| // Copyright 2011 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package template | 
 |  | 
 | import ( | 
 | 	"fmt" | 
 | 	"io" | 
 | 	"reflect" | 
 | 	"runtime" | 
 | 	"sort" | 
 | 	"strings" | 
 | 	"text/template/parse" | 
 | ) | 
 |  | 
 | // state represents the state of an execution. It's not part of the | 
 | // template so that multiple executions of the same template | 
 | // can execute in parallel. | 
 | type state struct { | 
 | 	tmpl *Template | 
 | 	wr   io.Writer | 
 | 	line int        // line number for errors | 
 | 	vars []variable // push-down stack of variable values. | 
 | } | 
 |  | 
 | // variable holds the dynamic value of a variable such as $, $x etc. | 
 | type variable struct { | 
 | 	name  string | 
 | 	value reflect.Value | 
 | } | 
 |  | 
 | // push pushes a new variable on the stack. | 
 | func (s *state) push(name string, value reflect.Value) { | 
 | 	s.vars = append(s.vars, variable{name, value}) | 
 | } | 
 |  | 
 | // mark returns the length of the variable stack. | 
 | func (s *state) mark() int { | 
 | 	return len(s.vars) | 
 | } | 
 |  | 
 | // pop pops the variable stack up to the mark. | 
 | func (s *state) pop(mark int) { | 
 | 	s.vars = s.vars[0:mark] | 
 | } | 
 |  | 
 | // setVar overwrites the top-nth variable on the stack. Used by range iterations. | 
 | func (s *state) setVar(n int, value reflect.Value) { | 
 | 	s.vars[len(s.vars)-n].value = value | 
 | } | 
 |  | 
 | // varValue returns the value of the named variable. | 
 | func (s *state) varValue(name string) reflect.Value { | 
 | 	for i := s.mark() - 1; i >= 0; i-- { | 
 | 		if s.vars[i].name == name { | 
 | 			return s.vars[i].value | 
 | 		} | 
 | 	} | 
 | 	s.errorf("undefined variable: %s", name) | 
 | 	return zero | 
 | } | 
 |  | 
 | var zero reflect.Value | 
 |  | 
 | // errorf formats the error and terminates processing. | 
 | func (s *state) errorf(format string, args ...interface{}) { | 
 | 	format = fmt.Sprintf("template: %s:%d: %s", s.tmpl.Name(), s.line, format) | 
 | 	panic(fmt.Errorf(format, args...)) | 
 | } | 
 |  | 
 | // error terminates processing. | 
 | func (s *state) error(err error) { | 
 | 	s.errorf("%s", err) | 
 | } | 
 |  | 
 | // errRecover is the handler that turns panics into returns from the top | 
 | // level of Parse. | 
 | func errRecover(errp *error) { | 
 | 	e := recover() | 
 | 	if e != nil { | 
 | 		switch err := e.(type) { | 
 | 		case runtime.Error: | 
 | 			panic(e) | 
 | 		case error: | 
 | 			*errp = err | 
 | 		default: | 
 | 			panic(e) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | // ExecuteTemplate applies the template associated with t that has the given name | 
 | // to the specified data object and writes the output to wr. | 
 | func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { | 
 | 	tmpl := t.tmpl[name] | 
 | 	if tmpl == nil { | 
 | 		return fmt.Errorf("template: no template %q associated with template %q", name, t.name) | 
 | 	} | 
 | 	return tmpl.Execute(wr, data) | 
 | } | 
 |  | 
 | // Execute applies a parsed template to the specified data object, | 
 | // and writes the output to wr. | 
 | func (t *Template) Execute(wr io.Writer, data interface{}) (err error) { | 
 | 	defer errRecover(&err) | 
 | 	value := reflect.ValueOf(data) | 
 | 	state := &state{ | 
 | 		tmpl: t, | 
 | 		wr:   wr, | 
 | 		line: 1, | 
 | 		vars: []variable{{"$", value}}, | 
 | 	} | 
 | 	if t.Tree == nil || t.Root == nil { | 
 | 		state.errorf("%q is an incomplete or empty template", t.name) | 
 | 	} | 
 | 	state.walk(value, t.Root) | 
 | 	return | 
 | } | 
 |  | 
 | // Walk functions step through the major pieces of the template structure, | 
 | // generating output as they go. | 
 | func (s *state) walk(dot reflect.Value, n parse.Node) { | 
 | 	switch n := n.(type) { | 
 | 	case *parse.ActionNode: | 
 | 		s.line = n.Line | 
 | 		// Do not pop variables so they persist until next end. | 
 | 		// Also, if the action declares variables, don't print the result. | 
 | 		val := s.evalPipeline(dot, n.Pipe) | 
 | 		if len(n.Pipe.Decl) == 0 { | 
 | 			s.printValue(n, val) | 
 | 		} | 
 | 	case *parse.IfNode: | 
 | 		s.line = n.Line | 
 | 		s.walkIfOrWith(parse.NodeIf, dot, n.Pipe, n.List, n.ElseList) | 
 | 	case *parse.ListNode: | 
 | 		for _, node := range n.Nodes { | 
 | 			s.walk(dot, node) | 
 | 		} | 
 | 	case *parse.RangeNode: | 
 | 		s.line = n.Line | 
 | 		s.walkRange(dot, n) | 
 | 	case *parse.TemplateNode: | 
 | 		s.line = n.Line | 
 | 		s.walkTemplate(dot, n) | 
 | 	case *parse.TextNode: | 
 | 		if _, err := s.wr.Write(n.Text); err != nil { | 
 | 			s.error(err) | 
 | 		} | 
 | 	case *parse.WithNode: | 
 | 		s.line = n.Line | 
 | 		s.walkIfOrWith(parse.NodeWith, dot, n.Pipe, n.List, n.ElseList) | 
 | 	default: | 
 | 		s.errorf("unknown node: %s", n) | 
 | 	} | 
 | } | 
 |  | 
 | // walkIfOrWith walks an 'if' or 'with' node. The two control structures | 
 | // are identical in behavior except that 'with' sets dot. | 
 | func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { | 
 | 	defer s.pop(s.mark()) | 
 | 	val := s.evalPipeline(dot, pipe) | 
 | 	truth, ok := isTrue(val) | 
 | 	if !ok { | 
 | 		s.errorf("if/with can't use %v", val) | 
 | 	} | 
 | 	if truth { | 
 | 		if typ == parse.NodeWith { | 
 | 			s.walk(val, list) | 
 | 		} else { | 
 | 			s.walk(dot, list) | 
 | 		} | 
 | 	} else if elseList != nil { | 
 | 		s.walk(dot, elseList) | 
 | 	} | 
 | } | 
 |  | 
 | // isTrue returns whether the value is 'true', in the sense of not the zero of its type, | 
 | // and whether the value has a meaningful truth value. | 
 | func isTrue(val reflect.Value) (truth, ok bool) { | 
 | 	if !val.IsValid() { | 
 | 		// Something like var x interface{}, never set. It's a form of nil. | 
 | 		return false, true | 
 | 	} | 
 | 	switch val.Kind() { | 
 | 	case reflect.Array, reflect.Map, reflect.Slice, reflect.String: | 
 | 		truth = val.Len() > 0 | 
 | 	case reflect.Bool: | 
 | 		truth = val.Bool() | 
 | 	case reflect.Complex64, reflect.Complex128: | 
 | 		truth = val.Complex() != 0 | 
 | 	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: | 
 | 		truth = !val.IsNil() | 
 | 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: | 
 | 		truth = val.Int() != 0 | 
 | 	case reflect.Float32, reflect.Float64: | 
 | 		truth = val.Float() != 0 | 
 | 	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: | 
 | 		truth = val.Uint() != 0 | 
 | 	case reflect.Struct: | 
 | 		truth = true // Struct values are always true. | 
 | 	default: | 
 | 		return | 
 | 	} | 
 | 	return truth, true | 
 | } | 
 |  | 
 | func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { | 
 | 	defer s.pop(s.mark()) | 
 | 	val, _ := indirect(s.evalPipeline(dot, r.Pipe)) | 
 | 	// mark top of stack before any variables in the body are pushed. | 
 | 	mark := s.mark() | 
 | 	oneIteration := func(index, elem reflect.Value) { | 
 | 		// Set top var (lexically the second if there are two) to the element. | 
 | 		if len(r.Pipe.Decl) > 0 { | 
 | 			s.setVar(1, elem) | 
 | 		} | 
 | 		// Set next var (lexically the first if there are two) to the index. | 
 | 		if len(r.Pipe.Decl) > 1 { | 
 | 			s.setVar(2, index) | 
 | 		} | 
 | 		s.walk(elem, r.List) | 
 | 		s.pop(mark) | 
 | 	} | 
 | 	switch val.Kind() { | 
 | 	case reflect.Array, reflect.Slice: | 
 | 		if val.Len() == 0 { | 
 | 			break | 
 | 		} | 
 | 		for i := 0; i < val.Len(); i++ { | 
 | 			oneIteration(reflect.ValueOf(i), val.Index(i)) | 
 | 		} | 
 | 		return | 
 | 	case reflect.Map: | 
 | 		if val.Len() == 0 { | 
 | 			break | 
 | 		} | 
 | 		for _, key := range sortKeys(val.MapKeys()) { | 
 | 			oneIteration(key, val.MapIndex(key)) | 
 | 		} | 
 | 		return | 
 | 	case reflect.Chan: | 
 | 		if val.IsNil() { | 
 | 			break | 
 | 		} | 
 | 		i := 0 | 
 | 		for ; ; i++ { | 
 | 			elem, ok := val.Recv() | 
 | 			if !ok { | 
 | 				break | 
 | 			} | 
 | 			oneIteration(reflect.ValueOf(i), elem) | 
 | 		} | 
 | 		if i == 0 { | 
 | 			break | 
 | 		} | 
 | 		return | 
 | 	case reflect.Invalid: | 
 | 		break // An invalid value is likely a nil map, etc. and acts like an empty map. | 
 | 	default: | 
 | 		s.errorf("range can't iterate over %v", val) | 
 | 	} | 
 | 	if r.ElseList != nil { | 
 | 		s.walk(dot, r.ElseList) | 
 | 	} | 
 | } | 
 |  | 
 | func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { | 
 | 	tmpl := s.tmpl.tmpl[t.Name] | 
 | 	if tmpl == nil { | 
 | 		s.errorf("template %q not defined", t.Name) | 
 | 	} | 
 | 	// Variables declared by the pipeline persist. | 
 | 	dot = s.evalPipeline(dot, t.Pipe) | 
 | 	newState := *s | 
 | 	newState.tmpl = tmpl | 
 | 	// No dynamic scoping: template invocations inherit no variables. | 
 | 	newState.vars = []variable{{"$", dot}} | 
 | 	newState.walk(dot, tmpl.Root) | 
 | } | 
 |  | 
 | // Eval functions evaluate pipelines, commands, and their elements and extract | 
 | // values from the data structure by examining fields, calling methods, and so on. | 
 | // The printing of those values happens only through walk functions. | 
 |  | 
 | // evalPipeline returns the value acquired by evaluating a pipeline. If the | 
 | // pipeline has a variable declaration, the variable will be pushed on the | 
 | // stack. Callers should therefore pop the stack after they are finished | 
 | // executing commands depending on the pipeline value. | 
 | func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { | 
 | 	if pipe == nil { | 
 | 		return | 
 | 	} | 
 | 	for _, cmd := range pipe.Cmds { | 
 | 		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. | 
 | 		// If the object has type interface{}, dig down one level to the thing inside. | 
 | 		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { | 
 | 			value = reflect.ValueOf(value.Interface()) // lovely! | 
 | 		} | 
 | 	} | 
 | 	for _, variable := range pipe.Decl { | 
 | 		s.push(variable.Ident[0], value) | 
 | 	} | 
 | 	return value | 
 | } | 
 |  | 
 | func (s *state) notAFunction(args []parse.Node, final reflect.Value) { | 
 | 	if len(args) > 1 || final.IsValid() { | 
 | 		s.errorf("can't give argument to non-function %s", args[0]) | 
 | 	} | 
 | } | 
 |  | 
 | func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { | 
 | 	firstWord := cmd.Args[0] | 
 | 	switch n := firstWord.(type) { | 
 | 	case *parse.FieldNode: | 
 | 		return s.evalFieldNode(dot, n, cmd.Args, final) | 
 | 	case *parse.IdentifierNode: | 
 | 		// Must be a function. | 
 | 		return s.evalFunction(dot, n.Ident, cmd.Args, final) | 
 | 	case *parse.VariableNode: | 
 | 		return s.evalVariableNode(dot, n, cmd.Args, final) | 
 | 	} | 
 | 	s.notAFunction(cmd.Args, final) | 
 | 	switch word := firstWord.(type) { | 
 | 	case *parse.BoolNode: | 
 | 		return reflect.ValueOf(word.True) | 
 | 	case *parse.DotNode: | 
 | 		return dot | 
 | 	case *parse.NumberNode: | 
 | 		return s.idealConstant(word) | 
 | 	case *parse.StringNode: | 
 | 		return reflect.ValueOf(word.Text) | 
 | 	} | 
 | 	s.errorf("can't evaluate command %q", firstWord) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | // idealConstant is called to return the value of a number in a context where | 
 | // we don't know the type. In that case, the syntax of the number tells us | 
 | // its type, and we use Go rules to resolve.  Note there is no such thing as | 
 | // a uint ideal constant in this situation - the value must be of int type. | 
 | func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { | 
 | 	// These are ideal constants but we don't know the type | 
 | 	// and we have no context.  (If it was a method argument, | 
 | 	// we'd know what we need.) The syntax guides us to some extent. | 
 | 	switch { | 
 | 	case constant.IsComplex: | 
 | 		return reflect.ValueOf(constant.Complex128) // incontrovertible. | 
 | 	case constant.IsFloat && strings.IndexAny(constant.Text, ".eE") >= 0: | 
 | 		return reflect.ValueOf(constant.Float64) | 
 | 	case constant.IsInt: | 
 | 		n := int(constant.Int64) | 
 | 		if int64(n) != constant.Int64 { | 
 | 			s.errorf("%s overflows int", constant.Text) | 
 | 		} | 
 | 		return reflect.ValueOf(n) | 
 | 	case constant.IsUint: | 
 | 		s.errorf("%s overflows int", constant.Text) | 
 | 	} | 
 | 	return zero | 
 | } | 
 |  | 
 | func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { | 
 | 	return s.evalFieldChain(dot, dot, field.Ident, args, final) | 
 | } | 
 |  | 
 | func (s *state) evalVariableNode(dot reflect.Value, v *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { | 
 | 	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. | 
 | 	value := s.varValue(v.Ident[0]) | 
 | 	if len(v.Ident) == 1 { | 
 | 		s.notAFunction(args, final) | 
 | 		return value | 
 | 	} | 
 | 	return s.evalFieldChain(dot, value, v.Ident[1:], args, final) | 
 | } | 
 |  | 
 | // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. | 
 | // dot is the environment in which to evaluate arguments, while | 
 | // receiver is the value being walked along the chain. | 
 | func (s *state) evalFieldChain(dot, receiver reflect.Value, ident []string, args []parse.Node, final reflect.Value) reflect.Value { | 
 | 	n := len(ident) | 
 | 	for i := 0; i < n-1; i++ { | 
 | 		receiver = s.evalField(dot, ident[i], nil, zero, receiver) | 
 | 	} | 
 | 	// Now if it's a method, it gets the arguments. | 
 | 	return s.evalField(dot, ident[n-1], args, final, receiver) | 
 | } | 
 |  | 
 | func (s *state) evalFunction(dot reflect.Value, name string, args []parse.Node, final reflect.Value) reflect.Value { | 
 | 	function, ok := findFunction(name, s.tmpl) | 
 | 	if !ok { | 
 | 		s.errorf("%q is not a defined function", name) | 
 | 	} | 
 | 	return s.evalCall(dot, function, name, args, final) | 
 | } | 
 |  | 
 | // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). | 
 | // The 'final' argument represents the return value from the preceding | 
 | // value of the pipeline, if any. | 
 | func (s *state) evalField(dot reflect.Value, fieldName string, args []parse.Node, final, receiver reflect.Value) reflect.Value { | 
 | 	if !receiver.IsValid() { | 
 | 		return zero | 
 | 	} | 
 | 	typ := receiver.Type() | 
 | 	receiver, _ = indirect(receiver) | 
 | 	// Unless it's an interface, need to get to a value of type *T to guarantee | 
 | 	// we see all methods of T and *T. | 
 | 	ptr := receiver | 
 | 	if ptr.Kind() != reflect.Interface && ptr.CanAddr() { | 
 | 		ptr = ptr.Addr() | 
 | 	} | 
 | 	if method := ptr.MethodByName(fieldName); method.IsValid() { | 
 | 		return s.evalCall(dot, method, fieldName, args, final) | 
 | 	} | 
 | 	hasArgs := len(args) > 1 || final.IsValid() | 
 | 	// It's not a method; is it a field of a struct? | 
 | 	receiver, isNil := indirect(receiver) | 
 | 	if receiver.Kind() == reflect.Struct { | 
 | 		tField, ok := receiver.Type().FieldByName(fieldName) | 
 | 		if ok { | 
 | 			field := receiver.FieldByIndex(tField.Index) | 
 | 			if tField.PkgPath == "" { // field is exported | 
 | 				// If it's a function, we must call it. | 
 | 				if hasArgs { | 
 | 					s.errorf("%s has arguments but cannot be invoked as function", fieldName) | 
 | 				} | 
 | 				return field | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	// If it's a map, attempt to use the field name as a key. | 
 | 	if receiver.Kind() == reflect.Map { | 
 | 		nameVal := reflect.ValueOf(fieldName) | 
 | 		if nameVal.Type().AssignableTo(receiver.Type().Key()) { | 
 | 			if hasArgs { | 
 | 				s.errorf("%s is not a method but has arguments", fieldName) | 
 | 			} | 
 | 			return receiver.MapIndex(nameVal) | 
 | 		} | 
 | 	} | 
 | 	if isNil { | 
 | 		s.errorf("nil pointer evaluating %s.%s", typ, fieldName) | 
 | 	} | 
 | 	s.errorf("can't evaluate field %s in type %s", fieldName, typ) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | var ( | 
 | 	errorType       = reflect.TypeOf((*error)(nil)).Elem() | 
 | 	fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() | 
 | ) | 
 |  | 
 | // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so | 
 | // it looks just like a function call.  The arg list, if non-nil, includes (in the manner of the shell), arg[0] | 
 | // as the function itself. | 
 | func (s *state) evalCall(dot, fun reflect.Value, name string, args []parse.Node, final reflect.Value) reflect.Value { | 
 | 	if args != nil { | 
 | 		args = args[1:] // Zeroth arg is function name/node; not passed to function. | 
 | 	} | 
 | 	typ := fun.Type() | 
 | 	numIn := len(args) | 
 | 	if final.IsValid() { | 
 | 		numIn++ | 
 | 	} | 
 | 	numFixed := len(args) | 
 | 	if typ.IsVariadic() { | 
 | 		numFixed = typ.NumIn() - 1 // last arg is the variadic one. | 
 | 		if numIn < numFixed { | 
 | 			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) | 
 | 		} | 
 | 	} else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { | 
 | 		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) | 
 | 	} | 
 | 	if !goodFunc(typ) { | 
 | 		s.errorf("can't handle multiple results from method/function %q", name) | 
 | 	} | 
 | 	// Build the arg list. | 
 | 	argv := make([]reflect.Value, numIn) | 
 | 	// Args must be evaluated. Fixed args first. | 
 | 	i := 0 | 
 | 	for ; i < numFixed; i++ { | 
 | 		argv[i] = s.evalArg(dot, typ.In(i), args[i]) | 
 | 	} | 
 | 	// Now the ... args. | 
 | 	if typ.IsVariadic() { | 
 | 		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. | 
 | 		for ; i < len(args); i++ { | 
 | 			argv[i] = s.evalArg(dot, argType, args[i]) | 
 | 		} | 
 | 	} | 
 | 	// Add final value if necessary. | 
 | 	if final.IsValid() { | 
 | 		t := typ.In(typ.NumIn() - 1) | 
 | 		if typ.IsVariadic() { | 
 | 			t = t.Elem() | 
 | 		} | 
 | 		argv[i] = s.validateType(final, t) | 
 | 	} | 
 | 	result := fun.Call(argv) | 
 | 	// If we have an error that is not nil, stop execution and return that error to the caller. | 
 | 	if len(result) == 2 && !result[1].IsNil() { | 
 | 		s.errorf("error calling %s: %s", name, result[1].Interface().(error)) | 
 | 	} | 
 | 	return result[0] | 
 | } | 
 |  | 
 | // validateType guarantees that the value is valid and assignable to the type. | 
 | func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { | 
 | 	if !value.IsValid() { | 
 | 		switch typ.Kind() { | 
 | 		case reflect.Interface, reflect.Ptr, reflect.Chan, reflect.Map, reflect.Slice, reflect.Func: | 
 | 			// An untyped nil interface{}. Accept as a proper nil value. | 
 | 			// TODO: Can we delete the other types in this list? Should we? | 
 | 			value = reflect.Zero(typ) | 
 | 		default: | 
 | 			s.errorf("invalid value; expected %s", typ) | 
 | 		} | 
 | 	} | 
 | 	if !value.Type().AssignableTo(typ) { | 
 | 		if value.Kind() == reflect.Interface && !value.IsNil() { | 
 | 			value = value.Elem() | 
 | 			if value.Type().AssignableTo(typ) { | 
 | 				return value | 
 | 			} | 
 | 			// fallthrough | 
 | 		} | 
 | 		// Does one dereference or indirection work? We could do more, as we | 
 | 		// do with method receivers, but that gets messy and method receivers | 
 | 		// are much more constrained, so it makes more sense there than here. | 
 | 		// Besides, one is almost always all you need. | 
 | 		switch { | 
 | 		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): | 
 | 			value = value.Elem() | 
 | 		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): | 
 | 			value = value.Addr() | 
 | 		default: | 
 | 			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) | 
 | 		} | 
 | 	} | 
 | 	return value | 
 | } | 
 |  | 
 | func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { | 
 | 	switch arg := n.(type) { | 
 | 	case *parse.DotNode: | 
 | 		return s.validateType(dot, typ) | 
 | 	case *parse.FieldNode: | 
 | 		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) | 
 | 	case *parse.VariableNode: | 
 | 		return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) | 
 | 	} | 
 | 	switch typ.Kind() { | 
 | 	case reflect.Bool: | 
 | 		return s.evalBool(typ, n) | 
 | 	case reflect.Complex64, reflect.Complex128: | 
 | 		return s.evalComplex(typ, n) | 
 | 	case reflect.Float32, reflect.Float64: | 
 | 		return s.evalFloat(typ, n) | 
 | 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: | 
 | 		return s.evalInteger(typ, n) | 
 | 	case reflect.Interface: | 
 | 		if typ.NumMethod() == 0 { | 
 | 			return s.evalEmptyInterface(dot, n) | 
 | 		} | 
 | 	case reflect.String: | 
 | 		return s.evalString(typ, n) | 
 | 	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: | 
 | 		return s.evalUnsignedInteger(typ, n) | 
 | 	} | 
 | 	s.errorf("can't handle %s for arg of type %s", n, typ) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { | 
 | 	if n, ok := n.(*parse.BoolNode); ok { | 
 | 		value := reflect.New(typ).Elem() | 
 | 		value.SetBool(n.True) | 
 | 		return value | 
 | 	} | 
 | 	s.errorf("expected bool; found %s", n) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { | 
 | 	if n, ok := n.(*parse.StringNode); ok { | 
 | 		value := reflect.New(typ).Elem() | 
 | 		value.SetString(n.Text) | 
 | 		return value | 
 | 	} | 
 | 	s.errorf("expected string; found %s", n) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { | 
 | 	if n, ok := n.(*parse.NumberNode); ok && n.IsInt { | 
 | 		value := reflect.New(typ).Elem() | 
 | 		value.SetInt(n.Int64) | 
 | 		return value | 
 | 	} | 
 | 	s.errorf("expected integer; found %s", n) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { | 
 | 	if n, ok := n.(*parse.NumberNode); ok && n.IsUint { | 
 | 		value := reflect.New(typ).Elem() | 
 | 		value.SetUint(n.Uint64) | 
 | 		return value | 
 | 	} | 
 | 	s.errorf("expected unsigned integer; found %s", n) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { | 
 | 	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { | 
 | 		value := reflect.New(typ).Elem() | 
 | 		value.SetFloat(n.Float64) | 
 | 		return value | 
 | 	} | 
 | 	s.errorf("expected float; found %s", n) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { | 
 | 	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { | 
 | 		value := reflect.New(typ).Elem() | 
 | 		value.SetComplex(n.Complex128) | 
 | 		return value | 
 | 	} | 
 | 	s.errorf("expected complex; found %s", n) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { | 
 | 	switch n := n.(type) { | 
 | 	case *parse.BoolNode: | 
 | 		return reflect.ValueOf(n.True) | 
 | 	case *parse.DotNode: | 
 | 		return dot | 
 | 	case *parse.FieldNode: | 
 | 		return s.evalFieldNode(dot, n, nil, zero) | 
 | 	case *parse.IdentifierNode: | 
 | 		return s.evalFunction(dot, n.Ident, nil, zero) | 
 | 	case *parse.NumberNode: | 
 | 		return s.idealConstant(n) | 
 | 	case *parse.StringNode: | 
 | 		return reflect.ValueOf(n.Text) | 
 | 	case *parse.VariableNode: | 
 | 		return s.evalVariableNode(dot, n, nil, zero) | 
 | 	} | 
 | 	s.errorf("can't handle assignment of %s to empty interface argument", n) | 
 | 	panic("not reached") | 
 | } | 
 |  | 
 | // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. | 
 | // We indirect through pointers and empty interfaces (only) because | 
 | // non-empty interfaces have methods we might need. | 
 | func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { | 
 | 	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { | 
 | 		if v.IsNil() { | 
 | 			return v, true | 
 | 		} | 
 | 		if v.Kind() == reflect.Interface && v.NumMethod() > 0 { | 
 | 			break | 
 | 		} | 
 | 	} | 
 | 	return v, false | 
 | } | 
 |  | 
 | // printValue writes the textual representation of the value to the output of | 
 | // the template. | 
 | func (s *state) printValue(n parse.Node, v reflect.Value) { | 
 | 	if v.Kind() == reflect.Ptr { | 
 | 		v, _ = indirect(v) // fmt.Fprint handles nil. | 
 | 	} | 
 | 	if !v.IsValid() { | 
 | 		fmt.Fprint(s.wr, "<no value>") | 
 | 		return | 
 | 	} | 
 |  | 
 | 	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { | 
 | 		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { | 
 | 			v = v.Addr() | 
 | 		} else { | 
 | 			switch v.Kind() { | 
 | 			case reflect.Chan, reflect.Func: | 
 | 				s.errorf("can't print %s of type %s", n, v.Type()) | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	fmt.Fprint(s.wr, v.Interface()) | 
 | } | 
 |  | 
 | // Types to help sort the keys in a map for reproducible output. | 
 |  | 
 | type rvs []reflect.Value | 
 |  | 
 | func (x rvs) Len() int      { return len(x) } | 
 | func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } | 
 |  | 
 | type rvInts struct{ rvs } | 
 |  | 
 | func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } | 
 |  | 
 | type rvUints struct{ rvs } | 
 |  | 
 | func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } | 
 |  | 
 | type rvFloats struct{ rvs } | 
 |  | 
 | func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } | 
 |  | 
 | type rvStrings struct{ rvs } | 
 |  | 
 | func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } | 
 |  | 
 | // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. | 
 | func sortKeys(v []reflect.Value) []reflect.Value { | 
 | 	if len(v) <= 1 { | 
 | 		return v | 
 | 	} | 
 | 	switch v[0].Kind() { | 
 | 	case reflect.Float32, reflect.Float64: | 
 | 		sort.Sort(rvFloats{v}) | 
 | 	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: | 
 | 		sort.Sort(rvInts{v}) | 
 | 	case reflect.String: | 
 | 		sort.Sort(rvStrings{v}) | 
 | 	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: | 
 | 		sort.Sort(rvUints{v}) | 
 | 	} | 
 | 	return v | 
 | } |