blob: 0b3e2cac4334c3418efad0835e728b06a600c716 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/paced_sender.h"
#include <algorithm>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "logging/rtc_event_log/rtc_event_log.h"
#include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h"
#include "modules/utility/include/process_thread.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
namespace {
// Time limit in milliseconds between packet bursts.
const int64_t kDefaultMinPacketLimitMs = 5;
const int64_t kCongestedPacketIntervalMs = 500;
const int64_t kPausedProcessIntervalMs = kCongestedPacketIntervalMs;
const int64_t kMaxElapsedTimeMs = 2000;
// Upper cap on process interval, in case process has not been called in a long
// time.
const int64_t kMaxIntervalTimeMs = 30;
bool IsDisabled(const WebRtcKeyValueConfig& field_trials,
absl::string_view key) {
return field_trials.Lookup(key).find("Disabled") == 0;
}
bool IsEnabled(const WebRtcKeyValueConfig& field_trials,
absl::string_view key) {
return field_trials.Lookup(key).find("Enabled") == 0;
}
int GetPriorityForType(RtpPacketToSend::Type type) {
switch (type) {
case RtpPacketToSend::Type::kAudio:
// Audio is always prioritized over other packet types.
return 0;
case RtpPacketToSend::Type::kRetransmission:
// Send retransmissions before new media.
return 1;
case RtpPacketToSend::Type::kVideo:
// Video has "normal" priority, in the old speak.
return 2;
case RtpPacketToSend::Type::kForwardErrorCorrection:
// Redundancy is OK to drop, but the content is hopefully not useless.
return 3;
case RtpPacketToSend::Type::kPadding:
// Packets that are in themselves likely useless, only sent to keep the
// BWE high.
return 4;
}
}
} // namespace
const int64_t PacedSender::kMaxQueueLengthMs = 2000;
const float PacedSender::kDefaultPaceMultiplier = 2.5f;
PacedSender::PacedSender(Clock* clock,
PacketRouter* packet_router,
RtcEventLog* event_log,
const WebRtcKeyValueConfig* field_trials)
: clock_(clock),
packet_router_(packet_router),
fallback_field_trials_(
!field_trials ? absl::make_unique<FieldTrialBasedConfig>() : nullptr),
field_trials_(field_trials ? field_trials : fallback_field_trials_.get()),
drain_large_queues_(
!IsDisabled(*field_trials_, "WebRTC-Pacer-DrainQueue")),
send_padding_if_silent_(
IsEnabled(*field_trials_, "WebRTC-Pacer-PadInSilence")),
pace_audio_(!IsDisabled(*field_trials_, "WebRTC-Pacer-BlockAudio")),
min_packet_limit_ms_("", kDefaultMinPacketLimitMs),
last_timestamp_ms_(clock_->TimeInMilliseconds()),
paused_(false),
media_budget_(0),
padding_budget_(0),
prober_(*field_trials_),
probing_send_failure_(false),
pacing_bitrate_kbps_(0),
time_last_process_us_(clock->TimeInMicroseconds()),
last_send_time_us_(clock->TimeInMicroseconds()),
first_sent_packet_ms_(-1),
packets_(clock->TimeInMicroseconds()),
packet_counter_(0),
queue_time_limit(kMaxQueueLengthMs),
account_for_audio_(false),
legacy_packet_referencing_(
!IsDisabled(*field_trials_, "WebRTC-Pacer-LegacyPacketReferencing")) {
if (!drain_large_queues_) {
RTC_LOG(LS_WARNING) << "Pacer queues will not be drained,"
"pushback experiment must be enabled.";
}
ParseFieldTrial({&min_packet_limit_ms_},
field_trials_->Lookup("WebRTC-Pacer-MinPacketLimitMs"));
UpdateBudgetWithElapsedTime(min_packet_limit_ms_);
}
PacedSender::~PacedSender() {}
void PacedSender::CreateProbeCluster(int bitrate_bps, int cluster_id) {
rtc::CritScope cs(&critsect_);
prober_.CreateProbeCluster(bitrate_bps, TimeMilliseconds(), cluster_id);
}
void PacedSender::Pause() {
{
rtc::CritScope cs(&critsect_);
if (!paused_)
RTC_LOG(LS_INFO) << "PacedSender paused.";
paused_ = true;
packets_.SetPauseState(true, TimeMilliseconds());
}
rtc::CritScope cs(&process_thread_lock_);
// Tell the process thread to call our TimeUntilNextProcess() method to get
// a new (longer) estimate for when to call Process().
if (process_thread_)
process_thread_->WakeUp(this);
}
void PacedSender::Resume() {
{
rtc::CritScope cs(&critsect_);
if (paused_)
RTC_LOG(LS_INFO) << "PacedSender resumed.";
paused_ = false;
packets_.SetPauseState(false, TimeMilliseconds());
}
rtc::CritScope cs(&process_thread_lock_);
// Tell the process thread to call our TimeUntilNextProcess() method to
// refresh the estimate for when to call Process().
if (process_thread_)
process_thread_->WakeUp(this);
}
void PacedSender::SetCongestionWindow(int64_t congestion_window_bytes) {
rtc::CritScope cs(&critsect_);
congestion_window_bytes_ = congestion_window_bytes;
}
void PacedSender::UpdateOutstandingData(int64_t outstanding_bytes) {
rtc::CritScope cs(&critsect_);
outstanding_bytes_ = outstanding_bytes;
}
bool PacedSender::Congested() const {
if (congestion_window_bytes_ == kNoCongestionWindow)
return false;
return outstanding_bytes_ >= congestion_window_bytes_;
}
int64_t PacedSender::TimeMilliseconds() const {
int64_t time_ms = clock_->TimeInMilliseconds();
if (time_ms < last_timestamp_ms_) {
RTC_LOG(LS_WARNING)
<< "Non-monotonic clock behavior observed. Previous timestamp: "
<< last_timestamp_ms_ << ", new timestamp: " << time_ms;
RTC_DCHECK_GE(time_ms, last_timestamp_ms_);
time_ms = last_timestamp_ms_;
}
last_timestamp_ms_ = time_ms;
return time_ms;
}
void PacedSender::SetProbingEnabled(bool enabled) {
rtc::CritScope cs(&critsect_);
RTC_CHECK_EQ(0, packet_counter_);
prober_.SetEnabled(enabled);
}
void PacedSender::SetPacingRates(uint32_t pacing_rate_bps,
uint32_t padding_rate_bps) {
rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_rate_bps > 0);
pacing_bitrate_kbps_ = pacing_rate_bps / 1000;
padding_budget_.set_target_rate_kbps(padding_rate_bps / 1000);
RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps="
<< pacing_bitrate_kbps_
<< " padding_budget_kbps=" << padding_rate_bps / 1000;
}
void PacedSender::InsertPacket(RtpPacketSender::Priority priority,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t bytes,
bool retransmission) {
rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_bitrate_kbps_ > 0)
<< "SetPacingRate must be called before InsertPacket.";
int64_t now_ms = TimeMilliseconds();
prober_.OnIncomingPacket(bytes);
if (capture_time_ms < 0)
capture_time_ms = now_ms;
RtpPacketToSend::Type type;
switch (priority) {
case RtpPacketPacer::kHighPriority:
type = RtpPacketToSend::Type::kAudio;
break;
case RtpPacketPacer::kNormalPriority:
type = RtpPacketToSend::Type::kRetransmission;
break;
default:
type = RtpPacketToSend::Type::kVideo;
}
packets_.Push(GetPriorityForType(type), type, ssrc, sequence_number,
capture_time_ms, now_ms, bytes, retransmission,
packet_counter_++);
}
void PacedSender::EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet) {
rtc::CritScope cs(&critsect_);
RTC_DCHECK(pacing_bitrate_kbps_ > 0)
<< "SetPacingRate must be called before InsertPacket.";
int64_t now_ms = TimeMilliseconds();
prober_.OnIncomingPacket(packet->payload_size());
if (packet->capture_time_ms() < 0) {
packet->set_capture_time_ms(now_ms);
}
RTC_CHECK(packet->packet_type());
int priority = GetPriorityForType(*packet->packet_type());
packets_.Push(priority, now_ms, packet_counter_++, std::move(packet));
}
void PacedSender::SetAccountForAudioPackets(bool account_for_audio) {
rtc::CritScope cs(&critsect_);
account_for_audio_ = account_for_audio;
}
int64_t PacedSender::ExpectedQueueTimeMs() const {
rtc::CritScope cs(&critsect_);
RTC_DCHECK_GT(pacing_bitrate_kbps_, 0);
return static_cast<int64_t>(packets_.SizeInBytes() * 8 /
pacing_bitrate_kbps_);
}
size_t PacedSender::QueueSizePackets() const {
rtc::CritScope cs(&critsect_);
return packets_.SizeInPackets();
}
int64_t PacedSender::QueueSizeBytes() const {
rtc::CritScope cs(&critsect_);
return packets_.SizeInBytes();
}
int64_t PacedSender::FirstSentPacketTimeMs() const {
rtc::CritScope cs(&critsect_);
return first_sent_packet_ms_;
}
int64_t PacedSender::QueueInMs() const {
rtc::CritScope cs(&critsect_);
int64_t oldest_packet = packets_.OldestEnqueueTimeMs();
if (oldest_packet == 0)
return 0;
return TimeMilliseconds() - oldest_packet;
}
int64_t PacedSender::TimeUntilNextProcess() {
rtc::CritScope cs(&critsect_);
int64_t elapsed_time_us =
clock_->TimeInMicroseconds() - time_last_process_us_;
int64_t elapsed_time_ms = (elapsed_time_us + 500) / 1000;
// When paused we wake up every 500 ms to send a padding packet to ensure
// we won't get stuck in the paused state due to no feedback being received.
if (paused_)
return std::max<int64_t>(kPausedProcessIntervalMs - elapsed_time_ms, 0);
if (prober_.IsProbing()) {
int64_t ret = prober_.TimeUntilNextProbe(TimeMilliseconds());
if (ret > 0 || (ret == 0 && !probing_send_failure_))
return ret;
}
return std::max<int64_t>(min_packet_limit_ms_ - elapsed_time_ms, 0);
}
int64_t PacedSender::UpdateTimeAndGetElapsedMs(int64_t now_us) {
int64_t elapsed_time_ms = (now_us - time_last_process_us_ + 500) / 1000;
time_last_process_us_ = now_us;
if (elapsed_time_ms > kMaxElapsedTimeMs) {
RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time_ms
<< " ms) longer than expected, limiting to "
<< kMaxElapsedTimeMs << " ms";
elapsed_time_ms = kMaxElapsedTimeMs;
}
return elapsed_time_ms;
}
bool PacedSender::ShouldSendKeepalive(int64_t now_us) const {
if (send_padding_if_silent_ || paused_ || Congested()) {
// We send a padding packet every 500 ms to ensure we won't get stuck in
// congested state due to no feedback being received.
int64_t elapsed_since_last_send_us = now_us - last_send_time_us_;
if (elapsed_since_last_send_us >= kCongestedPacketIntervalMs * 1000) {
// We can not send padding unless a normal packet has first been sent. If
// we do, timestamps get messed up.
if (packet_counter_ > 0) {
return true;
}
}
}
return false;
}
void PacedSender::Process() {
rtc::CritScope cs(&critsect_);
int64_t now_us = clock_->TimeInMicroseconds();
int64_t elapsed_time_ms = UpdateTimeAndGetElapsedMs(now_us);
if (ShouldSendKeepalive(now_us)) {
if (legacy_packet_referencing_) {
critsect_.Leave();
size_t bytes_sent =
packet_router_->TimeToSendPadding(1, PacedPacketInfo());
critsect_.Enter();
OnPaddingSent(bytes_sent);
} else {
size_t keepalive_bytes_sent = 0;
critsect_.Leave();
std::vector<std::unique_ptr<RtpPacketToSend>> keepalive_packets =
packet_router_->GeneratePadding(1);
for (auto& packet : keepalive_packets) {
keepalive_bytes_sent += packet->payload_size() + packet->padding_size();
packet_router_->SendPacket(std::move(packet), PacedPacketInfo());
}
critsect_.Enter();
OnPaddingSent(keepalive_bytes_sent);
}
}
if (paused_)
return;
if (elapsed_time_ms > 0) {
int target_bitrate_kbps = pacing_bitrate_kbps_;
size_t queue_size_bytes = packets_.SizeInBytes();
if (queue_size_bytes > 0) {
// Assuming equal size packets and input/output rate, the average packet
// has avg_time_left_ms left to get queue_size_bytes out of the queue, if
// time constraint shall be met. Determine bitrate needed for that.
packets_.UpdateQueueTime(TimeMilliseconds());
if (drain_large_queues_) {
int64_t avg_time_left_ms = std::max<int64_t>(
1, queue_time_limit - packets_.AverageQueueTimeMs());
int min_bitrate_needed_kbps =
static_cast<int>(queue_size_bytes * 8 / avg_time_left_ms);
if (min_bitrate_needed_kbps > target_bitrate_kbps) {
target_bitrate_kbps = min_bitrate_needed_kbps;
RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps="
<< target_bitrate_kbps;
}
}
}
media_budget_.set_target_rate_kbps(target_bitrate_kbps);
UpdateBudgetWithElapsedTime(elapsed_time_ms);
}
bool is_probing = prober_.IsProbing();
PacedPacketInfo pacing_info;
absl::optional<size_t> recommended_probe_size;
if (is_probing) {
pacing_info = prober_.CurrentCluster();
recommended_probe_size = prober_.RecommendedMinProbeSize();
}
size_t bytes_sent = 0;
// The paused state is checked in the loop since it leaves the critical
// section allowing the paused state to be changed from other code.
while (!paused_) {
auto* packet = GetPendingPacket(pacing_info);
if (packet == nullptr) {
// No packet available to send, check if we should send padding.
if (!legacy_packet_referencing_) {
size_t padding_bytes_to_add =
PaddingBytesToAdd(recommended_probe_size, bytes_sent);
if (padding_bytes_to_add > 0) {
critsect_.Leave();
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
packet_router_->GeneratePadding(padding_bytes_to_add);
critsect_.Enter();
if (padding_packets.empty()) {
// No padding packets were generated, quite send loop.
break;
}
for (auto& packet : padding_packets) {
EnqueuePacket(std::move(packet));
}
// Continue loop to send the padding that was just added.
continue;
}
}
// Can't fetch new packet and no padding to send, exit send loop.
break;
}
std::unique_ptr<RtpPacketToSend> rtp_packet = packet->ReleasePacket();
const bool owned_rtp_packet = rtp_packet != nullptr;
RtpPacketSendResult success;
if (rtp_packet != nullptr) {
critsect_.Leave();
packet_router_->SendPacket(std::move(rtp_packet), pacing_info);
critsect_.Enter();
success = RtpPacketSendResult::kSuccess;
} else {
critsect_.Leave();
success = packet_router_->TimeToSendPacket(
packet->ssrc(), packet->sequence_number(), packet->capture_time_ms(),
packet->is_retransmission(), pacing_info);
critsect_.Enter();
}
if (success == RtpPacketSendResult::kSuccess ||
success == RtpPacketSendResult::kPacketNotFound) {
// Packet sent or invalid packet, remove it from queue.
// TODO(webrtc:8052): Don't consume media budget on kInvalid.
bytes_sent += packet->size_in_bytes();
// Send succeeded, remove it from the queue.
OnPacketSent(packet);
if (recommended_probe_size && bytes_sent > *recommended_probe_size)
break;
} else if (owned_rtp_packet) {
// Send failed, but we can't put it back in the queue, remove it without
// consuming budget.
packets_.FinalizePop();
break;
} else {
// Send failed, put it back into the queue.
packets_.CancelPop();
break;
}
}
if (legacy_packet_referencing_ && packets_.Empty() && !Congested()) {
// We can not send padding unless a normal packet has first been sent. If we
// do, timestamps get messed up.
if (packet_counter_ > 0) {
int padding_needed = static_cast<int>(
recommended_probe_size ? (*recommended_probe_size - bytes_sent)
: padding_budget_.bytes_remaining());
if (padding_needed > 0) {
size_t padding_sent = 0;
critsect_.Leave();
padding_sent =
packet_router_->TimeToSendPadding(padding_needed, pacing_info);
critsect_.Enter();
bytes_sent += padding_sent;
OnPaddingSent(padding_sent);
}
}
}
if (is_probing) {
probing_send_failure_ = bytes_sent == 0;
if (!probing_send_failure_)
prober_.ProbeSent(TimeMilliseconds(), bytes_sent);
}
}
void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) {
RTC_LOG(LS_INFO) << "ProcessThreadAttached 0x" << process_thread;
rtc::CritScope cs(&process_thread_lock_);
process_thread_ = process_thread;
}
size_t PacedSender::PaddingBytesToAdd(
absl::optional<size_t> recommended_probe_size,
size_t bytes_sent) {
if (!packets_.Empty()) {
// Actual payload available, no need to add padding.
return 0;
}
if (Congested()) {
// Don't add padding if congested, even if requested for probing.
return 0;
}
if (packet_counter_ == 0) {
// We can not send padding unless a normal packet has first been sent. If we
// do, timestamps get messed up.
return 0;
}
if (recommended_probe_size) {
if (*recommended_probe_size > bytes_sent) {
return *recommended_probe_size - bytes_sent;
}
return 0;
}
return padding_budget_.bytes_remaining();
}
RoundRobinPacketQueue::QueuedPacket* PacedSender::GetPendingPacket(
const PacedPacketInfo& pacing_info) {
if (packets_.Empty()) {
return nullptr;
}
// Since we need to release the lock in order to send, we first pop the
// element from the priority queue but keep it in storage, so that we can
// reinsert it if send fails.
RoundRobinPacketQueue::QueuedPacket* packet = packets_.BeginPop();
bool audio_packet = packet->type() == RtpPacketToSend::Type::kAudio;
bool apply_pacing = !audio_packet || pace_audio_;
if (apply_pacing && (Congested() || (media_budget_.bytes_remaining() == 0 &&
pacing_info.probe_cluster_id ==
PacedPacketInfo::kNotAProbe))) {
packets_.CancelPop();
return nullptr;
}
return packet;
}
void PacedSender::OnPacketSent(RoundRobinPacketQueue::QueuedPacket* packet) {
if (first_sent_packet_ms_ == -1)
first_sent_packet_ms_ = TimeMilliseconds();
bool audio_packet = packet->type() == RtpPacketToSend::Type::kAudio;
if (!audio_packet || account_for_audio_) {
// Update media bytes sent.
UpdateBudgetWithBytesSent(packet->size_in_bytes());
last_send_time_us_ = clock_->TimeInMicroseconds();
}
// Send succeeded, remove it from the queue.
packets_.FinalizePop();
}
void PacedSender::OnPaddingSent(size_t bytes_sent) {
if (bytes_sent > 0) {
UpdateBudgetWithBytesSent(bytes_sent);
}
last_send_time_us_ = clock_->TimeInMicroseconds();
}
void PacedSender::UpdateBudgetWithElapsedTime(int64_t delta_time_ms) {
delta_time_ms = std::min(kMaxIntervalTimeMs, delta_time_ms);
media_budget_.IncreaseBudget(delta_time_ms);
padding_budget_.IncreaseBudget(delta_time_ms);
}
void PacedSender::UpdateBudgetWithBytesSent(size_t bytes_sent) {
outstanding_bytes_ += bytes_sent;
media_budget_.UseBudget(bytes_sent);
padding_budget_.UseBudget(bytes_sent);
}
void PacedSender::SetQueueTimeLimit(int limit_ms) {
rtc::CritScope cs(&critsect_);
queue_time_limit = limit_ms;
}
} // namespace webrtc