blob: c4c8a4579fc6b3650b20ed9e507cb18f83da474e [file] [log] [blame]
// Copyright 2007-2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <signal.h>
#include "sys/stat.h"
#include "v8.h"
#include "debug.h"
#include "ic-inl.h"
#include "runtime.h"
#include "serialize.h"
#include "scopeinfo.h"
#include "snapshot.h"
#include "cctest.h"
#include "spaces.h"
#include "objects.h"
#include "natives.h"
#include "bootstrapper.h"
using namespace v8::internal;
static const unsigned kCounters = 256;
static int local_counters[kCounters];
static const char* local_counter_names[kCounters];
static unsigned CounterHash(const char* s) {
unsigned hash = 0;
while (*++s) {
hash |= hash << 5;
hash += *s;
}
return hash;
}
// Callback receiver to track counters in test.
static int* counter_function(const char* name) {
unsigned hash = CounterHash(name) % kCounters;
unsigned original_hash = hash;
USE(original_hash);
while (true) {
if (local_counter_names[hash] == name) {
return &local_counters[hash];
}
if (local_counter_names[hash] == 0) {
local_counter_names[hash] = name;
return &local_counters[hash];
}
if (strcmp(local_counter_names[hash], name) == 0) {
return &local_counters[hash];
}
hash = (hash + 1) % kCounters;
ASSERT(hash != original_hash); // Hash table has been filled up.
}
}
template <class T>
static Address AddressOf(T id) {
return ExternalReference(id).address();
}
template <class T>
static uint32_t Encode(const ExternalReferenceEncoder& encoder, T id) {
return encoder.Encode(AddressOf(id));
}
static int make_code(TypeCode type, int id) {
return static_cast<uint32_t>(type) << kReferenceTypeShift | id;
}
static int register_code(int reg) {
return Debug::k_register_address << kDebugIdShift | reg;
}
TEST(ExternalReferenceEncoder) {
StatsTable::SetCounterFunction(counter_function);
Heap::Setup(false);
ExternalReferenceEncoder encoder;
CHECK_EQ(make_code(BUILTIN, Builtins::ArrayCode),
Encode(encoder, Builtins::ArrayCode));
CHECK_EQ(make_code(RUNTIME_FUNCTION, Runtime::kAbort),
Encode(encoder, Runtime::kAbort));
CHECK_EQ(make_code(IC_UTILITY, IC::kLoadCallbackProperty),
Encode(encoder, IC_Utility(IC::kLoadCallbackProperty)));
CHECK_EQ(make_code(DEBUG_ADDRESS, register_code(3)),
Encode(encoder, Debug_Address(Debug::k_register_address, 3)));
ExternalReference keyed_load_function_prototype =
ExternalReference(&Counters::keyed_load_function_prototype);
CHECK_EQ(make_code(STATS_COUNTER, Counters::k_keyed_load_function_prototype),
encoder.Encode(keyed_load_function_prototype.address()));
ExternalReference the_hole_value_location =
ExternalReference::the_hole_value_location();
CHECK_EQ(make_code(UNCLASSIFIED, 2),
encoder.Encode(the_hole_value_location.address()));
ExternalReference stack_limit_address =
ExternalReference::address_of_stack_limit();
CHECK_EQ(make_code(UNCLASSIFIED, 4),
encoder.Encode(stack_limit_address.address()));
ExternalReference real_stack_limit_address =
ExternalReference::address_of_real_stack_limit();
CHECK_EQ(make_code(UNCLASSIFIED, 5),
encoder.Encode(real_stack_limit_address.address()));
CHECK_EQ(make_code(UNCLASSIFIED, 12),
encoder.Encode(ExternalReference::debug_break().address()));
CHECK_EQ(make_code(UNCLASSIFIED, 7),
encoder.Encode(ExternalReference::new_space_start().address()));
CHECK_EQ(make_code(UNCLASSIFIED, 3),
encoder.Encode(ExternalReference::roots_address().address()));
}
TEST(ExternalReferenceDecoder) {
StatsTable::SetCounterFunction(counter_function);
Heap::Setup(false);
ExternalReferenceDecoder decoder;
CHECK_EQ(AddressOf(Builtins::ArrayCode),
decoder.Decode(make_code(BUILTIN, Builtins::ArrayCode)));
CHECK_EQ(AddressOf(Runtime::kAbort),
decoder.Decode(make_code(RUNTIME_FUNCTION, Runtime::kAbort)));
CHECK_EQ(AddressOf(IC_Utility(IC::kLoadCallbackProperty)),
decoder.Decode(make_code(IC_UTILITY, IC::kLoadCallbackProperty)));
CHECK_EQ(AddressOf(Debug_Address(Debug::k_register_address, 3)),
decoder.Decode(make_code(DEBUG_ADDRESS, register_code(3))));
ExternalReference keyed_load_function =
ExternalReference(&Counters::keyed_load_function_prototype);
CHECK_EQ(keyed_load_function.address(),
decoder.Decode(
make_code(STATS_COUNTER,
Counters::k_keyed_load_function_prototype)));
CHECK_EQ(ExternalReference::the_hole_value_location().address(),
decoder.Decode(make_code(UNCLASSIFIED, 2)));
CHECK_EQ(ExternalReference::address_of_stack_limit().address(),
decoder.Decode(make_code(UNCLASSIFIED, 4)));
CHECK_EQ(ExternalReference::address_of_real_stack_limit().address(),
decoder.Decode(make_code(UNCLASSIFIED, 5)));
CHECK_EQ(ExternalReference::debug_break().address(),
decoder.Decode(make_code(UNCLASSIFIED, 12)));
CHECK_EQ(ExternalReference::new_space_start().address(),
decoder.Decode(make_code(UNCLASSIFIED, 7)));
}
class FileByteSink : public SnapshotByteSink {
public:
explicit FileByteSink(const char* snapshot_file) {
fp_ = OS::FOpen(snapshot_file, "wb");
file_name_ = snapshot_file;
if (fp_ == NULL) {
PrintF("Unable to write to snapshot file \"%s\"\n", snapshot_file);
exit(1);
}
}
virtual ~FileByteSink() {
if (fp_ != NULL) {
fclose(fp_);
}
}
virtual void Put(int byte, const char* description) {
if (fp_ != NULL) {
fputc(byte, fp_);
}
}
virtual int Position() {
return ftell(fp_);
}
void WriteSpaceUsed(
int new_space_used,
int pointer_space_used,
int data_space_used,
int code_space_used,
int map_space_used,
int cell_space_used,
int large_space_used);
private:
FILE* fp_;
const char* file_name_;
};
void FileByteSink::WriteSpaceUsed(
int new_space_used,
int pointer_space_used,
int data_space_used,
int code_space_used,
int map_space_used,
int cell_space_used,
int large_space_used) {
int file_name_length = StrLength(file_name_) + 10;
Vector<char> name = Vector<char>::New(file_name_length + 1);
OS::SNPrintF(name, "%s.size", file_name_);
FILE* fp = OS::FOpen(name.start(), "w");
fprintf(fp, "new %d\n", new_space_used);
fprintf(fp, "pointer %d\n", pointer_space_used);
fprintf(fp, "data %d\n", data_space_used);
fprintf(fp, "code %d\n", code_space_used);
fprintf(fp, "map %d\n", map_space_used);
fprintf(fp, "cell %d\n", cell_space_used);
fprintf(fp, "large %d\n", large_space_used);
fclose(fp);
}
static bool WriteToFile(const char* snapshot_file) {
FileByteSink file(snapshot_file);
StartupSerializer ser(&file);
ser.Serialize();
return true;
}
static void Serialize() {
// We have to create one context. One reason for this is so that the builtins
// can be loaded from v8natives.js and their addresses can be processed. This
// will clear the pending fixups array, which would otherwise contain GC roots
// that would confuse the serialization/deserialization process.
v8::Persistent<v8::Context> env = v8::Context::New();
env.Dispose();
WriteToFile(FLAG_testing_serialization_file);
}
// Test that the whole heap can be serialized.
TEST(Serialize) {
Serializer::Enable();
v8::V8::Initialize();
Serialize();
}
// Test that heap serialization is non-destructive.
TEST(SerializeTwice) {
Serializer::Enable();
v8::V8::Initialize();
Serialize();
Serialize();
}
//----------------------------------------------------------------------------
// Tests that the heap can be deserialized.
static void Deserialize() {
CHECK(Snapshot::Initialize(FLAG_testing_serialization_file));
}
static void SanityCheck() {
v8::HandleScope scope;
#ifdef DEBUG
Heap::Verify();
#endif
CHECK(Top::global()->IsJSObject());
CHECK(Top::global_context()->IsContext());
CHECK(Heap::symbol_table()->IsSymbolTable());
CHECK(!Factory::LookupAsciiSymbol("Empty")->IsFailure());
}
DEPENDENT_TEST(Deserialize, Serialize) {
// The serialize-deserialize tests only work if the VM is built without
// serialization. That doesn't matter. We don't need to be able to
// serialize a snapshot in a VM that is booted from a snapshot.
if (!Snapshot::IsEnabled()) {
v8::HandleScope scope;
Deserialize();
v8::Persistent<v8::Context> env = v8::Context::New();
env->Enter();
SanityCheck();
}
}
DEPENDENT_TEST(DeserializeFromSecondSerialization, SerializeTwice) {
if (!Snapshot::IsEnabled()) {
v8::HandleScope scope;
Deserialize();
v8::Persistent<v8::Context> env = v8::Context::New();
env->Enter();
SanityCheck();
}
}
DEPENDENT_TEST(DeserializeAndRunScript2, Serialize) {
if (!Snapshot::IsEnabled()) {
v8::HandleScope scope;
Deserialize();
v8::Persistent<v8::Context> env = v8::Context::New();
env->Enter();
const char* c_source = "\"1234\".length";
v8::Local<v8::String> source = v8::String::New(c_source);
v8::Local<v8::Script> script = v8::Script::Compile(source);
CHECK_EQ(4, script->Run()->Int32Value());
}
}
DEPENDENT_TEST(DeserializeFromSecondSerializationAndRunScript2,
SerializeTwice) {
if (!Snapshot::IsEnabled()) {
v8::HandleScope scope;
Deserialize();
v8::Persistent<v8::Context> env = v8::Context::New();
env->Enter();
const char* c_source = "\"1234\".length";
v8::Local<v8::String> source = v8::String::New(c_source);
v8::Local<v8::Script> script = v8::Script::Compile(source);
CHECK_EQ(4, script->Run()->Int32Value());
}
}
TEST(PartialSerialization) {
Serializer::Enable();
v8::V8::Initialize();
v8::Persistent<v8::Context> env = v8::Context::New();
ASSERT(!env.IsEmpty());
env->Enter();
// Make sure all builtin scripts are cached.
{ HandleScope scope;
for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
Bootstrapper::NativesSourceLookup(i);
}
}
Heap::CollectAllGarbage(true);
Heap::CollectAllGarbage(true);
Object* raw_foo;
{
v8::HandleScope handle_scope;
v8::Local<v8::String> foo = v8::String::New("foo");
ASSERT(!foo.IsEmpty());
raw_foo = *(v8::Utils::OpenHandle(*foo));
}
int file_name_length = StrLength(FLAG_testing_serialization_file) + 10;
Vector<char> startup_name = Vector<char>::New(file_name_length + 1);
OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file);
env->Exit();
env.Dispose();
FileByteSink startup_sink(startup_name.start());
StartupSerializer startup_serializer(&startup_sink);
startup_serializer.SerializeStrongReferences();
FileByteSink partial_sink(FLAG_testing_serialization_file);
PartialSerializer p_ser(&startup_serializer, &partial_sink);
p_ser.Serialize(&raw_foo);
startup_serializer.SerializeWeakReferences();
partial_sink.WriteSpaceUsed(p_ser.CurrentAllocationAddress(NEW_SPACE),
p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE),
p_ser.CurrentAllocationAddress(OLD_DATA_SPACE),
p_ser.CurrentAllocationAddress(CODE_SPACE),
p_ser.CurrentAllocationAddress(MAP_SPACE),
p_ser.CurrentAllocationAddress(CELL_SPACE),
p_ser.CurrentAllocationAddress(LO_SPACE));
}
static void ReserveSpaceForPartialSnapshot(const char* file_name) {
int file_name_length = StrLength(file_name) + 10;
Vector<char> name = Vector<char>::New(file_name_length + 1);
OS::SNPrintF(name, "%s.size", file_name);
FILE* fp = OS::FOpen(name.start(), "r");
int new_size, pointer_size, data_size, code_size, map_size, cell_size;
int large_size;
#ifdef _MSC_VER
// Avoid warning about unsafe fscanf from MSVC.
// Please note that this is only fine if %c and %s are not being used.
#define fscanf fscanf_s
#endif
CHECK_EQ(1, fscanf(fp, "new %d\n", &new_size));
CHECK_EQ(1, fscanf(fp, "pointer %d\n", &pointer_size));
CHECK_EQ(1, fscanf(fp, "data %d\n", &data_size));
CHECK_EQ(1, fscanf(fp, "code %d\n", &code_size));
CHECK_EQ(1, fscanf(fp, "map %d\n", &map_size));
CHECK_EQ(1, fscanf(fp, "cell %d\n", &cell_size));
CHECK_EQ(1, fscanf(fp, "large %d\n", &large_size));
#ifdef _MSC_VER
#undef fscanf
#endif
fclose(fp);
Heap::ReserveSpace(new_size,
pointer_size,
data_size,
code_size,
map_size,
cell_size,
large_size);
}
DEPENDENT_TEST(PartialDeserialization, PartialSerialization) {
if (!Snapshot::IsEnabled()) {
int file_name_length = StrLength(FLAG_testing_serialization_file) + 10;
Vector<char> startup_name = Vector<char>::New(file_name_length + 1);
OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file);
CHECK(Snapshot::Initialize(startup_name.start()));
const char* file_name = FLAG_testing_serialization_file;
ReserveSpaceForPartialSnapshot(file_name);
int snapshot_size = 0;
byte* snapshot = ReadBytes(file_name, &snapshot_size);
Object* root;
{
SnapshotByteSource source(snapshot, snapshot_size);
Deserializer deserializer(&source);
deserializer.DeserializePartial(&root);
CHECK(root->IsString());
}
v8::HandleScope handle_scope;
Handle<Object>root_handle(root);
Object* root2;
{
SnapshotByteSource source(snapshot, snapshot_size);
Deserializer deserializer(&source);
deserializer.DeserializePartial(&root2);
CHECK(root2->IsString());
CHECK(*root_handle == root2);
}
}
}
TEST(ContextSerialization) {
Serializer::Enable();
v8::V8::Initialize();
v8::Persistent<v8::Context> env = v8::Context::New();
ASSERT(!env.IsEmpty());
env->Enter();
// Make sure all builtin scripts are cached.
{ HandleScope scope;
for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
Bootstrapper::NativesSourceLookup(i);
}
}
// If we don't do this then we end up with a stray root pointing at the
// context even after we have disposed of env.
Heap::CollectAllGarbage(true);
int file_name_length = StrLength(FLAG_testing_serialization_file) + 10;
Vector<char> startup_name = Vector<char>::New(file_name_length + 1);
OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file);
env->Exit();
Object* raw_context = *(v8::Utils::OpenHandle(*env));
env.Dispose();
FileByteSink startup_sink(startup_name.start());
StartupSerializer startup_serializer(&startup_sink);
startup_serializer.SerializeStrongReferences();
FileByteSink partial_sink(FLAG_testing_serialization_file);
PartialSerializer p_ser(&startup_serializer, &partial_sink);
p_ser.Serialize(&raw_context);
startup_serializer.SerializeWeakReferences();
partial_sink.WriteSpaceUsed(p_ser.CurrentAllocationAddress(NEW_SPACE),
p_ser.CurrentAllocationAddress(OLD_POINTER_SPACE),
p_ser.CurrentAllocationAddress(OLD_DATA_SPACE),
p_ser.CurrentAllocationAddress(CODE_SPACE),
p_ser.CurrentAllocationAddress(MAP_SPACE),
p_ser.CurrentAllocationAddress(CELL_SPACE),
p_ser.CurrentAllocationAddress(LO_SPACE));
}
DEPENDENT_TEST(ContextDeserialization, ContextSerialization) {
if (!Snapshot::IsEnabled()) {
int file_name_length = StrLength(FLAG_testing_serialization_file) + 10;
Vector<char> startup_name = Vector<char>::New(file_name_length + 1);
OS::SNPrintF(startup_name, "%s.startup", FLAG_testing_serialization_file);
CHECK(Snapshot::Initialize(startup_name.start()));
const char* file_name = FLAG_testing_serialization_file;
ReserveSpaceForPartialSnapshot(file_name);
int snapshot_size = 0;
byte* snapshot = ReadBytes(file_name, &snapshot_size);
Object* root;
{
SnapshotByteSource source(snapshot, snapshot_size);
Deserializer deserializer(&source);
deserializer.DeserializePartial(&root);
CHECK(root->IsContext());
}
v8::HandleScope handle_scope;
Handle<Object>root_handle(root);
Object* root2;
{
SnapshotByteSource source(snapshot, snapshot_size);
Deserializer deserializer(&source);
deserializer.DeserializePartial(&root2);
CHECK(root2->IsContext());
CHECK(*root_handle != root2);
}
}
}
TEST(LinearAllocation) {
v8::V8::Initialize();
int new_space_max = 512 * KB;
for (int size = 1000; size < 5 * MB; size += size >> 1) {
int new_space_size = (size < new_space_max) ? size : new_space_max;
Heap::ReserveSpace(
new_space_size,
size, // Old pointer space.
size, // Old data space.
size, // Code space.
size, // Map space.
size, // Cell space.
size); // Large object space.
LinearAllocationScope linear_allocation_scope;
const int kSmallFixedArrayLength = 4;
const int kSmallFixedArraySize =
FixedArray::kHeaderSize + kSmallFixedArrayLength * kPointerSize;
const int kSmallStringLength = 16;
const int kSmallStringSize =
(SeqAsciiString::kHeaderSize + kSmallStringLength +
kObjectAlignmentMask) & ~kObjectAlignmentMask;
const int kMapSize = Map::kSize;
Object* new_last = NULL;
for (int i = 0;
i + kSmallFixedArraySize <= new_space_size;
i += kSmallFixedArraySize) {
Object* obj = Heap::AllocateFixedArray(kSmallFixedArrayLength);
if (new_last != NULL) {
CHECK(reinterpret_cast<char*>(obj) ==
reinterpret_cast<char*>(new_last) + kSmallFixedArraySize);
}
new_last = obj;
}
Object* pointer_last = NULL;
for (int i = 0;
i + kSmallFixedArraySize <= size;
i += kSmallFixedArraySize) {
Object* obj = Heap::AllocateFixedArray(kSmallFixedArrayLength, TENURED);
int old_page_fullness = i % Page::kPageSize;
int page_fullness = (i + kSmallFixedArraySize) % Page::kPageSize;
if (page_fullness < old_page_fullness ||
page_fullness > Page::kObjectAreaSize) {
i = RoundUp(i, Page::kPageSize);
pointer_last = NULL;
}
if (pointer_last != NULL) {
CHECK(reinterpret_cast<char*>(obj) ==
reinterpret_cast<char*>(pointer_last) + kSmallFixedArraySize);
}
pointer_last = obj;
}
Object* data_last = NULL;
for (int i = 0; i + kSmallStringSize <= size; i += kSmallStringSize) {
Object* obj = Heap::AllocateRawAsciiString(kSmallStringLength, TENURED);
int old_page_fullness = i % Page::kPageSize;
int page_fullness = (i + kSmallStringSize) % Page::kPageSize;
if (page_fullness < old_page_fullness ||
page_fullness > Page::kObjectAreaSize) {
i = RoundUp(i, Page::kPageSize);
data_last = NULL;
}
if (data_last != NULL) {
CHECK(reinterpret_cast<char*>(obj) ==
reinterpret_cast<char*>(data_last) + kSmallStringSize);
}
data_last = obj;
}
Object* map_last = NULL;
for (int i = 0; i + kMapSize <= size; i += kMapSize) {
Object* obj = Heap::AllocateMap(JS_OBJECT_TYPE, 42 * kPointerSize);
int old_page_fullness = i % Page::kPageSize;
int page_fullness = (i + kMapSize) % Page::kPageSize;
if (page_fullness < old_page_fullness ||
page_fullness > Page::kObjectAreaSize) {
i = RoundUp(i, Page::kPageSize);
map_last = NULL;
}
if (map_last != NULL) {
CHECK(reinterpret_cast<char*>(obj) ==
reinterpret_cast<char*>(map_last) + kMapSize);
}
map_last = obj;
}
if (size > Page::kObjectAreaSize) {
// Support for reserving space in large object space is not there yet,
// but using an always-allocate scope is fine for now.
AlwaysAllocateScope always;
int large_object_array_length =
(size - FixedArray::kHeaderSize) / kPointerSize;
Object* obj = Heap::AllocateFixedArray(large_object_array_length,
TENURED);
CHECK(!obj->IsFailure());
}
}
}
TEST(TestThatAlwaysSucceeds) {
}
TEST(TestThatAlwaysFails) {
bool ArtificialFailure = false;
CHECK(ArtificialFailure);
}
DEPENDENT_TEST(DependentTestThatAlwaysFails, TestThatAlwaysSucceeds) {
bool ArtificialFailure2 = false;
CHECK(ArtificialFailure2);
}