blob: c1c909cc46618e6880b0df260b08ecdf8d173fa6 [file] [log] [blame]
//===- PNaClABIVerifyFunctions.cpp - Verify PNaCl ABI rules ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Verify function-level PNaCl ABI requirements.
//
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/NaCl.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NaClAtomicIntrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include "PNaClABITypeChecker.h"
using namespace llvm;
namespace {
// Checks that examine anything in the function body should be in
// FunctionPasses to make them streaming-friendly
class PNaClABIVerifyFunctions : public FunctionPass {
public:
static char ID;
PNaClABIVerifyFunctions() :
FunctionPass(ID),
Reporter(new PNaClABIErrorReporter),
ReporterIsOwned(true) {
initializePNaClABIVerifyFunctionsPass(*PassRegistry::getPassRegistry());
}
explicit PNaClABIVerifyFunctions(PNaClABIErrorReporter *Reporter_) :
FunctionPass(ID),
Reporter(Reporter_),
ReporterIsOwned(false) {
initializePNaClABIVerifyFunctionsPass(*PassRegistry::getPassRegistry());
}
~PNaClABIVerifyFunctions() {
if (ReporterIsOwned)
delete Reporter;
}
virtual bool doInitialization(Module &M) {
AtomicIntrinsics.reset(new NaCl::AtomicIntrinsics(M.getContext()));
return false;
}
bool runOnFunction(Function &F);
virtual void print(raw_ostream &O, const Module *M) const;
private:
bool IsWhitelistedMetadata(unsigned MDKind);
const char *checkInstruction(const Instruction *Inst);
PNaClABIErrorReporter *Reporter;
bool ReporterIsOwned;
OwningPtr<NaCl::AtomicIntrinsics> AtomicIntrinsics;
};
} // and anonymous namespace
// There's no built-in way to get the name of an MDNode, so use a
// string ostream to print it.
static std::string getMDNodeString(unsigned Kind,
const SmallVectorImpl<StringRef> &MDNames) {
std::string MDName;
raw_string_ostream N(MDName);
if (Kind < MDNames.size()) {
N << "!" << MDNames[Kind];
} else {
N << "!<unknown kind #" << Kind << ">";
}
return N.str();
}
bool PNaClABIVerifyFunctions::IsWhitelistedMetadata(unsigned MDKind) {
return MDKind == LLVMContext::MD_dbg && PNaClABIAllowDebugMetadata;
}
// A valid pointer type is either:
// * a pointer to a valid PNaCl scalar type (except i1), or
// * a function pointer (with valid argument and return types).
//
// i1 is disallowed so that all loads and stores are a whole number of
// bytes, and so that we do not need to define whether a store of i1
// zero-extends.
static bool isValidPointerType(Type *Ty) {
if (PointerType *PtrTy = dyn_cast<PointerType>(Ty)) {
if (PtrTy->getAddressSpace() != 0)
return false;
Type *EltTy = PtrTy->getElementType();
if (PNaClABITypeChecker::isValidScalarType(EltTy) &&
!EltTy->isIntegerTy(1))
return true;
if (FunctionType *FTy = dyn_cast<FunctionType>(EltTy))
return PNaClABITypeChecker::isValidFunctionType(FTy);
}
return false;
}
static bool isIntrinsicFunc(const Value *Val) {
if (const Function *F = dyn_cast<Function>(Val))
return F->isIntrinsic();
return false;
}
// InherentPtrs may be referenced by casts -- PtrToIntInst and
// BitCastInst -- that produce NormalizedPtrs.
//
// InherentPtrs exclude intrinsic functions in order to prevent taking
// the address of an intrinsic function. InherentPtrs include
// intrinsic calls because some intrinsics return pointer types
// (e.g. nacl.read.tp returns i8*).
static bool isInherentPtr(const Value *Val) {
return isa<AllocaInst>(Val) ||
(isa<GlobalValue>(Val) && !isIntrinsicFunc(Val)) ||
isa<IntrinsicInst>(Val);
}
// NormalizedPtrs may be used where pointer types are required -- for
// loads, stores, etc. Note that this excludes ConstantExprs,
// ConstantPointerNull and UndefValue.
static bool isNormalizedPtr(const Value *Val) {
if (!isValidPointerType(Val->getType()))
return false;
// The bitcast must also be a bitcast of an InherentPtr, but we
// check that when visiting the bitcast instruction.
return isa<IntToPtrInst>(Val) || isa<BitCastInst>(Val) || isInherentPtr(Val);
}
static bool isValidScalarOperand(const Value *Val) {
// The types of Instructions and Arguments are checked elsewhere
// (when visiting the Instruction or the Function). BasicBlocks are
// included here because branch instructions have BasicBlock
// operands.
if (isa<Instruction>(Val) || isa<Argument>(Val) || isa<BasicBlock>(Val))
return true;
// Allow some Constants. Note that this excludes ConstantExprs.
return PNaClABITypeChecker::isValidScalarType(Val->getType()) &&
(isa<ConstantInt>(Val) ||
isa<ConstantFP>(Val) ||
isa<UndefValue>(Val));
}
static bool isAllowedAlignment(unsigned Alignment, Type *Ty) {
// Non-atomic integer operations must always use "align 1", since we
// do not want the backend to generate code with non-portable
// undefined behaviour (such as misaligned access faults) if user
// code specifies "align 4" but uses a misaligned pointer. As a
// concession to performance, we allow larger alignment values for
// floating point types.
//
// To reduce the set of alignment values that need to be encoded in
// pexes, we disallow other alignment values. We require alignments
// to be explicit by disallowing Alignment == 0.
return Alignment == 1 ||
(Ty->isDoubleTy() && Alignment == 8) ||
(Ty->isFloatTy() && Alignment == 4);
}
static bool hasAllowedAtomicRMWOperation(
const NaCl::AtomicIntrinsics::AtomicIntrinsic *I, const CallInst *Call) {
for (size_t P = 0; P != I->NumParams; ++P) {
if (I->ParamType[P] != NaCl::AtomicIntrinsics::RMW)
continue;
const Value *Operation = Call->getOperand(P);
if (!Operation)
return false;
const Constant *C = dyn_cast<Constant>(Operation);
if (!C)
return false;
const APInt &I = C->getUniqueInteger();
if (I.ule(NaCl::AtomicInvalid) || I.uge(NaCl::AtomicNum))
return false;
}
return true;
}
static bool hasAllowedAtomicMemoryOrder(
const NaCl::AtomicIntrinsics::AtomicIntrinsic *I, const CallInst *Call) {
for (size_t P = 0; P != I->NumParams; ++P) {
if (I->ParamType[P] != NaCl::AtomicIntrinsics::Mem)
continue;
const Value *MemoryOrder = Call->getOperand(P);
if (!MemoryOrder)
return false;
const Constant *C = dyn_cast<Constant>(MemoryOrder);
if (!C)
return false;
const APInt &I = C->getUniqueInteger();
if (I.ule(NaCl::MemoryOrderInvalid) || I.uge(NaCl::MemoryOrderNum))
return false;
// TODO For now only sequential consistency is allowed. When more
// are allowed we need to validate that the memory order is
// allowed on the specific atomic operation (e.g. no store
// acquire, and relationship between success/failure memory
// order on compare exchange).
if (I != NaCl::MemoryOrderSequentiallyConsistent)
return false;
}
return true;
}
static bool hasAllowedLockFreeByteSize(const CallInst *Call) {
if (!Call->getType()->isIntegerTy())
return false;
const Value *Operation = Call->getOperand(0);
if (!Operation)
return false;
const Constant *C = dyn_cast<Constant>(Operation);
if (!C)
return false;
const APInt &I = C->getUniqueInteger();
// PNaCl currently only supports atomics of byte size {1,2,4,8} (which
// may or may not be lock-free). These values coincide with
// C11/C++11's supported atomic types.
if (I == 1 || I == 2 || I == 4 || I == 8)
return true;
return false;
}
// Check the instruction's opcode and its operands. The operands may
// require opcode-specific checking.
//
// This returns an error string if the instruction is rejected, or
// NULL if the instruction is allowed.
const char *PNaClABIVerifyFunctions::checkInstruction(const Instruction *Inst) {
// If the instruction has a single pointer operand, PtrOperandIndex is
// set to its operand index.
unsigned PtrOperandIndex = -1;
switch (Inst->getOpcode()) {
// Disallowed instructions. Default is to disallow.
// We expand GetElementPtr out into arithmetic.
case Instruction::GetElementPtr:
// VAArg is expanded out by ExpandVarArgs.
case Instruction::VAArg:
// Zero-cost C++ exception handling is not supported yet.
case Instruction::Invoke:
case Instruction::LandingPad:
case Instruction::Resume:
// indirectbr may interfere with streaming
case Instruction::IndirectBr:
// No vector instructions yet
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
// ExtractValue and InsertValue operate on struct values.
case Instruction::ExtractValue:
case Instruction::InsertValue:
// Atomics should become NaCl intrinsics.
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Fence:
return "bad instruction opcode";
default:
return "unknown instruction opcode";
// Terminator instructions
case Instruction::Ret:
case Instruction::Br:
case Instruction::Unreachable:
// Binary operations
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
// Bitwise binary operations
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
// Conversion operations
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
// Other operations
case Instruction::FCmp:
case Instruction::PHI:
case Instruction::Select:
break;
// The following operations are of dubious usefulness on 1-bit
// values. Use of the i1 type is disallowed here so that code
// generators do not need to support these corner cases.
case Instruction::ICmp:
// Binary operations
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
if (Inst->getOperand(0)->getType()->isIntegerTy(1))
return "arithmetic on i1";
break;
// Memory accesses.
case Instruction::Load: {
const LoadInst *Load = cast<LoadInst>(Inst);
PtrOperandIndex = Load->getPointerOperandIndex();
if (Load->isAtomic())
return "atomic load";
if (Load->isVolatile())
return "volatile load";
if (!isAllowedAlignment(Load->getAlignment(),
Load->getType()))
return "bad alignment";
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad pointer";
break;
}
case Instruction::Store: {
const StoreInst *Store = cast<StoreInst>(Inst);
PtrOperandIndex = Store->getPointerOperandIndex();
if (Store->isAtomic())
return "atomic store";
if (Store->isVolatile())
return "volatile store";
if (!isAllowedAlignment(Store->getAlignment(),
Store->getValueOperand()->getType()))
return "bad alignment";
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad pointer";
break;
}
// Casts.
case Instruction::BitCast:
if (Inst->getType()->isPointerTy()) {
PtrOperandIndex = 0;
if (!isInherentPtr(Inst->getOperand(PtrOperandIndex)))
return "operand not InherentPtr";
}
break;
case Instruction::IntToPtr:
if (!cast<IntToPtrInst>(Inst)->getSrcTy()->isIntegerTy(32))
return "non-i32 inttoptr";
break;
case Instruction::PtrToInt:
PtrOperandIndex = 0;
if (!isInherentPtr(Inst->getOperand(PtrOperandIndex)))
return "operand not InherentPtr";
if (!Inst->getType()->isIntegerTy(32))
return "non-i32 ptrtoint";
break;
case Instruction::Alloca: {
const AllocaInst *Alloca = cast<AllocaInst>(Inst);
if (!Alloca->getAllocatedType()->isIntegerTy(8))
return "non-i8 alloca";
if (!Alloca->getArraySize()->getType()->isIntegerTy(32))
return "alloca array size is not i32";
break;
}
case Instruction::Call: {
const CallInst *Call = cast<CallInst>(Inst);
if (Call->isInlineAsm())
return "inline assembly";
if (!Call->getAttributes().isEmpty())
return "bad call attributes";
if (Call->getCallingConv() != CallingConv::C)
return "bad calling convention";
// Intrinsic calls can have multiple pointer arguments and
// metadata arguments, so handle them specially.
if (const IntrinsicInst *Call = dyn_cast<IntrinsicInst>(Inst)) {
for (unsigned ArgNum = 0, E = Call->getNumArgOperands();
ArgNum < E; ++ArgNum) {
const Value *Arg = Call->getArgOperand(ArgNum);
if (!(isValidScalarOperand(Arg) ||
isNormalizedPtr(Arg) ||
isa<MDNode>(Arg)))
return "bad intrinsic operand";
}
// Disallow alignments other than 1 on memcpy() etc., for the
// same reason that we disallow them on integer loads and
// stores.
if (const MemIntrinsic *MemOp = dyn_cast<MemIntrinsic>(Call)) {
// Avoid the getAlignment() method here because it aborts if
// the alignment argument is not a Constant.
Value *AlignArg = MemOp->getArgOperand(3);
if (!isa<ConstantInt>(AlignArg) ||
cast<ConstantInt>(AlignArg)->getZExtValue() != 1) {
return "bad alignment";
}
}
switch (Call->getIntrinsicID()) {
default: break; // Other intrinsics don't require checks.
// Disallow NaCl atomic intrinsics which don't have valid
// constant NaCl::AtomicOperation and NaCl::MemoryOrder
// parameters.
case Intrinsic::nacl_atomic_load:
case Intrinsic::nacl_atomic_store:
case Intrinsic::nacl_atomic_rmw:
case Intrinsic::nacl_atomic_cmpxchg:
case Intrinsic::nacl_atomic_fence:
case Intrinsic::nacl_atomic_fence_all: {
// All overloads have memory order and RMW operation in the
// same parameter, arbitrarily use the I32 overload.
Type *T = Type::getInt32Ty(
Inst->getParent()->getParent()->getContext());
const NaCl::AtomicIntrinsics::AtomicIntrinsic *I =
AtomicIntrinsics->find(Call->getIntrinsicID(), T);
if (!hasAllowedAtomicMemoryOrder(I, Call))
return "invalid memory order";
if (!hasAllowedAtomicRMWOperation(I, Call))
return "invalid atomicRMW operation";
} break;
// Disallow NaCl atomic_is_lock_free intrinsics which don't
// have valid constant size type.
case Intrinsic::nacl_atomic_is_lock_free:
if (!hasAllowedLockFreeByteSize(Call))
return "invalid atomic lock-free byte size";
break;
}
// Allow the instruction and skip the later checks.
return NULL;
}
// The callee is the last operand.
PtrOperandIndex = Inst->getNumOperands() - 1;
if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex)))
return "bad function callee operand";
break;
}
case Instruction::Switch: {
// SwitchInst represents switch cases using array and vector
// constants, which we normally reject, so we must check
// SwitchInst specially here.
const SwitchInst *Switch = cast<SwitchInst>(Inst);
if (!isValidScalarOperand(Switch->getCondition()))
return "bad switch condition";
if (Switch->getCondition()->getType()->isIntegerTy(1))
return "switch on i1";
// SwitchInst requires the cases to be ConstantInts, but it
// doesn't require their types to be the same as the condition
// value, so check all the cases too.
for (SwitchInst::ConstCaseIt Case = Switch->case_begin(),
E = Switch->case_end(); Case != E; ++Case) {
if (!isValidScalarOperand(Case.getCaseValue()))
return "bad switch case";
}
// Allow the instruction and skip the later checks.
return NULL;
}
}
// Check the instruction's operands. We have already checked any
// pointer operands. Any remaining operands must be scalars.
for (unsigned OpNum = 0, E = Inst->getNumOperands(); OpNum < E; ++OpNum) {
if (OpNum != PtrOperandIndex &&
!isValidScalarOperand(Inst->getOperand(OpNum)))
return "bad operand";
}
// Check arithmetic attributes.
if (const OverflowingBinaryOperator *Op =
dyn_cast<OverflowingBinaryOperator>(Inst)) {
if (Op->hasNoUnsignedWrap())
return "has \"nuw\" attribute";
if (Op->hasNoSignedWrap())
return "has \"nsw\" attribute";
}
if (const PossiblyExactOperator *Op =
dyn_cast<PossiblyExactOperator>(Inst)) {
if (Op->isExact())
return "has \"exact\" attribute";
}
// Allow the instruction.
return NULL;
}
bool PNaClABIVerifyFunctions::runOnFunction(Function &F) {
SmallVector<StringRef, 8> MDNames;
F.getContext().getMDKindNames(MDNames);
for (Function::const_iterator FI = F.begin(), FE = F.end();
FI != FE; ++FI) {
for (BasicBlock::const_iterator BBI = FI->begin(), BBE = FI->end();
BBI != BBE; ++BBI) {
const Instruction *Inst = BBI;
// Check the instruction opcode first. This simplifies testing,
// because some instruction opcodes must be rejected out of hand
// (regardless of the instruction's result type) and the tests
// check the reason for rejection.
const char *Error = checkInstruction(BBI);
// Check the instruction's result type.
if (!Error && !(PNaClABITypeChecker::isValidScalarType(Inst->getType()) ||
isNormalizedPtr(Inst) ||
isa<AllocaInst>(Inst))) {
Error = "bad result type";
}
if (Error) {
Reporter->addError() << "Function " << F.getName() <<
" disallowed: " << Error << ": " << *BBI << "\n";
}
// Check instruction attachment metadata.
SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
BBI->getAllMetadata(MDForInst);
for (unsigned i = 0, e = MDForInst.size(); i != e; i++) {
if (!IsWhitelistedMetadata(MDForInst[i].first)) {
Reporter->addError()
<< "Function " << F.getName()
<< " has disallowed instruction metadata: "
<< getMDNodeString(MDForInst[i].first, MDNames) << "\n";
}
}
}
}
Reporter->checkForFatalErrors();
return false;
}
// This method exists so that the passes can easily be run with opt -analyze.
// In this case the default constructor is used and we want to reset the error
// messages after each print.
void PNaClABIVerifyFunctions::print(llvm::raw_ostream &O, const Module *M)
const {
Reporter->printErrors(O);
Reporter->reset();
}
char PNaClABIVerifyFunctions::ID = 0;
INITIALIZE_PASS(PNaClABIVerifyFunctions, "verify-pnaclabi-functions",
"Verify functions for PNaCl", false, true)
FunctionPass *llvm::createPNaClABIVerifyFunctionsPass(
PNaClABIErrorReporter *Reporter) {
return new PNaClABIVerifyFunctions(Reporter);
}