blob: 4d9a46c4a9e437ad9f26e5e12cf410728416b90f [file] [log] [blame]
// Copyright 2007-2008 Google Inc. All Rights Reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ASSEMBLER_ARM_INL_H_
#define V8_ASSEMBLER_ARM_INL_H_
#include "assembler-arm.h"
#include "cpu.h"
namespace v8 { namespace internal {
Condition NegateCondition(Condition cc) {
ASSERT(cc != al);
return static_cast<Condition>(cc ^ ne);
}
void RelocInfo::apply(int delta) {
// We do not use pc relative addressing on ARM, so there is nothing to do.
}
Address RelocInfo::target_address() {
ASSERT(is_code_target(rmode_));
return Assembler::target_address_at(pc_);
}
void RelocInfo::set_target_address(Address target) {
ASSERT(is_code_target(rmode_));
Assembler::set_target_address_at(pc_, target);
}
Object* RelocInfo::target_object() {
ASSERT(is_code_target(rmode_) || rmode_ == embedded_object);
return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
}
Object** RelocInfo::target_object_address() {
ASSERT(is_code_target(rmode_) || rmode_ == embedded_object);
return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_));
}
void RelocInfo::set_target_object(Object* target) {
ASSERT(is_code_target(rmode_) || rmode_ == embedded_object);
Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
}
Address* RelocInfo::target_reference_address() {
ASSERT(rmode_ == external_reference);
return reinterpret_cast<Address*>(pc_);
}
Address RelocInfo::call_address() {
ASSERT(is_call_instruction());
UNIMPLEMENTED();
return NULL;
}
void RelocInfo::set_call_address(Address target) {
ASSERT(is_call_instruction());
UNIMPLEMENTED();
}
Object* RelocInfo::call_object() {
ASSERT(is_call_instruction());
UNIMPLEMENTED();
return NULL;
}
Object** RelocInfo::call_object_address() {
ASSERT(is_call_instruction());
UNIMPLEMENTED();
return NULL;
}
void RelocInfo::set_call_object(Object* target) {
ASSERT(is_call_instruction());
UNIMPLEMENTED();
}
bool RelocInfo::is_call_instruction() {
UNIMPLEMENTED();
return false;
}
Operand::Operand(int32_t immediate, RelocMode rmode) {
rm_ = no_reg;
imm32_ = immediate;
rmode_ = rmode;
}
Operand::Operand(const char* s) {
rm_ = no_reg;
imm32_ = reinterpret_cast<int32_t>(s);
rmode_ = embedded_string;
}
Operand::Operand(const ExternalReference& f) {
rm_ = no_reg;
imm32_ = reinterpret_cast<int32_t>(f.address());
rmode_ = external_reference;
}
Operand::Operand(Object** opp) {
rm_ = no_reg;
imm32_ = reinterpret_cast<int32_t>(opp);
rmode_ = no_reloc;
}
Operand::Operand(Context** cpp) {
rm_ = no_reg;
imm32_ = reinterpret_cast<int32_t>(cpp);
rmode_ = no_reloc;
}
Operand::Operand(Smi* value) {
rm_ = no_reg;
imm32_ = reinterpret_cast<intptr_t>(value);
rmode_ = no_reloc;
}
Operand::Operand(Register rm) {
rm_ = rm;
rs_ = no_reg;
shift_op_ = LSL;
shift_imm_ = 0;
}
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
if (pc_offset() > next_buffer_check_) {
CheckConstPool(false, true);
}
}
void Assembler::emit(Instr x) {
CheckBuffer();
*reinterpret_cast<Instr*>(pc_) = x;
pc_ += kInstrSize;
}
Address Assembler::target_address_address_at(Address pc) {
Instr instr = Memory::int32_at(pc);
// Verify that the instruction at pc is a ldr<cond> <Rd>, [pc +/- offset_12].
ASSERT((instr & 0x0f7f0000) == 0x051f0000);
int offset = instr & 0xfff; // offset_12 is unsigned
if ((instr & (1 << 23)) == 0) offset = -offset; // U bit defines offset sign
// Verify that the constant pool comes after the instruction referencing it.
ASSERT(offset >= -4);
return pc + offset + 8;
}
Address Assembler::target_address_at(Address pc) {
return Memory::Address_at(target_address_address_at(pc));
}
void Assembler::set_target_address_at(Address pc, Address target) {
Memory::Address_at(target_address_address_at(pc)) = target;
// Intuitively, we would think it is necessary to flush the instruction cache
// after patching a target address in the code as follows:
// CPU::FlushICache(pc, sizeof(target));
// However, on ARM, no instruction was actually patched by the assignment
// above; the target address is not part of an instruction, it is patched in
// the constant pool and is read via a data access; the instruction accessing
// this address in the constant pool remains unchanged.
}
} } // namespace v8::internal
#endif // V8_ASSEMBLER_ARM_INL_H_