| //===- PNaClABIVerifyFunctions.cpp - Verify PNaCl ABI rules ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Verify function-level PNaCl ABI requirements. |
| // |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/NaCl.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/NaClAtomicIntrinsics.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include "PNaClABITypeChecker.h" |
| using namespace llvm; |
| |
| namespace { |
| |
| // Checks that examine anything in the function body should be in |
| // FunctionPasses to make them streaming-friendly |
| class PNaClABIVerifyFunctions : public FunctionPass { |
| public: |
| static char ID; |
| PNaClABIVerifyFunctions() : |
| FunctionPass(ID), |
| Reporter(new PNaClABIErrorReporter), |
| ReporterIsOwned(true) { |
| initializePNaClABIVerifyFunctionsPass(*PassRegistry::getPassRegistry()); |
| } |
| explicit PNaClABIVerifyFunctions(PNaClABIErrorReporter *Reporter_) : |
| FunctionPass(ID), |
| Reporter(Reporter_), |
| ReporterIsOwned(false) { |
| initializePNaClABIVerifyFunctionsPass(*PassRegistry::getPassRegistry()); |
| } |
| ~PNaClABIVerifyFunctions() { |
| if (ReporterIsOwned) |
| delete Reporter; |
| } |
| virtual bool doInitialization(Module &M) { |
| AtomicIntrinsics.reset(new NaCl::AtomicIntrinsics(M.getContext())); |
| return false; |
| } |
| bool runOnFunction(Function &F); |
| virtual void print(raw_ostream &O, const Module *M) const; |
| private: |
| bool IsWhitelistedMetadata(unsigned MDKind); |
| const char *checkInstruction(const Instruction *Inst); |
| PNaClABIErrorReporter *Reporter; |
| bool ReporterIsOwned; |
| OwningPtr<NaCl::AtomicIntrinsics> AtomicIntrinsics; |
| }; |
| |
| } // and anonymous namespace |
| |
| // There's no built-in way to get the name of an MDNode, so use a |
| // string ostream to print it. |
| static std::string getMDNodeString(unsigned Kind, |
| const SmallVectorImpl<StringRef> &MDNames) { |
| std::string MDName; |
| raw_string_ostream N(MDName); |
| if (Kind < MDNames.size()) { |
| N << "!" << MDNames[Kind]; |
| } else { |
| N << "!<unknown kind #" << Kind << ">"; |
| } |
| return N.str(); |
| } |
| |
| bool PNaClABIVerifyFunctions::IsWhitelistedMetadata(unsigned MDKind) { |
| return MDKind == LLVMContext::MD_dbg && PNaClABIAllowDebugMetadata; |
| } |
| |
| // A valid pointer type is either: |
| // * a pointer to a valid PNaCl scalar type (except i1), or |
| // * a function pointer (with valid argument and return types). |
| // |
| // i1 is disallowed so that all loads and stores are a whole number of |
| // bytes, and so that we do not need to define whether a store of i1 |
| // zero-extends. |
| static bool isValidPointerType(Type *Ty) { |
| if (PointerType *PtrTy = dyn_cast<PointerType>(Ty)) { |
| if (PtrTy->getAddressSpace() != 0) |
| return false; |
| Type *EltTy = PtrTy->getElementType(); |
| if (PNaClABITypeChecker::isValidScalarType(EltTy) && |
| !EltTy->isIntegerTy(1)) |
| return true; |
| if (FunctionType *FTy = dyn_cast<FunctionType>(EltTy)) |
| return PNaClABITypeChecker::isValidFunctionType(FTy); |
| } |
| return false; |
| } |
| |
| static bool isIntrinsicFunc(const Value *Val) { |
| if (const Function *F = dyn_cast<Function>(Val)) |
| return F->isIntrinsic(); |
| return false; |
| } |
| |
| // InherentPtrs may be referenced by casts -- PtrToIntInst and |
| // BitCastInst -- that produce NormalizedPtrs. |
| // |
| // InherentPtrs exclude intrinsic functions in order to prevent taking |
| // the address of an intrinsic function. InherentPtrs include |
| // intrinsic calls because some intrinsics return pointer types |
| // (e.g. nacl.read.tp returns i8*). |
| static bool isInherentPtr(const Value *Val) { |
| return isa<AllocaInst>(Val) || |
| (isa<GlobalValue>(Val) && !isIntrinsicFunc(Val)) || |
| isa<IntrinsicInst>(Val); |
| } |
| |
| // NormalizedPtrs may be used where pointer types are required -- for |
| // loads, stores, etc. Note that this excludes ConstantExprs, |
| // ConstantPointerNull and UndefValue. |
| static bool isNormalizedPtr(const Value *Val) { |
| if (!isValidPointerType(Val->getType())) |
| return false; |
| // The bitcast must also be a bitcast of an InherentPtr, but we |
| // check that when visiting the bitcast instruction. |
| return isa<IntToPtrInst>(Val) || isa<BitCastInst>(Val) || isInherentPtr(Val); |
| } |
| |
| static bool isValidScalarOperand(const Value *Val) { |
| // The types of Instructions and Arguments are checked elsewhere |
| // (when visiting the Instruction or the Function). BasicBlocks are |
| // included here because branch instructions have BasicBlock |
| // operands. |
| if (isa<Instruction>(Val) || isa<Argument>(Val) || isa<BasicBlock>(Val)) |
| return true; |
| |
| // Allow some Constants. Note that this excludes ConstantExprs. |
| return PNaClABITypeChecker::isValidScalarType(Val->getType()) && |
| (isa<ConstantInt>(Val) || |
| isa<ConstantFP>(Val) || |
| isa<UndefValue>(Val)); |
| } |
| |
| static bool isAllowedAlignment(unsigned Alignment, Type *Ty) { |
| // Non-atomic integer operations must always use "align 1", since we |
| // do not want the backend to generate code with non-portable |
| // undefined behaviour (such as misaligned access faults) if user |
| // code specifies "align 4" but uses a misaligned pointer. As a |
| // concession to performance, we allow larger alignment values for |
| // floating point types. |
| // |
| // To reduce the set of alignment values that need to be encoded in |
| // pexes, we disallow other alignment values. We require alignments |
| // to be explicit by disallowing Alignment == 0. |
| return Alignment == 1 || |
| (Ty->isDoubleTy() && Alignment == 8) || |
| (Ty->isFloatTy() && Alignment == 4); |
| } |
| |
| static bool hasAllowedAtomicRMWOperation( |
| const NaCl::AtomicIntrinsics::AtomicIntrinsic *I, const CallInst *Call) { |
| for (size_t P = 0; P != I->NumParams; ++P) { |
| if (I->ParamType[P] != NaCl::AtomicIntrinsics::RMW) |
| continue; |
| |
| const Value *Operation = Call->getOperand(P); |
| if (!Operation) |
| return false; |
| const Constant *C = dyn_cast<Constant>(Operation); |
| if (!C) |
| return false; |
| const APInt &I = C->getUniqueInteger(); |
| if (I.ule(NaCl::AtomicInvalid) || I.uge(NaCl::AtomicNum)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool hasAllowedAtomicMemoryOrder( |
| const NaCl::AtomicIntrinsics::AtomicIntrinsic *I, const CallInst *Call) { |
| for (size_t P = 0; P != I->NumParams; ++P) { |
| if (I->ParamType[P] != NaCl::AtomicIntrinsics::Mem) |
| continue; |
| |
| const Value *MemoryOrder = Call->getOperand(P); |
| if (!MemoryOrder) |
| return false; |
| const Constant *C = dyn_cast<Constant>(MemoryOrder); |
| if (!C) |
| return false; |
| const APInt &I = C->getUniqueInteger(); |
| if (I.ule(NaCl::MemoryOrderInvalid) || I.uge(NaCl::MemoryOrderNum)) |
| return false; |
| // TODO For now only sequential consistency is allowed. When more |
| // are allowed we need to validate that the memory order is |
| // allowed on the specific atomic operation (e.g. no store |
| // acquire, and relationship between success/failure memory |
| // order on compare exchange). |
| if (I != NaCl::MemoryOrderSequentiallyConsistent) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool hasAllowedLockFreeByteSize(const CallInst *Call) { |
| if (!Call->getType()->isIntegerTy()) |
| return false; |
| const Value *Operation = Call->getOperand(0); |
| if (!Operation) |
| return false; |
| const Constant *C = dyn_cast<Constant>(Operation); |
| if (!C) |
| return false; |
| const APInt &I = C->getUniqueInteger(); |
| // PNaCl currently only supports atomics of byte size {1,2,4,8} (which |
| // may or may not be lock-free). These values coincide with |
| // C11/C++11's supported atomic types. |
| if (I == 1 || I == 2 || I == 4 || I == 8) |
| return true; |
| return false; |
| } |
| |
| // Check the instruction's opcode and its operands. The operands may |
| // require opcode-specific checking. |
| // |
| // This returns an error string if the instruction is rejected, or |
| // NULL if the instruction is allowed. |
| const char *PNaClABIVerifyFunctions::checkInstruction(const Instruction *Inst) { |
| // If the instruction has a single pointer operand, PtrOperandIndex is |
| // set to its operand index. |
| unsigned PtrOperandIndex = -1; |
| |
| switch (Inst->getOpcode()) { |
| // Disallowed instructions. Default is to disallow. |
| // We expand GetElementPtr out into arithmetic. |
| case Instruction::GetElementPtr: |
| // VAArg is expanded out by ExpandVarArgs. |
| case Instruction::VAArg: |
| // Zero-cost C++ exception handling is not supported yet. |
| case Instruction::Invoke: |
| case Instruction::LandingPad: |
| case Instruction::Resume: |
| // indirectbr may interfere with streaming |
| case Instruction::IndirectBr: |
| // No vector instructions yet |
| case Instruction::ExtractElement: |
| case Instruction::InsertElement: |
| case Instruction::ShuffleVector: |
| // ExtractValue and InsertValue operate on struct values. |
| case Instruction::ExtractValue: |
| case Instruction::InsertValue: |
| // Atomics should become NaCl intrinsics. |
| case Instruction::AtomicCmpXchg: |
| case Instruction::AtomicRMW: |
| case Instruction::Fence: |
| return "bad instruction opcode"; |
| default: |
| return "unknown instruction opcode"; |
| |
| // Terminator instructions |
| case Instruction::Ret: |
| case Instruction::Br: |
| case Instruction::Unreachable: |
| // Binary operations |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| // Bitwise binary operations |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| // Conversion operations |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| // Other operations |
| case Instruction::FCmp: |
| case Instruction::PHI: |
| case Instruction::Select: |
| break; |
| |
| // The following operations are of dubious usefulness on 1-bit |
| // values. Use of the i1 type is disallowed here so that code |
| // generators do not need to support these corner cases. |
| case Instruction::ICmp: |
| // Binary operations |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| if (Inst->getOperand(0)->getType()->isIntegerTy(1)) |
| return "arithmetic on i1"; |
| break; |
| |
| // Memory accesses. |
| case Instruction::Load: { |
| const LoadInst *Load = cast<LoadInst>(Inst); |
| PtrOperandIndex = Load->getPointerOperandIndex(); |
| if (Load->isAtomic()) |
| return "atomic load"; |
| if (Load->isVolatile()) |
| return "volatile load"; |
| if (!isAllowedAlignment(Load->getAlignment(), |
| Load->getType())) |
| return "bad alignment"; |
| if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex))) |
| return "bad pointer"; |
| break; |
| } |
| case Instruction::Store: { |
| const StoreInst *Store = cast<StoreInst>(Inst); |
| PtrOperandIndex = Store->getPointerOperandIndex(); |
| if (Store->isAtomic()) |
| return "atomic store"; |
| if (Store->isVolatile()) |
| return "volatile store"; |
| if (!isAllowedAlignment(Store->getAlignment(), |
| Store->getValueOperand()->getType())) |
| return "bad alignment"; |
| if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex))) |
| return "bad pointer"; |
| break; |
| } |
| |
| // Casts. |
| case Instruction::BitCast: |
| if (Inst->getType()->isPointerTy()) { |
| PtrOperandIndex = 0; |
| if (!isInherentPtr(Inst->getOperand(PtrOperandIndex))) |
| return "operand not InherentPtr"; |
| } |
| break; |
| case Instruction::IntToPtr: |
| if (!cast<IntToPtrInst>(Inst)->getSrcTy()->isIntegerTy(32)) |
| return "non-i32 inttoptr"; |
| break; |
| case Instruction::PtrToInt: |
| PtrOperandIndex = 0; |
| if (!isInherentPtr(Inst->getOperand(PtrOperandIndex))) |
| return "operand not InherentPtr"; |
| if (!Inst->getType()->isIntegerTy(32)) |
| return "non-i32 ptrtoint"; |
| break; |
| |
| case Instruction::Alloca: { |
| const AllocaInst *Alloca = cast<AllocaInst>(Inst); |
| if (!Alloca->getAllocatedType()->isIntegerTy(8)) |
| return "non-i8 alloca"; |
| if (!Alloca->getArraySize()->getType()->isIntegerTy(32)) |
| return "alloca array size is not i32"; |
| break; |
| } |
| |
| case Instruction::Call: { |
| const CallInst *Call = cast<CallInst>(Inst); |
| if (Call->isInlineAsm()) |
| return "inline assembly"; |
| if (!Call->getAttributes().isEmpty()) |
| return "bad call attributes"; |
| if (Call->getCallingConv() != CallingConv::C) |
| return "bad calling convention"; |
| |
| // Intrinsic calls can have multiple pointer arguments and |
| // metadata arguments, so handle them specially. |
| if (const IntrinsicInst *Call = dyn_cast<IntrinsicInst>(Inst)) { |
| for (unsigned ArgNum = 0, E = Call->getNumArgOperands(); |
| ArgNum < E; ++ArgNum) { |
| const Value *Arg = Call->getArgOperand(ArgNum); |
| if (!(isValidScalarOperand(Arg) || |
| isNormalizedPtr(Arg) || |
| isa<MDNode>(Arg))) |
| return "bad intrinsic operand"; |
| } |
| |
| // Disallow alignments other than 1 on memcpy() etc., for the |
| // same reason that we disallow them on integer loads and |
| // stores. |
| if (const MemIntrinsic *MemOp = dyn_cast<MemIntrinsic>(Call)) { |
| // Avoid the getAlignment() method here because it aborts if |
| // the alignment argument is not a Constant. |
| Value *AlignArg = MemOp->getArgOperand(3); |
| if (!isa<ConstantInt>(AlignArg) || |
| cast<ConstantInt>(AlignArg)->getZExtValue() != 1) { |
| return "bad alignment"; |
| } |
| } |
| |
| switch (Call->getIntrinsicID()) { |
| default: break; // Other intrinsics don't require checks. |
| // Disallow NaCl atomic intrinsics which don't have valid |
| // constant NaCl::AtomicOperation and NaCl::MemoryOrder |
| // parameters. |
| case Intrinsic::nacl_atomic_load: |
| case Intrinsic::nacl_atomic_store: |
| case Intrinsic::nacl_atomic_rmw: |
| case Intrinsic::nacl_atomic_cmpxchg: |
| case Intrinsic::nacl_atomic_fence: |
| case Intrinsic::nacl_atomic_fence_all: { |
| // All overloads have memory order and RMW operation in the |
| // same parameter, arbitrarily use the I32 overload. |
| Type *T = Type::getInt32Ty( |
| Inst->getParent()->getParent()->getContext()); |
| const NaCl::AtomicIntrinsics::AtomicIntrinsic *I = |
| AtomicIntrinsics->find(Call->getIntrinsicID(), T); |
| if (!hasAllowedAtomicMemoryOrder(I, Call)) |
| return "invalid memory order"; |
| if (!hasAllowedAtomicRMWOperation(I, Call)) |
| return "invalid atomicRMW operation"; |
| } break; |
| // Disallow NaCl atomic_is_lock_free intrinsics which don't |
| // have valid constant size type. |
| case Intrinsic::nacl_atomic_is_lock_free: |
| if (!hasAllowedLockFreeByteSize(Call)) |
| return "invalid atomic lock-free byte size"; |
| break; |
| } |
| |
| // Allow the instruction and skip the later checks. |
| return NULL; |
| } |
| |
| // The callee is the last operand. |
| PtrOperandIndex = Inst->getNumOperands() - 1; |
| if (!isNormalizedPtr(Inst->getOperand(PtrOperandIndex))) |
| return "bad function callee operand"; |
| break; |
| } |
| |
| case Instruction::Switch: { |
| // SwitchInst represents switch cases using array and vector |
| // constants, which we normally reject, so we must check |
| // SwitchInst specially here. |
| const SwitchInst *Switch = cast<SwitchInst>(Inst); |
| if (!isValidScalarOperand(Switch->getCondition())) |
| return "bad switch condition"; |
| if (Switch->getCondition()->getType()->isIntegerTy(1)) |
| return "switch on i1"; |
| |
| // SwitchInst requires the cases to be ConstantInts, but it |
| // doesn't require their types to be the same as the condition |
| // value, so check all the cases too. |
| for (SwitchInst::ConstCaseIt Case = Switch->case_begin(), |
| E = Switch->case_end(); Case != E; ++Case) { |
| if (!isValidScalarOperand(Case.getCaseValue())) |
| return "bad switch case"; |
| } |
| |
| // Allow the instruction and skip the later checks. |
| return NULL; |
| } |
| } |
| |
| // Check the instruction's operands. We have already checked any |
| // pointer operands. Any remaining operands must be scalars. |
| for (unsigned OpNum = 0, E = Inst->getNumOperands(); OpNum < E; ++OpNum) { |
| if (OpNum != PtrOperandIndex && |
| !isValidScalarOperand(Inst->getOperand(OpNum))) |
| return "bad operand"; |
| } |
| |
| // Check arithmetic attributes. |
| if (const OverflowingBinaryOperator *Op = |
| dyn_cast<OverflowingBinaryOperator>(Inst)) { |
| if (Op->hasNoUnsignedWrap()) |
| return "has \"nuw\" attribute"; |
| if (Op->hasNoSignedWrap()) |
| return "has \"nsw\" attribute"; |
| } |
| if (const PossiblyExactOperator *Op = |
| dyn_cast<PossiblyExactOperator>(Inst)) { |
| if (Op->isExact()) |
| return "has \"exact\" attribute"; |
| } |
| |
| // Allow the instruction. |
| return NULL; |
| } |
| |
| bool PNaClABIVerifyFunctions::runOnFunction(Function &F) { |
| SmallVector<StringRef, 8> MDNames; |
| F.getContext().getMDKindNames(MDNames); |
| |
| for (Function::const_iterator FI = F.begin(), FE = F.end(); |
| FI != FE; ++FI) { |
| for (BasicBlock::const_iterator BBI = FI->begin(), BBE = FI->end(); |
| BBI != BBE; ++BBI) { |
| const Instruction *Inst = BBI; |
| // Check the instruction opcode first. This simplifies testing, |
| // because some instruction opcodes must be rejected out of hand |
| // (regardless of the instruction's result type) and the tests |
| // check the reason for rejection. |
| const char *Error = checkInstruction(BBI); |
| // Check the instruction's result type. |
| if (!Error && !(PNaClABITypeChecker::isValidScalarType(Inst->getType()) || |
| isNormalizedPtr(Inst) || |
| isa<AllocaInst>(Inst))) { |
| Error = "bad result type"; |
| } |
| if (Error) { |
| Reporter->addError() << "Function " << F.getName() << |
| " disallowed: " << Error << ": " << *BBI << "\n"; |
| } |
| |
| // Check instruction attachment metadata. |
| SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst; |
| BBI->getAllMetadata(MDForInst); |
| |
| for (unsigned i = 0, e = MDForInst.size(); i != e; i++) { |
| if (!IsWhitelistedMetadata(MDForInst[i].first)) { |
| Reporter->addError() |
| << "Function " << F.getName() |
| << " has disallowed instruction metadata: " |
| << getMDNodeString(MDForInst[i].first, MDNames) << "\n"; |
| } |
| } |
| } |
| } |
| |
| Reporter->checkForFatalErrors(); |
| return false; |
| } |
| |
| // This method exists so that the passes can easily be run with opt -analyze. |
| // In this case the default constructor is used and we want to reset the error |
| // messages after each print. |
| void PNaClABIVerifyFunctions::print(llvm::raw_ostream &O, const Module *M) |
| const { |
| Reporter->printErrors(O); |
| Reporter->reset(); |
| } |
| |
| char PNaClABIVerifyFunctions::ID = 0; |
| INITIALIZE_PASS(PNaClABIVerifyFunctions, "verify-pnaclabi-functions", |
| "Verify functions for PNaCl", false, true) |
| |
| FunctionPass *llvm::createPNaClABIVerifyFunctionsPass( |
| PNaClABIErrorReporter *Reporter) { |
| return new PNaClABIVerifyFunctions(Reporter); |
| } |