blob: 6f12c5500442d0d216ff462c5525eb3a9542d20b [file] [log] [blame]
//===--- Bitcode/NaCl/Writer/NaClBitcodeWriter.cpp - Bitcode Writer -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Bitcode writer implementation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "NaClBitcodeWriter"
#include "llvm/Bitcode/NaCl/NaClBitcodeHeader.h"
#include "llvm/Bitcode/NaCl/NaClReaderWriter.h"
#include "NaClValueEnumerator.h"
#include "llvm/Bitcode/NaCl/NaClBitstreamWriter.h"
#include "llvm/Bitcode/NaCl/NaClLLVMBitCodes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
#include <map>
using namespace llvm;
static cl::opt<unsigned>
PNaClVersion("pnacl-version",
cl::desc("Specify PNaCl bitcode version to write"),
cl::init(2));
/// These are manifest constants used by the bitcode writer. They do
/// not need to be kept in sync with the reader, but need to be
/// consistent within this file.
///
/// Note that for each block type GROUP, the last entry should be of
/// the form:
///
/// GROUP_MAX_ABBREV = GROUP_LAST_ABBREV,
///
/// where GROUP_LAST_ABBREV is the last defined abbreviation. See
/// include file "llvm/Bitcode/NaCl/NaClBitCodes.h" for more
/// information on how groups should be defined.
enum {
// VALUE_SYMTAB_BLOCK abbrev id's.
VST_ENTRY_8_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV,
VST_MAX_ABBREV = VST_BBENTRY_6_ABBREV,
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_INTEGER_ZERO_ABBREV,
CONSTANTS_FLOAT_ABBREV,
CONSTANTS_MAX_ABBREV = CONSTANTS_FLOAT_ABBREV,
// GLOBALVAR BLOCK abbrev id's.
GLOBALVAR_VAR_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV,
GLOBALVAR_COMPOUND_ABBREV,
GLOBALVAR_ZEROFILL_ABBREV,
GLOBALVAR_DATA_ABBREV,
GLOBALVAR_RELOC_ABBREV,
GLOBALVAR_RELOC_WITH_ADDEND_ABBREV,
GLOBALVAR_MAX_ABBREV = GLOBALVAR_RELOC_WITH_ADDEND_ABBREV,
// FUNCTION_BLOCK abbrev id's.
FUNCTION_INST_LOAD_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV,
FUNCTION_INST_BINOP_ABBREV,
FUNCTION_INST_CAST_ABBREV,
FUNCTION_INST_RET_VOID_ABBREV,
FUNCTION_INST_RET_VAL_ABBREV,
FUNCTION_INST_UNREACHABLE_ABBREV,
FUNCTION_INST_FORWARDTYPEREF_ABBREV,
FUNCTION_INST_STORE_ABBREV,
FUNCTION_INST_MAX_ABBREV = FUNCTION_INST_STORE_ABBREV,
// TYPE_BLOCK_ID_NEW abbrev id's.
TYPE_POINTER_ABBREV = naclbitc::FIRST_APPLICATION_ABBREV,
TYPE_FUNCTION_ABBREV,
TYPE_ARRAY_ABBREV,
TYPE_MAX_ABBREV = TYPE_ARRAY_ABBREV
};
LLVM_ATTRIBUTE_NORETURN
static void ReportIllegalValue(const char *ValueMessage,
const Value &Value) {
std::string Message;
raw_string_ostream StrM(Message);
StrM << "Illegal ";
if (ValueMessage != 0)
StrM << ValueMessage << " ";
StrM << ": " << Value;
report_fatal_error(StrM.str());
}
static unsigned GetEncodedCastOpcode(unsigned Opcode, const Value &V) {
switch (Opcode) {
default: ReportIllegalValue("cast", V);
case Instruction::Trunc : return naclbitc::CAST_TRUNC;
case Instruction::ZExt : return naclbitc::CAST_ZEXT;
case Instruction::SExt : return naclbitc::CAST_SEXT;
case Instruction::FPToUI : return naclbitc::CAST_FPTOUI;
case Instruction::FPToSI : return naclbitc::CAST_FPTOSI;
case Instruction::UIToFP : return naclbitc::CAST_UITOFP;
case Instruction::SIToFP : return naclbitc::CAST_SITOFP;
case Instruction::FPTrunc : return naclbitc::CAST_FPTRUNC;
case Instruction::FPExt : return naclbitc::CAST_FPEXT;
case Instruction::BitCast : return naclbitc::CAST_BITCAST;
}
}
static unsigned GetEncodedBinaryOpcode(unsigned Opcode, const Value &V) {
switch (Opcode) {
default: ReportIllegalValue("binary opcode", V);
case Instruction::Add:
case Instruction::FAdd: return naclbitc::BINOP_ADD;
case Instruction::Sub:
case Instruction::FSub: return naclbitc::BINOP_SUB;
case Instruction::Mul:
case Instruction::FMul: return naclbitc::BINOP_MUL;
case Instruction::UDiv: return naclbitc::BINOP_UDIV;
case Instruction::FDiv:
case Instruction::SDiv: return naclbitc::BINOP_SDIV;
case Instruction::URem: return naclbitc::BINOP_UREM;
case Instruction::FRem:
case Instruction::SRem: return naclbitc::BINOP_SREM;
case Instruction::Shl: return naclbitc::BINOP_SHL;
case Instruction::LShr: return naclbitc::BINOP_LSHR;
case Instruction::AShr: return naclbitc::BINOP_ASHR;
case Instruction::And: return naclbitc::BINOP_AND;
case Instruction::Or: return naclbitc::BINOP_OR;
case Instruction::Xor: return naclbitc::BINOP_XOR;
}
}
static unsigned GetEncodedCallingConv(CallingConv::ID conv) {
switch (conv) {
default: report_fatal_error(
"Calling convention not supported by PNaCL bitcode");
case CallingConv::C: return naclbitc::C_CallingConv;
}
}
// Converts LLVM encoding of comparison predicates to the
// corresponding bitcode versions.
static unsigned GetEncodedCmpPredicate(const CmpInst &Cmp) {
switch (Cmp.getPredicate()) {
default: report_fatal_error(
"Comparison predicate not supported by PNaCl bitcode");
case CmpInst::FCMP_FALSE:
return naclbitc::FCMP_FALSE;
case CmpInst::FCMP_OEQ:
return naclbitc::FCMP_OEQ;
case CmpInst::FCMP_OGT:
return naclbitc::FCMP_OGT;
case CmpInst::FCMP_OGE:
return naclbitc::FCMP_OGE;
case CmpInst::FCMP_OLT:
return naclbitc::FCMP_OLT;
case CmpInst::FCMP_OLE:
return naclbitc::FCMP_OLE;
case CmpInst::FCMP_ONE:
return naclbitc::FCMP_ONE;
case CmpInst::FCMP_ORD:
return naclbitc::FCMP_ORD;
case CmpInst::FCMP_UNO:
return naclbitc::FCMP_UNO;
case CmpInst::FCMP_UEQ:
return naclbitc::FCMP_UEQ;
case CmpInst::FCMP_UGT:
return naclbitc::FCMP_UGT;
case CmpInst::FCMP_UGE:
return naclbitc::FCMP_UGE;
case CmpInst::FCMP_ULT:
return naclbitc::FCMP_ULT;
case CmpInst::FCMP_ULE:
return naclbitc::FCMP_ULE;
case CmpInst::FCMP_UNE:
return naclbitc::FCMP_UNE;
case CmpInst::FCMP_TRUE:
return naclbitc::FCMP_TRUE;
case CmpInst::ICMP_EQ:
return naclbitc::ICMP_EQ;
case CmpInst::ICMP_NE:
return naclbitc::ICMP_NE;
case CmpInst::ICMP_UGT:
return naclbitc::ICMP_UGT;
case CmpInst::ICMP_UGE:
return naclbitc::ICMP_UGE;
case CmpInst::ICMP_ULT:
return naclbitc::ICMP_ULT;
case CmpInst::ICMP_ULE:
return naclbitc::ICMP_ULE;
case CmpInst::ICMP_SGT:
return naclbitc::ICMP_SGT;
case CmpInst::ICMP_SGE:
return naclbitc::ICMP_SGE;
case CmpInst::ICMP_SLT:
return naclbitc::ICMP_SLT;
case CmpInst::ICMP_SLE:
return naclbitc::ICMP_SLE;
}
}
// The type of encoding to use for type ids.
static NaClBitCodeAbbrevOp::Encoding TypeIdEncoding = NaClBitCodeAbbrevOp::VBR;
// The cutoff (in number of bits) from Fixed to VBR.
static const unsigned TypeIdVBRCutoff = 6;
// The number of bits to use in the encoding of type ids.
static unsigned TypeIdNumBits = TypeIdVBRCutoff;
// Optimizes the value for TypeIdEncoding and TypeIdNumBits based
// the actual number of types.
static inline void OptimizeTypeIdEncoding(const NaClValueEnumerator &VE) {
// Note: modify to use maximum number of bits if under cutoff. Otherwise,
// use VBR to take advantage that frequently referenced types have
// small IDs.
unsigned NumBits = NaClBitsNeededForValue(VE.getTypes().size());
TypeIdNumBits = (NumBits < TypeIdVBRCutoff ? NumBits : TypeIdVBRCutoff);
TypeIdEncoding = NaClBitCodeAbbrevOp::Encoding(
NumBits <= TypeIdVBRCutoff
? NaClBitCodeAbbrevOp::Fixed : NaClBitCodeAbbrevOp::VBR);
}
/// WriteTypeTable - Write out the type table for a module.
static void WriteTypeTable(const NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
DEBUG(dbgs() << "-> WriteTypeTable\n");
const NaClValueEnumerator::TypeList &TypeList = VE.getTypes();
Stream.EnterSubblock(naclbitc::TYPE_BLOCK_ID_NEW, TYPE_MAX_ABBREV);
SmallVector<uint64_t, 64> TypeVals;
// Abbrev for TYPE_CODE_POINTER.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::TYPE_CODE_POINTER));
Abbv->Add(NaClBitCodeAbbrevOp(TypeIdEncoding, TypeIdNumBits));
Abbv->Add(NaClBitCodeAbbrevOp(0)); // Addrspace = 0
if (TYPE_POINTER_ABBREV != Stream.EmitAbbrev(Abbv))
llvm_unreachable("Unexpected abbrev ordering!");
// Abbrev for TYPE_CODE_FUNCTION.
Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::TYPE_CODE_FUNCTION));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 1)); // isvararg
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array));
Abbv->Add(NaClBitCodeAbbrevOp(TypeIdEncoding, TypeIdNumBits));
if (TYPE_FUNCTION_ABBREV != Stream.EmitAbbrev(Abbv))
llvm_unreachable("Unexpected abbrev ordering!");
// Emit an entry count so the reader can reserve space.
TypeVals.push_back(TypeList.size());
Stream.EmitRecord(naclbitc::TYPE_CODE_NUMENTRY, TypeVals);
TypeVals.clear();
// Loop over all of the types, emitting each in turn.
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Type *T = TypeList[i];
int AbbrevToUse = 0;
unsigned Code = 0;
switch (T->getTypeID()) {
default: llvm_unreachable("Unknown type!");
case Type::VoidTyID: Code = naclbitc::TYPE_CODE_VOID; break;
case Type::FloatTyID: Code = naclbitc::TYPE_CODE_FLOAT; break;
case Type::DoubleTyID: Code = naclbitc::TYPE_CODE_DOUBLE; break;
case Type::IntegerTyID:
// INTEGER: [width]
Code = naclbitc::TYPE_CODE_INTEGER;
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
break;
case Type::FunctionTyID: {
FunctionType *FT = cast<FunctionType>(T);
// FUNCTION: [isvararg, retty, paramty x N]
Code = naclbitc::TYPE_CODE_FUNCTION;
TypeVals.push_back(FT->isVarArg());
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
AbbrevToUse = TYPE_FUNCTION_ABBREV;
break;
}
case Type::StructTyID:
report_fatal_error("Struct types are not supported in PNaCl bitcode");
case Type::ArrayTyID:
report_fatal_error("Array types are not supported in PNaCl bitcode");
case Type::VectorTyID:
report_fatal_error("Vector types are not supported in PNaCl bitcode");
}
// Emit the finished record.
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
TypeVals.clear();
}
Stream.ExitBlock();
DEBUG(dbgs() << "<- WriteTypeTable\n");
}
static unsigned getEncodedLinkage(const GlobalValue *GV) {
switch (GV->getLinkage()) {
case GlobalValue::ExternalLinkage: return 0;
case GlobalValue::InternalLinkage: return 3;
default:
report_fatal_error("Invalid linkage");
}
}
/// \brief Function to convert constant initializers for global
/// variables into corresponding bitcode. Takes advantage that these
/// global variable initializations are normalized (see
/// lib/Transforms/NaCl/FlattenGlobals.cpp).
void WriteGlobalInit(const Constant *C, unsigned GlobalVarID,
SmallVectorImpl<uint32_t> &Vals,
const NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
if (ArrayType *Ty = dyn_cast<ArrayType>(C->getType())) {
if (!Ty->getElementType()->isIntegerTy(8))
report_fatal_error("Global array initializer not i8");
uint32_t Size = Ty->getNumElements();
if (isa<ConstantAggregateZero>(C)) {
Vals.push_back(Size);
Stream.EmitRecord(naclbitc::GLOBALVAR_ZEROFILL, Vals,
GLOBALVAR_ZEROFILL_ABBREV);
Vals.clear();
} else {
const ConstantDataSequential *CD = cast<ConstantDataSequential>(C);
StringRef Data = CD->getRawDataValues();
for (size_t i = 0; i < Size; ++i) {
Vals.push_back(Data[i] & 0xFF);
}
Stream.EmitRecord(naclbitc::GLOBALVAR_DATA, Vals,
GLOBALVAR_DATA_ABBREV);
Vals.clear();
}
return;
}
if (VE.IsIntPtrType(C->getType())) {
// This constant defines a relocation. Start by verifying the
// relocation is of the right form.
const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (CE == 0)
report_fatal_error("Global i32 initializer not constant");
assert(CE);
int32_t Addend = 0;
if (CE->getOpcode() == Instruction::Add) {
const ConstantInt *AddendConst = dyn_cast<ConstantInt>(CE->getOperand(1));
if (AddendConst == 0)
report_fatal_error("Malformed addend in global relocation initializer");
Addend = AddendConst->getSExtValue();
CE = dyn_cast<ConstantExpr>(CE->getOperand(0));
if (CE == 0)
report_fatal_error(
"Base of global relocation initializer not constant");
}
if (CE->getOpcode() != Instruction::PtrToInt)
report_fatal_error("Global relocation base doesn't contain ptrtoint");
GlobalValue *GV = dyn_cast<GlobalValue>(CE->getOperand(0));
if (GV == 0)
report_fatal_error(
"Argument of ptrtoint in global relocation no global value");
// Now generate the corresponding relocation record.
unsigned RelocID = VE.getValueID(GV);
// This is a value index.
unsigned AbbrevToUse = GLOBALVAR_RELOC_ABBREV;
Vals.push_back(RelocID);
if (Addend) {
Vals.push_back(Addend);
AbbrevToUse = GLOBALVAR_RELOC_WITH_ADDEND_ABBREV;
}
Stream.EmitRecord(naclbitc::GLOBALVAR_RELOC, Vals, AbbrevToUse);
Vals.clear();
return;
}
report_fatal_error("Global initializer is not a SimpleElement");
}
// Emit global variables.
static void WriteGlobalVars(const Module *M,
const NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
Stream.EnterSubblock(naclbitc::GLOBALVAR_BLOCK_ID);
SmallVector<uint32_t, 32> Vals;
unsigned GlobalVarID = VE.getFirstGlobalVarID();
// Emit the number of global variables.
Vals.push_back(M->getGlobalList().size());
Stream.EmitRecord(naclbitc::GLOBALVAR_COUNT, Vals);
Vals.clear();
// Now emit each global variable.
for (Module::const_global_iterator
GV = M->global_begin(), E = M->global_end();
GV != E; ++GV, ++GlobalVarID) {
// Define the global variable.
Vals.push_back(Log2_32(GV->getAlignment()) + 1);
Vals.push_back(GV->isConstant());
Stream.EmitRecord(naclbitc::GLOBALVAR_VAR, Vals, GLOBALVAR_VAR_ABBREV);
Vals.clear();
// Add the field(s).
const Constant *C = GV->getInitializer();
if (C == 0)
report_fatal_error("Global variable initializer not a constant");
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
if (!CS->getType()->isPacked())
report_fatal_error("Global variable type not packed");
if (CS->getType()->hasName())
report_fatal_error("Global variable type is named");
Vals.push_back(CS->getNumOperands());
Stream.EmitRecord(naclbitc::GLOBALVAR_COMPOUND, Vals,
GLOBALVAR_COMPOUND_ABBREV);
Vals.clear();
for (unsigned I = 0; I < CS->getNumOperands(); ++I) {
WriteGlobalInit(dyn_cast<Constant>(CS->getOperand(I)), GlobalVarID,
Vals, VE, Stream);
}
} else {
WriteGlobalInit(C, GlobalVarID, Vals, VE, Stream);
}
}
assert(GlobalVarID == VE.getFirstGlobalVarID() + VE.getNumGlobalVarIDs());
Stream.ExitBlock();
}
// Emit top-level description of module, including inline asm,
// descriptors for global variables, and function prototype info.
static void WriteModuleInfo(const Module *M, const NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
DEBUG(dbgs() << "-> WriteModuleInfo\n");
// Emit the function proto information. Note: We do this before
// global variables, so that global variable initializations can
// refer to the functions without a forward reference.
SmallVector<unsigned, 64> Vals;
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
// FUNCTION: [type, callingconv, isproto, linkage]
Type *Ty = F->getType()->getPointerElementType();
Vals.push_back(VE.getTypeID(Ty));
Vals.push_back(GetEncodedCallingConv(F->getCallingConv()));
Vals.push_back(F->isDeclaration());
Vals.push_back(getEncodedLinkage(F));
unsigned AbbrevToUse = 0;
Stream.EmitRecord(naclbitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
Vals.clear();
}
// Emit the global variable information.
WriteGlobalVars(M, VE, Stream);
DEBUG(dbgs() << "<- WriteModuleInfo\n");
}
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
Vals.push_back(NaClEncodeSignRotatedValue((int64_t)V));
}
static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals,
unsigned &Code, unsigned &AbbrevToUse, const APInt &Val) {
if (Val.getBitWidth() <= 64) {
uint64_t V = Val.getSExtValue();
emitSignedInt64(Vals, V);
Code = naclbitc::CST_CODE_INTEGER;
AbbrevToUse =
Val == 0 ? CONSTANTS_INTEGER_ZERO_ABBREV : CONSTANTS_INTEGER_ABBREV;
} else {
report_fatal_error("Wide integers are not supported");
}
}
static void WriteConstants(unsigned FirstVal, unsigned LastVal,
const NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
if (FirstVal == LastVal) return;
Stream.EnterSubblock(naclbitc::CONSTANTS_BLOCK_ID, CONSTANTS_MAX_ABBREV);
SmallVector<uint64_t, 64> Record;
const NaClValueEnumerator::ValueList &Vals = VE.getValues();
Type *LastTy = 0;
for (unsigned i = FirstVal; i != LastVal; ++i) {
const Value *V = Vals[i].first;
// If we need to switch types, do so now.
if (V->getType() != LastTy) {
LastTy = V->getType();
Record.push_back(VE.getTypeID(LastTy));
Stream.EmitRecord(naclbitc::CST_CODE_SETTYPE, Record,
CONSTANTS_SETTYPE_ABBREV);
Record.clear();
}
if (isa<InlineAsm>(V)) {
ReportIllegalValue("inline assembly", *V);
}
const Constant *C = cast<Constant>(V);
unsigned Code = -1U;
unsigned AbbrevToUse = 0;
if (isa<UndefValue>(C)) {
Code = naclbitc::CST_CODE_UNDEF;
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
EmitAPInt(Record, Code, AbbrevToUse, IV->getValue());
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Code = naclbitc::CST_CODE_FLOAT;
AbbrevToUse = CONSTANTS_FLOAT_ABBREV;
Type *Ty = CFP->getType();
if (Ty->isFloatTy() || Ty->isDoubleTy()) {
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
} else {
report_fatal_error("Unknown FP type");
}
} else {
#ifndef NDEBUG
C->dump();
#endif
ReportIllegalValue("constant", *C);
}
Stream.EmitRecord(Code, Record, AbbrevToUse);
Record.clear();
}
Stream.ExitBlock();
DEBUG(dbgs() << "<- WriteConstants\n");
}
/// \brief Emits a type for the forward value reference. That is, if
/// the ID for the given value is larger than or equal to the BaseID,
/// the corresponding forward reference is generated.
static void EmitFnForwardTypeRef(const Value *V,
unsigned BaseID,
NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
unsigned ValID = VE.getValueID(V);
if (ValID >= BaseID &&
VE.InsertFnForwardTypeRef(ValID)) {
SmallVector<unsigned, 2> Vals;
Vals.push_back(ValID);
Vals.push_back(VE.getTypeID(VE.NormalizeType(V->getType())));
Stream.EmitRecord(naclbitc::FUNC_CODE_INST_FORWARDTYPEREF, Vals,
FUNCTION_INST_FORWARDTYPEREF_ABBREV);
}
}
/// pushValue - The file has to encode both the value and type id for
/// many values, because we need to know what type to create for forward
/// references. However, most operands are not forward references, so this type
/// field is not needed.
///
/// This function adds V's value ID to Vals. If the value ID is higher than the
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID. The value ID that is written is encoded relative to the InstID.
static void pushValue(const Value *V, unsigned InstID,
SmallVector<unsigned, 64> &Vals,
NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
const Value *VElided = VE.ElideCasts(V);
EmitFnForwardTypeRef(VElided, InstID, VE, Stream);
unsigned ValID = VE.getValueID(VElided);
// Make encoding relative to the InstID.
Vals.push_back(InstID - ValID);
}
static void pushValue64(const Value *V, unsigned InstID,
SmallVector<uint64_t, 128> &Vals,
NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
const Value *VElided = VE.ElideCasts(V);
EmitFnForwardTypeRef(VElided, InstID, VE, Stream);
uint64_t ValID = VE.getValueID(VElided);
Vals.push_back(InstID - ValID);
}
static void pushValueSigned(const Value *V, unsigned InstID,
SmallVector<uint64_t, 128> &Vals,
NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
const Value *VElided = VE.ElideCasts(V);
EmitFnForwardTypeRef(VElided, InstID, VE, Stream);
unsigned ValID = VE.getValueID(VElided);
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
emitSignedInt64(Vals, diff);
}
/// WriteInstruction - Emit an instruction to the specified stream.
/// Returns true if instruction actually emitted.
static bool WriteInstruction(const Instruction &I, unsigned InstID,
NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream,
SmallVector<unsigned, 64> &Vals) {
unsigned Code = 0;
unsigned AbbrevToUse = 0;
VE.setInstructionID(&I);
switch (I.getOpcode()) {
default:
if (Instruction::isCast(I.getOpcode())) {
// CAST: [opval, destty, castopc]
if (VE.IsElidedCast(&I))
return false;
Code = naclbitc::FUNC_CODE_INST_CAST;
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
pushValue(I.getOperand(0), InstID, Vals, VE, Stream);
Vals.push_back(VE.getTypeID(I.getType()));
unsigned Opcode = I.getOpcode();
Vals.push_back(GetEncodedCastOpcode(Opcode, I));
if (Opcode == Instruction::PtrToInt ||
Opcode == Instruction::IntToPtr ||
(Opcode == Instruction::BitCast &&
(I.getOperand(0)->getType()->isPointerTy() ||
I.getType()->isPointerTy()))) {
ReportIllegalValue("(PNaCl ABI) pointer cast", I);
}
} else if (isa<BinaryOperator>(I)) {
// BINOP: [opval, opval, opcode]
Code = naclbitc::FUNC_CODE_INST_BINOP;
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
pushValue(I.getOperand(0), InstID, Vals, VE, Stream);
pushValue(I.getOperand(1), InstID, Vals, VE, Stream);
Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode(), I));
} else {
ReportIllegalValue("instruction", I);
}
break;
case Instruction::Select:
Code = naclbitc::FUNC_CODE_INST_VSELECT;
pushValue(I.getOperand(1), InstID, Vals, VE, Stream);
pushValue(I.getOperand(2), InstID, Vals, VE, Stream);
pushValue(I.getOperand(0), InstID, Vals, VE, Stream);
break;
case Instruction::ICmp:
case Instruction::FCmp:
// compare returning Int1Ty or vector of Int1Ty
Code = naclbitc::FUNC_CODE_INST_CMP2;
pushValue(I.getOperand(0), InstID, Vals, VE, Stream);
pushValue(I.getOperand(1), InstID, Vals, VE, Stream);
Vals.push_back(GetEncodedCmpPredicate(cast<CmpInst>(I)));
break;
case Instruction::Ret:
{
Code = naclbitc::FUNC_CODE_INST_RET;
unsigned NumOperands = I.getNumOperands();
if (NumOperands == 0)
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
else if (NumOperands == 1) {
pushValue(I.getOperand(0), InstID, Vals, VE, Stream);
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
} else {
for (unsigned i = 0, e = NumOperands; i != e; ++i)
pushValue(I.getOperand(i), InstID, Vals, VE, Stream);
}
}
break;
case Instruction::Br:
{
Code = naclbitc::FUNC_CODE_INST_BR;
const BranchInst &II = cast<BranchInst>(I);
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
if (II.isConditional()) {
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
pushValue(II.getCondition(), InstID, Vals, VE, Stream);
}
}
break;
case Instruction::Switch:
{
// Redefine Vals, since here we need to use 64 bit values
// explicitly to store large APInt numbers.
SmallVector<uint64_t, 128> Vals64;
Code = naclbitc::FUNC_CODE_INST_SWITCH;
const SwitchInst &SI = cast<SwitchInst>(I);
Vals64.push_back(VE.getTypeID(SI.getCondition()->getType()));
pushValue64(SI.getCondition(), InstID, Vals64, VE, Stream);
Vals64.push_back(VE.getValueID(SI.getDefaultDest()));
Vals64.push_back(SI.getNumCases());
for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
i != e; ++i) {
// The PNaCl bitcode format has vestigial support for case
// ranges, but we no longer support reading or writing them,
// so the next two fields always have the same values.
// See https://code.google.com/p/nativeclient/issues/detail?id=3758
Vals64.push_back(1/*NumItems = 1*/);
Vals64.push_back(true/*IsSingleNumber = true*/);
emitSignedInt64(Vals64, i.getCaseValue()->getSExtValue());
Vals64.push_back(VE.getValueID(i.getCaseSuccessor()));
}
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
// Also do expected action - clear external Vals collection:
Vals.clear();
return true;
}
break;
case Instruction::Unreachable:
Code = naclbitc::FUNC_CODE_INST_UNREACHABLE;
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
break;
case Instruction::PHI: {
const PHINode &PN = cast<PHINode>(I);
Code = naclbitc::FUNC_CODE_INST_PHI;
// With the newer instruction encoding, forward references could give
// negative valued IDs. This is most common for PHIs, so we use
// signed VBRs.
SmallVector<uint64_t, 128> Vals64;
Vals64.push_back(VE.getTypeID(PN.getType()));
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE, Stream);
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
}
// Emit a Vals64 vector and exit.
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
Vals64.clear();
return true;
}
case Instruction::Alloca:
if (!cast<AllocaInst>(&I)->getAllocatedType()->isIntegerTy(8))
report_fatal_error("Type of alloca instruction is not i8");
Code = naclbitc::FUNC_CODE_INST_ALLOCA;
pushValue(I.getOperand(0), InstID, Vals, VE, Stream); // size.
Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
break;
case Instruction::Load:
// LOAD: [op, align, ty]
Code = naclbitc::FUNC_CODE_INST_LOAD;
pushValue(I.getOperand(0), InstID, Vals, VE, Stream);
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
Vals.push_back(VE.getTypeID(I.getType()));
break;
case Instruction::Store:
// STORE: [ptr, val, align]
Code = naclbitc::FUNC_CODE_INST_STORE;
AbbrevToUse = FUNCTION_INST_STORE_ABBREV;
pushValue(I.getOperand(1), InstID, Vals, VE, Stream);
pushValue(I.getOperand(0), InstID, Vals, VE, Stream);
Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
break;
case Instruction::Call: {
// CALL: [cc, fnid, args...]
// CALL_INDIRECT: [cc, fnid, fnty, args...]
const CallInst &Call = cast<CallInst>(I);
const Value* Callee = Call.getCalledValue();
Vals.push_back((GetEncodedCallingConv(Call.getCallingConv()) << 1)
| unsigned(Call.isTailCall()));
pushValue(Callee, InstID, Vals, VE, Stream);
if (Callee == VE.ElideCasts(Callee)) {
// Since the call pointer has not been elided, we know that
// the call pointer has the type signature of the called
// function. This implies that the reader can use the type
// signature of the callee to figure out how to add casts to
// the arguments.
Code = naclbitc::FUNC_CODE_INST_CALL;
} else {
// If the cast was elided, a pointer conversion to a pointer
// was applied, meaning that this is an indirect call. For the
// reader, this implies that we can't use the type signature
// of the callee to resolve elided call arguments, since it is
// not known. Hence, we must send the type signature to the
// reader.
Code = naclbitc::FUNC_CODE_INST_CALL_INDIRECT;
Vals.push_back(VE.getTypeID(I.getType()));
}
for (unsigned I = 0, E = Call.getNumArgOperands(); I < E; ++I) {
pushValue(Call.getArgOperand(I), InstID, Vals, VE, Stream);
}
break;
}
}
Stream.EmitRecord(Code, Vals, AbbrevToUse);
Vals.clear();
return true;
}
// Emit names for globals/functions etc.
static void WriteValueSymbolTable(const ValueSymbolTable &VST,
const NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
if (VST.empty()) return;
Stream.EnterSubblock(naclbitc::VALUE_SYMTAB_BLOCK_ID);
// FIXME: Set up the abbrev, we know how many values there are!
// FIXME: We know if the type names can use 7-bit ascii.
SmallVector<unsigned, 64> NameVals;
for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
SI != SE; ++SI) {
if (VE.IsElidedCast(SI->getValue())) continue;
const ValueName &Name = *SI;
// Figure out the encoding to use for the name.
bool is7Bit = true;
bool isChar6 = true;
for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
C != E; ++C) {
if (isChar6)
isChar6 = NaClBitCodeAbbrevOp::isChar6(*C);
if ((unsigned char)*C & 128) {
is7Bit = false;
break; // don't bother scanning the rest.
}
}
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
// VST_ENTRY: [valueid, namechar x N]
// VST_BBENTRY: [bbid, namechar x N]
unsigned Code;
if (isa<BasicBlock>(SI->getValue())) {
Code = naclbitc::VST_CODE_BBENTRY;
if (isChar6)
AbbrevToUse = VST_BBENTRY_6_ABBREV;
} else {
Code = naclbitc::VST_CODE_ENTRY;
if (isChar6)
AbbrevToUse = VST_ENTRY_6_ABBREV;
else if (is7Bit)
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
NameVals.push_back(VE.getValueID(SI->getValue()));
for (const char *P = Name.getKeyData(),
*E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
NameVals.push_back((unsigned char)*P);
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
NameVals.clear();
}
Stream.ExitBlock();
}
/// WriteFunction - Emit a function body to the module stream.
static void WriteFunction(const Function &F, NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
Stream.EnterSubblock(naclbitc::FUNCTION_BLOCK_ID);
VE.incorporateFunction(F);
SmallVector<unsigned, 64> Vals;
// Emit the number of basic blocks, so the reader can create them ahead of
// time.
Vals.push_back(VE.getBasicBlocks().size());
Stream.EmitRecord(naclbitc::FUNC_CODE_DECLAREBLOCKS, Vals);
Vals.clear();
// If there are function-local constants, emit them now.
unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd);
WriteConstants(CstStart, CstEnd, VE, Stream);
// Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
if (WriteInstruction(*I, InstID, VE, Stream, Vals) &&
!I->getType()->isVoidTy())
++InstID;
}
// Emit names for instructions etc.
if (PNaClAllowLocalSymbolTables)
WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
VE.purgeFunction();
Stream.ExitBlock();
}
// Emit blockinfo, which defines the standard abbreviations etc.
static void WriteBlockInfo(const NaClValueEnumerator &VE,
NaClBitstreamWriter &Stream) {
// We only want to emit block info records for blocks that have multiple
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
// Other blocks can define their abbrevs inline.
Stream.EnterBlockInfoBlock();
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 3));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 8));
if (Stream.EmitBlockInfoAbbrev(naclbitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_8_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 7-bit fixed width VST_ENTRY strings.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::VST_CODE_ENTRY));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 7));
if (Stream.EmitBlockInfoAbbrev(naclbitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_7_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_ENTRY strings.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::VST_CODE_ENTRY));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(naclbitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // 6-bit char6 VST_BBENTRY strings.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::VST_CODE_BBENTRY));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Char6));
if (Stream.EmitBlockInfoAbbrev(naclbitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_BBENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::CST_CODE_SETTYPE));
Abbv->Add(NaClBitCodeAbbrevOp(TypeIdEncoding, TypeIdNumBits));
if (Stream.EmitBlockInfoAbbrev(naclbitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_SETTYPE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INTEGER abbrev for CONSTANTS_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::CST_CODE_INTEGER));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(naclbitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_INTEGER_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INTEGER_ZERO abbrev for CONSTANTS_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::CST_CODE_INTEGER));
Abbv->Add(NaClBitCodeAbbrevOp(0));
if (Stream.EmitBlockInfoAbbrev(naclbitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_INTEGER_ZERO_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // FLOAT abbrev for CONSTANTS_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::CST_CODE_FLOAT));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(naclbitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_FLOAT_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
// FIXME: This should only use space for first class types!
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::FUNC_CODE_INST_LOAD));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6)); // Ptr
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 4)); // Align
// Note: The vast majority of load operations are only on integers
// and floats. In addition, no function types are allowed. In
// addition, the type IDs have been sorted based on usage, moving
// type IDs associated integers and floats to very low
// indices. Hence, we assume that we can use a smaller width for
// the typecast.
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 4)); // TypeCast
if (Stream.EmitBlockInfoAbbrev(naclbitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_LOAD_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::FUNC_CODE_INST_BINOP));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6)); // LHS
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6)); // RHS
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(naclbitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_BINOP_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_CAST abbrev for FUNCTION_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::FUNC_CODE_INST_CAST));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6)); // OpVal
Abbv->Add(NaClBitCodeAbbrevOp(TypeIdEncoding, TypeIdNumBits)); // dest ty
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 4)); // opc
if (Stream.EmitBlockInfoAbbrev(naclbitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_CAST_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::FUNC_CODE_INST_RET));
if (Stream.EmitBlockInfoAbbrev(naclbitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_RET abbrev for FUNCTION_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::FUNC_CODE_INST_RET));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6)); // ValID
if (Stream.EmitBlockInfoAbbrev(naclbitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::FUNC_CODE_INST_UNREACHABLE));
if (Stream.EmitBlockInfoAbbrev(naclbitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_FORWARDTYPEREF abbrev for FUNCTION_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::FUNC_CODE_INST_FORWARDTYPEREF));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6));
Abbv->Add(NaClBitCodeAbbrevOp(TypeIdEncoding, TypeIdNumBits));
if (Stream.EmitBlockInfoAbbrev(naclbitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_FORWARDTYPEREF_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // INST_STORE abbrev for FUNCTION_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::FUNC_CODE_INST_STORE));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6)); // Ptr
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6)); // Value
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 4)); // Align
if (Stream.EmitBlockInfoAbbrev(naclbitc::FUNCTION_BLOCK_ID,
Abbv) != FUNCTION_INST_STORE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // VAR abbrev for GLOBALVAR_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::GLOBALVAR_VAR));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 1));
if (Stream.EmitBlockInfoAbbrev(naclbitc::GLOBALVAR_BLOCK_ID,
Abbv) != GLOBALVAR_VAR_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // COMPOUND abbrev for GLOBALVAR_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::GLOBALVAR_COMPOUND));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(naclbitc::GLOBALVAR_BLOCK_ID,
Abbv) != GLOBALVAR_COMPOUND_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // ZEROFILL abbrev for GLOBALVAR_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::GLOBALVAR_ZEROFILL));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(naclbitc::GLOBALVAR_BLOCK_ID,
Abbv) != GLOBALVAR_ZEROFILL_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // DATA abbrev for GLOBALVAR_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::GLOBALVAR_DATA));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Array));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::Fixed, 8));
if (Stream.EmitBlockInfoAbbrev(naclbitc::GLOBALVAR_BLOCK_ID,
Abbv) != GLOBALVAR_DATA_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // RELOC abbrev for GLOBALVAR_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::GLOBALVAR_RELOC));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6));
if (Stream.EmitBlockInfoAbbrev(naclbitc::GLOBALVAR_BLOCK_ID,
Abbv) != GLOBALVAR_RELOC_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
{ // RELOC_WITH_ADDEND_ABBREV abbrev for GLOBALVAR_BLOCK.
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbv->Add(NaClBitCodeAbbrevOp(naclbitc::GLOBALVAR_RELOC));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6));
Abbv->Add(NaClBitCodeAbbrevOp(NaClBitCodeAbbrevOp::VBR, 6));
if (Stream.EmitBlockInfoAbbrev(
naclbitc::GLOBALVAR_BLOCK_ID,
Abbv) != GLOBALVAR_RELOC_WITH_ADDEND_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
Stream.ExitBlock();
}
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, NaClBitstreamWriter &Stream) {
DEBUG(dbgs() << "-> WriteModule\n");
Stream.EnterSubblock(naclbitc::MODULE_BLOCK_ID);
SmallVector<unsigned, 1> Vals;
unsigned CurVersion = 1;
Vals.push_back(CurVersion);
Stream.EmitRecord(naclbitc::MODULE_CODE_VERSION, Vals);
// Analyze the module, enumerating globals, functions, etc.
NaClValueEnumerator VE(M, PNaClVersion);
OptimizeTypeIdEncoding(VE);
// Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(VE, Stream);
// Emit information describing all of the types in the module.
WriteTypeTable(VE, Stream);
// Emit top-level description of module, including inline asm,
// descriptors for global variables, and function prototype info.
WriteModuleInfo(M, VE, Stream);
// Emit names for globals/functions etc.
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
// Emit function bodies.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
if (!F->isDeclaration())
WriteFunction(*F, VE, Stream);
Stream.ExitBlock();
DEBUG(dbgs() << "<- WriteModule\n");
}
// Max size for variable fields. Currently only used for writing them
// out to files (the parsing works for arbitrary sizes).
static const size_t kMaxVariableFieldSize = 256;
// Write out the given Header to the bitstream.
void llvm::NaClWriteHeader(const NaClBitcodeHeader &Header,
NaClBitstreamWriter &Stream) {
// Emit the file magic number;
Stream.Emit((unsigned)'P', 8);
Stream.Emit((unsigned)'E', 8);
Stream.Emit((unsigned)'X', 8);
Stream.Emit((unsigned)'E', 8);
// Emit placeholder for number of bytes used to hold header fields.
// This value is necessary so that the streamable reader can preallocate
// a buffer to read the fields.
Stream.Emit(0, naclbitc::BlockSizeWidth);
unsigned BytesForHeader = 0;
unsigned NumberFields = Header.NumberFields();
if (NumberFields > 0xFFFF)
report_fatal_error("Too many header fields");
uint8_t Buffer[kMaxVariableFieldSize];
for (unsigned F = 0; F < NumberFields; ++F) {
NaClBitcodeHeaderField *Field = Header.GetField(F);
if (!Field->Write(Buffer, kMaxVariableFieldSize))
report_fatal_error("Header field too big to generate");
size_t limit = Field->GetTotalSize();
for (size_t i = 0; i < limit; i++) {
Stream.Emit(Buffer[i], 8);
}
BytesForHeader += limit;
}
if (BytesForHeader > 0xFFFF)
report_fatal_error("Header fields to big to save");
// Encode #fields in top two bytes, and #bytes to hold fields in
// bottom two bytes. Then backpatch into second word.
unsigned Value = NumberFields | (BytesForHeader << 16);
Stream.BackpatchWord(NaClBitcodeHeader::WordSize, Value);
}
/// WriteBitcodeToFile - Write the specified module to the specified output
/// stream.
void llvm::NaClWriteBitcodeToFile(const Module *M, raw_ostream &Out,
bool AcceptSupportedOnly) {
SmallVector<char, 0> Buffer;
Buffer.reserve(256*1024);
// Emit the module into the buffer.
{
NaClBitstreamWriter Stream(Buffer);
// Define header and install into stream.
{
NaClBitcodeHeader Header;
Header.push_back(
new NaClBitcodeHeaderField(NaClBitcodeHeaderField::kPNaClVersion,
PNaClVersion));
Header.InstallFields();
if (!(Header.IsSupported() ||
(!AcceptSupportedOnly && Header.IsReadable()))) {
report_fatal_error(Header.Unsupported());
}
NaClWriteHeader(Header, Stream);
}
// Emit the module.
WriteModule(M, Stream);
}
// Write the generated bitstream to "Out".
Out.write((char*)&Buffer.front(), Buffer.size());
}