous Analyze |
| // passes. |
| for (int i = 0; i < loop_side_effects_.length(); ++i) { |
| loop_side_effects_[i].RemoveAll(); |
| } |
| for (int i = graph_->blocks()->length() - 1; i >= 0; --i) { |
| // Compute side effects for the block. |
| HBasicBlock* block = graph_->blocks()->at(i); |
| HInstruction* instr = block->first(); |
| int id = block->block_id(); |
| GVNFlagSet side_effects; |
| while (instr != NULL) { |
| side_effects.Add(instr->ChangesFlags()); |
| if (instr->IsSoftDeoptimize()) { |
| block_side_effects_[id].RemoveAll(); |
| side_effects.RemoveAll(); |
| break; |
| } |
| instr = instr->next(); |
| } |
| block_side_effects_[id].Add(side_effects); |
| |
| // Loop headers are part of their loop. |
| if (block->IsLoopHeader()) { |
| loop_side_effects_[id].Add(side_effects); |
| } |
| |
| // Propagate loop side effects upwards. |
| if (block->HasParentLoopHeader()) { |
| int header_id = block->parent_loop_header()->block_id(); |
| loop_side_effects_[header_id].Add(block->IsLoopHeader() |
| ? loop_side_effects_[id] |
| : side_effects); |
| } |
| } |
| } |
| |
| |
| SmartArrayPointer<char> GetGVNFlagsString(GVNFlagSet flags) { |
| char underlying_buffer[kLastFlag * 128]; |
| Vector<char> buffer(underlying_buffer, sizeof(underlying_buffer)); |
| #if DEBUG |
| int offset = 0; |
| const char* separator = ""; |
| const char* comma = ", "; |
| buffer[0] = 0; |
| uint32_t set_depends_on = 0; |
| uint32_t set_changes = 0; |
| for (int bit = 0; bit < kLastFlag; ++bit) { |
| if ((flags.ToIntegral() & (1 << bit)) != 0) { |
| if (bit % 2 == 0) { |
| set_changes++; |
| } else { |
| set_depends_on++; |
| } |
| } |
| } |
| bool positive_changes = set_changes < (kLastFlag / 2); |
| bool positive_depends_on = set_depends_on < (kLastFlag / 2); |
| if (set_changes > 0) { |
| if (positive_changes) { |
| offset += OS::SNPrintF(buffer + offset, "changes ["); |
| } else { |
| offset += OS::SNPrintF(buffer + offset, "changes all except ["); |
| } |
| for (int bit = 0; bit < kLastFlag; ++bit) { |
| if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_changes) { |
| switch (static_cast<GVNFlag>(bit)) { |
| #define DECLARE_FLAG(type) \ |
| case kChanges##type: \ |
| offset += OS::SNPrintF(buffer + offset, separator); \ |
| offset += OS::SNPrintF(buffer + offset, #type); \ |
| separator = comma; \ |
| break; |
| GVN_TRACKED_FLAG_LIST(DECLARE_FLAG) |
| GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG) |
| #undef DECLARE_FLAG |
| default: |
| break; |
| } |
| } |
| } |
| offset += OS::SNPrintF(buffer + offset, "]"); |
| } |
| if (set_depends_on > 0) { |
| separator = ""; |
| if (set_changes > 0) { |
| offset += OS::SNPrintF(buffer + offset, ", "); |
| } |
| if (positive_depends_on) { |
| offset += OS::SNPrintF(buffer + offset, "depends on ["); |
| } else { |
| offset += OS::SNPrintF(buffer + offset, "depends on all except ["); |
| } |
| for (int bit = 0; bit < kLastFlag; ++bit) { |
| if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_depends_on) { |
| switch (static_cast<GVNFlag>(bit)) { |
| #define DECLARE_FLAG(type) \ |
| case kDependsOn##type: \ |
| offset += OS::SNPrintF(buffer + offset, separator); \ |
| offset += OS::SNPrintF(buffer + offset, #type); \ |
| separator = comma; \ |
| break; |
| GVN_TRACKED_FLAG_LIST(DECLARE_FLAG) |
| GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG) |
| #undef DECLARE_FLAG |
| default: |
| break; |
| } |
| } |
| } |
| offset += OS::SNPrintF(buffer + offset, "]"); |
| } |
| #else |
| OS::SNPrintF(buffer, "0x%08X", flags.ToIntegral()); |
| #endif |
| size_t string_len = strlen(underlying_buffer) + 1; |
| ASSERT(string_len <= sizeof(underlying_buffer)); |
| char* result = new char[strlen(underlying_buffer) + 1]; |
| memcpy(result, underlying_buffer, string_len); |
| return SmartArrayPointer<char>(result); |
| } |
| |
| |
| void HGlobalValueNumberer::LoopInvariantCodeMotion() { |
| TRACE_GVN_1("Using optimistic loop invariant code motion: %s\n", |
| graph_->use_optimistic_licm() ? "yes" : "no"); |
| for (int i = graph_->blocks()->length() - 1; i >= 0; --i) { |
| HBasicBlock* block = graph_->blocks()->at(i); |
| if (block->IsLoopHeader()) { |
| GVNFlagSet side_effects = loop_side_effects_[block->block_id()]; |
| TRACE_GVN_2("Try loop invariant motion for block B%d %s\n", |
| block->block_id(), |
| *GetGVNFlagsString(side_effects)); |
| |
| GVNFlagSet accumulated_first_time_depends; |
| GVNFlagSet accumulated_first_time_changes; |
| HBasicBlock* last = block->loop_information()->GetLastBackEdge(); |
| for (int j = block->block_id(); j <= last->block_id(); ++j) { |
| ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects, |
| &accumulated_first_time_depends, |
| &accumulated_first_time_changes); |
| } |
| } |
| } |
| } |
| |
| |
| void HGlobalValueNumberer::ProcessLoopBlock( |
| HBasicBlock* block, |
| HBasicBlock* loop_header, |
| GVNFlagSet loop_kills, |
| GVNFlagSet* first_time_depends, |
| GVNFlagSet* first_time_changes) { |
| HBasicBlock* pre_header = loop_header->predecessors()->at(0); |
| GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills); |
| TRACE_GVN_2("Loop invariant motion for B%d %s\n", |
| block->block_id(), |
| *GetGVNFlagsString(depends_flags)); |
| HInstruction* instr = block->first(); |
| while (instr != NULL) { |
| HInstruction* next = instr->next(); |
| bool hoisted = false; |
| if (instr->CheckFlag(HValue::kUseGVN)) { |
| TRACE_GVN_4("Checking instruction %d (%s) %s. Loop %s\n", |
| instr->id(), |
| instr->Mnemonic(), |
| *GetGVNFlagsString(instr->gvn_flags()), |
| *GetGVNFlagsString(loop_kills)); |
| bool can_hoist = !instr->gvn_flags().ContainsAnyOf(depends_flags); |
| if (can_hoist && !graph()->use_optimistic_licm()) { |
| can_hoist = block->IsLoopSuccessorDominator(); |
| } |
| |
| if (can_hoist) { |
| bool inputs_loop_invariant = true; |
| for (int i = 0; i < instr->OperandCount(); ++i) { |
| if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) { |
| inputs_loop_invariant = false; |
| } |
| } |
| |
| if (inputs_loop_invariant && ShouldMove(instr, loop_header)) { |
| TRACE_GVN_1("Hoisting loop invariant instruction %d\n", instr->id()); |
| // Move the instruction out of the loop. |
| instr->Unlink(); |
| instr->InsertBefore(pre_header->end()); |
| if (instr->HasSideEffects()) removed_side_effects_ = true; |
| hoisted = true; |
| } |
| } |
| } |
| if (!hoisted) { |
| // If an instruction is not hoisted, we have to account for its side |
| // effects when hoisting later HTransitionElementsKind instructions. |
| GVNFlagSet previous_depends = *first_time_depends; |
| GVNFlagSet previous_changes = *first_time_changes; |
| first_time_depends->Add(instr->DependsOnFlags()); |
| first_time_changes->Add(instr->ChangesFlags()); |
| if (!(previous_depends == *first_time_depends)) { |
| TRACE_GVN_1("Updated first-time accumulated %s\n", |
| *GetGVNFlagsString(*first_time_depends)); |
| } |
| if (!(previous_changes == *first_time_changes)) { |
| TRACE_GVN_1("Updated first-time accumulated %s\n", |
| *GetGVNFlagsString(*first_time_changes)); |
| } |
| } |
| instr = next; |
| } |
| } |
| |
| |
| bool HGlobalValueNumberer::AllowCodeMotion() { |
| return info()->IsStub() || info()->opt_count() + 1 < FLAG_max_opt_count; |
| } |
| |
| |
| bool HGlobalValueNumberer::ShouldMove(HInstruction* instr, |
| HBasicBlock* loop_header) { |
| // If we've disabled code motion or we're in a block that unconditionally |
| // deoptimizes, don't move any instructions. |
| return AllowCodeMotion() && !instr->block()->IsDeoptimizing(); |
| } |
| |
| |
| GVNFlagSet HGlobalValueNumberer::CollectSideEffectsOnPathsToDominatedBlock( |
| HBasicBlock* dominator, HBasicBlock* dominated) { |
| GVNFlagSet side_effects; |
| for (int i = 0; i < dominated->predecessors()->length(); ++i) { |
| HBasicBlock* block = dominated->predecessors()->at(i); |
| if (dominator->block_id() < block->block_id() && |
| block->block_id() < dominated->block_id() && |
| visited_on_paths_.Add(block->block_id())) { |
| side_effects.Add(block_side_effects_[block->block_id()]); |
| if (block->IsLoopHeader()) { |
| side_effects.Add(loop_side_effects_[block->block_id()]); |
| } |
| side_effects.Add(CollectSideEffectsOnPathsToDominatedBlock( |
| dominator, block)); |
| } |
| } |
| return side_effects; |
| } |
| |
| |
| // Each instance of this class is like a "stack frame" for the recursive |
| // traversal of the dominator tree done during GVN (the stack is handled |
| // as a double linked list). |
| // We reuse frames when possible so the list length is limited by the depth |
| // of the dominator tree but this forces us to initialize each frame calling |
| // an explicit "Initialize" method instead of a using constructor. |
| class GvnBasicBlockState: public ZoneObject { |
| public: |
| static GvnBasicBlockState* CreateEntry(Zone* zone, |
| HBasicBlock* entry_block, |
| HValueMap* entry_map) { |
| return new(zone) |
| GvnBasicBlockState(NULL, entry_block, entry_map, NULL, zone); |
| } |
| |
| HBasicBlock* block() { return block_; } |
| HValueMap* map() { return map_; } |
| HSideEffectMap* dominators() { return &dominators_; } |
| |
| GvnBasicBlockState* next_in_dominator_tree_traversal( |
| Zone* zone, |
| HBasicBlock** dominator) { |
| // This assignment needs to happen before calling next_dominated() because |
| // that call can reuse "this" if we are at the last dominated block. |
| *dominator = block(); |
| GvnBasicBlockState* result = next_dominated(zone); |
| if (result == NULL) { |
| GvnBasicBlockState* dominator_state = pop(); |
| if (dominator_state != NULL) { |
| // This branch is guaranteed not to return NULL because pop() never |
| // returns a state where "is_done() == true". |
| *dominator = dominator_state->block(); |
| result = dominator_state->next_dominated(zone); |
| } else { |
| // Unnecessary (we are returning NULL) but done for cleanness. |
| *dominator = NULL; |
| } |
| } |
| return result; |
| } |
| |
| private: |
| void Initialize(HBasicBlock* block, |
| HValueMap* map, |
| HSideEffectMap* dominators, |
| bool copy_map, |
| Zone* zone) { |
| block_ = block; |
| map_ = copy_map ? map->Copy(zone) : map; |
| dominated_index_ = -1; |
| length_ = block->dominated_blocks()->length(); |
| if (dominators != NULL) { |
| dominators_ = *dominators; |
| } |
| } |
| bool is_done() { return dominated_index_ >= length_; } |
| |
| GvnBasicBlockState(GvnBasicBlockState* previous, |
| HBasicBlock* block, |
| HValueMap* map, |
| HSideEffectMap* dominators, |
| Zone* zone) |
| : previous_(previous), next_(NULL) { |
| Initialize(block, map, dominators, true, zone); |
| } |
| |
| GvnBasicBlockState* next_dominated(Zone* zone) { |
| dominated_index_++; |
| if (dominated_index_ == length_ - 1) { |
| // No need to copy the map for the last child in the dominator tree. |
| Initialize(block_->dominated_blocks()->at(dominated_index_), |
| map(), |
| dominators(), |
| false, |
| zone); |
| return this; |
| } else if (dominated_index_ < length_) { |
| return push(zone, |
| block_->dominated_blocks()->at(dominated_index_), |
| dominators()); |
| } else { |
| return NULL; |
| } |
| } |
| |
| GvnBasicBlockState* push(Zone* zone, |
| HBasicBlock* block, |
| HSideEffectMap* dominators) { |
| if (next_ == NULL) { |
| next_ = |
| new(zone) GvnBasicBlockState(this, block, map(), dominators, zone); |
| } else { |
| next_->Initialize(block, map(), dominators, true, zone); |
| } |
| return next_; |
| } |
| GvnBasicBlockState* pop() { |
| GvnBasicBlockState* result = previous_; |
| while (result != NULL && result->is_done()) { |
| TRACE_GVN_2("Backtracking from block B%d to block b%d\n", |
| block()->block_id(), |
| previous_->block()->block_id()) |
| result = result->previous_; |
| } |
| return result; |
| } |
| |
| GvnBasicBlockState* previous_; |
| GvnBasicBlockState* next_; |
| HBasicBlock* block_; |
| HValueMap* map_; |
| HSideEffectMap dominators_; |
| int dominated_index_; |
| int length_; |
| }; |
| |
| // This is a recursive traversal of the dominator tree but it has been turned |
| // into a loop to avoid stack overflows. |
| // The logical "stack frames" of the recursion are kept in a list of |
| // GvnBasicBlockState instances. |
| void HGlobalValueNumberer::AnalyzeGraph() { |
| HBasicBlock* entry_block = graph_->entry_block(); |
| HValueMap* entry_map = new(zone()) HValueMap(zone()); |
| GvnBasicBlockState* current = |
| GvnBasicBlockState::CreateEntry(zone(), entry_block, entry_map); |
| |
| while (current != NULL) { |
| HBasicBlock* block = current->block(); |
| HValueMap* map = current->map(); |
| HSideEffectMap* dominators = current->dominators(); |
| |
| TRACE_GVN_2("Analyzing block B%d%s\n", |
| block->block_id(), |
| block->IsLoopHeader() ? " (loop header)" : ""); |
| |
| // If this is a loop header kill everything killed by the loop. |
| if (block->IsLoopHeader()) { |
| map->Kill(loop_side_effects_[block->block_id()]); |
| } |
| |
| // Go through all instructions of the current block. |
| HInstruction* instr = block->first(); |
| while (instr != NULL) { |
| HInstruction* next = instr->next(); |
| GVNFlagSet flags = instr->ChangesFlags(); |
| if (!flags.IsEmpty()) { |
| // Clear all instructions in the map that are affected by side effects. |
| // Store instruction as the dominating one for tracked side effects. |
| map->Kill(flags); |
| dominators->Store(flags, instr); |
| TRACE_GVN_2("Instruction %d %s\n", instr->id(), |
| *GetGVNFlagsString(flags)); |
| } |
| if (instr->CheckFlag(HValue::kUseGVN)) { |
| ASSERT(!instr->HasObservableSideEffects()); |
| HValue* other = map->Lookup(instr); |
| if (other != NULL) { |
| ASSERT(instr->Equals(other) && other->Equals(instr)); |
| TRACE_GVN_4("Replacing value %d (%s) with value %d (%s)\n", |
| instr->id(), |
| instr->Mnemonic(), |
| other->id(), |
| other->Mnemonic()); |
| if (instr->HasSideEffects()) removed_side_effects_ = true; |
| instr->DeleteAndReplaceWith(other); |
| } else { |
| map->Add(instr, zone()); |
| } |
| } |
| if (instr->IsLinked() && |
| instr->CheckFlag(HValue::kTrackSideEffectDominators)) { |
| for (int i = 0; i < kNumberOfTrackedSideEffects; i++) { |
| HValue* other = dominators->at(i); |
| GVNFlag changes_flag = HValue::ChangesFlagFromInt(i); |
| GVNFlag depends_on_flag = HValue::DependsOnFlagFromInt(i); |
| if (instr->DependsOnFlags().Contains(depends_on_flag) && |
| (other != NULL)) { |
| TRACE_GVN_5("Side-effect #%d in %d (%s) is dominated by %d (%s)\n", |
| i, |
| instr->id(), |
| instr->Mnemonic(), |
| other->id(), |
| other->Mnemonic()); |
| instr->SetSideEffectDominator(changes_flag, other); |
| } |
| } |
| } |
| instr = next; |
| } |
| |
| HBasicBlock* dominator_block; |
| GvnBasicBlockState* next = |
| current->next_in_dominator_tree_traversal(zone(), &dominator_block); |
| |
| if (next != NULL) { |
| HBasicBlock* dominated = next->block(); |
| HValueMap* successor_map = next->map(); |
| HSideEffectMap* successor_dominators = next->dominators(); |
| |
| // Kill everything killed on any path between this block and the |
| // dominated block. We don't have to traverse these paths if the |
| // value map and the dominators list is already empty. If the range |
| // of block ids (block_id, dominated_id) is empty there are no such |
| // paths. |
| if ((!successor_map->IsEmpty() || !successor_dominators->IsEmpty()) && |
| dominator_block->block_id() + 1 < dominated->block_id()) { |
| visited_on_paths_.Clear(); |
| GVNFlagSet side_effects_on_all_paths = |
| CollectSideEffectsOnPathsToDominatedBlock(dominator_block, |
| dominated); |
| successor_map->Kill(side_effects_on_all_paths); |
| successor_dominators->Kill(side_effects_on_all_paths); |
| } |
| } |
| current = next; |
| } |
| } |
| |
| |
| void HInferRepresentation::AddToWorklist(HValue* current) { |
| if (current->representation().IsTagged()) return; |
| if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return; |
| if (in_worklist_.Contains(current->id())) return; |
| worklist_.Add(current, zone()); |
| in_worklist_.Add(current->id()); |
| } |
| |
| |
| void HInferRepresentation::Analyze() { |
| HPhase phase("H_Infer representations", graph_); |
| |
| // (1) Initialize bit vectors and count real uses. Each phi gets a |
| // bit-vector of length <number of phis>. |
| const ZoneList<HPhi*>* phi_list = graph_->phi_list(); |
| int phi_count = phi_list->length(); |
| ZoneList<BitVector*> connected_phis(phi_count, graph_->zone()); |
| for (int i = 0; i < phi_count; ++i) { |
| phi_list->at(i)->InitRealUses(i); |
| BitVector* connected_set = new(zone()) BitVector(phi_count, graph_->zone()); |
| connected_set->Add(i); |
| connected_phis.Add(connected_set, zone()); |
| } |
| |
| // (2) Do a fixed point iteration to find the set of connected phis. A |
| // phi is connected to another phi if its value is used either directly or |
| // indirectly through a transitive closure of the def-use relation. |
| bool change = true; |
| while (change) { |
| change = false; |
| // We normally have far more "forward edges" than "backward edges", |
| // so we terminate faster when we walk backwards. |
| for (int i = phi_count - 1; i >= 0; --i) { |
| HPhi* phi = phi_list->at(i); |
| for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) { |
| HValue* use = it.value(); |
| if (use->IsPhi()) { |
| int id = HPhi::cast(use)->phi_id(); |
| if (connected_phis[i]->UnionIsChanged(*connected_phis[id])) |
| change = true; |
| } |
| } |
| } |
| } |
| |
| // (3a) Use the phi reachability information from step 2 to |
| // push information about values which can't be converted to integer |
| // without deoptimization through the phi use-def chains, avoiding |
| // unnecessary deoptimizations later. |
| for (int i = 0; i < phi_count; ++i) { |
| HPhi* phi = phi_list->at(i); |
| bool cti = phi->AllOperandsConvertibleToInteger(); |
| if (cti) continue; |
| |
| for (BitVector::Iterator it(connected_phis.at(i)); |
| !it.Done(); |
| it.Advance()) { |
| HPhi* phi = phi_list->at(it.Current()); |
| phi->set_is_convertible_to_integer(false); |
| } |
| } |
| |
| // (3b) Use the phi reachability information from step 2 to |
| // sum up the non-phi use counts of all connected phis. |
| for (int i = 0; i < phi_count; ++i) { |
| HPhi* phi = phi_list->at(i); |
| for (BitVector::Iterator it(connected_phis.at(i)); |
| !it.Done(); |
| it.Advance()) { |
| int index = it.Current(); |
| HPhi* it_use = phi_list->at(index); |
| if (index != i) phi->AddNonPhiUsesFrom(it_use); // Don't count twice. |
| } |
| } |
| |
| // Initialize work list |
| for (int i = 0; i < graph_->blocks()->length(); ++i) { |
| HBasicBlock* block = graph_->blocks()->at(i); |
| const ZoneList<HPhi*>* phis = block->phis(); |
| for (int j = 0; j < phis->length(); ++j) { |
| AddToWorklist(phis->at(j)); |
| } |
| |
| HInstruction* current = block->first(); |
| while (current != NULL) { |
| AddToWorklist(current); |
| current = current->next(); |
| } |
| } |
| |
| // Do a fixed point iteration, trying to improve representations |
| while (!worklist_.is_empty()) { |
| HValue* current = worklist_.RemoveLast(); |
| in_worklist_.Remove(current->id()); |
| current->InferRepresentation(this); |
| } |
| |
| // Lastly: any instruction that we don't have representation information |
| // for defaults to Tagged. |
| for (int i = 0; i < graph_->blocks()->length(); ++i) { |
| HBasicBlock* block = graph_->blocks()->at(i); |
| const ZoneList<HPhi*>* phis = block->phis(); |
| for (int j = 0; j < phis->length(); ++j) { |
| HPhi* phi = phis->at(j); |
| if (phi->representation().IsNone()) { |
| phi->ChangeRepresentation(Representation::Tagged()); |
| } |
| } |
| for (HInstruction* current = block->first(); |
| current != NULL; current = current->next()) { |
| if (current->representation().IsNone() && |
| current->CheckFlag(HInstruction::kFlexibleRepresentation)) { |
| current->ChangeRepresentation(Representation::Tagged()); |
| } |
| } |
| } |
| } |
| |
| |
| void HGraph::MergeRemovableSimulates() { |
| for (int i = 0; i < blocks()->length(); ++i) { |
| HBasicBlock* block = blocks()->at(i); |
| // Always reset the folding candidate at the start of a block. |
| HSimulate* folding_candidate = NULL; |
| // Nasty heuristic: Never remove the first simulate in a block. This |
| // just so happens to have a beneficial effect on register allocation. |
| bool first = true; |
| for (HInstruction* current = block->first(); |
| current != NULL; current = current->next()) { |
| if (current->IsLeaveInlined()) { |
| // Never fold simulates from inlined environments into simulates |
| // in the outer environment. |
| // (Before each HEnterInlined, there is a non-foldable HSimulate |
| // anyway, so we get the barrier in the other direction for free.) |
| if (folding_candidate != NULL) { |
| folding_candidate->DeleteAndReplaceWith(NULL); |
| } |
| folding_candidate = NULL; |
| continue; |
| } |
| // If we have an HSimulate and a candidate, perform the folding. |
| if (!current->IsSimulate()) continue; |
| if (first) { |
| first = false; |
| continue; |
| } |
| HSimulate* current_simulate = HSimulate::cast(current); |
| if (folding_candidate != NULL) { |
| folding_candidate->MergeInto(current_simulate); |
| folding_candidate->DeleteAndReplaceWith(NULL); |
| folding_candidate = NULL; |
| } |
| // Check if the current simulate is a candidate for folding. |
| if (current_simulate->previous()->HasObservableSideEffects() && |
| !current_simulate->next()->IsSimulate()) { |
| continue; |
| } |
| if (!current_simulate->is_candidate_for_removal()) { |
| continue; |
| } |
| folding_candidate = current_simulate; |
| } |
| } |
| } |
| |
| |
| void HGraph::InitializeInferredTypes() { |
| HPhase phase("H_Inferring types", this); |
| InitializeInferredTypes(0, this->blocks_.length() - 1); |
| } |
| |
| |
| void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) { |
| for (int i = from_inclusive; i <= to_inclusive; ++i) { |
| HBasicBlock* block = blocks_[i]; |
| |
| const ZoneList<HPhi*>* phis = block->phis(); |
| for (int j = 0; j < phis->length(); j++) { |
| phis->at(j)->UpdateInferredType(); |
| } |
| |
| HInstruction* current = block->first(); |
| while (current != NULL) { |
| current->UpdateInferredType(); |
| current = current->next(); |
| } |
| |
| if (block->IsLoopHeader()) { |
| HBasicBlock* last_back_edge = |
| block->loop_information()->GetLastBackEdge(); |
| InitializeInferredTypes(i + 1, last_back_edge->block_id()); |
| // Skip all blocks already processed by the recursive call. |
| i = last_back_edge->block_id(); |
| // Update phis of the loop header now after the whole loop body is |
| // guaranteed to be processed. |
| ZoneList<HValue*> worklist(block->phis()->length(), zone()); |
| for (int j = 0; j < block->phis()->length(); ++j) { |
| worklist.Add(block->phis()->at(j), zone()); |
| } |
| InferTypes(&worklist); |
| } |
| } |
| } |
| |
| |
| void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) { |
| HValue* current = value; |
| while (current != NULL) { |
| if (visited->Contains(current->id())) return; |
| |
| // For phis, we must propagate the check to all of its inputs. |
| if (current->IsPhi()) { |
| visited->Add(current->id()); |
| HPhi* phi = HPhi::cast(current); |
| for (int i = 0; i < phi->OperandCount(); ++i) { |
| PropagateMinusZeroChecks(phi->OperandAt(i), visited); |
| } |
| break; |
| } |
| |
| // For multiplication, division, and Math.min/max(), we must propagate |
| // to the left and the right side. |
| if (current->IsMul()) { |
| HMul* mul = HMul::cast(current); |
| mul->EnsureAndPropagateNotMinusZero(visited); |
| PropagateMinusZeroChecks(mul->left(), visited); |
| PropagateMinusZeroChecks(mul->right(), visited); |
| } else if (current->IsDiv()) { |
| HDiv* div = HDiv::cast(current); |
| div->EnsureAndPropagateNotMinusZero(visited); |
| PropagateMinusZeroChecks(div->left(), visited); |
| PropagateMinusZeroChecks(div->right(), visited); |
| } else if (current->IsMathMinMax()) { |
| HMathMinMax* minmax = HMathMinMax::cast(current); |
| visited->Add(minmax->id()); |
| PropagateMinusZeroChecks(minmax->left(), visited); |
| PropagateMinusZeroChecks(minmax->right(), visited); |
| } |
| |
| current = current->EnsureAndPropagateNotMinusZero(visited); |
| } |
| } |
| |
| |
| void HGraph::InsertRepresentationChangeForUse(HValue* value, |
| HValue* use_value, |
| int use_index, |
| Representation to) { |
| // Insert the representation change right before its use. For phi-uses we |
| // insert at the end of the corresponding predecessor. |
| HInstruction* next = NULL; |
| if (use_value->IsPhi()) { |
| next = use_value->block()->predecessors()->at(use_index)->end(); |
| } else { |
| next = HInstruction::cast(use_value); |
| } |
| // For constants we try to make the representation change at compile |
| // time. When a representation change is not possible without loss of |
| // information we treat constants like normal instructions and insert the |
| // change instructions for them. |
| HInstruction* new_value = NULL; |
| bool is_truncating = use_value->CheckFlag(HValue::kTruncatingToInt32); |
| bool deoptimize_on_undefined = |
| use_value->CheckFlag(HValue::kDeoptimizeOnUndefined); |
| if (value->IsConstant()) { |
| HConstant* constant = HConstant::cast(value); |
| // Try to create a new copy of the constant with the new representation. |
| new_value = (is_truncating && to.IsInteger32()) |
| ? constant->CopyToTruncatedInt32(zone()) |
| : constant->CopyToRepresentation(to, zone()); |
| } |
| |
| if (new_value == NULL) { |
| new_value = new(zone()) HChange(value, to, |
| is_truncating, deoptimize_on_undefined); |
| } |
| |
| new_value->InsertBefore(next); |
| use_value->SetOperandAt(use_index, new_value); |
| } |
| |
| |
| void HGraph::InsertRepresentationChangesForValue(HValue* value) { |
| Representation r = value->representation(); |
| if (r.IsNone()) return; |
| if (value->HasNoUses()) return; |
| |
| for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) { |
| HValue* use_value = it.value(); |
| int use_index = it.index(); |
| Representation req = use_value->RequiredInputRepresentation(use_index); |
| if (req.IsNone() || req.Equals(r)) continue; |
| InsertRepresentationChangeForUse(value, use_value, use_index, req); |
| } |
| if (value->HasNoUses()) { |
| ASSERT(value->IsConstant()); |
| value->DeleteAndReplaceWith(NULL); |
| } |
| |
| // The only purpose of a HForceRepresentation is to represent the value |
| // after the (possible) HChange instruction. We make it disappear. |
| if (value->IsForceRepresentation()) { |
| value->DeleteAndReplaceWith(HForceRepresentation::cast(value)->value()); |
| } |
| } |
| |
| |
| void HGraph::InsertRepresentationChanges() { |
| HPhase phase("H_Representation changes", this); |
| |
| // Compute truncation flag for phis: Initially assume that all |
| // int32-phis allow truncation and iteratively remove the ones that |
| // are used in an operation that does not allow a truncating |
| // conversion. |
| // TODO(fschneider): Replace this with a worklist-based iteration. |
| for (int i = 0; i < phi_list()->length(); i++) { |
| HPhi* phi = phi_list()->at(i); |
| if (phi->representation().IsInteger32()) { |
| phi->SetFlag(HValue::kTruncatingToInt32); |
| } |
| } |
| bool change = true; |
| while (change) { |
| change = false; |
| for (int i = 0; i < phi_list()->length(); i++) { |
| HPhi* phi = phi_list()->at(i); |
| if (!phi->CheckFlag(HValue::kTruncatingToInt32)) continue; |
| for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) { |
| // If a Phi is used as a non-truncating int32 or as a double, |
| // clear its "truncating" flag. |
| HValue* use = it.value(); |
| Representation input_representation = |
| use->RequiredInputRepresentation(it.index()); |
| if ((input_representation.IsInteger32() && |
| !use->CheckFlag(HValue::kTruncatingToInt32)) || |
| input_representation.IsDouble()) { |
| if (FLAG_trace_representation) { |
| PrintF("#%d Phi is not truncating because of #%d %s\n", |
| phi->id(), it.value()->id(), it.value()->Mnemonic()); |
| } |
| phi->ClearFlag(HValue::kTruncatingToInt32); |
| change = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| for (int i = 0; i < blocks_.length(); ++i) { |
| // Process phi instructions first. |
| const ZoneList<HPhi*>* phis = blocks_[i]->phis(); |
| for (int j = 0; j < phis->length(); j++) { |
| InsertRepresentationChangesForValue(phis->at(j)); |
| } |
| |
| // Process normal instructions. |
| HInstruction* current = blocks_[i]->first(); |
| while (current != NULL) { |
| HInstruction* next = current->next(); |
| InsertRepresentationChangesForValue(current); |
| current = next; |
| } |
| } |
| } |
| |
| |
| void HGraph::RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi* phi) { |
| if (phi->CheckFlag(HValue::kDeoptimizeOnUndefined)) return; |
| phi->SetFlag(HValue::kDeoptimizeOnUndefined); |
| for (int i = 0; i < phi->OperandCount(); ++i) { |
| HValue* input = phi->OperandAt(i); |
| if (input->IsPhi()) { |
| RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi::cast(input)); |
| } |
| } |
| } |
| |
| |
| void HGraph::MarkDeoptimizeOnUndefined() { |
| HPhase phase("H_MarkDeoptimizeOnUndefined", this); |
| // Compute DeoptimizeOnUndefined flag for phis. |
| // Any phi that can reach a use with DeoptimizeOnUndefined set must |
| // have DeoptimizeOnUndefined set. Currently only HCompareIDAndBranch, with |
| // double input representation, has this flag set. |
| // The flag is used by HChange tagged->double, which must deoptimize |
| // if one of its uses has this flag set. |
| for (int i = 0; i < phi_list()->length(); i++) { |
| HPhi* phi = phi_list()->at(i); |
| if (phi->representation().IsDouble()) { |
| for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) { |
| if (it.value()->CheckFlag(HValue::kDeoptimizeOnUndefined)) { |
| RecursivelyMarkPhiDeoptimizeOnUndefined(phi); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // Discover instructions that can be marked with kUint32 flag allowing |
| // them to produce full range uint32 values. |
| class Uint32Analysis BASE_EMBEDDED { |
| public: |
| explicit Uint32Analysis(Zone* zone) : zone_(zone), phis_(4, zone) { } |
| |
| void Analyze(HInstruction* current); |
| |
| void UnmarkUnsafePhis(); |
| |
| private: |
| bool IsSafeUint32Use(HValue* val, HValue* use); |
| bool Uint32UsesAreSafe(HValue* uint32val); |
| bool CheckPhiOperands(HPhi* phi); |
| void UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist); |
| |
| Zone* zone_; |
| ZoneList<HPhi*> phis_; |
| }; |
| |
| |
| bool Uint32Analysis::IsSafeUint32Use(HValue* val, HValue* use) { |
| // Operations that operatate on bits are safe. |
| if (use->IsBitwise() || |
| use->IsShl() || |
| use->IsSar() || |
| use->IsShr() || |
| use->IsBitNot()) { |
| return true; |
| } else if (use->IsChange() || use->IsSimulate()) { |
| // Conversions and deoptimization have special support for unt32. |
| return true; |
| } else if (use->IsStoreKeyed()) { |
| HStoreKeyed* store = HStoreKeyed::cast(use); |
| if (store->is_external()) { |
| // Storing a value into an external integer array is a bit level |
| // operation. |
| if (store->value() == val) { |
| // Clamping or a conversion to double should have beed inserted. |
| ASSERT(store->elements_kind() != EXTERNAL_PIXEL_ELEMENTS); |
| ASSERT(store->elements_kind() != EXTERNAL_FLOAT_ELEMENTS); |
| ASSERT(store->elements_kind() != EXTERNAL_DOUBLE_ELEMENTS); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| // Iterate over all uses and verify that they are uint32 safe: either don't |
| // distinguish between int32 and uint32 due to their bitwise nature or |
| // have special support for uint32 values. |
| // Encountered phis are optimisitically treated as safe uint32 uses, |
| // marked with kUint32 flag and collected in the phis_ list. A separate |
| // path will be performed later by UnmarkUnsafePhis to clear kUint32 from |
| // phis that are not actually uint32-safe (it requries fix point iteration). |
| bool Uint32Analysis::Uint32UsesAreSafe(HValue* uint32val) { |
| bool collect_phi_uses = false; |
| for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) { |
| HValue* use = it.value(); |
| |
| if (use->IsPhi()) { |
| if (!use->CheckFlag(HInstruction::kUint32)) { |
| // There is a phi use of this value from a phis that is not yet |
| // collected in phis_ array. Separate pass is required. |
| collect_phi_uses = true; |
| } |
| |
| // Optimistically treat phis as uint32 safe. |
| continue; |
| } |
| |
| if (!IsSafeUint32Use(uint32val, use)) { |
| return false; |
| } |
| } |
| |
| if (collect_phi_uses) { |
| for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) { |
| HValue* use = it.value(); |
| |
| // There is a phi use of this value from a phis that is not yet |
| // collected in phis_ array. Separate pass is required. |
| if (use->IsPhi() && !use->CheckFlag(HInstruction::kUint32)) { |
| use->SetFlag(HInstruction::kUint32); |
| phis_.Add(HPhi::cast(use), zone_); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| // Analyze instruction and mark it with kUint32 if all its uses are uint32 |
| // safe. |
| void Uint32Analysis::Analyze(HInstruction* current) { |
| if (Uint32UsesAreSafe(current)) current->SetFlag(HInstruction::kUint32); |
| } |
| |
| |
| // Check if all operands to the given phi are marked with kUint32 flag. |
| bool Uint32Analysis::CheckPhiOperands(HPhi* phi) { |
| if (!phi->CheckFlag(HInstruction::kUint32)) { |
| // This phi is not uint32 safe. No need to check operands. |
| return false; |
| } |
| |
| for (int j = 0; j < phi->OperandCount(); j++) { |
| HValue* operand = phi->OperandAt(j); |
| if (!operand->CheckFlag(HInstruction::kUint32)) { |
| // Lazyly mark constants that fit into uint32 range with kUint32 flag. |
| if (operand->IsConstant() && |
| HConstant::cast(operand)->IsUint32()) { |
| operand->SetFlag(HInstruction::kUint32); |
| continue; |
| } |
| |
| // This phi is not safe, some operands are not uint32 values. |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| // Remove kUint32 flag from the phi itself and its operands. If any operand |
| // was a phi marked with kUint32 place it into a worklist for |
| // transitive clearing of kUint32 flag. |
| void Uint32Analysis::UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist) { |
| phi->ClearFlag(HInstruction::kUint32); |
| for (int j = 0; j < phi->OperandCount(); j++) { |
| HValue* operand = phi->OperandAt(j); |
| if (operand->CheckFlag(HInstruction::kUint32)) { |
| operand->ClearFlag(HInstruction::kUint32); |
| if (operand->IsPhi()) { |
| worklist->Add(HPhi::cast(operand), zone_); |
| } |
| } |
| } |
| } |
| |
| |
| void Uint32Analysis::UnmarkUnsafePhis() { |
| // No phis were collected. Nothing to do. |
| if (phis_.length() == 0) return; |
| |
| // Worklist used to transitively clear kUint32 from phis that |
| // are used as arguments to other phis. |
| ZoneList<HPhi*> worklist(phis_.length(), zone_); |
| |
| // Phi can be used as a uint32 value if and only if |
| // all its operands are uint32 values and all its |
| // uses are uint32 safe. |
| |
| // Iterate over collected phis and unmark those that |
| // are unsafe. When unmarking phi unmark its operands |
| // and add it to the worklist if it is a phi as well. |
| // Phis that are still marked as safe are shifted down |
| // so that all safe phis form a prefix of the phis_ array. |
| int phi_count = 0; |
| for (int i = 0; i < phis_.length(); i++) { |
| HPhi* phi = phis_[i]; |
| |
| if (CheckPhiOperands(phi) && Uint32UsesAreSafe(phi)) { |
| phis_[phi_count++] = phi; |
| } else { |
| UnmarkPhi(phi, &worklist); |
| } |
| } |
| |
| // Now phis array contains only those phis that have safe |
| // non-phi uses. Start transitively clearing kUint32 flag |
| // from phi operands of discovered non-safe phies until |
| // only safe phies are left. |
| while (!worklist.is_empty()) { |
| while (!worklist.is_empty()) { |
| HPhi* phi = worklist.RemoveLast(); |
| UnmarkPhi(phi, &worklist); |
| } |
| |
| // Check if any operands to safe phies were unmarked |
| // turning a safe phi into unsafe. The same value |
| // can flow into several phis. |
| int new_phi_count = 0; |
| for (int i = 0; i < phi_count; i++) { |
| HPhi* phi = phis_[i]; |
| |
| if (CheckPhiOperands(phi)) { |
| phis_[new_phi_count++] = phi; |
| } else { |
| UnmarkPhi(phi, &worklist); |
| } |
| } |
| phi_count = new_phi_count; |
| } |
| } |
| |
| |
| void HGraph::ComputeSafeUint32Operations() { |
| if (!FLAG_opt_safe_uint32_operations || uint32_instructions_ == NULL) { |
| return; |
| } |
| |
| Uint32Analysis analysis(zone()); |
| for (int i = 0; i < uint32_instructions_->length(); ++i) { |
| HInstruction* current = uint32_instructions_->at(i); |
| if (current->IsLinked() && current->representation().IsInteger32()) { |
| analysis.Analyze(current); |
| } |
| } |
| |
| // Some phis might have been optimistically marked with kUint32 flag. |
| // Remove this flag from those phis that are unsafe and propagate |
| // this information transitively potentially clearing kUint32 flag |
| // from some non-phi operations that are used as operands to unsafe phis. |
| analysis.UnmarkUnsafePhis(); |
| } |
| |
| |
| void HGraph::ComputeMinusZeroChecks() { |
| BitVector visited(GetMaximumValueID(), zone()); |
| for (int i = 0; i < blocks_.length(); ++i) { |
| for (HInstruction* current = blocks_[i]->first(); |
| current != NULL; |
| current = current->next()) { |
| if (current->IsChange()) { |
| HChange* change = HChange::cast(current); |
| // Propagate flags for negative zero checks upwards from conversions |
| // int32-to-tagged and int32-to-double. |
| Representation from = change->value()->representation(); |
| ASSERT(from.Equals(change->from())); |
| if (from.IsInteger32()) { |
| ASSERT(change->to().IsTagged() || change->to().IsDouble()); |
| ASSERT(visited.IsEmpty()); |
| PropagateMinusZeroChecks(change->value(), &visited); |
| visited.Clear(); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // Implementation of utility class to encapsulate the translation state for |
| // a (possibly inlined) function. |
| FunctionState::FunctionState(HOptimizedGraphBuilder* owner, |
| CompilationInfo* info, |
| TypeFeedbackOracle* oracle, |
| InliningKind inlining_kind) |
| : owner_(owner), |
| compilation_info_(info), |
| oracle_(oracle), |
| call_context_(NULL), |
| inlining_kind_(inlining_kind), |
| function_return_(NULL), |
| test_context_(NULL), |
| entry_(NULL), |
| arguments_elements_(NULL), |
| outer_(owner->function_state()) { |
| if (outer_ != NULL) { |
| // State for an inline function. |
| if (owner->ast_context()->IsTest()) { |
| HBasicBlock* if_true = owner->graph()->CreateBasicBlock(); |
| HBasicBlock* if_false = owner->graph()->CreateBasicBlock(); |
| if_true->MarkAsInlineReturnTarget(); |
| if_false->MarkAsInlineReturnTarget(); |
| TestContext* outer_test_context = TestContext::cast(owner->ast_context()); |
| Expression* cond = outer_test_context->condition(); |
| TypeFeedbackOracle* outer_oracle = outer_test_context->oracle(); |
| // The AstContext constructor pushed on the context stack. This newed |
| // instance is the reason that AstContext can't be BASE_EMBEDDED. |
| test_context_ = |
| new TestContext(owner, cond, outer_oracle, if_true, if_false); |
| } else { |
| function_return_ = owner->graph()->CreateBasicBlock(); |
| function_return()->MarkAsInlineReturnTarget(); |
| } |
| // Set this after possibly allocating a new TestContext above. |
| call_context_ = owner->ast_context(); |
| } |
| |
| // Push on the state stack. |
| owner->set_function_state(this); |
| } |
| |
| |
| FunctionState::~FunctionState() { |
| delete test_context_; |
| owner_->set_function_state(outer_); |
| } |
| |
| |
| // Implementation of utility classes to represent an expression's context in |
| // the AST. |
| AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind) |
| : owner_(owner), |
| kind_(kind), |
| outer_(owner->ast_context()), |
| for_typeof_(false) { |
| owner->set_ast_context(this); // Push. |
| #ifdef DEBUG |
| ASSERT(owner->environment()->frame_type() == JS_FUNCTION); |
| original_length_ = owner->environment()->length(); |
| #endif |
| } |
| |
| |
| AstContext::~AstContext() { |
| owner_->set_ast_context(outer_); // Pop. |
| } |
| |
| |
| EffectContext::~EffectContext() { |
| ASSERT(owner()->HasStackOverflow() || |
| owner()->current_block() == NULL || |
| (owner()->environment()->length() == original_length_ && |
| owner()->environment()->frame_type() == JS_FUNCTION)); |
| } |
| |
| |
| ValueContext::~ValueContext() { |
| ASSERT(owner()->HasStackOverflow() || |
| owner()->current_block() == NULL || |
| (owner()->environment()->length() == original_length_ + 1 && |
| owner()->environment()->frame_type() == JS_FUNCTION)); |
| } |
| |
| |
| void EffectContext::ReturnValue(HValue* value) { |
| // The value is simply ignored. |
| } |
| |
| |
| void ValueContext::ReturnValue(HValue* value) { |
| // The value is tracked in the bailout environment, and communicated |
| // through the environment as the result of the expression. |
| if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) { |
| owner()->Bailout("bad value context for arguments value"); |
| } |
| owner()->Push(value); |
| } |
| |
| |
| void TestContext::ReturnValue(HValue* value) { |
| BuildBranch(value); |
| } |
| |
| |
| void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) { |
| ASSERT(!instr->IsControlInstruction()); |
| owner()->AddInstruction(instr); |
| if (instr->HasObservableSideEffects()) { |
| owner()->AddSimulate(ast_id, REMOVABLE_SIMULATE); |
| } |
| } |
| |
| |
| void EffectContext::ReturnControl(HControlInstruction* instr, |
| BailoutId ast_id) { |
| ASSERT(!instr->HasObservableSideEffects()); |
| HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock(); |
| HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock(); |
| instr->SetSuccessorAt(0, empty_true); |
| instr->SetSuccessorAt(1, empty_false); |
| owner()->current_block()->Finish(instr); |
| HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id); |
| owner()->set_current_block(join); |
| } |
| |
| |
| void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) { |
| ASSERT(!instr->IsControlInstruction()); |
| if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) { |
| return owner()->Bailout("bad value context for arguments object value"); |
| } |
| owner()->AddInstruction(instr); |
| owner()->Push(instr); |
| if (instr->HasObservableSideEffects()) { |
| owner()->AddSimulate(ast_id, REMOVABLE_SIMULATE); |
| } |
| } |
| |
| |
| void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) { |
| ASSERT(!instr->HasObservableSideEffects()); |
| if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) { |
| return owner()->Bailout("bad value context for arguments object value"); |
| } |
| HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock(); |
| HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock(); |
| instr->SetSuccessorAt(0, materialize_true); |
| instr->SetSuccessorAt(1, materialize_false); |
| owner()->current_block()->Finish(instr); |
| owner()->set_current_block(materialize_true); |
| owner()->Push(owner()->graph()->GetConstantTrue()); |
| owner()->set_current_block(materialize_false); |
| owner()->Push(owner()->graph()->GetConstantFalse()); |
| HBasicBlock* join = |
| owner()->CreateJoin(materialize_true, materialize_false, ast_id); |
| owner()->set_current_block(join); |
| } |
| |
| |
| void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) { |
| ASSERT(!instr->IsControlInstruction()); |
| HOptimizedGraphBuilder* builder = owner(); |
| builder->AddInstruction(instr); |
| // We expect a simulate after every expression with side effects, though |
| // this one isn't actually needed (and wouldn't work if it were targeted). |
| if (instr->HasObservableSideEffects()) { |
| builder->Push(instr); |
| builder->AddSimulate(ast_id, REMOVABLE_SIMULATE); |
| builder->Pop(); |
| } |
| BuildBranch(instr); |
| } |
| |
| |
| void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) { |
| ASSERT(!instr->HasObservableSideEffects()); |
| HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock(); |
| HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock(); |
| instr->SetSuccessorAt(0, empty_true); |
| instr->SetSuccessorAt(1, empty_false); |
| owner()->current_block()->Finish(instr); |
| empty_true->Goto(if_true(), owner()->function_state()); |
| empty_false->Goto(if_false(), owner()->function_state()); |
| owner()->set_current_block(NULL); |
| } |
| |
| |
| void TestContext::BuildBranch(HValue* value) { |
| // We expect the graph to be in edge-split form: there is no edge that |
| // connects a branch node to a join node. We conservatively ensure that |
| // property by always adding an empty block on the outgoing edges of this |
| // branch. |
| HOptimizedGraphBuilder* builder = owner(); |
| if (value != NULL && value->CheckFlag(HValue::kIsArguments)) { |
| builder->Bailout("arguments object value in a test context"); |
| } |
| HBasicBlock* empty_true = builder->graph()->CreateBasicBlock(); |
| HBasicBlock* empty_false = builder->graph()->CreateBasicBlock(); |
| TypeFeedbackId test_id = condition()->test_id(); |
| ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id)); |
| HBranch* test = new(zone()) HBranch(value, empty_true, empty_false, expected); |
| builder->current_block()->Finish(test); |
| |
| empty_true->Goto(if_true(), owner()->function_state()); |
| empty_false->Goto(if_false(), owner()->function_state()); |
| builder->set_current_block(NULL); |
| } |
| |
| |
| // HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts. |
| #define CHECK_BAILOUT(call) \ |
| do { \ |
| call; \ |
| if (HasStackOverflow()) return; \ |
| } while (false) |
| |
| |
| #define CHECK_ALIVE(call) \ |
| do { \ |
| call; \ |
| if (HasStackOverflow() || current_block() == NULL) return; \ |
| } while (false) |
| |
| |
| void HOptimizedGraphBuilder::Bailout(const char* reason) { |
| info()->set_bailout_reason(reason); |
| SetStackOverflow(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) { |
| EffectContext for_effect(this); |
| Visit(expr); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitForValue(Expression* expr, |
| ArgumentsAllowedFlag flag) { |
| ValueContext for_value(this, flag); |
| Visit(expr); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) { |
| ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED); |
| for_value.set_for_typeof(true); |
| Visit(expr); |
| } |
| |
| |
| |
| void HOptimizedGraphBuilder::VisitForControl(Expression* expr, |
| HBasicBlock* true_block, |
| HBasicBlock* false_block) { |
| TestContext for_test(this, expr, oracle(), true_block, false_block); |
| Visit(expr); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitArgument(Expression* expr) { |
| CHECK_ALIVE(VisitForValue(expr)); |
| Push(AddInstruction(new(zone()) HPushArgument(Pop()))); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitArgumentList( |
| ZoneList<Expression*>* arguments) { |
| for (int i = 0; i < arguments->length(); i++) { |
| CHECK_ALIVE(VisitArgument(arguments->at(i))); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitExpressions( |
| ZoneList<Expression*>* exprs) { |
| for (int i = 0; i < exprs->length(); ++i) { |
| CHECK_ALIVE(VisitForValue(exprs->at(i))); |
| } |
| } |
| |
| |
| bool HOptimizedGraphBuilder::BuildGraph() { |
| Scope* scope = info()->scope(); |
| if (scope->HasIllegalRedeclaration()) { |
| Bailout("function with illegal redeclaration"); |
| return false; |
| } |
| if (scope->calls_eval()) { |
| Bailout("function calls eval"); |
| return false; |
| } |
| SetUpScope(scope); |
| |
| // Add an edge to the body entry. This is warty: the graph's start |
| // environment will be used by the Lithium translation as the initial |
| // environment on graph entry, but it has now been mutated by the |
| // Hydrogen translation of the instructions in the start block. This |
| // environment uses values which have not been defined yet. These |
| // Hydrogen instructions will then be replayed by the Lithium |
| // translation, so they cannot have an environment effect. The edge to |
| // the body's entry block (along with some special logic for the start |
| // block in HInstruction::InsertAfter) seals the start block from |
| // getting unwanted instructions inserted. |
| // |
| // TODO(kmillikin): Fix this. Stop mutating the initial environment. |
| // Make the Hydrogen instructions in the initial block into Hydrogen |
| // values (but not instructions), present in the initial environment and |
| // not replayed by the Lithium translation. |
| HEnvironment* initial_env = environment()->CopyWithoutHistory(); |
| HBasicBlock* body_entry = CreateBasicBlock(initial_env); |
| current_block()->Goto(body_entry); |
| body_entry->SetJoinId(BailoutId::FunctionEntry()); |
| set_current_block(body_entry); |
| |
| // Handle implicit declaration of the function name in named function |
| // expressions before other declarations. |
| if (scope->is_function_scope() && scope->function() != NULL) { |
| VisitVariableDeclaration(scope->function()); |
| } |
| VisitDeclarations(scope->declarations()); |
| AddSimulate(BailoutId::Declarations()); |
| |
| HValue* context = environment()->LookupContext(); |
| AddInstruction( |
| new(zone()) HStackCheck(context, HStackCheck::kFunctionEntry)); |
| |
| VisitStatements(info()->function()->body()); |
| if (HasStackOverflow()) return false; |
| |
| if (current_block() != NULL) { |
| HReturn* instr = new(zone()) HReturn(graph()->GetConstantUndefined(), |
| context); |
| current_block()->FinishExit(instr); |
| set_current_block(NULL); |
| } |
| |
| // If the checksum of the number of type info changes is the same as the |
| // last time this function was compiled, then this recompile is likely not |
| // due to missing/inadequate type feedback, but rather too aggressive |
| // optimization. Disable optimistic LICM in that case. |
| Handle<Code> unoptimized_code(info()->shared_info()->code()); |
| ASSERT(unoptimized_code->kind() == Code::FUNCTION); |
| Handle<TypeFeedbackInfo> type_info( |
| TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info())); |
| int checksum = type_info->own_type_change_checksum(); |
| int composite_checksum = graph()->update_type_change_checksum(checksum); |
| graph()->set_use_optimistic_licm( |
| !type_info->matches_inlined_type_change_checksum(composite_checksum)); |
| type_info->set_inlined_type_change_checksum(composite_checksum); |
| |
| return true; |
| } |
| |
| |
| void HGraph::GlobalValueNumbering() { |
| // Perform common subexpression elimination and loop-invariant code motion. |
| if (FLAG_use_gvn) { |
| HPhase phase("H_Global value numbering", this); |
| HGlobalValueNumberer gvn(this, info()); |
| bool removed_side_effects = gvn.Analyze(); |
| // Trigger a second analysis pass to further eliminate duplicate values that |
| // could only be discovered by removing side-effect-generating instructions |
| // during the first pass. |
| if (FLAG_smi_only_arrays && removed_side_effects) { |
| removed_side_effects = gvn.Analyze(); |
| ASSERT(!removed_side_effects); |
| } |
| } |
| } |
| |
| |
| bool HGraph::Optimize(SmartArrayPointer<char>* bailout_reason) { |
| *bailout_reason = SmartArrayPointer<char>(); |
| OrderBlocks(); |
| AssignDominators(); |
| |
| #ifdef DEBUG |
| // Do a full verify after building the graph and computing dominators. |
| Verify(true); |
| #endif |
| |
| PropagateDeoptimizingMark(); |
| if (!CheckConstPhiUses()) { |
| *bailout_reason = SmartArrayPointer<char>(StrDup( |
| "Unsupported phi use of const variable")); |
| return false; |
| } |
| EliminateRedundantPhis(); |
| if (!CheckArgumentsPhiUses()) { |
| *bailout_reason = SmartArrayPointer<char>(StrDup( |
| "Unsupported phi use of arguments")); |
| return false; |
| } |
| if (FLAG_eliminate_dead_phis) EliminateUnreachablePhis(); |
| CollectPhis(); |
| |
| if (has_osr_loop_entry()) { |
| const ZoneList<HPhi*>* phis = osr_loop_entry()->phis(); |
| for (int j = 0; j < phis->length(); j++) { |
| HPhi* phi = phis->at(j); |
| osr_values()->at(phi->merged_index())->set_incoming_value(phi); |
| } |
| } |
| |
| HInferRepresentation rep(this); |
| rep.Analyze(); |
| |
| // Remove HSimulate instructions that have turned out not to be needed |
| // after all by folding them into the following HSimulate. |
| // This must happen after inferring representations. |
| MergeRemovableSimulates(); |
| |
| MarkDeoptimizeOnUndefined(); |
| InsertRepresentationChanges(); |
| |
| InitializeInferredTypes(); |
| |
| // Must be performed before canonicalization to ensure that Canonicalize |
| // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with |
| // zero. |
| ComputeSafeUint32Operations(); |
| |
| Canonicalize(); |
| |
| GlobalValueNumbering(); |
| |
| if (FLAG_use_range) { |
| HRangeAnalysis rangeAnalysis(this); |
| rangeAnalysis.Analyze(); |
| } |
| ComputeMinusZeroChecks(); |
| |
| // Eliminate redundant stack checks on backwards branches. |
| HStackCheckEliminator sce(this); |
| sce.Process(); |
| |
| if (FLAG_idefs) SetupInformativeDefinitions(); |
| if (FLAG_array_bounds_checks_elimination && !FLAG_idefs) { |
| EliminateRedundantBoundsChecks(); |
| } |
| if (FLAG_array_index_dehoisting) DehoistSimpleArrayIndexComputations(); |
| if (FLAG_dead_code_elimination) DeadCodeElimination(); |
| |
| RestoreActualValues(); |
| |
| return true; |
| } |
| |
| |
| void HGraph::SetupInformativeDefinitionsInBlock(HBasicBlock* block) { |
| for (int phi_index = 0; phi_index < block->phis()->length(); phi_index++) { |
| HPhi* phi = block->phis()->at(phi_index); |
| phi->AddInformativeDefinitions(); |
| // We do not support phis that "redefine just one operand". |
| ASSERT(!phi->IsInformativeDefinition()); |
| } |
| |
| for (HInstruction* i = block->first(); i != NULL; i = i->next()) { |
| i->AddInformativeDefinitions(); |
| i->UpdateRedefinedUsesWhileSettingUpInformativeDefinitions(); |
| } |
| } |
| |
| |
| // This method is recursive, so if its stack frame is large it could |
| // cause a stack overflow. |
| // To keep the individual stack frames small we do the actual work inside |
| // SetupInformativeDefinitionsInBlock(); |
| void HGraph::SetupInformativeDefinitionsRecursively(HBasicBlock* block) { |
| SetupInformativeDefinitionsInBlock(block); |
| for (int i = 0; i < block->dominated_blocks()->length(); ++i) { |
| SetupInformativeDefinitionsRecursively(block->dominated_blocks()->at(i)); |
| } |
| } |
| |
| |
| void HGraph::SetupInformativeDefinitions() { |
| HPhase phase("H_Setup informative definitions", this); |
| SetupInformativeDefinitionsRecursively(entry_block()); |
| } |
| |
| |
| // We try to "factor up" HBoundsCheck instructions towards the root of the |
| // dominator tree. |
| // For now we handle checks where the index is like "exp + int32value". |
| // If in the dominator tree we check "exp + v1" and later (dominated) |
| // "exp + v2", if v2 <= v1 we can safely remove the second check, and if |
| // v2 > v1 we can use v2 in the 1st check and again remove the second. |
| // To do so we keep a dictionary of all checks where the key if the pair |
| // "exp, length". |
| // The class BoundsCheckKey represents this key. |
| class BoundsCheckKey : public ZoneObject { |
| public: |
| HValue* IndexBase() const { return index_base_; } |
| HValue* Length() const { return length_; } |
| |
| uint32_t Hash() { |
| return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode()); |
| } |
| |
| static BoundsCheckKey* Create(Zone* zone, |
| HBoundsCheck* check, |
| int32_t* offset) { |
| if (!check->index()->representation().IsInteger32()) return NULL; |
| |
| HValue* index_base = NULL; |
| HConstant* constant = NULL; |
| bool is_sub = false; |
| |
| if (check->index()->IsAdd()) { |
| HAdd* index = HAdd::cast(check->index()); |
| if (index->left()->IsConstant()) { |
| constant = HConstant::cast(index->left()); |
| index_base = index->right(); |
| } else if (index->right()->IsConstant()) { |
| constant = HConstant::cast(index->right()); |
| index_base = index->left(); |
| } |
| } else if (check->index()->IsSub()) { |
| HSub* index = HSub::cast(check->index()); |
| is_sub = true; |
| if (index->left()->IsConstant()) { |
| constant = HConstant::cast(index->left()); |
| index_base = index->right(); |
| } else if (index->right()->IsConstant()) { |
| constant = HConstant::cast(index->right()); |
| index_base = index->left(); |
| } |
| } |
| |
| if (constant != NULL && constant->HasInteger32Value()) { |
| *offset = is_sub ? - constant->Integer32Value() |
| : constant->Integer32Value(); |
| } else { |
| *offset = 0; |
| index_base = check->index(); |
| } |
| |
| return new(zone) BoundsCheckKey(index_base, check->length()); |
| } |
| |
| private: |
| BoundsCheckKey(HValue* index_base, HValue* length) |
| : index_base_(index_base), |
| length_(length) { } |
| |
| HValue* index_base_; |
| HValue* length_; |
| }; |
| |
| |
| // Data about each HBoundsCheck that can be eliminated or moved. |
| // It is the "value" in the dictionary indexed by "base-index, length" |
| // (the key is BoundsCheckKey). |
| // We scan the code with a dominator tree traversal. |
| // Traversing the dominator tree we keep a stack (implemented as a singly |
| // linked list) of "data" for each basic block that contains a relevant check |
| // with the same key (the dictionary holds the head of the list). |
| // We also keep all the "data" created for a given basic block in a list, and |
| // use it to "clean up" the dictionary when backtracking in the dominator tree |
| // traversal. |
| // Doing this each dictionary entry always directly points to the check that |
| // is dominating the code being examined now. |
| // We also track the current "offset" of the index expression and use it to |
| // decide if any check is already "covered" (so it can be removed) or not. |
| class BoundsCheckBbData: public ZoneObject { |
| public: |
| BoundsCheckKey* Key() const { return key_; } |
| int32_t LowerOffset() const { return lower_offset_; } |
| int32_t UpperOffset() const { return upper_offset_; } |
| HBasicBlock* BasicBlock() const { return basic_block_; } |
| HBoundsCheck* LowerCheck() const { return lower_check_; } |
| HBoundsCheck* UpperCheck() const { return upper_check_; } |
| BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; } |
| BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; } |
| |
| bool OffsetIsCovered(int32_t offset) const { |
| return offset >= LowerOffset() && offset <= UpperOffset(); |
| } |
| |
| bool HasSingleCheck() { return lower_check_ == upper_check_; } |
| |
| // The goal of this method is to modify either upper_offset_ or |
| // lower_offset_ so that also new_offset is covered (the covered |
| // range grows). |
| // |
| // The precondition is that new_check follows UpperCheck() and |
| // LowerCheck() in the same basic block, and that new_offset is not |
| // covered (otherwise we could simply remove new_check). |
| // |
| // If HasSingleCheck() is true then new_check is added as "second check" |
| // (either upper or lower; note that HasSingleCheck() becomes false). |
| // Otherwise one of the current checks is modified so that it also covers |
| // new_offset, and new_check is removed. |
| // |
| // If the check cannot be modified because the context is unknown it |
| // returns false, otherwise it returns true. |
| bool CoverCheck(HBoundsCheck* new_check, |
| int32_t new_offset) { |
| ASSERT(new_check->index()->representation().IsInteger32()); |
| bool keep_new_check = false; |
| |
| if (new_offset > upper_offset_) { |
| upper_offset_ = new_offset; |
| if (HasSingleCheck()) { |
| keep_new_check = true; |
| upper_check_ = new_check; |
| } else { |
| bool result = BuildOffsetAdd(upper_check_, |
| &added_upper_index_, |
| &added_upper_offset_, |
| Key()->IndexBase(), |
| new_check->index()->representation(), |
| new_offset); |
| if (!result) return false; |
| upper_check_->ReplaceAllUsesWith(upper_check_->index()); |
| upper_check_->SetOperandAt(0, added_upper_index_); |
| } |
| } else if (new_offset < lower_offset_) { |
| lower_offset_ = new_offset; |
| if (HasSingleCheck()) { |
| keep_new_check = true; |
| lower_check_ = new_check; |
| } else { |
| bool result = BuildOffsetAdd(lower_check_, |
| &added_lower_index_, |
| &added_lower_offset_, |
| Key()->IndexBase(), |
| new_check->index()->representation(), |
| new_offset); |
| if (!result) return false; |
| lower_check_->ReplaceAllUsesWith(lower_check_->index()); |
| lower_check_->SetOperandAt(0, added_lower_index_); |
| } |
| } else { |
| ASSERT(false); |
| } |
| |
| if (!keep_new_check) { |
| new_check->DeleteAndReplaceWith(new_check->ActualValue()); |
| } |
| |
| return true; |
| } |
| |
| void RemoveZeroOperations() { |
| RemoveZeroAdd(&added_lower_index_, &added_lower_offset_); |
| RemoveZeroAdd(&added_upper_index_, &added_upper_offset_); |
| } |
| |
| BoundsCheckBbData(BoundsCheckKey* key, |
| int32_t lower_offset, |
| int32_t upper_offset, |
| HBasicBlock* bb, |
| HBoundsCheck* lower_check, |
| HBoundsCheck* upper_check, |
| BoundsCheckBbData* next_in_bb, |
| BoundsCheckBbData* father_in_dt) |
| : key_(key), |
| lower_offset_(lower_offset), |
| upper_offset_(upper_offset), |
| basic_block_(bb), |
| lower_check_(lower_check), |
| upper_check_(upper_check), |
| added_lower_index_(NULL), |
| added_lower_offset_(NULL), |
| added_upper_index_(NULL), |
| added_upper_offset_(NULL), |
| next_in_bb_(next_in_bb), |
| father_in_dt_(father_in_dt) { } |
| |
| private: |
| BoundsCheckKey* key_; |
| int32_t lower_offset_; |
| int32_t upper_offset_; |
| HBasicBlock* basic_block_; |
| HBoundsCheck* lower_check_; |
| HBoundsCheck* upper_check_; |
| HAdd* added_lower_index_; |
| HConstant* added_lower_offset_; |
| HAdd* added_upper_index_; |
| HConstant* added_upper_offset_; |
| BoundsCheckBbData* next_in_bb_; |
| BoundsCheckBbData* father_in_dt_; |
| |
| // Given an existing add instruction and a bounds check it tries to |
| // find the current context (either of the add or of the check index). |
| HValue* IndexContext(HAdd* add, HBoundsCheck* check) { |
| if (add != NULL) { |
| return add->context(); |
| } |
| if (check->index()->IsBinaryOperation()) { |
| return HBinaryOperation::cast(check->index())->context(); |
| } |
| return NULL; |
| } |
| |
| // This function returns false if it cannot build the add because the |
| // current context cannot be determined. |
| bool BuildOffsetAdd(HBoundsCheck* check, |
| HAdd** add, |
| HConstant** constant, |
| HValue* original_value, |
| Representation representation, |
| int32_t new_offset) { |
| HValue* index_context = IndexContext(*add, check); |
| if (index_context == NULL) return false; |
| |
| HConstant* new_constant = new(BasicBlock()->zone()) |
| HConstant(new_offset, Representation::Integer32()); |
| if (*add == NULL) { |
| new_constant->InsertBefore(check); |
| *add = new(BasicBlock()->zone()) HAdd(index_context, |
| original_value, |
| new_constant); |
| (*add)->AssumeRepresentation(representation); |
| (*add)->InsertBefore(check); |
| } else { |
| new_constant->InsertBefore(*add); |
| (*constant)->DeleteAndReplaceWith(new_constant); |
| } |
| *constant = new_constant; |
| return true; |
| } |
| |
| void RemoveZeroAdd(HAdd** add, HConstant** constant) { |
| if (*add != NULL && (*constant)->Integer32Value() == 0) { |
| (*add)->DeleteAndReplaceWith((*add)->left()); |
| (*constant)->DeleteAndReplaceWith(NULL); |
| } |
| } |
| }; |
| |
| |
| static bool BoundsCheckKeyMatch(void* key1, void* key2) { |
| BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1); |
| BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2); |
| return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length(); |
| } |
| |
| |
| class BoundsCheckTable : private ZoneHashMap { |
| public: |
| BoundsCheckBbData** LookupOrInsert(BoundsCheckKey* key, Zone* zone) { |
| return reinterpret_cast<BoundsCheckBbData**>( |
| &(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value)); |
| } |
| |
| void Insert(BoundsCheckKey* key, BoundsCheckBbData* data, Zone* zone) { |
| Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data; |
| } |
| |
| void Delete(BoundsCheckKey* key) { |
| Remove(key, key->Hash()); |
| } |
| |
| explicit BoundsCheckTable(Zone* zone) |
| : ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity, |
| ZoneAllocationPolicy(zone)) { } |
| }; |
| |
| |
| // Eliminates checks in bb and recursively in the dominated blocks. |
| // Also replace the results of check instructions with the original value, if |
| // the result is used. This is safe now, since we don't do code motion after |
| // this point. It enables better register allocation since the value produced |
| // by check instructions is really a copy of the original value. |
| void HGraph::EliminateRedundantBoundsChecks(HBasicBlock* bb, |
| BoundsCheckTable* table) { |
| BoundsCheckBbData* bb_data_list = NULL; |
| |
| for (HInstruction* i = bb->first(); i != NULL; i = i->next()) { |
| if (!i->IsBoundsCheck()) continue; |
| |
| HBoundsCheck* check = HBoundsCheck::cast(i); |
| int32_t offset; |
| BoundsCheckKey* key = |
| BoundsCheckKey::Create(zone(), check, &offset); |
| if (key == NULL) continue; |
| BoundsCheckBbData** data_p = table->LookupOrInsert(key, zone()); |
| BoundsCheckBbData* data = *data_p; |
| if (data == NULL) { |
| bb_data_list = new(zone()) BoundsCheckBbData(key, |
| offset, |
| offset, |
| bb, |
| check, |
| check, |
| bb_data_list, |
| NULL); |
| *data_p = bb_data_list; |
| } else if (data->OffsetIsCovered(offset)) { |
| check->DeleteAndReplaceWith(check->ActualValue()); |
| } else if (data->BasicBlock() != bb || |
| !data->CoverCheck(check, offset)) { |
| // If the check is in the current BB we try to modify it by calling |
| // "CoverCheck", but if also that fails we record the current offsets |
| // in a new data instance because from now on they are covered. |
| int32_t new_lower_offset = offset < data->LowerOffset() |
| ? offset |
| : data->LowerOffset(); |
| int32_t new_upper_offset = offset > data->UpperOffset() |
| ? offset |
| : data->UpperOffset(); |
| bb_data_list = new(zone()) BoundsCheckBbData(key, |
| new_lower_offset, |
| new_upper_offset, |
| bb, |
| data->LowerCheck(), |
| data->UpperCheck(), |
| bb_data_list, |
| data); |
| table->Insert(key, bb_data_list, zone()); |
| } |
| } |
| |
| for (int i = 0; i < bb->dominated_blocks()->length(); ++i) { |
| EliminateRedundantBoundsChecks(bb->dominated_blocks()->at(i), table); |
| } |
| |
| for (BoundsCheckBbData* data = bb_data_list; |
| data != NULL; |
| data = data->NextInBasicBlock()) { |
| data->RemoveZeroOperations(); |
| if (data->FatherInDominatorTree()) { |
| table->Insert(data->Key(), data->FatherInDominatorTree(), zone()); |
| } else { |
| table->Delete(data->Key()); |
| } |
| } |
| } |
| |
| |
| void HGraph::EliminateRedundantBoundsChecks() { |
| HPhase phase("H_Eliminate bounds checks", this); |
| BoundsCheckTable checks_table(zone()); |
| EliminateRedundantBoundsChecks(entry_block(), &checks_table); |
| } |
| |
| |
| static void DehoistArrayIndex(ArrayInstructionInterface* array_operation) { |
| HValue* index = array_operation->GetKey()->ActualValue(); |
| if (!index->representation().IsInteger32()) return; |
| |
| HConstant* constant; |
| HValue* subexpression; |
| int32_t sign; |
| if (index->IsAdd()) { |
| sign = 1; |
| HAdd* add = HAdd::cast(index); |
| if (add->left()->IsConstant()) { |
| subexpression = add->right(); |
| constant = HConstant::cast(add->left()); |
| } else if (add->right()->IsConstant()) { |
| subexpression = add->left(); |
| constant = HConstant::cast(add->right()); |
| } else { |
| return; |
| } |
| } else if (index->IsSub()) { |
| sign = -1; |
| HSub* sub = HSub::cast(index); |
| if (sub->left()->IsConstant()) { |
| subexpression = sub->right(); |
| constant = HConstant::cast(sub->left()); |
| } else if (sub->right()->IsConstant()) { |
| subexpression = sub->left(); |
| constant = HConstant::cast(sub->right()); |
| } return; |
| } else { |
| return; |
| } |
| |
| if (!constant->HasInteger32Value()) return; |
| int32_t value = constant->Integer32Value() * sign; |
| // We limit offset values to 30 bits because we want to avoid the risk of |
| // overflows when the offset is added to the object header size. |
| if (value >= 1 << 30 || value < 0) return; |
| array_operation->SetKey(subexpression); |
| if (index->HasNoUses()) { |
| index->DeleteAndReplaceWith(NULL); |
| } |
| ASSERT(value >= 0); |
| array_operation->SetIndexOffset(static_cast<uint32_t>(value)); |
| array_operation->SetDehoisted(true); |
| } |
| |
| |
| void HGraph::DehoistSimpleArrayIndexComputations() { |
| HPhase phase("H_Dehoist index computations", this); |
| for (int i = 0; i < blocks()->length(); ++i) { |
| for (HInstruction* instr = blocks()->at(i)->first(); |
| instr != NULL; |
| instr = instr->next()) { |
| ArrayInstructionInterface* array_instruction = NULL; |
| if (instr->IsLoadKeyed()) { |
| HLoadKeyed* op = HLoadKeyed::cast(instr); |
| array_instruction = static_cast<ArrayInstructionInterface*>(op); |
| } else if (instr->IsStoreKeyed()) { |
| HStoreKeyed* op = HStoreKeyed::cast(instr); |
| array_instruction = static_cast<ArrayInstructionInterface*>(op); |
| } else { |
| continue; |
| } |
| DehoistArrayIndex(array_instruction); |
| } |
| } |
| } |
| |
| |
| void HGraph::DeadCodeElimination() { |
| HPhase phase("H_Dead code elimination", this); |
| ZoneList<HInstruction*> worklist(blocks_.length(), zone()); |
| for (int i = 0; i < blocks()->length(); ++i) { |
| for (HInstruction* instr = blocks()->at(i)->first(); |
| instr != NULL; |
| instr = instr->next()) { |
| if (instr->IsDead()) worklist.Add(instr, zone()); |
| } |
| } |
| |
| while (!worklist.is_empty()) { |
| HInstruction* instr = worklist.RemoveLast(); |
| if (FLAG_trace_dead_code_elimination) { |
| HeapStringAllocator allocator; |
| StringStream stream(&allocator); |
| instr->PrintNameTo(&stream); |
| stream.Add(" = "); |
| instr->PrintTo(&stream); |
| PrintF("[removing dead instruction %s]\n", *stream.ToCString()); |
| } |
| instr->DeleteAndReplaceWith(NULL); |
| for (int i = 0; i < instr->OperandCount(); ++i) { |
| HValue* operand = instr->OperandAt(i); |
| if (operand->IsDead()) worklist.Add(HInstruction::cast(operand), zone()); |
| } |
| } |
| } |
| |
| |
| void HGraph::RestoreActualValues() { |
| HPhase phase("H_Restore actual values", this); |
| |
| for (int block_index = 0; block_index < blocks()->length(); block_index++) { |
| HBasicBlock* block = blocks()->at(block_index); |
| |
| #ifdef DEBUG |
| for (int i = 0; i < block->phis()->length(); i++) { |
| HPhi* phi = block->phis()->at(i); |
| ASSERT(phi->ActualValue() == phi); |
| } |
| #endif |
| |
| for (HInstruction* instruction = block->first(); |
| instruction != NULL; |
| instruction = instruction->next()) { |
| if (instruction->ActualValue() != instruction) { |
| instruction->ReplaceAllUsesWith(instruction->ActualValue()); |
| } |
| } |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::AddPhi(HPhi* instr) { |
| ASSERT(current_block() != NULL); |
| current_block()->AddPhi(instr); |
| } |
| |
| |
| void HOptimizedGraphBuilder::PushAndAdd(HInstruction* instr) { |
| Push(instr); |
| AddInstruction(instr); |
| } |
| |
| |
| void HOptimizedGraphBuilder::AddSoftDeoptimize() { |
| if (FLAG_always_opt) return; |
| if (current_block()->IsDeoptimizing()) return; |
| AddInstruction(new(zone()) HSoftDeoptimize()); |
| current_block()->MarkAsDeoptimizing(); |
| graph()->set_has_soft_deoptimize(true); |
| } |
| |
| |
| template <class Instruction> |
| HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) { |
| int count = call->argument_count(); |
| ZoneList<HValue*> arguments(count, zone()); |
| for (int i = 0; i < count; ++i) { |
| arguments.Add(Pop(), zone()); |
| } |
| |
| while (!arguments.is_empty()) { |
| AddInstruction(new(zone()) HPushArgument(arguments.RemoveLast())); |
| } |
| return call; |
| } |
| |
| |
| void HOptimizedGraphBuilder::SetUpScope(Scope* scope) { |
| HConstant* undefined_constant = new(zone()) HConstant( |
| isolate()->factory()->undefined_value(), Representation::Tagged()); |
| AddInstruction(undefined_constant); |
| graph()->set_undefined_constant(undefined_constant); |
| |
| HArgumentsObject* object = new(zone()) HArgumentsObject; |
| AddInstruction(object); |
| graph()->SetArgumentsObject(object); |
| |
| // Set the initial values of parameters including "this". "This" has |
| // parameter index 0. |
| ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count()); |
| |
| for (int i = 0; i < environment()->parameter_count(); ++i) { |
| HInstruction* parameter = AddInstruction(new(zone()) HParameter(i)); |
| environment()->Bind(i, parameter); |
| } |
| |
| // First special is HContext. |
| HInstruction* context = AddInstruction(new(zone()) HContext); |
| environment()->BindContext(context); |
| |
| // Initialize specials and locals to undefined. |
| for (int i = environment()->parameter_count() + 1; |
| i < environment()->length(); |
| ++i) { |
| environment()->Bind(i, undefined_constant); |
| } |
| |
| // Handle the arguments and arguments shadow variables specially (they do |
| // not have declarations). |
| if (scope->arguments() != NULL) { |
| if (!scope->arguments()->IsStackAllocated()) { |
| return Bailout("context-allocated arguments"); |
| } |
| |
| environment()->Bind(scope->arguments(), |
| graph()->GetArgumentsObject()); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) { |
| for (int i = 0; i < statements->length(); i++) { |
| CHECK_ALIVE(Visit(statements->at(i))); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitBlock(Block* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| if (stmt->scope() != NULL) { |
| return Bailout("ScopedBlock"); |
| } |
| BreakAndContinueInfo break_info(stmt); |
| { BreakAndContinueScope push(&break_info, this); |
| CHECK_BAILOUT(VisitStatements(stmt->statements())); |
| } |
| HBasicBlock* break_block = break_info.break_block(); |
| if (break_block != NULL) { |
| if (current_block() != NULL) current_block()->Goto(break_block); |
| break_block->SetJoinId(stmt->ExitId()); |
| set_current_block(break_block); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitExpressionStatement( |
| ExpressionStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| VisitForEffect(stmt->expression()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| if (stmt->condition()->ToBooleanIsTrue()) { |
| AddSimulate(stmt->ThenId()); |
| Visit(stmt->then_statement()); |
| } else if (stmt->condition()->ToBooleanIsFalse()) { |
| AddSimulate(stmt->ElseId()); |
| Visit(stmt->else_statement()); |
| } else { |
| HBasicBlock* cond_true = graph()->CreateBasicBlock(); |
| HBasicBlock* cond_false = graph()->CreateBasicBlock(); |
| CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false)); |
| |
| if (cond_true->HasPredecessor()) { |
| cond_true->SetJoinId(stmt->ThenId()); |
| set_current_block(cond_true); |
| CHECK_BAILOUT(Visit(stmt->then_statement())); |
| cond_true = current_block(); |
| } else { |
| cond_true = NULL; |
| } |
| |
| if (cond_false->HasPredecessor()) { |
| cond_false->SetJoinId(stmt->ElseId()); |
| set_current_block(cond_false); |
| CHECK_BAILOUT(Visit(stmt->else_statement())); |
| cond_false = current_block(); |
| } else { |
| cond_false = NULL; |
| } |
| |
| HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId()); |
| set_current_block(join); |
| } |
| } |
| |
| |
| HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get( |
| BreakableStatement* stmt, |
| BreakType type, |
| int* drop_extra) { |
| *drop_extra = 0; |
| BreakAndContinueScope* current = this; |
| while (current != NULL && current->info()->target() != stmt) { |
| *drop_extra += current->info()->drop_extra(); |
| current = current->next(); |
| } |
| ASSERT(current != NULL); // Always found (unless stack is malformed). |
| |
| if (type == BREAK) { |
| *drop_extra += current->info()->drop_extra(); |
| } |
| |
| HBasicBlock* block = NULL; |
| switch (type) { |
| case BREAK: |
| block = current->info()->break_block(); |
| if (block == NULL) { |
| block = current->owner()->graph()->CreateBasicBlock(); |
| current->info()->set_break_block(block); |
| } |
| break; |
| |
| case CONTINUE: |
| block = current->info()->continue_block(); |
| if (block == NULL) { |
| block = current->owner()->graph()->CreateBasicBlock(); |
| current->info()->set_continue_block(block); |
| } |
| break; |
| } |
| |
| return block; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitContinueStatement( |
| ContinueStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| int drop_extra = 0; |
| HBasicBlock* continue_block = break_scope()->Get(stmt->target(), |
| CONTINUE, |
| &drop_extra); |
| Drop(drop_extra); |
| current_block()->Goto(continue_block); |
| set_current_block(NULL); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| int drop_extra = 0; |
| HBasicBlock* break_block = break_scope()->Get(stmt->target(), |
| BREAK, |
| &drop_extra); |
| Drop(drop_extra); |
| current_block()->Goto(break_block); |
| set_current_block(NULL); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| FunctionState* state = function_state(); |
| AstContext* context = call_context(); |
| if (context == NULL) { |
| // Not an inlined return, so an actual one. |
| CHECK_ALIVE(VisitForValue(stmt->expression())); |
| HValue* result = environment()->Pop(); |
| current_block()->FinishExit(new(zone()) HReturn( |
| result, |
| environment()->LookupContext())); |
| } else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) { |
| // Return from an inlined construct call. In a test context the return value |
| // will always evaluate to true, in a value context the return value needs |
| // to be a JSObject. |
| if (context->IsTest()) { |
| TestContext* test = TestContext::cast(context); |
| CHECK_ALIVE(VisitForEffect(stmt->expression())); |
| current_block()->Goto(test->if_true(), state); |
| } else if (context->IsEffect()) { |
| CHECK_ALIVE(VisitForEffect(stmt->expression())); |
| current_block()->Goto(function_return(), state); |
| } else { |
| ASSERT(context->IsValue()); |
| CHECK_ALIVE(VisitForValue(stmt->expression())); |
| HValue* return_value = Pop(); |
| HValue* receiver = environment()->arguments_environment()->Lookup(0); |
| HHasInstanceTypeAndBranch* typecheck = |
| new(zone()) HHasInstanceTypeAndBranch(return_value, |
| FIRST_SPEC_OBJECT_TYPE, |
| LAST_SPEC_OBJECT_TYPE); |
| HBasicBlock* if_spec_object = graph()->CreateBasicBlock(); |
| HBasicBlock* not_spec_object = graph()->CreateBasicBlock(); |
| typecheck->SetSuccessorAt(0, if_spec_object); |
| typecheck->SetSuccessorAt(1, not_spec_object); |
| current_block()->Finish(typecheck); |
| if_spec_object->AddLeaveInlined(return_value, state); |
| not_spec_object->AddLeaveInlined(receiver, state); |
| } |
| } else if (state->inlining_kind() == SETTER_CALL_RETURN) { |
| // Return from an inlined setter call. The returned value is never used, the |
| // value of an assignment is always the value of the RHS of the assignment. |
| CHECK_ALIVE(VisitForEffect(stmt->expression())); |
| if (context->IsTest()) { |
| HValue* rhs = environment()->arguments_environment()->Lookup(1); |
| context->ReturnValue(rhs); |
| } else if (context->IsEffect()) { |
| current_block()->Goto(function_return(), state); |
| } else { |
| ASSERT(context->IsValue()); |
| HValue* rhs = environment()->arguments_environment()->Lookup(1); |
| current_block()->AddLeaveInlined(rhs, state); |
| } |
| } else { |
| // Return from a normal inlined function. Visit the subexpression in the |
| // expression context of the call. |
| if (context->IsTest()) { |
| TestContext* test = TestContext::cast(context); |
| VisitForControl(stmt->expression(), test->if_true(), test->if_false()); |
| } else if (context->IsEffect()) { |
| CHECK_ALIVE(VisitForEffect(stmt->expression())); |
| current_block()->Goto(function_return(), state); |
| } else { |
| ASSERT(context->IsValue()); |
| CHECK_ALIVE(VisitForValue(stmt->expression())); |
| current_block()->AddLeaveInlined(Pop(), state); |
| } |
| } |
| set_current_block(NULL); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| return Bailout("WithStatement"); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| // We only optimize switch statements with smi-literal smi comparisons, |
| // with a bounded number of clauses. |
| const int kCaseClauseLimit = 128; |
| ZoneList<CaseClause*>* clauses = stmt->cases(); |
| int clause_count = clauses->length(); |
| if (clause_count > kCaseClauseLimit) { |
| return Bailout("SwitchStatement: too many clauses"); |
| } |
| |
| HValue* context = environment()->LookupContext(); |
| |
| CHECK_ALIVE(VisitForValue(stmt->tag())); |
| AddSimulate(stmt->EntryId()); |
| HValue* tag_value = Pop(); |
| HBasicBlock* first_test_block = current_block(); |
| |
| SwitchType switch_type = UNKNOWN_SWITCH; |
| |
| // 1. Extract clause type |
| for (int i = 0; i < clause_count; ++i) { |
| CaseClause* clause = clauses->at(i); |
| if (clause->is_default()) continue; |
| |
| if (switch_type == UNKNOWN_SWITCH) { |
| if (clause->label()->IsSmiLiteral()) { |
| switch_type = SMI_SWITCH; |
| } else if (clause->label()->IsStringLiteral()) { |
| switch_type = STRING_SWITCH; |
| } else { |
| return Bailout("SwitchStatement: non-literal switch label"); |
| } |
| } else if ((switch_type == STRING_SWITCH && |
| !clause->label()->IsStringLiteral()) || |
| (switch_type == SMI_SWITCH && |
| !clause->label()->IsSmiLiteral())) { |
| return Bailout("SwitchStatement: mixed label types are not supported"); |
| } |
| } |
| |
| HUnaryControlInstruction* string_check = NULL; |
| HBasicBlock* not_string_block = NULL; |
| |
| // Test switch's tag value if all clauses are string literals |
| if (switch_type == STRING_SWITCH) { |
| string_check = new(zone()) HIsStringAndBranch(tag_value); |
| first_test_block = graph()->CreateBasicBlock(); |
| not_string_block = graph()->CreateBasicBlock(); |
| |
| string_check->SetSuccessorAt(0, first_test_block); |
| string_check->SetSuccessorAt(1, not_string_block); |
| current_block()->Finish(string_check); |
| |
| set_current_block(first_test_block); |
| } |
| |
| // 2. Build all the tests, with dangling true branches |
| BailoutId default_id = BailoutId::None(); |
| for (int i = 0; i < clause_count; ++i) { |
| CaseClause* clause = clauses->at(i); |
| if (clause->is_default()) { |
| default_id = clause->EntryId(); |
| continue; |
| } |
| if (switch_type == SMI_SWITCH) { |
| clause->RecordTypeFeedback(oracle()); |
| } |
| |
| // Generate a compare and branch. |
| CHECK_ALIVE(VisitForValue(clause->label())); |
| HValue* label_value = Pop(); |
| |
| HBasicBlock* next_test_block = graph()->CreateBasicBlock(); |
| HBasicBlock* body_block = graph()->CreateBasicBlock(); |
| |
| HControlInstruction* compare; |
| |
| if (switch_type == SMI_SWITCH) { |
| if (!clause->IsSmiCompare()) { |
| // Finish with deoptimize and add uses of enviroment values to |
| // account for invisible uses. |
| current_block()->FinishExitWithDeoptimization(HDeoptimize::kUseAll); |
| set_current_block(NULL); |
| break; |
| } |
| |
| HCompareIDAndBranch* compare_ = |
| new(zone()) HCompareIDAndBranch(tag_value, |
| label_value, |
| Token::EQ_STRICT); |
| compare_->set_observed_input_representation( |
| Representation::Integer32(), Representation::Integer32()); |
| compare = compare_; |
| } else { |
| compare = new(zone()) HStringCompareAndBranch(context, tag_value, |
| label_value, |
| Token::EQ_STRICT); |
| } |
| |
| compare->SetSuccessorAt(0, body_block); |
| compare->SetSuccessorAt(1, next_test_block); |
| current_block()->Finish(compare); |
| |
| set_current_block(next_test_block); |
| } |
| |
| // Save the current block to use for the default or to join with the |
| // exit. This block is NULL if we deoptimized. |
| HBasicBlock* last_block = current_block(); |
| |
| if (not_string_block != NULL) { |
| BailoutId join_id = !default_id.IsNone() ? default_id : stmt->ExitId(); |
| last_block = CreateJoin(last_block, not_string_block, join_id); |
| } |
| |
| // 3. Loop over the clauses and the linked list of tests in lockstep, |
| // translating the clause bodies. |
| HBasicBlock* curr_test_block = first_test_block; |
| HBasicBlock* fall_through_block = NULL; |
| |
| BreakAndContinueInfo break_info(stmt); |
| { BreakAndContinueScope push(&break_info, this); |
| for (int i = 0; i < clause_count; ++i) { |
| CaseClause* clause = clauses->at(i); |
| |
| // Identify the block where normal (non-fall-through) control flow |
| // goes to. |
| HBasicBlock* normal_block = NULL; |
| if (clause->is_default()) { |
| if (last_block != NULL) { |
| normal_block = last_block; |
| last_block = NULL; // Cleared to indicate we've handled it. |
| } |
| } else if (!curr_test_block->end()->IsDeoptimize()) { |
| normal_block = curr_test_block->end()->FirstSuccessor(); |
| curr_test_block = curr_test_block->end()->SecondSuccessor(); |
| } |
| |
| // Identify a block to emit the body into. |
| if (normal_block == NULL) { |
| if (fall_through_block == NULL) { |
| // (a) Unreachable. |
| if (clause->is_default()) { |
| continue; // Might still be reachable clause bodies. |
| } else { |
| break; |
| } |
| } else { |
| // (b) Reachable only as fall through. |
| set_current_block(fall_through_block); |
| } |
| } else if (fall_through_block == NULL) { |
| // (c) Reachable only normally. |
| set_current_block(normal_block); |
| } else { |
| // (d) Reachable both ways. |
| HBasicBlock* join = CreateJoin(fall_through_block, |
| normal_block, |
| clause->EntryId()); |
| set_current_block(join); |
| } |
| |
| CHECK_BAILOUT(VisitStatements(clause->statements())); |
| fall_through_block = current_block(); |
| } |
| } |
| |
| // Create an up-to-3-way join. Use the break block if it exists since |
| // it's already a join block. |
| HBasicBlock* break_block = break_info.break_block(); |
| if (break_block == NULL) { |
| set_current_block(CreateJoin(fall_through_block, |
| last_block, |
| stmt->ExitId())); |
| } else { |
| if (fall_through_block != NULL) fall_through_block->Goto(break_block); |
| if (last_block != NULL) last_block->Goto(break_block); |
| break_block->SetJoinId(stmt->ExitId()); |
| set_current_block(break_block); |
| } |
| } |
| |
| |
| bool HOptimizedGraphBuilder::HasOsrEntryAt(IterationStatement* statement) { |
| return statement->OsrEntryId() == info()->osr_ast_id(); |
| } |
| |
| |
| bool HOptimizedGraphBuilder::PreProcessOsrEntry(IterationStatement* statement) { |
| if (!HasOsrEntryAt(statement)) return false; |
| |
| HBasicBlock* non_osr_entry = graph()->CreateBasicBlock(); |
| HBasicBlock* osr_entry = graph()->CreateBasicBlock(); |
| HValue* true_value = graph()->GetConstantTrue(); |
| HBranch* test = new(zone()) HBranch(true_value, non_osr_entry, osr_entry); |
| current_block()->Finish(test); |
| |
| HBasicBlock* loop_predecessor = graph()->CreateBasicBlock(); |
| non_osr_entry->Goto(loop_predecessor); |
| |
| set_current_block(osr_entry); |
| BailoutId osr_entry_id = statement->OsrEntryId(); |
| int first_expression_index = environment()->first_expression_index(); |
| int length = environment()->length(); |
| ZoneList<HUnknownOSRValue*>* osr_values = |
| new(zone()) ZoneList<HUnknownOSRValue*>(length, zone()); |
| |
| for (int i = 0; i < first_expression_index; ++i) { |
| HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue; |
| AddInstruction(osr_value); |
| environment()->Bind(i, osr_value); |
| osr_values->Add(osr_value, zone()); |
| } |
| |
| if (first_expression_index != length) { |
| environment()->Drop(length - first_expression_index); |
| for (int i = first_expression_index; i < length; ++i) { |
| HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue; |
| AddInstruction(osr_value); |
| environment()->Push(osr_value); |
| osr_values->Add(osr_value, zone()); |
| } |
| } |
| |
| graph()->set_osr_values(osr_values); |
| |
| AddSimulate(osr_entry_id); |
| AddInstruction(new(zone()) HOsrEntry(osr_entry_id)); |
| HContext* context = new(zone()) HContext; |
| AddInstruction(context); |
| environment()->BindContext(context); |
| current_block()->Goto(loop_predecessor); |
| loop_predecessor->SetJoinId(statement->EntryId()); |
| set_current_block(loop_predecessor); |
| return true; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt, |
| HBasicBlock* loop_entry, |
| BreakAndContinueInfo* break_info) { |
| BreakAndContinueScope push(break_info, this); |
| AddSimulate(stmt->StackCheckId()); |
| HValue* context = environment()->LookupContext(); |
| HStackCheck* stack_check = |
| new(zone()) HStackCheck(context, HStackCheck::kBackwardsBranch); |
| AddInstruction(stack_check); |
| ASSERT(loop_entry->IsLoopHeader()); |
| loop_entry->loop_information()->set_stack_check(stack_check); |
| CHECK_BAILOUT(Visit(stmt->body())); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| ASSERT(current_block() != NULL); |
| bool osr_entry = PreProcessOsrEntry(stmt); |
| HBasicBlock* loop_entry = CreateLoopHeaderBlock(); |
| current_block()->Goto(loop_entry); |
| set_current_block(loop_entry); |
| if (osr_entry) graph()->set_osr_loop_entry(loop_entry); |
| |
| BreakAndContinueInfo break_info(stmt); |
| CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info)); |
| HBasicBlock* body_exit = |
| JoinContinue(stmt, current_block(), break_info.continue_block()); |
| HBasicBlock* loop_successor = NULL; |
| if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) { |
| set_current_block(body_exit); |
| // The block for a true condition, the actual predecessor block of the |
| // back edge. |
| body_exit = graph()->CreateBasicBlock(); |
| loop_successor = graph()->CreateBasicBlock(); |
| CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor)); |
| if (body_exit->HasPredecessor()) { |
| body_exit->SetJoinId(stmt->BackEdgeId()); |
| } else { |
| body_exit = NULL; |
| } |
| if (loop_successor->HasPredecessor()) { |
| loop_successor->SetJoinId(stmt->ExitId()); |
| } else { |
| loop_successor = NULL; |
| } |
| } |
| HBasicBlock* loop_exit = CreateLoop(stmt, |
| loop_entry, |
| body_exit, |
| loop_successor, |
| break_info.break_block()); |
| set_current_block(loop_exit); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| ASSERT(current_block() != NULL); |
| bool osr_entry = PreProcessOsrEntry(stmt); |
| HBasicBlock* loop_entry = CreateLoopHeaderBlock(); |
| current_block()->Goto(loop_entry); |
| set_current_block(loop_entry); |
| if (osr_entry) graph()->set_osr_loop_entry(loop_entry); |
| |
| |
| // If the condition is constant true, do not generate a branch. |
| HBasicBlock* loop_successor = NULL; |
| if (!stmt->cond()->ToBooleanIsTrue()) { |
| HBasicBlock* body_entry = graph()->CreateBasicBlock(); |
| loop_successor = graph()->CreateBasicBlock(); |
| CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor)); |
| if (body_entry->HasPredecessor()) { |
| body_entry->SetJoinId(stmt->BodyId()); |
| set_current_block(body_entry); |
| } |
| if (loop_successor->HasPredecessor()) { |
| loop_successor->SetJoinId(stmt->ExitId()); |
| } else { |
| loop_successor = NULL; |
| } |
| } |
| |
| BreakAndContinueInfo break_info(stmt); |
| if (current_block() != NULL) { |
| CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info)); |
| } |
| HBasicBlock* body_exit = |
| JoinContinue(stmt, current_block(), break_info.continue_block()); |
| HBasicBlock* loop_exit = CreateLoop(stmt, |
| loop_entry, |
| body_exit, |
| loop_successor, |
| break_info.break_block()); |
| set_current_block(loop_exit); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| if (stmt->init() != NULL) { |
| CHECK_ALIVE(Visit(stmt->init())); |
| } |
| ASSERT(current_block() != NULL); |
| bool osr_entry = PreProcessOsrEntry(stmt); |
| HBasicBlock* loop_entry = CreateLoopHeaderBlock(); |
| current_block()->Goto(loop_entry); |
| set_current_block(loop_entry); |
| if (osr_entry) graph()->set_osr_loop_entry(loop_entry); |
| |
| HBasicBlock* loop_successor = NULL; |
| if (stmt->cond() != NULL) { |
| HBasicBlock* body_entry = graph()->CreateBasicBlock(); |
| loop_successor = graph()->CreateBasicBlock(); |
| CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor)); |
| if (body_entry->HasPredecessor()) { |
| body_entry->SetJoinId(stmt->BodyId()); |
| set_current_block(body_entry); |
| } |
| if (loop_successor->HasPredecessor()) { |
| loop_successor->SetJoinId(stmt->ExitId()); |
| } else { |
| loop_successor = NULL; |
| } |
| } |
| |
| BreakAndContinueInfo break_info(stmt); |
| if (current_block() != NULL) { |
| CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info)); |
| } |
| HBasicBlock* body_exit = |
| JoinContinue(stmt, current_block(), break_info.continue_block()); |
| |
| if (stmt->next() != NULL && body_exit != NULL) { |
| set_current_block(body_exit); |
| CHECK_BAILOUT(Visit(stmt->next())); |
| body_exit = current_block(); |
| } |
| |
| HBasicBlock* loop_exit = CreateLoop(stmt, |
| loop_entry, |
| body_exit, |
| loop_successor, |
| break_info.break_block()); |
| set_current_block(loop_exit); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| |
| if (!FLAG_optimize_for_in) { |
| return Bailout("ForInStatement optimization is disabled"); |
| } |
| |
| if (!oracle()->IsForInFastCase(stmt)) { |
| return Bailout("ForInStatement is not fast case"); |
| } |
| |
| if (!stmt->each()->IsVariableProxy() || |
| !stmt->each()->AsVariableProxy()->var()->IsStackLocal()) { |
| return Bailout("ForInStatement with non-local each variable"); |
| } |
| |
| Variable* each_var = stmt->each()->AsVariableProxy()->var(); |
| |
| CHECK_ALIVE(VisitForValue(stmt->enumerable())); |
| HValue* enumerable = Top(); // Leave enumerable at the top. |
| |
| HInstruction* map = AddInstruction(new(zone()) HForInPrepareMap( |
| environment()->LookupContext(), enumerable)); |
| AddSimulate(stmt->PrepareId()); |
| |
| HInstruction* array = AddInstruction( |
| new(zone()) HForInCacheArray( |
| enumerable, |
| map, |
| DescriptorArray::kEnumCacheBridgeCacheIndex)); |
| |
| HInstruction* enum_length = AddInstruction(new(zone()) HMapEnumLength(map)); |
| |
| HInstruction* start_index = AddInstruction(new(zone()) HConstant( |
| Handle<Object>(Smi::FromInt(0)), Representation::Integer32())); |
| |
| Push(map); |
| Push(array); |
| Push(enum_length); |
| Push(start_index); |
| |
| HInstruction* index_cache = AddInstruction( |
| new(zone()) HForInCacheArray( |
| enumerable, |
| map, |
| DescriptorArray::kEnumCacheBridgeIndicesCacheIndex)); |
| HForInCacheArray::cast(array)->set_index_cache( |
| HForInCacheArray::cast(index_cache)); |
| |
| bool osr_entry = PreProcessOsrEntry(stmt); |
| HBasicBlock* loop_entry = CreateLoopHeaderBlock(); |
| current_block()->Goto(loop_entry); |
| set_current_block(loop_entry); |
| if (osr_entry) graph()->set_osr_loop_entry(loop_entry); |
| |
| HValue* index = environment()->ExpressionStackAt(0); |
| HValue* limit = environment()->ExpressionStackAt(1); |
| |
| // Check that we still have more keys. |
| HCompareIDAndBranch* compare_index = |
| new(zone()) HCompareIDAndBranch(index, limit, Token::LT); |
| compare_index->set_observed_input_representation( |
| Representation::Integer32(), Representation::Integer32()); |
| |
| HBasicBlock* loop_body = graph()->CreateBasicBlock(); |
| HBasicBlock* loop_successor = graph()->CreateBasicBlock(); |
| |
| compare_index->SetSuccessorAt(0, loop_body); |
| compare_index->SetSuccessorAt(1, loop_successor); |
| current_block()->Finish(compare_index); |
| |
| set_current_block(loop_successor); |
| Drop(5); |
| |
| set_current_block(loop_body); |
| |
| HValue* key = AddInstruction( |
| new(zone()) HLoadKeyed( |
| environment()->ExpressionStackAt(2), // Enum cache. |
| environment()->ExpressionStackAt(0), // Iteration index. |
| environment()->ExpressionStackAt(0), |
| FAST_ELEMENTS)); |
| |
| // Check if the expected map still matches that of the enumerable. |
| // If not just deoptimize. |
| AddInstruction(new(zone()) HCheckMapValue( |
| environment()->ExpressionStackAt(4), |
| environment()->ExpressionStackAt(3))); |
| |
| Bind(each_var, key); |
| |
| BreakAndContinueInfo break_info(stmt, 5); |
| CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info)); |
| |
| HBasicBlock* body_exit = |
| JoinContinue(stmt, current_block(), break_info.continue_block()); |
| |
| if (body_exit != NULL) { |
| set_current_block(body_exit); |
| |
| HValue* current_index = Pop(); |
| HInstruction* new_index = new(zone()) HAdd(environment()->LookupContext(), |
| current_index, |
| graph()->GetConstant1()); |
| new_index->AssumeRepresentation(Representation::Integer32()); |
| PushAndAdd(new_index); |
| body_exit = current_block(); |
| } |
| |
| HBasicBlock* loop_exit = CreateLoop(stmt, |
| loop_entry, |
| body_exit, |
| loop_successor, |
| break_info.break_block()); |
| |
| set_current_block(loop_exit); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| return Bailout("TryCatchStatement"); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitTryFinallyStatement( |
| TryFinallyStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| return Bailout("TryFinallyStatement"); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| return Bailout("DebuggerStatement"); |
| } |
| |
| |
| static Handle<SharedFunctionInfo> SearchSharedFunctionInfo( |
| Code* unoptimized_code, FunctionLiteral* expr) { |
| int start_position = expr->start_position(); |
| RelocIterator it(unoptimized_code); |
| for (;!it.done(); it.next()) { |
| RelocInfo* rinfo = it.rinfo(); |
| if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue; |
| Object* obj = rinfo->target_object(); |
| if (obj->IsSharedFunctionInfo()) { |
| SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); |
| if (shared->start_position() == start_position) { |
| return Handle<SharedFunctionInfo>(shared); |
| } |
| } |
| } |
| |
| return Handle<SharedFunctionInfo>(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| Handle<SharedFunctionInfo> shared_info = |
| SearchSharedFunctionInfo(info()->shared_info()->code(), |
| expr); |
| if (shared_info.is_null()) { |
| shared_info = Compiler::BuildFunctionInfo(expr, info()->script()); |
| } |
| // We also have a stack overflow if the recursive compilation did. |
| if (HasStackOverflow()) return; |
| HValue* context = environment()->LookupContext(); |
| HFunctionLiteral* instr = |
| new(zone()) HFunctionLiteral(context, shared_info, expr->pretenure()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitSharedFunctionInfoLiteral( |
| SharedFunctionInfoLiteral* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| return Bailout("SharedFunctionInfoLiteral"); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| HBasicBlock* cond_true = graph()->CreateBasicBlock(); |
| HBasicBlock* cond_false = graph()->CreateBasicBlock(); |
| CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false)); |
| |
| // Visit the true and false subexpressions in the same AST context as the |
| // whole expression. |
| if (cond_true->HasPredecessor()) { |
| cond_true->SetJoinId(expr->ThenId()); |
| set_current_block(cond_true); |
| CHECK_BAILOUT(Visit(expr->then_expression())); |
| cond_true = current_block(); |
| } else { |
| cond_true = NULL; |
| } |
| |
| if (cond_false->HasPredecessor()) { |
| cond_false->SetJoinId(expr->ElseId()); |
| set_current_block(cond_false); |
| CHECK_BAILOUT(Visit(expr->else_expression())); |
| cond_false = current_block(); |
| } else { |
| cond_false = NULL; |
| } |
| |
| if (!ast_context()->IsTest()) { |
| HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id()); |
| set_current_block(join); |
| if (join != NULL && !ast_context()->IsEffect()) { |
| return ast_context()->ReturnValue(Pop()); |
| } |
| } |
| } |
| |
| |
| HOptimizedGraphBuilder::GlobalPropertyAccess |
| HOptimizedGraphBuilder::LookupGlobalProperty( |
| Variable* var, LookupResult* lookup, bool is_store) { |
| if (var->is_this() || !info()->has_global_object()) { |
| return kUseGeneric; |
| } |
| Handle<GlobalObject> global(info()->global_object()); |
| global->Lookup(*var->name(), lookup); |
| if (!lookup->IsNormal() || |
| (is_store && lookup->IsReadOnly()) || |
| lookup->holder() != *global) { |
| return kUseGeneric; |
| } |
| |
| return kUseCell; |
| } |
| |
| |
| HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) { |
| ASSERT(var->IsContextSlot()); |
| HValue* context = environment()->LookupContext(); |
| int length = info()->scope()->ContextChainLength(var->scope()); |
| while (length-- > 0) { |
| HInstruction* context_instruction = new(zone()) HOuterContext(context); |
| AddInstruction(context_instruction); |
| context = context_instruction; |
| } |
| return context; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| Variable* variable = expr->var(); |
| switch (variable->location()) { |
| case Variable::UNALLOCATED: { |
| if (IsLexicalVariableMode(variable->mode())) { |
| // TODO(rossberg): should this be an ASSERT? |
| return Bailout("reference to global lexical variable"); |
| } |
| // Handle known global constants like 'undefined' specially to avoid a |
| // load from a global cell for them. |
| Handle<Object> constant_value = |
| isolate()->factory()->GlobalConstantFor(variable->name()); |
| if (!constant_value.is_null()) { |
| HConstant* instr = |
| new(zone()) HConstant(constant_value, Representation::Tagged()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| LookupResult lookup(isolate()); |
| GlobalPropertyAccess type = |
| LookupGlobalProperty(variable, &lookup, false); |
| |
| if (type == kUseCell && |
| info()->global_object()->IsAccessCheckNeeded()) { |
| type = kUseGeneric; |
| } |
| |
| if (type == kUseCell) { |
| Handle<GlobalObject> global(info()->global_object()); |
| Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup)); |
| HLoadGlobalCell* instr = |
| new(zone()) HLoadGlobalCell(cell, lookup.GetPropertyDetails()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } else { |
| HValue* context = environment()->LookupContext(); |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(global_object); |
| HLoadGlobalGeneric* instr = |
| new(zone()) HLoadGlobalGeneric(context, |
| global_object, |
| variable->name(), |
| ast_context()->is_for_typeof()); |
| instr->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| } |
| |
| case Variable::PARAMETER: |
| case Variable::LOCAL: { |
| HValue* value = environment()->Lookup(variable); |
| if (value == graph()->GetConstantHole()) { |
| ASSERT(IsDeclaredVariableMode(variable->mode()) && |
| variable->mode() != VAR); |
| return Bailout("reference to uninitialized variable"); |
| } |
| return ast_context()->ReturnValue(value); |
| } |
| |
| case Variable::CONTEXT: { |
| HValue* context = BuildContextChainWalk(variable); |
| HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, variable); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| case Variable::LOOKUP: |
| return Bailout("reference to a variable which requires dynamic lookup"); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| HConstant* instr = |
| new(zone()) HConstant(expr->handle(), Representation::None()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| Handle<JSFunction> closure = function_state()->compilation_info()->closure(); |
| Handle<FixedArray> literals(closure->literals()); |
| HValue* context = environment()->LookupContext(); |
| |
| HRegExpLiteral* instr = new(zone()) HRegExpLiteral(context, |
| literals, |
| expr->pattern(), |
| expr->flags(), |
| expr->literal_index()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| static void LookupInPrototypes(Handle<Map> map, |
| Handle<String> name, |
| LookupResult* lookup) { |
| while (map->prototype()->IsJSObject()) { |
| Handle<JSObject> holder(JSObject::cast(map->prototype())); |
| if (!holder->HasFastProperties()) break; |
| map = Handle<Map>(holder->map()); |
| map->LookupDescriptor(*holder, *name, lookup); |
| if (lookup->IsFound()) return; |
| } |
| lookup->NotFound(); |
| } |
| |
| |
| // Tries to find a JavaScript accessor of the given name in the prototype chain |
| // starting at the given map. Return true iff there is one, including the |
| // corresponding AccessorPair plus its holder (which could be null when the |
| // accessor is found directly in the given map). |
| static bool LookupAccessorPair(Handle<Map> map, |
| Handle<String> name, |
| Handle<AccessorPair>* accessors, |
| Handle<JSObject>* holder) { |
| LookupResult lookup(map->GetIsolate()); |
| |
| // Check for a JavaScript accessor directly in the map. |
| map->LookupDescriptor(NULL, *name, &lookup); |
| if (lookup.IsPropertyCallbacks()) { |
| Handle<Object> callback(lookup.GetValueFromMap(*map)); |
| if (!callback->IsAccessorPair()) return false; |
| *accessors = Handle<AccessorPair>::cast(callback); |
| *holder = Handle<JSObject>(); |
| return true; |
| } |
| |
| // Everything else, e.g. a field, can't be an accessor call. |
| if (lookup.IsFound()) return false; |
| |
| // Check for a JavaScript accessor somewhere in the proto chain. |
| LookupInPrototypes(map, name, &lookup); |
| if (lookup.IsPropertyCallbacks()) { |
| Handle<Object> callback(lookup.GetValue()); |
| if (!callback->IsAccessorPair()) return false; |
| *accessors = Handle<AccessorPair>::cast(callback); |
| *holder = Handle<JSObject>(lookup.holder()); |
| return true; |
| } |
| |
| // We haven't found a JavaScript accessor anywhere. |
| return false; |
| } |
| |
| |
| static bool LookupGetter(Handle<Map> map, |
| Handle<String> name, |
| Handle<JSFunction>* getter, |
| Handle<JSObject>* holder) { |
| Handle<AccessorPair> accessors; |
| if (LookupAccessorPair(map, name, &accessors, holder) && |
| accessors->getter()->IsJSFunction()) { |
| *getter = Handle<JSFunction>(JSFunction::cast(accessors->getter())); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| static bool LookupSetter(Handle<Map> map, |
| Handle<String> name, |
| Handle<JSFunction>* setter, |
| Handle<JSObject>* holder) { |
| Handle<AccessorPair> accessors; |
| if (LookupAccessorPair(map, name, &accessors, holder) && |
| accessors->setter()->IsJSFunction()) { |
| *setter = Handle<JSFunction>(JSFunction::cast(accessors->setter())); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| // Determines whether the given array or object literal boilerplate satisfies |
| // all limits to be considered for fast deep-copying and computes the total |
| // size of all objects that are part of the graph. |
| static bool IsFastLiteral(Handle<JSObject> boilerplate, |
| int max_depth, |
| int* max_properties, |
| int* total_size) { |
| ASSERT(max_depth >= 0 && *max_properties >= 0); |
| if (max_depth == 0) return false; |
| |
| Handle<FixedArrayBase> elements(boilerplate->elements()); |
| if (elements->length() > 0 && |
| elements->map() != boilerplate->GetHeap()->fixed_cow_array_map()) { |
| if (boilerplate->HasFastDoubleElements()) { |
| *total_size += FixedDoubleArray::SizeFor(elements->length()); |
| } else if (boilerplate->HasFastObjectElements()) { |
| Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements); |
| int length = elements->length(); |
| for (int i = 0; i < length; i++) { |
| if ((*max_properties)-- == 0) return false; |
| Handle<Object> value(fast_elements->get(i)); |
| if (value->IsJSObject()) { |
| Handle<JSObject> value_object = Handle<JSObject>::cast(value); |
| if (!IsFastLiteral(value_object, |
| max_depth - 1, |
| max_properties, |
| total_size)) { |
| return false; |
| } |
| } |
| } |
| *total_size += FixedArray::SizeFor(length); |
| } else { |
| return false; |
| } |
| } |
| |
| Handle<FixedArray> properties(boilerplate->properties()); |
| if (properties->length() > 0) { |
| return false; |
| } else { |
| int nof = boilerplate->map()->inobject_properties(); |
| for (int i = 0; i < nof; i++) { |
| if ((*max_properties)-- == 0) return false; |
| Handle<Object> value(boilerplate->InObjectPropertyAt(i)); |
| if (value->IsJSObject()) { |
| Handle<JSObject> value_object = Handle<JSObject>::cast(value); |
| if (!IsFastLiteral(value_object, |
| max_depth - 1, |
| max_properties, |
| total_size)) { |
| return false; |
| } |
| } |
| } |
| } |
| |
| *total_size += boilerplate->map()->instance_size(); |
| return true; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| Handle<JSFunction> closure = function_state()->compilation_info()->closure(); |
| HValue* context = environment()->LookupContext(); |
| HInstruction* literal; |
| |
| // Check whether to use fast or slow deep-copying for boilerplate. |
| int total_size = 0; |
| int max_properties = HFastLiteral::kMaxLiteralProperties; |
| Handle<Object> boilerplate(closure->literals()->get(expr->literal_index())); |
| if (boilerplate->IsJSObject() && |
| IsFastLiteral(Handle<JSObject>::cast(boilerplate), |
| HFastLiteral::kMaxLiteralDepth, |
| &max_properties, |
| &total_size)) { |
| Handle<JSObject> boilerplate_object = Handle<JSObject>::cast(boilerplate); |
| literal = new(zone()) HFastLiteral(context, |
| boilerplate_object, |
| total_size, |
| expr->literal_index(), |
| expr->depth(), |
| DONT_TRACK_ALLOCATION_SITE); |
| } else { |
| literal = new(zone()) HObjectLiteral(context, |
| expr->constant_properties(), |
| expr->fast_elements(), |
| expr->literal_index(), |
| expr->depth(), |
| expr->has_function()); |
| } |
| |
| // The object is expected in the bailout environment during computation |
| // of the property values and is the value of the entire expression. |
| PushAndAdd(literal); |
| |
| expr->CalculateEmitStore(zone()); |
| |
| for (int i = 0; i < expr->properties()->length(); i++) { |
| ObjectLiteral::Property* property = expr->properties()->at(i); |
| if (property->IsCompileTimeValue()) continue; |
| |
| Literal* key = property->key(); |
| Expression* value = property->value(); |
| |
| switch (property->kind()) { |
| case ObjectLiteral::Property::MATERIALIZED_LITERAL: |
| ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); |
| // Fall through. |
| case ObjectLiteral::Property::COMPUTED: |
| if (key->handle()->IsSymbol()) { |
| if (property->emit_store()) { |
| property->RecordTypeFeedback(oracle()); |
| CHECK_ALIVE(VisitForValue(value)); |
| HValue* value = Pop(); |
| Handle<Map> map = property->GetReceiverType(); |
| Handle<String> name = property->key()->AsPropertyName(); |
| HInstruction* store; |
| if (map.is_null()) { |
| // If we don't know the monomorphic type, do a generic store. |
| CHECK_ALIVE(store = BuildStoreNamedGeneric(literal, name, value)); |
| } else { |
| #if DEBUG |
| Handle<JSFunction> setter; |
| Handle<JSObject> holder; |
| ASSERT(!LookupSetter(map, name, &setter, &holder)); |
| #endif |
| CHECK_ALIVE(store = BuildStoreNamedMonomorphic(literal, |
| name, |
| value, |
| map)); |
| } |
| AddInstruction(store); |
| if (store->HasObservableSideEffects()) { |
| AddSimulate(key->id(), REMOVABLE_SIMULATE); |
| } |
| } else { |
| CHECK_ALIVE(VisitForEffect(value)); |
| } |
| break; |
| } |
| // Fall through. |
| case ObjectLiteral::Property::PROTOTYPE: |
| case ObjectLiteral::Property::SETTER: |
| case ObjectLiteral::Property::GETTER: |
| return Bailout("Object literal with complex property"); |
| default: UNREACHABLE(); |
| } |
| } |
| |
| if (expr->has_function()) { |
| // Return the result of the transformation to fast properties |
| // instead of the original since this operation changes the map |
| // of the object. This makes sure that the original object won't |
| // be used by other optimized code before it is transformed |
| // (e.g. because of code motion). |
| HToFastProperties* result = new(zone()) HToFastProperties(Pop()); |
| AddInstruction(result); |
| return ast_context()->ReturnValue(result); |
| } else { |
| return ast_context()->ReturnValue(Pop()); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| ZoneList<Expression*>* subexprs = expr->values(); |
| int length = subexprs->length(); |
| HValue* context = environment()->LookupContext(); |
| HInstruction* literal; |
| |
| Handle<FixedArray> literals(environment()->closure()->literals()); |
| Handle<Object> raw_boilerplate(literals->get(expr->literal_index())); |
| |
| if (raw_boilerplate->IsUndefined()) { |
| raw_boilerplate = Runtime::CreateArrayLiteralBoilerplate( |
| isolate(), literals, expr->constant_elements()); |
| if (raw_boilerplate.is_null()) { |
| return Bailout("array boilerplate creation failed"); |
| } |
| literals->set(expr->literal_index(), *raw_boilerplate); |
| if (JSObject::cast(*raw_boilerplate)->elements()->map() == |
| isolate()->heap()->fixed_cow_array_map()) { |
| isolate()->counters()->cow_arrays_created_runtime()->Increment(); |
| } |
| } |
| |
| Handle<JSObject> boilerplate = Handle<JSObject>::cast(raw_boilerplate); |
| ElementsKind boilerplate_elements_kind = |
| Handle<JSObject>::cast(boilerplate)->GetElementsKind(); |
| |
| // TODO(mvstanton): This heuristic is only a temporary solution. In the |
| // end, we want to quit creating allocation site info after a certain number |
| // of GCs for a call site. |
| AllocationSiteMode mode = AllocationSiteInfo::GetMode( |
| boilerplate_elements_kind); |
| |
| // Check whether to use fast or slow deep-copying for boilerplate. |
| int total_size = 0; |
| int max_properties = HFastLiteral::kMaxLiteralProperties; |
| if (IsFastLiteral(boilerplate, |
| HFastLiteral::kMaxLiteralDepth, |
| &max_properties, |
| &total_size)) { |
| if (mode == TRACK_ALLOCATION_SITE) { |
| total_size += AllocationSiteInfo::kSize; |
| } |
| literal = new(zone()) HFastLiteral(context, |
| boilerplate, |
| total_size, |
| expr->literal_index(), |
| expr->depth(), |
| mode); |
| } else { |
| literal = new(zone()) HArrayLiteral(context, |
| boilerplate, |
| length, |
| expr->literal_index(), |
| expr->depth(), |
| mode); |
| } |
| |
| // The array is expected in the bailout environment during computation |
| // of the property values and is the value of the entire expression. |
| PushAndAdd(literal); |
| |
| HLoadElements* elements = NULL; |
| |
| for (int i = 0; i < length; i++) { |
| Expression* subexpr = subexprs->at(i); |
| // If the subexpression is a literal or a simple materialized literal it |
| // is already set in the cloned array. |
| if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; |
| |
| CHECK_ALIVE(VisitForValue(subexpr)); |
| HValue* value = Pop(); |
| if (!Smi::IsValid(i)) return Bailout("Non-smi key in array literal"); |
| |
| // Pass in literal as dummy depedency, since the receiver always has |
| // elements. |
| elements = new(zone()) HLoadElements(literal, literal); |
| AddInstruction(elements); |
| |
| HValue* key = AddInstruction( |
| new(zone()) HConstant(Handle<Object>(Smi::FromInt(i)), |
| Representation::Integer32())); |
| |
| switch (boilerplate_elements_kind) { |
| case FAST_SMI_ELEMENTS: |
| case FAST_HOLEY_SMI_ELEMENTS: |
| // Smi-only arrays need a smi check. |
| AddInstruction(new(zone()) HCheckSmi(value)); |
| // Fall through. |
| case FAST_ELEMENTS: |
| case FAST_HOLEY_ELEMENTS: |
| case FAST_DOUBLE_ELEMENTS: |
| case FAST_HOLEY_DOUBLE_ELEMENTS: |
| AddInstruction(new(zone()) HStoreKeyed( |
| elements, |
| key, |
| value, |
| boilerplate_elements_kind)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| AddSimulate(expr->GetIdForElement(i)); |
| } |
| return ast_context()->ReturnValue(Pop()); |
| } |
| |
| |
| // Sets the lookup result and returns true if the load/store can be inlined. |
| static bool ComputeLoadStoreField(Handle<Map> type, |
| Handle<String> name, |
| LookupResult* lookup, |
| bool is_store) { |
| if (type->has_named_interceptor()) { |
| lookup->InterceptorResult(NULL); |
| return false; |
| } |
| // If we directly find a field, the access can be inlined. |
| type->LookupDescriptor(NULL, *name, lookup); |
| if (lookup->IsField()) return true; |
| |
| // For a load, we are out of luck if there is no such field. |
| if (!is_store) return false; |
| |
| // 2nd chance: A store into a non-existent field can still be inlined if we |
| // have a matching transition and some room left in the object. |
| type->LookupTransition(NULL, *name, lookup); |
| return lookup->IsTransitionToField(*type) && |
| (type->unused_property_fields() > 0); |
| } |
| |
| |
| static int ComputeLoadStoreFieldIndex(Handle<Map> type, |
| Handle<String> name, |
| LookupResult* lookup) { |
| ASSERT(lookup->IsField() || lookup->IsTransitionToField(*type)); |
| if (lookup->IsField()) { |
| return lookup->GetLocalFieldIndexFromMap(*type); |
| } else { |
| Map* transition = lookup->GetTransitionMapFromMap(*type); |
| return transition->PropertyIndexFor(*name) - type->inobject_properties(); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::AddCheckMapsWithTransitions(HValue* object, |
| Handle<Map> map) { |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| AddInstruction(HCheckMaps::NewWithTransitions(object, map, zone())); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField( |
| HValue* object, |
| Handle<String> name, |
| HValue* value, |
| Handle<Map> map, |
| LookupResult* lookup) { |
| ASSERT(lookup->IsFound()); |
| // If the property does not exist yet, we have to check that it wasn't made |
| // readonly or turned into a setter by some meanwhile modifications on the |
| // prototype chain. |
| if (!lookup->IsProperty() && map->prototype()->IsJSReceiver()) { |
| Object* proto = map->prototype(); |
| // First check that the prototype chain isn't affected already. |
| LookupResult proto_result(isolate()); |
| proto->Lookup(*name, &proto_result); |
| if (proto_result.IsProperty()) { |
| // If the inherited property could induce readonly-ness, bail out. |
| if (proto_result.IsReadOnly() || !proto_result.IsCacheable()) { |
| Bailout("improper object on prototype chain for store"); |
| return NULL; |
| } |
| // We only need to check up to the preexisting property. |
| proto = proto_result.holder(); |
| } else { |
| // Otherwise, find the top prototype. |
| while (proto->GetPrototype()->IsJSObject()) proto = proto->GetPrototype(); |
| ASSERT(proto->GetPrototype()->IsNull()); |
| } |
| ASSERT(proto->IsJSObject()); |
| AddInstruction(new(zone()) HCheckPrototypeMaps( |
| Handle<JSObject>(JSObject::cast(map->prototype())), |
| Handle<JSObject>(JSObject::cast(proto)), |
| zone())); |
| } |
| |
| int index = ComputeLoadStoreFieldIndex(map, name, lookup); |
| bool is_in_object = index < 0; |
| int offset = index * kPointerSize; |
| if (index < 0) { |
| // Negative property indices are in-object properties, indexed |
| // from the end of the fixed part of the object. |
| offset += map->instance_size(); |
| } else { |
| offset += FixedArray::kHeaderSize; |
| } |
| HStoreNamedField* instr = |
| new(zone()) HStoreNamedField(object, name, value, is_in_object, offset); |
| if (lookup->IsTransitionToField(*map)) { |
| Handle<Map> transition(lookup->GetTransitionMapFromMap(*map)); |
| instr->set_transition(transition); |
| // TODO(fschneider): Record the new map type of the object in the IR to |
| // enable elimination of redundant checks after the transition store. |
| instr->SetGVNFlag(kChangesMaps); |
| } |
| return instr; |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildStoreNamedGeneric( |
| HValue* object, |
| Handle<String> name, |
| HValue* value) { |
| HValue* context = environment()->LookupContext(); |
| return new(zone()) HStoreNamedGeneric( |
| context, |
| object, |
| name, |
| value, |
| function_strict_mode_flag()); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildCallSetter( |
| HValue* object, |
| HValue* value, |
| Handle<Map> map, |
| Handle<JSFunction> setter, |
| Handle<JSObject> holder) { |
| AddCheckConstantFunction(holder, object, map); |
| AddInstruction(new(zone()) HPushArgument(object)); |
| AddInstruction(new(zone()) HPushArgument(value)); |
| return new(zone()) HCallConstantFunction(setter, 2); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildStoreNamedMonomorphic( |
| HValue* object, |
| Handle<String> name, |
| HValue* value, |
| Handle<Map> map) { |
| // Handle a store to a known field. |
| LookupResult lookup(isolate()); |
| if (ComputeLoadStoreField(map, name, &lookup, true)) { |
| AddCheckMapsWithTransitions(object, map); |
| return BuildStoreNamedField(object, name, value, map, &lookup); |
| } |
| |
| // No luck, do a generic store. |
| return BuildStoreNamedGeneric(object, name, value); |
| } |
| |
| |
| void HOptimizedGraphBuilder::HandlePolymorphicLoadNamedField( |
| Property* expr, |
| HValue* object, |
| SmallMapList* types, |
| Handle<String> name) { |
| int count = 0; |
| int previous_field_offset = 0; |
| bool previous_field_is_in_object = false; |
| bool is_monomorphic_field = true; |
| Handle<Map> map; |
| LookupResult lookup(isolate()); |
| for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) { |
| map = types->at(i); |
| if (ComputeLoadStoreField(map, name, &lookup, false)) { |
| int index = ComputeLoadStoreFieldIndex(map, name, &lookup); |
| bool is_in_object = index < 0; |
| int offset = index * kPointerSize; |
| if (index < 0) { |
| // Negative property indices are in-object properties, indexed |
| // from the end of the fixed part of the object. |
| offset += map->instance_size(); |
| } else { |
| offset += FixedArray::kHeaderSize; |
| } |
| if (count == 0) { |
| previous_field_offset = offset; |
| previous_field_is_in_object = is_in_object; |
| } else if (is_monomorphic_field) { |
| is_monomorphic_field = (offset == previous_field_offset) && |
| (is_in_object == previous_field_is_in_object); |
| } |
| ++count; |
| } |
| } |
| |
| // Use monomorphic load if property lookup results in the same field index |
| // for all maps. Requires special map check on the set of all handled maps. |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| HInstruction* instr; |
| if (count == types->length() && is_monomorphic_field) { |
| AddInstruction(new(zone()) HCheckMaps(object, types, zone())); |
| instr = BuildLoadNamedField(object, map, &lookup); |
| } else { |
| HValue* context = environment()->LookupContext(); |
| instr = new(zone()) HLoadNamedFieldPolymorphic(context, |
| object, |
| types, |
| name, |
| zone()); |
| } |
| |
| instr->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::HandlePolymorphicStoreNamedField( |
| Assignment* expr, |
| HValue* object, |
| HValue* value, |
| SmallMapList* types, |
| Handle<String> name) { |
| // TODO(ager): We should recognize when the prototype chains for different |
| // maps are identical. In that case we can avoid repeatedly generating the |
| // same prototype map checks. |
| int count = 0; |
| HBasicBlock* join = NULL; |
| for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) { |
| Handle<Map> map = types->at(i); |
| LookupResult lookup(isolate()); |
| if (ComputeLoadStoreField(map, name, &lookup, true)) { |
| if (count == 0) { |
| AddInstruction(new(zone()) HCheckNonSmi(object)); // Only needed once. |
| join = graph()->CreateBasicBlock(); |
| } |
| ++count; |
| HBasicBlock* if_true = graph()->CreateBasicBlock(); |
| HBasicBlock* if_false = graph()->CreateBasicBlock(); |
| HCompareMap* compare = |
| new(zone()) HCompareMap(object, map, if_true, if_false); |
| current_block()->Finish(compare); |
| |
| set_current_block(if_true); |
| HInstruction* instr; |
| CHECK_ALIVE(instr = |
| BuildStoreNamedField(object, name, value, map, &lookup)); |
| instr->set_position(expr->position()); |
| // Goto will add the HSimulate for the store. |
| AddInstruction(instr); |
| if (!ast_context()->IsEffect()) Push(value); |
| current_block()->Goto(join); |
| |
| set_current_block(if_false); |
| } |
| } |
| |
| // Finish up. Unconditionally deoptimize if we've handled all the maps we |
| // know about and do not want to handle ones we've never seen. Otherwise |
| // use a generic IC. |
| if (count == types->length() && FLAG_deoptimize_uncommon_cases) { |
| current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses); |
| } else { |
| HInstruction* instr = BuildStoreNamedGeneric(object, name, value); |
| instr->set_position(expr->position()); |
| AddInstruction(instr); |
| |
| if (join != NULL) { |
| if (!ast_context()->IsEffect()) Push(value); |
| current_block()->Goto(join); |
| } else { |
| // The HSimulate for the store should not see the stored value in |
| // effect contexts (it is not materialized at expr->id() in the |
| // unoptimized code). |
| if (instr->HasObservableSideEffects()) { |
| if (ast_context()->IsEffect()) { |
| AddSimulate(expr->id(), REMOVABLE_SIMULATE); |
| } else { |
| Push(value); |
| AddSimulate(expr->id(), REMOVABLE_SIMULATE); |
| Drop(1); |
| } |
| } |
| return ast_context()->ReturnValue(value); |
| } |
| } |
| |
| ASSERT(join != NULL); |
| join->SetJoinId(expr->id()); |
| set_current_block(join); |
| if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) { |
| Property* prop = expr->target()->AsProperty(); |
| ASSERT(prop != NULL); |
| expr->RecordTypeFeedback(oracle(), zone()); |
| CHECK_ALIVE(VisitForValue(prop->obj())); |
| |
| if (prop->key()->IsPropertyName()) { |
| // Named store. |
| CHECK_ALIVE(VisitForValue(expr->value())); |
| HValue* value = environment()->ExpressionStackAt(0); |
| HValue* object = environment()->ExpressionStackAt(1); |
| |
| Literal* key = prop->key()->AsLiteral(); |
| Handle<String> name = Handle<String>::cast(key->handle()); |
| ASSERT(!name.is_null()); |
| |
| HInstruction* instr = NULL; |
| SmallMapList* types = expr->GetReceiverTypes(); |
| bool monomorphic = expr->IsMonomorphic(); |
| Handle<Map> map; |
| if (monomorphic) { |
| map = types->first(); |
| if (map->is_dictionary_map()) monomorphic = false; |
| } |
| if (monomorphic) { |
| Handle<JSFunction> setter; |
| Handle<JSObject> holder; |
| if (LookupSetter(map, name, &setter, &holder)) { |
| AddCheckConstantFunction(holder, object, map); |
| if (FLAG_inline_accessors && TryInlineSetter(setter, expr, value)) { |
| return; |
| } |
| Drop(2); |
| AddInstruction(new(zone()) HPushArgument(object)); |
| AddInstruction(new(zone()) HPushArgument(value)); |
| instr = new(zone()) HCallConstantFunction(setter, 2); |
| } else { |
| Drop(2); |
| CHECK_ALIVE(instr = BuildStoreNamedMonomorphic(object, |
| name, |
| value, |
| map)); |
| } |
| |
| } else if (types != NULL && types->length() > 1) { |
| Drop(2); |
| return HandlePolymorphicStoreNamedField(expr, object, value, types, name); |
| } else { |
| Drop(2); |
| instr = BuildStoreNamedGeneric(object, name, value); |
| } |
| |
| Push(value); |
| instr->set_position(expr->position()); |
| AddInstruction(instr); |
| if (instr->HasObservableSideEffects()) { |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| } |
| return ast_context()->ReturnValue(Pop()); |
| |
| } else { |
| // Keyed store. |
| CHECK_ALIVE(VisitForValue(prop->key())); |
| CHECK_ALIVE(VisitForValue(expr->value())); |
| HValue* value = Pop(); |
| HValue* key = Pop(); |
| HValue* object = Pop(); |
| bool has_side_effects = false; |
| HandleKeyedElementAccess(object, key, value, expr, expr->AssignmentId(), |
| expr->position(), |
| true, // is_store |
| &has_side_effects); |
| Push(value); |
| ASSERT(has_side_effects); // Stores always have side effects. |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| return ast_context()->ReturnValue(Pop()); |
| } |
| } |
| |
| |
| // Because not every expression has a position and there is not common |
| // superclass of Assignment and CountOperation, we cannot just pass the |
| // owning expression instead of position and ast_id separately. |
| void HOptimizedGraphBuilder::HandleGlobalVariableAssignment( |
| Variable* var, |
| HValue* value, |
| int position, |
| BailoutId ast_id) { |
| LookupResult lookup(isolate()); |
| GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true); |
| if (type == kUseCell) { |
| Handle<GlobalObject> global(info()->global_object()); |
| Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup)); |
| HInstruction* instr = |
| new(zone()) HStoreGlobalCell(value, cell, lookup.GetPropertyDetails()); |
| instr->set_position(position); |
| AddInstruction(instr); |
| if (instr->HasObservableSideEffects()) { |
| AddSimulate(ast_id, REMOVABLE_SIMULATE); |
| } |
| } else { |
| HValue* context = environment()->LookupContext(); |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(global_object); |
| HStoreGlobalGeneric* instr = |
| new(zone()) HStoreGlobalGeneric(context, |
| global_object, |
| var->name(), |
| value, |
| function_strict_mode_flag()); |
| instr->set_position(position); |
| AddInstruction(instr); |
| ASSERT(instr->HasObservableSideEffects()); |
| AddSimulate(ast_id, REMOVABLE_SIMULATE); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) { |
| Expression* target = expr->target(); |
| VariableProxy* proxy = target->AsVariableProxy(); |
| Property* prop = target->AsProperty(); |
| ASSERT(proxy == NULL || prop == NULL); |
| |
| // We have a second position recorded in the FullCodeGenerator to have |
| // type feedback for the binary operation. |
| BinaryOperation* operation = expr->binary_operation(); |
| |
| if (proxy != NULL) { |
| Variable* var = proxy->var(); |
| if (var->mode() == LET) { |
| return Bailout("unsupported let compound assignment"); |
| } |
| |
| CHECK_ALIVE(VisitForValue(operation)); |
| |
| switch (var->location()) { |
| case Variable::UNALLOCATED: |
| HandleGlobalVariableAssignment(var, |
| Top(), |
| expr->position(), |
| expr->AssignmentId()); |
| break; |
| |
| case Variable::PARAMETER: |
| case Variable::LOCAL: |
| if (var->mode() == CONST) { |
| return Bailout("unsupported const compound assignment"); |
| } |
| Bind(var, Top()); |
| break; |
| |
| case Variable::CONTEXT: { |
| // Bail out if we try to mutate a parameter value in a function |
| // using the arguments object. We do not (yet) correctly handle the |
| // arguments property of the function. |
| if (info()->scope()->arguments() != NULL) { |
| // Parameters will be allocated to context slots. We have no |
| // direct way to detect that the variable is a parameter so we do |
| // a linear search of the parameter variables. |
| int count = info()->scope()->num_parameters(); |
| for (int i = 0; i < count; ++i) { |
| if (var == info()->scope()->parameter(i)) { |
| Bailout( |
| "assignment to parameter, function uses arguments object"); |
| } |
| } |
| } |
| |
| HStoreContextSlot::Mode mode; |
| |
| switch (var->mode()) { |
| case LET: |
| mode = HStoreContextSlot::kCheckDeoptimize; |
| break; |
| case CONST: |
| return ast_context()->ReturnValue(Pop()); |
| case CONST_HARMONY: |
| // This case is checked statically so no need to |
| // perform checks here |
| UNREACHABLE(); |
| default: |
| mode = HStoreContextSlot::kNoCheck; |
| } |
| |
| HValue* context = BuildContextChainWalk(var); |
| HStoreContextSlot* instr = |
| new(zone()) HStoreContextSlot(context, var->index(), mode, Top()); |
| AddInstruction(instr); |
| if (instr->HasObservableSideEffects()) { |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| } |
| break; |
| } |
| |
| case Variable::LOOKUP: |
| return Bailout("compound assignment to lookup slot"); |
| } |
| return ast_context()->ReturnValue(Pop()); |
| |
| } else if (prop != NULL) { |
| prop->RecordTypeFeedback(oracle(), zone()); |
| |
| if (prop->key()->IsPropertyName()) { |
| // Named property. |
| CHECK_ALIVE(VisitForValue(prop->obj())); |
| HValue* object = Top(); |
| |
| Handle<String> name = prop->key()->AsLiteral()->AsPropertyName(); |
| Handle<Map> map; |
| HInstruction* load; |
| bool monomorphic = prop->IsMonomorphic(); |
| if (monomorphic) { |
| map = prop->GetReceiverTypes()->first(); |
| // We can't generate code for a monomorphic dict mode load so |
| // just pretend it is not monomorphic. |
| if (map->is_dictionary_map()) monomorphic = false; |
| } |
| if (monomorphic) { |
| Handle<JSFunction> getter; |
| Handle<JSObject> holder; |
| if (LookupGetter(map, name, &getter, &holder)) { |
| load = BuildCallGetter(object, map, getter, holder); |
| } else { |
| load = BuildLoadNamedMonomorphic(object, name, prop, map); |
| } |
| } else { |
| load = BuildLoadNamedGeneric(object, name, prop); |
| } |
| PushAndAdd(load); |
| if (load->HasObservableSideEffects()) { |
| AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE); |
| } |
| |
| CHECK_ALIVE(VisitForValue(expr->value())); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| |
| HInstruction* instr = BuildBinaryOperation(operation, left, right); |
| PushAndAdd(instr); |
| if (instr->HasObservableSideEffects()) { |
| AddSimulate(operation->id(), REMOVABLE_SIMULATE); |
| } |
| |
| HInstruction* store; |
| if (!monomorphic || map->is_observed()) { |
| // If we don't know the monomorphic type, do a generic store. |
| CHECK_ALIVE(store = BuildStoreNamedGeneric(object, name, instr)); |
| } else { |
| Handle<JSFunction> setter; |
| Handle<JSObject> holder; |
| if (LookupSetter(map, name, &setter, &holder)) { |
| store = BuildCallSetter(object, instr, map, setter, holder); |
| } else { |
| CHECK_ALIVE(store = BuildStoreNamedMonomorphic(object, |
| name, |
| instr, |
| map)); |
| } |
| } |
| AddInstruction(store); |
| // Drop the simulated receiver and value. Return the value. |
| Drop(2); |
| Push(instr); |
| if (store->HasObservableSideEffects()) { |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| } |
| return ast_context()->ReturnValue(Pop()); |
| |
| } else { |
| // Keyed property. |
| CHECK_ALIVE(VisitForValue(prop->obj())); |
| CHECK_ALIVE(VisitForValue(prop->key())); |
| HValue* obj = environment()->ExpressionStackAt(1); |
| HValue* key = environment()->ExpressionStackAt(0); |
| |
| bool has_side_effects = false; |
| HValue* load = HandleKeyedElementAccess( |
| obj, key, NULL, prop, prop->LoadId(), RelocInfo::kNoPosition, |
| false, // is_store |
| &has_side_effects); |
| Push(load); |
| if (has_side_effects) AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE); |
| |
| |
| CHECK_ALIVE(VisitForValue(expr->value())); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| |
| HInstruction* instr = BuildBinaryOperation(operation, left, right); |
| PushAndAdd(instr); |
| if (instr->HasObservableSideEffects()) { |
| AddSimulate(operation->id(), REMOVABLE_SIMULATE); |
| } |
| |
| expr->RecordTypeFeedback(oracle(), zone()); |
| HandleKeyedElementAccess(obj, key, instr, expr, expr->AssignmentId(), |
| RelocInfo::kNoPosition, |
| true, // is_store |
| &has_side_effects); |
| |
| // Drop the simulated receiver, key, and value. Return the value. |
| Drop(3); |
| Push(instr); |
| ASSERT(has_side_effects); // Stores always have side effects. |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| return ast_context()->ReturnValue(Pop()); |
| } |
| |
| } else { |
| return Bailout("invalid lhs in compound assignment"); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| VariableProxy* proxy = expr->target()->AsVariableProxy(); |
| Property* prop = expr->target()->AsProperty(); |
| ASSERT(proxy == NULL || prop == NULL); |
| |
| if (expr->is_compound()) { |
| HandleCompoundAssignment(expr); |
| return; |
| } |
| |
| if (prop != NULL) { |
| HandlePropertyAssignment(expr); |
| } else if (proxy != NULL) { |
| Variable* var = proxy->var(); |
| |
| if (var->mode() == CONST) { |
| if (expr->op() != Token::INIT_CONST) { |
| CHECK_ALIVE(VisitForValue(expr->value())); |
| return ast_context()->ReturnValue(Pop()); |
| } |
| |
| if (var->IsStackAllocated()) { |
| // We insert a use of the old value to detect unsupported uses of const |
| // variables (e.g. initialization inside a loop). |
| HValue* old_value = environment()->Lookup(var); |
| AddInstruction(new(zone()) HUseConst(old_value)); |
| } |
| } else if (var->mode() == CONST_HARMONY) { |
| if (expr->op() != Token::INIT_CONST_HARMONY) { |
| return Bailout("non-initializer assignment to const"); |
| } |
| } |
| |
| if (proxy->IsArguments()) return Bailout("assignment to arguments"); |
| |
| // Handle the assignment. |
| switch (var->location()) { |
| case Variable::UNALLOCATED: |
| CHECK_ALIVE(VisitForValue(expr->value())); |
| HandleGlobalVariableAssignment(var, |
| Top(), |
| expr->position(), |
| expr->AssignmentId()); |
| return ast_context()->ReturnValue(Pop()); |
| |
| case Variable::PARAMETER: |
| case Variable::LOCAL: { |
| // Perform an initialization check for let declared variables |
| // or parameters. |
| if (var->mode() == LET && expr->op() == Token::ASSIGN) { |
| HValue* env_value = environment()->Lookup(var); |
| if (env_value == graph()->GetConstantHole()) { |
| return Bailout("assignment to let variable before initialization"); |
| } |
| } |
| // We do not allow the arguments object to occur in a context where it |
| // may escape, but assignments to stack-allocated locals are |
| // permitted. |
| CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED)); |
| HValue* value = Pop(); |
| Bind(var, value); |
| return ast_context()->ReturnValue(value); |
| } |
| |
| case Variable::CONTEXT: { |
| // Bail out if we try to mutate a parameter value in a function using |
| // the arguments object. We do not (yet) correctly handle the |
| // arguments property of the function. |
| if (info()->scope()->arguments() != NULL) { |
| // Parameters will rewrite to context slots. We have no direct way |
| // to detect that the variable is a parameter. |
| int count = info()->scope()->num_parameters(); |
| for (int i = 0; i < count; ++i) { |
| if (var == info()->scope()->parameter(i)) { |
| return Bailout("assignment to parameter in arguments object"); |
| } |
| } |
| } |
| |
| CHECK_ALIVE(VisitForValue(expr->value())); |
| HStoreContextSlot::Mode mode; |
| if (expr->op() == Token::ASSIGN) { |
| switch (var->mode()) { |
| case LET: |
| mode = HStoreContextSlot::kCheckDeoptimize; |
| break; |
| case CONST: |
| return ast_context()->ReturnValue(Pop()); |
| case CONST_HARMONY: |
| // This case is checked statically so no need to |
| // perform checks here |
| UNREACHABLE(); |
| default: |
| mode = HStoreContextSlot::kNoCheck; |
| } |
| } else if (expr->op() == Token::INIT_VAR || |
| expr->op() == Token::INIT_LET || |
| expr->op() == Token::INIT_CONST_HARMONY) { |
| mode = HStoreContextSlot::kNoCheck; |
| } else { |
| ASSERT(expr->op() == Token::INIT_CONST); |
| |
| mode = HStoreContextSlot::kCheckIgnoreAssignment; |
| } |
| |
| HValue* context = BuildContextChainWalk(var); |
| HStoreContextSlot* instr = new(zone()) HStoreContextSlot( |
| context, var->index(), mode, Top()); |
| AddInstruction(instr); |
| if (instr->HasObservableSideEffects()) { |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| } |
| return ast_context()->ReturnValue(Pop()); |
| } |
| |
| case Variable::LOOKUP: |
| return Bailout("assignment to LOOKUP variable"); |
| } |
| } else { |
| return Bailout("invalid left-hand side in assignment"); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitThrow(Throw* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| // We don't optimize functions with invalid left-hand sides in |
| // assignments, count operations, or for-in. Consequently throw can |
| // currently only occur in an effect context. |
| ASSERT(ast_context()->IsEffect()); |
| CHECK_ALIVE(VisitForValue(expr->exception())); |
| |
| HValue* context = environment()->LookupContext(); |
| HValue* value = environment()->Pop(); |
| HThrow* instr = new(zone()) HThrow(context, value); |
| instr->set_position(expr->position()); |
| AddInstruction(instr); |
| AddSimulate(expr->id()); |
| current_block()->FinishExit(new(zone()) HAbnormalExit); |
| set_current_block(NULL); |
| } |
| |
| |
| HLoadNamedField* HOptimizedGraphBuilder::BuildLoadNamedField( |
| HValue* object, |
| Handle<Map> map, |
| LookupResult* lookup) { |
| int index = lookup->GetLocalFieldIndexFromMap(*map); |
| if (index < 0) { |
| // Negative property indices are in-object properties, indexed |
| // from the end of the fixed part of the object. |
| int offset = (index * kPointerSize) + map->instance_size(); |
| return new(zone()) HLoadNamedField(object, true, offset); |
| } else { |
| // Non-negative property indices are in the properties array. |
| int offset = (index * kPointerSize) + FixedArray::kHeaderSize; |
| return new(zone()) HLoadNamedField(object, false, offset); |
| } |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildLoadNamedGeneric( |
| HValue* object, |
| Handle<String> name, |
| Property* expr) { |
| if (expr->IsUninitialized()) { |
| AddSoftDeoptimize(); |
| } |
| HValue* context = environment()->LookupContext(); |
| return new(zone()) HLoadNamedGeneric(context, object, name); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildCallGetter( |
| HValue* object, |
| Handle<Map> map, |
| Handle<JSFunction> getter, |
| Handle<JSObject> holder) { |
| AddCheckConstantFunction(holder, object, map); |
| AddInstruction(new(zone()) HPushArgument(object)); |
| return new(zone()) HCallConstantFunction(getter, 1); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildLoadNamedMonomorphic( |
| HValue* object, |
| Handle<String> name, |
| Property* expr, |
| Handle<Map> map) { |
| // Handle a load from a known field. |
| ASSERT(!map->is_dictionary_map()); |
| LookupResult lookup(isolate()); |
| map->LookupDescriptor(NULL, *name, &lookup); |
| if (lookup.IsField()) { |
| AddCheckMapsWithTransitions(object, map); |
| return BuildLoadNamedField(object, map, &lookup); |
| } |
| |
| // Handle a load of a constant known function. |
| if (lookup.IsConstantFunction()) { |
| AddCheckMapsWithTransitions(object, map); |
| Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*map)); |
| return new(zone()) HConstant(function, Representation::Tagged()); |
| } |
| |
| // Handle a load from a known field somewhere in the prototype chain. |
| LookupInPrototypes(map, name, &lookup); |
| if (lookup.IsField()) { |
| Handle<JSObject> prototype(JSObject::cast(map->prototype())); |
| Handle<JSObject> holder(lookup.holder()); |
| Handle<Map> holder_map(holder->map()); |
| AddCheckMapsWithTransitions(object, map); |
| HInstruction* holder_value = AddInstruction( |
| new(zone()) HCheckPrototypeMaps(prototype, holder, zone())); |
| return BuildLoadNamedField(holder_value, holder_map, &lookup); |
| } |
| |
| // Handle a load of a constant function somewhere in the prototype chain. |
| if (lookup.IsConstantFunction()) { |
| Handle<JSObject> prototype(JSObject::cast(map->prototype())); |
| Handle<JSObject> holder(lookup.holder()); |
| Handle<Map> holder_map(holder->map()); |
| AddCheckMapsWithTransitions(object, map); |
| AddInstruction(new(zone()) HCheckPrototypeMaps(prototype, holder, zone())); |
| Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*holder_map)); |
| return new(zone()) HConstant(function, Representation::Tagged()); |
| } |
| |
| // No luck, do a generic load. |
| return BuildLoadNamedGeneric(object, name, expr); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildLoadKeyedGeneric(HValue* object, |
| HValue* key) { |
| HValue* context = environment()->LookupContext(); |
| return new(zone()) HLoadKeyedGeneric(context, object, key); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess( |
| HValue* object, |
| HValue* key, |
| HValue* val, |
| HValue* dependency, |
| Handle<Map> map, |
| bool is_store) { |
| HCheckMaps* mapcheck = new(zone()) HCheckMaps(object, map, |
| zone(), dependency); |
| AddInstruction(mapcheck); |
| if (dependency) { |
| mapcheck->ClearGVNFlag(kDependsOnElementsKind); |
| } |
| return BuildUncheckedMonomorphicElementAccess( |
| object, key, val, |
| mapcheck, map->instance_type() == JS_ARRAY_TYPE, |
| map->elements_kind(), is_store); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad( |
| HValue* object, |
| HValue* key, |
| HValue* val, |
| SmallMapList* maps) { |
| // For polymorphic loads of similar elements kinds (i.e. all tagged or all |
| // double), always use the "worst case" code without a transition. This is |
| // much faster than transitioning the elements to the worst case, trading a |
| // HTransitionElements for a HCheckMaps, and avoiding mutation of the array. |
| bool has_double_maps = false; |
| bool has_smi_or_object_maps = false; |
| bool has_js_array_access = false; |
| bool has_non_js_array_access = false; |
| Handle<Map> most_general_consolidated_map; |
| for (int i = 0; i < maps->length(); ++i) { |
| Handle<Map> map = maps->at(i); |
| // Don't allow mixing of JSArrays with JSObjects. |
| if (map->instance_type() == JS_ARRAY_TYPE) { |
| if (has_non_js_array_access) return NULL; |
| has_js_array_access = true; |
| } else if (has_js_array_access) { |
| return NULL; |
| } else { |
| has_non_js_array_access = true; |
| } |
| // Don't allow mixed, incompatible elements kinds. |
| if (map->has_fast_double_elements()) { |
| if (has_smi_or_object_maps) return NULL; |
| has_double_maps = true; |
| } else if (map->has_fast_smi_or_object_elements()) { |
| if (has_double_maps) return NULL; |
| has_smi_or_object_maps = true; |
| } else { |
| return NULL; |
| } |
| // Remember the most general elements kind, the code for its load will |
| // properly handle all of the more specific cases. |
| if ((i == 0) || IsMoreGeneralElementsKindTransition( |
| most_general_consolidated_map->elements_kind(), |
| map->elements_kind())) { |
| most_general_consolidated_map = map; |
| } |
| } |
| if (!has_double_maps && !has_smi_or_object_maps) return NULL; |
| |
| HCheckMaps* check_maps = new(zone()) HCheckMaps(object, maps, zone()); |
| AddInstruction(check_maps); |
| HInstruction* instr = BuildUncheckedMonomorphicElementAccess( |
| object, key, val, check_maps, |
| most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE, |
| most_general_consolidated_map->elements_kind(), |
| false); |
| return instr; |
| } |
| |
| |
| HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess( |
| HValue* object, |
| HValue* key, |
| HValue* val, |
| Expression* prop, |
| BailoutId ast_id, |
| int position, |
| bool is_store, |
| bool* has_side_effects) { |
| *has_side_effects = false; |
| AddInstruction(new(zone()) HCheckNonSmi(object)); |
| SmallMapList* maps = prop->GetReceiverTypes(); |
| bool todo_external_array = false; |
| |
| if (!is_store) { |
| HInstruction* consolidated_load = |
| TryBuildConsolidatedElementLoad(object, key, val, maps); |
| if (consolidated_load != NULL) { |
| AddInstruction(consolidated_load); |
| *has_side_effects |= consolidated_load->HasObservableSideEffects(); |
| if (position != RelocInfo::kNoPosition) { |
| consolidated_load->set_position(position); |
| } |
| return consolidated_load; |
| } |
| } |
| |
| static const int kNumElementTypes = kElementsKindCount; |
| bool type_todo[kNumElementTypes]; |
| for (int i = 0; i < kNumElementTypes; ++i) { |
| type_todo[i] = false; |
| } |
| |
| // Elements_kind transition support. |
| MapHandleList transition_target(maps->length()); |
| // Collect possible transition targets. |
| MapHandleList possible_transitioned_maps(maps->length()); |
| for (int i = 0; i < maps->length(); ++i) { |
| Handle<Map> map = maps->at(i); |
| ElementsKind elements_kind = map->elements_kind(); |
| if (IsFastElementsKind(elements_kind) && |
| elements_kind != GetInitialFastElementsKind()) { |
| possible_transitioned_maps.Add(map); |
| } |
| } |
| // Get transition target for each map (NULL == no transition). |
| for (int i = 0; i < maps->length(); ++i) { |
| Handle<Map> map = maps->at(i); |
| Handle<Map> transitioned_map = |
| map->FindTransitionedMap(&possible_transitioned_maps); |
| transition_target.Add(transitioned_map); |
| } |
| |
| int num_untransitionable_maps = 0; |
| Handle<Map> untransitionable_map; |
| HTransitionElementsKind* transition = NULL; |
| for (int i = 0; i < maps->length(); ++i) { |
| Handle<Map> map = maps->at(i); |
| ASSERT(map->IsMap()); |
| if (!transition_target.at(i).is_null()) { |
| ASSERT(Map::IsValidElementsTransition( |
| map->elements_kind(), |
| transition_target.at(i)->elements_kind())); |
| HValue* context = environment()->LookupContext(); |
| transition = new(zone()) HTransitionElementsKind( |
| context, object, map, transition_target.at(i)); |
| AddInstruction(transition); |
| } else { |
| type_todo[map->elements_kind()] = true; |
| if (IsExternalArrayElementsKind(map->elements_kind())) { |
| todo_external_array = true; |
| } |
| num_untransitionable_maps++; |
| untransitionable_map = map; |
| } |
| } |
| |
| // If only one map is left after transitioning, handle this case |
| // monomorphically. |
| if (num_untransitionable_maps == 1) { |
| HInstruction* instr = NULL; |
| if (untransitionable_map->has_slow_elements_kind()) { |
| instr = AddInstruction(is_store ? BuildStoreKeyedGeneric(object, key, val) |
| : BuildLoadKeyedGeneric(object, key)); |
| } else { |
| instr = AddInstruction(BuildMonomorphicElementAccess( |
| object, key, val, transition, untransitionable_map, is_store)); |
| } |
| *has_side_effects |= instr->HasObservableSideEffects(); |
| if (position != RelocInfo::kNoPosition) instr->set_position(position); |
| return is_store ? NULL : instr; |
| } |
| |
| HInstruction* checkspec = |
| AddInstruction(HCheckInstanceType::NewIsSpecObject(object, zone())); |
| HBasicBlock* join = graph()->CreateBasicBlock(); |
| |
| HInstruction* elements_kind_instr = |
| AddInstruction(new(zone()) HElementsKind(object)); |
| HInstruction* elements = |
| AddInstruction(new(zone()) HLoadElements(object, checkspec)); |
| HLoadExternalArrayPointer* external_elements = NULL; |
| HInstruction* checked_key = NULL; |
| |
| // Generated code assumes that FAST_* and DICTIONARY_ELEMENTS ElementsKinds |
| // are handled before external arrays. |
| STATIC_ASSERT(FAST_SMI_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); |
| STATIC_ASSERT(FAST_HOLEY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); |
| STATIC_ASSERT(FAST_DOUBLE_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); |
| STATIC_ASSERT(DICTIONARY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND); |
| |
| for (ElementsKind elements_kind = FIRST_ELEMENTS_KIND; |
| elements_kind <= LAST_ELEMENTS_KIND; |
| elements_kind = ElementsKind(elements_kind + 1)) { |
| // After having handled FAST_* and DICTIONARY_ELEMENTS, we need to add some |
| // code that's executed for all external array cases. |
| STATIC_ASSERT(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND == |
| LAST_ELEMENTS_KIND); |
| if (elements_kind == FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND |
| && todo_external_array) { |
| HInstruction* length = |
| AddInstruction(new(zone()) HFixedArrayBaseLength(elements)); |
| checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| external_elements = new(zone()) HLoadExternalArrayPointer(elements); |
| AddInstruction(external_elements); |
| } |
| if (type_todo[elements_kind]) { |
| HBasicBlock* if_true = graph()->CreateBasicBlock(); |
| HBasicBlock* if_false = graph()->CreateBasicBlock(); |
| HCompareConstantEqAndBranch* elements_kind_branch = |
| new(zone()) HCompareConstantEqAndBranch( |
| elements_kind_instr, elements_kind, Token::EQ_STRICT); |
| elements_kind_branch->SetSuccessorAt(0, if_true); |
| elements_kind_branch->SetSuccessorAt(1, if_false); |
| current_block()->Finish(elements_kind_branch); |
| |
| set_current_block(if_true); |
| HInstruction* access; |
| if (IsFastElementsKind(elements_kind)) { |
| if (is_store && !IsFastDoubleElementsKind(elements_kind)) { |
| AddInstruction(new(zone()) HCheckMaps( |
| elements, isolate()->factory()->fixed_array_map(), |
| zone(), elements_kind_branch)); |
| } |
| // TODO(jkummerow): The need for these two blocks could be avoided |
| // in one of two ways: |
| // (1) Introduce ElementsKinds for JSArrays that are distinct from |
| // those for fast objects. |
| // (2) Put the common instructions into a third "join" block. This |
| // requires additional AST IDs that we can deopt to from inside |
| // that join block. They must be added to the Property class (when |
| // it's a keyed property) and registered in the full codegen. |
| HBasicBlock* if_jsarray = graph()->CreateBasicBlock(); |
| HBasicBlock* if_fastobject = graph()->CreateBasicBlock(); |
| HHasInstanceTypeAndBranch* typecheck = |
| new(zone()) HHasInstanceTypeAndBranch(object, JS_ARRAY_TYPE); |
| typecheck->SetSuccessorAt(0, if_jsarray); |
| typecheck->SetSuccessorAt(1, if_fastobject); |
| current_block()->Finish(typecheck); |
| |
| set_current_block(if_jsarray); |
| HInstruction* length; |
| length = AddInstruction(new(zone()) HJSArrayLength(object, typecheck, |
| HType::Smi())); |
| checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length, |
| ALLOW_SMI_KEY)); |
| access = AddInstruction(BuildFastElementAccess( |
| elements, checked_key, val, elements_kind_branch, |
| elements_kind, is_store)); |
| if (!is_store) { |
| Push(access); |
| } |
| |
| *has_side_effects |= access->HasObservableSideEffects(); |
| if (position != -1) { |
| access->set_position(position); |
| } |
| if_jsarray->Goto(join); |
| |
| set_current_block(if_fastobject); |
| length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements)); |
| checked_key = AddInstruction(new(zone()) HBoundsCheck(key, length, |
| ALLOW_SMI_KEY)); |
| access = AddInstruction(BuildFastElementAccess( |
| elements, checked_key, val, elements_kind_branch, |
| elements_kind, is_store)); |
| } else if (elements_kind == DICTIONARY_ELEMENTS) { |
| if (is_store) { |
| access = AddInstruction(BuildStoreKeyedGeneric(object, key, val)); |
| } else { |
| access = AddInstruction(BuildLoadKeyedGeneric(object, key)); |
| } |
| } else { // External array elements. |
| access = AddInstruction(BuildExternalArrayElementAccess( |
| external_elements, checked_key, val, |
| elements_kind_branch, elements_kind, is_store)); |
| } |
| *has_side_effects |= access->HasObservableSideEffects(); |
| if (position != RelocInfo::kNoPosition) access->set_position(position); |
| if (!is_store) { |
| Push(access); |
| } |
| current_block()->Goto(join); |
| set_current_block(if_false); |
| } |
| } |
| |
| // Deopt if none of the cases matched. |
| current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses); |
| join->SetJoinId(ast_id); |
| set_current_block(join); |
| return is_store ? NULL : Pop(); |
| } |
| |
| |
| HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess( |
| HValue* obj, |
| HValue* key, |
| HValue* val, |
| Expression* expr, |
| BailoutId ast_id, |
| int position, |
| bool is_store, |
| bool* has_side_effects) { |
| ASSERT(!expr->IsPropertyName()); |
| HInstruction* instr = NULL; |
| if (expr->IsMonomorphic()) { |
| Handle<Map> map = expr->GetMonomorphicReceiverType(); |
| if (map->has_slow_elements_kind()) { |
| instr = is_store ? BuildStoreKeyedGeneric(obj, key, val) |
| : BuildLoadKeyedGeneric(obj, key); |
| } else { |
| AddInstruction(new(zone()) HCheckNonSmi(obj)); |
| instr = BuildMonomorphicElementAccess(obj, key, val, NULL, map, is_store); |
| } |
| } else if (expr->GetReceiverTypes() != NULL && |
| !expr->GetReceiverTypes()->is_empty()) { |
| return HandlePolymorphicElementAccess( |
| obj, key, val, expr, ast_id, position, is_store, has_side_effects); |
| } else { |
| if (is_store) { |
| instr = BuildStoreKeyedGeneric(obj, key, val); |
| } else { |
| instr = BuildLoadKeyedGeneric(obj, key); |
| } |
| } |
| if (position != RelocInfo::kNoPosition) instr->set_position(position); |
| AddInstruction(instr); |
| *has_side_effects = instr->HasObservableSideEffects(); |
| return instr; |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildStoreKeyedGeneric( |
| HValue* object, |
| HValue* key, |
| HValue* value) { |
| HValue* context = environment()->LookupContext(); |
| return new(zone()) HStoreKeyedGeneric( |
| context, |
| object, |
| key, |
| value, |
| function_strict_mode_flag()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() { |
| // Outermost function already has arguments on the stack. |
| if (function_state()->outer() == NULL) return; |
| |
| if (function_state()->arguments_pushed()) return; |
| |
| // Push arguments when entering inlined function. |
| HEnterInlined* entry = function_state()->entry(); |
| entry->set_arguments_pushed(); |
| |
| ZoneList<HValue*>* arguments_values = entry->arguments_values(); |
| |
| HInstruction* insert_after = entry; |
| for (int i = 0; i < arguments_values->length(); i++) { |
| HValue* argument = arguments_values->at(i); |
| HInstruction* push_argument = new(zone()) HPushArgument(argument); |
| push_argument->InsertAfter(insert_after); |
| insert_after = push_argument; |
| } |
| |
| HArgumentsElements* arguments_elements = |
| new(zone()) HArgumentsElements(true); |
| arguments_elements->ClearFlag(HValue::kUseGVN); |
| arguments_elements->InsertAfter(insert_after); |
| function_state()->set_arguments_elements(arguments_elements); |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) { |
| VariableProxy* proxy = expr->obj()->AsVariableProxy(); |
| if (proxy == NULL) return false; |
| if (!proxy->var()->IsStackAllocated()) return false; |
| if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) { |
| return false; |
| } |
| |
| HInstruction* result = NULL; |
| if (expr->key()->IsPropertyName()) { |
| Handle<String> name = expr->key()->AsLiteral()->AsPropertyName(); |
| if (!name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("length"))) return false; |
| |
| if (function_state()->outer() == NULL) { |
| HInstruction* elements = AddInstruction( |
| new(zone()) HArgumentsElements(false)); |
| result = new(zone()) HArgumentsLength(elements); |
| } else { |
| // Number of arguments without receiver. |
| int argument_count = environment()-> |
| arguments_environment()->parameter_count() - 1; |
| result = new(zone()) HConstant( |
| Handle<Object>(Smi::FromInt(argument_count)), |
| Representation::Integer32()); |
| } |
| } else { |
| Push(graph()->GetArgumentsObject()); |
| VisitForValue(expr->key()); |
| if (HasStackOverflow() || current_block() == NULL) return true; |
| HValue* key = Pop(); |
| Drop(1); // Arguments object. |
| if (function_state()->outer() == NULL) { |
| HInstruction* elements = AddInstruction( |
| new(zone()) HArgumentsElements(false)); |
| HInstruction* length = AddInstruction( |
| new(zone()) HArgumentsLength(elements)); |
| HInstruction* checked_key = |
| AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| result = new(zone()) HAccessArgumentsAt(elements, length, checked_key); |
| } else { |
| EnsureArgumentsArePushedForAccess(); |
| |
| // Number of arguments without receiver. |
| HInstruction* elements = function_state()->arguments_elements(); |
| int argument_count = environment()-> |
| arguments_environment()->parameter_count() - 1; |
| HInstruction* length = AddInstruction(new(zone()) HConstant( |
| Handle<Object>(Smi::FromInt(argument_count)), |
| Representation::Integer32())); |
| HInstruction* checked_key = |
| AddInstruction(new(zone()) HBoundsCheck(key, length)); |
| result = new(zone()) HAccessArgumentsAt(elements, length, checked_key); |
| } |
| } |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitProperty(Property* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| expr->RecordTypeFeedback(oracle(), zone()); |
| |
| if (TryArgumentsAccess(expr)) return; |
| |
| CHECK_ALIVE(VisitForValue(expr->obj())); |
| |
| HInstruction* instr = NULL; |
| if (expr->AsProperty()->IsArrayLength()) { |
| HValue* array = Pop(); |
| AddInstruction(new(zone()) HCheckNonSmi(array)); |
| HInstruction* mapcheck = |
| AddInstruction(HCheckInstanceType::NewIsJSArray(array, zone())); |
| instr = new(zone()) HJSArrayLength(array, mapcheck); |
| } else if (expr->IsStringLength()) { |
| HValue* string = Pop(); |
| AddInstruction(new(zone()) HCheckNonSmi(string)); |
| AddInstruction(HCheckInstanceType::NewIsString(string, zone())); |
| instr = new(zone()) HStringLength(string); |
| } else if (expr->IsStringAccess()) { |
| CHECK_ALIVE(VisitForValue(expr->key())); |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HStringCharCodeAt* char_code = |
| BuildStringCharCodeAt(context, string, index); |
| AddInstruction(char_code); |
| instr = new(zone()) HStringCharFromCode(context, char_code); |
| |
| } else if (expr->IsFunctionPrototype()) { |
| HValue* function = Pop(); |
| AddInstruction(new(zone()) HCheckNonSmi(function)); |
| instr = new(zone()) HLoadFunctionPrototype(function); |
| |
| } else if (expr->key()->IsPropertyName()) { |
| Handle<String> name = expr->key()->AsLiteral()->AsPropertyName(); |
| SmallMapList* types = expr->GetReceiverTypes(); |
| HValue* object = Top(); |
| |
| Handle<Map> map; |
| bool monomorphic = false; |
| if (expr->IsMonomorphic()) { |
| map = types->first(); |
| monomorphic = !map->is_dictionary_map(); |
| } else if (object->HasMonomorphicJSObjectType()) { |
| map = object->GetMonomorphicJSObjectMap(); |
| monomorphic = !map->is_dictionary_map(); |
| } |
| if (monomorphic) { |
| Handle<JSFunction> getter; |
| Handle<JSObject> holder; |
| if (LookupGetter(map, name, &getter, &holder)) { |
| AddCheckConstantFunction(holder, Top(), map); |
| if (FLAG_inline_accessors && TryInlineGetter(getter, expr)) return; |
| AddInstruction(new(zone()) HPushArgument(Pop())); |
| instr = new(zone()) HCallConstantFunction(getter, 1); |
| } else { |
| instr = BuildLoadNamedMonomorphic(Pop(), name, expr, map); |
| } |
| } else if (types != NULL && types->length() > 1) { |
| return HandlePolymorphicLoadNamedField(expr, Pop(), types, name); |
| } else { |
| instr = BuildLoadNamedGeneric(Pop(), name, expr); |
| } |
| |
| } else { |
| CHECK_ALIVE(VisitForValue(expr->key())); |
| |
| HValue* key = Pop(); |
| HValue* obj = Pop(); |
| |
| bool has_side_effects = false; |
| HValue* load = HandleKeyedElementAccess( |
| obj, key, NULL, expr, expr->id(), expr->position(), |
| false, // is_store |
| &has_side_effects); |
| if (has_side_effects) { |
| if (ast_context()->IsEffect()) { |
| AddSimulate(expr->id(), REMOVABLE_SIMULATE); |
| } else { |
| Push(load); |
| AddSimulate(expr->id(), REMOVABLE_SIMULATE); |
| Drop(1); |
| } |
| } |
| return ast_context()->ReturnValue(load); |
| } |
| instr->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder, |
| Handle<Map> receiver_map) { |
| if (!holder.is_null()) { |
| Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype())); |
| AddInstruction( |
| new(zone()) HCheckPrototypeMaps(prototype, holder, zone())); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::AddCheckConstantFunction( |
| Handle<JSObject> holder, |
| HValue* receiver, |
| Handle<Map> receiver_map) { |
| // Constant functions have the nice property that the map will change if they |
| // are overwritten. Therefore it is enough to check the map of the holder and |
| // its prototypes. |
| AddCheckMapsWithTransitions(receiver, receiver_map); |
| AddCheckPrototypeMaps(holder, receiver_map); |
| } |
| |
| |
| class FunctionSorter { |
| public: |
| FunctionSorter() : index_(0), ticks_(0), ast_length_(0), src_length_(0) { } |
| FunctionSorter(int index, int ticks, int ast_length, int src_length) |
| : index_(index), |
| ticks_(ticks), |
| ast_length_(ast_length), |
| src_length_(src_length) { } |
| |
| int index() const { return index_; } |
| int ticks() const { return ticks_; } |
| int ast_length() const { return ast_length_; } |
| int src_length() const { return src_length_; } |
| |
| private: |
| int index_; |
| int ticks_; |
| int ast_length_; |
| int src_length_; |
| }; |
| |
| |
| static int CompareHotness(void const* a, void const* b) { |
| FunctionSorter const* function1 = reinterpret_cast<FunctionSorter const*>(a); |
| FunctionSorter const* function2 = reinterpret_cast<FunctionSorter const*>(b); |
| int diff = function1->ticks() - function2->ticks(); |
| if (diff != 0) return -diff; |
| diff = function1->ast_length() - function2->ast_length(); |
| if (diff != 0) return diff; |
| return function1->src_length() - function2->src_length(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::HandlePolymorphicCallNamed( |
| Call* expr, |
| HValue* receiver, |
| SmallMapList* types, |
| Handle<String> name) { |
| // TODO(ager): We should recognize when the prototype chains for different |
| // maps are identical. In that case we can avoid repeatedly generating the |
| // same prototype map checks. |
| int argument_count = expr->arguments()->length() + 1; // Includes receiver. |
| HBasicBlock* join = NULL; |
| FunctionSorter order[kMaxCallPolymorphism]; |
| int ordered_functions = 0; |
| for (int i = 0; |
| i < types->length() && ordered_functions < kMaxCallPolymorphism; |
| ++i) { |
| Handle<Map> map = types->at(i); |
| if (expr->ComputeTarget(map, name)) { |
| order[ordered_functions++] = |
| FunctionSorter(i, |
| expr->target()->shared()->profiler_ticks(), |
| InliningAstSize(expr->target()), |
| expr->target()->shared()->SourceSize()); |
| } |
| } |
| |
| qsort(reinterpret_cast<void*>(&order[0]), |
| ordered_functions, |
| sizeof(order[0]), |
| &CompareHotness); |
| |
| for (int fn = 0; fn < ordered_functions; ++fn) { |
| int i = order[fn].index(); |
| Handle<Map> map = types->at(i); |
| if (fn == 0) { |
| // Only needed once. |
| AddInstruction(new(zone()) HCheckNonSmi(receiver)); |
| join = graph()->CreateBasicBlock(); |
| } |
| HBasicBlock* if_true = graph()->CreateBasicBlock(); |
| HBasicBlock* if_false = graph()->CreateBasicBlock(); |
| HCompareMap* compare = |
| new(zone()) HCompareMap(receiver, map, if_true, if_false); |
| current_block()->Finish(compare); |
| |
| set_current_block(if_true); |
| expr->ComputeTarget(map, name); |
| AddCheckPrototypeMaps(expr->holder(), map); |
| if (FLAG_trace_inlining && FLAG_polymorphic_inlining) { |
| Handle<JSFunction> caller = info()->closure(); |
| SmartArrayPointer<char> caller_name = |
| caller->shared()->DebugName()->ToCString(); |
| PrintF("Trying to inline the polymorphic call to %s from %s\n", |
| *name->ToCString(), |
| *caller_name); |
| } |
| if (FLAG_polymorphic_inlining && TryInlineCall(expr)) { |
| // Trying to inline will signal that we should bailout from the |
| // entire compilation by setting stack overflow on the visitor. |
| if (HasStackOverflow()) return; |
| } else { |
| HCallConstantFunction* call = |
| new(zone()) HCallConstantFunction(expr->target(), argument_count); |
| call->set_position(expr->position()); |
| PreProcessCall(call); |
| AddInstruction(call); |
| if (!ast_context()->IsEffect()) Push(call); |
| } |
| |
| if (current_block() != NULL) current_block()->Goto(join); |
| set_current_block(if_false); |
| } |
| |
| // Finish up. Unconditionally deoptimize if we've handled all the maps we |
| // know about and do not want to handle ones we've never seen. Otherwise |
| // use a generic IC. |
| if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) { |
| current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses); |
| } else { |
| HValue* context = environment()->LookupContext(); |
| HCallNamed* call = new(zone()) HCallNamed(context, name, argument_count); |
| call->set_position(expr->position()); |
| PreProcessCall(call); |
| |
| if (join != NULL) { |
| AddInstruction(call); |
| if (!ast_context()->IsEffect()) Push(call); |
| current_block()->Goto(join); |
| } else { |
| return ast_context()->ReturnInstruction(call, expr->id()); |
| } |
| } |
| |
| // We assume that control flow is always live after an expression. So |
| // even without predecessors to the join block, we set it as the exit |
| // block and continue by adding instructions there. |
| ASSERT(join != NULL); |
| if (join->HasPredecessor()) { |
| set_current_block(join); |
| join->SetJoinId(expr->id()); |
| if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop()); |
| } else { |
| set_current_block(NULL); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target, |
| Handle<JSFunction> caller, |
| const char* reason) { |
| if (FLAG_trace_inlining) { |
| SmartArrayPointer<char> target_name = |
| target->shared()->DebugName()->ToCString(); |
| SmartArrayPointer<char> caller_name = |
| caller->shared()->DebugName()->ToCString(); |
| if (reason == NULL) { |
| PrintF("Inlined %s called from %s.\n", *target_name, *caller_name); |
| } else { |
| PrintF("Did not inline %s called from %s (%s).\n", |
| *target_name, *caller_name, reason); |
| } |
| } |
| } |
| |
| |
| static const int kNotInlinable = 1000000000; |
| |
| |
| int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) { |
| if (!FLAG_use_inlining) return kNotInlinable; |
| |
| // Precondition: call is monomorphic and we have found a target with the |
| // appropriate arity. |
| Handle<JSFunction> caller = info()->closure(); |
| Handle<SharedFunctionInfo> target_shared(target->shared()); |
| |
| // Do a quick check on source code length to avoid parsing large |
| // inlining candidates. |
| if (target_shared->SourceSize() > |
| Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) { |
| TraceInline(target, caller, "target text too big"); |
| return kNotInlinable; |
| } |
| |
| // Target must be inlineable. |
| if (!target->IsInlineable()) { |
| TraceInline(target, caller, "target not inlineable"); |
| return kNotInlinable; |
| } |
| if (target_shared->dont_inline() || target_shared->dont_optimize()) { |
| TraceInline(target, caller, "target contains unsupported syntax [early]"); |
| return kNotInlinable; |
| } |
| |
| int nodes_added = target_shared->ast_node_count(); |
| return nodes_added; |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryInline(CallKind call_kind, |
| Handle<JSFunction> target, |
| int arguments_count, |
| HValue* implicit_return_value, |
| BailoutId ast_id, |
| BailoutId return_id, |
| InliningKind inlining_kind) { |
| int nodes_added = InliningAstSize(target); |
| if (nodes_added == kNotInlinable) return false; |
| |
| Handle<JSFunction> caller = info()->closure(); |
| |
| if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) { |
| TraceInline(target, caller, "target AST is too large [early]"); |
| return false; |
| } |
| |
| #if !defined(V8_TARGET_ARCH_IA32) |
| // Target must be able to use caller's context. |
| CompilationInfo* outer_info = info(); |
| if (target->context() != outer_info->closure()->context() || |
| outer_info->scope()->contains_with() || |
| outer_info->scope()->num_heap_slots() > 0) { |
| TraceInline(target, caller, "target requires context change"); |
| return false; |
| } |
| #endif |
| |
| |
| // Don't inline deeper than kMaxInliningLevels calls. |
| HEnvironment* env = environment(); |
| int current_level = 1; |
| while (env->outer() != NULL) { |
| if (current_level == Compiler::kMaxInliningLevels) { |
| TraceInline(target, caller, "inline depth limit reached"); |
| return false; |
| } |
| if (env->outer()->frame_type() == JS_FUNCTION) { |
| current_level++; |
| } |
| env = env->outer(); |
| } |
| |
| // Don't inline recursive functions. |
| for (FunctionState* state = function_state(); |
| state != NULL; |
| state = state->outer()) { |
| if (*state->compilation_info()->closure() == *target) { |
| TraceInline(target, caller, "target is recursive"); |
| return false; |
| } |
| } |
| |
| // We don't want to add more than a certain number of nodes from inlining. |
| if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative, |
| kUnlimitedMaxInlinedNodesCumulative)) { |
| TraceInline(target, caller, "cumulative AST node limit reached"); |
| return false; |
| } |
| |
| // Parse and allocate variables. |
| CompilationInfo target_info(target, zone()); |
| Handle<SharedFunctionInfo> target_shared(target->shared()); |
| if (!ParserApi::Parse(&target_info, kNoParsingFlags) || |
| !Scope::Analyze(&target_info)) { |
| if (target_info.isolate()->has_pending_exception()) { |
| // Parse or scope error, never optimize this function. |
| SetStackOverflow(); |
| target_shared->DisableOptimization("parse/scope error"); |
| } |
| TraceInline(target, caller, "parse failure"); |
| return false; |
| } |
| |
| if (target_info.scope()->num_heap_slots() > 0) { |
| TraceInline(target, caller, "target has context-allocated variables"); |
| return false; |
| } |
| FunctionLiteral* function = target_info.function(); |
| |
| // The following conditions must be checked again after re-parsing, because |
| // earlier the information might not have been complete due to lazy parsing. |
| nodes_added = function->ast_node_count(); |
| if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) { |
| TraceInline(target, caller, "target AST is too large [late]"); |
| return false; |
| } |
| AstProperties::Flags* flags(function->flags()); |
| if (flags->Contains(kDontInline) || flags->Contains(kDontOptimize)) { |
| TraceInline(target, caller, "target contains unsupported syntax [late]"); |
| return false; |
| } |
| |
| // If the function uses the arguments object check that inlining of functions |
| // with arguments object is enabled and the arguments-variable is |
| // stack allocated. |
| if (function->scope()->arguments() != NULL) { |
| if (!FLAG_inline_arguments) { |
| TraceInline(target, caller, "target uses arguments object"); |
| return false; |
| } |
| |
| if (!function->scope()->arguments()->IsStackAllocated()) { |
| TraceInline(target, |
| caller, |
| "target uses non-stackallocated arguments object"); |
| return false; |
| } |
| } |
| |
| // All declarations must be inlineable. |
| ZoneList<Declaration*>* decls = target_info.scope()->declarations(); |
| int decl_count = decls->length(); |
| for (int i = 0; i < decl_count; ++i) { |
| if (!decls->at(i)->IsInlineable()) { |
| TraceInline(target, caller, "target has non-trivial declaration"); |
| return false; |
| } |
| } |
| |
| // Generate the deoptimization data for the unoptimized version of |
| // the target function if we don't already have it. |
| if (!target_shared->has_deoptimization_support()) { |
| // Note that we compile here using the same AST that we will use for |
| // generating the optimized inline code. |
| target_info.EnableDeoptimizationSupport(); |
| if (!FullCodeGenerator::MakeCode(&target_info)) { |
| TraceInline(target, caller, "could not generate deoptimization info"); |
| return false; |
| } |
| if (target_shared->scope_info() == ScopeInfo::Empty()) { |
| // The scope info might not have been set if a lazily compiled |
| // function is inlined before being called for the first time. |
| Handle<ScopeInfo> target_scope_info = |
| ScopeInfo::Create(target_info.scope(), zone()); |
| target_shared->set_scope_info(*target_scope_info); |
| } |
| target_shared->EnableDeoptimizationSupport(*target_info.code()); |
| Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG, |
| &target_info, |
| target_shared); |
| } |
| |
| // ---------------------------------------------------------------- |
| // After this point, we've made a decision to inline this function (so |
| // TryInline should always return true). |
| |
| // Save the pending call context and type feedback oracle. Set up new ones |
| // for the inlined function. |
| ASSERT(target_shared->has_deoptimization_support()); |
| Handle<Code> unoptimized_code(target_shared->code()); |
| TypeFeedbackOracle target_oracle( |
| unoptimized_code, |
| Handle<Context>(target->context()->native_context()), |
| isolate(), |
| zone()); |
| // The function state is new-allocated because we need to delete it |
| // in two different places. |
| FunctionState* target_state = new FunctionState( |
| this, &target_info, &target_oracle, inlining_kind); |
| |
| HConstant* undefined = graph()->GetConstantUndefined(); |
| bool undefined_receiver = HEnvironment::UseUndefinedReceiver( |
| target, function, call_kind, inlining_kind); |
| HEnvironment* inner_env = |
| environment()->CopyForInlining(target, |
| arguments_count, |
| function, |
| undefined, |
| function_state()->inlining_kind(), |
| undefined_receiver); |
| #ifdef V8_TARGET_ARCH_IA32 |
| // IA32 only, overwrite the caller's context in the deoptimization |
| // environment with the correct one. |
| // |
| // TODO(kmillikin): implement the same inlining on other platforms so we |
| // can remove the unsightly ifdefs in this function. |
| HConstant* context = |
| new(zone()) HConstant(Handle<Context>(target->context()), |
| Representation::Tagged()); |
| AddInstruction(context); |
| inner_env->BindContext(context); |
| #endif |
| |
| AddSimulate(return_id); |
| current_block()->UpdateEnvironment(inner_env); |
| |
| ZoneList<HValue*>* arguments_values = NULL; |
| |
| // If the function uses arguments copy current arguments values |
| // to use them for materialization. |
| if (function->scope()->arguments() != NULL) { |
| HEnvironment* arguments_env = inner_env->arguments_environment(); |
| int arguments_count = arguments_env->parameter_count(); |
| arguments_values = new(zone()) ZoneList<HValue*>(arguments_count, zone()); |
| for (int i = 0; i < arguments_count; i++) { |
| arguments_values->Add(arguments_env->Lookup(i), zone()); |
| } |
| } |
| |
| HEnterInlined* enter_inlined = |
| new(zone()) HEnterInlined(target, |
| arguments_count, |
| function, |
| function_state()->inlining_kind(), |
| function->scope()->arguments(), |
| arguments_values, |
| undefined_receiver); |
| function_state()->set_entry(enter_inlined); |
| AddInstruction(enter_inlined); |
| |
| // If the function uses arguments object create and bind one. |
| if (function->scope()->arguments() != NULL) { |
| ASSERT(function->scope()->arguments()->IsStackAllocated()); |
| inner_env->Bind(function->scope()->arguments(), |
| graph()->GetArgumentsObject()); |
| } |
| |
| |
| VisitDeclarations(target_info.scope()->declarations()); |
| VisitStatements(function->body()); |
| if (HasStackOverflow()) { |
| // Bail out if the inline function did, as we cannot residualize a call |
| // instead. |
| TraceInline(target, caller, "inline graph construction failed"); |
| target_shared->DisableOptimization("inlining bailed out"); |
| inline_bailout_ = true; |
| delete target_state; |
| return true; |
| } |
| |
| // Update inlined nodes count. |
| inlined_count_ += nodes_added; |
| |
| ASSERT(unoptimized_code->kind() == Code::FUNCTION); |
| Handle<TypeFeedbackInfo> type_info( |
| TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info())); |
| graph()->update_type_change_checksum(type_info->own_type_change_checksum()); |
| |
| TraceInline(target, caller, NULL); |
| |
| if (current_block() != NULL) { |
| FunctionState* state = function_state(); |
| if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) { |
| // Falling off the end of an inlined construct call. In a test context the |
| // return value will always evaluate to true, in a value context the |
| // return value is the newly allocated receiver. |
| if (call_context()->IsTest()) { |
| current_block()->Goto(inlined_test_context()->if_true(), state); |
| } else if (call_context()->IsEffect()) { |
| current_block()->Goto(function_return(), state); |
| } else { |
| ASSERT(call_context()->IsValue()); |
| current_block()->AddLeaveInlined(implicit_return_value, state); |
| } |
| } else if (state->inlining_kind() == SETTER_CALL_RETURN) { |
| // Falling off the end of an inlined setter call. The returned value is |
| // never used, the value of an assignment is always the value of the RHS |
| // of the assignment. |
| if (call_context()->IsTest()) { |
| inlined_test_context()->ReturnValue(implicit_return_value); |
| } else if (call_context()->IsEffect()) { |
| current_block()->Goto(function_return(), state); |
| } else { |
| ASSERT(call_context()->IsValue()); |
| current_block()->AddLeaveInlined(implicit_return_value, state); |
| } |
| } else { |
| // Falling off the end of a normal inlined function. This basically means |
| // returning undefined. |
| if (call_context()->IsTest()) { |
| current_block()->Goto(inlined_test_context()->if_false(), state); |
| } else if (call_context()->IsEffect()) { |
| current_block()->Goto(function_return(), state); |
| } else { |
| ASSERT(call_context()->IsValue()); |
| current_block()->AddLeaveInlined(undefined, state); |
| } |
| } |
| } |
| |
| // Fix up the function exits. |
| if (inlined_test_context() != NULL) { |
| HBasicBlock* if_true = inlined_test_context()->if_true(); |
| HBasicBlock* if_false = inlined_test_context()->if_false(); |
| |
| // Pop the return test context from the expression context stack. |
| ASSERT(ast_context() == inlined_test_context()); |
| ClearInlinedTestContext(); |
| delete target_state; |
| |
| // Forward to the real test context. |
| if (if_true->HasPredecessor()) { |
| if_true->SetJoinId(ast_id); |
| HBasicBlock* true_target = TestContext::cast(ast_context())->if_true(); |
| if_true->Goto(true_target, function_state()); |
| } |
| if (if_false->HasPredecessor()) { |
| if_false->SetJoinId(ast_id); |
| HBasicBlock* false_target = TestContext::cast(ast_context())->if_false(); |
| if_false->Goto(false_target, function_state()); |
| } |
| set_current_block(NULL); |
| return true; |
| |
| } else if (function_return()->HasPredecessor()) { |
| function_return()->SetJoinId(ast_id); |
| set_current_block(function_return()); |
| } else { |
| set_current_block(NULL); |
| } |
| delete target_state; |
| return true; |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryInlineCall(Call* expr, bool drop_extra) { |
| // The function call we are inlining is a method call if the call |
| // is a property call. |
| CallKind call_kind = (expr->expression()->AsProperty() == NULL) |
| ? CALL_AS_FUNCTION |
| : CALL_AS_METHOD; |
| |
| return TryInline(call_kind, |
| expr->target(), |
| expr->arguments()->length(), |
| NULL, |
| expr->id(), |
| expr->ReturnId(), |
| drop_extra ? DROP_EXTRA_ON_RETURN : NORMAL_RETURN); |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr, |
| HValue* implicit_return_value) { |
| return TryInline(CALL_AS_FUNCTION, |
| expr->target(), |
| expr->arguments()->length(), |
| implicit_return_value, |
| expr->id(), |
| expr->ReturnId(), |
| CONSTRUCT_CALL_RETURN); |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter, |
| Property* prop) { |
| return TryInline(CALL_AS_METHOD, |
| getter, |
| 0, |
| NULL, |
| prop->id(), |
| prop->LoadId(), |
| GETTER_CALL_RETURN); |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter, |
| Assignment* assignment, |
| HValue* implicit_return_value) { |
| return TryInline(CALL_AS_METHOD, |
| setter, |
| 1, |
| implicit_return_value, |
| assignment->id(), |
| assignment->AssignmentId(), |
| SETTER_CALL_RETURN); |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr, |
| bool drop_extra) { |
| if (!expr->target()->shared()->HasBuiltinFunctionId()) return false; |
| BuiltinFunctionId id = expr->target()->shared()->builtin_function_id(); |
| switch (id) { |
| case kMathExp: |
| if (!FLAG_fast_math) break; |
| // Fall through if FLAG_fast_math. |
| case kMathRound: |
| case kMathAbs: |
| case kMathSqrt: |
| case kMathLog: |
| case kMathSin: |
| case kMathCos: |
| case kMathTan: |
| if (expr->arguments()->length() == 1) { |
| HValue* argument = Pop(); |
| HValue* context = environment()->LookupContext(); |
| Drop(1); // Receiver. |
| HUnaryMathOperation* op = |
| new(zone()) HUnaryMathOperation(context, argument, id); |
| op->set_position(expr->position()); |
| if (drop_extra) Drop(1); // Optionally drop the function. |
| ast_context()->ReturnInstruction(op, expr->id()); |
| return true; |
| } |
| break; |
| default: |
| // Not supported for inlining yet. |
| break; |
| } |
| return false; |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall( |
| Call* expr, |
| HValue* receiver, |
| Handle<Map> receiver_map, |
| CheckType check_type) { |
| ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null()); |
| // Try to inline calls like Math.* as operations in the calling function. |
| if (!expr->target()->shared()->HasBuiltinFunctionId()) return false; |
| BuiltinFunctionId id = expr->target()->shared()->builtin_function_id(); |
| int argument_count = expr->arguments()->length() + 1; // Plus receiver. |
| switch (id) { |
| case kStringCharCodeAt: |
| case kStringCharAt: |
| if (argument_count == 2 && check_type == STRING_CHECK) { |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HValue* context = environment()->LookupContext(); |
| ASSERT(!expr->holder().is_null()); |
| AddInstruction(new(zone()) HCheckPrototypeMaps( |
| oracle()->GetPrototypeForPrimitiveCheck(STRING_CHECK), |
| expr->holder(), |
| zone())); |
| HStringCharCodeAt* char_code = |
| BuildStringCharCodeAt(context, string, index); |
| if (id == kStringCharCodeAt) { |
| ast_context()->ReturnInstruction(char_code, expr->id()); |
| return true; |
| } |
| AddInstruction(char_code); |
| HStringCharFromCode* result = |
| new(zone()) HStringCharFromCode(context, char_code); |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| break; |
| case kMathExp: |
| if (!FLAG_fast_math) break; |
| // Fall through if FLAG_fast_math. |
| case kMathRound: |
| case kMathFloor: |
| case kMathAbs: |
| case kMathSqrt: |
| case kMathLog: |
| case kMathSin: |
| case kMathCos: |
| case kMathTan: |
| if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) { |
| AddCheckConstantFunction(expr->holder(), receiver, receiver_map); |
| HValue* argument = Pop(); |
| HValue* context = environment()->LookupContext(); |
| Drop(1); // Receiver. |
| HUnaryMathOperation* op = |
| new(zone()) HUnaryMathOperation(context, argument, id); |
| op->set_position(expr->position()); |
| ast_context()->ReturnInstruction(op, expr->id()); |
| return true; |
| } |
| break; |
| case kMathPow: |
| if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) { |
| AddCheckConstantFunction(expr->holder(), receiver, receiver_map); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| Pop(); // Pop receiver. |
| HValue* context = environment()->LookupContext(); |
| HInstruction* result = NULL; |
| // Use sqrt() if exponent is 0.5 or -0.5. |
| if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) { |
| double exponent = HConstant::cast(right)->DoubleValue(); |
| if (exponent == 0.5) { |
| result = |
| new(zone()) HUnaryMathOperation(context, left, kMathPowHalf); |
| } else if (exponent == -0.5) { |
| HConstant* double_one = |
| new(zone()) HConstant(Handle<Object>(Smi::FromInt(1)), |
| Representation::Double()); |
| AddInstruction(double_one); |
| HUnaryMathOperation* square_root = |
| new(zone()) HUnaryMathOperation(context, left, kMathPowHalf); |
| AddInstruction(square_root); |
| // MathPowHalf doesn't have side effects so there's no need for |
| // an environment simulation here. |
| ASSERT(!square_root->HasObservableSideEffects()); |
| result = new(zone()) HDiv(context, double_one, square_root); |
| } else if (exponent == 2.0) { |
| result = new(zone()) HMul(context, left, left); |
| } |
| } else if (right->IsConstant() && |
| HConstant::cast(right)->HasInteger32Value() && |
| HConstant::cast(right)->Integer32Value() == 2) { |
| result = new(zone()) HMul(context, left, left); |
| } |
| |
| if (result == NULL) { |
| result = new(zone()) HPower(left, right); |
| } |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| break; |
| case kMathRandom: |
| if (argument_count == 1 && check_type == RECEIVER_MAP_CHECK) { |
| AddCheckConstantFunction(expr->holder(), receiver, receiver_map); |
| Drop(1); // Receiver. |
| HValue* context = environment()->LookupContext(); |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(global_object); |
| HRandom* result = new(zone()) HRandom(global_object); |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| break; |
| case kMathMax: |
| case kMathMin: |
| if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) { |
| AddCheckConstantFunction(expr->holder(), receiver, receiver_map); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| Drop(1); // Receiver. |
| HValue* context = environment()->LookupContext(); |
| HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin |
| : HMathMinMax::kMathMax; |
| HMathMinMax* result = new(zone()) HMathMinMax(context, left, right, op); |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } |
| break; |
| default: |
| // Not yet supported for inlining. |
| break; |
| } |
| return false; |
| } |
| |
| |
| bool HOptimizedGraphBuilder::TryCallApply(Call* expr) { |
| Expression* callee = expr->expression(); |
| Property* prop = callee->AsProperty(); |
| ASSERT(prop != NULL); |
| |
| if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) { |
| return false; |
| } |
| Handle<Map> function_map = expr->GetReceiverTypes()->first(); |
| if (function_map->instance_type() != JS_FUNCTION_TYPE || |
| !expr->target()->shared()->HasBuiltinFunctionId() || |
| expr->target()->shared()->builtin_function_id() != kFunctionApply) { |
| return false; |
| } |
| |
| if (info()->scope()->arguments() == NULL) return false; |
| |
| ZoneList<Expression*>* args = expr->arguments(); |
| if (args->length() != 2) return false; |
| |
| VariableProxy* arg_two = args->at(1)->AsVariableProxy(); |
| if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false; |
| HValue* arg_two_value = environment()->Lookup(arg_two->var()); |
| if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false; |
| |
| // Found pattern f.apply(receiver, arguments). |
| VisitForValue(prop->obj()); |
| if (HasStackOverflow() || current_block() == NULL) return true; |
| HValue* function = Top(); |
| AddCheckConstantFunction(expr->holder(), function, function_map); |
| Drop(1); |
| |
| VisitForValue(args->at(0)); |
| if (HasStackOverflow() || current_block() == NULL) return true; |
| HValue* receiver = Pop(); |
| |
| if (function_state()->outer() == NULL) { |
| HInstruction* elements = AddInstruction( |
| new(zone()) HArgumentsElements(false)); |
| HInstruction* length = |
| AddInstruction(new(zone()) HArgumentsLength(elements)); |
| HValue* wrapped_receiver = |
| AddInstruction(new(zone()) HWrapReceiver(receiver, function)); |
| HInstruction* result = |
| new(zone()) HApplyArguments(function, |
| wrapped_receiver, |
| length, |
| elements); |
| result->set_position(expr->position()); |
| ast_context()->ReturnInstruction(result, expr->id()); |
| return true; |
| } else { |
| // We are inside inlined function and we know exactly what is inside |
| // arguments object. But we need to be able to materialize at deopt. |
| // TODO(mstarzinger): For now we just ensure arguments are pushed |
| // right after HEnterInlined, but we could be smarter about this. |
| EnsureArgumentsArePushedForAccess(); |
| HValue* context = environment()->LookupContext(); |
| |
| HValue* wrapped_receiver = |
| AddInstruction(new(zone()) HWrapReceiver(receiver, function)); |
| PushAndAdd(new(zone()) HPushArgument(wrapped_receiver)); |
| |
| HEnvironment* arguments_env = environment()->arguments_environment(); |
| |
| int parameter_count = arguments_env->parameter_count(); |
| for (int i = 1; i < arguments_env->parameter_count(); i++) { |
| PushAndAdd(new(zone()) HPushArgument(arguments_env->Lookup(i))); |
| } |
| |
| HInvokeFunction* call = new(zone()) HInvokeFunction( |
| context, |
| function, |
| parameter_count); |
| Drop(parameter_count); |
| call->set_position(expr->position()); |
| ast_context()->ReturnInstruction(call, expr->id()); |
| return true; |
| } |
| } |
| |
| |
| // Checks if all maps in |types| are from the same family, i.e., are elements |
| // transitions of each other. Returns either NULL if they are not from the same |
| // family, or a Map* indicating the map with the first elements kind of the |
| // family that is in the list. |
| static Map* CheckSameElementsFamily(SmallMapList* types) { |
| if (types->length() <= 1) return NULL; |
| // Check if all maps belong to the same transition family. |
| Map* kinds[kFastElementsKindCount]; |
| Map* first_map = *types->first(); |
| ElementsKind first_kind = first_map->elements_kind(); |
| if (!IsFastElementsKind(first_kind)) return NULL; |
| int first_index = GetSequenceIndexFromFastElementsKind(first_kind); |
| int last_index = first_index; |
| |
| for (int i = 0; i < kFastElementsKindCount; i++) kinds[i] = NULL; |
| |
| kinds[first_index] = first_map; |
| |
| for (int i = 1; i < types->length(); ++i) { |
| Map* map = *types->at(i); |
| ElementsKind elements_kind = map->elements_kind(); |
| if (!IsFastElementsKind(elements_kind)) return NULL; |
| int index = GetSequenceIndexFromFastElementsKind(elements_kind); |
| if (index < first_index) { |
| first_index = index; |
| } else if (index > last_index) { |
| last_index = index; |
| } else if (kinds[index] != map) { |
| return NULL; |
| } |
| kinds[index] = map; |
| } |
| |
| Map* current = kinds[first_index]; |
| for (int i = first_index + 1; i <= last_index; i++) { |
| Map* next = kinds[i]; |
| if (next != NULL) { |
| ElementsKind current_kind = next->elements_kind(); |
| if (next != current->LookupElementsTransitionMap(current_kind)) { |
| return NULL; |
| } |
| current = next; |
| } |
| } |
| |
| return kinds[first_index]; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitCall(Call* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| Expression* callee = expr->expression(); |
| int argument_count = expr->arguments()->length() + 1; // Plus receiver. |
| HInstruction* call = NULL; |
| |
| Property* prop = callee->AsProperty(); |
| if (prop != NULL) { |
| if (!prop->key()->IsPropertyName()) { |
| // Keyed function call. |
| CHECK_ALIVE(VisitArgument(prop->obj())); |
| |
| CHECK_ALIVE(VisitForValue(prop->key())); |
| // Push receiver and key like the non-optimized code generator expects it. |
| HValue* key = Pop(); |
| HValue* receiver = Pop(); |
| Push(key); |
| Push(receiver); |
| |
| CHECK_ALIVE(VisitArgumentList(expr->arguments())); |
| |
| HValue* context = environment()->LookupContext(); |
| call = new(zone()) HCallKeyed(context, key, argument_count); |
| call->set_position(expr->position()); |
| Drop(argument_count + 1); // 1 is the key. |
| return ast_context()->ReturnInstruction(call, expr->id()); |
| } |
| |
| // Named function call. |
| expr->RecordTypeFeedback(oracle(), CALL_AS_METHOD); |
| |
| if (TryCallApply(expr)) return; |
| |
| CHECK_ALIVE(VisitForValue(prop->obj())); |
| CHECK_ALIVE(VisitExpressions(expr->arguments())); |
| |
| Handle<String> name = prop->key()->AsLiteral()->AsPropertyName(); |
| SmallMapList* types = expr->GetReceiverTypes(); |
| |
| bool monomorphic = expr->IsMonomorphic(); |
| Handle<Map> receiver_map; |
| if (monomorphic) { |
| receiver_map = (types == NULL || types->is_empty()) |
| ? Handle<Map>::null() |
| : types->first(); |
| } else { |
| Map* family_map = CheckSameElementsFamily(types); |
| if (family_map != NULL) { |
| receiver_map = Handle<Map>(family_map); |
| monomorphic = expr->ComputeTarget(receiver_map, name); |
| } |
| } |
| |
| HValue* receiver = |
| environment()->ExpressionStackAt(expr->arguments()->length()); |
| if (monomorphic) { |
| if (TryInlineBuiltinMethodCall(expr, |
| receiver, |
| receiver_map, |
| expr->check_type())) { |
| if (FLAG_trace_inlining) { |
| PrintF("Inlining builtin "); |
| expr->target()->ShortPrint(); |
| PrintF("\n"); |
| } |
| return; |
| } |
| |
| if (CallStubCompiler::HasCustomCallGenerator(expr->target()) || |
| expr->check_type() != RECEIVER_MAP_CHECK) { |
| // When the target has a custom call IC generator, use the IC, |
| // because it is likely to generate better code. Also use the IC |
| // when a primitive receiver check is required. |
| HValue* context = environment()->LookupContext(); |
| call = PreProcessCall( |
| new(zone()) HCallNamed(context, name, argument_count)); |
| } else { |
| AddCheckConstantFunction(expr->holder(), receiver, receiver_map); |
| |
| if (TryInlineCall(expr)) return; |
| call = PreProcessCall( |
| new(zone()) HCallConstantFunction(expr->target(), |
| argument_count)); |
| } |
| } else if (types != NULL && types->length() > 1) { |
| ASSERT(expr->check_type() == RECEIVER_MAP_CHECK); |
| HandlePolymorphicCallNamed(expr, receiver, types, name); |
| return; |
| |
| } else { |
| HValue* context = environment()->LookupContext(); |
| call = PreProcessCall( |
| new(zone()) HCallNamed(context, name, argument_count)); |
| } |
| |
| } else { |
| expr->RecordTypeFeedback(oracle(), CALL_AS_FUNCTION); |
| VariableProxy* proxy = expr->expression()->AsVariableProxy(); |
| bool global_call = proxy != NULL && proxy->var()->IsUnallocated(); |
| |
| if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) { |
| return Bailout("possible direct call to eval"); |
| } |
| |
| if (global_call) { |
| Variable* var = proxy->var(); |
| bool known_global_function = false; |
| // If there is a global property cell for the name at compile time and |
| // access check is not enabled we assume that the function will not change |
| // and generate optimized code for calling the function. |
| LookupResult lookup(isolate()); |
| GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false); |
| if (type == kUseCell && |
| !info()->global_object()->IsAccessCheckNeeded()) { |
| Handle<GlobalObject> global(info()->global_object()); |
| known_global_function = expr->ComputeGlobalTarget(global, &lookup); |
| } |
| if (known_global_function) { |
| // Push the global object instead of the global receiver because |
| // code generated by the full code generator expects it. |
| HValue* context = environment()->LookupContext(); |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| PushAndAdd(global_object); |
| CHECK_ALIVE(VisitExpressions(expr->arguments())); |
| |
| CHECK_ALIVE(VisitForValue(expr->expression())); |
| HValue* function = Pop(); |
| AddInstruction(new(zone()) HCheckFunction(function, expr->target())); |
| |
| // Replace the global object with the global receiver. |
| HGlobalReceiver* global_receiver = |
| new(zone()) HGlobalReceiver(global_object); |
| // Index of the receiver from the top of the expression stack. |
| const int receiver_index = argument_count - 1; |
| AddInstruction(global_receiver); |
| ASSERT(environment()->ExpressionStackAt(receiver_index)-> |
| IsGlobalObject()); |
| environment()->SetExpressionStackAt(receiver_index, global_receiver); |
| |
| if (TryInlineBuiltinFunctionCall(expr, false)) { // Nothing to drop. |
| if (FLAG_trace_inlining) { |
| PrintF("Inlining builtin "); |
| expr->target()->ShortPrint(); |
| PrintF("\n"); |
| } |
| return; |
| } |
| if (TryInlineCall(expr)) return; |
| |
| if (expr->target().is_identical_to(info()->closure())) { |
| graph()->MarkRecursive(); |
| } |
| |
| call = PreProcessCall(new(zone()) HCallKnownGlobal(expr->target(), |
| argument_count)); |
| } else { |
| HValue* context = environment()->LookupContext(); |
| HGlobalObject* receiver = new(zone()) HGlobalObject(context); |
| AddInstruction(receiver); |
| PushAndAdd(new(zone()) HPushArgument(receiver)); |
| CHECK_ALIVE(VisitArgumentList(expr->arguments())); |
| |
| call = new(zone()) HCallGlobal(context, var->name(), argument_count); |
| Drop(argument_count); |
| } |
| |
| } else if (expr->IsMonomorphic()) { |
| // The function is on the stack in the unoptimized code during |
| // evaluation of the arguments. |
| CHECK_ALIVE(VisitForValue(expr->expression())); |
| HValue* function = Top(); |
| HValue* context = environment()->LookupContext(); |
| HGlobalObject* global = new(zone()) HGlobalObject(context); |
| AddInstruction(global); |
| HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global); |
| PushAndAdd(receiver); |
| CHECK_ALIVE(VisitExpressions(expr->arguments())); |
| AddInstruction(new(zone()) HCheckFunction(function, expr->target())); |
| |
| if (TryInlineBuiltinFunctionCall(expr, true)) { // Drop the function. |
| if (FLAG_trace_inlining) { |
| PrintF("Inlining builtin "); |
| expr->target()->ShortPrint(); |
| PrintF("\n"); |
| } |
| return; |
| } |
| |
| if (TryInlineCall(expr, true)) { // Drop function from environment. |
| return; |
| } else { |
| call = PreProcessCall( |
| new(zone()) HInvokeFunction(context, |
| function, |
| expr->target(), |
| argument_count)); |
| Drop(1); // The function. |
| } |
| |
| } else { |
| CHECK_ALIVE(VisitForValue(expr->expression())); |
| HValue* function = Top(); |
| HValue* context = environment()->LookupContext(); |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(global_object); |
| HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global_object); |
| AddInstruction(receiver); |
| PushAndAdd(new(zone()) HPushArgument(receiver)); |
| CHECK_ALIVE(VisitArgumentList(expr->arguments())); |
| |
| call = new(zone()) HCallFunction(context, function, argument_count); |
| Drop(argument_count + 1); |
| } |
| } |
| |
| call->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(call, expr->id()); |
| } |
| |
| |
| // Checks whether allocation using the given constructor can be inlined. |
| static bool IsAllocationInlineable(Handle<JSFunction> constructor) { |
| return constructor->has_initial_map() && |
| constructor->initial_map()->instance_type() == JS_OBJECT_TYPE && |
| constructor->initial_map()->instance_size() < HAllocateObject::kMaxSize; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| expr->RecordTypeFeedback(oracle()); |
| int argument_count = expr->arguments()->length() + 1; // Plus constructor. |
| HValue* context = environment()->LookupContext(); |
| |
| if (FLAG_inline_construct && |
| expr->IsMonomorphic() && |
| IsAllocationInlineable(expr->target())) { |
| // The constructor function is on the stack in the unoptimized code |
| // during evaluation of the arguments. |
| CHECK_ALIVE(VisitForValue(expr->expression())); |
| HValue* function = Top(); |
| CHECK_ALIVE(VisitExpressions(expr->arguments())); |
| Handle<JSFunction> constructor = expr->target(); |
| HValue* check = AddInstruction( |
| new(zone()) HCheckFunction(function, constructor)); |
| |
| // Force completion of inobject slack tracking before generating |
| // allocation code to finalize instance size. |
| if (constructor->shared()->IsInobjectSlackTrackingInProgress()) { |
| constructor->shared()->CompleteInobjectSlackTracking(); |
| } |
| |
| // Replace the constructor function with a newly allocated receiver. |
| HInstruction* receiver = new(zone()) HAllocateObject(context, constructor); |
| // Index of the receiver from the top of the expression stack. |
| const int receiver_index = argument_count - 1; |
| AddInstruction(receiver); |
| ASSERT(environment()->ExpressionStackAt(receiver_index) == function); |
| environment()->SetExpressionStackAt(receiver_index, receiver); |
| |
| if (TryInlineConstruct(expr, receiver)) return; |
| |
| // TODO(mstarzinger): For now we remove the previous HAllocateObject and |
| // add HPushArgument for the arguments in case inlining failed. What we |
| // actually should do is emit HInvokeFunction on the constructor instead |
| // of using HCallNew as a fallback. |
| receiver->DeleteAndReplaceWith(NULL); |
| check->DeleteAndReplaceWith(NULL); |
| environment()->SetExpressionStackAt(receiver_index, function); |
| HInstruction* call = PreProcessCall( |
| new(zone()) HCallNew(context, function, argument_count)); |
| call->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(call, expr->id()); |
| } else { |
| // The constructor function is both an operand to the instruction and an |
| // argument to the construct call. |
| CHECK_ALIVE(VisitArgument(expr->expression())); |
| HValue* constructor = HPushArgument::cast(Top())->argument(); |
| CHECK_ALIVE(VisitArgumentList(expr->arguments())); |
| HInstruction* call = |
| new(zone()) HCallNew(context, constructor, argument_count); |
| Drop(argument_count); |
| call->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(call, expr->id()); |
| } |
| } |
| |
| |
| // Support for generating inlined runtime functions. |
| |
| // Lookup table for generators for runtime calls that are generated inline. |
| // Elements of the table are member pointers to functions of |
| // HOptimizedGraphBuilder. |
| #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \ |
| &HOptimizedGraphBuilder::Generate##Name, |
| |
| const HOptimizedGraphBuilder::InlineFunctionGenerator |
| HOptimizedGraphBuilder::kInlineFunctionGenerators[] = { |
| INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) |
| INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) |
| }; |
| #undef INLINE_FUNCTION_GENERATOR_ADDRESS |
| |
| |
| void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| if (expr->is_jsruntime()) { |
| return Bailout("call to a JavaScript runtime function"); |
| } |
| |
| const Runtime::Function* function = expr->function(); |
| ASSERT(function != NULL); |
| if (function->intrinsic_type == Runtime::INLINE) { |
| ASSERT(expr->name()->length() > 0); |
| ASSERT(expr->name()->Get(0) == '_'); |
| // Call to an inline function. |
| int lookup_index = static_cast<int>(function->function_id) - |
| static_cast<int>(Runtime::kFirstInlineFunction); |
| ASSERT(lookup_index >= 0); |
| ASSERT(static_cast<size_t>(lookup_index) < |
| ARRAY_SIZE(kInlineFunctionGenerators)); |
| InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index]; |
| |
| // Call the inline code generator using the pointer-to-member. |
| (this->*generator)(expr); |
| } else { |
| ASSERT(function->intrinsic_type == Runtime::RUNTIME); |
| CHECK_ALIVE(VisitArgumentList(expr->arguments())); |
| |
| HValue* context = environment()->LookupContext(); |
| Handle<String> name = expr->name(); |
| int argument_count = expr->arguments()->length(); |
| HCallRuntime* call = |
| new(zone()) HCallRuntime(context, name, function, argument_count); |
| Drop(argument_count); |
| return ast_context()->ReturnInstruction(call, expr->id()); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| switch (expr->op()) { |
| case Token::DELETE: return VisitDelete(expr); |
| case Token::VOID: return VisitVoid(expr); |
| case Token::TYPEOF: return VisitTypeof(expr); |
| case Token::ADD: return VisitAdd(expr); |
| case Token::SUB: return VisitSub(expr); |
| case Token::BIT_NOT: return VisitBitNot(expr); |
| case Token::NOT: return VisitNot(expr); |
| default: UNREACHABLE(); |
| } |
| } |
| |
| void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) { |
| Property* prop = expr->expression()->AsProperty(); |
| VariableProxy* proxy = expr->expression()->AsVariableProxy(); |
| if (prop != NULL) { |
| CHECK_ALIVE(VisitForValue(prop->obj())); |
| CHECK_ALIVE(VisitForValue(prop->key())); |
| HValue* key = Pop(); |
| HValue* obj = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HDeleteProperty* instr = new(zone()) HDeleteProperty(context, obj, key); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } else if (proxy != NULL) { |
| Variable* var = proxy->var(); |
| if (var->IsUnallocated()) { |
| Bailout("delete with global variable"); |
| } else if (var->IsStackAllocated() || var->IsContextSlot()) { |
| // Result of deleting non-global variables is false. 'this' is not |
| // really a variable, though we implement it as one. The |
| // subexpression does not have side effects. |
| HValue* value = var->is_this() |
| ? graph()->GetConstantTrue() |
| : graph()->GetConstantFalse(); |
| return ast_context()->ReturnValue(value); |
| } else { |
| Bailout("delete with non-global variable"); |
| } |
| } else { |
| // Result of deleting non-property, non-variable reference is true. |
| // Evaluate the subexpression for side effects. |
| CHECK_ALIVE(VisitForEffect(expr->expression())); |
| return ast_context()->ReturnValue(graph()->GetConstantTrue()); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) { |
| CHECK_ALIVE(VisitForEffect(expr->expression())); |
| return ast_context()->ReturnValue(graph()->GetConstantUndefined()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) { |
| CHECK_ALIVE(VisitForTypeOf(expr->expression())); |
| HValue* value = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HInstruction* instr = new(zone()) HTypeof(context, value); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitAdd(UnaryOperation* expr) { |
| CHECK_ALIVE(VisitForValue(expr->expression())); |
| HValue* value = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HInstruction* instr = |
| new(zone()) HMul(context, value, graph()->GetConstant1()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitSub(UnaryOperation* expr) { |
| CHECK_ALIVE(VisitForValue(expr->expression())); |
| HValue* value = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HInstruction* instr = |
| new(zone()) HMul(context, value, graph()->GetConstantMinus1()); |
| TypeInfo info = oracle()->UnaryType(expr); |
| Representation rep = ToRepresentation(info); |
| if (info.IsUninitialized()) { |
| AddSoftDeoptimize(); |
| info = TypeInfo::Unknown(); |
| } |
| HBinaryOperation::cast(instr)->set_observed_input_representation(rep, rep); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitBitNot(UnaryOperation* expr) { |
| CHECK_ALIVE(VisitForValue(expr->expression())); |
| HValue* value = Pop(); |
| TypeInfo info = oracle()->UnaryType(expr); |
| if (info.IsUninitialized()) { |
| AddSoftDeoptimize(); |
| } |
| HInstruction* instr = new(zone()) HBitNot(value); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) { |
| if (ast_context()->IsTest()) { |
| TestContext* context = TestContext::cast(ast_context()); |
| VisitForControl(expr->expression(), |
| context->if_false(), |
| context->if_true()); |
| return; |
| } |
| |
| if (ast_context()->IsEffect()) { |
| VisitForEffect(expr->expression()); |
| return; |
| } |
| |
| ASSERT(ast_context()->IsValue()); |
| HBasicBlock* materialize_false = graph()->CreateBasicBlock(); |
| HBasicBlock* materialize_true = graph()->CreateBasicBlock(); |
| CHECK_BAILOUT(VisitForControl(expr->expression(), |
| materialize_false, |
| materialize_true)); |
| |
| if (materialize_false->HasPredecessor()) { |
| materialize_false->SetJoinId(expr->MaterializeFalseId()); |
| set_current_block(materialize_false); |
| Push(graph()->GetConstantFalse()); |
| } else { |
| materialize_false = NULL; |
| } |
| |
| if (materialize_true->HasPredecessor()) { |
| materialize_true->SetJoinId(expr->MaterializeTrueId()); |
| set_current_block(materialize_true); |
| Push(graph()->GetConstantTrue()); |
| } else { |
| materialize_true = NULL; |
| } |
| |
| HBasicBlock* join = |
| CreateJoin(materialize_false, materialize_true, expr->id()); |
| set_current_block(join); |
| if (join != NULL) return ast_context()->ReturnValue(Pop()); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildIncrement( |
| bool returns_original_input, |
| CountOperation* expr) { |
| // The input to the count operation is on top of the expression stack. |
| TypeInfo info = oracle()->IncrementType(expr); |
| Representation rep = ToRepresentation(info); |
| if (rep.IsTagged()) { |
| rep = Representation::Integer32(); |
| } |
| |
| if (returns_original_input) { |
| // We need an explicit HValue representing ToNumber(input). The |
| // actual HChange instruction we need is (sometimes) added in a later |
| // phase, so it is not available now to be used as an input to HAdd and |
| // as the return value. |
| HInstruction* number_input = new(zone()) HForceRepresentation(Pop(), rep); |
| AddInstruction(number_input); |
| Push(number_input); |
| } |
| |
| // The addition has no side effects, so we do not need |
| // to simulate the expression stack after this instruction. |
| // Any later failures deopt to the load of the input or earlier. |
| HConstant* delta = (expr->op() == Token::INC) |
| ? graph()->GetConstant1() |
| : graph()->GetConstantMinus1(); |
| HValue* context = environment()->LookupContext(); |
| HInstruction* instr = new(zone()) HAdd(context, Top(), delta); |
| // We can't insert a simulate here, because it would break deoptimization, |
| // so the HAdd must not have side effects, so we must freeze its |
| // representation. |
| instr->AssumeRepresentation(rep); |
| instr->ClearAllSideEffects(); |
| AddInstruction(instr); |
| return instr; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| Expression* target = expr->expression(); |
| VariableProxy* proxy = target->AsVariableProxy(); |
| Property* prop = target->AsProperty(); |
| if (proxy == NULL && prop == NULL) { |
| return Bailout("invalid lhs in count operation"); |
| } |
| |
| // Match the full code generator stack by simulating an extra stack |
| // element for postfix operations in a non-effect context. The return |
| // value is ToNumber(input). |
| bool returns_original_input = |
| expr->is_postfix() && !ast_context()->IsEffect(); |
| HValue* input = NULL; // ToNumber(original_input). |
| HValue* after = NULL; // The result after incrementing or decrementing. |
| |
| if (proxy != NULL) { |
| Variable* var = proxy->var(); |
| if (var->mode() == CONST) { |
| return Bailout("unsupported count operation with const"); |
| } |
| // Argument of the count operation is a variable, not a property. |
| ASSERT(prop == NULL); |
| CHECK_ALIVE(VisitForValue(target)); |
| |
| after = BuildIncrement(returns_original_input, expr); |
| input = returns_original_input ? Top() : Pop(); |
| Push(after); |
| |
| switch (var->location()) { |
| case Variable::UNALLOCATED: |
| HandleGlobalVariableAssignment(var, |
| after, |
| expr->position(), |
| expr->AssignmentId()); |
| break; |
| |
| case Variable::PARAMETER: |
| case Variable::LOCAL: |
| Bind(var, after); |
| break; |
| |
| case Variable::CONTEXT: { |
| // Bail out if we try to mutate a parameter value in a function |
| // using the arguments object. We do not (yet) correctly handle the |
| // arguments property of the function. |
| if (info()->scope()->arguments() != NULL) { |
| // Parameters will rewrite to context slots. We have no direct |
| // way to detect that the variable is a parameter so we use a |
| // linear search of the parameter list. |
| int count = info()->scope()->num_parameters(); |
| for (int i = 0; i < count; ++i) { |
| if (var == info()->scope()->parameter(i)) { |
| return Bailout("assignment to parameter in arguments object"); |
| } |
| } |
| } |
| |
| HValue* context = BuildContextChainWalk(var); |
| HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode()) |
| ? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck; |
| HStoreContextSlot* instr = |
| new(zone()) HStoreContextSlot(context, var->index(), mode, after); |
| AddInstruction(instr); |
| if (instr->HasObservableSideEffects()) { |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| } |
| break; |
| } |
| |
| case Variable::LOOKUP: |
| return Bailout("lookup variable in count operation"); |
| } |
| |
| } else { |
| // Argument of the count operation is a property. |
| ASSERT(prop != NULL); |
| prop->RecordTypeFeedback(oracle(), zone()); |
| |
| if (prop->key()->IsPropertyName()) { |
| // Named property. |
| if (returns_original_input) Push(graph()->GetConstantUndefined()); |
| |
| CHECK_ALIVE(VisitForValue(prop->obj())); |
| HValue* object = Top(); |
| |
| Handle<String> name = prop->key()->AsLiteral()->AsPropertyName(); |
| Handle<Map> map; |
| HInstruction* load; |
| bool monomorphic = prop->IsMonomorphic(); |
| if (monomorphic) { |
| map = prop->GetReceiverTypes()->first(); |
| if (map->is_dictionary_map()) monomorphic = false; |
| } |
| if (monomorphic) { |
| Handle<JSFunction> getter; |
| Handle<JSObject> holder; |
| if (LookupGetter(map, name, &getter, &holder)) { |
| load = BuildCallGetter(object, map, getter, holder); |
| } else { |
| load = BuildLoadNamedMonomorphic(object, name, prop, map); |
| } |
| } else { |
| load = BuildLoadNamedGeneric(object, name, prop); |
| } |
| PushAndAdd(load); |
| if (load->HasObservableSideEffects()) { |
| AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE); |
| } |
| |
| after = BuildIncrement(returns_original_input, expr); |
| input = Pop(); |
| |
| HInstruction* store; |
| if (!monomorphic || map->is_observed()) { |
| // If we don't know the monomorphic type, do a generic store. |
| CHECK_ALIVE(store = BuildStoreNamedGeneric(object, name, after)); |
| } else { |
| Handle<JSFunction> setter; |
| Handle<JSObject> holder; |
| if (LookupSetter(map, name, &setter, &holder)) { |
| store = BuildCallSetter(object, after, map, setter, holder); |
| } else { |
| CHECK_ALIVE(store = BuildStoreNamedMonomorphic(object, |
| name, |
| after, |
| map)); |
| } |
| } |
| AddInstruction(store); |
| |
| // Overwrite the receiver in the bailout environment with the result |
| // of the operation, and the placeholder with the original value if |
| // necessary. |
| environment()->SetExpressionStackAt(0, after); |
| if (returns_original_input) environment()->SetExpressionStackAt(1, input); |
| if (store->HasObservableSideEffects()) { |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| } |
| |
| } else { |
| // Keyed property. |
| if (returns_original_input) Push(graph()->GetConstantUndefined()); |
| |
| CHECK_ALIVE(VisitForValue(prop->obj())); |
| CHECK_ALIVE(VisitForValue(prop->key())); |
| HValue* obj = environment()->ExpressionStackAt(1); |
| HValue* key = environment()->ExpressionStackAt(0); |
| |
| bool has_side_effects = false; |
| HValue* load = HandleKeyedElementAccess( |
| obj, key, NULL, prop, prop->LoadId(), RelocInfo::kNoPosition, |
| false, // is_store |
| &has_side_effects); |
| Push(load); |
| if (has_side_effects) AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE); |
| |
| after = BuildIncrement(returns_original_input, expr); |
| input = Pop(); |
| |
| expr->RecordTypeFeedback(oracle(), zone()); |
| HandleKeyedElementAccess(obj, key, after, expr, expr->AssignmentId(), |
| RelocInfo::kNoPosition, |
| true, // is_store |
| &has_side_effects); |
| |
| // Drop the key from the bailout environment. Overwrite the receiver |
| // with the result of the operation, and the placeholder with the |
| // original value if necessary. |
| Drop(1); |
| environment()->SetExpressionStackAt(0, after); |
| if (returns_original_input) environment()->SetExpressionStackAt(1, input); |
| ASSERT(has_side_effects); // Stores always have side effects. |
| AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE); |
| } |
| } |
| |
| Drop(returns_original_input ? 2 : 1); |
| return ast_context()->ReturnValue(expr->is_postfix() ? input : after); |
| } |
| |
| |
| HStringCharCodeAt* HOptimizedGraphBuilder::BuildStringCharCodeAt( |
| HValue* context, |
| HValue* string, |
| HValue* index) { |
| AddInstruction(new(zone()) HCheckNonSmi(string)); |
| AddInstruction(HCheckInstanceType::NewIsString(string, zone())); |
| HStringLength* length = new(zone()) HStringLength(string); |
| AddInstruction(length); |
| HInstruction* checked_index = |
| AddInstruction(new(zone()) HBoundsCheck(index, length)); |
| return new(zone()) HStringCharCodeAt(context, string, checked_index); |
| } |
| |
| // Checks if the given shift amounts have form: (sa) and (32 - sa). |
| static bool ShiftAmountsAllowReplaceByRotate(HValue* sa, |
| HValue* const32_minus_sa) { |
| if (!const32_minus_sa->IsSub()) return false; |
| HSub* sub = HSub::cast(const32_minus_sa); |
| if (sa != sub->right()) return false; |
| HValue* const32 = sub->left(); |
| if (!const32->IsConstant() || |
| HConstant::cast(const32)->Integer32Value() != 32) { |
| return false; |
| } |
| return (sub->right() == sa); |
| } |
| |
| |
| // Checks if the left and the right are shift instructions with the oposite |
| // directions that can be replaced by one rotate right instruction or not. |
| // Returns the operand and the shift amount for the rotate instruction in the |
| // former case. |
| bool HOptimizedGraphBuilder::MatchRotateRight(HValue* left, |
| HValue* right, |
| HValue** operand, |
| HValue** shift_amount) { |
| HShl* shl; |
| HShr* shr; |
| if (left->IsShl() && right->IsShr()) { |
| shl = HShl::cast(left); |
| shr = HShr::cast(right); |
| } else if (left->IsShr() && right->IsShl()) { |
| shl = HShl::cast(right); |
| shr = HShr::cast(left); |
| } else { |
| return false; |
| } |
| if (shl->left() != shr->left()) return false; |
| |
| if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) && |
| !ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) { |
| return false; |
| } |
| *operand= shr->left(); |
| *shift_amount = shr->right(); |
| return true; |
| } |
| |
| |
| bool CanBeZero(HValue *right) { |
| if (right->IsConstant()) { |
| HConstant* right_const = HConstant::cast(right); |
| if (right_const->HasInteger32Value() && |
| (right_const->Integer32Value() & 0x1f) != 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildBinaryOperation( |
| BinaryOperation* expr, |
| HValue* left, |
| HValue* right) { |
| HValue* context = environment()->LookupContext(); |
| TypeInfo left_info, right_info, result_info, combined_info; |
| oracle()->BinaryType(expr, &left_info, &right_info, &result_info); |
| Representation left_rep = ToRepresentation(left_info); |
| Representation right_rep = ToRepresentation(right_info); |
| Representation result_rep = ToRepresentation(result_info); |
| if (left_info.IsUninitialized()) { |
| // Can't have initialized one but not the other. |
| ASSERT(right_info.IsUninitialized()); |
| AddSoftDeoptimize(); |
| left_info = right_info = TypeInfo::Unknown(); |
| } |
| HInstruction* instr = NULL; |
| switch (expr->op()) { |
| case Token::ADD: |
| if (left_info.IsString() && right_info.IsString()) { |
| AddInstruction(new(zone()) HCheckNonSmi(left)); |
| AddInstruction(HCheckInstanceType::NewIsString(left, zone())); |
| AddInstruction(new(zone()) HCheckNonSmi(right)); |
| AddInstruction(HCheckInstanceType::NewIsString(right, zone())); |
| instr = new(zone()) HStringAdd(context, left, right); |
| } else { |
| instr = HAdd::NewHAdd(zone(), context, left, right); |
| } |
| break; |
| case Token::SUB: |
| instr = HSub::NewHSub(zone(), context, left, right); |
| break; |
| case Token::MUL: |
| instr = HMul::NewHMul(zone(), context, left, right); |
| break; |
| case Token::MOD: |
| instr = HMod::NewHMod(zone(), context, left, right); |
| break; |
| case Token::DIV: |
| instr = HDiv::NewHDiv(zone(), context, left, right); |
| break; |
| case Token::BIT_XOR: |
| case Token::BIT_AND: |
| instr = HBitwise::NewHBitwise(zone(), expr->op(), context, left, right); |
| break; |
| case Token::BIT_OR: { |
| HValue* operand, *shift_amount; |
| if (left_info.IsInteger32() && right_info.IsInteger32() && |
| MatchRotateRight(left, right, &operand, &shift_amount)) { |
| instr = new(zone()) HRor(context, operand, shift_amount); |
| } else { |
| instr = HBitwise::NewHBitwise(zone(), expr->op(), context, left, right); |
| } |
| break; |
| } |
| case Token::SAR: |
| instr = HSar::NewHSar(zone(), context, left, right); |
| break; |
| case Token::SHR: |
| instr = HShr::NewHShr(zone(), context, left, right); |
| if (FLAG_opt_safe_uint32_operations && instr->IsShr() && |
| CanBeZero(right)) { |
| graph()->RecordUint32Instruction(instr); |
| } |
| break; |
| case Token::SHL: |
| instr = HShl::NewHShl(zone(), context, left, right); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| if (instr->IsBinaryOperation()) { |
| HBinaryOperation* binop = HBinaryOperation::cast(instr); |
| binop->set_observed_input_representation(left_rep, right_rep); |
| binop->initialize_output_representation(result_rep); |
| } |
| return instr; |
| } |
| |
| |
| // Check for the form (%_ClassOf(foo) === 'BarClass'). |
| static bool IsClassOfTest(CompareOperation* expr) { |
| if (expr->op() != Token::EQ_STRICT) return false; |
| CallRuntime* call = expr->left()->AsCallRuntime(); |
| if (call == NULL) return false; |
| Literal* literal = expr->right()->AsLiteral(); |
| if (literal == NULL) return false; |
| if (!literal->handle()->IsString()) return false; |
| if (!call->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_ClassOf"))) { |
| return false; |
| } |
| ASSERT(call->arguments()->length() == 1); |
| return true; |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| switch (expr->op()) { |
| case Token::COMMA: |
| return VisitComma(expr); |
| case Token::OR: |
| case Token::AND: |
| return VisitLogicalExpression(expr); |
| default: |
| return VisitArithmeticExpression(expr); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) { |
| CHECK_ALIVE(VisitForEffect(expr->left())); |
| // Visit the right subexpression in the same AST context as the entire |
| // expression. |
| Visit(expr->right()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) { |
| bool is_logical_and = expr->op() == Token::AND; |
| if (ast_context()->IsTest()) { |
| TestContext* context = TestContext::cast(ast_context()); |
| // Translate left subexpression. |
| HBasicBlock* eval_right = graph()->CreateBasicBlock(); |
| if (is_logical_and) { |
| CHECK_BAILOUT(VisitForControl(expr->left(), |
| eval_right, |
| context->if_false())); |
| } else { |
| CHECK_BAILOUT(VisitForControl(expr->left(), |
| context->if_true(), |
| eval_right)); |
| } |
| |
| // Translate right subexpression by visiting it in the same AST |
| // context as the entire expression. |
| if (eval_right->HasPredecessor()) { |
| eval_right->SetJoinId(expr->RightId()); |
| set_current_block(eval_right); |
| Visit(expr->right()); |
| } |
| |
| } else if (ast_context()->IsValue()) { |
| CHECK_ALIVE(VisitForValue(expr->left())); |
| ASSERT(current_block() != NULL); |
| |
| // We need an extra block to maintain edge-split form. |
| HBasicBlock* empty_block = graph()->CreateBasicBlock(); |
| HBasicBlock* eval_right = graph()->CreateBasicBlock(); |
| TypeFeedbackId test_id = expr->left()->test_id(); |
| ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id)); |
| HBranch* test = is_logical_and |
| ? new(zone()) HBranch(Top(), eval_right, empty_block, expected) |
| : new(zone()) HBranch(Top(), empty_block, eval_right, expected); |
| current_block()->Finish(test); |
| |
| set_current_block(eval_right); |
| Drop(1); // Value of the left subexpression. |
| CHECK_BAILOUT(VisitForValue(expr->right())); |
| |
| HBasicBlock* join_block = |
| CreateJoin(empty_block, current_block(), expr->id()); |
| set_current_block(join_block); |
| return ast_context()->ReturnValue(Pop()); |
| |
| } else { |
| ASSERT(ast_context()->IsEffect()); |
| // In an effect context, we don't need the value of the left subexpression, |
| // only its control flow and side effects. We need an extra block to |
| // maintain edge-split form. |
| HBasicBlock* empty_block = graph()->CreateBasicBlock(); |
| HBasicBlock* right_block = graph()->CreateBasicBlock(); |
| if (is_logical_and) { |
| CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block)); |
| } else { |
| CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block)); |
| } |
| |
| // TODO(kmillikin): Find a way to fix this. It's ugly that there are |
| // actually two empty blocks (one here and one inserted by |
| // TestContext::BuildBranch, and that they both have an HSimulate though the |
| // second one is not a merge node, and that we really have no good AST ID to |
| // put on that first HSimulate. |
| |
| if (empty_block->HasPredecessor()) { |
| empty_block->SetJoinId(expr->id()); |
| } else { |
| empty_block = NULL; |
| } |
| |
| if (right_block->HasPredecessor()) { |
| right_block->SetJoinId(expr->RightId()); |
| set_current_block(right_block); |
| CHECK_BAILOUT(VisitForEffect(expr->right())); |
| right_block = current_block(); |
| } else { |
| right_block = NULL; |
| } |
| |
| HBasicBlock* join_block = |
| CreateJoin(empty_block, right_block, expr->id()); |
| set_current_block(join_block); |
| // We did not materialize any value in the predecessor environments, |
| // so there is no need to handle it here. |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) { |
| CHECK_ALIVE(VisitForValue(expr->left())); |
| CHECK_ALIVE(VisitForValue(expr->right())); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| HInstruction* instr = BuildBinaryOperation(expr, left, right); |
| instr->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| Representation HOptimizedGraphBuilder::ToRepresentation(TypeInfo info) { |
| if (info.IsUninitialized()) return Representation::None(); |
| if (info.IsSmi()) return Representation::Integer32(); |
| if (info.IsInteger32()) return Representation::Integer32(); |
| if (info.IsDouble()) return Representation::Double(); |
| if (info.IsNumber()) return Representation::Double(); |
| return Representation::Tagged(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr, |
| HTypeof* typeof_expr, |
| Handle<String> check) { |
| // Note: The HTypeof itself is removed during canonicalization, if possible. |
| HValue* value = typeof_expr->value(); |
| HTypeofIsAndBranch* instr = new(zone()) HTypeofIsAndBranch(value, check); |
| instr->set_position(expr->position()); |
| return ast_context()->ReturnControl(instr, expr->id()); |
| } |
| |
| |
| static bool MatchLiteralCompareNil(HValue* left, |
| Token::Value op, |
| HValue* right, |
| Handle<Object> nil, |
| HValue** expr) { |
| if (left->IsConstant() && |
| HConstant::cast(left)->handle().is_identical_to(nil) && |
| Token::IsEqualityOp(op)) { |
| *expr = right; |
| return true; |
| } |
| return false; |
| } |
| |
| |
| static bool MatchLiteralCompareTypeof(HValue* left, |
| Token::Value op, |
| HValue* right, |
| HTypeof** typeof_expr, |
| Handle<String>* check) { |
| if (left->IsTypeof() && |
| Token::IsEqualityOp(op) && |
| right->IsConstant() && |
| HConstant::cast(right)->handle()->IsString()) { |
| *typeof_expr = HTypeof::cast(left); |
| *check = Handle<String>::cast(HConstant::cast(right)->handle()); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| static bool IsLiteralCompareTypeof(HValue* left, |
| Token::Value op, |
| HValue* right, |
| HTypeof** typeof_expr, |
| Handle<String>* check) { |
| return MatchLiteralCompareTypeof(left, op, right, typeof_expr, check) || |
| MatchLiteralCompareTypeof(right, op, left, typeof_expr, check); |
| } |
| |
| |
| static bool IsLiteralCompareNil(HValue* left, |
| Token::Value op, |
| HValue* right, |
| Handle<Object> nil, |
| HValue** expr) { |
| return MatchLiteralCompareNil(left, op, right, nil, expr) || |
| MatchLiteralCompareNil(right, op, left, nil, expr); |
| } |
| |
| |
| static bool IsLiteralCompareBool(HValue* left, |
| Token::Value op, |
| HValue* right) { |
| return op == Token::EQ_STRICT && |
| ((left->IsConstant() && HConstant::cast(left)->handle()->IsBoolean()) || |
| (right->IsConstant() && HConstant::cast(right)->handle()->IsBoolean())); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| if (IsClassOfTest(expr)) { |
| CallRuntime* call = expr->left()->AsCallRuntime(); |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| Literal* literal = expr->right()->AsLiteral(); |
| Handle<String> rhs = Handle<String>::cast(literal->handle()); |
| HClassOfTestAndBranch* instr = |
| new(zone()) HClassOfTestAndBranch(value, rhs); |
| instr->set_position(expr->position()); |
| return ast_context()->ReturnControl(instr, expr->id()); |
| } |
| |
| TypeInfo left_type, right_type, overall_type_info; |
| oracle()->CompareType(expr, &left_type, &right_type, &overall_type_info); |
| Representation combined_rep = ToRepresentation(overall_type_info); |
| Representation left_rep = ToRepresentation(left_type); |
| Representation right_rep = ToRepresentation(right_type); |
| // Check if this expression was ever executed according to type feedback. |
| // Note that for the special typeof/null/undefined cases we get unknown here. |
| if (overall_type_info.IsUninitialized()) { |
| AddSoftDeoptimize(); |
| overall_type_info = left_type = right_type = TypeInfo::Unknown(); |
| } |
| |
| CHECK_ALIVE(VisitForValue(expr->left())); |
| CHECK_ALIVE(VisitForValue(expr->right())); |
| |
| HValue* context = environment()->LookupContext(); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| Token::Value op = expr->op(); |
| |
| HTypeof* typeof_expr = NULL; |
| Handle<String> check; |
| if (IsLiteralCompareTypeof(left, op, right, &typeof_expr, &check)) { |
| return HandleLiteralCompareTypeof(expr, typeof_expr, check); |
| } |
| HValue* sub_expr = NULL; |
| Factory* f = graph()->isolate()->factory(); |
| if (IsLiteralCompareNil(left, op, right, f->undefined_value(), &sub_expr)) { |
| return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue); |
| } |
| if (IsLiteralCompareNil(left, op, right, f->null_value(), &sub_expr)) { |
| return HandleLiteralCompareNil(expr, sub_expr, kNullValue); |
| } |
| if (IsLiteralCompareBool(left, op, right)) { |
| HCompareObjectEqAndBranch* result = |
| new(zone()) HCompareObjectEqAndBranch(left, right); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnControl(result, expr->id()); |
| } |
| |
| if (op == Token::INSTANCEOF) { |
| // Check to see if the rhs of the instanceof is a global function not |
| // residing in new space. If it is we assume that the function will stay the |
| // same. |
| Handle<JSFunction> target = Handle<JSFunction>::null(); |
| VariableProxy* proxy = expr->right()->AsVariableProxy(); |
| bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated(); |
| if (global_function && |
| info()->has_global_object() && |
| !info()->global_object()->IsAccessCheckNeeded()) { |
| Handle<String> name = proxy->name(); |
| Handle<GlobalObject> global(info()->global_object()); |
| LookupResult lookup(isolate()); |
| global->Lookup(*name, &lookup); |
| if (lookup.IsNormal() && lookup.GetValue()->IsJSFunction()) { |
| Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue())); |
| // If the function is in new space we assume it's more likely to |
| // change and thus prefer the general IC code. |
| if (!isolate()->heap()->InNewSpace(*candidate)) { |
| target = candidate; |
| } |
| } |
| } |
| |
| // If the target is not null we have found a known global function that is |
| // assumed to stay the same for this instanceof. |
| if (target.is_null()) { |
| HInstanceOf* result = new(zone()) HInstanceOf(context, left, right); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(result, expr->id()); |
| } else { |
| AddInstruction(new(zone()) HCheckFunction(right, target)); |
| HInstanceOfKnownGlobal* result = |
| new(zone()) HInstanceOfKnownGlobal(context, left, target); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(result, expr->id()); |
| } |
| } else if (op == Token::IN) { |
| HIn* result = new(zone()) HIn(context, left, right); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(result, expr->id()); |
| } else if (overall_type_info.IsNonPrimitive()) { |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: { |
| // Can we get away with map check and not instance type check? |
| Handle<Map> map = oracle()->GetCompareMap(expr); |
| if (!map.is_null()) { |
| AddCheckMapsWithTransitions(left, map); |
| AddCheckMapsWithTransitions(right, map); |
| HCompareObjectEqAndBranch* result = |
| new(zone()) HCompareObjectEqAndBranch(left, right); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnControl(result, expr->id()); |
| } else { |
| AddInstruction(new(zone()) HCheckNonSmi(left)); |
| AddInstruction(HCheckInstanceType::NewIsSpecObject(left, zone())); |
| AddInstruction(new(zone()) HCheckNonSmi(right)); |
| AddInstruction(HCheckInstanceType::NewIsSpecObject(right, zone())); |
| HCompareObjectEqAndBranch* result = |
| new(zone()) HCompareObjectEqAndBranch(left, right); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnControl(result, expr->id()); |
| } |
| } |
| default: |
| return Bailout("Unsupported non-primitive compare"); |
| } |
| } else if (overall_type_info.IsSymbol() && Token::IsEqualityOp(op)) { |
| AddInstruction(new(zone()) HCheckNonSmi(left)); |
| AddInstruction(HCheckInstanceType::NewIsSymbol(left, zone())); |
| AddInstruction(new(zone()) HCheckNonSmi(right)); |
| AddInstruction(HCheckInstanceType::NewIsSymbol(right, zone())); |
| HCompareObjectEqAndBranch* result = |
| new(zone()) HCompareObjectEqAndBranch(left, right); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnControl(result, expr->id()); |
| } else { |
| if (combined_rep.IsTagged() || combined_rep.IsNone()) { |
| HCompareGeneric* result = |
| new(zone()) HCompareGeneric(context, left, right, op); |
| result->set_observed_input_representation(left_rep, right_rep); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnInstruction(result, expr->id()); |
| } else { |
| HCompareIDAndBranch* result = |
| new(zone()) HCompareIDAndBranch(left, right, op); |
| result->set_observed_input_representation(left_rep, right_rep); |
| result->set_position(expr->position()); |
| return ast_context()->ReturnControl(result, expr->id()); |
| } |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr, |
| HValue* value, |
| NilValue nil) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| EqualityKind kind = |
| expr->op() == Token::EQ_STRICT ? kStrictEquality : kNonStrictEquality; |
| HIsNilAndBranch* instr = new(zone()) HIsNilAndBranch(value, kind, nil); |
| instr->set_position(expr->position()); |
| return ast_context()->ReturnControl(instr, expr->id()); |
| } |
| |
| |
| HInstruction* HOptimizedGraphBuilder::BuildThisFunction() { |
| // If we share optimized code between different closures, the |
| // this-function is not a constant, except inside an inlined body. |
| if (function_state()->outer() != NULL) { |
| return new(zone()) HConstant( |
| function_state()->compilation_info()->closure(), |
| Representation::Tagged()); |
| } else { |
| return new(zone()) HThisFunction; |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) { |
| ASSERT(!HasStackOverflow()); |
| ASSERT(current_block() != NULL); |
| ASSERT(current_block()->HasPredecessor()); |
| HInstruction* instr = BuildThisFunction(); |
| return ast_context()->ReturnInstruction(instr, expr->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitDeclarations( |
| ZoneList<Declaration*>* declarations) { |
| ASSERT(globals_.is_empty()); |
| AstVisitor::VisitDeclarations(declarations); |
| if (!globals_.is_empty()) { |
| Handle<FixedArray> array = |
| isolate()->factory()->NewFixedArray(globals_.length(), TENURED); |
| for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i)); |
| int flags = DeclareGlobalsEvalFlag::encode(info()->is_eval()) | |
| DeclareGlobalsNativeFlag::encode(info()->is_native()) | |
| DeclareGlobalsLanguageMode::encode(info()->language_mode()); |
| HInstruction* result = new(zone()) HDeclareGlobals( |
| environment()->LookupContext(), array, flags); |
| AddInstruction(result); |
| globals_.Clear(); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitVariableDeclaration( |
| VariableDeclaration* declaration) { |
| VariableProxy* proxy = declaration->proxy(); |
| VariableMode mode = declaration->mode(); |
| Variable* variable = proxy->var(); |
| bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET; |
| switch (variable->location()) { |
| case Variable::UNALLOCATED: |
| globals_.Add(variable->name(), zone()); |
| globals_.Add(variable->binding_needs_init() |
| ? isolate()->factory()->the_hole_value() |
| : isolate()->factory()->undefined_value(), zone()); |
| return; |
| case Variable::PARAMETER: |
| case Variable::LOCAL: |
| if (hole_init) { |
| HValue* value = graph()->GetConstantHole(); |
| environment()->Bind(variable, value); |
| } |
| break; |
| case Variable::CONTEXT: |
| if (hole_init) { |
| HValue* value = graph()->GetConstantHole(); |
| HValue* context = environment()->LookupContext(); |
| HStoreContextSlot* store = new(zone()) HStoreContextSlot( |
| context, variable->index(), HStoreContextSlot::kNoCheck, value); |
| AddInstruction(store); |
| if (store->HasObservableSideEffects()) { |
| AddSimulate(proxy->id(), REMOVABLE_SIMULATE); |
| } |
| } |
| break; |
| case Variable::LOOKUP: |
| return Bailout("unsupported lookup slot in declaration"); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitFunctionDeclaration( |
| FunctionDeclaration* declaration) { |
| VariableProxy* proxy = declaration->proxy(); |
| Variable* variable = proxy->var(); |
| switch (variable->location()) { |
| case Variable::UNALLOCATED: { |
| globals_.Add(variable->name(), zone()); |
| Handle<SharedFunctionInfo> function = |
| Compiler::BuildFunctionInfo(declaration->fun(), info()->script()); |
| // Check for stack-overflow exception. |
| if (function.is_null()) return SetStackOverflow(); |
| globals_.Add(function, zone()); |
| return; |
| } |
| case Variable::PARAMETER: |
| case Variable::LOCAL: { |
| CHECK_ALIVE(VisitForValue(declaration->fun())); |
| HValue* value = Pop(); |
| environment()->Bind(variable, value); |
| break; |
| } |
| case Variable::CONTEXT: { |
| CHECK_ALIVE(VisitForValue(declaration->fun())); |
| HValue* value = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HStoreContextSlot* store = new(zone()) HStoreContextSlot( |
| context, variable->index(), HStoreContextSlot::kNoCheck, value); |
| AddInstruction(store); |
| if (store->HasObservableSideEffects()) { |
| AddSimulate(proxy->id(), REMOVABLE_SIMULATE); |
| } |
| break; |
| } |
| case Variable::LOOKUP: |
| return Bailout("unsupported lookup slot in declaration"); |
| } |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitModuleDeclaration( |
| ModuleDeclaration* declaration) { |
| UNREACHABLE(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitImportDeclaration( |
| ImportDeclaration* declaration) { |
| UNREACHABLE(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitExportDeclaration( |
| ExportDeclaration* declaration) { |
| UNREACHABLE(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) { |
| UNREACHABLE(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitModuleVariable(ModuleVariable* module) { |
| UNREACHABLE(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitModulePath(ModulePath* module) { |
| UNREACHABLE(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitModuleUrl(ModuleUrl* module) { |
| UNREACHABLE(); |
| } |
| |
| |
| void HOptimizedGraphBuilder::VisitModuleStatement(ModuleStatement* stmt) { |
| UNREACHABLE(); |
| } |
| |
| |
| // Generators for inline runtime functions. |
| // Support for types. |
| void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HIsSmiAndBranch* result = new(zone()) HIsSmiAndBranch(value); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HHasInstanceTypeAndBranch* result = |
| new(zone()) HHasInstanceTypeAndBranch(value, |
| FIRST_SPEC_OBJECT_TYPE, |
| LAST_SPEC_OBJECT_TYPE); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HHasInstanceTypeAndBranch* result = |
| new(zone()) HHasInstanceTypeAndBranch(value, JS_FUNCTION_TYPE); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HHasCachedArrayIndexAndBranch* result = |
| new(zone()) HHasCachedArrayIndexAndBranch(value); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HHasInstanceTypeAndBranch* result = |
| new(zone()) HHasInstanceTypeAndBranch(value, JS_ARRAY_TYPE); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HHasInstanceTypeAndBranch* result = |
| new(zone()) HHasInstanceTypeAndBranch(value, JS_REGEXP_TYPE); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HIsObjectAndBranch* result = new(zone()) HIsObjectAndBranch(value); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) { |
| return Bailout("inlined runtime function: IsNonNegativeSmi"); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HIsUndetectableAndBranch* result = |
| new(zone()) HIsUndetectableAndBranch(value); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf( |
| CallRuntime* call) { |
| return Bailout( |
| "inlined runtime function: IsStringWrapperSafeForDefaultValueOf"); |
| } |
| |
| |
| // Support for construct call checks. |
| void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 0); |
| if (function_state()->outer() != NULL) { |
| // We are generating graph for inlined function. |
| HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN |
| ? graph()->GetConstantTrue() |
| : graph()->GetConstantFalse(); |
| return ast_context()->ReturnValue(value); |
| } else { |
| return ast_context()->ReturnControl(new(zone()) HIsConstructCallAndBranch, |
| call->id()); |
| } |
| } |
| |
| |
| // Support for arguments.length and arguments[?]. |
| void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) { |
| // Our implementation of arguments (based on this stack frame or an |
| // adapter below it) does not work for inlined functions. This runtime |
| // function is blacklisted by AstNode::IsInlineable. |
| ASSERT(function_state()->outer() == NULL); |
| ASSERT(call->arguments()->length() == 0); |
| HInstruction* elements = AddInstruction( |
| new(zone()) HArgumentsElements(false)); |
| HArgumentsLength* result = new(zone()) HArgumentsLength(elements); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) { |
| // Our implementation of arguments (based on this stack frame or an |
| // adapter below it) does not work for inlined functions. This runtime |
| // function is blacklisted by AstNode::IsInlineable. |
| ASSERT(function_state()->outer() == NULL); |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* index = Pop(); |
| HInstruction* elements = AddInstruction( |
| new(zone()) HArgumentsElements(false)); |
| HInstruction* length = AddInstruction(new(zone()) HArgumentsLength(elements)); |
| HInstruction* checked_index = |
| AddInstruction(new(zone()) HBoundsCheck(index, length)); |
| HAccessArgumentsAt* result = |
| new(zone()) HAccessArgumentsAt(elements, length, checked_index); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Support for accessing the class and value fields of an object. |
| void HOptimizedGraphBuilder::GenerateClassOf(CallRuntime* call) { |
| // The special form detected by IsClassOfTest is detected before we get here |
| // and does not cause a bailout. |
| return Bailout("inlined runtime function: ClassOf"); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HValueOf* result = new(zone()) HValueOf(value); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 2); |
| ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral()); |
| Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->handle())); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* date = Pop(); |
| HDateField* result = new(zone()) HDateField(date, index); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar( |
| CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 3); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(2))); |
| HValue* value = Pop(); |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HSeqStringSetChar* result = new(zone()) HSeqStringSetChar( |
| String::ONE_BYTE_ENCODING, string, index, value); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar( |
| CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 3); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(2))); |
| HValue* value = Pop(); |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HStringCharCodeAt* char_code = BuildStringCharCodeAt(context, string, index); |
| AddInstruction(char_code); |
| HSeqStringSetChar* result = new(zone()) HSeqStringSetChar( |
| String::TWO_BYTE_ENCODING, string, index, value); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 2); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); |
| HValue* value = Pop(); |
| HValue* object = Pop(); |
| // Check if object is a not a smi. |
| HIsSmiAndBranch* smicheck = new(zone()) HIsSmiAndBranch(object); |
| HBasicBlock* if_smi = graph()->CreateBasicBlock(); |
| HBasicBlock* if_heap_object = graph()->CreateBasicBlock(); |
| HBasicBlock* join = graph()->CreateBasicBlock(); |
| smicheck->SetSuccessorAt(0, if_smi); |
| smicheck->SetSuccessorAt(1, if_heap_object); |
| current_block()->Finish(smicheck); |
| if_smi->Goto(join); |
| |
| // Check if object is a JSValue. |
| set_current_block(if_heap_object); |
| HHasInstanceTypeAndBranch* typecheck = |
| new(zone()) HHasInstanceTypeAndBranch(object, JS_VALUE_TYPE); |
| HBasicBlock* if_js_value = graph()->CreateBasicBlock(); |
| HBasicBlock* not_js_value = graph()->CreateBasicBlock(); |
| typecheck->SetSuccessorAt(0, if_js_value); |
| typecheck->SetSuccessorAt(1, not_js_value); |
| current_block()->Finish(typecheck); |
| not_js_value->Goto(join); |
| |
| // Create in-object property store to kValueOffset. |
| set_current_block(if_js_value); |
| Handle<String> name = isolate()->factory()->undefined_symbol(); |
| AddInstruction(new(zone()) HStoreNamedField(object, |
| name, |
| value, |
| true, // in-object store. |
| JSValue::kValueOffset)); |
| if_js_value->Goto(join); |
| join->SetJoinId(call->id()); |
| set_current_block(join); |
| return ast_context()->ReturnValue(value); |
| } |
| |
| |
| // Fast support for charCodeAt(n). |
| void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 2); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HStringCharCodeAt* result = BuildStringCharCodeAt(context, string, index); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for string.charAt(n) and string[n]. |
| void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* char_code = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HStringCharFromCode* result = |
| new(zone()) HStringCharFromCode(context, char_code); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for string.charAt(n) and string[n]. |
| void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 2); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); |
| HValue* index = Pop(); |
| HValue* string = Pop(); |
| HValue* context = environment()->LookupContext(); |
| HStringCharCodeAt* char_code = BuildStringCharCodeAt(context, string, index); |
| AddInstruction(char_code); |
| HStringCharFromCode* result = |
| new(zone()) HStringCharFromCode(context, char_code); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for object equality testing. |
| void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 2); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| HCompareObjectEqAndBranch* result = |
| new(zone()) HCompareObjectEqAndBranch(left, right); |
| return ast_context()->ReturnControl(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateLog(CallRuntime* call) { |
| // %_Log is ignored in optimized code. |
| return ast_context()->ReturnValue(graph()->GetConstantUndefined()); |
| } |
| |
| |
| // Fast support for Math.random(). |
| void HOptimizedGraphBuilder::GenerateRandomHeapNumber(CallRuntime* call) { |
| HValue* context = environment()->LookupContext(); |
| HGlobalObject* global_object = new(zone()) HGlobalObject(context); |
| AddInstruction(global_object); |
| HRandom* result = new(zone()) HRandom(global_object); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for StringAdd. |
| void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) { |
| ASSERT_EQ(2, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = new(zone()) HCallStub(context, CodeStub::StringAdd, 2); |
| Drop(2); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for SubString. |
| void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) { |
| ASSERT_EQ(3, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = new(zone()) HCallStub(context, CodeStub::SubString, 3); |
| Drop(3); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast support for StringCompare. |
| void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) { |
| ASSERT_EQ(2, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::StringCompare, 2); |
| Drop(2); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Support for direct calls from JavaScript to native RegExp code. |
| void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) { |
| ASSERT_EQ(4, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = new(zone()) HCallStub(context, CodeStub::RegExpExec, 4); |
| Drop(4); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Construct a RegExp exec result with two in-object properties. |
| void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) { |
| ASSERT_EQ(3, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::RegExpConstructResult, 3); |
| Drop(3); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Support for fast native caches. |
| void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) { |
| return Bailout("inlined runtime function: GetFromCache"); |
| } |
| |
| |
| // Fast support for number to string. |
| void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::NumberToString, 1); |
| Drop(1); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| // Fast call for custom callbacks. |
| void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) { |
| // 1 ~ The function to call is not itself an argument to the call. |
| int arg_count = call->arguments()->length() - 1; |
| ASSERT(arg_count >= 1); // There's always at least a receiver. |
| |
| for (int i = 0; i < arg_count; ++i) { |
| CHECK_ALIVE(VisitArgument(call->arguments()->at(i))); |
| } |
| CHECK_ALIVE(VisitForValue(call->arguments()->last())); |
| |
| HValue* function = Pop(); |
| HValue* context = environment()->LookupContext(); |
| |
| // Branch for function proxies, or other non-functions. |
| HHasInstanceTypeAndBranch* typecheck = |
| new(zone()) HHasInstanceTypeAndBranch(function, JS_FUNCTION_TYPE); |
| HBasicBlock* if_jsfunction = graph()->CreateBasicBlock(); |
| HBasicBlock* if_nonfunction = graph()->CreateBasicBlock(); |
| HBasicBlock* join = graph()->CreateBasicBlock(); |
| typecheck->SetSuccessorAt(0, if_jsfunction); |
| typecheck->SetSuccessorAt(1, if_nonfunction); |
| current_block()->Finish(typecheck); |
| |
| set_current_block(if_jsfunction); |
| HInstruction* invoke_result = AddInstruction( |
| new(zone()) HInvokeFunction(context, function, arg_count)); |
| Drop(arg_count); |
| Push(invoke_result); |
| if_jsfunction->Goto(join); |
| |
| set_current_block(if_nonfunction); |
| HInstruction* call_result = AddInstruction( |
| new(zone()) HCallFunction(context, function, arg_count)); |
| Drop(arg_count); |
| Push(call_result); |
| if_nonfunction->Goto(join); |
| |
| set_current_block(join); |
| join->SetJoinId(call->id()); |
| return ast_context()->ReturnValue(Pop()); |
| } |
| |
| |
| // Fast call to math functions. |
| void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) { |
| ASSERT_EQ(2, call->arguments()->length()); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(1))); |
| HValue* right = Pop(); |
| HValue* left = Pop(); |
| HPower* result = new(zone()) HPower(left, right); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateMathSin(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); |
| result->set_transcendental_type(TranscendentalCache::SIN); |
| Drop(1); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateMathCos(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); |
| result->set_transcendental_type(TranscendentalCache::COS); |
| Drop(1); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateMathTan(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); |
| result->set_transcendental_type(TranscendentalCache::TAN); |
| Drop(1); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateMathLog(CallRuntime* call) { |
| ASSERT_EQ(1, call->arguments()->length()); |
| CHECK_ALIVE(VisitArgumentList(call->arguments())); |
| HValue* context = environment()->LookupContext(); |
| HCallStub* result = |
| new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1); |
| result->set_transcendental_type(TranscendentalCache::LOG); |
| Drop(1); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) { |
| return Bailout("inlined runtime function: MathSqrt"); |
| } |
| |
| |
| // Check whether two RegExps are equivalent |
| void HOptimizedGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) { |
| return Bailout("inlined runtime function: IsRegExpEquivalent"); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) { |
| ASSERT(call->arguments()->length() == 1); |
| CHECK_ALIVE(VisitForValue(call->arguments()->at(0))); |
| HValue* value = Pop(); |
| HGetCachedArrayIndex* result = new(zone()) HGetCachedArrayIndex(value); |
| return ast_context()->ReturnInstruction(result, call->id()); |
| } |
| |
| |
| void HOptimizedGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) { |
| return Bailout("inlined runtime function: FastAsciiArrayJoin"); |
| } |
| |
| |
| #undef CHECK_BAILOUT |
| #undef CHECK_ALIVE |
| |
| |
| HEnvironment::HEnvironment(HEnvironment* outer, |
| Scope* scope, |
| Handle<JSFunction> closure, |
| Zone* zone) |
| : closure_(closure), |
| values_(0, zone), |
| frame_type_(JS_FUNCTION), |
| parameter_count_(0), |
| specials_count_(1), |
| local_count_(0), |
| outer_(outer), |
| entry_(NULL), |
| pop_count_(0), |
| push_count_(0), |
| ast_id_(BailoutId::None()), |
| zone_(zone) { |
| Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0); |
| } |
| |
| |
| HEnvironment::HEnvironment(Zone* zone) |
| : values_(0, zone), |
| frame_type_(STUB), |
| parameter_count_(0), |
| specials_count_(0), |
| local_count_(0), |
| outer_(NULL), |
| entry_(NULL), |
| pop_count_(0), |
| push_count_(0), |
| ast_id_(BailoutId::None()), |
| zone_(zone) { |
| Initialize(0, 0, 0); |
| } |
| |
| |
| HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone) |
| : values_(0, zone), |
| frame_type_(JS_FUNCTION), |
| parameter_count_(0), |
| specials_count_(0), |
| local_count_(0), |
| outer_(NULL), |
| entry_(NULL), |
| pop_count_(0), |
| push_count_(0), |
| ast_id_(other->ast_id()), |
| zone_(zone) { |
| Initialize(other); |
| } |
| |
| |
| HEnvironment::HEnvironment(HEnvironment* outer, |
| Handle<JSFunction> closure, |
| FrameType frame_type, |
| int arguments, |
| Zone* zone) |
| : closure_(closure), |
| values_(arguments, zone), |
| frame_type_(frame_type), |
| parameter_count_(arguments), |
| local_count_(0), |
| outer_(outer), |
| entry_(NULL), |
| pop_count_(0), |
| push_count_(0), |
| ast_id_(BailoutId::None()), |
| zone_(zone) { |
| } |
| |
| |
| void HEnvironment::Initialize(int parameter_count, |
| int local_count, |
| int stack_height) { |
| parameter_count_ = parameter_count; |
| local_count_ = local_count; |
| |
| // Avoid reallocating the temporaries' backing store on the first Push. |
| int total = parameter_count + specials_count_ + local_count + stack_height; |
| values_.Initialize(total + 4, zone()); |
| for (int i = 0; i < total; ++i) values_.Add(NULL, zone()); |
| } |
| |
| |
| void HEnvironment::Initialize(const HEnvironment* other) { |
| closure_ = other->closure(); |
| values_.AddAll(other->values_, zone()); |
| assigned_variables_.Union(other->assigned_variables_, zone()); |
| frame_type_ = other->frame_type_; |
| parameter_count_ = other->parameter_count_; |
| local_count_ = other->local_count_; |
| if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy. |
| entry_ = other->entry_; |
| pop_count_ = other->pop_count_; |
| push_count_ = other->push_count_; |
| specials_count_ = other->specials_count_; |
| ast_id_ = other->ast_id_; |
| } |
| |
| |
| void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) { |
| ASSERT(!block->IsLoopHeader()); |
| ASSERT(values_.length() == other->values_.length()); |
| |
| int length = values_.length(); |
| for (int i = 0; i < length; ++i) { |
| HValue* value = values_[i]; |
| if (value != NULL && value->IsPhi() && value->block() == block) { |
| // There is already a phi for the i'th value. |
| HPhi* phi = HPhi::cast(value); |
| // Assert index is correct and that we haven't missed an incoming edge. |
| ASSERT(phi->merged_index() == i); |
| ASSERT(phi->OperandCount() == block->predecessors()->length()); |
| phi->AddInput(other->values_[i]); |
| } else if (values_[i] != other->values_[i]) { |
| // There is a fresh value on the incoming edge, a phi is needed. |
| ASSERT(values_[i] != NULL && other->values_[i] != NULL); |
| HPhi* phi = new(zone()) HPhi(i, zone()); |
| HValue* old_value = values_[i]; |
| for (int j = 0; j < block->predecessors()->length(); j++) { |
| phi->AddInput(old_value); |
| } |
| phi->AddInput(other->values_[i]); |
| this->values_[i] = phi; |
| block->AddPhi(phi); |
| } |
| } |
| } |
| |
| |
| void HEnvironment::Bind(int index, HValue* value) { |
| ASSERT(value != NULL); |
| assigned_variables_.Add(index, zone()); |
| values_[index] = value; |
| } |
| |
| |
| bool HEnvironment::HasExpressionAt(int index) const { |
| return index >= parameter_count_ + specials_count_ + local_count_; |
| } |
| |
| |
| bool HEnvironment::ExpressionStackIsEmpty() const { |
| ASSERT(length() >= first_expression_index()); |
| return length() == first_expression_index(); |
| } |
| |
| |
| void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) { |
| int count = index_from_top + 1; |
| int index = values_.length() - count; |
| ASSERT(HasExpressionAt(index)); |
| // The push count must include at least the element in question or else |
| // the new value will not be included in this environment's history. |
| if (push_count_ < count) { |
| // This is the same effect as popping then re-pushing 'count' elements. |
| pop_count_ += (count - push_count_); |
| push_count_ = count; |
| } |
| values_[index] = value; |
| } |
| |
| |
| void HEnvironment::Drop(int count) { |
| for (int i = 0; i < count; ++i) { |
| Pop(); |
| } |
| } |
| |
| |
| HEnvironment* HEnvironment::Copy() const { |
| return new(zone()) HEnvironment(this, zone()); |
| } |
| |
| |
| HEnvironment* HEnvironment::CopyWithoutHistory() const { |
| HEnvironment* result = Copy(); |
| result->ClearHistory(); |
| return result; |
| } |
| |
| |
| HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const { |
| HEnvironment* new_env = Copy(); |
| for (int i = 0; i < values_.length(); ++i) { |
| HPhi* phi = new(zone()) HPhi(i, zone()); |
| phi->AddInput(values_[i]); |
| new_env->values_[i] = phi; |
| loop_header->AddPhi(phi); |
| } |
| new_env->ClearHistory(); |
| return new_env; |
| } |
| |
| |
| HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer, |
| Handle<JSFunction> target, |
| FrameType frame_type, |
| int arguments) const { |
| HEnvironment* new_env = |
| new(zone()) HEnvironment(outer, target, frame_type, |
| arguments + 1, zone()); |
| for (int i = 0; i <= arguments; ++i) { // Include receiver. |
| new_env->Push(ExpressionStackAt(arguments - i)); |
| } |
| new_env->ClearHistory(); |
| return new_env; |
| } |
| |
| |
| HEnvironment* HEnvironment::CopyForInlining( |
| Handle<JSFunction> target, |
| int arguments, |
| FunctionLiteral* function, |
| HConstant* undefined, |
| InliningKind inlining_kind, |
| bool undefined_receiver) const { |
| ASSERT(frame_type() == JS_FUNCTION); |
| |
| // Outer environment is a copy of this one without the arguments. |
| int arity = function->scope()->num_parameters(); |
| |
| HEnvironment* outer = Copy(); |
| outer->Drop(arguments + 1); // Including receiver. |
| outer->ClearHistory(); |
| |
| if (inlining_kind == CONSTRUCT_CALL_RETURN) { |
| // Create artificial constructor stub environment. The receiver should |
| // actually be the constructor function, but we pass the newly allocated |
| // object instead, DoComputeConstructStubFrame() relies on that. |
| outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments); |
| } else if (inlining_kind == GETTER_CALL_RETURN) { |
| // We need an additional StackFrame::INTERNAL frame for restoring the |
| // correct context. |
| outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments); |
| } else if (inlining_kind == SETTER_CALL_RETURN) { |
| // We need an additional StackFrame::INTERNAL frame for temporarily saving |
| // the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter. |
| outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments); |
| } |
| |
| if (arity != arguments) { |
| // Create artificial arguments adaptation environment. |
| outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments); |
| } |
| |
| HEnvironment* inner = |
| new(zone()) HEnvironment(outer, function->scope(), target, zone()); |
| // Get the argument values from the original environment. |
| for (int i = 0; i <= arity; ++i) { // Include receiver. |
| HValue* push = (i <= arguments) ? |
| ExpressionStackAt(arguments - i) : undefined; |
| inner->SetValueAt(i, push); |
| } |
| // If the function we are inlining is a strict mode function or a |
| // builtin function, pass undefined as the receiver for function |
| // calls (instead of the global receiver). |
| if (undefined_receiver) { |
| inner->SetValueAt(0, undefined); |
| } |
| inner->SetValueAt(arity + 1, LookupContext()); |
| for (int i = arity + 2; i < inner->length(); ++i) { |
| inner->SetValueAt(i, undefined); |
| } |
| |
| inner->set_ast_id(BailoutId::FunctionEntry()); |
| return inner; |
| } |
| |
| |
| void HEnvironment::PrintTo(StringStream* stream) { |
| for (int i = 0; i < length(); i++) { |
| if (i == 0) stream->Add("parameters\n"); |
| if (i == parameter_count()) stream->Add("specials\n"); |
| if (i == parameter_count() + specials_count()) stream->Add("locals\n"); |
| if (i == parameter_count() + specials_count() + local_count()) { |
| stream->Add("expressions\n"); |
| } |
| HValue* val = values_.at(i); |
| stream->Add("%d: ", i); |
| if (val != NULL) { |
| val->PrintNameTo(stream); |
| } else { |
| stream->Add("NULL"); |
| } |
| stream->Add("\n"); |
| } |
| PrintF("\n"); |
| } |
| |
| |
| void HEnvironment::PrintToStd() { |
| HeapStringAllocator string_allocator; |
| StringStream trace(&string_allocator); |
| PrintTo(&trace); |
| PrintF("%s", *trace.ToCString()); |
| } |
| |
| |
| void HTracer::TraceCompilation(CompilationInfo* info) { |
| Tag tag(this, "compilation"); |
| if (info->IsOptimizing()) { |
| Handle<String> name = info->function()->debug_name(); |
| PrintStringProperty("name", *name->ToCString()); |
| PrintStringProperty("method", *name->ToCString()); |
| } else { |
| CodeStub::Major major_key = info->code_stub()->MajorKey(); |
| PrintStringProperty("name", CodeStub::MajorName(major_key, false)); |
| PrintStringProperty("method", "stub"); |
| } |
| PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis())); |
| } |
| |
| |
| void HTracer::TraceLithium(const char* name, LChunk* chunk) { |
| Trace(name, chunk->graph(), chunk); |
| } |
| |
| |
| void HTracer::TraceHydrogen(const char* name, HGraph* graph) { |
| Trace(name, graph, NULL); |
| } |
| |
| |
| void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) { |
| Tag tag(this, "cfg"); |
| PrintStringProperty("name", name); |
| const ZoneList<HBasicBlock*>* blocks = graph->blocks(); |
| for (int i = 0; i < blocks->length(); i++) { |
| HBasicBlock* current = blocks->at(i); |
| Tag block_tag(this, "block"); |
| PrintBlockProperty("name", current->block_id()); |
| PrintIntProperty("from_bci", -1); |
| PrintIntProperty("to_bci", -1); |
| |
| if (!current->predecessors()->is_empty()) { |
| PrintIndent(); |
| trace_.Add("predecessors"); |
| for (int j = 0; j < current->predecessors()->length(); ++j) { |
| trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id()); |
| } |
| trace_.Add("\n"); |
| } else { |
| PrintEmptyProperty("predecessors"); |
| } |
| |
| if (current->end()->SuccessorCount() == 0) { |
| PrintEmptyProperty("successors"); |
| } else { |
| PrintIndent(); |
| trace_.Add("successors"); |
| for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) { |
| trace_.Add(" \"B%d\"", it.Current()->block_id()); |
| } |
| trace_.Add("\n"); |
| } |
| |
| PrintEmptyProperty("xhandlers"); |
| const char* flags = current->IsLoopSuccessorDominator() |
| ? "dom-loop-succ" |
| : ""; |
| PrintStringProperty("flags", flags); |
| |
| if (current->dominator() != NULL) { |
| PrintBlockProperty("dominator", current->dominator()->block_id()); |
| } |
| |
| PrintIntProperty("loop_depth", current->LoopNestingDepth()); |
| |
| if (chunk != NULL) { |
| int first_index = current->first_instruction_index(); |
| int last_index = current->last_instruction_index(); |
| PrintIntProperty( |
| "first_lir_id", |
| LifetimePosition::FromInstructionIndex(first_index).Value()); |
| PrintIntProperty( |
| "last_lir_id", |
| LifetimePosition::FromInstructionIndex(last_index).Value()); |
| } |
| |
| { |
| Tag states_tag(this, "states"); |
| Tag locals_tag(this, "locals"); |
| int total = current->phis()->length(); |
| PrintIntProperty("size", current->phis()->length()); |
| PrintStringProperty("method", "None"); |
| for (int j = 0; j < total; ++j) { |
| HPhi* phi = current->phis()->at(j); |
| PrintIndent(); |
| trace_.Add("%d ", phi->merged_index()); |
| phi->PrintNameTo(&trace_); |
| trace_.Add(" "); |
| phi->PrintTo(&trace_); |
| trace_.Add("\n"); |
| } |
| } |
| |
| { |
| Tag HIR_tag(this, "HIR"); |
| HInstruction* instruction = current->first(); |
| while (instruction != NULL) { |
| int bci = 0; |
| int uses = instruction->UseCount(); |
| PrintIndent(); |
| trace_.Add("%d %d ", bci, uses); |
| instruction->PrintNameTo(&trace_); |
| trace_.Add(" "); |
| instruction->PrintTo(&trace_); |
| trace_.Add(" <|@\n"); |
| instruction = instruction->next(); |
| } |
| } |
| |
| |
| if (chunk != NULL) { |
| Tag LIR_tag(this, "LIR"); |
| int first_index = current->first_instruction_index(); |
| int last_index = current->last_instruction_index(); |
| if (first_index != -1 && last_index != -1) { |
| const ZoneList<LInstruction*>* instructions = chunk->instructions(); |
| for (int i = first_index; i <= last_index; ++i) { |
| LInstruction* linstr = instructions->at(i); |
| if (linstr != NULL) { |
| PrintIndent(); |
| trace_.Add("%d ", |
| LifetimePosition::FromInstructionIndex(i).Value()); |
| linstr->PrintTo(&trace_); |
| trace_.Add(" <|@\n"); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) { |
| Tag tag(this, "intervals"); |
| PrintStringProperty("name", name); |
| |
| const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges(); |
| for (int i = 0; i < fixed_d->length(); ++i) { |
| TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone()); |
| } |
| |
| const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges(); |
| for (int i = 0; i < fixed->length(); ++i) { |
| TraceLiveRange(fixed->at(i), "fixed", allocator->zone()); |
| } |
| |
| const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges(); |
| for (int i = 0; i < live_ranges->length(); ++i) { |
| TraceLiveRange(live_ranges->at(i), "object", allocator->zone()); |
| } |
| } |
| |
| |
| void HTracer::TraceLiveRange(LiveRange* range, const char* type, |
| Zone* zone) { |
| if (range != NULL && !range->IsEmpty()) { |
| PrintIndent(); |
| trace_.Add("%d %s", range->id(), type); |
| if (range->HasRegisterAssigned()) { |
| LOperand* op = range->CreateAssignedOperand(zone); |
| int assigned_reg = op->index(); |
| if (op->IsDoubleRegister()) { |
| trace_.Add(" \"%s\"", |
| DoubleRegister::AllocationIndexToString(assigned_reg)); |
| } else { |
| ASSERT(op->IsRegister()); |
| trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg)); |
| } |
| } else if (range->IsSpilled()) { |
| LOperand* op = range->TopLevel()->GetSpillOperand(); |
| if (op->IsDoubleStackSlot()) { |
| trace_.Add(" \"double_stack:%d\"", op->index()); |
| } else { |
| ASSERT(op->IsStackSlot()); |
| trace_.Add(" \"stack:%d\"", op->index()); |
| } |
| } |
| int parent_index = -1; |
| if (range->IsChild()) { |
| parent_index = range->parent()->id(); |
| } else { |
| parent_index = range->id(); |
| } |
| LOperand* op = range->FirstHint(); |
| int hint_index = -1; |
| if (op != NULL && op->IsUnallocated()) { |
| hint_index = LUnallocated::cast(op)->virtual_register(); |
| } |
| trace_.Add(" %d %d", parent_index, hint_index); |
| UseInterval* cur_interval = range->first_interval(); |
| while (cur_interval != NULL && range->Covers(cur_interval->start())) { |
| trace_.Add(" [%d, %d[", |
| cur_interval->start().Value(), |
| cur_interval->end().Value()); |
| cur_interval = cur_interval->next(); |
| } |
| |
| UsePosition* current_pos = range->first_pos(); |
| while (current_pos != NULL) { |
| if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) { |
| trace_.Add(" %d M", current_pos->pos().Value()); |
| } |
| current_pos = current_pos->next(); |
| } |
| |
| trace_.Add(" \"\"\n"); |
| } |
| } |
| |
| |
| void HTracer::FlushToFile() { |
| AppendChars(filename_, *trace_.ToCString(), trace_.length(), false); |
| trace_.Reset(); |
| } |
| |
| |
| void HStatistics::Initialize(CompilationInfo* info) { |
| if (info->shared_info().is_null()) return; |
| source_size_ += info->shared_info()->SourceSize(); |
| } |
| |
| |
| void HStatistics::Print() { |
| PrintF("Timing results:\n"); |
| int64_t sum = 0; |
| for (int i = 0; i < timing_.length(); ++i) { |
| sum += timing_[i]; |
| } |
| |
| for (int i = 0; i < names_.length(); ++i) { |
| PrintF("%30s", names_[i]); |
| double ms = static_cast<double>(timing_[i]) / 1000; |
| double percent = static_cast<double>(timing_[i]) * 100 / sum; |
| PrintF(" - %8.3f ms / %4.1f %% ", ms, percent); |
| |
| unsigned size = sizes_[i]; |
| double size_percent = static_cast<double>(size) * 100 / total_size_; |
| PrintF(" %9u bytes / %4.1f %%\n", size, size_percent); |
| } |
| |
| PrintF("----------------------------------------" |
| "---------------------------------------\n"); |
| int64_t total = create_graph_ + optimize_graph_ + generate_code_; |
| PrintF("%30s - %8.3f ms / %4.1f %% \n", |
| "Create graph", |
| static_cast<double>(create_graph_) / 1000, |
| static_cast<double>(create_graph_) * 100 / total); |
| PrintF("%30s - %8.3f ms / %4.1f %% \n", |
| "Optimize graph", |
| static_cast<double>(optimize_graph_) / 1000, |
| static_cast<double>(optimize_graph_) * 100 / total); |
| PrintF("%30s - %8.3f ms / %4.1f %% \n", |
| "Generate and install code", |
| static_cast<double>(generate_code_) / 1000, |
| static_cast<double>(generate_code_) * 100 / total); |
| PrintF("----------------------------------------" |
| "---------------------------------------\n"); |
| PrintF("%30s - %8.3f ms (%.1f times slower than full code gen)\n", |
| "Total", |
| static_cast<double>(total) / 1000, |
| static_cast<double>(total) / full_code_gen_); |
| |
| double source_size_in_kb = static_cast<double>(source_size_) / 1024; |
| double normalized_time = source_size_in_kb > 0 |
| ? (static_cast<double>(total) / 1000) / source_size_in_kb |
| : 0; |
| double normalized_size_in_kb = source_size_in_kb > 0 |
| ? total_size_ / 1024 / source_size_in_kb |
| : 0; |
| PrintF("%30s - %8.3f ms %7.3f kB allocated\n", |
| "Average per kB source", |
| normalized_time, normalized_size_in_kb); |
| } |
| |
| |
| void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) { |
| if (name == HPhase::kFullCodeGen) { |
| full_code_gen_ += ticks; |
| } else { |
| total_size_ += size; |
| for (int i = 0; i < names_.length(); ++i) { |
| if (strcmp(names_[i], name) == 0) { |
| timing_[i] += ticks; |
| sizes_[i] += size; |
| return; |
| } |
| } |
| names_.Add(name); |
| timing_.Add(ticks); |
| sizes_.Add(size); |
| } |
| } |
| |
| |
| const char* const HPhase::kFullCodeGen = "Full code generator"; |
| |
| void HPhase::Begin(const char* name, |
| HGraph* graph, |
| LChunk* chunk, |
| LAllocator* allocator) { |
| name_ = name; |
| graph_ = graph; |
| chunk_ = chunk; |
| allocator_ = allocator; |
| if (allocator != NULL && chunk_ == NULL) { |
| chunk_ = allocator->chunk(); |
| } |
| if (FLAG_hydrogen_stats) start_ = OS::Ticks(); |
| start_allocation_size_ = Zone::allocation_size_; |
| } |
| |
| |
| void HPhase::End() const { |
| if (FLAG_hydrogen_stats) { |
| int64_t end = OS::Ticks(); |
| unsigned size = Zone::allocation_size_ - start_allocation_size_; |
| HStatistics::Instance()->SaveTiming(name_, end - start_, size); |
| } |
| |
| // Produce trace output if flag is set so that the first letter of the |
| // phase name matches the command line parameter FLAG_trace_phase. |
| if (FLAG_trace_hydrogen && |
| OS::StrChr(const_cast<char*>(FLAG_trace_phase), name_[0]) != NULL) { |
| if (graph_ != NULL) HTracer::Instance()->TraceHydrogen(name_, graph_); |
| if (chunk_ != NULL) HTracer::Instance()->TraceLithium(name_, chunk_); |
| if (allocator_ != NULL) { |
| HTracer::Instance()->TraceLiveRanges(name_, allocator_); |
| } |
| } |
| |
| #ifdef DEBUG |
| if (graph_ != NULL) graph_->Verify(false); // No full verify. |
| if (allocator_ != NULL) allocator_->Verify(); |
| #endif |
| } |
| |
| } } // namespace v8::internal |