|  | // Copyright 2010 the V8 project authors. All rights reserved. | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | //       notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | //       copyright notice, this list of conditions and the following | 
|  | //       disclaimer in the documentation and/or other materials provided | 
|  | //       with the distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | //       contributors may be used to endorse or promote products derived | 
|  | //       from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | #include "v8.h" | 
|  |  | 
|  | #include "api.h" | 
|  | #include "arguments.h" | 
|  | #include "bootstrapper.h" | 
|  | #include "debug.h" | 
|  | #include "execution.h" | 
|  | #include "objects-inl.h" | 
|  | #include "objects-visiting.h" | 
|  | #include "macro-assembler.h" | 
|  | #include "scanner.h" | 
|  | #include "scopeinfo.h" | 
|  | #include "string-stream.h" | 
|  | #include "utils.h" | 
|  |  | 
|  | #ifdef ENABLE_DISASSEMBLER | 
|  | #include "disassembler.h" | 
|  | #endif | 
|  |  | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | // Getters and setters are stored in a fixed array property.  These are | 
|  | // constants for their indices. | 
|  | const int kGetterIndex = 0; | 
|  | const int kSetterIndex = 1; | 
|  |  | 
|  |  | 
|  | MUST_USE_RESULT static Object* CreateJSValue(JSFunction* constructor, | 
|  | Object* value) { | 
|  | Object* result = Heap::AllocateJSObject(constructor); | 
|  | if (result->IsFailure()) return result; | 
|  | JSValue::cast(result)->set_value(value); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::ToObject(Context* global_context) { | 
|  | if (IsNumber()) { | 
|  | return CreateJSValue(global_context->number_function(), this); | 
|  | } else if (IsBoolean()) { | 
|  | return CreateJSValue(global_context->boolean_function(), this); | 
|  | } else if (IsString()) { | 
|  | return CreateJSValue(global_context->string_function(), this); | 
|  | } | 
|  | ASSERT(IsJSObject()); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::ToObject() { | 
|  | Context* global_context = Top::context()->global_context(); | 
|  | if (IsJSObject()) { | 
|  | return this; | 
|  | } else if (IsNumber()) { | 
|  | return CreateJSValue(global_context->number_function(), this); | 
|  | } else if (IsBoolean()) { | 
|  | return CreateJSValue(global_context->boolean_function(), this); | 
|  | } else if (IsString()) { | 
|  | return CreateJSValue(global_context->string_function(), this); | 
|  | } | 
|  |  | 
|  | // Throw a type error. | 
|  | return Failure::InternalError(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::ToBoolean() { | 
|  | if (IsTrue()) return Heap::true_value(); | 
|  | if (IsFalse()) return Heap::false_value(); | 
|  | if (IsSmi()) { | 
|  | return Heap::ToBoolean(Smi::cast(this)->value() != 0); | 
|  | } | 
|  | if (IsUndefined() || IsNull()) return Heap::false_value(); | 
|  | // Undetectable object is false | 
|  | if (IsUndetectableObject()) { | 
|  | return Heap::false_value(); | 
|  | } | 
|  | if (IsString()) { | 
|  | return Heap::ToBoolean(String::cast(this)->length() != 0); | 
|  | } | 
|  | if (IsHeapNumber()) { | 
|  | return HeapNumber::cast(this)->HeapNumberToBoolean(); | 
|  | } | 
|  | return Heap::true_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Object::Lookup(String* name, LookupResult* result) { | 
|  | if (IsJSObject()) return JSObject::cast(this)->Lookup(name, result); | 
|  | Object* holder = NULL; | 
|  | Context* global_context = Top::context()->global_context(); | 
|  | if (IsString()) { | 
|  | holder = global_context->string_function()->instance_prototype(); | 
|  | } else if (IsNumber()) { | 
|  | holder = global_context->number_function()->instance_prototype(); | 
|  | } else if (IsBoolean()) { | 
|  | holder = global_context->boolean_function()->instance_prototype(); | 
|  | } | 
|  | ASSERT(holder != NULL);  // Cannot handle null or undefined. | 
|  | JSObject::cast(holder)->Lookup(name, result); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::GetPropertyWithReceiver(Object* receiver, | 
|  | String* name, | 
|  | PropertyAttributes* attributes) { | 
|  | LookupResult result; | 
|  | Lookup(name, &result); | 
|  | Object* value = GetProperty(receiver, &result, name, attributes); | 
|  | ASSERT(*attributes <= ABSENT); | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::GetPropertyWithCallback(Object* receiver, | 
|  | Object* structure, | 
|  | String* name, | 
|  | Object* holder) { | 
|  | // To accommodate both the old and the new api we switch on the | 
|  | // data structure used to store the callbacks.  Eventually proxy | 
|  | // callbacks should be phased out. | 
|  | if (structure->IsProxy()) { | 
|  | AccessorDescriptor* callback = | 
|  | reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy()); | 
|  | Object* value = (callback->getter)(receiver, callback->data); | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | // api style callbacks. | 
|  | if (structure->IsAccessorInfo()) { | 
|  | AccessorInfo* data = AccessorInfo::cast(structure); | 
|  | Object* fun_obj = data->getter(); | 
|  | v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj); | 
|  | HandleScope scope; | 
|  | JSObject* self = JSObject::cast(receiver); | 
|  | JSObject* holder_handle = JSObject::cast(holder); | 
|  | Handle<String> key(name); | 
|  | LOG(ApiNamedPropertyAccess("load", self, name)); | 
|  | CustomArguments args(data->data(), self, holder_handle); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | v8::Handle<v8::Value> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = call_fun(v8::Utils::ToLocal(key), info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (result.IsEmpty()) return Heap::undefined_value(); | 
|  | return *v8::Utils::OpenHandle(*result); | 
|  | } | 
|  |  | 
|  | // __defineGetter__ callback | 
|  | if (structure->IsFixedArray()) { | 
|  | Object* getter = FixedArray::cast(structure)->get(kGetterIndex); | 
|  | if (getter->IsJSFunction()) { | 
|  | return Object::GetPropertyWithDefinedGetter(receiver, | 
|  | JSFunction::cast(getter)); | 
|  | } | 
|  | // Getter is not a function. | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::GetPropertyWithDefinedGetter(Object* receiver, | 
|  | JSFunction* getter) { | 
|  | HandleScope scope; | 
|  | Handle<JSFunction> fun(JSFunction::cast(getter)); | 
|  | Handle<Object> self(receiver); | 
|  | #ifdef ENABLE_DEBUGGER_SUPPORT | 
|  | // Handle stepping into a getter if step into is active. | 
|  | if (Debug::StepInActive()) { | 
|  | Debug::HandleStepIn(fun, Handle<Object>::null(), 0, false); | 
|  | } | 
|  | #endif | 
|  | bool has_pending_exception; | 
|  | Handle<Object> result = | 
|  | Execution::Call(fun, self, 0, NULL, &has_pending_exception); | 
|  | // Check for pending exception and return the result. | 
|  | if (has_pending_exception) return Failure::Exception(); | 
|  | return *result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Only deal with CALLBACKS and INTERCEPTOR | 
|  | Object* JSObject::GetPropertyWithFailedAccessCheck( | 
|  | Object* receiver, | 
|  | LookupResult* result, | 
|  | String* name, | 
|  | PropertyAttributes* attributes) { | 
|  | if (result->IsProperty()) { | 
|  | switch (result->type()) { | 
|  | case CALLBACKS: { | 
|  | // Only allow API accessors. | 
|  | Object* obj = result->GetCallbackObject(); | 
|  | if (obj->IsAccessorInfo()) { | 
|  | AccessorInfo* info = AccessorInfo::cast(obj); | 
|  | if (info->all_can_read()) { | 
|  | *attributes = result->GetAttributes(); | 
|  | return GetPropertyWithCallback(receiver, | 
|  | result->GetCallbackObject(), | 
|  | name, | 
|  | result->holder()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case NORMAL: | 
|  | case FIELD: | 
|  | case CONSTANT_FUNCTION: { | 
|  | // Search ALL_CAN_READ accessors in prototype chain. | 
|  | LookupResult r; | 
|  | result->holder()->LookupRealNamedPropertyInPrototypes(name, &r); | 
|  | if (r.IsProperty()) { | 
|  | return GetPropertyWithFailedAccessCheck(receiver, | 
|  | &r, | 
|  | name, | 
|  | attributes); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case INTERCEPTOR: { | 
|  | // If the object has an interceptor, try real named properties. | 
|  | // No access check in GetPropertyAttributeWithInterceptor. | 
|  | LookupResult r; | 
|  | result->holder()->LookupRealNamedProperty(name, &r); | 
|  | if (r.IsProperty()) { | 
|  | return GetPropertyWithFailedAccessCheck(receiver, | 
|  | &r, | 
|  | name, | 
|  | attributes); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // No accessible property found. | 
|  | *attributes = ABSENT; | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_GET); | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck( | 
|  | Object* receiver, | 
|  | LookupResult* result, | 
|  | String* name, | 
|  | bool continue_search) { | 
|  | if (result->IsProperty()) { | 
|  | switch (result->type()) { | 
|  | case CALLBACKS: { | 
|  | // Only allow API accessors. | 
|  | Object* obj = result->GetCallbackObject(); | 
|  | if (obj->IsAccessorInfo()) { | 
|  | AccessorInfo* info = AccessorInfo::cast(obj); | 
|  | if (info->all_can_read()) { | 
|  | return result->GetAttributes(); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case NORMAL: | 
|  | case FIELD: | 
|  | case CONSTANT_FUNCTION: { | 
|  | if (!continue_search) break; | 
|  | // Search ALL_CAN_READ accessors in prototype chain. | 
|  | LookupResult r; | 
|  | result->holder()->LookupRealNamedPropertyInPrototypes(name, &r); | 
|  | if (r.IsProperty()) { | 
|  | return GetPropertyAttributeWithFailedAccessCheck(receiver, | 
|  | &r, | 
|  | name, | 
|  | continue_search); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case INTERCEPTOR: { | 
|  | // If the object has an interceptor, try real named properties. | 
|  | // No access check in GetPropertyAttributeWithInterceptor. | 
|  | LookupResult r; | 
|  | if (continue_search) { | 
|  | result->holder()->LookupRealNamedProperty(name, &r); | 
|  | } else { | 
|  | result->holder()->LocalLookupRealNamedProperty(name, &r); | 
|  | } | 
|  | if (r.IsProperty()) { | 
|  | return GetPropertyAttributeWithFailedAccessCheck(receiver, | 
|  | &r, | 
|  | name, | 
|  | continue_search); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
|  | return ABSENT; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::GetNormalizedProperty(LookupResult* result) { | 
|  | ASSERT(!HasFastProperties()); | 
|  | Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry()); | 
|  | if (IsGlobalObject()) { | 
|  | value = JSGlobalPropertyCell::cast(value)->value(); | 
|  | } | 
|  | ASSERT(!value->IsJSGlobalPropertyCell()); | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetNormalizedProperty(LookupResult* result, Object* value) { | 
|  | ASSERT(!HasFastProperties()); | 
|  | if (IsGlobalObject()) { | 
|  | JSGlobalPropertyCell* cell = | 
|  | JSGlobalPropertyCell::cast( | 
|  | property_dictionary()->ValueAt(result->GetDictionaryEntry())); | 
|  | cell->set_value(value); | 
|  | } else { | 
|  | property_dictionary()->ValueAtPut(result->GetDictionaryEntry(), value); | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetNormalizedProperty(String* name, | 
|  | Object* value, | 
|  | PropertyDetails details) { | 
|  | ASSERT(!HasFastProperties()); | 
|  | int entry = property_dictionary()->FindEntry(name); | 
|  | if (entry == StringDictionary::kNotFound) { | 
|  | Object* store_value = value; | 
|  | if (IsGlobalObject()) { | 
|  | store_value = Heap::AllocateJSGlobalPropertyCell(value); | 
|  | if (store_value->IsFailure()) return store_value; | 
|  | } | 
|  | Object* dict = property_dictionary()->Add(name, store_value, details); | 
|  | if (dict->IsFailure()) return dict; | 
|  | set_properties(StringDictionary::cast(dict)); | 
|  | return value; | 
|  | } | 
|  | // Preserve enumeration index. | 
|  | details = PropertyDetails(details.attributes(), | 
|  | details.type(), | 
|  | property_dictionary()->DetailsAt(entry).index()); | 
|  | if (IsGlobalObject()) { | 
|  | JSGlobalPropertyCell* cell = | 
|  | JSGlobalPropertyCell::cast(property_dictionary()->ValueAt(entry)); | 
|  | cell->set_value(value); | 
|  | // Please note we have to update the property details. | 
|  | property_dictionary()->DetailsAtPut(entry, details); | 
|  | } else { | 
|  | property_dictionary()->SetEntry(entry, name, value, details); | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DeleteNormalizedProperty(String* name, DeleteMode mode) { | 
|  | ASSERT(!HasFastProperties()); | 
|  | StringDictionary* dictionary = property_dictionary(); | 
|  | int entry = dictionary->FindEntry(name); | 
|  | if (entry != StringDictionary::kNotFound) { | 
|  | // If we have a global object set the cell to the hole. | 
|  | if (IsGlobalObject()) { | 
|  | PropertyDetails details = dictionary->DetailsAt(entry); | 
|  | if (details.IsDontDelete()) { | 
|  | if (mode != FORCE_DELETION) return Heap::false_value(); | 
|  | // When forced to delete global properties, we have to make a | 
|  | // map change to invalidate any ICs that think they can load | 
|  | // from the DontDelete cell without checking if it contains | 
|  | // the hole value. | 
|  | Object* new_map = map()->CopyDropDescriptors(); | 
|  | if (new_map->IsFailure()) return new_map; | 
|  | set_map(Map::cast(new_map)); | 
|  | } | 
|  | JSGlobalPropertyCell* cell = | 
|  | JSGlobalPropertyCell::cast(dictionary->ValueAt(entry)); | 
|  | cell->set_value(Heap::the_hole_value()); | 
|  | dictionary->DetailsAtPut(entry, details.AsDeleted()); | 
|  | } else { | 
|  | return dictionary->DeleteProperty(entry, mode); | 
|  | } | 
|  | } | 
|  | return Heap::true_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::IsDirty() { | 
|  | Object* cons_obj = map()->constructor(); | 
|  | if (!cons_obj->IsJSFunction()) | 
|  | return true; | 
|  | JSFunction* fun = JSFunction::cast(cons_obj); | 
|  | if (!fun->shared()->IsApiFunction()) | 
|  | return true; | 
|  | // If the object is fully fast case and has the same map it was | 
|  | // created with then no changes can have been made to it. | 
|  | return map() != fun->initial_map() | 
|  | || !HasFastElements() | 
|  | || !HasFastProperties(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::GetProperty(Object* receiver, | 
|  | LookupResult* result, | 
|  | String* name, | 
|  | PropertyAttributes* attributes) { | 
|  | // Make sure that the top context does not change when doing | 
|  | // callbacks or interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  |  | 
|  | // Traverse the prototype chain from the current object (this) to | 
|  | // the holder and check for access rights. This avoid traversing the | 
|  | // objects more than once in case of interceptors, because the | 
|  | // holder will always be the interceptor holder and the search may | 
|  | // only continue with a current object just after the interceptor | 
|  | // holder in the prototype chain. | 
|  | Object* last = result->IsProperty() ? result->holder() : Heap::null_value(); | 
|  | for (Object* current = this; true; current = current->GetPrototype()) { | 
|  | if (current->IsAccessCheckNeeded()) { | 
|  | // Check if we're allowed to read from the current object. Note | 
|  | // that even though we may not actually end up loading the named | 
|  | // property from the current object, we still check that we have | 
|  | // access to it. | 
|  | JSObject* checked = JSObject::cast(current); | 
|  | if (!Top::MayNamedAccess(checked, name, v8::ACCESS_GET)) { | 
|  | return checked->GetPropertyWithFailedAccessCheck(receiver, | 
|  | result, | 
|  | name, | 
|  | attributes); | 
|  | } | 
|  | } | 
|  | // Stop traversing the chain once we reach the last object in the | 
|  | // chain; either the holder of the result or null in case of an | 
|  | // absent property. | 
|  | if (current == last) break; | 
|  | } | 
|  |  | 
|  | if (!result->IsProperty()) { | 
|  | *attributes = ABSENT; | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  | *attributes = result->GetAttributes(); | 
|  | Object* value; | 
|  | JSObject* holder = result->holder(); | 
|  | switch (result->type()) { | 
|  | case NORMAL: | 
|  | value = holder->GetNormalizedProperty(result); | 
|  | ASSERT(!value->IsTheHole() || result->IsReadOnly()); | 
|  | return value->IsTheHole() ? Heap::undefined_value() : value; | 
|  | case FIELD: | 
|  | value = holder->FastPropertyAt(result->GetFieldIndex()); | 
|  | ASSERT(!value->IsTheHole() || result->IsReadOnly()); | 
|  | return value->IsTheHole() ? Heap::undefined_value() : value; | 
|  | case CONSTANT_FUNCTION: | 
|  | return result->GetConstantFunction(); | 
|  | case CALLBACKS: | 
|  | return GetPropertyWithCallback(receiver, | 
|  | result->GetCallbackObject(), | 
|  | name, | 
|  | holder); | 
|  | case INTERCEPTOR: { | 
|  | JSObject* recvr = JSObject::cast(receiver); | 
|  | return holder->GetPropertyWithInterceptor(recvr, name, attributes); | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::GetElementWithReceiver(Object* receiver, uint32_t index) { | 
|  | // Non-JS objects do not have integer indexed properties. | 
|  | if (!IsJSObject()) return Heap::undefined_value(); | 
|  | return JSObject::cast(this)->GetElementWithReceiver(JSObject::cast(receiver), | 
|  | index); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Object::GetPrototype() { | 
|  | // The object is either a number, a string, a boolean, or a real JS object. | 
|  | if (IsJSObject()) return JSObject::cast(this)->map()->prototype(); | 
|  | Context* context = Top::context()->global_context(); | 
|  |  | 
|  | if (IsNumber()) return context->number_function()->instance_prototype(); | 
|  | if (IsString()) return context->string_function()->instance_prototype(); | 
|  | if (IsBoolean()) { | 
|  | return context->boolean_function()->instance_prototype(); | 
|  | } else { | 
|  | return Heap::null_value(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Object::ShortPrint() { | 
|  | HeapStringAllocator allocator; | 
|  | StringStream accumulator(&allocator); | 
|  | ShortPrint(&accumulator); | 
|  | accumulator.OutputToStdOut(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Object::ShortPrint(StringStream* accumulator) { | 
|  | if (IsSmi()) { | 
|  | Smi::cast(this)->SmiPrint(accumulator); | 
|  | } else if (IsFailure()) { | 
|  | Failure::cast(this)->FailurePrint(accumulator); | 
|  | } else { | 
|  | HeapObject::cast(this)->HeapObjectShortPrint(accumulator); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Smi::SmiPrint() { | 
|  | PrintF("%d", value()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Smi::SmiPrint(StringStream* accumulator) { | 
|  | accumulator->Add("%d", value()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Failure::FailurePrint(StringStream* accumulator) { | 
|  | accumulator->Add("Failure(%p)", reinterpret_cast<void*>(value())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Failure::FailurePrint() { | 
|  | PrintF("Failure(%p)", reinterpret_cast<void*>(value())); | 
|  | } | 
|  |  | 
|  |  | 
|  | Failure* Failure::RetryAfterGC(int requested_bytes, AllocationSpace space) { | 
|  | ASSERT((space & ~kSpaceTagMask) == 0); | 
|  | // TODO(X64): Stop using Smi validation for non-smi checks, even if they | 
|  | // happen to be identical at the moment. | 
|  |  | 
|  | int requested = requested_bytes >> kObjectAlignmentBits; | 
|  | int value = (requested << kSpaceTagSize) | space; | 
|  | // We can't very well allocate a heap number in this situation, and if the | 
|  | // requested memory is so large it seems reasonable to say that this is an | 
|  | // out of memory situation.  This fixes a crash in | 
|  | // js1_5/Regress/regress-303213.js. | 
|  | if (value >> kSpaceTagSize != requested || | 
|  | !Smi::IsValid(value) || | 
|  | value != ((value << kFailureTypeTagSize) >> kFailureTypeTagSize) || | 
|  | !Smi::IsValid(value << kFailureTypeTagSize)) { | 
|  | Top::context()->mark_out_of_memory(); | 
|  | return Failure::OutOfMemoryException(); | 
|  | } | 
|  | return Construct(RETRY_AFTER_GC, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Should a word be prefixed by 'a' or 'an' in order to read naturally in | 
|  | // English?  Returns false for non-ASCII or words that don't start with | 
|  | // a capital letter.  The a/an rule follows pronunciation in English. | 
|  | // We don't use the BBC's overcorrect "an historic occasion" though if | 
|  | // you speak a dialect you may well say "an 'istoric occasion". | 
|  | static bool AnWord(String* str) { | 
|  | if (str->length() == 0) return false;  // A nothing. | 
|  | int c0 = str->Get(0); | 
|  | int c1 = str->length() > 1 ? str->Get(1) : 0; | 
|  | if (c0 == 'U') { | 
|  | if (c1 > 'Z') { | 
|  | return true;  // An Umpire, but a UTF8String, a U. | 
|  | } | 
|  | } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') { | 
|  | return true;    // An Ape, an ABCBook. | 
|  | } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) && | 
|  | (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' || | 
|  | c0 == 'S' || c0 == 'X')) { | 
|  | return true;    // An MP3File, an M. | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* String::SlowTryFlatten(PretenureFlag pretenure) { | 
|  | #ifdef DEBUG | 
|  | // Do not attempt to flatten in debug mode when allocation is not | 
|  | // allowed.  This is to avoid an assertion failure when allocating. | 
|  | // Flattening strings is the only case where we always allow | 
|  | // allocation because no GC is performed if the allocation fails. | 
|  | if (!Heap::IsAllocationAllowed()) return this; | 
|  | #endif | 
|  |  | 
|  | switch (StringShape(this).representation_tag()) { | 
|  | case kConsStringTag: { | 
|  | ConsString* cs = ConsString::cast(this); | 
|  | if (cs->second()->length() == 0) { | 
|  | return cs->first(); | 
|  | } | 
|  | // There's little point in putting the flat string in new space if the | 
|  | // cons string is in old space.  It can never get GCed until there is | 
|  | // an old space GC. | 
|  | PretenureFlag tenure = Heap::InNewSpace(this) ? pretenure : TENURED; | 
|  | int len = length(); | 
|  | Object* object; | 
|  | String* result; | 
|  | if (IsAsciiRepresentation()) { | 
|  | object = Heap::AllocateRawAsciiString(len, tenure); | 
|  | if (object->IsFailure()) return object; | 
|  | result = String::cast(object); | 
|  | String* first = cs->first(); | 
|  | int first_length = first->length(); | 
|  | char* dest = SeqAsciiString::cast(result)->GetChars(); | 
|  | WriteToFlat(first, dest, 0, first_length); | 
|  | String* second = cs->second(); | 
|  | WriteToFlat(second, | 
|  | dest + first_length, | 
|  | 0, | 
|  | len - first_length); | 
|  | } else { | 
|  | object = Heap::AllocateRawTwoByteString(len, tenure); | 
|  | if (object->IsFailure()) return object; | 
|  | result = String::cast(object); | 
|  | uc16* dest = SeqTwoByteString::cast(result)->GetChars(); | 
|  | String* first = cs->first(); | 
|  | int first_length = first->length(); | 
|  | WriteToFlat(first, dest, 0, first_length); | 
|  | String* second = cs->second(); | 
|  | WriteToFlat(second, | 
|  | dest + first_length, | 
|  | 0, | 
|  | len - first_length); | 
|  | } | 
|  | cs->set_first(result); | 
|  | cs->set_second(Heap::empty_string()); | 
|  | return result; | 
|  | } | 
|  | default: | 
|  | return this; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool String::MakeExternal(v8::String::ExternalStringResource* resource) { | 
|  | // Externalizing twice leaks the external resource, so it's | 
|  | // prohibited by the API. | 
|  | ASSERT(!this->IsExternalString()); | 
|  | #ifdef DEBUG | 
|  | if (FLAG_enable_slow_asserts) { | 
|  | // Assert that the resource and the string are equivalent. | 
|  | ASSERT(static_cast<size_t>(this->length()) == resource->length()); | 
|  | ScopedVector<uc16> smart_chars(this->length()); | 
|  | String::WriteToFlat(this, smart_chars.start(), 0, this->length()); | 
|  | ASSERT(memcmp(smart_chars.start(), | 
|  | resource->data(), | 
|  | resource->length() * sizeof(smart_chars[0])) == 0); | 
|  | } | 
|  | #endif  // DEBUG | 
|  |  | 
|  | int size = this->Size();  // Byte size of the original string. | 
|  | if (size < ExternalString::kSize) { | 
|  | // The string is too small to fit an external String in its place. This can | 
|  | // only happen for zero length strings. | 
|  | return false; | 
|  | } | 
|  | ASSERT(size >= ExternalString::kSize); | 
|  | bool is_ascii = this->IsAsciiRepresentation(); | 
|  | bool is_symbol = this->IsSymbol(); | 
|  | int length = this->length(); | 
|  | int hash_field = this->hash_field(); | 
|  |  | 
|  | // Morph the object to an external string by adjusting the map and | 
|  | // reinitializing the fields. | 
|  | this->set_map(is_ascii ? | 
|  | Heap::external_string_with_ascii_data_map() : | 
|  | Heap::external_string_map()); | 
|  | ExternalTwoByteString* self = ExternalTwoByteString::cast(this); | 
|  | self->set_length(length); | 
|  | self->set_hash_field(hash_field); | 
|  | self->set_resource(resource); | 
|  | // Additionally make the object into an external symbol if the original string | 
|  | // was a symbol to start with. | 
|  | if (is_symbol) { | 
|  | self->Hash();  // Force regeneration of the hash value. | 
|  | // Now morph this external string into a external symbol. | 
|  | this->set_map(is_ascii ? | 
|  | Heap::external_symbol_with_ascii_data_map() : | 
|  | Heap::external_symbol_map()); | 
|  | } | 
|  |  | 
|  | // Fill the remainder of the string with dead wood. | 
|  | int new_size = this->Size();  // Byte size of the external String object. | 
|  | Heap::CreateFillerObjectAt(this->address() + new_size, size - new_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) { | 
|  | #ifdef DEBUG | 
|  | if (FLAG_enable_slow_asserts) { | 
|  | // Assert that the resource and the string are equivalent. | 
|  | ASSERT(static_cast<size_t>(this->length()) == resource->length()); | 
|  | ScopedVector<char> smart_chars(this->length()); | 
|  | String::WriteToFlat(this, smart_chars.start(), 0, this->length()); | 
|  | ASSERT(memcmp(smart_chars.start(), | 
|  | resource->data(), | 
|  | resource->length() * sizeof(smart_chars[0])) == 0); | 
|  | } | 
|  | #endif  // DEBUG | 
|  |  | 
|  | int size = this->Size();  // Byte size of the original string. | 
|  | if (size < ExternalString::kSize) { | 
|  | // The string is too small to fit an external String in its place. This can | 
|  | // only happen for zero length strings. | 
|  | return false; | 
|  | } | 
|  | ASSERT(size >= ExternalString::kSize); | 
|  | bool is_symbol = this->IsSymbol(); | 
|  | int length = this->length(); | 
|  | int hash_field = this->hash_field(); | 
|  |  | 
|  | // Morph the object to an external string by adjusting the map and | 
|  | // reinitializing the fields. | 
|  | this->set_map(Heap::external_ascii_string_map()); | 
|  | ExternalAsciiString* self = ExternalAsciiString::cast(this); | 
|  | self->set_length(length); | 
|  | self->set_hash_field(hash_field); | 
|  | self->set_resource(resource); | 
|  | // Additionally make the object into an external symbol if the original string | 
|  | // was a symbol to start with. | 
|  | if (is_symbol) { | 
|  | self->Hash();  // Force regeneration of the hash value. | 
|  | // Now morph this external string into a external symbol. | 
|  | this->set_map(Heap::external_ascii_symbol_map()); | 
|  | } | 
|  |  | 
|  | // Fill the remainder of the string with dead wood. | 
|  | int new_size = this->Size();  // Byte size of the external String object. | 
|  | Heap::CreateFillerObjectAt(this->address() + new_size, size - new_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | void String::StringShortPrint(StringStream* accumulator) { | 
|  | int len = length(); | 
|  | if (len > kMaxShortPrintLength) { | 
|  | accumulator->Add("<Very long string[%u]>", len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!LooksValid()) { | 
|  | accumulator->Add("<Invalid String>"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | StringInputBuffer buf(this); | 
|  |  | 
|  | bool truncated = false; | 
|  | if (len > kMaxShortPrintLength) { | 
|  | len = kMaxShortPrintLength; | 
|  | truncated = true; | 
|  | } | 
|  | bool ascii = true; | 
|  | for (int i = 0; i < len; i++) { | 
|  | int c = buf.GetNext(); | 
|  |  | 
|  | if (c < 32 || c >= 127) { | 
|  | ascii = false; | 
|  | } | 
|  | } | 
|  | buf.Reset(this); | 
|  | if (ascii) { | 
|  | accumulator->Add("<String[%u]: ", length()); | 
|  | for (int i = 0; i < len; i++) { | 
|  | accumulator->Put(buf.GetNext()); | 
|  | } | 
|  | accumulator->Put('>'); | 
|  | } else { | 
|  | // Backslash indicates that the string contains control | 
|  | // characters and that backslashes are therefore escaped. | 
|  | accumulator->Add("<String[%u]\\: ", length()); | 
|  | for (int i = 0; i < len; i++) { | 
|  | int c = buf.GetNext(); | 
|  | if (c == '\n') { | 
|  | accumulator->Add("\\n"); | 
|  | } else if (c == '\r') { | 
|  | accumulator->Add("\\r"); | 
|  | } else if (c == '\\') { | 
|  | accumulator->Add("\\\\"); | 
|  | } else if (c < 32 || c > 126) { | 
|  | accumulator->Add("\\x%02x", c); | 
|  | } else { | 
|  | accumulator->Put(c); | 
|  | } | 
|  | } | 
|  | if (truncated) { | 
|  | accumulator->Put('.'); | 
|  | accumulator->Put('.'); | 
|  | accumulator->Put('.'); | 
|  | } | 
|  | accumulator->Put('>'); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSObject::JSObjectShortPrint(StringStream* accumulator) { | 
|  | switch (map()->instance_type()) { | 
|  | case JS_ARRAY_TYPE: { | 
|  | double length = JSArray::cast(this)->length()->Number(); | 
|  | accumulator->Add("<JS array[%u]>", static_cast<uint32_t>(length)); | 
|  | break; | 
|  | } | 
|  | case JS_REGEXP_TYPE: { | 
|  | accumulator->Add("<JS RegExp>"); | 
|  | break; | 
|  | } | 
|  | case JS_FUNCTION_TYPE: { | 
|  | Object* fun_name = JSFunction::cast(this)->shared()->name(); | 
|  | bool printed = false; | 
|  | if (fun_name->IsString()) { | 
|  | String* str = String::cast(fun_name); | 
|  | if (str->length() > 0) { | 
|  | accumulator->Add("<JS Function "); | 
|  | accumulator->Put(str); | 
|  | accumulator->Put('>'); | 
|  | printed = true; | 
|  | } | 
|  | } | 
|  | if (!printed) { | 
|  | accumulator->Add("<JS Function>"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | // All other JSObjects are rather similar to each other (JSObject, | 
|  | // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue). | 
|  | default: { | 
|  | Object* constructor = map()->constructor(); | 
|  | bool printed = false; | 
|  | if (constructor->IsHeapObject() && | 
|  | !Heap::Contains(HeapObject::cast(constructor))) { | 
|  | accumulator->Add("!!!INVALID CONSTRUCTOR!!!"); | 
|  | } else { | 
|  | bool global_object = IsJSGlobalProxy(); | 
|  | if (constructor->IsJSFunction()) { | 
|  | if (!Heap::Contains(JSFunction::cast(constructor)->shared())) { | 
|  | accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!"); | 
|  | } else { | 
|  | Object* constructor_name = | 
|  | JSFunction::cast(constructor)->shared()->name(); | 
|  | if (constructor_name->IsString()) { | 
|  | String* str = String::cast(constructor_name); | 
|  | if (str->length() > 0) { | 
|  | bool vowel = AnWord(str); | 
|  | accumulator->Add("<%sa%s ", | 
|  | global_object ? "Global Object: " : "", | 
|  | vowel ? "n" : ""); | 
|  | accumulator->Put(str); | 
|  | accumulator->Put('>'); | 
|  | printed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!printed) { | 
|  | accumulator->Add("<JS %sObject", global_object ? "Global " : ""); | 
|  | } | 
|  | } | 
|  | if (IsJSValue()) { | 
|  | accumulator->Add(" value = "); | 
|  | JSValue::cast(this)->value()->ShortPrint(accumulator); | 
|  | } | 
|  | accumulator->Put('>'); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void HeapObject::HeapObjectShortPrint(StringStream* accumulator) { | 
|  | // if (!Heap::InNewSpace(this)) PrintF("*", this); | 
|  | if (!Heap::Contains(this)) { | 
|  | accumulator->Add("!!!INVALID POINTER!!!"); | 
|  | return; | 
|  | } | 
|  | if (!Heap::Contains(map())) { | 
|  | accumulator->Add("!!!INVALID MAP!!!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | accumulator->Add("%p ", this); | 
|  |  | 
|  | if (IsString()) { | 
|  | String::cast(this)->StringShortPrint(accumulator); | 
|  | return; | 
|  | } | 
|  | if (IsJSObject()) { | 
|  | JSObject::cast(this)->JSObjectShortPrint(accumulator); | 
|  | return; | 
|  | } | 
|  | switch (map()->instance_type()) { | 
|  | case MAP_TYPE: | 
|  | accumulator->Add("<Map>"); | 
|  | break; | 
|  | case FIXED_ARRAY_TYPE: | 
|  | accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length()); | 
|  | break; | 
|  | case BYTE_ARRAY_TYPE: | 
|  | accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length()); | 
|  | break; | 
|  | case PIXEL_ARRAY_TYPE: | 
|  | accumulator->Add("<PixelArray[%u]>", PixelArray::cast(this)->length()); | 
|  | break; | 
|  | case EXTERNAL_BYTE_ARRAY_TYPE: | 
|  | accumulator->Add("<ExternalByteArray[%u]>", | 
|  | ExternalByteArray::cast(this)->length()); | 
|  | break; | 
|  | case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: | 
|  | accumulator->Add("<ExternalUnsignedByteArray[%u]>", | 
|  | ExternalUnsignedByteArray::cast(this)->length()); | 
|  | break; | 
|  | case EXTERNAL_SHORT_ARRAY_TYPE: | 
|  | accumulator->Add("<ExternalShortArray[%u]>", | 
|  | ExternalShortArray::cast(this)->length()); | 
|  | break; | 
|  | case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: | 
|  | accumulator->Add("<ExternalUnsignedShortArray[%u]>", | 
|  | ExternalUnsignedShortArray::cast(this)->length()); | 
|  | break; | 
|  | case EXTERNAL_INT_ARRAY_TYPE: | 
|  | accumulator->Add("<ExternalIntArray[%u]>", | 
|  | ExternalIntArray::cast(this)->length()); | 
|  | break; | 
|  | case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: | 
|  | accumulator->Add("<ExternalUnsignedIntArray[%u]>", | 
|  | ExternalUnsignedIntArray::cast(this)->length()); | 
|  | break; | 
|  | case EXTERNAL_FLOAT_ARRAY_TYPE: | 
|  | accumulator->Add("<ExternalFloatArray[%u]>", | 
|  | ExternalFloatArray::cast(this)->length()); | 
|  | break; | 
|  | case SHARED_FUNCTION_INFO_TYPE: | 
|  | accumulator->Add("<SharedFunctionInfo>"); | 
|  | break; | 
|  | #define MAKE_STRUCT_CASE(NAME, Name, name) \ | 
|  | case NAME##_TYPE:                        \ | 
|  | accumulator->Put('<');                 \ | 
|  | accumulator->Add(#Name);               \ | 
|  | accumulator->Put('>');                 \ | 
|  | break; | 
|  | STRUCT_LIST(MAKE_STRUCT_CASE) | 
|  | #undef MAKE_STRUCT_CASE | 
|  | case CODE_TYPE: | 
|  | accumulator->Add("<Code>"); | 
|  | break; | 
|  | case ODDBALL_TYPE: { | 
|  | if (IsUndefined()) | 
|  | accumulator->Add("<undefined>"); | 
|  | else if (IsTheHole()) | 
|  | accumulator->Add("<the hole>"); | 
|  | else if (IsNull()) | 
|  | accumulator->Add("<null>"); | 
|  | else if (IsTrue()) | 
|  | accumulator->Add("<true>"); | 
|  | else if (IsFalse()) | 
|  | accumulator->Add("<false>"); | 
|  | else | 
|  | accumulator->Add("<Odd Oddball>"); | 
|  | break; | 
|  | } | 
|  | case HEAP_NUMBER_TYPE: | 
|  | accumulator->Add("<Number: "); | 
|  | HeapNumber::cast(this)->HeapNumberPrint(accumulator); | 
|  | accumulator->Put('>'); | 
|  | break; | 
|  | case PROXY_TYPE: | 
|  | accumulator->Add("<Proxy>"); | 
|  | break; | 
|  | case JS_GLOBAL_PROPERTY_CELL_TYPE: | 
|  | accumulator->Add("Cell for "); | 
|  | JSGlobalPropertyCell::cast(this)->value()->ShortPrint(accumulator); | 
|  | break; | 
|  | default: | 
|  | accumulator->Add("<Other heap object (%d)>", map()->instance_type()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void HeapObject::Iterate(ObjectVisitor* v) { | 
|  | // Handle header | 
|  | IteratePointer(v, kMapOffset); | 
|  | // Handle object body | 
|  | Map* m = map(); | 
|  | IterateBody(m->instance_type(), SizeFromMap(m), v); | 
|  | } | 
|  |  | 
|  |  | 
|  | void HeapObject::IterateBody(InstanceType type, int object_size, | 
|  | ObjectVisitor* v) { | 
|  | // Avoiding <Type>::cast(this) because it accesses the map pointer field. | 
|  | // During GC, the map pointer field is encoded. | 
|  | if (type < FIRST_NONSTRING_TYPE) { | 
|  | switch (type & kStringRepresentationMask) { | 
|  | case kSeqStringTag: | 
|  | break; | 
|  | case kConsStringTag: | 
|  | ConsString::BodyDescriptor::IterateBody(this, v); | 
|  | break; | 
|  | case kExternalStringTag: | 
|  | if ((type & kStringEncodingMask) == kAsciiStringTag) { | 
|  | reinterpret_cast<ExternalAsciiString*>(this)-> | 
|  | ExternalAsciiStringIterateBody(v); | 
|  | } else { | 
|  | reinterpret_cast<ExternalTwoByteString*>(this)-> | 
|  | ExternalTwoByteStringIterateBody(v); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case FIXED_ARRAY_TYPE: | 
|  | FixedArray::BodyDescriptor::IterateBody(this, object_size, v); | 
|  | break; | 
|  | case JS_OBJECT_TYPE: | 
|  | case JS_CONTEXT_EXTENSION_OBJECT_TYPE: | 
|  | case JS_VALUE_TYPE: | 
|  | case JS_ARRAY_TYPE: | 
|  | case JS_REGEXP_TYPE: | 
|  | case JS_GLOBAL_PROXY_TYPE: | 
|  | case JS_GLOBAL_OBJECT_TYPE: | 
|  | case JS_BUILTINS_OBJECT_TYPE: | 
|  | JSObject::BodyDescriptor::IterateBody(this, object_size, v); | 
|  | break; | 
|  | case JS_FUNCTION_TYPE: | 
|  | reinterpret_cast<JSFunction*>(this) | 
|  | ->JSFunctionIterateBody(object_size, v); | 
|  | break; | 
|  | case ODDBALL_TYPE: | 
|  | Oddball::BodyDescriptor::IterateBody(this, v); | 
|  | break; | 
|  | case PROXY_TYPE: | 
|  | reinterpret_cast<Proxy*>(this)->ProxyIterateBody(v); | 
|  | break; | 
|  | case MAP_TYPE: | 
|  | Map::BodyDescriptor::IterateBody(this, v); | 
|  | break; | 
|  | case CODE_TYPE: | 
|  | reinterpret_cast<Code*>(this)->CodeIterateBody(v); | 
|  | break; | 
|  | case JS_GLOBAL_PROPERTY_CELL_TYPE: | 
|  | JSGlobalPropertyCell::BodyDescriptor::IterateBody(this, v); | 
|  | break; | 
|  | case HEAP_NUMBER_TYPE: | 
|  | case FILLER_TYPE: | 
|  | case BYTE_ARRAY_TYPE: | 
|  | case PIXEL_ARRAY_TYPE: | 
|  | case EXTERNAL_BYTE_ARRAY_TYPE: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: | 
|  | case EXTERNAL_SHORT_ARRAY_TYPE: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: | 
|  | case EXTERNAL_INT_ARRAY_TYPE: | 
|  | case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: | 
|  | case EXTERNAL_FLOAT_ARRAY_TYPE: | 
|  | break; | 
|  | case SHARED_FUNCTION_INFO_TYPE: | 
|  | SharedFunctionInfo::BodyDescriptor::IterateBody(this, v); | 
|  | break; | 
|  |  | 
|  | #define MAKE_STRUCT_CASE(NAME, Name, name) \ | 
|  | case NAME##_TYPE: | 
|  | STRUCT_LIST(MAKE_STRUCT_CASE) | 
|  | #undef MAKE_STRUCT_CASE | 
|  | StructBodyDescriptor::IterateBody(this, object_size, v); | 
|  | break; | 
|  | default: | 
|  | PrintF("Unknown type: %d\n", type); | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* HeapNumber::HeapNumberToBoolean() { | 
|  | // NaN, +0, and -0 should return the false object | 
|  | #if __BYTE_ORDER == __LITTLE_ENDIAN | 
|  | union IeeeDoubleLittleEndianArchType u; | 
|  | #elif __BYTE_ORDER == __BIG_ENDIAN | 
|  | union IeeeDoubleBigEndianArchType u; | 
|  | #endif | 
|  | u.d = value(); | 
|  | if (u.bits.exp == 2047) { | 
|  | // Detect NaN for IEEE double precision floating point. | 
|  | if ((u.bits.man_low | u.bits.man_high) != 0) | 
|  | return Heap::false_value(); | 
|  | } | 
|  | if (u.bits.exp == 0) { | 
|  | // Detect +0, and -0 for IEEE double precision floating point. | 
|  | if ((u.bits.man_low | u.bits.man_high) == 0) | 
|  | return Heap::false_value(); | 
|  | } | 
|  | return Heap::true_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void HeapNumber::HeapNumberPrint() { | 
|  | PrintF("%.16g", Number()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void HeapNumber::HeapNumberPrint(StringStream* accumulator) { | 
|  | // The Windows version of vsnprintf can allocate when printing a %g string | 
|  | // into a buffer that may not be big enough.  We don't want random memory | 
|  | // allocation when producing post-crash stack traces, so we print into a | 
|  | // buffer that is plenty big enough for any floating point number, then | 
|  | // print that using vsnprintf (which may truncate but never allocate if | 
|  | // there is no more space in the buffer). | 
|  | EmbeddedVector<char, 100> buffer; | 
|  | OS::SNPrintF(buffer, "%.16g", Number()); | 
|  | accumulator->Add("%s", buffer.start()); | 
|  | } | 
|  |  | 
|  |  | 
|  | String* JSObject::class_name() { | 
|  | if (IsJSFunction()) { | 
|  | return Heap::function_class_symbol(); | 
|  | } | 
|  | if (map()->constructor()->IsJSFunction()) { | 
|  | JSFunction* constructor = JSFunction::cast(map()->constructor()); | 
|  | return String::cast(constructor->shared()->instance_class_name()); | 
|  | } | 
|  | // If the constructor is not present, return "Object". | 
|  | return Heap::Object_symbol(); | 
|  | } | 
|  |  | 
|  |  | 
|  | String* JSObject::constructor_name() { | 
|  | if (IsJSFunction()) { | 
|  | return Heap::closure_symbol(); | 
|  | } | 
|  | if (map()->constructor()->IsJSFunction()) { | 
|  | JSFunction* constructor = JSFunction::cast(map()->constructor()); | 
|  | String* name = String::cast(constructor->shared()->name()); | 
|  | if (name->length() > 0) return name; | 
|  | String* inferred_name = constructor->shared()->inferred_name(); | 
|  | if (inferred_name->length() > 0) return inferred_name; | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name(); | 
|  | } | 
|  | // If the constructor is not present, return "Object". | 
|  | return Heap::Object_symbol(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::AddFastPropertyUsingMap(Map* new_map, | 
|  | String* name, | 
|  | Object* value) { | 
|  | int index = new_map->PropertyIndexFor(name); | 
|  | if (map()->unused_property_fields() == 0) { | 
|  | ASSERT(map()->unused_property_fields() == 0); | 
|  | int new_unused = new_map->unused_property_fields(); | 
|  | Object* values = | 
|  | properties()->CopySize(properties()->length() + new_unused + 1); | 
|  | if (values->IsFailure()) return values; | 
|  | set_properties(FixedArray::cast(values)); | 
|  | } | 
|  | set_map(new_map); | 
|  | return FastPropertyAtPut(index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::AddFastProperty(String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | // Normalize the object if the name is an actual string (not the | 
|  | // hidden symbols) and is not a real identifier. | 
|  | StringInputBuffer buffer(name); | 
|  | if (!Scanner::IsIdentifier(&buffer) && name != Heap::hidden_symbol()) { | 
|  | Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
|  | if (obj->IsFailure()) return obj; | 
|  | return AddSlowProperty(name, value, attributes); | 
|  | } | 
|  |  | 
|  | DescriptorArray* old_descriptors = map()->instance_descriptors(); | 
|  | // Compute the new index for new field. | 
|  | int index = map()->NextFreePropertyIndex(); | 
|  |  | 
|  | // Allocate new instance descriptors with (name, index) added | 
|  | FieldDescriptor new_field(name, index, attributes); | 
|  | Object* new_descriptors = | 
|  | old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS); | 
|  | if (new_descriptors->IsFailure()) return new_descriptors; | 
|  |  | 
|  | // Only allow map transition if the object's map is NOT equal to the | 
|  | // global object_function's map and there is not a transition for name. | 
|  | bool allow_map_transition = | 
|  | !old_descriptors->Contains(name) && | 
|  | (Top::context()->global_context()->object_function()->map() != map()); | 
|  |  | 
|  | ASSERT(index < map()->inobject_properties() || | 
|  | (index - map()->inobject_properties()) < properties()->length() || | 
|  | map()->unused_property_fields() == 0); | 
|  | // Allocate a new map for the object. | 
|  | Object* r = map()->CopyDropDescriptors(); | 
|  | if (r->IsFailure()) return r; | 
|  | Map* new_map = Map::cast(r); | 
|  | if (allow_map_transition) { | 
|  | // Allocate new instance descriptors for the old map with map transition. | 
|  | MapTransitionDescriptor d(name, Map::cast(new_map), attributes); | 
|  | Object* r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS); | 
|  | if (r->IsFailure()) return r; | 
|  | old_descriptors = DescriptorArray::cast(r); | 
|  | } | 
|  |  | 
|  | if (map()->unused_property_fields() == 0) { | 
|  | if (properties()->length() > MaxFastProperties()) { | 
|  | Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
|  | if (obj->IsFailure()) return obj; | 
|  | return AddSlowProperty(name, value, attributes); | 
|  | } | 
|  | // Make room for the new value | 
|  | Object* values = | 
|  | properties()->CopySize(properties()->length() + kFieldsAdded); | 
|  | if (values->IsFailure()) return values; | 
|  | set_properties(FixedArray::cast(values)); | 
|  | new_map->set_unused_property_fields(kFieldsAdded - 1); | 
|  | } else { | 
|  | new_map->set_unused_property_fields(map()->unused_property_fields() - 1); | 
|  | } | 
|  | // We have now allocated all the necessary objects. | 
|  | // All the changes can be applied at once, so they are atomic. | 
|  | map()->set_instance_descriptors(old_descriptors); | 
|  | new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); | 
|  | set_map(new_map); | 
|  | return FastPropertyAtPut(index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::AddConstantFunctionProperty(String* name, | 
|  | JSFunction* function, | 
|  | PropertyAttributes attributes) { | 
|  | ASSERT(!Heap::InNewSpace(function)); | 
|  |  | 
|  | // Allocate new instance descriptors with (name, function) added | 
|  | ConstantFunctionDescriptor d(name, function, attributes); | 
|  | Object* new_descriptors = | 
|  | map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS); | 
|  | if (new_descriptors->IsFailure()) return new_descriptors; | 
|  |  | 
|  | // Allocate a new map for the object. | 
|  | Object* new_map = map()->CopyDropDescriptors(); | 
|  | if (new_map->IsFailure()) return new_map; | 
|  |  | 
|  | DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors); | 
|  | Map::cast(new_map)->set_instance_descriptors(descriptors); | 
|  | Map* old_map = map(); | 
|  | set_map(Map::cast(new_map)); | 
|  |  | 
|  | // If the old map is the global object map (from new Object()), | 
|  | // then transitions are not added to it, so we are done. | 
|  | if (old_map == Top::context()->global_context()->object_function()->map()) { | 
|  | return function; | 
|  | } | 
|  |  | 
|  | // Do not add CONSTANT_TRANSITIONS to global objects | 
|  | if (IsGlobalObject()) { | 
|  | return function; | 
|  | } | 
|  |  | 
|  | // Add a CONSTANT_TRANSITION descriptor to the old map, | 
|  | // so future assignments to this property on other objects | 
|  | // of the same type will create a normal field, not a constant function. | 
|  | // Don't do this for special properties, with non-trival attributes. | 
|  | if (attributes != NONE) { | 
|  | return function; | 
|  | } | 
|  | ConstTransitionDescriptor mark(name, Map::cast(new_map)); | 
|  | new_descriptors = | 
|  | old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS); | 
|  | if (new_descriptors->IsFailure()) { | 
|  | return function;  // We have accomplished the main goal, so return success. | 
|  | } | 
|  | old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); | 
|  |  | 
|  | return function; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Add property in slow mode | 
|  | Object* JSObject::AddSlowProperty(String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | ASSERT(!HasFastProperties()); | 
|  | StringDictionary* dict = property_dictionary(); | 
|  | Object* store_value = value; | 
|  | if (IsGlobalObject()) { | 
|  | // In case name is an orphaned property reuse the cell. | 
|  | int entry = dict->FindEntry(name); | 
|  | if (entry != StringDictionary::kNotFound) { | 
|  | store_value = dict->ValueAt(entry); | 
|  | JSGlobalPropertyCell::cast(store_value)->set_value(value); | 
|  | // Assign an enumeration index to the property and update | 
|  | // SetNextEnumerationIndex. | 
|  | int index = dict->NextEnumerationIndex(); | 
|  | PropertyDetails details = PropertyDetails(attributes, NORMAL, index); | 
|  | dict->SetNextEnumerationIndex(index + 1); | 
|  | dict->SetEntry(entry, name, store_value, details); | 
|  | return value; | 
|  | } | 
|  | store_value = Heap::AllocateJSGlobalPropertyCell(value); | 
|  | if (store_value->IsFailure()) return store_value; | 
|  | JSGlobalPropertyCell::cast(store_value)->set_value(value); | 
|  | } | 
|  | PropertyDetails details = PropertyDetails(attributes, NORMAL); | 
|  | Object* result = dict->Add(name, store_value, details); | 
|  | if (result->IsFailure()) return result; | 
|  | if (dict != result) set_properties(StringDictionary::cast(result)); | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::AddProperty(String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | ASSERT(!IsJSGlobalProxy()); | 
|  | if (!map()->is_extensible()) { | 
|  | Handle<Object> args[1] = {Handle<String>(name)}; | 
|  | return Top::Throw(*Factory::NewTypeError("object_not_extensible", | 
|  | HandleVector(args, 1))); | 
|  | } | 
|  | if (HasFastProperties()) { | 
|  | // Ensure the descriptor array does not get too big. | 
|  | if (map()->instance_descriptors()->number_of_descriptors() < | 
|  | DescriptorArray::kMaxNumberOfDescriptors) { | 
|  | if (value->IsJSFunction() && !Heap::InNewSpace(value)) { | 
|  | return AddConstantFunctionProperty(name, | 
|  | JSFunction::cast(value), | 
|  | attributes); | 
|  | } else { | 
|  | return AddFastProperty(name, value, attributes); | 
|  | } | 
|  | } else { | 
|  | // Normalize the object to prevent very large instance descriptors. | 
|  | // This eliminates unwanted N^2 allocation and lookup behavior. | 
|  | Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
|  | if (obj->IsFailure()) return obj; | 
|  | } | 
|  | } | 
|  | return AddSlowProperty(name, value, attributes); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetPropertyPostInterceptor(String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | // Check local property, ignore interceptor. | 
|  | LookupResult result; | 
|  | LocalLookupRealNamedProperty(name, &result); | 
|  | if (result.IsFound()) { | 
|  | // An existing property, a map transition or a null descriptor was | 
|  | // found.  Use set property to handle all these cases. | 
|  | return SetProperty(&result, name, value, attributes); | 
|  | } | 
|  | // Add a new real property. | 
|  | return AddProperty(name, value, attributes); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::ReplaceSlowProperty(String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | StringDictionary* dictionary = property_dictionary(); | 
|  | int old_index = dictionary->FindEntry(name); | 
|  | int new_enumeration_index = 0;  // 0 means "Use the next available index." | 
|  | if (old_index != -1) { | 
|  | // All calls to ReplaceSlowProperty have had all transitions removed. | 
|  | ASSERT(!dictionary->DetailsAt(old_index).IsTransition()); | 
|  | new_enumeration_index = dictionary->DetailsAt(old_index).index(); | 
|  | } | 
|  |  | 
|  | PropertyDetails new_details(attributes, NORMAL, new_enumeration_index); | 
|  | return SetNormalizedProperty(name, value, new_details); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::ConvertDescriptorToFieldAndMapTransition( | 
|  | String* name, | 
|  | Object* new_value, | 
|  | PropertyAttributes attributes) { | 
|  | Map* old_map = map(); | 
|  | Object* result = ConvertDescriptorToField(name, new_value, attributes); | 
|  | if (result->IsFailure()) return result; | 
|  | // If we get to this point we have succeeded - do not return failure | 
|  | // after this point.  Later stuff is optional. | 
|  | if (!HasFastProperties()) { | 
|  | return result; | 
|  | } | 
|  | // Do not add transitions to the map of "new Object()". | 
|  | if (map() == Top::context()->global_context()->object_function()->map()) { | 
|  | return result; | 
|  | } | 
|  |  | 
|  | MapTransitionDescriptor transition(name, | 
|  | map(), | 
|  | attributes); | 
|  | Object* new_descriptors = | 
|  | old_map->instance_descriptors()-> | 
|  | CopyInsert(&transition, KEEP_TRANSITIONS); | 
|  | if (new_descriptors->IsFailure()) return result;  // Yes, return _result_. | 
|  | old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::ConvertDescriptorToField(String* name, | 
|  | Object* new_value, | 
|  | PropertyAttributes attributes) { | 
|  | if (map()->unused_property_fields() == 0 && | 
|  | properties()->length() > MaxFastProperties()) { | 
|  | Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
|  | if (obj->IsFailure()) return obj; | 
|  | return ReplaceSlowProperty(name, new_value, attributes); | 
|  | } | 
|  |  | 
|  | int index = map()->NextFreePropertyIndex(); | 
|  | FieldDescriptor new_field(name, index, attributes); | 
|  | // Make a new DescriptorArray replacing an entry with FieldDescriptor. | 
|  | Object* descriptors_unchecked = map()->instance_descriptors()-> | 
|  | CopyInsert(&new_field, REMOVE_TRANSITIONS); | 
|  | if (descriptors_unchecked->IsFailure()) return descriptors_unchecked; | 
|  | DescriptorArray* new_descriptors = | 
|  | DescriptorArray::cast(descriptors_unchecked); | 
|  |  | 
|  | // Make a new map for the object. | 
|  | Object* new_map_unchecked = map()->CopyDropDescriptors(); | 
|  | if (new_map_unchecked->IsFailure()) return new_map_unchecked; | 
|  | Map* new_map = Map::cast(new_map_unchecked); | 
|  | new_map->set_instance_descriptors(new_descriptors); | 
|  |  | 
|  | // Make new properties array if necessary. | 
|  | FixedArray* new_properties = 0;  // Will always be NULL or a valid pointer. | 
|  | int new_unused_property_fields = map()->unused_property_fields() - 1; | 
|  | if (map()->unused_property_fields() == 0) { | 
|  | new_unused_property_fields = kFieldsAdded - 1; | 
|  | Object* new_properties_unchecked = | 
|  | properties()->CopySize(properties()->length() + kFieldsAdded); | 
|  | if (new_properties_unchecked->IsFailure()) return new_properties_unchecked; | 
|  | new_properties = FixedArray::cast(new_properties_unchecked); | 
|  | } | 
|  |  | 
|  | // Update pointers to commit changes. | 
|  | // Object points to the new map. | 
|  | new_map->set_unused_property_fields(new_unused_property_fields); | 
|  | set_map(new_map); | 
|  | if (new_properties) { | 
|  | set_properties(FixedArray::cast(new_properties)); | 
|  | } | 
|  | return FastPropertyAtPut(index, new_value); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetPropertyWithInterceptor(String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | HandleScope scope; | 
|  | Handle<JSObject> this_handle(this); | 
|  | Handle<String> name_handle(name); | 
|  | Handle<Object> value_handle(value); | 
|  | Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); | 
|  | if (!interceptor->setter()->IsUndefined()) { | 
|  | LOG(ApiNamedPropertyAccess("interceptor-named-set", this, name)); | 
|  | CustomArguments args(interceptor->data(), this, this); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | v8::NamedPropertySetter setter = | 
|  | v8::ToCData<v8::NamedPropertySetter>(interceptor->setter()); | 
|  | v8::Handle<v8::Value> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | Handle<Object> value_unhole(value->IsTheHole() ? | 
|  | Heap::undefined_value() : | 
|  | value); | 
|  | result = setter(v8::Utils::ToLocal(name_handle), | 
|  | v8::Utils::ToLocal(value_unhole), | 
|  | info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (!result.IsEmpty()) return *value_handle; | 
|  | } | 
|  | Object* raw_result = this_handle->SetPropertyPostInterceptor(*name_handle, | 
|  | *value_handle, | 
|  | attributes); | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return raw_result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetProperty(String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | LookupResult result; | 
|  | LocalLookup(name, &result); | 
|  | return SetProperty(&result, name, value, attributes); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetPropertyWithCallback(Object* structure, | 
|  | String* name, | 
|  | Object* value, | 
|  | JSObject* holder) { | 
|  | HandleScope scope; | 
|  |  | 
|  | // We should never get here to initialize a const with the hole | 
|  | // value since a const declaration would conflict with the setter. | 
|  | ASSERT(!value->IsTheHole()); | 
|  | Handle<Object> value_handle(value); | 
|  |  | 
|  | // To accommodate both the old and the new api we switch on the | 
|  | // data structure used to store the callbacks.  Eventually proxy | 
|  | // callbacks should be phased out. | 
|  | if (structure->IsProxy()) { | 
|  | AccessorDescriptor* callback = | 
|  | reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy()); | 
|  | Object* obj = (callback->setter)(this,  value, callback->data); | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | return *value_handle; | 
|  | } | 
|  |  | 
|  | if (structure->IsAccessorInfo()) { | 
|  | // api style callbacks | 
|  | AccessorInfo* data = AccessorInfo::cast(structure); | 
|  | Object* call_obj = data->setter(); | 
|  | v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj); | 
|  | if (call_fun == NULL) return value; | 
|  | Handle<String> key(name); | 
|  | LOG(ApiNamedPropertyAccess("store", this, name)); | 
|  | CustomArguments args(data->data(), this, JSObject::cast(holder)); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | call_fun(v8::Utils::ToLocal(key), | 
|  | v8::Utils::ToLocal(value_handle), | 
|  | info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return *value_handle; | 
|  | } | 
|  |  | 
|  | if (structure->IsFixedArray()) { | 
|  | Object* setter = FixedArray::cast(structure)->get(kSetterIndex); | 
|  | if (setter->IsJSFunction()) { | 
|  | return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value); | 
|  | } else { | 
|  | Handle<String> key(name); | 
|  | Handle<Object> holder_handle(holder); | 
|  | Handle<Object> args[2] = { key, holder_handle }; | 
|  | return Top::Throw(*Factory::NewTypeError("no_setter_in_callback", | 
|  | HandleVector(args, 2))); | 
|  | } | 
|  | } | 
|  |  | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetPropertyWithDefinedSetter(JSFunction* setter, | 
|  | Object* value) { | 
|  | Handle<Object> value_handle(value); | 
|  | Handle<JSFunction> fun(JSFunction::cast(setter)); | 
|  | Handle<JSObject> self(this); | 
|  | #ifdef ENABLE_DEBUGGER_SUPPORT | 
|  | // Handle stepping into a setter if step into is active. | 
|  | if (Debug::StepInActive()) { | 
|  | Debug::HandleStepIn(fun, Handle<Object>::null(), 0, false); | 
|  | } | 
|  | #endif | 
|  | bool has_pending_exception; | 
|  | Object** argv[] = { value_handle.location() }; | 
|  | Execution::Call(fun, self, 1, argv, &has_pending_exception); | 
|  | // Check for pending exception and return the result. | 
|  | if (has_pending_exception) return Failure::Exception(); | 
|  | return *value_handle; | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSObject::LookupCallbackSetterInPrototypes(String* name, | 
|  | LookupResult* result) { | 
|  | for (Object* pt = GetPrototype(); | 
|  | pt != Heap::null_value(); | 
|  | pt = pt->GetPrototype()) { | 
|  | JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); | 
|  | if (result->IsProperty()) { | 
|  | if (result->IsReadOnly()) { | 
|  | result->NotFound(); | 
|  | return; | 
|  | } | 
|  | if (result->type() == CALLBACKS) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | result->NotFound(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::SetElementWithCallbackSetterInPrototypes(uint32_t index, | 
|  | Object* value) { | 
|  | for (Object* pt = GetPrototype(); | 
|  | pt != Heap::null_value(); | 
|  | pt = pt->GetPrototype()) { | 
|  | if (!JSObject::cast(pt)->HasDictionaryElements()) { | 
|  | continue; | 
|  | } | 
|  | NumberDictionary* dictionary = JSObject::cast(pt)->element_dictionary(); | 
|  | int entry = dictionary->FindEntry(index); | 
|  | if (entry != NumberDictionary::kNotFound) { | 
|  | Object* element = dictionary->ValueAt(entry); | 
|  | PropertyDetails details = dictionary->DetailsAt(entry); | 
|  | if (details.type() == CALLBACKS) { | 
|  | SetElementWithCallback(element, index, value, JSObject::cast(pt)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSObject::LookupInDescriptor(String* name, LookupResult* result) { | 
|  | DescriptorArray* descriptors = map()->instance_descriptors(); | 
|  | int number = descriptors->SearchWithCache(name); | 
|  | if (number != DescriptorArray::kNotFound) { | 
|  | result->DescriptorResult(this, descriptors->GetDetails(number), number); | 
|  | } else { | 
|  | result->NotFound(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSObject::LocalLookupRealNamedProperty(String* name, | 
|  | LookupResult* result) { | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return result->NotFound(); | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result); | 
|  | } | 
|  |  | 
|  | if (HasFastProperties()) { | 
|  | LookupInDescriptor(name, result); | 
|  | if (result->IsFound()) { | 
|  | // A property, a map transition or a null descriptor was found. | 
|  | // We return all of these result types because | 
|  | // LocalLookupRealNamedProperty is used when setting properties | 
|  | // where map transitions and null descriptors are handled. | 
|  | ASSERT(result->holder() == this && result->type() != NORMAL); | 
|  | // Disallow caching for uninitialized constants. These can only | 
|  | // occur as fields. | 
|  | if (result->IsReadOnly() && result->type() == FIELD && | 
|  | FastPropertyAt(result->GetFieldIndex())->IsTheHole()) { | 
|  | result->DisallowCaching(); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | int entry = property_dictionary()->FindEntry(name); | 
|  | if (entry != StringDictionary::kNotFound) { | 
|  | Object* value = property_dictionary()->ValueAt(entry); | 
|  | if (IsGlobalObject()) { | 
|  | PropertyDetails d = property_dictionary()->DetailsAt(entry); | 
|  | if (d.IsDeleted()) { | 
|  | result->NotFound(); | 
|  | return; | 
|  | } | 
|  | value = JSGlobalPropertyCell::cast(value)->value(); | 
|  | } | 
|  | // Make sure to disallow caching for uninitialized constants | 
|  | // found in the dictionary-mode objects. | 
|  | if (value->IsTheHole()) result->DisallowCaching(); | 
|  | result->DictionaryResult(this, entry); | 
|  | return; | 
|  | } | 
|  | } | 
|  | result->NotFound(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) { | 
|  | LocalLookupRealNamedProperty(name, result); | 
|  | if (result->IsProperty()) return; | 
|  |  | 
|  | LookupRealNamedPropertyInPrototypes(name, result); | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSObject::LookupRealNamedPropertyInPrototypes(String* name, | 
|  | LookupResult* result) { | 
|  | for (Object* pt = GetPrototype(); | 
|  | pt != Heap::null_value(); | 
|  | pt = JSObject::cast(pt)->GetPrototype()) { | 
|  | JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); | 
|  | if (result->IsProperty() && (result->type() != INTERCEPTOR)) return; | 
|  | } | 
|  | result->NotFound(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // We only need to deal with CALLBACKS and INTERCEPTORS | 
|  | Object* JSObject::SetPropertyWithFailedAccessCheck(LookupResult* result, | 
|  | String* name, | 
|  | Object* value) { | 
|  | if (!result->IsProperty()) { | 
|  | LookupCallbackSetterInPrototypes(name, result); | 
|  | } | 
|  |  | 
|  | if (result->IsProperty()) { | 
|  | if (!result->IsReadOnly()) { | 
|  | switch (result->type()) { | 
|  | case CALLBACKS: { | 
|  | Object* obj = result->GetCallbackObject(); | 
|  | if (obj->IsAccessorInfo()) { | 
|  | AccessorInfo* info = AccessorInfo::cast(obj); | 
|  | if (info->all_can_write()) { | 
|  | return SetPropertyWithCallback(result->GetCallbackObject(), | 
|  | name, | 
|  | value, | 
|  | result->holder()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case INTERCEPTOR: { | 
|  | // Try lookup real named properties. Note that only property can be | 
|  | // set is callbacks marked as ALL_CAN_WRITE on the prototype chain. | 
|  | LookupResult r; | 
|  | LookupRealNamedProperty(name, &r); | 
|  | if (r.IsProperty()) { | 
|  | return SetPropertyWithFailedAccessCheck(&r, name, value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | HandleScope scope; | 
|  | Handle<Object> value_handle(value); | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_SET); | 
|  | return *value_handle; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetProperty(LookupResult* result, | 
|  | String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | // Make sure that the top context does not change when doing callbacks or | 
|  | // interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  |  | 
|  | // Optimization for 2-byte strings often used as keys in a decompression | 
|  | // dictionary.  We make these short keys into symbols to avoid constantly | 
|  | // reallocating them. | 
|  | if (!name->IsSymbol() && name->length() <= 2) { | 
|  | Object* symbol_version = Heap::LookupSymbol(name); | 
|  | if (!symbol_version->IsFailure()) name = String::cast(symbol_version); | 
|  | } | 
|  |  | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() | 
|  | && !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) { | 
|  | return SetPropertyWithFailedAccessCheck(result, name, value); | 
|  | } | 
|  |  | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return value; | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSObject::cast(proto)->SetProperty(result, name, value, attributes); | 
|  | } | 
|  |  | 
|  | if (!result->IsProperty() && !IsJSContextExtensionObject()) { | 
|  | // We could not find a local property so let's check whether there is an | 
|  | // accessor that wants to handle the property. | 
|  | LookupResult accessor_result; | 
|  | LookupCallbackSetterInPrototypes(name, &accessor_result); | 
|  | if (accessor_result.IsProperty()) { | 
|  | return SetPropertyWithCallback(accessor_result.GetCallbackObject(), | 
|  | name, | 
|  | value, | 
|  | accessor_result.holder()); | 
|  | } | 
|  | } | 
|  | if (!result->IsFound()) { | 
|  | // Neither properties nor transitions found. | 
|  | return AddProperty(name, value, attributes); | 
|  | } | 
|  | if (result->IsReadOnly() && result->IsProperty()) return value; | 
|  | // This is a real property that is not read-only, or it is a | 
|  | // transition or null descriptor and there are no setters in the prototypes. | 
|  | switch (result->type()) { | 
|  | case NORMAL: | 
|  | return SetNormalizedProperty(result, value); | 
|  | case FIELD: | 
|  | return FastPropertyAtPut(result->GetFieldIndex(), value); | 
|  | case MAP_TRANSITION: | 
|  | if (attributes == result->GetAttributes()) { | 
|  | // Only use map transition if the attributes match. | 
|  | return AddFastPropertyUsingMap(result->GetTransitionMap(), | 
|  | name, | 
|  | value); | 
|  | } | 
|  | return ConvertDescriptorToField(name, value, attributes); | 
|  | case CONSTANT_FUNCTION: | 
|  | // Only replace the function if necessary. | 
|  | if (value == result->GetConstantFunction()) return value; | 
|  | // Preserve the attributes of this existing property. | 
|  | attributes = result->GetAttributes(); | 
|  | return ConvertDescriptorToField(name, value, attributes); | 
|  | case CALLBACKS: | 
|  | return SetPropertyWithCallback(result->GetCallbackObject(), | 
|  | name, | 
|  | value, | 
|  | result->holder()); | 
|  | case INTERCEPTOR: | 
|  | return SetPropertyWithInterceptor(name, value, attributes); | 
|  | case CONSTANT_TRANSITION: { | 
|  | // If the same constant function is being added we can simply | 
|  | // transition to the target map. | 
|  | Map* target_map = result->GetTransitionMap(); | 
|  | DescriptorArray* target_descriptors = target_map->instance_descriptors(); | 
|  | int number = target_descriptors->SearchWithCache(name); | 
|  | ASSERT(number != DescriptorArray::kNotFound); | 
|  | ASSERT(target_descriptors->GetType(number) == CONSTANT_FUNCTION); | 
|  | JSFunction* function = | 
|  | JSFunction::cast(target_descriptors->GetValue(number)); | 
|  | ASSERT(!Heap::InNewSpace(function)); | 
|  | if (value == function) { | 
|  | set_map(target_map); | 
|  | return value; | 
|  | } | 
|  | // Otherwise, replace with a MAP_TRANSITION to a new map with a | 
|  | // FIELD, even if the value is a constant function. | 
|  | return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); | 
|  | } | 
|  | case NULL_DESCRIPTOR: | 
|  | return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Set a real local property, even if it is READ_ONLY.  If the property is not | 
|  | // present, add it with attributes NONE.  This code is an exact clone of | 
|  | // SetProperty, with the check for IsReadOnly and the check for a | 
|  | // callback setter removed.  The two lines looking up the LookupResult | 
|  | // result are also added.  If one of the functions is changed, the other | 
|  | // should be. | 
|  | Object* JSObject::IgnoreAttributesAndSetLocalProperty( | 
|  | String* name, | 
|  | Object* value, | 
|  | PropertyAttributes attributes) { | 
|  | // Make sure that the top context does not change when doing callbacks or | 
|  | // interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  | LookupResult result; | 
|  | LocalLookup(name, &result); | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() | 
|  | && !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) { | 
|  | return SetPropertyWithFailedAccessCheck(&result, name, value); | 
|  | } | 
|  |  | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return value; | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSObject::cast(proto)->IgnoreAttributesAndSetLocalProperty( | 
|  | name, | 
|  | value, | 
|  | attributes); | 
|  | } | 
|  |  | 
|  | // Check for accessor in prototype chain removed here in clone. | 
|  | if (!result.IsFound()) { | 
|  | // Neither properties nor transitions found. | 
|  | return AddProperty(name, value, attributes); | 
|  | } | 
|  |  | 
|  | PropertyDetails details = PropertyDetails(attributes, NORMAL); | 
|  |  | 
|  | // Check of IsReadOnly removed from here in clone. | 
|  | switch (result.type()) { | 
|  | case NORMAL: | 
|  | return SetNormalizedProperty(name, value, details); | 
|  | case FIELD: | 
|  | return FastPropertyAtPut(result.GetFieldIndex(), value); | 
|  | case MAP_TRANSITION: | 
|  | if (attributes == result.GetAttributes()) { | 
|  | // Only use map transition if the attributes match. | 
|  | return AddFastPropertyUsingMap(result.GetTransitionMap(), | 
|  | name, | 
|  | value); | 
|  | } | 
|  | return ConvertDescriptorToField(name, value, attributes); | 
|  | case CONSTANT_FUNCTION: | 
|  | // Only replace the function if necessary. | 
|  | if (value == result.GetConstantFunction()) return value; | 
|  | // Preserve the attributes of this existing property. | 
|  | attributes = result.GetAttributes(); | 
|  | return ConvertDescriptorToField(name, value, attributes); | 
|  | case CALLBACKS: | 
|  | case INTERCEPTOR: | 
|  | // Override callback in clone | 
|  | return ConvertDescriptorToField(name, value, attributes); | 
|  | case CONSTANT_TRANSITION: | 
|  | // Replace with a MAP_TRANSITION to a new map with a FIELD, even | 
|  | // if the value is a function. | 
|  | return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); | 
|  | case NULL_DESCRIPTOR: | 
|  | return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | PropertyAttributes JSObject::GetPropertyAttributePostInterceptor( | 
|  | JSObject* receiver, | 
|  | String* name, | 
|  | bool continue_search) { | 
|  | // Check local property, ignore interceptor. | 
|  | LookupResult result; | 
|  | LocalLookupRealNamedProperty(name, &result); | 
|  | if (result.IsProperty()) return result.GetAttributes(); | 
|  |  | 
|  | if (continue_search) { | 
|  | // Continue searching via the prototype chain. | 
|  | Object* pt = GetPrototype(); | 
|  | if (pt != Heap::null_value()) { | 
|  | return JSObject::cast(pt)-> | 
|  | GetPropertyAttributeWithReceiver(receiver, name); | 
|  | } | 
|  | } | 
|  | return ABSENT; | 
|  | } | 
|  |  | 
|  |  | 
|  | PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor( | 
|  | JSObject* receiver, | 
|  | String* name, | 
|  | bool continue_search) { | 
|  | // Make sure that the top context does not change when doing | 
|  | // callbacks or interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  |  | 
|  | HandleScope scope; | 
|  | Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); | 
|  | Handle<JSObject> receiver_handle(receiver); | 
|  | Handle<JSObject> holder_handle(this); | 
|  | Handle<String> name_handle(name); | 
|  | CustomArguments args(interceptor->data(), receiver, this); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | if (!interceptor->query()->IsUndefined()) { | 
|  | v8::NamedPropertyQuery query = | 
|  | v8::ToCData<v8::NamedPropertyQuery>(interceptor->query()); | 
|  | LOG(ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name)); | 
|  | v8::Handle<v8::Integer> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = query(v8::Utils::ToLocal(name_handle), info); | 
|  | } | 
|  | if (!result.IsEmpty()) { | 
|  | ASSERT(result->IsInt32()); | 
|  | return static_cast<PropertyAttributes>(result->Int32Value()); | 
|  | } | 
|  | } else if (!interceptor->getter()->IsUndefined()) { | 
|  | v8::NamedPropertyGetter getter = | 
|  | v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter()); | 
|  | LOG(ApiNamedPropertyAccess("interceptor-named-get-has", this, name)); | 
|  | v8::Handle<v8::Value> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = getter(v8::Utils::ToLocal(name_handle), info); | 
|  | } | 
|  | if (!result.IsEmpty()) return DONT_ENUM; | 
|  | } | 
|  | return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle, | 
|  | *name_handle, | 
|  | continue_search); | 
|  | } | 
|  |  | 
|  |  | 
|  | PropertyAttributes JSObject::GetPropertyAttributeWithReceiver( | 
|  | JSObject* receiver, | 
|  | String* key) { | 
|  | uint32_t index = 0; | 
|  | if (key->AsArrayIndex(&index)) { | 
|  | if (HasElementWithReceiver(receiver, index)) return NONE; | 
|  | return ABSENT; | 
|  | } | 
|  | // Named property. | 
|  | LookupResult result; | 
|  | Lookup(key, &result); | 
|  | return GetPropertyAttribute(receiver, &result, key, true); | 
|  | } | 
|  |  | 
|  |  | 
|  | PropertyAttributes JSObject::GetPropertyAttribute(JSObject* receiver, | 
|  | LookupResult* result, | 
|  | String* name, | 
|  | bool continue_search) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) { | 
|  | return GetPropertyAttributeWithFailedAccessCheck(receiver, | 
|  | result, | 
|  | name, | 
|  | continue_search); | 
|  | } | 
|  | if (result->IsProperty()) { | 
|  | switch (result->type()) { | 
|  | case NORMAL:  // fall through | 
|  | case FIELD: | 
|  | case CONSTANT_FUNCTION: | 
|  | case CALLBACKS: | 
|  | return result->GetAttributes(); | 
|  | case INTERCEPTOR: | 
|  | return result->holder()-> | 
|  | GetPropertyAttributeWithInterceptor(receiver, name, continue_search); | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | return ABSENT; | 
|  | } | 
|  |  | 
|  |  | 
|  | PropertyAttributes JSObject::GetLocalPropertyAttribute(String* name) { | 
|  | // Check whether the name is an array index. | 
|  | uint32_t index = 0; | 
|  | if (name->AsArrayIndex(&index)) { | 
|  | if (HasLocalElement(index)) return NONE; | 
|  | return ABSENT; | 
|  | } | 
|  | // Named property. | 
|  | LookupResult result; | 
|  | LocalLookup(name, &result); | 
|  | return GetPropertyAttribute(this, &result, name, false); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* NormalizedMapCache::Get(JSObject* obj, PropertyNormalizationMode mode) { | 
|  | Map* fast = obj->map(); | 
|  | int index = Hash(fast) % kEntries; | 
|  | Object* result = get(index); | 
|  | if (result->IsMap() && CheckHit(Map::cast(result), fast, mode)) { | 
|  | #ifdef DEBUG | 
|  | if (FLAG_enable_slow_asserts) { | 
|  | // The cached map should match newly created normalized map bit-by-bit. | 
|  | Object* fresh = fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); | 
|  | if (!fresh->IsFailure()) { | 
|  | ASSERT(memcmp(Map::cast(fresh)->address(), | 
|  | Map::cast(result)->address(), | 
|  | Map::kSize) == 0); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return result; | 
|  | } | 
|  |  | 
|  | result = fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); | 
|  | if (result->IsFailure()) return result; | 
|  | set(index, result); | 
|  | Counters::normalized_maps.Increment(); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | void NormalizedMapCache::Clear() { | 
|  | int entries = length(); | 
|  | for (int i = 0; i != entries; i++) { | 
|  | set_undefined(i); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int NormalizedMapCache::Hash(Map* fast) { | 
|  | // For performance reasons we only hash the 3 most variable fields of a map: | 
|  | // constructor, prototype and bit_field2. | 
|  |  | 
|  | // Shift away the tag. | 
|  | int hash = (static_cast<uint32_t>( | 
|  | reinterpret_cast<uintptr_t>(fast->constructor())) >> 2); | 
|  |  | 
|  | // XOR-ing the prototype and constructor directly yields too many zero bits | 
|  | // when the two pointers are close (which is fairly common). | 
|  | // To avoid this we shift the prototype 4 bits relatively to the constructor. | 
|  | hash ^= (static_cast<uint32_t>( | 
|  | reinterpret_cast<uintptr_t>(fast->prototype())) << 2); | 
|  |  | 
|  | return hash ^ (hash >> 16) ^ fast->bit_field2(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool NormalizedMapCache::CheckHit(Map* slow, | 
|  | Map* fast, | 
|  | PropertyNormalizationMode mode) { | 
|  | #ifdef DEBUG | 
|  | slow->SharedMapVerify(); | 
|  | #endif | 
|  | return | 
|  | slow->constructor() == fast->constructor() && | 
|  | slow->prototype() == fast->prototype() && | 
|  | slow->inobject_properties() == ((mode == CLEAR_INOBJECT_PROPERTIES) ? | 
|  | 0 : | 
|  | fast->inobject_properties()) && | 
|  | slow->instance_type() == fast->instance_type() && | 
|  | slow->bit_field() == fast->bit_field() && | 
|  | (slow->bit_field2() & ~(1<<Map::kIsShared)) == fast->bit_field2(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::UpdateMapCodeCache(String* name, Code* code) { | 
|  | if (map()->is_shared()) { | 
|  | // Fast case maps are never marked as shared. | 
|  | ASSERT(!HasFastProperties()); | 
|  | // Replace the map with an identical copy that can be safely modified. | 
|  | Object* obj = map()->CopyNormalized(KEEP_INOBJECT_PROPERTIES, | 
|  | UNIQUE_NORMALIZED_MAP); | 
|  | if (obj->IsFailure()) return obj; | 
|  | Counters::normalized_maps.Increment(); | 
|  |  | 
|  | set_map(Map::cast(obj)); | 
|  | } | 
|  | return map()->UpdateCodeCache(name, code); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::NormalizeProperties(PropertyNormalizationMode mode, | 
|  | int expected_additional_properties) { | 
|  | if (!HasFastProperties()) return this; | 
|  |  | 
|  | // The global object is always normalized. | 
|  | ASSERT(!IsGlobalObject()); | 
|  |  | 
|  | // Allocate new content. | 
|  | int property_count = map()->NumberOfDescribedProperties(); | 
|  | if (expected_additional_properties > 0) { | 
|  | property_count += expected_additional_properties; | 
|  | } else { | 
|  | property_count += 2;  // Make space for two more properties. | 
|  | } | 
|  | Object* obj = | 
|  | StringDictionary::Allocate(property_count); | 
|  | if (obj->IsFailure()) return obj; | 
|  | StringDictionary* dictionary = StringDictionary::cast(obj); | 
|  |  | 
|  | DescriptorArray* descs = map()->instance_descriptors(); | 
|  | for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
|  | PropertyDetails details = descs->GetDetails(i); | 
|  | switch (details.type()) { | 
|  | case CONSTANT_FUNCTION: { | 
|  | PropertyDetails d = | 
|  | PropertyDetails(details.attributes(), NORMAL, details.index()); | 
|  | Object* value = descs->GetConstantFunction(i); | 
|  | Object* result = dictionary->Add(descs->GetKey(i), value, d); | 
|  | if (result->IsFailure()) return result; | 
|  | dictionary = StringDictionary::cast(result); | 
|  | break; | 
|  | } | 
|  | case FIELD: { | 
|  | PropertyDetails d = | 
|  | PropertyDetails(details.attributes(), NORMAL, details.index()); | 
|  | Object* value = FastPropertyAt(descs->GetFieldIndex(i)); | 
|  | Object* result = dictionary->Add(descs->GetKey(i), value, d); | 
|  | if (result->IsFailure()) return result; | 
|  | dictionary = StringDictionary::cast(result); | 
|  | break; | 
|  | } | 
|  | case CALLBACKS: { | 
|  | PropertyDetails d = | 
|  | PropertyDetails(details.attributes(), CALLBACKS, details.index()); | 
|  | Object* value = descs->GetCallbacksObject(i); | 
|  | Object* result = dictionary->Add(descs->GetKey(i), value, d); | 
|  | if (result->IsFailure()) return result; | 
|  | dictionary = StringDictionary::cast(result); | 
|  | break; | 
|  | } | 
|  | case MAP_TRANSITION: | 
|  | case CONSTANT_TRANSITION: | 
|  | case NULL_DESCRIPTOR: | 
|  | case INTERCEPTOR: | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Copy the next enumeration index from instance descriptor. | 
|  | int index = map()->instance_descriptors()->NextEnumerationIndex(); | 
|  | dictionary->SetNextEnumerationIndex(index); | 
|  |  | 
|  | obj = Top::context()->global_context()-> | 
|  | normalized_map_cache()->Get(this, mode); | 
|  | if (obj->IsFailure()) return obj; | 
|  | Map* new_map = Map::cast(obj); | 
|  |  | 
|  | // We have now successfully allocated all the necessary objects. | 
|  | // Changes can now be made with the guarantee that all of them take effect. | 
|  |  | 
|  | // Resize the object in the heap if necessary. | 
|  | int new_instance_size = new_map->instance_size(); | 
|  | int instance_size_delta = map()->instance_size() - new_instance_size; | 
|  | ASSERT(instance_size_delta >= 0); | 
|  | Heap::CreateFillerObjectAt(this->address() + new_instance_size, | 
|  | instance_size_delta); | 
|  |  | 
|  | set_map(new_map); | 
|  |  | 
|  | set_properties(dictionary); | 
|  |  | 
|  | Counters::props_to_dictionary.Increment(); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (FLAG_trace_normalization) { | 
|  | PrintF("Object properties have been normalized:\n"); | 
|  | Print(); | 
|  | } | 
|  | #endif | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::TransformToFastProperties(int unused_property_fields) { | 
|  | if (HasFastProperties()) return this; | 
|  | ASSERT(!IsGlobalObject()); | 
|  | return property_dictionary()-> | 
|  | TransformPropertiesToFastFor(this, unused_property_fields); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::NormalizeElements() { | 
|  | ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
|  | if (HasDictionaryElements()) return this; | 
|  | ASSERT(map()->has_fast_elements()); | 
|  |  | 
|  | Object* obj = map()->GetSlowElementsMap(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | Map* new_map = Map::cast(obj); | 
|  |  | 
|  | // Get number of entries. | 
|  | FixedArray* array = FixedArray::cast(elements()); | 
|  |  | 
|  | // Compute the effective length. | 
|  | int length = IsJSArray() ? | 
|  | Smi::cast(JSArray::cast(this)->length())->value() : | 
|  | array->length(); | 
|  | obj = NumberDictionary::Allocate(length); | 
|  | if (obj->IsFailure()) return obj; | 
|  | NumberDictionary* dictionary = NumberDictionary::cast(obj); | 
|  | // Copy entries. | 
|  | for (int i = 0; i < length; i++) { | 
|  | Object* value = array->get(i); | 
|  | if (!value->IsTheHole()) { | 
|  | PropertyDetails details = PropertyDetails(NONE, NORMAL); | 
|  | Object* result = dictionary->AddNumberEntry(i, array->get(i), details); | 
|  | if (result->IsFailure()) return result; | 
|  | dictionary = NumberDictionary::cast(result); | 
|  | } | 
|  | } | 
|  | // Switch to using the dictionary as the backing storage for | 
|  | // elements. Set the new map first to satify the elements type | 
|  | // assert in set_elements(). | 
|  | set_map(new_map); | 
|  | set_elements(dictionary); | 
|  |  | 
|  | Counters::elements_to_dictionary.Increment(); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (FLAG_trace_normalization) { | 
|  | PrintF("Object elements have been normalized:\n"); | 
|  | Print(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DeletePropertyPostInterceptor(String* name, DeleteMode mode) { | 
|  | // Check local property, ignore interceptor. | 
|  | LookupResult result; | 
|  | LocalLookupRealNamedProperty(name, &result); | 
|  | if (!result.IsProperty()) return Heap::true_value(); | 
|  |  | 
|  | // Normalize object if needed. | 
|  | Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | return DeleteNormalizedProperty(name, mode); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DeletePropertyWithInterceptor(String* name) { | 
|  | HandleScope scope; | 
|  | Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); | 
|  | Handle<String> name_handle(name); | 
|  | Handle<JSObject> this_handle(this); | 
|  | if (!interceptor->deleter()->IsUndefined()) { | 
|  | v8::NamedPropertyDeleter deleter = | 
|  | v8::ToCData<v8::NamedPropertyDeleter>(interceptor->deleter()); | 
|  | LOG(ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name)); | 
|  | CustomArguments args(interceptor->data(), this, this); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | v8::Handle<v8::Boolean> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = deleter(v8::Utils::ToLocal(name_handle), info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (!result.IsEmpty()) { | 
|  | ASSERT(result->IsBoolean()); | 
|  | return *v8::Utils::OpenHandle(*result); | 
|  | } | 
|  | } | 
|  | Object* raw_result = | 
|  | this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION); | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return raw_result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DeleteElementPostInterceptor(uint32_t index, | 
|  | DeleteMode mode) { | 
|  | ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | Object* obj = EnsureWritableFastElements(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | uint32_t length = IsJSArray() ? | 
|  | static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) : | 
|  | static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
|  | if (index < length) { | 
|  | FixedArray::cast(elements())->set_the_hole(index); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | NumberDictionary* dictionary = element_dictionary(); | 
|  | int entry = dictionary->FindEntry(index); | 
|  | if (entry != NumberDictionary::kNotFound) { | 
|  | return dictionary->DeleteProperty(entry, mode); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | return Heap::true_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DeleteElementWithInterceptor(uint32_t index) { | 
|  | // Make sure that the top context does not change when doing | 
|  | // callbacks or interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  | HandleScope scope; | 
|  | Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); | 
|  | if (interceptor->deleter()->IsUndefined()) return Heap::false_value(); | 
|  | v8::IndexedPropertyDeleter deleter = | 
|  | v8::ToCData<v8::IndexedPropertyDeleter>(interceptor->deleter()); | 
|  | Handle<JSObject> this_handle(this); | 
|  | LOG(ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index)); | 
|  | CustomArguments args(interceptor->data(), this, this); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | v8::Handle<v8::Boolean> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = deleter(index, info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (!result.IsEmpty()) { | 
|  | ASSERT(result->IsBoolean()); | 
|  | return *v8::Utils::OpenHandle(*result); | 
|  | } | 
|  | Object* raw_result = | 
|  | this_handle->DeleteElementPostInterceptor(index, NORMAL_DELETION); | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return raw_result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DeleteElement(uint32_t index, DeleteMode mode) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayIndexedAccess(this, index, v8::ACCESS_DELETE)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_DELETE); | 
|  | return Heap::false_value(); | 
|  | } | 
|  |  | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return Heap::false_value(); | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSGlobalObject::cast(proto)->DeleteElement(index, mode); | 
|  | } | 
|  |  | 
|  | if (HasIndexedInterceptor()) { | 
|  | // Skip interceptor if forcing deletion. | 
|  | if (mode == FORCE_DELETION) { | 
|  | return DeleteElementPostInterceptor(index, mode); | 
|  | } | 
|  | return DeleteElementWithInterceptor(index); | 
|  | } | 
|  |  | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | Object* obj = EnsureWritableFastElements(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | uint32_t length = IsJSArray() ? | 
|  | static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) : | 
|  | static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
|  | if (index < length) { | 
|  | FixedArray::cast(elements())->set_the_hole(index); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PIXEL_ELEMENTS: | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: | 
|  | // Pixel and external array elements cannot be deleted. Just | 
|  | // silently ignore here. | 
|  | break; | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | NumberDictionary* dictionary = element_dictionary(); | 
|  | int entry = dictionary->FindEntry(index); | 
|  | if (entry != NumberDictionary::kNotFound) { | 
|  | return dictionary->DeleteProperty(entry, mode); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | return Heap::true_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DeleteProperty(String* name, DeleteMode mode) { | 
|  | // ECMA-262, 3rd, 8.6.2.5 | 
|  | ASSERT(name->IsString()); | 
|  |  | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayNamedAccess(this, name, v8::ACCESS_DELETE)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_DELETE); | 
|  | return Heap::false_value(); | 
|  | } | 
|  |  | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return Heap::false_value(); | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSGlobalObject::cast(proto)->DeleteProperty(name, mode); | 
|  | } | 
|  |  | 
|  | uint32_t index = 0; | 
|  | if (name->AsArrayIndex(&index)) { | 
|  | return DeleteElement(index, mode); | 
|  | } else { | 
|  | LookupResult result; | 
|  | LocalLookup(name, &result); | 
|  | if (!result.IsProperty()) return Heap::true_value(); | 
|  | // Ignore attributes if forcing a deletion. | 
|  | if (result.IsDontDelete() && mode != FORCE_DELETION) { | 
|  | return Heap::false_value(); | 
|  | } | 
|  | // Check for interceptor. | 
|  | if (result.type() == INTERCEPTOR) { | 
|  | // Skip interceptor if forcing a deletion. | 
|  | if (mode == FORCE_DELETION) { | 
|  | return DeletePropertyPostInterceptor(name, mode); | 
|  | } | 
|  | return DeletePropertyWithInterceptor(name); | 
|  | } | 
|  | // Normalize object if needed. | 
|  | Object* obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
|  | if (obj->IsFailure()) return obj; | 
|  | // Make sure the properties are normalized before removing the entry. | 
|  | return DeleteNormalizedProperty(name, mode); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Check whether this object references another object. | 
|  | bool JSObject::ReferencesObject(Object* obj) { | 
|  | AssertNoAllocation no_alloc; | 
|  |  | 
|  | // Is the object the constructor for this object? | 
|  | if (map()->constructor() == obj) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Is the object the prototype for this object? | 
|  | if (map()->prototype() == obj) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if the object is among the named properties. | 
|  | Object* key = SlowReverseLookup(obj); | 
|  | if (key != Heap::undefined_value()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if the object is among the indexed properties. | 
|  | switch (GetElementsKind()) { | 
|  | case PIXEL_ELEMENTS: | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: | 
|  | // Raw pixels and external arrays do not reference other | 
|  | // objects. | 
|  | break; | 
|  | case FAST_ELEMENTS: { | 
|  | int length = IsJSArray() ? | 
|  | Smi::cast(JSArray::cast(this)->length())->value() : | 
|  | FixedArray::cast(elements())->length(); | 
|  | for (int i = 0; i < length; i++) { | 
|  | Object* element = FixedArray::cast(elements())->get(i); | 
|  | if (!element->IsTheHole() && element == obj) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | key = element_dictionary()->SlowReverseLookup(obj); | 
|  | if (key != Heap::undefined_value()) { | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // For functions check the context. | 
|  | if (IsJSFunction()) { | 
|  | // Get the constructor function for arguments array. | 
|  | JSObject* arguments_boilerplate = | 
|  | Top::context()->global_context()->arguments_boilerplate(); | 
|  | JSFunction* arguments_function = | 
|  | JSFunction::cast(arguments_boilerplate->map()->constructor()); | 
|  |  | 
|  | // Get the context and don't check if it is the global context. | 
|  | JSFunction* f = JSFunction::cast(this); | 
|  | Context* context = f->context(); | 
|  | if (context->IsGlobalContext()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check the non-special context slots. | 
|  | for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { | 
|  | // Only check JS objects. | 
|  | if (context->get(i)->IsJSObject()) { | 
|  | JSObject* ctxobj = JSObject::cast(context->get(i)); | 
|  | // If it is an arguments array check the content. | 
|  | if (ctxobj->map()->constructor() == arguments_function) { | 
|  | if (ctxobj->ReferencesObject(obj)) { | 
|  | return true; | 
|  | } | 
|  | } else if (ctxobj == obj) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the context extension if any. | 
|  | if (context->has_extension()) { | 
|  | return context->extension()->ReferencesObject(obj); | 
|  | } | 
|  | } | 
|  |  | 
|  | // No references to object. | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::PreventExtensions() { | 
|  | // If there are fast elements we normalize. | 
|  | if (HasFastElements()) { | 
|  | Object* ok = NormalizeElements(); | 
|  | if (ok->IsFailure()) return ok; | 
|  | } | 
|  | // Make sure that we never go back to fast case. | 
|  | element_dictionary()->set_requires_slow_elements(); | 
|  |  | 
|  | // Do a map transition, other objects with this map may still | 
|  | // be extensible. | 
|  | Object* new_map = map()->CopyDropTransitions(); | 
|  | if (new_map->IsFailure()) return new_map; | 
|  | Map::cast(new_map)->set_is_extensible(false); | 
|  | set_map(Map::cast(new_map)); | 
|  | ASSERT(!map()->is_extensible()); | 
|  | return new_map; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Tests for the fast common case for property enumeration: | 
|  | // - This object and all prototypes has an enum cache (which means that it has | 
|  | //   no interceptors and needs no access checks). | 
|  | // - This object has no elements. | 
|  | // - No prototype has enumerable properties/elements. | 
|  | bool JSObject::IsSimpleEnum() { | 
|  | for (Object* o = this; | 
|  | o != Heap::null_value(); | 
|  | o = JSObject::cast(o)->GetPrototype()) { | 
|  | JSObject* curr = JSObject::cast(o); | 
|  | if (!curr->map()->instance_descriptors()->HasEnumCache()) return false; | 
|  | ASSERT(!curr->HasNamedInterceptor()); | 
|  | ASSERT(!curr->HasIndexedInterceptor()); | 
|  | ASSERT(!curr->IsAccessCheckNeeded()); | 
|  | if (curr->NumberOfEnumElements() > 0) return false; | 
|  | if (curr != this) { | 
|  | FixedArray* curr_fixed_array = | 
|  | FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache()); | 
|  | if (curr_fixed_array->length() > 0) return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | int Map::NumberOfDescribedProperties() { | 
|  | int result = 0; | 
|  | DescriptorArray* descs = instance_descriptors(); | 
|  | for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
|  | if (descs->IsProperty(i)) result++; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | int Map::PropertyIndexFor(String* name) { | 
|  | DescriptorArray* descs = instance_descriptors(); | 
|  | for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
|  | if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) { | 
|  | return descs->GetFieldIndex(i); | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int Map::NextFreePropertyIndex() { | 
|  | int max_index = -1; | 
|  | DescriptorArray* descs = instance_descriptors(); | 
|  | for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
|  | if (descs->GetType(i) == FIELD) { | 
|  | int current_index = descs->GetFieldIndex(i); | 
|  | if (current_index > max_index) max_index = current_index; | 
|  | } | 
|  | } | 
|  | return max_index + 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | AccessorDescriptor* Map::FindAccessor(String* name) { | 
|  | DescriptorArray* descs = instance_descriptors(); | 
|  | for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
|  | if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) { | 
|  | return descs->GetCallbacks(i); | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSObject::LocalLookup(String* name, LookupResult* result) { | 
|  | ASSERT(name->IsString()); | 
|  |  | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return result->NotFound(); | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSObject::cast(proto)->LocalLookup(name, result); | 
|  | } | 
|  |  | 
|  | // Do not use inline caching if the object is a non-global object | 
|  | // that requires access checks. | 
|  | if (!IsJSGlobalProxy() && IsAccessCheckNeeded()) { | 
|  | result->DisallowCaching(); | 
|  | } | 
|  |  | 
|  | // Check __proto__ before interceptor. | 
|  | if (name->Equals(Heap::Proto_symbol()) && !IsJSContextExtensionObject()) { | 
|  | result->ConstantResult(this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check for lookup interceptor except when bootstrapping. | 
|  | if (HasNamedInterceptor() && !Bootstrapper::IsActive()) { | 
|  | result->InterceptorResult(this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | LocalLookupRealNamedProperty(name, result); | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSObject::Lookup(String* name, LookupResult* result) { | 
|  | // Ecma-262 3rd 8.6.2.4 | 
|  | for (Object* current = this; | 
|  | current != Heap::null_value(); | 
|  | current = JSObject::cast(current)->GetPrototype()) { | 
|  | JSObject::cast(current)->LocalLookup(name, result); | 
|  | if (result->IsProperty()) return; | 
|  | } | 
|  | result->NotFound(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Search object and it's prototype chain for callback properties. | 
|  | void JSObject::LookupCallback(String* name, LookupResult* result) { | 
|  | for (Object* current = this; | 
|  | current != Heap::null_value(); | 
|  | current = JSObject::cast(current)->GetPrototype()) { | 
|  | JSObject::cast(current)->LocalLookupRealNamedProperty(name, result); | 
|  | if (result->IsProperty() && result->type() == CALLBACKS) return; | 
|  | } | 
|  | result->NotFound(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DefineGetterSetter(String* name, | 
|  | PropertyAttributes attributes) { | 
|  | // Make sure that the top context does not change when doing callbacks or | 
|  | // interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  |  | 
|  | // Try to flatten before operating on the string. | 
|  | name->TryFlatten(); | 
|  |  | 
|  | if (!CanSetCallback(name)) { | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  | uint32_t index = 0; | 
|  | bool is_element = name->AsArrayIndex(&index); | 
|  | if (is_element && IsJSArray()) return Heap::undefined_value(); | 
|  |  | 
|  | if (is_element) { | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: | 
|  | break; | 
|  | case PIXEL_ELEMENTS: | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: | 
|  | // Ignore getters and setters on pixel and external array | 
|  | // elements. | 
|  | return Heap::undefined_value(); | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | // Lookup the index. | 
|  | NumberDictionary* dictionary = element_dictionary(); | 
|  | int entry = dictionary->FindEntry(index); | 
|  | if (entry != NumberDictionary::kNotFound) { | 
|  | Object* result = dictionary->ValueAt(entry); | 
|  | PropertyDetails details = dictionary->DetailsAt(entry); | 
|  | if (details.IsReadOnly()) return Heap::undefined_value(); | 
|  | if (details.type() == CALLBACKS) { | 
|  | if (result->IsFixedArray()) { | 
|  | return result; | 
|  | } | 
|  | // Otherwise allow to override it. | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | // Lookup the name. | 
|  | LookupResult result; | 
|  | LocalLookup(name, &result); | 
|  | if (result.IsProperty()) { | 
|  | if (result.IsReadOnly()) return Heap::undefined_value(); | 
|  | if (result.type() == CALLBACKS) { | 
|  | Object* obj = result.GetCallbackObject(); | 
|  | // Need to preserve old getters/setters. | 
|  | if (obj->IsFixedArray()) { | 
|  | // Use set to update attributes. | 
|  | return SetPropertyCallback(name, obj, attributes); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate the fixed array to hold getter and setter. | 
|  | Object* structure = Heap::AllocateFixedArray(2, TENURED); | 
|  | if (structure->IsFailure()) return structure; | 
|  |  | 
|  | if (is_element) { | 
|  | return SetElementCallback(index, structure, attributes); | 
|  | } else { | 
|  | return SetPropertyCallback(name, structure, attributes); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::CanSetCallback(String* name) { | 
|  | ASSERT(!IsAccessCheckNeeded() | 
|  | || Top::MayNamedAccess(this, name, v8::ACCESS_SET)); | 
|  |  | 
|  | // Check if there is an API defined callback object which prohibits | 
|  | // callback overwriting in this object or it's prototype chain. | 
|  | // This mechanism is needed for instance in a browser setting, where | 
|  | // certain accessors such as window.location should not be allowed | 
|  | // to be overwritten because allowing overwriting could potentially | 
|  | // cause security problems. | 
|  | LookupResult callback_result; | 
|  | LookupCallback(name, &callback_result); | 
|  | if (callback_result.IsProperty()) { | 
|  | Object* obj = callback_result.GetCallbackObject(); | 
|  | if (obj->IsAccessorInfo() && | 
|  | AccessorInfo::cast(obj)->prohibits_overwriting()) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetElementCallback(uint32_t index, | 
|  | Object* structure, | 
|  | PropertyAttributes attributes) { | 
|  | PropertyDetails details = PropertyDetails(attributes, CALLBACKS); | 
|  |  | 
|  | // Normalize elements to make this operation simple. | 
|  | Object* ok = NormalizeElements(); | 
|  | if (ok->IsFailure()) return ok; | 
|  |  | 
|  | // Update the dictionary with the new CALLBACKS property. | 
|  | Object* dict = | 
|  | element_dictionary()->Set(index, structure, details); | 
|  | if (dict->IsFailure()) return dict; | 
|  |  | 
|  | NumberDictionary* elements = NumberDictionary::cast(dict); | 
|  | elements->set_requires_slow_elements(); | 
|  | // Set the potential new dictionary on the object. | 
|  | set_elements(elements); | 
|  |  | 
|  | return structure; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetPropertyCallback(String* name, | 
|  | Object* structure, | 
|  | PropertyAttributes attributes) { | 
|  | PropertyDetails details = PropertyDetails(attributes, CALLBACKS); | 
|  |  | 
|  | bool convert_back_to_fast = HasFastProperties() && | 
|  | (map()->instance_descriptors()->number_of_descriptors() | 
|  | < DescriptorArray::kMaxNumberOfDescriptors); | 
|  |  | 
|  | // Normalize object to make this operation simple. | 
|  | Object* ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
|  | if (ok->IsFailure()) return ok; | 
|  |  | 
|  | // For the global object allocate a new map to invalidate the global inline | 
|  | // caches which have a global property cell reference directly in the code. | 
|  | if (IsGlobalObject()) { | 
|  | Object* new_map = map()->CopyDropDescriptors(); | 
|  | if (new_map->IsFailure()) return new_map; | 
|  | set_map(Map::cast(new_map)); | 
|  | } | 
|  |  | 
|  | // Update the dictionary with the new CALLBACKS property. | 
|  | Object* result = SetNormalizedProperty(name, structure, details); | 
|  | if (result->IsFailure()) return result; | 
|  |  | 
|  | if (convert_back_to_fast) { | 
|  | ok = TransformToFastProperties(0); | 
|  | if (ok->IsFailure()) return ok; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | Object* JSObject::DefineAccessor(String* name, bool is_getter, JSFunction* fun, | 
|  | PropertyAttributes attributes) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_SET); | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return this; | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSObject::cast(proto)->DefineAccessor(name, is_getter, | 
|  | fun, attributes); | 
|  | } | 
|  |  | 
|  | Object* array = DefineGetterSetter(name, attributes); | 
|  | if (array->IsFailure() || array->IsUndefined()) return array; | 
|  | FixedArray::cast(array)->set(is_getter ? 0 : 1, fun); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::DefineAccessor(AccessorInfo* info) { | 
|  | String* name = String::cast(info->name()); | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_SET); | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return this; | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSObject::cast(proto)->DefineAccessor(info); | 
|  | } | 
|  |  | 
|  | // Make sure that the top context does not change when doing callbacks or | 
|  | // interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  |  | 
|  | // Try to flatten before operating on the string. | 
|  | name->TryFlatten(); | 
|  |  | 
|  | if (!CanSetCallback(name)) { | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  | uint32_t index = 0; | 
|  | bool is_element = name->AsArrayIndex(&index); | 
|  |  | 
|  | if (is_element) { | 
|  | if (IsJSArray()) return Heap::undefined_value(); | 
|  |  | 
|  | // Accessors overwrite previous callbacks (cf. with getters/setters). | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: | 
|  | break; | 
|  | case PIXEL_ELEMENTS: | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: | 
|  | // Ignore getters and setters on pixel and external array | 
|  | // elements. | 
|  | return Heap::undefined_value(); | 
|  | case DICTIONARY_ELEMENTS: | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Object* ok = SetElementCallback(index, info, info->property_attributes()); | 
|  | if (ok->IsFailure()) return ok; | 
|  | } else { | 
|  | // Lookup the name. | 
|  | LookupResult result; | 
|  | LocalLookup(name, &result); | 
|  | // ES5 forbids turning a property into an accessor if it's not | 
|  | // configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5). | 
|  | if (result.IsProperty() && (result.IsReadOnly() || result.IsDontDelete())) { | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  | Object* ok = SetPropertyCallback(name, info, info->property_attributes()); | 
|  | if (ok->IsFailure()) return ok; | 
|  | } | 
|  |  | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::LookupAccessor(String* name, bool is_getter) { | 
|  | // Make sure that the top context does not change when doing callbacks or | 
|  | // interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  |  | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  | // Make the lookup and include prototypes. | 
|  | int accessor_index = is_getter ? kGetterIndex : kSetterIndex; | 
|  | uint32_t index = 0; | 
|  | if (name->AsArrayIndex(&index)) { | 
|  | for (Object* obj = this; | 
|  | obj != Heap::null_value(); | 
|  | obj = JSObject::cast(obj)->GetPrototype()) { | 
|  | JSObject* js_object = JSObject::cast(obj); | 
|  | if (js_object->HasDictionaryElements()) { | 
|  | NumberDictionary* dictionary = js_object->element_dictionary(); | 
|  | int entry = dictionary->FindEntry(index); | 
|  | if (entry != NumberDictionary::kNotFound) { | 
|  | Object* element = dictionary->ValueAt(entry); | 
|  | PropertyDetails details = dictionary->DetailsAt(entry); | 
|  | if (details.type() == CALLBACKS) { | 
|  | if (element->IsFixedArray()) { | 
|  | return FixedArray::cast(element)->get(accessor_index); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (Object* obj = this; | 
|  | obj != Heap::null_value(); | 
|  | obj = JSObject::cast(obj)->GetPrototype()) { | 
|  | LookupResult result; | 
|  | JSObject::cast(obj)->LocalLookup(name, &result); | 
|  | if (result.IsProperty()) { | 
|  | if (result.IsReadOnly()) return Heap::undefined_value(); | 
|  | if (result.type() == CALLBACKS) { | 
|  | Object* obj = result.GetCallbackObject(); | 
|  | if (obj->IsFixedArray()) { | 
|  | return FixedArray::cast(obj)->get(accessor_index); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SlowReverseLookup(Object* value) { | 
|  | if (HasFastProperties()) { | 
|  | DescriptorArray* descs = map()->instance_descriptors(); | 
|  | for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
|  | if (descs->GetType(i) == FIELD) { | 
|  | if (FastPropertyAt(descs->GetFieldIndex(i)) == value) { | 
|  | return descs->GetKey(i); | 
|  | } | 
|  | } else if (descs->GetType(i) == CONSTANT_FUNCTION) { | 
|  | if (descs->GetConstantFunction(i) == value) { | 
|  | return descs->GetKey(i); | 
|  | } | 
|  | } | 
|  | } | 
|  | return Heap::undefined_value(); | 
|  | } else { | 
|  | return property_dictionary()->SlowReverseLookup(value); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Map::CopyDropDescriptors() { | 
|  | Object* result = Heap::AllocateMap(instance_type(), instance_size()); | 
|  | if (result->IsFailure()) return result; | 
|  | Map::cast(result)->set_prototype(prototype()); | 
|  | Map::cast(result)->set_constructor(constructor()); | 
|  | // Don't copy descriptors, so map transitions always remain a forest. | 
|  | // If we retained the same descriptors we would have two maps | 
|  | // pointing to the same transition which is bad because the garbage | 
|  | // collector relies on being able to reverse pointers from transitions | 
|  | // to maps.  If properties need to be retained use CopyDropTransitions. | 
|  | Map::cast(result)->set_instance_descriptors(Heap::empty_descriptor_array()); | 
|  | // Please note instance_type and instance_size are set when allocated. | 
|  | Map::cast(result)->set_inobject_properties(inobject_properties()); | 
|  | Map::cast(result)->set_unused_property_fields(unused_property_fields()); | 
|  |  | 
|  | // If the map has pre-allocated properties always start out with a descriptor | 
|  | // array describing these properties. | 
|  | if (pre_allocated_property_fields() > 0) { | 
|  | ASSERT(constructor()->IsJSFunction()); | 
|  | JSFunction* ctor = JSFunction::cast(constructor()); | 
|  | Object* descriptors = | 
|  | ctor->initial_map()->instance_descriptors()->RemoveTransitions(); | 
|  | if (descriptors->IsFailure()) return descriptors; | 
|  | Map::cast(result)->set_instance_descriptors( | 
|  | DescriptorArray::cast(descriptors)); | 
|  | Map::cast(result)->set_pre_allocated_property_fields( | 
|  | pre_allocated_property_fields()); | 
|  | } | 
|  | Map::cast(result)->set_bit_field(bit_field()); | 
|  | Map::cast(result)->set_bit_field2(bit_field2()); | 
|  | Map::cast(result)->set_is_shared(false); | 
|  | Map::cast(result)->ClearCodeCache(); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Map::CopyNormalized(PropertyNormalizationMode mode, | 
|  | NormalizedMapSharingMode sharing) { | 
|  | int new_instance_size = instance_size(); | 
|  | if (mode == CLEAR_INOBJECT_PROPERTIES) { | 
|  | new_instance_size -= inobject_properties() * kPointerSize; | 
|  | } | 
|  |  | 
|  | Object* result = Heap::AllocateMap(instance_type(), new_instance_size); | 
|  | if (result->IsFailure()) return result; | 
|  |  | 
|  | if (mode != CLEAR_INOBJECT_PROPERTIES) { | 
|  | Map::cast(result)->set_inobject_properties(inobject_properties()); | 
|  | } | 
|  |  | 
|  | Map::cast(result)->set_prototype(prototype()); | 
|  | Map::cast(result)->set_constructor(constructor()); | 
|  |  | 
|  | Map::cast(result)->set_bit_field(bit_field()); | 
|  | Map::cast(result)->set_bit_field2(bit_field2()); | 
|  |  | 
|  | Map::cast(result)->set_is_shared(sharing == SHARED_NORMALIZED_MAP); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (Map::cast(result)->is_shared()) { | 
|  | Map::cast(result)->SharedMapVerify(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Map::CopyDropTransitions() { | 
|  | Object* new_map = CopyDropDescriptors(); | 
|  | if (new_map->IsFailure()) return new_map; | 
|  | Object* descriptors = instance_descriptors()->RemoveTransitions(); | 
|  | if (descriptors->IsFailure()) return descriptors; | 
|  | cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors)); | 
|  | return new_map; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Map::UpdateCodeCache(String* name, Code* code) { | 
|  | // Allocate the code cache if not present. | 
|  | if (code_cache()->IsFixedArray()) { | 
|  | Object* result = Heap::AllocateCodeCache(); | 
|  | if (result->IsFailure()) return result; | 
|  | set_code_cache(result); | 
|  | } | 
|  |  | 
|  | // Update the code cache. | 
|  | return CodeCache::cast(code_cache())->Update(name, code); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Map::FindInCodeCache(String* name, Code::Flags flags) { | 
|  | // Do a lookup if a code cache exists. | 
|  | if (!code_cache()->IsFixedArray()) { | 
|  | return CodeCache::cast(code_cache())->Lookup(name, flags); | 
|  | } else { | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int Map::IndexInCodeCache(Object* name, Code* code) { | 
|  | // Get the internal index if a code cache exists. | 
|  | if (!code_cache()->IsFixedArray()) { | 
|  | return CodeCache::cast(code_cache())->GetIndex(name, code); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | void Map::RemoveFromCodeCache(String* name, Code* code, int index) { | 
|  | // No GC is supposed to happen between a call to IndexInCodeCache and | 
|  | // RemoveFromCodeCache so the code cache must be there. | 
|  | ASSERT(!code_cache()->IsFixedArray()); | 
|  | CodeCache::cast(code_cache())->RemoveByIndex(name, code, index); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Map::TraverseTransitionTree(TraverseCallback callback, void* data) { | 
|  | Map* current = this; | 
|  | while (current != Heap::meta_map()) { | 
|  | DescriptorArray* d = reinterpret_cast<DescriptorArray*>( | 
|  | *RawField(current, Map::kInstanceDescriptorsOffset)); | 
|  | if (d == Heap::empty_descriptor_array()) { | 
|  | Map* prev = current->map(); | 
|  | current->set_map(Heap::meta_map()); | 
|  | callback(current, data); | 
|  | current = prev; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | FixedArray* contents = reinterpret_cast<FixedArray*>( | 
|  | d->get(DescriptorArray::kContentArrayIndex)); | 
|  | Object** map_or_index_field = RawField(contents, HeapObject::kMapOffset); | 
|  | Object* map_or_index = *map_or_index_field; | 
|  | bool map_done = true; | 
|  | for (int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : 0; | 
|  | i < contents->length(); | 
|  | i += 2) { | 
|  | PropertyDetails details(Smi::cast(contents->get(i + 1))); | 
|  | if (details.IsTransition()) { | 
|  | Map* next = reinterpret_cast<Map*>(contents->get(i)); | 
|  | next->set_map(current); | 
|  | *map_or_index_field = Smi::FromInt(i + 2); | 
|  | current = next; | 
|  | map_done = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!map_done) continue; | 
|  | *map_or_index_field = Heap::fixed_array_map(); | 
|  | Map* prev = current->map(); | 
|  | current->set_map(Heap::meta_map()); | 
|  | callback(current, data); | 
|  | current = prev; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CodeCache::Update(String* name, Code* code) { | 
|  | ASSERT(code->ic_state() == MONOMORPHIC); | 
|  |  | 
|  | // The number of monomorphic stubs for normal load/store/call IC's can grow to | 
|  | // a large number and therefore they need to go into a hash table. They are | 
|  | // used to load global properties from cells. | 
|  | if (code->type() == NORMAL) { | 
|  | // Make sure that a hash table is allocated for the normal load code cache. | 
|  | if (normal_type_cache()->IsUndefined()) { | 
|  | Object* result = | 
|  | CodeCacheHashTable::Allocate(CodeCacheHashTable::kInitialSize); | 
|  | if (result->IsFailure()) return result; | 
|  | set_normal_type_cache(result); | 
|  | } | 
|  | return UpdateNormalTypeCache(name, code); | 
|  | } else { | 
|  | ASSERT(default_cache()->IsFixedArray()); | 
|  | return UpdateDefaultCache(name, code); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CodeCache::UpdateDefaultCache(String* name, Code* code) { | 
|  | // When updating the default code cache we disregard the type encoded in the | 
|  | // flags. This allows call constant stubs to overwrite call field | 
|  | // stubs, etc. | 
|  | Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); | 
|  |  | 
|  | // First check whether we can update existing code cache without | 
|  | // extending it. | 
|  | FixedArray* cache = default_cache(); | 
|  | int length = cache->length(); | 
|  | int deleted_index = -1; | 
|  | for (int i = 0; i < length; i += kCodeCacheEntrySize) { | 
|  | Object* key = cache->get(i); | 
|  | if (key->IsNull()) { | 
|  | if (deleted_index < 0) deleted_index = i; | 
|  | continue; | 
|  | } | 
|  | if (key->IsUndefined()) { | 
|  | if (deleted_index >= 0) i = deleted_index; | 
|  | cache->set(i + kCodeCacheEntryNameOffset, name); | 
|  | cache->set(i + kCodeCacheEntryCodeOffset, code); | 
|  | return this; | 
|  | } | 
|  | if (name->Equals(String::cast(key))) { | 
|  | Code::Flags found = | 
|  | Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags(); | 
|  | if (Code::RemoveTypeFromFlags(found) == flags) { | 
|  | cache->set(i + kCodeCacheEntryCodeOffset, code); | 
|  | return this; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reached the end of the code cache.  If there were deleted | 
|  | // elements, reuse the space for the first of them. | 
|  | if (deleted_index >= 0) { | 
|  | cache->set(deleted_index + kCodeCacheEntryNameOffset, name); | 
|  | cache->set(deleted_index + kCodeCacheEntryCodeOffset, code); | 
|  | return this; | 
|  | } | 
|  |  | 
|  | // Extend the code cache with some new entries (at least one). Must be a | 
|  | // multiple of the entry size. | 
|  | int new_length = length + ((length >> 1)) + kCodeCacheEntrySize; | 
|  | new_length = new_length - new_length % kCodeCacheEntrySize; | 
|  | ASSERT((new_length % kCodeCacheEntrySize) == 0); | 
|  | Object* result = cache->CopySize(new_length); | 
|  | if (result->IsFailure()) return result; | 
|  |  | 
|  | // Add the (name, code) pair to the new cache. | 
|  | cache = FixedArray::cast(result); | 
|  | cache->set(length + kCodeCacheEntryNameOffset, name); | 
|  | cache->set(length + kCodeCacheEntryCodeOffset, code); | 
|  | set_default_cache(cache); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CodeCache::UpdateNormalTypeCache(String* name, Code* code) { | 
|  | // Adding a new entry can cause a new cache to be allocated. | 
|  | CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); | 
|  | Object* new_cache = cache->Put(name, code); | 
|  | if (new_cache->IsFailure()) return new_cache; | 
|  | set_normal_type_cache(new_cache); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CodeCache::Lookup(String* name, Code::Flags flags) { | 
|  | if (Code::ExtractTypeFromFlags(flags) == NORMAL) { | 
|  | return LookupNormalTypeCache(name, flags); | 
|  | } else { | 
|  | return LookupDefaultCache(name, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CodeCache::LookupDefaultCache(String* name, Code::Flags flags) { | 
|  | FixedArray* cache = default_cache(); | 
|  | int length = cache->length(); | 
|  | for (int i = 0; i < length; i += kCodeCacheEntrySize) { | 
|  | Object* key = cache->get(i + kCodeCacheEntryNameOffset); | 
|  | // Skip deleted elements. | 
|  | if (key->IsNull()) continue; | 
|  | if (key->IsUndefined()) return key; | 
|  | if (name->Equals(String::cast(key))) { | 
|  | Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset)); | 
|  | if (code->flags() == flags) { | 
|  | return code; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CodeCache::LookupNormalTypeCache(String* name, Code::Flags flags) { | 
|  | if (!normal_type_cache()->IsUndefined()) { | 
|  | CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); | 
|  | return cache->Lookup(name, flags); | 
|  | } else { | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int CodeCache::GetIndex(Object* name, Code* code) { | 
|  | if (code->type() == NORMAL) { | 
|  | if (normal_type_cache()->IsUndefined()) return -1; | 
|  | CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); | 
|  | return cache->GetIndex(String::cast(name), code->flags()); | 
|  | } | 
|  |  | 
|  | FixedArray* array = default_cache(); | 
|  | int len = array->length(); | 
|  | for (int i = 0; i < len; i += kCodeCacheEntrySize) { | 
|  | if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | void CodeCache::RemoveByIndex(Object* name, Code* code, int index) { | 
|  | if (code->type() == NORMAL) { | 
|  | ASSERT(!normal_type_cache()->IsUndefined()); | 
|  | CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); | 
|  | ASSERT(cache->GetIndex(String::cast(name), code->flags()) == index); | 
|  | cache->RemoveByIndex(index); | 
|  | } else { | 
|  | FixedArray* array = default_cache(); | 
|  | ASSERT(array->length() >= index && array->get(index)->IsCode()); | 
|  | // Use null instead of undefined for deleted elements to distinguish | 
|  | // deleted elements from unused elements.  This distinction is used | 
|  | // when looking up in the cache and when updating the cache. | 
|  | ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset); | 
|  | array->set_null(index - 1);  // Name. | 
|  | array->set_null(index);  // Code. | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // The key in the code cache hash table consists of the property name and the | 
|  | // code object. The actual match is on the name and the code flags. If a key | 
|  | // is created using the flags and not a code object it can only be used for | 
|  | // lookup not to create a new entry. | 
|  | class CodeCacheHashTableKey : public HashTableKey { | 
|  | public: | 
|  | CodeCacheHashTableKey(String* name, Code::Flags flags) | 
|  | : name_(name), flags_(flags), code_(NULL) { } | 
|  |  | 
|  | CodeCacheHashTableKey(String* name, Code* code) | 
|  | : name_(name), | 
|  | flags_(code->flags()), | 
|  | code_(code) { } | 
|  |  | 
|  |  | 
|  | bool IsMatch(Object* other) { | 
|  | if (!other->IsFixedArray()) return false; | 
|  | FixedArray* pair = FixedArray::cast(other); | 
|  | String* name = String::cast(pair->get(0)); | 
|  | Code::Flags flags = Code::cast(pair->get(1))->flags(); | 
|  | if (flags != flags_) { | 
|  | return false; | 
|  | } | 
|  | return name_->Equals(name); | 
|  | } | 
|  |  | 
|  | static uint32_t NameFlagsHashHelper(String* name, Code::Flags flags) { | 
|  | return name->Hash() ^ flags; | 
|  | } | 
|  |  | 
|  | uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); } | 
|  |  | 
|  | uint32_t HashForObject(Object* obj) { | 
|  | FixedArray* pair = FixedArray::cast(obj); | 
|  | String* name = String::cast(pair->get(0)); | 
|  | Code* code = Code::cast(pair->get(1)); | 
|  | return NameFlagsHashHelper(name, code->flags()); | 
|  | } | 
|  |  | 
|  | Object* AsObject() { | 
|  | ASSERT(code_ != NULL); | 
|  | Object* obj = Heap::AllocateFixedArray(2); | 
|  | if (obj->IsFailure()) return obj; | 
|  | FixedArray* pair = FixedArray::cast(obj); | 
|  | pair->set(0, name_); | 
|  | pair->set(1, code_); | 
|  | return pair; | 
|  | } | 
|  |  | 
|  | private: | 
|  | String* name_; | 
|  | Code::Flags flags_; | 
|  | Code* code_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | Object* CodeCacheHashTable::Lookup(String* name, Code::Flags flags) { | 
|  | CodeCacheHashTableKey key(name, flags); | 
|  | int entry = FindEntry(&key); | 
|  | if (entry == kNotFound) return Heap::undefined_value(); | 
|  | return get(EntryToIndex(entry) + 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CodeCacheHashTable::Put(String* name, Code* code) { | 
|  | CodeCacheHashTableKey key(name, code); | 
|  | Object* obj = EnsureCapacity(1, &key); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | // Don't use this, as the table might have grown. | 
|  | CodeCacheHashTable* cache = reinterpret_cast<CodeCacheHashTable*>(obj); | 
|  |  | 
|  | int entry = cache->FindInsertionEntry(key.Hash()); | 
|  | Object* k = key.AsObject(); | 
|  | if (k->IsFailure()) return k; | 
|  |  | 
|  | cache->set(EntryToIndex(entry), k); | 
|  | cache->set(EntryToIndex(entry) + 1, code); | 
|  | cache->ElementAdded(); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  |  | 
|  | int CodeCacheHashTable::GetIndex(String* name, Code::Flags flags) { | 
|  | CodeCacheHashTableKey key(name, flags); | 
|  | int entry = FindEntry(&key); | 
|  | return (entry == kNotFound) ? -1 : entry; | 
|  | } | 
|  |  | 
|  |  | 
|  | void CodeCacheHashTable::RemoveByIndex(int index) { | 
|  | ASSERT(index >= 0); | 
|  | set(EntryToIndex(index), Heap::null_value()); | 
|  | set(EntryToIndex(index) + 1, Heap::null_value()); | 
|  | ElementRemoved(); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool HasKey(FixedArray* array, Object* key) { | 
|  | int len0 = array->length(); | 
|  | for (int i = 0; i < len0; i++) { | 
|  | Object* element = array->get(i); | 
|  | if (element->IsSmi() && key->IsSmi() && (element == key)) return true; | 
|  | if (element->IsString() && | 
|  | key->IsString() && String::cast(element)->Equals(String::cast(key))) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* FixedArray::AddKeysFromJSArray(JSArray* array) { | 
|  | ASSERT(!array->HasPixelElements() && !array->HasExternalArrayElements()); | 
|  | switch (array->GetElementsKind()) { | 
|  | case JSObject::FAST_ELEMENTS: | 
|  | return UnionOfKeys(FixedArray::cast(array->elements())); | 
|  | case JSObject::DICTIONARY_ELEMENTS: { | 
|  | NumberDictionary* dict = array->element_dictionary(); | 
|  | int size = dict->NumberOfElements(); | 
|  |  | 
|  | // Allocate a temporary fixed array. | 
|  | Object* object = Heap::AllocateFixedArray(size); | 
|  | if (object->IsFailure()) return object; | 
|  | FixedArray* key_array = FixedArray::cast(object); | 
|  |  | 
|  | int capacity = dict->Capacity(); | 
|  | int pos = 0; | 
|  | // Copy the elements from the JSArray to the temporary fixed array. | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | if (dict->IsKey(dict->KeyAt(i))) { | 
|  | key_array->set(pos++, dict->ValueAt(i)); | 
|  | } | 
|  | } | 
|  | // Compute the union of this and the temporary fixed array. | 
|  | return UnionOfKeys(key_array); | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return Heap::null_value();  // Failure case needs to "return" a value. | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* FixedArray::UnionOfKeys(FixedArray* other) { | 
|  | int len0 = length(); | 
|  | #ifdef DEBUG | 
|  | if (FLAG_enable_slow_asserts) { | 
|  | for (int i = 0; i < len0; i++) { | 
|  | ASSERT(get(i)->IsString() || get(i)->IsNumber()); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | int len1 = other->length(); | 
|  | // Optimize if 'other' is empty. | 
|  | // We cannot optimize if 'this' is empty, as other may have holes | 
|  | // or non keys. | 
|  | if (len1 == 0) return this; | 
|  |  | 
|  | // Compute how many elements are not in this. | 
|  | int extra = 0; | 
|  | for (int y = 0; y < len1; y++) { | 
|  | Object* value = other->get(y); | 
|  | if (!value->IsTheHole() && !HasKey(this, value)) extra++; | 
|  | } | 
|  |  | 
|  | if (extra == 0) return this; | 
|  |  | 
|  | // Allocate the result | 
|  | Object* obj = Heap::AllocateFixedArray(len0 + extra); | 
|  | if (obj->IsFailure()) return obj; | 
|  | // Fill in the content | 
|  | AssertNoAllocation no_gc; | 
|  | FixedArray* result = FixedArray::cast(obj); | 
|  | WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); | 
|  | for (int i = 0; i < len0; i++) { | 
|  | Object* e = get(i); | 
|  | ASSERT(e->IsString() || e->IsNumber()); | 
|  | result->set(i, e, mode); | 
|  | } | 
|  | // Fill in the extra keys. | 
|  | int index = 0; | 
|  | for (int y = 0; y < len1; y++) { | 
|  | Object* value = other->get(y); | 
|  | if (!value->IsTheHole() && !HasKey(this, value)) { | 
|  | Object* e = other->get(y); | 
|  | ASSERT(e->IsString() || e->IsNumber()); | 
|  | result->set(len0 + index, e, mode); | 
|  | index++; | 
|  | } | 
|  | } | 
|  | ASSERT(extra == index); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* FixedArray::CopySize(int new_length) { | 
|  | if (new_length == 0) return Heap::empty_fixed_array(); | 
|  | Object* obj = Heap::AllocateFixedArray(new_length); | 
|  | if (obj->IsFailure()) return obj; | 
|  | FixedArray* result = FixedArray::cast(obj); | 
|  | // Copy the content | 
|  | AssertNoAllocation no_gc; | 
|  | int len = length(); | 
|  | if (new_length < len) len = new_length; | 
|  | result->set_map(map()); | 
|  | WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); | 
|  | for (int i = 0; i < len; i++) { | 
|  | result->set(i, get(i), mode); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { | 
|  | AssertNoAllocation no_gc; | 
|  | WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); | 
|  | for (int index = 0; index < len; index++) { | 
|  | dest->set(dest_pos+index, get(pos+index), mode); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef DEBUG | 
|  | bool FixedArray::IsEqualTo(FixedArray* other) { | 
|  | if (length() != other->length()) return false; | 
|  | for (int i = 0 ; i < length(); ++i) { | 
|  | if (get(i) != other->get(i)) return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | Object* DescriptorArray::Allocate(int number_of_descriptors) { | 
|  | if (number_of_descriptors == 0) { | 
|  | return Heap::empty_descriptor_array(); | 
|  | } | 
|  | // Allocate the array of keys. | 
|  | Object* array = | 
|  | Heap::AllocateFixedArray(ToKeyIndex(number_of_descriptors)); | 
|  | if (array->IsFailure()) return array; | 
|  | // Do not use DescriptorArray::cast on incomplete object. | 
|  | FixedArray* result = FixedArray::cast(array); | 
|  |  | 
|  | // Allocate the content array and set it in the descriptor array. | 
|  | array = Heap::AllocateFixedArray(number_of_descriptors << 1); | 
|  | if (array->IsFailure()) return array; | 
|  | result->set(kContentArrayIndex, array); | 
|  | result->set(kEnumerationIndexIndex, | 
|  | Smi::FromInt(PropertyDetails::kInitialIndex)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | void DescriptorArray::SetEnumCache(FixedArray* bridge_storage, | 
|  | FixedArray* new_cache) { | 
|  | ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength); | 
|  | if (HasEnumCache()) { | 
|  | FixedArray::cast(get(kEnumerationIndexIndex))-> | 
|  | set(kEnumCacheBridgeCacheIndex, new_cache); | 
|  | } else { | 
|  | if (IsEmpty()) return;  // Do nothing for empty descriptor array. | 
|  | FixedArray::cast(bridge_storage)-> | 
|  | set(kEnumCacheBridgeCacheIndex, new_cache); | 
|  | fast_set(FixedArray::cast(bridge_storage), | 
|  | kEnumCacheBridgeEnumIndex, | 
|  | get(kEnumerationIndexIndex)); | 
|  | set(kEnumerationIndexIndex, bridge_storage); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* DescriptorArray::CopyInsert(Descriptor* descriptor, | 
|  | TransitionFlag transition_flag) { | 
|  | // Transitions are only kept when inserting another transition. | 
|  | // This precondition is not required by this function's implementation, but | 
|  | // is currently required by the semantics of maps, so we check it. | 
|  | // Conversely, we filter after replacing, so replacing a transition and | 
|  | // removing all other transitions is not supported. | 
|  | bool remove_transitions = transition_flag == REMOVE_TRANSITIONS; | 
|  | ASSERT(remove_transitions == !descriptor->GetDetails().IsTransition()); | 
|  | ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR); | 
|  |  | 
|  | // Ensure the key is a symbol. | 
|  | Object* result = descriptor->KeyToSymbol(); | 
|  | if (result->IsFailure()) return result; | 
|  |  | 
|  | int transitions = 0; | 
|  | int null_descriptors = 0; | 
|  | if (remove_transitions) { | 
|  | for (int i = 0; i < number_of_descriptors(); i++) { | 
|  | if (IsTransition(i)) transitions++; | 
|  | if (IsNullDescriptor(i)) null_descriptors++; | 
|  | } | 
|  | } else { | 
|  | for (int i = 0; i < number_of_descriptors(); i++) { | 
|  | if (IsNullDescriptor(i)) null_descriptors++; | 
|  | } | 
|  | } | 
|  | int new_size = number_of_descriptors() - transitions - null_descriptors; | 
|  |  | 
|  | // If key is in descriptor, we replace it in-place when filtering. | 
|  | // Count a null descriptor for key as inserted, not replaced. | 
|  | int index = Search(descriptor->GetKey()); | 
|  | const bool inserting = (index == kNotFound); | 
|  | const bool replacing = !inserting; | 
|  | bool keep_enumeration_index = false; | 
|  | if (inserting) { | 
|  | ++new_size; | 
|  | } | 
|  | if (replacing) { | 
|  | // We are replacing an existing descriptor.  We keep the enumeration | 
|  | // index of a visible property. | 
|  | PropertyType t = PropertyDetails(GetDetails(index)).type(); | 
|  | if (t == CONSTANT_FUNCTION || | 
|  | t == FIELD || | 
|  | t == CALLBACKS || | 
|  | t == INTERCEPTOR) { | 
|  | keep_enumeration_index = true; | 
|  | } else if (remove_transitions) { | 
|  | // Replaced descriptor has been counted as removed if it is | 
|  | // a transition that will be replaced.  Adjust count in this case. | 
|  | ++new_size; | 
|  | } | 
|  | } | 
|  | result = Allocate(new_size); | 
|  | if (result->IsFailure()) return result; | 
|  | DescriptorArray* new_descriptors = DescriptorArray::cast(result); | 
|  | // Set the enumeration index in the descriptors and set the enumeration index | 
|  | // in the result. | 
|  | int enumeration_index = NextEnumerationIndex(); | 
|  | if (!descriptor->GetDetails().IsTransition()) { | 
|  | if (keep_enumeration_index) { | 
|  | descriptor->SetEnumerationIndex( | 
|  | PropertyDetails(GetDetails(index)).index()); | 
|  | } else { | 
|  | descriptor->SetEnumerationIndex(enumeration_index); | 
|  | ++enumeration_index; | 
|  | } | 
|  | } | 
|  | new_descriptors->SetNextEnumerationIndex(enumeration_index); | 
|  |  | 
|  | // Copy the descriptors, filtering out transitions and null descriptors, | 
|  | // and inserting or replacing a descriptor. | 
|  | uint32_t descriptor_hash = descriptor->GetKey()->Hash(); | 
|  | int from_index = 0; | 
|  | int to_index = 0; | 
|  |  | 
|  | for (; from_index < number_of_descriptors(); from_index++) { | 
|  | String* key = GetKey(from_index); | 
|  | if (key->Hash() > descriptor_hash || key == descriptor->GetKey()) { | 
|  | break; | 
|  | } | 
|  | if (IsNullDescriptor(from_index)) continue; | 
|  | if (remove_transitions && IsTransition(from_index)) continue; | 
|  | new_descriptors->CopyFrom(to_index++, this, from_index); | 
|  | } | 
|  |  | 
|  | new_descriptors->Set(to_index++, descriptor); | 
|  | if (replacing) from_index++; | 
|  |  | 
|  | for (; from_index < number_of_descriptors(); from_index++) { | 
|  | if (IsNullDescriptor(from_index)) continue; | 
|  | if (remove_transitions && IsTransition(from_index)) continue; | 
|  | new_descriptors->CopyFrom(to_index++, this, from_index); | 
|  | } | 
|  |  | 
|  | ASSERT(to_index == new_descriptors->number_of_descriptors()); | 
|  | SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates()); | 
|  |  | 
|  | return new_descriptors; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* DescriptorArray::RemoveTransitions() { | 
|  | // Remove all transitions and null descriptors. Return a copy of the array | 
|  | // with all transitions removed, or a Failure object if the new array could | 
|  | // not be allocated. | 
|  |  | 
|  | // Compute the size of the map transition entries to be removed. | 
|  | int num_removed = 0; | 
|  | for (int i = 0; i < number_of_descriptors(); i++) { | 
|  | if (!IsProperty(i)) num_removed++; | 
|  | } | 
|  |  | 
|  | // Allocate the new descriptor array. | 
|  | Object* result = Allocate(number_of_descriptors() - num_removed); | 
|  | if (result->IsFailure()) return result; | 
|  | DescriptorArray* new_descriptors = DescriptorArray::cast(result); | 
|  |  | 
|  | // Copy the content. | 
|  | int next_descriptor = 0; | 
|  | for (int i = 0; i < number_of_descriptors(); i++) { | 
|  | if (IsProperty(i)) new_descriptors->CopyFrom(next_descriptor++, this, i); | 
|  | } | 
|  | ASSERT(next_descriptor == new_descriptors->number_of_descriptors()); | 
|  |  | 
|  | return new_descriptors; | 
|  | } | 
|  |  | 
|  |  | 
|  | void DescriptorArray::SortUnchecked() { | 
|  | // In-place heap sort. | 
|  | int len = number_of_descriptors(); | 
|  |  | 
|  | // Bottom-up max-heap construction. | 
|  | // Index of the last node with children | 
|  | const int max_parent_index = (len / 2) - 1; | 
|  | for (int i = max_parent_index; i >= 0; --i) { | 
|  | int parent_index = i; | 
|  | const uint32_t parent_hash = GetKey(i)->Hash(); | 
|  | while (parent_index <= max_parent_index) { | 
|  | int child_index = 2 * parent_index + 1; | 
|  | uint32_t child_hash = GetKey(child_index)->Hash(); | 
|  | if (child_index + 1 < len) { | 
|  | uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); | 
|  | if (right_child_hash > child_hash) { | 
|  | child_index++; | 
|  | child_hash = right_child_hash; | 
|  | } | 
|  | } | 
|  | if (child_hash <= parent_hash) break; | 
|  | Swap(parent_index, child_index); | 
|  | // Now element at child_index could be < its children. | 
|  | parent_index = child_index;  // parent_hash remains correct. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extract elements and create sorted array. | 
|  | for (int i = len - 1; i > 0; --i) { | 
|  | // Put max element at the back of the array. | 
|  | Swap(0, i); | 
|  | // Sift down the new top element. | 
|  | int parent_index = 0; | 
|  | const uint32_t parent_hash = GetKey(parent_index)->Hash(); | 
|  | const int max_parent_index = (i / 2) - 1; | 
|  | while (parent_index <= max_parent_index) { | 
|  | int child_index = parent_index * 2 + 1; | 
|  | uint32_t child_hash = GetKey(child_index)->Hash(); | 
|  | if (child_index + 1 < i) { | 
|  | uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); | 
|  | if (right_child_hash > child_hash) { | 
|  | child_index++; | 
|  | child_hash = right_child_hash; | 
|  | } | 
|  | } | 
|  | if (child_hash <= parent_hash) break; | 
|  | Swap(parent_index, child_index); | 
|  | parent_index = child_index; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void DescriptorArray::Sort() { | 
|  | SortUnchecked(); | 
|  | SLOW_ASSERT(IsSortedNoDuplicates()); | 
|  | } | 
|  |  | 
|  |  | 
|  | int DescriptorArray::BinarySearch(String* name, int low, int high) { | 
|  | uint32_t hash = name->Hash(); | 
|  |  | 
|  | while (low <= high) { | 
|  | int mid = (low + high) / 2; | 
|  | String* mid_name = GetKey(mid); | 
|  | uint32_t mid_hash = mid_name->Hash(); | 
|  |  | 
|  | if (mid_hash > hash) { | 
|  | high = mid - 1; | 
|  | continue; | 
|  | } | 
|  | if (mid_hash < hash) { | 
|  | low = mid + 1; | 
|  | continue; | 
|  | } | 
|  | // Found an element with the same hash-code. | 
|  | ASSERT(hash == mid_hash); | 
|  | // There might be more, so we find the first one and | 
|  | // check them all to see if we have a match. | 
|  | if (name == mid_name  && !is_null_descriptor(mid)) return mid; | 
|  | while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--; | 
|  | for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) { | 
|  | if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return kNotFound; | 
|  | } | 
|  |  | 
|  |  | 
|  | int DescriptorArray::LinearSearch(String* name, int len) { | 
|  | uint32_t hash = name->Hash(); | 
|  | for (int number = 0; number < len; number++) { | 
|  | String* entry = GetKey(number); | 
|  | if ((entry->Hash() == hash) && | 
|  | name->Equals(entry) && | 
|  | !is_null_descriptor(number)) { | 
|  | return number; | 
|  | } | 
|  | } | 
|  | return kNotFound; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef DEBUG | 
|  | bool DescriptorArray::IsEqualTo(DescriptorArray* other) { | 
|  | if (IsEmpty()) return other->IsEmpty(); | 
|  | if (other->IsEmpty()) return false; | 
|  | if (length() != other->length()) return false; | 
|  | for (int i = 0; i < length(); ++i) { | 
|  | if (get(i) != other->get(i) && i != kContentArrayIndex) return false; | 
|  | } | 
|  | return GetContentArray()->IsEqualTo(other->GetContentArray()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static StaticResource<StringInputBuffer> string_input_buffer; | 
|  |  | 
|  |  | 
|  | bool String::LooksValid() { | 
|  | if (!Heap::Contains(this)) return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | int String::Utf8Length() { | 
|  | if (IsAsciiRepresentation()) return length(); | 
|  | // Attempt to flatten before accessing the string.  It probably | 
|  | // doesn't make Utf8Length faster, but it is very likely that | 
|  | // the string will be accessed later (for example by WriteUtf8) | 
|  | // so it's still a good idea. | 
|  | TryFlatten(); | 
|  | Access<StringInputBuffer> buffer(&string_input_buffer); | 
|  | buffer->Reset(0, this); | 
|  | int result = 0; | 
|  | while (buffer->has_more()) | 
|  | result += unibrow::Utf8::Length(buffer->GetNext()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Vector<const char> String::ToAsciiVector() { | 
|  | ASSERT(IsAsciiRepresentation()); | 
|  | ASSERT(IsFlat()); | 
|  |  | 
|  | int offset = 0; | 
|  | int length = this->length(); | 
|  | StringRepresentationTag string_tag = StringShape(this).representation_tag(); | 
|  | String* string = this; | 
|  | if (string_tag == kConsStringTag) { | 
|  | ConsString* cons = ConsString::cast(string); | 
|  | ASSERT(cons->second()->length() == 0); | 
|  | string = cons->first(); | 
|  | string_tag = StringShape(string).representation_tag(); | 
|  | } | 
|  | if (string_tag == kSeqStringTag) { | 
|  | SeqAsciiString* seq = SeqAsciiString::cast(string); | 
|  | char* start = seq->GetChars(); | 
|  | return Vector<const char>(start + offset, length); | 
|  | } | 
|  | ASSERT(string_tag == kExternalStringTag); | 
|  | ExternalAsciiString* ext = ExternalAsciiString::cast(string); | 
|  | const char* start = ext->resource()->data(); | 
|  | return Vector<const char>(start + offset, length); | 
|  | } | 
|  |  | 
|  |  | 
|  | Vector<const uc16> String::ToUC16Vector() { | 
|  | ASSERT(IsTwoByteRepresentation()); | 
|  | ASSERT(IsFlat()); | 
|  |  | 
|  | int offset = 0; | 
|  | int length = this->length(); | 
|  | StringRepresentationTag string_tag = StringShape(this).representation_tag(); | 
|  | String* string = this; | 
|  | if (string_tag == kConsStringTag) { | 
|  | ConsString* cons = ConsString::cast(string); | 
|  | ASSERT(cons->second()->length() == 0); | 
|  | string = cons->first(); | 
|  | string_tag = StringShape(string).representation_tag(); | 
|  | } | 
|  | if (string_tag == kSeqStringTag) { | 
|  | SeqTwoByteString* seq = SeqTwoByteString::cast(string); | 
|  | return Vector<const uc16>(seq->GetChars() + offset, length); | 
|  | } | 
|  | ASSERT(string_tag == kExternalStringTag); | 
|  | ExternalTwoByteString* ext = ExternalTwoByteString::cast(string); | 
|  | const uc16* start = | 
|  | reinterpret_cast<const uc16*>(ext->resource()->data()); | 
|  | return Vector<const uc16>(start + offset, length); | 
|  | } | 
|  |  | 
|  |  | 
|  | SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls, | 
|  | RobustnessFlag robust_flag, | 
|  | int offset, | 
|  | int length, | 
|  | int* length_return) { | 
|  | ASSERT(NativeAllocationChecker::allocation_allowed()); | 
|  | if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { | 
|  | return SmartPointer<char>(NULL); | 
|  | } | 
|  |  | 
|  | // Negative length means the to the end of the string. | 
|  | if (length < 0) length = kMaxInt - offset; | 
|  |  | 
|  | // Compute the size of the UTF-8 string. Start at the specified offset. | 
|  | Access<StringInputBuffer> buffer(&string_input_buffer); | 
|  | buffer->Reset(offset, this); | 
|  | int character_position = offset; | 
|  | int utf8_bytes = 0; | 
|  | while (buffer->has_more()) { | 
|  | uint16_t character = buffer->GetNext(); | 
|  | if (character_position < offset + length) { | 
|  | utf8_bytes += unibrow::Utf8::Length(character); | 
|  | } | 
|  | character_position++; | 
|  | } | 
|  |  | 
|  | if (length_return) { | 
|  | *length_return = utf8_bytes; | 
|  | } | 
|  |  | 
|  | char* result = NewArray<char>(utf8_bytes + 1); | 
|  |  | 
|  | // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. | 
|  | buffer->Rewind(); | 
|  | buffer->Seek(offset); | 
|  | character_position = offset; | 
|  | int utf8_byte_position = 0; | 
|  | while (buffer->has_more()) { | 
|  | uint16_t character = buffer->GetNext(); | 
|  | if (character_position < offset + length) { | 
|  | if (allow_nulls == DISALLOW_NULLS && character == 0) { | 
|  | character = ' '; | 
|  | } | 
|  | utf8_byte_position += | 
|  | unibrow::Utf8::Encode(result + utf8_byte_position, character); | 
|  | } | 
|  | character_position++; | 
|  | } | 
|  | result[utf8_byte_position] = 0; | 
|  | return SmartPointer<char>(result); | 
|  | } | 
|  |  | 
|  |  | 
|  | SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls, | 
|  | RobustnessFlag robust_flag, | 
|  | int* length_return) { | 
|  | return ToCString(allow_nulls, robust_flag, 0, -1, length_return); | 
|  | } | 
|  |  | 
|  |  | 
|  | const uc16* String::GetTwoByteData() { | 
|  | return GetTwoByteData(0); | 
|  | } | 
|  |  | 
|  |  | 
|  | const uc16* String::GetTwoByteData(unsigned start) { | 
|  | ASSERT(!IsAsciiRepresentation()); | 
|  | switch (StringShape(this).representation_tag()) { | 
|  | case kSeqStringTag: | 
|  | return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); | 
|  | case kExternalStringTag: | 
|  | return ExternalTwoByteString::cast(this)-> | 
|  | ExternalTwoByteStringGetData(start); | 
|  | case kConsStringTag: | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | SmartPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) { | 
|  | ASSERT(NativeAllocationChecker::allocation_allowed()); | 
|  |  | 
|  | if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { | 
|  | return SmartPointer<uc16>(); | 
|  | } | 
|  |  | 
|  | Access<StringInputBuffer> buffer(&string_input_buffer); | 
|  | buffer->Reset(this); | 
|  |  | 
|  | uc16* result = NewArray<uc16>(length() + 1); | 
|  |  | 
|  | int i = 0; | 
|  | while (buffer->has_more()) { | 
|  | uint16_t character = buffer->GetNext(); | 
|  | result[i++] = character; | 
|  | } | 
|  | result[i] = 0; | 
|  | return SmartPointer<uc16>(result); | 
|  | } | 
|  |  | 
|  |  | 
|  | const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { | 
|  | return reinterpret_cast<uc16*>( | 
|  | reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start; | 
|  | } | 
|  |  | 
|  |  | 
|  | void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | unsigned chars_read = 0; | 
|  | unsigned offset = *offset_ptr; | 
|  | while (chars_read < max_chars) { | 
|  | uint16_t c = *reinterpret_cast<uint16_t*>( | 
|  | reinterpret_cast<char*>(this) - | 
|  | kHeapObjectTag + kHeaderSize + offset * kShortSize); | 
|  | if (c <= kMaxAsciiCharCode) { | 
|  | // Fast case for ASCII characters.   Cursor is an input output argument. | 
|  | if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, | 
|  | rbb->util_buffer, | 
|  | rbb->capacity, | 
|  | rbb->cursor)) { | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, | 
|  | rbb->util_buffer, | 
|  | rbb->capacity, | 
|  | rbb->cursor)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | offset++; | 
|  | chars_read++; | 
|  | } | 
|  | *offset_ptr = offset; | 
|  | rbb->remaining += chars_read; | 
|  | } | 
|  |  | 
|  |  | 
|  | const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock( | 
|  | unsigned* remaining, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | const unibrow::byte* b = reinterpret_cast<unibrow::byte*>(this) - | 
|  | kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize; | 
|  | *remaining = max_chars; | 
|  | *offset_ptr += max_chars; | 
|  | return b; | 
|  | } | 
|  |  | 
|  |  | 
|  | // This will iterate unless the block of string data spans two 'halves' of | 
|  | // a ConsString, in which case it will recurse.  Since the block of string | 
|  | // data to be read has a maximum size this limits the maximum recursion | 
|  | // depth to something sane.  Since C++ does not have tail call recursion | 
|  | // elimination, the iteration must be explicit. Since this is not an | 
|  | // -IntoBuffer method it can delegate to one of the efficient | 
|  | // *AsciiStringReadBlock routines. | 
|  | const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | ConsString* current = this; | 
|  | unsigned offset = *offset_ptr; | 
|  | int offset_correction = 0; | 
|  |  | 
|  | while (true) { | 
|  | String* left = current->first(); | 
|  | unsigned left_length = (unsigned)left->length(); | 
|  | if (left_length > offset && | 
|  | (max_chars <= left_length - offset || | 
|  | (rbb->capacity <= left_length - offset && | 
|  | (max_chars = left_length - offset, true)))) {  // comma operator! | 
|  | // Left hand side only - iterate unless we have reached the bottom of | 
|  | // the cons tree.  The assignment on the left of the comma operator is | 
|  | // in order to make use of the fact that the -IntoBuffer routines can | 
|  | // produce at most 'capacity' characters.  This enables us to postpone | 
|  | // the point where we switch to the -IntoBuffer routines (below) in order | 
|  | // to maximize the chances of delegating a big chunk of work to the | 
|  | // efficient *AsciiStringReadBlock routines. | 
|  | if (StringShape(left).IsCons()) { | 
|  | current = ConsString::cast(left); | 
|  | continue; | 
|  | } else { | 
|  | const unibrow::byte* answer = | 
|  | String::ReadBlock(left, rbb, &offset, max_chars); | 
|  | *offset_ptr = offset + offset_correction; | 
|  | return answer; | 
|  | } | 
|  | } else if (left_length <= offset) { | 
|  | // Right hand side only - iterate unless we have reached the bottom of | 
|  | // the cons tree. | 
|  | String* right = current->second(); | 
|  | offset -= left_length; | 
|  | offset_correction += left_length; | 
|  | if (StringShape(right).IsCons()) { | 
|  | current = ConsString::cast(right); | 
|  | continue; | 
|  | } else { | 
|  | const unibrow::byte* answer = | 
|  | String::ReadBlock(right, rbb, &offset, max_chars); | 
|  | *offset_ptr = offset + offset_correction; | 
|  | return answer; | 
|  | } | 
|  | } else { | 
|  | // The block to be read spans two sides of the ConsString, so we call the | 
|  | // -IntoBuffer version, which will recurse.  The -IntoBuffer methods | 
|  | // are able to assemble data from several part strings because they use | 
|  | // the util_buffer to store their data and never return direct pointers | 
|  | // to their storage.  We don't try to read more than the buffer capacity | 
|  | // here or we can get too much recursion. | 
|  | ASSERT(rbb->remaining == 0); | 
|  | ASSERT(rbb->cursor == 0); | 
|  | current->ConsStringReadBlockIntoBuffer( | 
|  | rbb, | 
|  | &offset, | 
|  | max_chars > rbb->capacity ? rbb->capacity : max_chars); | 
|  | *offset_ptr = offset + offset_correction; | 
|  | return rbb->util_buffer; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) { | 
|  | ASSERT(index >= 0 && index < length()); | 
|  | return resource()->data()[index]; | 
|  | } | 
|  |  | 
|  |  | 
|  | const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock( | 
|  | unsigned* remaining, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | // Cast const char* to unibrow::byte* (signedness difference). | 
|  | const unibrow::byte* b = | 
|  | reinterpret_cast<const unibrow::byte*>(resource()->data()) + *offset_ptr; | 
|  | *remaining = max_chars; | 
|  | *offset_ptr += max_chars; | 
|  | return b; | 
|  | } | 
|  |  | 
|  |  | 
|  | const uc16* ExternalTwoByteString::ExternalTwoByteStringGetData( | 
|  | unsigned start) { | 
|  | return resource()->data() + start; | 
|  | } | 
|  |  | 
|  |  | 
|  | uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) { | 
|  | ASSERT(index >= 0 && index < length()); | 
|  | return resource()->data()[index]; | 
|  | } | 
|  |  | 
|  |  | 
|  | void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer( | 
|  | ReadBlockBuffer* rbb, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | unsigned chars_read = 0; | 
|  | unsigned offset = *offset_ptr; | 
|  | const uint16_t* data = resource()->data(); | 
|  | while (chars_read < max_chars) { | 
|  | uint16_t c = data[offset]; | 
|  | if (c <= kMaxAsciiCharCode) { | 
|  | // Fast case for ASCII characters. Cursor is an input output argument. | 
|  | if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, | 
|  | rbb->util_buffer, | 
|  | rbb->capacity, | 
|  | rbb->cursor)) | 
|  | break; | 
|  | } else { | 
|  | if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, | 
|  | rbb->util_buffer, | 
|  | rbb->capacity, | 
|  | rbb->cursor)) | 
|  | break; | 
|  | } | 
|  | offset++; | 
|  | chars_read++; | 
|  | } | 
|  | *offset_ptr = offset; | 
|  | rbb->remaining += chars_read; | 
|  | } | 
|  |  | 
|  |  | 
|  | void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | unsigned capacity = rbb->capacity - rbb->cursor; | 
|  | if (max_chars > capacity) max_chars = capacity; | 
|  | memcpy(rbb->util_buffer + rbb->cursor, | 
|  | reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize + | 
|  | *offset_ptr * kCharSize, | 
|  | max_chars); | 
|  | rbb->remaining += max_chars; | 
|  | *offset_ptr += max_chars; | 
|  | rbb->cursor += max_chars; | 
|  | } | 
|  |  | 
|  |  | 
|  | void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer( | 
|  | ReadBlockBuffer* rbb, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | unsigned capacity = rbb->capacity - rbb->cursor; | 
|  | if (max_chars > capacity) max_chars = capacity; | 
|  | memcpy(rbb->util_buffer + rbb->cursor, | 
|  | resource()->data() + *offset_ptr, | 
|  | max_chars); | 
|  | rbb->remaining += max_chars; | 
|  | *offset_ptr += max_chars; | 
|  | rbb->cursor += max_chars; | 
|  | } | 
|  |  | 
|  |  | 
|  | // This method determines the type of string involved and then copies | 
|  | // a whole chunk of characters into a buffer, or returns a pointer to a buffer | 
|  | // where they can be found.  The pointer is not necessarily valid across a GC | 
|  | // (see AsciiStringReadBlock). | 
|  | const unibrow::byte* String::ReadBlock(String* input, | 
|  | ReadBlockBuffer* rbb, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | ASSERT(*offset_ptr <= static_cast<unsigned>(input->length())); | 
|  | if (max_chars == 0) { | 
|  | rbb->remaining = 0; | 
|  | return NULL; | 
|  | } | 
|  | switch (StringShape(input).representation_tag()) { | 
|  | case kSeqStringTag: | 
|  | if (input->IsAsciiRepresentation()) { | 
|  | SeqAsciiString* str = SeqAsciiString::cast(input); | 
|  | return str->SeqAsciiStringReadBlock(&rbb->remaining, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | } else { | 
|  | SeqTwoByteString* str = SeqTwoByteString::cast(input); | 
|  | str->SeqTwoByteStringReadBlockIntoBuffer(rbb, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | return rbb->util_buffer; | 
|  | } | 
|  | case kConsStringTag: | 
|  | return ConsString::cast(input)->ConsStringReadBlock(rbb, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | case kExternalStringTag: | 
|  | if (input->IsAsciiRepresentation()) { | 
|  | return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock( | 
|  | &rbb->remaining, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | } else { | 
|  | ExternalTwoByteString::cast(input)-> | 
|  | ExternalTwoByteStringReadBlockIntoBuffer(rbb, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | return rbb->util_buffer; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | UNREACHABLE(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | Relocatable* Relocatable::top_ = NULL; | 
|  |  | 
|  |  | 
|  | void Relocatable::PostGarbageCollectionProcessing() { | 
|  | Relocatable* current = top_; | 
|  | while (current != NULL) { | 
|  | current->PostGarbageCollection(); | 
|  | current = current->prev_; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Reserve space for statics needing saving and restoring. | 
|  | int Relocatable::ArchiveSpacePerThread() { | 
|  | return sizeof(top_); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Archive statics that are thread local. | 
|  | char* Relocatable::ArchiveState(char* to) { | 
|  | *reinterpret_cast<Relocatable**>(to) = top_; | 
|  | top_ = NULL; | 
|  | return to + ArchiveSpacePerThread(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Restore statics that are thread local. | 
|  | char* Relocatable::RestoreState(char* from) { | 
|  | top_ = *reinterpret_cast<Relocatable**>(from); | 
|  | return from + ArchiveSpacePerThread(); | 
|  | } | 
|  |  | 
|  |  | 
|  | char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { | 
|  | Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage); | 
|  | Iterate(v, top); | 
|  | return thread_storage + ArchiveSpacePerThread(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Relocatable::Iterate(ObjectVisitor* v) { | 
|  | Iterate(v, top_); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { | 
|  | Relocatable* current = top; | 
|  | while (current != NULL) { | 
|  | current->IterateInstance(v); | 
|  | current = current->prev_; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | FlatStringReader::FlatStringReader(Handle<String> str) | 
|  | : str_(str.location()), | 
|  | length_(str->length()) { | 
|  | PostGarbageCollection(); | 
|  | } | 
|  |  | 
|  |  | 
|  | FlatStringReader::FlatStringReader(Vector<const char> input) | 
|  | : str_(0), | 
|  | is_ascii_(true), | 
|  | length_(input.length()), | 
|  | start_(input.start()) { } | 
|  |  | 
|  |  | 
|  | void FlatStringReader::PostGarbageCollection() { | 
|  | if (str_ == NULL) return; | 
|  | Handle<String> str(str_); | 
|  | ASSERT(str->IsFlat()); | 
|  | is_ascii_ = str->IsAsciiRepresentation(); | 
|  | if (is_ascii_) { | 
|  | start_ = str->ToAsciiVector().start(); | 
|  | } else { | 
|  | start_ = str->ToUC16Vector().start(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void StringInputBuffer::Seek(unsigned pos) { | 
|  | Reset(pos, input_); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SafeStringInputBuffer::Seek(unsigned pos) { | 
|  | Reset(pos, input_); | 
|  | } | 
|  |  | 
|  |  | 
|  | // This method determines the type of string involved and then copies | 
|  | // a whole chunk of characters into a buffer.  It can be used with strings | 
|  | // that have been glued together to form a ConsString and which must cooperate | 
|  | // to fill up a buffer. | 
|  | void String::ReadBlockIntoBuffer(String* input, | 
|  | ReadBlockBuffer* rbb, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | ASSERT(*offset_ptr <= (unsigned)input->length()); | 
|  | if (max_chars == 0) return; | 
|  |  | 
|  | switch (StringShape(input).representation_tag()) { | 
|  | case kSeqStringTag: | 
|  | if (input->IsAsciiRepresentation()) { | 
|  | SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | return; | 
|  | } else { | 
|  | SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | return; | 
|  | } | 
|  | case kConsStringTag: | 
|  | ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | return; | 
|  | case kExternalStringTag: | 
|  | if (input->IsAsciiRepresentation()) { | 
|  | ExternalAsciiString::cast(input)-> | 
|  | ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); | 
|  | } else { | 
|  | ExternalTwoByteString::cast(input)-> | 
|  | ExternalTwoByteStringReadBlockIntoBuffer(rbb, | 
|  | offset_ptr, | 
|  | max_chars); | 
|  | } | 
|  | return; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | UNREACHABLE(); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | const unibrow::byte* String::ReadBlock(String* input, | 
|  | unibrow::byte* util_buffer, | 
|  | unsigned capacity, | 
|  | unsigned* remaining, | 
|  | unsigned* offset_ptr) { | 
|  | ASSERT(*offset_ptr <= (unsigned)input->length()); | 
|  | unsigned chars = input->length() - *offset_ptr; | 
|  | ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); | 
|  | const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars); | 
|  | ASSERT(rbb.remaining <= static_cast<unsigned>(input->length())); | 
|  | *remaining = rbb.remaining; | 
|  | return answer; | 
|  | } | 
|  |  | 
|  |  | 
|  | const unibrow::byte* String::ReadBlock(String** raw_input, | 
|  | unibrow::byte* util_buffer, | 
|  | unsigned capacity, | 
|  | unsigned* remaining, | 
|  | unsigned* offset_ptr) { | 
|  | Handle<String> input(raw_input); | 
|  | ASSERT(*offset_ptr <= (unsigned)input->length()); | 
|  | unsigned chars = input->length() - *offset_ptr; | 
|  | if (chars > capacity) chars = capacity; | 
|  | ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); | 
|  | ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars); | 
|  | ASSERT(rbb.remaining <= static_cast<unsigned>(input->length())); | 
|  | *remaining = rbb.remaining; | 
|  | return rbb.util_buffer; | 
|  | } | 
|  |  | 
|  |  | 
|  | // This will iterate unless the block of string data spans two 'halves' of | 
|  | // a ConsString, in which case it will recurse.  Since the block of string | 
|  | // data to be read has a maximum size this limits the maximum recursion | 
|  | // depth to something sane.  Since C++ does not have tail call recursion | 
|  | // elimination, the iteration must be explicit. | 
|  | void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, | 
|  | unsigned* offset_ptr, | 
|  | unsigned max_chars) { | 
|  | ConsString* current = this; | 
|  | unsigned offset = *offset_ptr; | 
|  | int offset_correction = 0; | 
|  |  | 
|  | while (true) { | 
|  | String* left = current->first(); | 
|  | unsigned left_length = (unsigned)left->length(); | 
|  | if (left_length > offset && | 
|  | max_chars <= left_length - offset) { | 
|  | // Left hand side only - iterate unless we have reached the bottom of | 
|  | // the cons tree. | 
|  | if (StringShape(left).IsCons()) { | 
|  | current = ConsString::cast(left); | 
|  | continue; | 
|  | } else { | 
|  | String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars); | 
|  | *offset_ptr = offset + offset_correction; | 
|  | return; | 
|  | } | 
|  | } else if (left_length <= offset) { | 
|  | // Right hand side only - iterate unless we have reached the bottom of | 
|  | // the cons tree. | 
|  | offset -= left_length; | 
|  | offset_correction += left_length; | 
|  | String* right = current->second(); | 
|  | if (StringShape(right).IsCons()) { | 
|  | current = ConsString::cast(right); | 
|  | continue; | 
|  | } else { | 
|  | String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); | 
|  | *offset_ptr = offset + offset_correction; | 
|  | return; | 
|  | } | 
|  | } else { | 
|  | // The block to be read spans two sides of the ConsString, so we recurse. | 
|  | // First recurse on the left. | 
|  | max_chars -= left_length - offset; | 
|  | String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset); | 
|  | // We may have reached the max or there may not have been enough space | 
|  | // in the buffer for the characters in the left hand side. | 
|  | if (offset == left_length) { | 
|  | // Recurse on the right. | 
|  | String* right = String::cast(current->second()); | 
|  | offset -= left_length; | 
|  | offset_correction += left_length; | 
|  | String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); | 
|  | } | 
|  | *offset_ptr = offset + offset_correction; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | uint16_t ConsString::ConsStringGet(int index) { | 
|  | ASSERT(index >= 0 && index < this->length()); | 
|  |  | 
|  | // Check for a flattened cons string | 
|  | if (second()->length() == 0) { | 
|  | String* left = first(); | 
|  | return left->Get(index); | 
|  | } | 
|  |  | 
|  | String* string = String::cast(this); | 
|  |  | 
|  | while (true) { | 
|  | if (StringShape(string).IsCons()) { | 
|  | ConsString* cons_string = ConsString::cast(string); | 
|  | String* left = cons_string->first(); | 
|  | if (left->length() > index) { | 
|  | string = left; | 
|  | } else { | 
|  | index -= left->length(); | 
|  | string = cons_string->second(); | 
|  | } | 
|  | } else { | 
|  | return string->Get(index); | 
|  | } | 
|  | } | 
|  |  | 
|  | UNREACHABLE(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | template <typename sinkchar> | 
|  | void String::WriteToFlat(String* src, | 
|  | sinkchar* sink, | 
|  | int f, | 
|  | int t) { | 
|  | String* source = src; | 
|  | int from = f; | 
|  | int to = t; | 
|  | while (true) { | 
|  | ASSERT(0 <= from && from <= to && to <= source->length()); | 
|  | switch (StringShape(source).full_representation_tag()) { | 
|  | case kAsciiStringTag | kExternalStringTag: { | 
|  | CopyChars(sink, | 
|  | ExternalAsciiString::cast(source)->resource()->data() + from, | 
|  | to - from); | 
|  | return; | 
|  | } | 
|  | case kTwoByteStringTag | kExternalStringTag: { | 
|  | const uc16* data = | 
|  | ExternalTwoByteString::cast(source)->resource()->data(); | 
|  | CopyChars(sink, | 
|  | data + from, | 
|  | to - from); | 
|  | return; | 
|  | } | 
|  | case kAsciiStringTag | kSeqStringTag: { | 
|  | CopyChars(sink, | 
|  | SeqAsciiString::cast(source)->GetChars() + from, | 
|  | to - from); | 
|  | return; | 
|  | } | 
|  | case kTwoByteStringTag | kSeqStringTag: { | 
|  | CopyChars(sink, | 
|  | SeqTwoByteString::cast(source)->GetChars() + from, | 
|  | to - from); | 
|  | return; | 
|  | } | 
|  | case kAsciiStringTag | kConsStringTag: | 
|  | case kTwoByteStringTag | kConsStringTag: { | 
|  | ConsString* cons_string = ConsString::cast(source); | 
|  | String* first = cons_string->first(); | 
|  | int boundary = first->length(); | 
|  | if (to - boundary >= boundary - from) { | 
|  | // Right hand side is longer.  Recurse over left. | 
|  | if (from < boundary) { | 
|  | WriteToFlat(first, sink, from, boundary); | 
|  | sink += boundary - from; | 
|  | from = 0; | 
|  | } else { | 
|  | from -= boundary; | 
|  | } | 
|  | to -= boundary; | 
|  | source = cons_string->second(); | 
|  | } else { | 
|  | // Left hand side is longer.  Recurse over right. | 
|  | if (to > boundary) { | 
|  | String* second = cons_string->second(); | 
|  | WriteToFlat(second, | 
|  | sink + boundary - from, | 
|  | 0, | 
|  | to - boundary); | 
|  | to = boundary; | 
|  | } | 
|  | source = first; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <typename IteratorA, typename IteratorB> | 
|  | static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) { | 
|  | // General slow case check.  We know that the ia and ib iterators | 
|  | // have the same length. | 
|  | while (ia->has_more()) { | 
|  | uc32 ca = ia->GetNext(); | 
|  | uc32 cb = ib->GetNext(); | 
|  | if (ca != cb) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Compares the contents of two strings by reading and comparing | 
|  | // int-sized blocks of characters. | 
|  | template <typename Char> | 
|  | static inline bool CompareRawStringContents(Vector<Char> a, Vector<Char> b) { | 
|  | int length = a.length(); | 
|  | ASSERT_EQ(length, b.length()); | 
|  | const Char* pa = a.start(); | 
|  | const Char* pb = b.start(); | 
|  | int i = 0; | 
|  | #ifndef V8_HOST_CAN_READ_UNALIGNED | 
|  | // If this architecture isn't comfortable reading unaligned ints | 
|  | // then we have to check that the strings are aligned before | 
|  | // comparing them blockwise. | 
|  | const int kAlignmentMask = sizeof(uint32_t) - 1;  // NOLINT | 
|  | uint32_t pa_addr = reinterpret_cast<uint32_t>(pa); | 
|  | uint32_t pb_addr = reinterpret_cast<uint32_t>(pb); | 
|  | if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) { | 
|  | #endif | 
|  | const int kStepSize = sizeof(int) / sizeof(Char);  // NOLINT | 
|  | int endpoint = length - kStepSize; | 
|  | // Compare blocks until we reach near the end of the string. | 
|  | for (; i <= endpoint; i += kStepSize) { | 
|  | uint32_t wa = *reinterpret_cast<const uint32_t*>(pa + i); | 
|  | uint32_t wb = *reinterpret_cast<const uint32_t*>(pb + i); | 
|  | if (wa != wb) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | #ifndef V8_HOST_CAN_READ_UNALIGNED | 
|  | } | 
|  | #endif | 
|  | // Compare the remaining characters that didn't fit into a block. | 
|  | for (; i < length; i++) { | 
|  | if (a[i] != b[i]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | static StringInputBuffer string_compare_buffer_b; | 
|  |  | 
|  |  | 
|  | template <typename IteratorA> | 
|  | static inline bool CompareStringContentsPartial(IteratorA* ia, String* b) { | 
|  | if (b->IsFlat()) { | 
|  | if (b->IsAsciiRepresentation()) { | 
|  | VectorIterator<char> ib(b->ToAsciiVector()); | 
|  | return CompareStringContents(ia, &ib); | 
|  | } else { | 
|  | VectorIterator<uc16> ib(b->ToUC16Vector()); | 
|  | return CompareStringContents(ia, &ib); | 
|  | } | 
|  | } else { | 
|  | string_compare_buffer_b.Reset(0, b); | 
|  | return CompareStringContents(ia, &string_compare_buffer_b); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static StringInputBuffer string_compare_buffer_a; | 
|  |  | 
|  |  | 
|  | bool String::SlowEquals(String* other) { | 
|  | // Fast check: negative check with lengths. | 
|  | int len = length(); | 
|  | if (len != other->length()) return false; | 
|  | if (len == 0) return true; | 
|  |  | 
|  | // Fast check: if hash code is computed for both strings | 
|  | // a fast negative check can be performed. | 
|  | if (HasHashCode() && other->HasHashCode()) { | 
|  | if (Hash() != other->Hash()) return false; | 
|  | } | 
|  |  | 
|  | // We know the strings are both non-empty. Compare the first chars | 
|  | // before we try to flatten the strings. | 
|  | if (this->Get(0) != other->Get(0)) return false; | 
|  |  | 
|  | String* lhs = this->TryFlattenGetString(); | 
|  | String* rhs = other->TryFlattenGetString(); | 
|  |  | 
|  | if (StringShape(lhs).IsSequentialAscii() && | 
|  | StringShape(rhs).IsSequentialAscii()) { | 
|  | const char* str1 = SeqAsciiString::cast(lhs)->GetChars(); | 
|  | const char* str2 = SeqAsciiString::cast(rhs)->GetChars(); | 
|  | return CompareRawStringContents(Vector<const char>(str1, len), | 
|  | Vector<const char>(str2, len)); | 
|  | } | 
|  |  | 
|  | if (lhs->IsFlat()) { | 
|  | if (lhs->IsAsciiRepresentation()) { | 
|  | Vector<const char> vec1 = lhs->ToAsciiVector(); | 
|  | if (rhs->IsFlat()) { | 
|  | if (rhs->IsAsciiRepresentation()) { | 
|  | Vector<const char> vec2 = rhs->ToAsciiVector(); | 
|  | return CompareRawStringContents(vec1, vec2); | 
|  | } else { | 
|  | VectorIterator<char> buf1(vec1); | 
|  | VectorIterator<uc16> ib(rhs->ToUC16Vector()); | 
|  | return CompareStringContents(&buf1, &ib); | 
|  | } | 
|  | } else { | 
|  | VectorIterator<char> buf1(vec1); | 
|  | string_compare_buffer_b.Reset(0, rhs); | 
|  | return CompareStringContents(&buf1, &string_compare_buffer_b); | 
|  | } | 
|  | } else { | 
|  | Vector<const uc16> vec1 = lhs->ToUC16Vector(); | 
|  | if (rhs->IsFlat()) { | 
|  | if (rhs->IsAsciiRepresentation()) { | 
|  | VectorIterator<uc16> buf1(vec1); | 
|  | VectorIterator<char> ib(rhs->ToAsciiVector()); | 
|  | return CompareStringContents(&buf1, &ib); | 
|  | } else { | 
|  | Vector<const uc16> vec2(rhs->ToUC16Vector()); | 
|  | return CompareRawStringContents(vec1, vec2); | 
|  | } | 
|  | } else { | 
|  | VectorIterator<uc16> buf1(vec1); | 
|  | string_compare_buffer_b.Reset(0, rhs); | 
|  | return CompareStringContents(&buf1, &string_compare_buffer_b); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | string_compare_buffer_a.Reset(0, lhs); | 
|  | return CompareStringContentsPartial(&string_compare_buffer_a, rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool String::MarkAsUndetectable() { | 
|  | if (StringShape(this).IsSymbol()) return false; | 
|  |  | 
|  | Map* map = this->map(); | 
|  | if (map == Heap::string_map()) { | 
|  | this->set_map(Heap::undetectable_string_map()); | 
|  | return true; | 
|  | } else if (map == Heap::ascii_string_map()) { | 
|  | this->set_map(Heap::undetectable_ascii_string_map()); | 
|  | return true; | 
|  | } | 
|  | // Rest cannot be marked as undetectable | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool String::IsEqualTo(Vector<const char> str) { | 
|  | int slen = length(); | 
|  | Access<Scanner::Utf8Decoder> decoder(Scanner::utf8_decoder()); | 
|  | decoder->Reset(str.start(), str.length()); | 
|  | int i; | 
|  | for (i = 0; i < slen && decoder->has_more(); i++) { | 
|  | uc32 r = decoder->GetNext(); | 
|  | if (Get(i) != r) return false; | 
|  | } | 
|  | return i == slen && !decoder->has_more(); | 
|  | } | 
|  |  | 
|  |  | 
|  | template <typename schar> | 
|  | static inline uint32_t HashSequentialString(const schar* chars, int length) { | 
|  | StringHasher hasher(length); | 
|  | if (!hasher.has_trivial_hash()) { | 
|  | int i; | 
|  | for (i = 0; hasher.is_array_index() && (i < length); i++) { | 
|  | hasher.AddCharacter(chars[i]); | 
|  | } | 
|  | for (; i < length; i++) { | 
|  | hasher.AddCharacterNoIndex(chars[i]); | 
|  | } | 
|  | } | 
|  | return hasher.GetHashField(); | 
|  | } | 
|  |  | 
|  |  | 
|  | uint32_t String::ComputeAndSetHash() { | 
|  | // Should only be called if hash code has not yet been computed. | 
|  | ASSERT(!HasHashCode()); | 
|  |  | 
|  | const int len = length(); | 
|  |  | 
|  | // Compute the hash code. | 
|  | uint32_t field = 0; | 
|  | if (StringShape(this).IsSequentialAscii()) { | 
|  | field = HashSequentialString(SeqAsciiString::cast(this)->GetChars(), len); | 
|  | } else if (StringShape(this).IsSequentialTwoByte()) { | 
|  | field = HashSequentialString(SeqTwoByteString::cast(this)->GetChars(), len); | 
|  | } else { | 
|  | StringInputBuffer buffer(this); | 
|  | field = ComputeHashField(&buffer, len); | 
|  | } | 
|  |  | 
|  | // Store the hash code in the object. | 
|  | set_hash_field(field); | 
|  |  | 
|  | // Check the hash code is there. | 
|  | ASSERT(HasHashCode()); | 
|  | uint32_t result = field >> kHashShift; | 
|  | ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed. | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer, | 
|  | uint32_t* index, | 
|  | int length) { | 
|  | if (length == 0 || length > kMaxArrayIndexSize) return false; | 
|  | uc32 ch = buffer->GetNext(); | 
|  |  | 
|  | // If the string begins with a '0' character, it must only consist | 
|  | // of it to be a legal array index. | 
|  | if (ch == '0') { | 
|  | *index = 0; | 
|  | return length == 1; | 
|  | } | 
|  |  | 
|  | // Convert string to uint32 array index; character by character. | 
|  | int d = ch - '0'; | 
|  | if (d < 0 || d > 9) return false; | 
|  | uint32_t result = d; | 
|  | while (buffer->has_more()) { | 
|  | d = buffer->GetNext() - '0'; | 
|  | if (d < 0 || d > 9) return false; | 
|  | // Check that the new result is below the 32 bit limit. | 
|  | if (result > 429496729U - ((d > 5) ? 1 : 0)) return false; | 
|  | result = (result * 10) + d; | 
|  | } | 
|  |  | 
|  | *index = result; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool String::SlowAsArrayIndex(uint32_t* index) { | 
|  | if (length() <= kMaxCachedArrayIndexLength) { | 
|  | Hash();  // force computation of hash code | 
|  | uint32_t field = hash_field(); | 
|  | if ((field & kIsNotArrayIndexMask) != 0) return false; | 
|  | // Isolate the array index form the full hash field. | 
|  | *index = (kArrayIndexHashMask & field) >> kHashShift; | 
|  | return true; | 
|  | } else { | 
|  | StringInputBuffer buffer(this); | 
|  | return ComputeArrayIndex(&buffer, index, length()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { | 
|  | // For array indexes mix the length into the hash as an array index could | 
|  | // be zero. | 
|  | ASSERT(length > 0); | 
|  | ASSERT(length <= String::kMaxArrayIndexSize); | 
|  | ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < | 
|  | (1 << String::kArrayIndexValueBits)); | 
|  |  | 
|  | value <<= String::kHashShift; | 
|  | value |= length << String::kArrayIndexHashLengthShift; | 
|  |  | 
|  | ASSERT((value & String::kIsNotArrayIndexMask) == 0); | 
|  | ASSERT((length > String::kMaxCachedArrayIndexLength) || | 
|  | (value & String::kContainsCachedArrayIndexMask) == 0); | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | uint32_t StringHasher::GetHashField() { | 
|  | ASSERT(is_valid()); | 
|  | if (length_ <= String::kMaxHashCalcLength) { | 
|  | if (is_array_index()) { | 
|  | return MakeArrayIndexHash(array_index(), length_); | 
|  | } | 
|  | return (GetHash() << String::kHashShift) | String::kIsNotArrayIndexMask; | 
|  | } else { | 
|  | return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | uint32_t String::ComputeHashField(unibrow::CharacterStream* buffer, | 
|  | int length) { | 
|  | StringHasher hasher(length); | 
|  |  | 
|  | // Very long strings have a trivial hash that doesn't inspect the | 
|  | // string contents. | 
|  | if (hasher.has_trivial_hash()) { | 
|  | return hasher.GetHashField(); | 
|  | } | 
|  |  | 
|  | // Do the iterative array index computation as long as there is a | 
|  | // chance this is an array index. | 
|  | while (buffer->has_more() && hasher.is_array_index()) { | 
|  | hasher.AddCharacter(buffer->GetNext()); | 
|  | } | 
|  |  | 
|  | // Process the remaining characters without updating the array | 
|  | // index. | 
|  | while (buffer->has_more()) { | 
|  | hasher.AddCharacterNoIndex(buffer->GetNext()); | 
|  | } | 
|  |  | 
|  | return hasher.GetHashField(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* String::SubString(int start, int end, PretenureFlag pretenure) { | 
|  | if (start == 0 && end == length()) return this; | 
|  | Object* result = Heap::AllocateSubString(this, start, end, pretenure); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | void String::PrintOn(FILE* file) { | 
|  | int length = this->length(); | 
|  | for (int i = 0; i < length; i++) { | 
|  | fprintf(file, "%c", Get(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Map::CreateBackPointers() { | 
|  | DescriptorArray* descriptors = instance_descriptors(); | 
|  | for (int i = 0; i < descriptors->number_of_descriptors(); i++) { | 
|  | if (descriptors->GetType(i) == MAP_TRANSITION || | 
|  | descriptors->GetType(i) == CONSTANT_TRANSITION) { | 
|  | // Get target. | 
|  | Map* target = Map::cast(descriptors->GetValue(i)); | 
|  | #ifdef DEBUG | 
|  | // Verify target. | 
|  | Object* source_prototype = prototype(); | 
|  | Object* target_prototype = target->prototype(); | 
|  | ASSERT(source_prototype->IsJSObject() || | 
|  | source_prototype->IsMap() || | 
|  | source_prototype->IsNull()); | 
|  | ASSERT(target_prototype->IsJSObject() || | 
|  | target_prototype->IsNull()); | 
|  | ASSERT(source_prototype->IsMap() || | 
|  | source_prototype == target_prototype); | 
|  | #endif | 
|  | // Point target back to source.  set_prototype() will not let us set | 
|  | // the prototype to a map, as we do here. | 
|  | *RawField(target, kPrototypeOffset) = this; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void Map::ClearNonLiveTransitions(Object* real_prototype) { | 
|  | // Live DescriptorArray objects will be marked, so we must use | 
|  | // low-level accessors to get and modify their data. | 
|  | DescriptorArray* d = reinterpret_cast<DescriptorArray*>( | 
|  | *RawField(this, Map::kInstanceDescriptorsOffset)); | 
|  | if (d == Heap::raw_unchecked_empty_descriptor_array()) return; | 
|  | Smi* NullDescriptorDetails = | 
|  | PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi(); | 
|  | FixedArray* contents = reinterpret_cast<FixedArray*>( | 
|  | d->get(DescriptorArray::kContentArrayIndex)); | 
|  | ASSERT(contents->length() >= 2); | 
|  | for (int i = 0; i < contents->length(); i += 2) { | 
|  | // If the pair (value, details) is a map transition, | 
|  | // check if the target is live.  If not, null the descriptor. | 
|  | // Also drop the back pointer for that map transition, so that this | 
|  | // map is not reached again by following a back pointer from a | 
|  | // non-live object. | 
|  | PropertyDetails details(Smi::cast(contents->get(i + 1))); | 
|  | if (details.type() == MAP_TRANSITION || | 
|  | details.type() == CONSTANT_TRANSITION) { | 
|  | Map* target = reinterpret_cast<Map*>(contents->get(i)); | 
|  | ASSERT(target->IsHeapObject()); | 
|  | if (!target->IsMarked()) { | 
|  | ASSERT(target->IsMap()); | 
|  | contents->set_unchecked(i + 1, NullDescriptorDetails); | 
|  | contents->set_null_unchecked(i); | 
|  | ASSERT(target->prototype() == this || | 
|  | target->prototype() == real_prototype); | 
|  | // Getter prototype() is read-only, set_prototype() has side effects. | 
|  | *RawField(target, Map::kPrototypeOffset) = real_prototype; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) { | 
|  | // Iterate over all fields in the body but take care in dealing with | 
|  | // the code entry. | 
|  | IteratePointers(v, kPropertiesOffset, kCodeEntryOffset); | 
|  | v->VisitCodeEntry(this->address() + kCodeEntryOffset); | 
|  | IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSFunction::SetInstancePrototype(Object* value) { | 
|  | ASSERT(value->IsJSObject()); | 
|  |  | 
|  | if (has_initial_map()) { | 
|  | initial_map()->set_prototype(value); | 
|  | } else { | 
|  | // Put the value in the initial map field until an initial map is | 
|  | // needed.  At that point, a new initial map is created and the | 
|  | // prototype is put into the initial map where it belongs. | 
|  | set_prototype_or_initial_map(value); | 
|  | } | 
|  | Heap::ClearInstanceofCache(); | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSFunction::SetPrototype(Object* value) { | 
|  | ASSERT(should_have_prototype()); | 
|  | Object* construct_prototype = value; | 
|  |  | 
|  | // If the value is not a JSObject, store the value in the map's | 
|  | // constructor field so it can be accessed.  Also, set the prototype | 
|  | // used for constructing objects to the original object prototype. | 
|  | // See ECMA-262 13.2.2. | 
|  | if (!value->IsJSObject()) { | 
|  | // Copy the map so this does not affect unrelated functions. | 
|  | // Remove map transitions because they point to maps with a | 
|  | // different prototype. | 
|  | Object* new_map = map()->CopyDropTransitions(); | 
|  | if (new_map->IsFailure()) return new_map; | 
|  | set_map(Map::cast(new_map)); | 
|  | map()->set_constructor(value); | 
|  | map()->set_non_instance_prototype(true); | 
|  | construct_prototype = | 
|  | Top::context()->global_context()->initial_object_prototype(); | 
|  | } else { | 
|  | map()->set_non_instance_prototype(false); | 
|  | } | 
|  |  | 
|  | return SetInstancePrototype(construct_prototype); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSFunction::RemovePrototype() { | 
|  | ASSERT(map() == context()->global_context()->function_map()); | 
|  | set_map(context()->global_context()->function_without_prototype_map()); | 
|  | set_prototype_or_initial_map(Heap::the_hole_value()); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSFunction::SetInstanceClassName(String* name) { | 
|  | shared()->set_instance_class_name(name); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) { | 
|  | return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex)); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* Oddball::Initialize(const char* to_string, Object* to_number) { | 
|  | Object* symbol = Heap::LookupAsciiSymbol(to_string); | 
|  | if (symbol->IsFailure()) return symbol; | 
|  | set_to_string(String::cast(symbol)); | 
|  | set_to_number(to_number); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | String* SharedFunctionInfo::DebugName() { | 
|  | Object* n = name(); | 
|  | if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name(); | 
|  | return String::cast(n); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool SharedFunctionInfo::HasSourceCode() { | 
|  | return !script()->IsUndefined() && | 
|  | !reinterpret_cast<Script*>(script())->source()->IsUndefined(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* SharedFunctionInfo::GetSourceCode() { | 
|  | HandleScope scope; | 
|  | if (script()->IsUndefined()) return Heap::undefined_value(); | 
|  | Object* source = Script::cast(script())->source(); | 
|  | if (source->IsUndefined()) return Heap::undefined_value(); | 
|  | return *SubString(Handle<String>(String::cast(source)), | 
|  | start_position(), end_position()); | 
|  | } | 
|  |  | 
|  |  | 
|  | int SharedFunctionInfo::CalculateInstanceSize() { | 
|  | int instance_size = | 
|  | JSObject::kHeaderSize + | 
|  | expected_nof_properties() * kPointerSize; | 
|  | if (instance_size > JSObject::kMaxInstanceSize) { | 
|  | instance_size = JSObject::kMaxInstanceSize; | 
|  | } | 
|  | return instance_size; | 
|  | } | 
|  |  | 
|  |  | 
|  | int SharedFunctionInfo::CalculateInObjectProperties() { | 
|  | return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool SharedFunctionInfo::CanGenerateInlineConstructor(Object* prototype) { | 
|  | // Check the basic conditions for generating inline constructor code. | 
|  | if (!FLAG_inline_new | 
|  | || !has_only_simple_this_property_assignments() | 
|  | || this_property_assignments_count() == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the prototype is null inline constructors cause no problems. | 
|  | if (!prototype->IsJSObject()) { | 
|  | ASSERT(prototype->IsNull()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Traverse the proposed prototype chain looking for setters for properties of | 
|  | // the same names as are set by the inline constructor. | 
|  | for (Object* obj = prototype; | 
|  | obj != Heap::null_value(); | 
|  | obj = obj->GetPrototype()) { | 
|  | JSObject* js_object = JSObject::cast(obj); | 
|  | for (int i = 0; i < this_property_assignments_count(); i++) { | 
|  | LookupResult result; | 
|  | String* name = GetThisPropertyAssignmentName(i); | 
|  | js_object->LocalLookupRealNamedProperty(name, &result); | 
|  | if (result.IsProperty() && result.type() == CALLBACKS) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | void SharedFunctionInfo::ForbidInlineConstructor() { | 
|  | set_compiler_hints(BooleanBit::set(compiler_hints(), | 
|  | kHasOnlySimpleThisPropertyAssignments, | 
|  | false)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SharedFunctionInfo::SetThisPropertyAssignmentsInfo( | 
|  | bool only_simple_this_property_assignments, | 
|  | FixedArray* assignments) { | 
|  | set_compiler_hints(BooleanBit::set(compiler_hints(), | 
|  | kHasOnlySimpleThisPropertyAssignments, | 
|  | only_simple_this_property_assignments)); | 
|  | set_this_property_assignments(assignments); | 
|  | set_this_property_assignments_count(assignments->length() / 3); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SharedFunctionInfo::ClearThisPropertyAssignmentsInfo() { | 
|  | set_compiler_hints(BooleanBit::set(compiler_hints(), | 
|  | kHasOnlySimpleThisPropertyAssignments, | 
|  | false)); | 
|  | set_this_property_assignments(Heap::undefined_value()); | 
|  | set_this_property_assignments_count(0); | 
|  | } | 
|  |  | 
|  |  | 
|  | String* SharedFunctionInfo::GetThisPropertyAssignmentName(int index) { | 
|  | Object* obj = this_property_assignments(); | 
|  | ASSERT(obj->IsFixedArray()); | 
|  | ASSERT(index < this_property_assignments_count()); | 
|  | obj = FixedArray::cast(obj)->get(index * 3); | 
|  | ASSERT(obj->IsString()); | 
|  | return String::cast(obj); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool SharedFunctionInfo::IsThisPropertyAssignmentArgument(int index) { | 
|  | Object* obj = this_property_assignments(); | 
|  | ASSERT(obj->IsFixedArray()); | 
|  | ASSERT(index < this_property_assignments_count()); | 
|  | obj = FixedArray::cast(obj)->get(index * 3 + 1); | 
|  | return Smi::cast(obj)->value() != -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int SharedFunctionInfo::GetThisPropertyAssignmentArgument(int index) { | 
|  | ASSERT(IsThisPropertyAssignmentArgument(index)); | 
|  | Object* obj = | 
|  | FixedArray::cast(this_property_assignments())->get(index * 3 + 1); | 
|  | return Smi::cast(obj)->value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* SharedFunctionInfo::GetThisPropertyAssignmentConstant(int index) { | 
|  | ASSERT(!IsThisPropertyAssignmentArgument(index)); | 
|  | Object* obj = | 
|  | FixedArray::cast(this_property_assignments())->get(index * 3 + 2); | 
|  | return obj; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Support function for printing the source code to a StringStream | 
|  | // without any allocation in the heap. | 
|  | void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator, | 
|  | int max_length) { | 
|  | // For some native functions there is no source. | 
|  | if (script()->IsUndefined() || | 
|  | Script::cast(script())->source()->IsUndefined()) { | 
|  | accumulator->Add("<No Source>"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get the source for the script which this function came from. | 
|  | // Don't use String::cast because we don't want more assertion errors while | 
|  | // we are already creating a stack dump. | 
|  | String* script_source = | 
|  | reinterpret_cast<String*>(Script::cast(script())->source()); | 
|  |  | 
|  | if (!script_source->LooksValid()) { | 
|  | accumulator->Add("<Invalid Source>"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!is_toplevel()) { | 
|  | accumulator->Add("function "); | 
|  | Object* name = this->name(); | 
|  | if (name->IsString() && String::cast(name)->length() > 0) { | 
|  | accumulator->PrintName(name); | 
|  | } | 
|  | } | 
|  |  | 
|  | int len = end_position() - start_position(); | 
|  | if (len > max_length) { | 
|  | accumulator->Put(script_source, | 
|  | start_position(), | 
|  | start_position() + max_length); | 
|  | accumulator->Add("...\n"); | 
|  | } else { | 
|  | accumulator->Put(script_source, start_position(), end_position()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void SharedFunctionInfo::StartInobjectSlackTracking(Map* map) { | 
|  | ASSERT(!IsInobjectSlackTrackingInProgress()); | 
|  |  | 
|  | // Only initiate the tracking the first time. | 
|  | if (live_objects_may_exist()) return; | 
|  | set_live_objects_may_exist(true); | 
|  |  | 
|  | // No tracking during the snapshot construction phase. | 
|  | if (Serializer::enabled()) return; | 
|  |  | 
|  | if (map->unused_property_fields() == 0) return; | 
|  |  | 
|  | // Nonzero counter is a leftover from the previous attempt interrupted | 
|  | // by GC, keep it. | 
|  | if (construction_count() == 0) { | 
|  | set_construction_count(kGenerousAllocationCount); | 
|  | } | 
|  | set_initial_map(map); | 
|  | ASSERT_EQ(Builtins::builtin(Builtins::JSConstructStubGeneric), | 
|  | construct_stub()); | 
|  | set_construct_stub(Builtins::builtin(Builtins::JSConstructStubCountdown)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Called from GC, hence reinterpret_cast and unchecked accessors. | 
|  | void SharedFunctionInfo::DetachInitialMap() { | 
|  | Map* map = reinterpret_cast<Map*>(initial_map()); | 
|  |  | 
|  | // Make the map remember to restore the link if it survives the GC. | 
|  | map->set_bit_field2( | 
|  | map->bit_field2() | (1 << Map::kAttachedToSharedFunctionInfo)); | 
|  |  | 
|  | // Undo state changes made by StartInobjectTracking (except the | 
|  | // construction_count). This way if the initial map does not survive the GC | 
|  | // then StartInobjectTracking will be called again the next time the | 
|  | // constructor is called. The countdown will continue and (possibly after | 
|  | // several more GCs) CompleteInobjectSlackTracking will eventually be called. | 
|  | set_initial_map(Heap::raw_unchecked_undefined_value()); | 
|  | ASSERT_EQ(Builtins::builtin(Builtins::JSConstructStubCountdown), | 
|  | *RawField(this, kConstructStubOffset)); | 
|  | set_construct_stub(Builtins::builtin(Builtins::JSConstructStubGeneric)); | 
|  | // It is safe to clear the flag: it will be set again if the map is live. | 
|  | set_live_objects_may_exist(false); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Called from GC, hence reinterpret_cast and unchecked accessors. | 
|  | void SharedFunctionInfo::AttachInitialMap(Map* map) { | 
|  | map->set_bit_field2( | 
|  | map->bit_field2() & ~(1 << Map::kAttachedToSharedFunctionInfo)); | 
|  |  | 
|  | // Resume inobject slack tracking. | 
|  | set_initial_map(map); | 
|  | ASSERT_EQ(Builtins::builtin(Builtins::JSConstructStubGeneric), | 
|  | *RawField(this, kConstructStubOffset)); | 
|  | set_construct_stub(Builtins::builtin(Builtins::JSConstructStubCountdown)); | 
|  | // The map survived the gc, so there may be objects referencing it. | 
|  | set_live_objects_may_exist(true); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void GetMinInobjectSlack(Map* map, void* data) { | 
|  | int slack = map->unused_property_fields(); | 
|  | if (*reinterpret_cast<int*>(data) > slack) { | 
|  | *reinterpret_cast<int*>(data) = slack; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void ShrinkInstanceSize(Map* map, void* data) { | 
|  | int slack = *reinterpret_cast<int*>(data); | 
|  | map->set_inobject_properties(map->inobject_properties() - slack); | 
|  | map->set_unused_property_fields(map->unused_property_fields() - slack); | 
|  | map->set_instance_size(map->instance_size() - slack * kPointerSize); | 
|  |  | 
|  | // Visitor id might depend on the instance size, recalculate it. | 
|  | map->set_visitor_id(StaticVisitorBase::GetVisitorId(map)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SharedFunctionInfo::CompleteInobjectSlackTracking() { | 
|  | ASSERT(live_objects_may_exist() && IsInobjectSlackTrackingInProgress()); | 
|  | Map* map = Map::cast(initial_map()); | 
|  |  | 
|  | set_initial_map(Heap::undefined_value()); | 
|  | ASSERT_EQ(Builtins::builtin(Builtins::JSConstructStubCountdown), | 
|  | construct_stub()); | 
|  | set_construct_stub(Builtins::builtin(Builtins::JSConstructStubGeneric)); | 
|  |  | 
|  | int slack = map->unused_property_fields(); | 
|  | map->TraverseTransitionTree(&GetMinInobjectSlack, &slack); | 
|  | if (slack != 0) { | 
|  | // Resize the initial map and all maps in its transition tree. | 
|  | map->TraverseTransitionTree(&ShrinkInstanceSize, &slack); | 
|  | // Give the correct expected_nof_properties to initial maps created later. | 
|  | ASSERT(expected_nof_properties() >= slack); | 
|  | set_expected_nof_properties(expected_nof_properties() - slack); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) { | 
|  | ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); | 
|  | Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); | 
|  | Object* old_target = target; | 
|  | VisitPointer(&target); | 
|  | CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target. | 
|  | } | 
|  |  | 
|  |  | 
|  | void ObjectVisitor::VisitCodeEntry(Address entry_address) { | 
|  | Object* code = Code::GetObjectFromEntryAddress(entry_address); | 
|  | Object* old_code = code; | 
|  | VisitPointer(&code); | 
|  | if (code != old_code) { | 
|  | Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) { | 
|  | ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && | 
|  | rinfo->IsPatchedReturnSequence()) || | 
|  | (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && | 
|  | rinfo->IsPatchedDebugBreakSlotSequence())); | 
|  | Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); | 
|  | Object* old_target = target; | 
|  | VisitPointer(&target); | 
|  | CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target. | 
|  | } | 
|  |  | 
|  |  | 
|  | void Code::Relocate(intptr_t delta) { | 
|  | for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) { | 
|  | it.rinfo()->apply(delta); | 
|  | } | 
|  | CPU::FlushICache(instruction_start(), instruction_size()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Code::CopyFrom(const CodeDesc& desc) { | 
|  | // copy code | 
|  | memmove(instruction_start(), desc.buffer, desc.instr_size); | 
|  |  | 
|  | // copy reloc info | 
|  | memmove(relocation_start(), | 
|  | desc.buffer + desc.buffer_size - desc.reloc_size, | 
|  | desc.reloc_size); | 
|  |  | 
|  | // unbox handles and relocate | 
|  | intptr_t delta = instruction_start() - desc.buffer; | 
|  | int mode_mask = RelocInfo::kCodeTargetMask | | 
|  | RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | | 
|  | RelocInfo::kApplyMask; | 
|  | Assembler* origin = desc.origin;  // Needed to find target_object on X64. | 
|  | for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { | 
|  | RelocInfo::Mode mode = it.rinfo()->rmode(); | 
|  | if (mode == RelocInfo::EMBEDDED_OBJECT) { | 
|  | Handle<Object> p = it.rinfo()->target_object_handle(origin); | 
|  | it.rinfo()->set_target_object(*p); | 
|  | } else if (RelocInfo::IsCodeTarget(mode)) { | 
|  | // rewrite code handles in inline cache targets to direct | 
|  | // pointers to the first instruction in the code object | 
|  | Handle<Object> p = it.rinfo()->target_object_handle(origin); | 
|  | Code* code = Code::cast(*p); | 
|  | it.rinfo()->set_target_address(code->instruction_start()); | 
|  | } else { | 
|  | it.rinfo()->apply(delta); | 
|  | } | 
|  | } | 
|  | CPU::FlushICache(instruction_start(), instruction_size()); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Locate the source position which is closest to the address in the code. This | 
|  | // is using the source position information embedded in the relocation info. | 
|  | // The position returned is relative to the beginning of the script where the | 
|  | // source for this function is found. | 
|  | int Code::SourcePosition(Address pc) { | 
|  | int distance = kMaxInt; | 
|  | int position = RelocInfo::kNoPosition;  // Initially no position found. | 
|  | // Run through all the relocation info to find the best matching source | 
|  | // position. All the code needs to be considered as the sequence of the | 
|  | // instructions in the code does not necessarily follow the same order as the | 
|  | // source. | 
|  | RelocIterator it(this, RelocInfo::kPositionMask); | 
|  | while (!it.done()) { | 
|  | // Only look at positions after the current pc. | 
|  | if (it.rinfo()->pc() < pc) { | 
|  | // Get position and distance. | 
|  |  | 
|  | int dist = static_cast<int>(pc - it.rinfo()->pc()); | 
|  | int pos = static_cast<int>(it.rinfo()->data()); | 
|  | // If this position is closer than the current candidate or if it has the | 
|  | // same distance as the current candidate and the position is higher then | 
|  | // this position is the new candidate. | 
|  | if ((dist < distance) || | 
|  | (dist == distance && pos > position)) { | 
|  | position = pos; | 
|  | distance = dist; | 
|  | } | 
|  | } | 
|  | it.next(); | 
|  | } | 
|  | return position; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Same as Code::SourcePosition above except it only looks for statement | 
|  | // positions. | 
|  | int Code::SourceStatementPosition(Address pc) { | 
|  | // First find the position as close as possible using all position | 
|  | // information. | 
|  | int position = SourcePosition(pc); | 
|  | // Now find the closest statement position before the position. | 
|  | int statement_position = 0; | 
|  | RelocIterator it(this, RelocInfo::kPositionMask); | 
|  | while (!it.done()) { | 
|  | if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) { | 
|  | int p = static_cast<int>(it.rinfo()->data()); | 
|  | if (statement_position < p && p <= position) { | 
|  | statement_position = p; | 
|  | } | 
|  | } | 
|  | it.next(); | 
|  | } | 
|  | return statement_position; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef ENABLE_DISASSEMBLER | 
|  | // Identify kind of code. | 
|  | const char* Code::Kind2String(Kind kind) { | 
|  | switch (kind) { | 
|  | case FUNCTION: return "FUNCTION"; | 
|  | case STUB: return "STUB"; | 
|  | case BUILTIN: return "BUILTIN"; | 
|  | case LOAD_IC: return "LOAD_IC"; | 
|  | case KEYED_LOAD_IC: return "KEYED_LOAD_IC"; | 
|  | case STORE_IC: return "STORE_IC"; | 
|  | case KEYED_STORE_IC: return "KEYED_STORE_IC"; | 
|  | case CALL_IC: return "CALL_IC"; | 
|  | case KEYED_CALL_IC: return "KEYED_CALL_IC"; | 
|  | case BINARY_OP_IC: return "BINARY_OP_IC"; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | const char* Code::ICState2String(InlineCacheState state) { | 
|  | switch (state) { | 
|  | case UNINITIALIZED: return "UNINITIALIZED"; | 
|  | case PREMONOMORPHIC: return "PREMONOMORPHIC"; | 
|  | case MONOMORPHIC: return "MONOMORPHIC"; | 
|  | case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE"; | 
|  | case MEGAMORPHIC: return "MEGAMORPHIC"; | 
|  | case DEBUG_BREAK: return "DEBUG_BREAK"; | 
|  | case DEBUG_PREPARE_STEP_IN: return "DEBUG_PREPARE_STEP_IN"; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | const char* Code::PropertyType2String(PropertyType type) { | 
|  | switch (type) { | 
|  | case NORMAL: return "NORMAL"; | 
|  | case FIELD: return "FIELD"; | 
|  | case CONSTANT_FUNCTION: return "CONSTANT_FUNCTION"; | 
|  | case CALLBACKS: return "CALLBACKS"; | 
|  | case INTERCEPTOR: return "INTERCEPTOR"; | 
|  | case MAP_TRANSITION: return "MAP_TRANSITION"; | 
|  | case CONSTANT_TRANSITION: return "CONSTANT_TRANSITION"; | 
|  | case NULL_DESCRIPTOR: return "NULL_DESCRIPTOR"; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void Code::Disassemble(const char* name) { | 
|  | PrintF("kind = %s\n", Kind2String(kind())); | 
|  | if (is_inline_cache_stub()) { | 
|  | PrintF("ic_state = %s\n", ICState2String(ic_state())); | 
|  | PrintF("ic_in_loop = %d\n", ic_in_loop() == IN_LOOP); | 
|  | if (ic_state() == MONOMORPHIC) { | 
|  | PrintF("type = %s\n", PropertyType2String(type())); | 
|  | } | 
|  | } | 
|  | if ((name != NULL) && (name[0] != '\0')) { | 
|  | PrintF("name = %s\n", name); | 
|  | } | 
|  |  | 
|  | PrintF("Instructions (size = %d)\n", instruction_size()); | 
|  | Disassembler::Decode(NULL, this); | 
|  | PrintF("\n"); | 
|  |  | 
|  | PrintF("RelocInfo (size = %d)\n", relocation_size()); | 
|  | for (RelocIterator it(this); !it.done(); it.next()) | 
|  | it.rinfo()->Print(); | 
|  | PrintF("\n"); | 
|  | } | 
|  | #endif  // ENABLE_DISASSEMBLER | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetFastElementsCapacityAndLength(int capacity, int length) { | 
|  | // We should never end in here with a pixel or external array. | 
|  | ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
|  |  | 
|  | Object* obj = Heap::AllocateFixedArrayWithHoles(capacity); | 
|  | if (obj->IsFailure()) return obj; | 
|  | FixedArray* elems = FixedArray::cast(obj); | 
|  |  | 
|  | obj = map()->GetFastElementsMap(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | Map* new_map = Map::cast(obj); | 
|  |  | 
|  | AssertNoAllocation no_gc; | 
|  | WriteBarrierMode mode = elems->GetWriteBarrierMode(no_gc); | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | FixedArray* old_elements = FixedArray::cast(elements()); | 
|  | uint32_t old_length = static_cast<uint32_t>(old_elements->length()); | 
|  | // Fill out the new array with this content and array holes. | 
|  | for (uint32_t i = 0; i < old_length; i++) { | 
|  | elems->set(i, old_elements->get(i), mode); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | NumberDictionary* dictionary = NumberDictionary::cast(elements()); | 
|  | for (int i = 0; i < dictionary->Capacity(); i++) { | 
|  | Object* key = dictionary->KeyAt(i); | 
|  | if (key->IsNumber()) { | 
|  | uint32_t entry = static_cast<uint32_t>(key->Number()); | 
|  | elems->set(entry, dictionary->ValueAt(i), mode); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_map(new_map); | 
|  | set_elements(elems); | 
|  |  | 
|  | if (IsJSArray()) { | 
|  | JSArray::cast(this)->set_length(Smi::FromInt(length)); | 
|  | } | 
|  |  | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetSlowElements(Object* len) { | 
|  | // We should never end in here with a pixel or external array. | 
|  | ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
|  |  | 
|  | uint32_t new_length = static_cast<uint32_t>(len->Number()); | 
|  |  | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | // Make sure we never try to shrink dense arrays into sparse arrays. | 
|  | ASSERT(static_cast<uint32_t>(FixedArray::cast(elements())->length()) <= | 
|  | new_length); | 
|  | Object* obj = NormalizeElements(); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | // Update length for JSArrays. | 
|  | if (IsJSArray()) JSArray::cast(this)->set_length(len); | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | if (IsJSArray()) { | 
|  | uint32_t old_length = | 
|  | static_cast<uint32_t>(JSArray::cast(this)->length()->Number()); | 
|  | element_dictionary()->RemoveNumberEntries(new_length, old_length), | 
|  | JSArray::cast(this)->set_length(len); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSArray::Initialize(int capacity) { | 
|  | ASSERT(capacity >= 0); | 
|  | set_length(Smi::FromInt(0)); | 
|  | FixedArray* new_elements; | 
|  | if (capacity == 0) { | 
|  | new_elements = Heap::empty_fixed_array(); | 
|  | } else { | 
|  | Object* obj = Heap::AllocateFixedArrayWithHoles(capacity); | 
|  | if (obj->IsFailure()) return obj; | 
|  | new_elements = FixedArray::cast(obj); | 
|  | } | 
|  | set_elements(new_elements); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | void JSArray::Expand(int required_size) { | 
|  | Handle<JSArray> self(this); | 
|  | Handle<FixedArray> old_backing(FixedArray::cast(elements())); | 
|  | int old_size = old_backing->length(); | 
|  | int new_size = required_size > old_size ? required_size : old_size; | 
|  | Handle<FixedArray> new_backing = Factory::NewFixedArray(new_size); | 
|  | // Can't use this any more now because we may have had a GC! | 
|  | for (int i = 0; i < old_size; i++) new_backing->set(i, old_backing->get(i)); | 
|  | self->SetContent(*new_backing); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Computes the new capacity when expanding the elements of a JSObject. | 
|  | static int NewElementsCapacity(int old_capacity) { | 
|  | // (old_capacity + 50%) + 16 | 
|  | return old_capacity + (old_capacity >> 1) + 16; | 
|  | } | 
|  |  | 
|  |  | 
|  | static Object* ArrayLengthRangeError() { | 
|  | HandleScope scope; | 
|  | return Top::Throw(*Factory::NewRangeError("invalid_array_length", | 
|  | HandleVector<Object>(NULL, 0))); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetElementsLength(Object* len) { | 
|  | // We should never end in here with a pixel or external array. | 
|  | ASSERT(AllowsSetElementsLength()); | 
|  |  | 
|  | Object* smi_length = len->ToSmi(); | 
|  | if (smi_length->IsSmi()) { | 
|  | const int value = Smi::cast(smi_length)->value(); | 
|  | if (value < 0) return ArrayLengthRangeError(); | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | int old_capacity = FixedArray::cast(elements())->length(); | 
|  | if (value <= old_capacity) { | 
|  | if (IsJSArray()) { | 
|  | Object* obj = EnsureWritableFastElements(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | int old_length = FastD2I(JSArray::cast(this)->length()->Number()); | 
|  | // NOTE: We may be able to optimize this by removing the | 
|  | // last part of the elements backing storage array and | 
|  | // setting the capacity to the new size. | 
|  | for (int i = value; i < old_length; i++) { | 
|  | FixedArray::cast(elements())->set_the_hole(i); | 
|  | } | 
|  | JSArray::cast(this)->set_length(Smi::cast(smi_length)); | 
|  | } | 
|  | return this; | 
|  | } | 
|  | int min = NewElementsCapacity(old_capacity); | 
|  | int new_capacity = value > min ? value : min; | 
|  | if (new_capacity <= kMaxFastElementsLength || | 
|  | !ShouldConvertToSlowElements(new_capacity)) { | 
|  | Object* obj = SetFastElementsCapacityAndLength(new_capacity, value); | 
|  | if (obj->IsFailure()) return obj; | 
|  | return this; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | if (IsJSArray()) { | 
|  | if (value == 0) { | 
|  | // If the length of a slow array is reset to zero, we clear | 
|  | // the array and flush backing storage. This has the added | 
|  | // benefit that the array returns to fast mode. | 
|  | Object* obj = ResetElements(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | } else { | 
|  | // Remove deleted elements. | 
|  | uint32_t old_length = | 
|  | static_cast<uint32_t>(JSArray::cast(this)->length()->Number()); | 
|  | element_dictionary()->RemoveNumberEntries(value, old_length); | 
|  | } | 
|  | JSArray::cast(this)->set_length(Smi::cast(smi_length)); | 
|  | } | 
|  | return this; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // General slow case. | 
|  | if (len->IsNumber()) { | 
|  | uint32_t length; | 
|  | if (len->ToArrayIndex(&length)) { | 
|  | return SetSlowElements(len); | 
|  | } else { | 
|  | return ArrayLengthRangeError(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // len is not a number so make the array size one and | 
|  | // set only element to len. | 
|  | Object* obj = Heap::AllocateFixedArray(1); | 
|  | if (obj->IsFailure()) return obj; | 
|  | FixedArray::cast(obj)->set(0, len); | 
|  | if (IsJSArray()) JSArray::cast(this)->set_length(Smi::FromInt(1)); | 
|  | set_elements(FixedArray::cast(obj)); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetPrototype(Object* value, | 
|  | bool skip_hidden_prototypes) { | 
|  | // Silently ignore the change if value is not a JSObject or null. | 
|  | // SpiderMonkey behaves this way. | 
|  | if (!value->IsJSObject() && !value->IsNull()) return value; | 
|  |  | 
|  | // Before we can set the prototype we need to be sure | 
|  | // prototype cycles are prevented. | 
|  | // It is sufficient to validate that the receiver is not in the new prototype | 
|  | // chain. | 
|  | for (Object* pt = value; pt != Heap::null_value(); pt = pt->GetPrototype()) { | 
|  | if (JSObject::cast(pt) == this) { | 
|  | // Cycle detected. | 
|  | HandleScope scope; | 
|  | return Top::Throw(*Factory::NewError("cyclic_proto", | 
|  | HandleVector<Object>(NULL, 0))); | 
|  | } | 
|  | } | 
|  |  | 
|  | JSObject* real_receiver = this; | 
|  |  | 
|  | if (skip_hidden_prototypes) { | 
|  | // Find the first object in the chain whose prototype object is not | 
|  | // hidden and set the new prototype on that object. | 
|  | Object* current_proto = real_receiver->GetPrototype(); | 
|  | while (current_proto->IsJSObject() && | 
|  | JSObject::cast(current_proto)->map()->is_hidden_prototype()) { | 
|  | real_receiver = JSObject::cast(current_proto); | 
|  | current_proto = current_proto->GetPrototype(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set the new prototype of the object. | 
|  | Object* new_map = real_receiver->map()->CopyDropTransitions(); | 
|  | if (new_map->IsFailure()) return new_map; | 
|  | Map::cast(new_map)->set_prototype(value); | 
|  | real_receiver->set_map(Map::cast(new_map)); | 
|  |  | 
|  | Heap::ClearInstanceofCache(); | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::HasElementPostInterceptor(JSObject* receiver, uint32_t index) { | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | uint32_t length = IsJSArray() ? | 
|  | static_cast<uint32_t> | 
|  | (Smi::cast(JSArray::cast(this)->length())->value()) : | 
|  | static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
|  | if ((index < length) && | 
|  | !FixedArray::cast(elements())->get(index)->IsTheHole()) { | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PIXEL_ELEMENTS: { | 
|  | // TODO(iposva): Add testcase. | 
|  | PixelArray* pixels = PixelArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(pixels->length())) { | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | // TODO(kbr): Add testcase. | 
|  | ExternalArray* array = ExternalArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | if (element_dictionary()->FindEntry(index) | 
|  | != NumberDictionary::kNotFound) { | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Handle [] on String objects. | 
|  | if (this->IsStringObjectWithCharacterAt(index)) return true; | 
|  |  | 
|  | Object* pt = GetPrototype(); | 
|  | if (pt == Heap::null_value()) return false; | 
|  | return JSObject::cast(pt)->HasElementWithReceiver(receiver, index); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::HasElementWithInterceptor(JSObject* receiver, uint32_t index) { | 
|  | // Make sure that the top context does not change when doing | 
|  | // callbacks or interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  | HandleScope scope; | 
|  | Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); | 
|  | Handle<JSObject> receiver_handle(receiver); | 
|  | Handle<JSObject> holder_handle(this); | 
|  | CustomArguments args(interceptor->data(), receiver, this); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | if (!interceptor->query()->IsUndefined()) { | 
|  | v8::IndexedPropertyQuery query = | 
|  | v8::ToCData<v8::IndexedPropertyQuery>(interceptor->query()); | 
|  | LOG(ApiIndexedPropertyAccess("interceptor-indexed-has", this, index)); | 
|  | v8::Handle<v8::Integer> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = query(index, info); | 
|  | } | 
|  | if (!result.IsEmpty()) { | 
|  | ASSERT(result->IsInt32()); | 
|  | return true;  // absence of property is signaled by empty handle. | 
|  | } | 
|  | } else if (!interceptor->getter()->IsUndefined()) { | 
|  | v8::IndexedPropertyGetter getter = | 
|  | v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter()); | 
|  | LOG(ApiIndexedPropertyAccess("interceptor-indexed-has-get", this, index)); | 
|  | v8::Handle<v8::Value> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = getter(index, info); | 
|  | } | 
|  | if (!result.IsEmpty()) return true; | 
|  | } | 
|  | return holder_handle->HasElementPostInterceptor(*receiver_handle, index); | 
|  | } | 
|  |  | 
|  |  | 
|  | JSObject::LocalElementType JSObject::HasLocalElement(uint32_t index) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
|  | return UNDEFINED_ELEMENT; | 
|  | } | 
|  |  | 
|  | // Check for lookup interceptor | 
|  | if (HasIndexedInterceptor()) { | 
|  | return HasElementWithInterceptor(this, index) ? INTERCEPTED_ELEMENT | 
|  | : UNDEFINED_ELEMENT; | 
|  | } | 
|  |  | 
|  | // Handle [] on String objects. | 
|  | if (this->IsStringObjectWithCharacterAt(index)) { | 
|  | return STRING_CHARACTER_ELEMENT; | 
|  | } | 
|  |  | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | uint32_t length = IsJSArray() ? | 
|  | static_cast<uint32_t> | 
|  | (Smi::cast(JSArray::cast(this)->length())->value()) : | 
|  | static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
|  | if ((index < length) && | 
|  | !FixedArray::cast(elements())->get(index)->IsTheHole()) { | 
|  | return FAST_ELEMENT; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PIXEL_ELEMENTS: { | 
|  | PixelArray* pixels = PixelArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(pixels->length())) return FAST_ELEMENT; | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | ExternalArray* array = ExternalArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) return FAST_ELEMENT; | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | if (element_dictionary()->FindEntry(index) != | 
|  | NumberDictionary::kNotFound) { | 
|  | return DICTIONARY_ELEMENT; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return UNDEFINED_ELEMENT; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::HasElementWithReceiver(JSObject* receiver, uint32_t index) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check for lookup interceptor | 
|  | if (HasIndexedInterceptor()) { | 
|  | return HasElementWithInterceptor(receiver, index); | 
|  | } | 
|  |  | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | uint32_t length = IsJSArray() ? | 
|  | static_cast<uint32_t> | 
|  | (Smi::cast(JSArray::cast(this)->length())->value()) : | 
|  | static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
|  | if ((index < length) && | 
|  | !FixedArray::cast(elements())->get(index)->IsTheHole()) return true; | 
|  | break; | 
|  | } | 
|  | case PIXEL_ELEMENTS: { | 
|  | PixelArray* pixels = PixelArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(pixels->length())) { | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | ExternalArray* array = ExternalArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | if (element_dictionary()->FindEntry(index) | 
|  | != NumberDictionary::kNotFound) { | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Handle [] on String objects. | 
|  | if (this->IsStringObjectWithCharacterAt(index)) return true; | 
|  |  | 
|  | Object* pt = GetPrototype(); | 
|  | if (pt == Heap::null_value()) return false; | 
|  | return JSObject::cast(pt)->HasElementWithReceiver(receiver, index); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetElementWithInterceptor(uint32_t index, Object* value) { | 
|  | // Make sure that the top context does not change when doing | 
|  | // callbacks or interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  | HandleScope scope; | 
|  | Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); | 
|  | Handle<JSObject> this_handle(this); | 
|  | Handle<Object> value_handle(value); | 
|  | if (!interceptor->setter()->IsUndefined()) { | 
|  | v8::IndexedPropertySetter setter = | 
|  | v8::ToCData<v8::IndexedPropertySetter>(interceptor->setter()); | 
|  | LOG(ApiIndexedPropertyAccess("interceptor-indexed-set", this, index)); | 
|  | CustomArguments args(interceptor->data(), this, this); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | v8::Handle<v8::Value> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = setter(index, v8::Utils::ToLocal(value_handle), info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (!result.IsEmpty()) return *value_handle; | 
|  | } | 
|  | Object* raw_result = | 
|  | this_handle->SetElementWithoutInterceptor(index, *value_handle); | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return raw_result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::GetElementWithCallback(Object* receiver, | 
|  | Object* structure, | 
|  | uint32_t index, | 
|  | Object* holder) { | 
|  | ASSERT(!structure->IsProxy()); | 
|  |  | 
|  | // api style callbacks. | 
|  | if (structure->IsAccessorInfo()) { | 
|  | AccessorInfo* data = AccessorInfo::cast(structure); | 
|  | Object* fun_obj = data->getter(); | 
|  | v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj); | 
|  | HandleScope scope; | 
|  | Handle<JSObject> self(JSObject::cast(receiver)); | 
|  | Handle<JSObject> holder_handle(JSObject::cast(holder)); | 
|  | Handle<Object> number = Factory::NewNumberFromUint(index); | 
|  | Handle<String> key(Factory::NumberToString(number)); | 
|  | LOG(ApiNamedPropertyAccess("load", *self, *key)); | 
|  | CustomArguments args(data->data(), *self, *holder_handle); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | v8::Handle<v8::Value> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = call_fun(v8::Utils::ToLocal(key), info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (result.IsEmpty()) return Heap::undefined_value(); | 
|  | return *v8::Utils::OpenHandle(*result); | 
|  | } | 
|  |  | 
|  | // __defineGetter__ callback | 
|  | if (structure->IsFixedArray()) { | 
|  | Object* getter = FixedArray::cast(structure)->get(kGetterIndex); | 
|  | if (getter->IsJSFunction()) { | 
|  | return Object::GetPropertyWithDefinedGetter(receiver, | 
|  | JSFunction::cast(getter)); | 
|  | } | 
|  | // Getter is not a function. | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetElementWithCallback(Object* structure, | 
|  | uint32_t index, | 
|  | Object* value, | 
|  | JSObject* holder) { | 
|  | HandleScope scope; | 
|  |  | 
|  | // We should never get here to initialize a const with the hole | 
|  | // value since a const declaration would conflict with the setter. | 
|  | ASSERT(!value->IsTheHole()); | 
|  | Handle<Object> value_handle(value); | 
|  |  | 
|  | // To accommodate both the old and the new api we switch on the | 
|  | // data structure used to store the callbacks.  Eventually proxy | 
|  | // callbacks should be phased out. | 
|  | ASSERT(!structure->IsProxy()); | 
|  |  | 
|  | if (structure->IsAccessorInfo()) { | 
|  | // api style callbacks | 
|  | AccessorInfo* data = AccessorInfo::cast(structure); | 
|  | Object* call_obj = data->setter(); | 
|  | v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj); | 
|  | if (call_fun == NULL) return value; | 
|  | Handle<Object> number = Factory::NewNumberFromUint(index); | 
|  | Handle<String> key(Factory::NumberToString(number)); | 
|  | LOG(ApiNamedPropertyAccess("store", this, *key)); | 
|  | CustomArguments args(data->data(), this, JSObject::cast(holder)); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | call_fun(v8::Utils::ToLocal(key), | 
|  | v8::Utils::ToLocal(value_handle), | 
|  | info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return *value_handle; | 
|  | } | 
|  |  | 
|  | if (structure->IsFixedArray()) { | 
|  | Object* setter = FixedArray::cast(structure)->get(kSetterIndex); | 
|  | if (setter->IsJSFunction()) { | 
|  | return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value); | 
|  | } else { | 
|  | Handle<Object> holder_handle(holder); | 
|  | Handle<Object> key(Factory::NewNumberFromUint(index)); | 
|  | Handle<Object> args[2] = { key, holder_handle }; | 
|  | return Top::Throw(*Factory::NewTypeError("no_setter_in_callback", | 
|  | HandleVector(args, 2))); | 
|  | } | 
|  | } | 
|  |  | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Adding n elements in fast case is O(n*n). | 
|  | // Note: revisit design to have dual undefined values to capture absent | 
|  | // elements. | 
|  | Object* JSObject::SetFastElement(uint32_t index, Object* value) { | 
|  | ASSERT(HasFastElements()); | 
|  |  | 
|  | Object* elms_obj = EnsureWritableFastElements(); | 
|  | if (elms_obj->IsFailure()) return elms_obj; | 
|  | FixedArray* elms = FixedArray::cast(elms_obj); | 
|  | uint32_t elms_length = static_cast<uint32_t>(elms->length()); | 
|  |  | 
|  | if (!IsJSArray() && (index >= elms_length || elms->get(index)->IsTheHole())) { | 
|  | if (SetElementWithCallbackSetterInPrototypes(index, value)) { | 
|  | return value; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether there is extra space in fixed array.. | 
|  | if (index < elms_length) { | 
|  | elms->set(index, value); | 
|  | if (IsJSArray()) { | 
|  | // Update the length of the array if needed. | 
|  | uint32_t array_length = 0; | 
|  | CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length)); | 
|  | if (index >= array_length) { | 
|  | JSArray::cast(this)->set_length(Smi::FromInt(index + 1)); | 
|  | } | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | // Allow gap in fast case. | 
|  | if ((index - elms_length) < kMaxGap) { | 
|  | // Try allocating extra space. | 
|  | int new_capacity = NewElementsCapacity(index+1); | 
|  | if (new_capacity <= kMaxFastElementsLength || | 
|  | !ShouldConvertToSlowElements(new_capacity)) { | 
|  | ASSERT(static_cast<uint32_t>(new_capacity) > index); | 
|  | Object* obj = SetFastElementsCapacityAndLength(new_capacity, index + 1); | 
|  | if (obj->IsFailure()) return obj; | 
|  | FixedArray::cast(elements())->set(index, value); | 
|  | return value; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise default to slow case. | 
|  | Object* obj = NormalizeElements(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | ASSERT(HasDictionaryElements()); | 
|  | return SetElement(index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetElement(uint32_t index, Object* value) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayIndexedAccess(this, index, v8::ACCESS_SET)) { | 
|  | HandleScope scope; | 
|  | Handle<Object> value_handle(value); | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_SET); | 
|  | return *value_handle; | 
|  | } | 
|  |  | 
|  | if (IsJSGlobalProxy()) { | 
|  | Object* proto = GetPrototype(); | 
|  | if (proto->IsNull()) return value; | 
|  | ASSERT(proto->IsJSGlobalObject()); | 
|  | return JSObject::cast(proto)->SetElement(index, value); | 
|  | } | 
|  |  | 
|  | // Check for lookup interceptor | 
|  | if (HasIndexedInterceptor()) { | 
|  | return SetElementWithInterceptor(index, value); | 
|  | } | 
|  |  | 
|  | return SetElementWithoutInterceptor(index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::SetElementWithoutInterceptor(uint32_t index, Object* value) { | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: | 
|  | // Fast case. | 
|  | return SetFastElement(index, value); | 
|  | case PIXEL_ELEMENTS: { | 
|  | PixelArray* pixels = PixelArray::cast(elements()); | 
|  | return pixels->SetValue(index, value); | 
|  | } | 
|  | case EXTERNAL_BYTE_ELEMENTS: { | 
|  | ExternalByteArray* array = ExternalByteArray::cast(elements()); | 
|  | return array->SetValue(index, value); | 
|  | } | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { | 
|  | ExternalUnsignedByteArray* array = | 
|  | ExternalUnsignedByteArray::cast(elements()); | 
|  | return array->SetValue(index, value); | 
|  | } | 
|  | case EXTERNAL_SHORT_ELEMENTS: { | 
|  | ExternalShortArray* array = ExternalShortArray::cast(elements()); | 
|  | return array->SetValue(index, value); | 
|  | } | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { | 
|  | ExternalUnsignedShortArray* array = | 
|  | ExternalUnsignedShortArray::cast(elements()); | 
|  | return array->SetValue(index, value); | 
|  | } | 
|  | case EXTERNAL_INT_ELEMENTS: { | 
|  | ExternalIntArray* array = ExternalIntArray::cast(elements()); | 
|  | return array->SetValue(index, value); | 
|  | } | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: { | 
|  | ExternalUnsignedIntArray* array = | 
|  | ExternalUnsignedIntArray::cast(elements()); | 
|  | return array->SetValue(index, value); | 
|  | } | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | ExternalFloatArray* array = ExternalFloatArray::cast(elements()); | 
|  | return array->SetValue(index, value); | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | // Insert element in the dictionary. | 
|  | FixedArray* elms = FixedArray::cast(elements()); | 
|  | NumberDictionary* dictionary = NumberDictionary::cast(elms); | 
|  |  | 
|  | int entry = dictionary->FindEntry(index); | 
|  | if (entry != NumberDictionary::kNotFound) { | 
|  | Object* element = dictionary->ValueAt(entry); | 
|  | PropertyDetails details = dictionary->DetailsAt(entry); | 
|  | if (details.type() == CALLBACKS) { | 
|  | return SetElementWithCallback(element, index, value, this); | 
|  | } else { | 
|  | dictionary->UpdateMaxNumberKey(index); | 
|  | dictionary->ValueAtPut(entry, value); | 
|  | } | 
|  | } else { | 
|  | // Index not already used. Look for an accessor in the prototype chain. | 
|  | if (!IsJSArray()) { | 
|  | if (SetElementWithCallbackSetterInPrototypes(index, value)) { | 
|  | return value; | 
|  | } | 
|  | } | 
|  | // When we set the is_extensible flag to false we always force | 
|  | // the element into dictionary mode (and force them to stay there). | 
|  | if (!map()->is_extensible()) { | 
|  | Handle<Object> number(Factory::NewNumberFromUint(index)); | 
|  | Handle<String> index_string(Factory::NumberToString(number)); | 
|  | Handle<Object> args[1] = { index_string }; | 
|  | return Top::Throw(*Factory::NewTypeError("object_not_extensible", | 
|  | HandleVector(args, 1))); | 
|  | } | 
|  | Object* result = dictionary->AtNumberPut(index, value); | 
|  | if (result->IsFailure()) return result; | 
|  | if (elms != FixedArray::cast(result)) { | 
|  | set_elements(FixedArray::cast(result)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update the array length if this JSObject is an array. | 
|  | if (IsJSArray()) { | 
|  | JSArray* array = JSArray::cast(this); | 
|  | Object* return_value = array->JSArrayUpdateLengthFromIndex(index, | 
|  | value); | 
|  | if (return_value->IsFailure()) return return_value; | 
|  | } | 
|  |  | 
|  | // Attempt to put this object back in fast case. | 
|  | if (ShouldConvertToFastElements()) { | 
|  | uint32_t new_length = 0; | 
|  | if (IsJSArray()) { | 
|  | CHECK(JSArray::cast(this)->length()->ToArrayIndex(&new_length)); | 
|  | } else { | 
|  | new_length = NumberDictionary::cast(elements())->max_number_key() + 1; | 
|  | } | 
|  | Object* obj = SetFastElementsCapacityAndLength(new_length, new_length); | 
|  | if (obj->IsFailure()) return obj; | 
|  | #ifdef DEBUG | 
|  | if (FLAG_trace_normalization) { | 
|  | PrintF("Object elements are fast case again:\n"); | 
|  | Print(); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return value; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | // All possible cases have been handled above. Add a return to avoid the | 
|  | // complaints from the compiler. | 
|  | UNREACHABLE(); | 
|  | return Heap::null_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index, Object* value) { | 
|  | uint32_t old_len = 0; | 
|  | CHECK(length()->ToArrayIndex(&old_len)); | 
|  | // Check to see if we need to update the length. For now, we make | 
|  | // sure that the length stays within 32-bits (unsigned). | 
|  | if (index >= old_len && index != 0xffffffff) { | 
|  | Object* len = | 
|  | Heap::NumberFromDouble(static_cast<double>(index) + 1); | 
|  | if (len->IsFailure()) return len; | 
|  | set_length(len); | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::GetElementPostInterceptor(JSObject* receiver, | 
|  | uint32_t index) { | 
|  | // Get element works for both JSObject and JSArray since | 
|  | // JSArray::length cannot change. | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | FixedArray* elms = FixedArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(elms->length())) { | 
|  | Object* value = elms->get(index); | 
|  | if (!value->IsTheHole()) return value; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PIXEL_ELEMENTS: { | 
|  | // TODO(iposva): Add testcase and implement. | 
|  | UNIMPLEMENTED(); | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | // TODO(kbr): Add testcase and implement. | 
|  | UNIMPLEMENTED(); | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | NumberDictionary* dictionary = element_dictionary(); | 
|  | int entry = dictionary->FindEntry(index); | 
|  | if (entry != NumberDictionary::kNotFound) { | 
|  | Object* element = dictionary->ValueAt(entry); | 
|  | PropertyDetails details = dictionary->DetailsAt(entry); | 
|  | if (details.type() == CALLBACKS) { | 
|  | return GetElementWithCallback(receiver, | 
|  | element, | 
|  | index, | 
|  | this); | 
|  | } | 
|  | return element; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Continue searching via the prototype chain. | 
|  | Object* pt = GetPrototype(); | 
|  | if (pt == Heap::null_value()) return Heap::undefined_value(); | 
|  | return pt->GetElementWithReceiver(receiver, index); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::GetElementWithInterceptor(JSObject* receiver, | 
|  | uint32_t index) { | 
|  | // Make sure that the top context does not change when doing | 
|  | // callbacks or interceptor calls. | 
|  | AssertNoContextChange ncc; | 
|  | HandleScope scope; | 
|  | Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); | 
|  | Handle<JSObject> this_handle(receiver); | 
|  | Handle<JSObject> holder_handle(this); | 
|  |  | 
|  | if (!interceptor->getter()->IsUndefined()) { | 
|  | v8::IndexedPropertyGetter getter = | 
|  | v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter()); | 
|  | LOG(ApiIndexedPropertyAccess("interceptor-indexed-get", this, index)); | 
|  | CustomArguments args(interceptor->data(), receiver, this); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | v8::Handle<v8::Value> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = getter(index, info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); | 
|  | } | 
|  |  | 
|  | Object* raw_result = | 
|  | holder_handle->GetElementPostInterceptor(*this_handle, index); | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return raw_result; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::GetElementWithReceiver(JSObject* receiver, uint32_t index) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayIndexedAccess(this, index, v8::ACCESS_GET)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_GET); | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  | if (HasIndexedInterceptor()) { | 
|  | return GetElementWithInterceptor(receiver, index); | 
|  | } | 
|  |  | 
|  | // Get element works for both JSObject and JSArray since | 
|  | // JSArray::length cannot change. | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | FixedArray* elms = FixedArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(elms->length())) { | 
|  | Object* value = elms->get(index); | 
|  | if (!value->IsTheHole()) return value; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PIXEL_ELEMENTS: { | 
|  | PixelArray* pixels = PixelArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(pixels->length())) { | 
|  | uint8_t value = pixels->get(index); | 
|  | return Smi::FromInt(value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_BYTE_ELEMENTS: { | 
|  | ExternalByteArray* array = ExternalByteArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | int8_t value = array->get(index); | 
|  | return Smi::FromInt(value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { | 
|  | ExternalUnsignedByteArray* array = | 
|  | ExternalUnsignedByteArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | uint8_t value = array->get(index); | 
|  | return Smi::FromInt(value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_SHORT_ELEMENTS: { | 
|  | ExternalShortArray* array = ExternalShortArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | int16_t value = array->get(index); | 
|  | return Smi::FromInt(value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { | 
|  | ExternalUnsignedShortArray* array = | 
|  | ExternalUnsignedShortArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | uint16_t value = array->get(index); | 
|  | return Smi::FromInt(value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_INT_ELEMENTS: { | 
|  | ExternalIntArray* array = ExternalIntArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | int32_t value = array->get(index); | 
|  | return Heap::NumberFromInt32(value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: { | 
|  | ExternalUnsignedIntArray* array = | 
|  | ExternalUnsignedIntArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | uint32_t value = array->get(index); | 
|  | return Heap::NumberFromUint32(value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | ExternalFloatArray* array = ExternalFloatArray::cast(elements()); | 
|  | if (index < static_cast<uint32_t>(array->length())) { | 
|  | float value = array->get(index); | 
|  | return Heap::AllocateHeapNumber(value); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | NumberDictionary* dictionary = element_dictionary(); | 
|  | int entry = dictionary->FindEntry(index); | 
|  | if (entry != NumberDictionary::kNotFound) { | 
|  | Object* element = dictionary->ValueAt(entry); | 
|  | PropertyDetails details = dictionary->DetailsAt(entry); | 
|  | if (details.type() == CALLBACKS) { | 
|  | return GetElementWithCallback(receiver, | 
|  | element, | 
|  | index, | 
|  | this); | 
|  | } | 
|  | return element; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Object* pt = GetPrototype(); | 
|  | if (pt == Heap::null_value()) return Heap::undefined_value(); | 
|  | return pt->GetElementWithReceiver(receiver, index); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::HasDenseElements() { | 
|  | int capacity = 0; | 
|  | int number_of_elements = 0; | 
|  |  | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | FixedArray* elms = FixedArray::cast(elements()); | 
|  | capacity = elms->length(); | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | if (!elms->get(i)->IsTheHole()) number_of_elements++; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case PIXEL_ELEMENTS: | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | return true; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | NumberDictionary* dictionary = NumberDictionary::cast(elements()); | 
|  | capacity = dictionary->Capacity(); | 
|  | number_of_elements = dictionary->NumberOfElements(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (capacity == 0) return true; | 
|  | return (number_of_elements > (capacity / 2)); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::ShouldConvertToSlowElements(int new_capacity) { | 
|  | ASSERT(HasFastElements()); | 
|  | // Keep the array in fast case if the current backing storage is | 
|  | // almost filled and if the new capacity is no more than twice the | 
|  | // old capacity. | 
|  | int elements_length = FixedArray::cast(elements())->length(); | 
|  | return !HasDenseElements() || ((new_capacity / 2) > elements_length); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::ShouldConvertToFastElements() { | 
|  | ASSERT(HasDictionaryElements()); | 
|  | NumberDictionary* dictionary = NumberDictionary::cast(elements()); | 
|  | // If the elements are sparse, we should not go back to fast case. | 
|  | if (!HasDenseElements()) return false; | 
|  | // If an element has been added at a very high index in the elements | 
|  | // dictionary, we cannot go back to fast case. | 
|  | if (dictionary->requires_slow_elements()) return false; | 
|  | // An object requiring access checks is never allowed to have fast | 
|  | // elements.  If it had fast elements we would skip security checks. | 
|  | if (IsAccessCheckNeeded()) return false; | 
|  | // If the dictionary backing storage takes up roughly half as much | 
|  | // space as a fast-case backing storage would the array should have | 
|  | // fast elements. | 
|  | uint32_t length = 0; | 
|  | if (IsJSArray()) { | 
|  | CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length)); | 
|  | } else { | 
|  | length = dictionary->max_number_key(); | 
|  | } | 
|  | return static_cast<uint32_t>(dictionary->Capacity()) >= | 
|  | (length / (2 * NumberDictionary::kEntrySize)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Certain compilers request function template instantiation when they | 
|  | // see the definition of the other template functions in the | 
|  | // class. This requires us to have the template functions put | 
|  | // together, so even though this function belongs in objects-debug.cc, | 
|  | // we keep it here instead to satisfy certain compilers. | 
|  | #ifdef DEBUG | 
|  | template<typename Shape, typename Key> | 
|  | void Dictionary<Shape, Key>::Print() { | 
|  | int capacity = HashTable<Shape, Key>::Capacity(); | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k = HashTable<Shape, Key>::KeyAt(i); | 
|  | if (HashTable<Shape, Key>::IsKey(k)) { | 
|  | PrintF(" "); | 
|  | if (k->IsString()) { | 
|  | String::cast(k)->StringPrint(); | 
|  | } else { | 
|  | k->ShortPrint(); | 
|  | } | 
|  | PrintF(": "); | 
|  | ValueAt(i)->ShortPrint(); | 
|  | PrintF("\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) { | 
|  | int pos = 0; | 
|  | int capacity = HashTable<Shape, Key>::Capacity(); | 
|  | AssertNoAllocation no_gc; | 
|  | WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k =  Dictionary<Shape, Key>::KeyAt(i); | 
|  | if (Dictionary<Shape, Key>::IsKey(k)) { | 
|  | elements->set(pos++, ValueAt(i), mode); | 
|  | } | 
|  | } | 
|  | ASSERT(pos == elements->length()); | 
|  | } | 
|  |  | 
|  |  | 
|  | InterceptorInfo* JSObject::GetNamedInterceptor() { | 
|  | ASSERT(map()->has_named_interceptor()); | 
|  | JSFunction* constructor = JSFunction::cast(map()->constructor()); | 
|  | ASSERT(constructor->shared()->IsApiFunction()); | 
|  | Object* result = | 
|  | constructor->shared()->get_api_func_data()->named_property_handler(); | 
|  | return InterceptorInfo::cast(result); | 
|  | } | 
|  |  | 
|  |  | 
|  | InterceptorInfo* JSObject::GetIndexedInterceptor() { | 
|  | ASSERT(map()->has_indexed_interceptor()); | 
|  | JSFunction* constructor = JSFunction::cast(map()->constructor()); | 
|  | ASSERT(constructor->shared()->IsApiFunction()); | 
|  | Object* result = | 
|  | constructor->shared()->get_api_func_data()->indexed_property_handler(); | 
|  | return InterceptorInfo::cast(result); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::GetPropertyPostInterceptor(JSObject* receiver, | 
|  | String* name, | 
|  | PropertyAttributes* attributes) { | 
|  | // Check local property in holder, ignore interceptor. | 
|  | LookupResult result; | 
|  | LocalLookupRealNamedProperty(name, &result); | 
|  | if (result.IsProperty()) { | 
|  | return GetProperty(receiver, &result, name, attributes); | 
|  | } | 
|  | // Continue searching via the prototype chain. | 
|  | Object* pt = GetPrototype(); | 
|  | *attributes = ABSENT; | 
|  | if (pt == Heap::null_value()) return Heap::undefined_value(); | 
|  | return pt->GetPropertyWithReceiver(receiver, name, attributes); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::GetLocalPropertyPostInterceptor( | 
|  | JSObject* receiver, | 
|  | String* name, | 
|  | PropertyAttributes* attributes) { | 
|  | // Check local property in holder, ignore interceptor. | 
|  | LookupResult result; | 
|  | LocalLookupRealNamedProperty(name, &result); | 
|  | if (result.IsProperty()) { | 
|  | return GetProperty(receiver, &result, name, attributes); | 
|  | } | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* JSObject::GetPropertyWithInterceptor( | 
|  | JSObject* receiver, | 
|  | String* name, | 
|  | PropertyAttributes* attributes) { | 
|  | InterceptorInfo* interceptor = GetNamedInterceptor(); | 
|  | HandleScope scope; | 
|  | Handle<JSObject> receiver_handle(receiver); | 
|  | Handle<JSObject> holder_handle(this); | 
|  | Handle<String> name_handle(name); | 
|  |  | 
|  | if (!interceptor->getter()->IsUndefined()) { | 
|  | v8::NamedPropertyGetter getter = | 
|  | v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter()); | 
|  | LOG(ApiNamedPropertyAccess("interceptor-named-get", *holder_handle, name)); | 
|  | CustomArguments args(interceptor->data(), receiver, this); | 
|  | v8::AccessorInfo info(args.end()); | 
|  | v8::Handle<v8::Value> result; | 
|  | { | 
|  | // Leaving JavaScript. | 
|  | VMState state(EXTERNAL); | 
|  | result = getter(v8::Utils::ToLocal(name_handle), info); | 
|  | } | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | if (!result.IsEmpty()) { | 
|  | *attributes = NONE; | 
|  | return *v8::Utils::OpenHandle(*result); | 
|  | } | 
|  | } | 
|  |  | 
|  | Object* result = holder_handle->GetPropertyPostInterceptor( | 
|  | *receiver_handle, | 
|  | *name_handle, | 
|  | attributes); | 
|  | RETURN_IF_SCHEDULED_EXCEPTION(); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::HasRealNamedProperty(String* key) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayNamedAccess(this, key, v8::ACCESS_HAS)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LookupResult result; | 
|  | LocalLookupRealNamedProperty(key, &result); | 
|  | return result.IsProperty() && (result.type() != INTERCEPTOR); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::HasRealElementProperty(uint32_t index) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Handle [] on String objects. | 
|  | if (this->IsStringObjectWithCharacterAt(index)) return true; | 
|  |  | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | uint32_t length = IsJSArray() ? | 
|  | static_cast<uint32_t>( | 
|  | Smi::cast(JSArray::cast(this)->length())->value()) : | 
|  | static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
|  | return (index < length) && | 
|  | !FixedArray::cast(elements())->get(index)->IsTheHole(); | 
|  | } | 
|  | case PIXEL_ELEMENTS: { | 
|  | PixelArray* pixels = PixelArray::cast(elements()); | 
|  | return index < static_cast<uint32_t>(pixels->length()); | 
|  | } | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | ExternalArray* array = ExternalArray::cast(elements()); | 
|  | return index < static_cast<uint32_t>(array->length()); | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | return element_dictionary()->FindEntry(index) | 
|  | != NumberDictionary::kNotFound; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | // All possibilities have been handled above already. | 
|  | UNREACHABLE(); | 
|  | return Heap::null_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool JSObject::HasRealNamedCallbackProperty(String* key) { | 
|  | // Check access rights if needed. | 
|  | if (IsAccessCheckNeeded() && | 
|  | !Top::MayNamedAccess(this, key, v8::ACCESS_HAS)) { | 
|  | Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LookupResult result; | 
|  | LocalLookupRealNamedProperty(key, &result); | 
|  | return result.IsProperty() && (result.type() == CALLBACKS); | 
|  | } | 
|  |  | 
|  |  | 
|  | int JSObject::NumberOfLocalProperties(PropertyAttributes filter) { | 
|  | if (HasFastProperties()) { | 
|  | DescriptorArray* descs = map()->instance_descriptors(); | 
|  | int result = 0; | 
|  | for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
|  | PropertyDetails details = descs->GetDetails(i); | 
|  | if (details.IsProperty() && (details.attributes() & filter) == 0) { | 
|  | result++; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } else { | 
|  | return property_dictionary()->NumberOfElementsFilterAttributes(filter); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int JSObject::NumberOfEnumProperties() { | 
|  | return NumberOfLocalProperties(static_cast<PropertyAttributes>(DONT_ENUM)); | 
|  | } | 
|  |  | 
|  |  | 
|  | void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) { | 
|  | Object* temp = get(i); | 
|  | set(i, get(j)); | 
|  | set(j, temp); | 
|  | if (this != numbers) { | 
|  | temp = numbers->get(i); | 
|  | numbers->set(i, numbers->get(j)); | 
|  | numbers->set(j, temp); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void InsertionSortPairs(FixedArray* content, | 
|  | FixedArray* numbers, | 
|  | int len) { | 
|  | for (int i = 1; i < len; i++) { | 
|  | int j = i; | 
|  | while (j > 0 && | 
|  | (NumberToUint32(numbers->get(j - 1)) > | 
|  | NumberToUint32(numbers->get(j)))) { | 
|  | content->SwapPairs(numbers, j - 1, j); | 
|  | j--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) { | 
|  | // In-place heap sort. | 
|  | ASSERT(content->length() == numbers->length()); | 
|  |  | 
|  | // Bottom-up max-heap construction. | 
|  | for (int i = 1; i < len; ++i) { | 
|  | int child_index = i; | 
|  | while (child_index > 0) { | 
|  | int parent_index = ((child_index + 1) >> 1) - 1; | 
|  | uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); | 
|  | uint32_t child_value = NumberToUint32(numbers->get(child_index)); | 
|  | if (parent_value < child_value) { | 
|  | content->SwapPairs(numbers, parent_index, child_index); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | child_index = parent_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extract elements and create sorted array. | 
|  | for (int i = len - 1; i > 0; --i) { | 
|  | // Put max element at the back of the array. | 
|  | content->SwapPairs(numbers, 0, i); | 
|  | // Sift down the new top element. | 
|  | int parent_index = 0; | 
|  | while (true) { | 
|  | int child_index = ((parent_index + 1) << 1) - 1; | 
|  | if (child_index >= i) break; | 
|  | uint32_t child1_value = NumberToUint32(numbers->get(child_index)); | 
|  | uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1)); | 
|  | uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); | 
|  | if (child_index + 1 >= i || child1_value > child2_value) { | 
|  | if (parent_value > child1_value) break; | 
|  | content->SwapPairs(numbers, parent_index, child_index); | 
|  | parent_index = child_index; | 
|  | } else { | 
|  | if (parent_value > child2_value) break; | 
|  | content->SwapPairs(numbers, parent_index, child_index + 1); | 
|  | parent_index = child_index + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Sort this array and the numbers as pairs wrt. the (distinct) numbers. | 
|  | void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) { | 
|  | ASSERT(this->length() == numbers->length()); | 
|  | // For small arrays, simply use insertion sort. | 
|  | if (len <= 10) { | 
|  | InsertionSortPairs(this, numbers, len); | 
|  | return; | 
|  | } | 
|  | // Check the range of indices. | 
|  | uint32_t min_index = NumberToUint32(numbers->get(0)); | 
|  | uint32_t max_index = min_index; | 
|  | uint32_t i; | 
|  | for (i = 1; i < len; i++) { | 
|  | if (NumberToUint32(numbers->get(i)) < min_index) { | 
|  | min_index = NumberToUint32(numbers->get(i)); | 
|  | } else if (NumberToUint32(numbers->get(i)) > max_index) { | 
|  | max_index = NumberToUint32(numbers->get(i)); | 
|  | } | 
|  | } | 
|  | if (max_index - min_index + 1 == len) { | 
|  | // Indices form a contiguous range, unless there are duplicates. | 
|  | // Do an in-place linear time sort assuming distinct numbers, but | 
|  | // avoid hanging in case they are not. | 
|  | for (i = 0; i < len; i++) { | 
|  | uint32_t p; | 
|  | uint32_t j = 0; | 
|  | // While the current element at i is not at its correct position p, | 
|  | // swap the elements at these two positions. | 
|  | while ((p = NumberToUint32(numbers->get(i)) - min_index) != i && | 
|  | j++ < len) { | 
|  | SwapPairs(numbers, i, p); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | HeapSortPairs(this, numbers, len); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Fill in the names of local properties into the supplied storage. The main | 
|  | // purpose of this function is to provide reflection information for the object | 
|  | // mirrors. | 
|  | void JSObject::GetLocalPropertyNames(FixedArray* storage, int index) { | 
|  | ASSERT(storage->length() >= (NumberOfLocalProperties(NONE) - index)); | 
|  | if (HasFastProperties()) { | 
|  | DescriptorArray* descs = map()->instance_descriptors(); | 
|  | for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
|  | if (descs->IsProperty(i)) storage->set(index++, descs->GetKey(i)); | 
|  | } | 
|  | ASSERT(storage->length() >= index); | 
|  | } else { | 
|  | property_dictionary()->CopyKeysTo(storage); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int JSObject::NumberOfLocalElements(PropertyAttributes filter) { | 
|  | return GetLocalElementKeys(NULL, filter); | 
|  | } | 
|  |  | 
|  |  | 
|  | int JSObject::NumberOfEnumElements() { | 
|  | // Fast case for objects with no elements. | 
|  | if (!IsJSValue() && HasFastElements()) { | 
|  | uint32_t length = IsJSArray() ? | 
|  | static_cast<uint32_t>( | 
|  | Smi::cast(JSArray::cast(this)->length())->value()) : | 
|  | static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
|  | if (length == 0) return 0; | 
|  | } | 
|  | // Compute the number of enumerable elements. | 
|  | return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM)); | 
|  | } | 
|  |  | 
|  |  | 
|  | int JSObject::GetLocalElementKeys(FixedArray* storage, | 
|  | PropertyAttributes filter) { | 
|  | int counter = 0; | 
|  | switch (GetElementsKind()) { | 
|  | case FAST_ELEMENTS: { | 
|  | int length = IsJSArray() ? | 
|  | Smi::cast(JSArray::cast(this)->length())->value() : | 
|  | FixedArray::cast(elements())->length(); | 
|  | for (int i = 0; i < length; i++) { | 
|  | if (!FixedArray::cast(elements())->get(i)->IsTheHole()) { | 
|  | if (storage != NULL) { | 
|  | storage->set(counter, Smi::FromInt(i)); | 
|  | } | 
|  | counter++; | 
|  | } | 
|  | } | 
|  | ASSERT(!storage || storage->length() >= counter); | 
|  | break; | 
|  | } | 
|  | case PIXEL_ELEMENTS: { | 
|  | int length = PixelArray::cast(elements())->length(); | 
|  | while (counter < length) { | 
|  | if (storage != NULL) { | 
|  | storage->set(counter, Smi::FromInt(counter)); | 
|  | } | 
|  | counter++; | 
|  | } | 
|  | ASSERT(!storage || storage->length() >= counter); | 
|  | break; | 
|  | } | 
|  | case EXTERNAL_BYTE_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
|  | case EXTERNAL_SHORT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
|  | case EXTERNAL_INT_ELEMENTS: | 
|  | case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
|  | case EXTERNAL_FLOAT_ELEMENTS: { | 
|  | int length = ExternalArray::cast(elements())->length(); | 
|  | while (counter < length) { | 
|  | if (storage != NULL) { | 
|  | storage->set(counter, Smi::FromInt(counter)); | 
|  | } | 
|  | counter++; | 
|  | } | 
|  | ASSERT(!storage || storage->length() >= counter); | 
|  | break; | 
|  | } | 
|  | case DICTIONARY_ELEMENTS: { | 
|  | if (storage != NULL) { | 
|  | element_dictionary()->CopyKeysTo(storage, filter); | 
|  | } | 
|  | counter = element_dictionary()->NumberOfElementsFilterAttributes(filter); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (this->IsJSValue()) { | 
|  | Object* val = JSValue::cast(this)->value(); | 
|  | if (val->IsString()) { | 
|  | String* str = String::cast(val); | 
|  | if (storage) { | 
|  | for (int i = 0; i < str->length(); i++) { | 
|  | storage->set(counter + i, Smi::FromInt(i)); | 
|  | } | 
|  | } | 
|  | counter += str->length(); | 
|  | } | 
|  | } | 
|  | ASSERT(!storage || storage->length() == counter); | 
|  | return counter; | 
|  | } | 
|  |  | 
|  |  | 
|  | int JSObject::GetEnumElementKeys(FixedArray* storage) { | 
|  | return GetLocalElementKeys(storage, | 
|  | static_cast<PropertyAttributes>(DONT_ENUM)); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) { | 
|  | ASSERT(other->IsNumber()); | 
|  | return key == static_cast<uint32_t>(other->Number()); | 
|  | } | 
|  |  | 
|  |  | 
|  | uint32_t NumberDictionaryShape::Hash(uint32_t key) { | 
|  | return ComputeIntegerHash(key); | 
|  | } | 
|  |  | 
|  |  | 
|  | uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) { | 
|  | ASSERT(other->IsNumber()); | 
|  | return ComputeIntegerHash(static_cast<uint32_t>(other->Number())); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* NumberDictionaryShape::AsObject(uint32_t key) { | 
|  | return Heap::NumberFromUint32(key); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool StringDictionaryShape::IsMatch(String* key, Object* other) { | 
|  | // We know that all entries in a hash table had their hash keys created. | 
|  | // Use that knowledge to have fast failure. | 
|  | if (key->Hash() != String::cast(other)->Hash()) return false; | 
|  | return key->Equals(String::cast(other)); | 
|  | } | 
|  |  | 
|  |  | 
|  | uint32_t StringDictionaryShape::Hash(String* key) { | 
|  | return key->Hash(); | 
|  | } | 
|  |  | 
|  |  | 
|  | uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) { | 
|  | return String::cast(other)->Hash(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* StringDictionaryShape::AsObject(String* key) { | 
|  | return key; | 
|  | } | 
|  |  | 
|  |  | 
|  | // StringKey simply carries a string object as key. | 
|  | class StringKey : public HashTableKey { | 
|  | public: | 
|  | explicit StringKey(String* string) : | 
|  | string_(string), | 
|  | hash_(HashForObject(string)) { } | 
|  |  | 
|  | bool IsMatch(Object* string) { | 
|  | // We know that all entries in a hash table had their hash keys created. | 
|  | // Use that knowledge to have fast failure. | 
|  | if (hash_ != HashForObject(string)) { | 
|  | return false; | 
|  | } | 
|  | return string_->Equals(String::cast(string)); | 
|  | } | 
|  |  | 
|  | uint32_t Hash() { return hash_; } | 
|  |  | 
|  | uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); } | 
|  |  | 
|  | Object* AsObject() { return string_; } | 
|  |  | 
|  | String* string_; | 
|  | uint32_t hash_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // StringSharedKeys are used as keys in the eval cache. | 
|  | class StringSharedKey : public HashTableKey { | 
|  | public: | 
|  | StringSharedKey(String* source, SharedFunctionInfo* shared) | 
|  | : source_(source), shared_(shared) { } | 
|  |  | 
|  | bool IsMatch(Object* other) { | 
|  | if (!other->IsFixedArray()) return false; | 
|  | FixedArray* pair = FixedArray::cast(other); | 
|  | SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0)); | 
|  | if (shared != shared_) return false; | 
|  | String* source = String::cast(pair->get(1)); | 
|  | return source->Equals(source_); | 
|  | } | 
|  |  | 
|  | static uint32_t StringSharedHashHelper(String* source, | 
|  | SharedFunctionInfo* shared) { | 
|  | uint32_t hash = source->Hash(); | 
|  | if (shared->HasSourceCode()) { | 
|  | // Instead of using the SharedFunctionInfo pointer in the hash | 
|  | // code computation, we use a combination of the hash of the | 
|  | // script source code and the start and end positions.  We do | 
|  | // this to ensure that the cache entries can survive garbage | 
|  | // collection. | 
|  | Script* script = Script::cast(shared->script()); | 
|  | hash ^= String::cast(script->source())->Hash(); | 
|  | hash += shared->start_position(); | 
|  | } | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | uint32_t Hash() { | 
|  | return StringSharedHashHelper(source_, shared_); | 
|  | } | 
|  |  | 
|  | uint32_t HashForObject(Object* obj) { | 
|  | FixedArray* pair = FixedArray::cast(obj); | 
|  | SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0)); | 
|  | String* source = String::cast(pair->get(1)); | 
|  | return StringSharedHashHelper(source, shared); | 
|  | } | 
|  |  | 
|  | Object* AsObject() { | 
|  | Object* obj = Heap::AllocateFixedArray(2); | 
|  | if (obj->IsFailure()) return obj; | 
|  | FixedArray* pair = FixedArray::cast(obj); | 
|  | pair->set(0, shared_); | 
|  | pair->set(1, source_); | 
|  | return pair; | 
|  | } | 
|  |  | 
|  | private: | 
|  | String* source_; | 
|  | SharedFunctionInfo* shared_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // RegExpKey carries the source and flags of a regular expression as key. | 
|  | class RegExpKey : public HashTableKey { | 
|  | public: | 
|  | RegExpKey(String* string, JSRegExp::Flags flags) | 
|  | : string_(string), | 
|  | flags_(Smi::FromInt(flags.value())) { } | 
|  |  | 
|  | // Rather than storing the key in the hash table, a pointer to the | 
|  | // stored value is stored where the key should be.  IsMatch then | 
|  | // compares the search key to the found object, rather than comparing | 
|  | // a key to a key. | 
|  | bool IsMatch(Object* obj) { | 
|  | FixedArray* val = FixedArray::cast(obj); | 
|  | return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex))) | 
|  | && (flags_ == val->get(JSRegExp::kFlagsIndex)); | 
|  | } | 
|  |  | 
|  | uint32_t Hash() { return RegExpHash(string_, flags_); } | 
|  |  | 
|  | Object* AsObject() { | 
|  | // Plain hash maps, which is where regexp keys are used, don't | 
|  | // use this function. | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | uint32_t HashForObject(Object* obj) { | 
|  | FixedArray* val = FixedArray::cast(obj); | 
|  | return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)), | 
|  | Smi::cast(val->get(JSRegExp::kFlagsIndex))); | 
|  | } | 
|  |  | 
|  | static uint32_t RegExpHash(String* string, Smi* flags) { | 
|  | return string->Hash() + flags->value(); | 
|  | } | 
|  |  | 
|  | String* string_; | 
|  | Smi* flags_; | 
|  | }; | 
|  |  | 
|  | // Utf8SymbolKey carries a vector of chars as key. | 
|  | class Utf8SymbolKey : public HashTableKey { | 
|  | public: | 
|  | explicit Utf8SymbolKey(Vector<const char> string) | 
|  | : string_(string), hash_field_(0) { } | 
|  |  | 
|  | bool IsMatch(Object* string) { | 
|  | return String::cast(string)->IsEqualTo(string_); | 
|  | } | 
|  |  | 
|  | uint32_t Hash() { | 
|  | if (hash_field_ != 0) return hash_field_ >> String::kHashShift; | 
|  | unibrow::Utf8InputBuffer<> buffer(string_.start(), | 
|  | static_cast<unsigned>(string_.length())); | 
|  | chars_ = buffer.Length(); | 
|  | hash_field_ = String::ComputeHashField(&buffer, chars_); | 
|  | uint32_t result = hash_field_ >> String::kHashShift; | 
|  | ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed. | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint32_t HashForObject(Object* other) { | 
|  | return String::cast(other)->Hash(); | 
|  | } | 
|  |  | 
|  | Object* AsObject() { | 
|  | if (hash_field_ == 0) Hash(); | 
|  | return Heap::AllocateSymbol(string_, chars_, hash_field_); | 
|  | } | 
|  |  | 
|  | Vector<const char> string_; | 
|  | uint32_t hash_field_; | 
|  | int chars_;  // Caches the number of characters when computing the hash code. | 
|  | }; | 
|  |  | 
|  |  | 
|  | // SymbolKey carries a string/symbol object as key. | 
|  | class SymbolKey : public HashTableKey { | 
|  | public: | 
|  | explicit SymbolKey(String* string) : string_(string) { } | 
|  |  | 
|  | bool IsMatch(Object* string) { | 
|  | return String::cast(string)->Equals(string_); | 
|  | } | 
|  |  | 
|  | uint32_t Hash() { return string_->Hash(); } | 
|  |  | 
|  | uint32_t HashForObject(Object* other) { | 
|  | return String::cast(other)->Hash(); | 
|  | } | 
|  |  | 
|  | Object* AsObject() { | 
|  | // Attempt to flatten the string, so that symbols will most often | 
|  | // be flat strings. | 
|  | string_ = string_->TryFlattenGetString(); | 
|  | // Transform string to symbol if possible. | 
|  | Map* map = Heap::SymbolMapForString(string_); | 
|  | if (map != NULL) { | 
|  | string_->set_map(map); | 
|  | ASSERT(string_->IsSymbol()); | 
|  | return string_; | 
|  | } | 
|  | // Otherwise allocate a new symbol. | 
|  | StringInputBuffer buffer(string_); | 
|  | return Heap::AllocateInternalSymbol(&buffer, | 
|  | string_->length(), | 
|  | string_->hash_field()); | 
|  | } | 
|  |  | 
|  | static uint32_t StringHash(Object* obj) { | 
|  | return String::cast(obj)->Hash(); | 
|  | } | 
|  |  | 
|  | String* string_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) { | 
|  | IteratePointers(v, 0, kElementsStartOffset); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) { | 
|  | IteratePointers(v, | 
|  | kElementsStartOffset, | 
|  | kHeaderSize + length() * kPointerSize); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | Object* HashTable<Shape, Key>::Allocate(int at_least_space_for, | 
|  | PretenureFlag pretenure) { | 
|  | const int kMinCapacity = 32; | 
|  | int capacity = RoundUpToPowerOf2(at_least_space_for * 2); | 
|  | if (capacity < kMinCapacity) { | 
|  | capacity = kMinCapacity;  // Guarantee min capacity. | 
|  | } else if (capacity > HashTable::kMaxCapacity) { | 
|  | return Failure::OutOfMemoryException(); | 
|  | } | 
|  |  | 
|  | Object* obj = Heap::AllocateHashTable(EntryToIndex(capacity), pretenure); | 
|  | if (!obj->IsFailure()) { | 
|  | HashTable::cast(obj)->SetNumberOfElements(0); | 
|  | HashTable::cast(obj)->SetNumberOfDeletedElements(0); | 
|  | HashTable::cast(obj)->SetCapacity(capacity); | 
|  | } | 
|  | return obj; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Find entry for key otherwise return kNotFound. | 
|  | template<typename Shape, typename Key> | 
|  | int HashTable<Shape, Key>::FindEntry(Key key) { | 
|  | uint32_t capacity = Capacity(); | 
|  | uint32_t entry = FirstProbe(Shape::Hash(key), capacity); | 
|  | uint32_t count = 1; | 
|  | // EnsureCapacity will guarantee the hash table is never full. | 
|  | while (true) { | 
|  | Object* element = KeyAt(entry); | 
|  | if (element->IsUndefined()) break;  // Empty entry. | 
|  | if (!element->IsNull() && Shape::IsMatch(key, element)) return entry; | 
|  | entry = NextProbe(entry, count++, capacity); | 
|  | } | 
|  | return kNotFound; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Find entry for key otherwise return kNotFound. | 
|  | int StringDictionary::FindEntry(String* key) { | 
|  | if (!key->IsSymbol()) { | 
|  | return HashTable<StringDictionaryShape, String*>::FindEntry(key); | 
|  | } | 
|  |  | 
|  | // Optimized for symbol key. Knowledge of the key type allows: | 
|  | // 1. Move the check if the key is a symbol out of the loop. | 
|  | // 2. Avoid comparing hash codes in symbol to symbol comparision. | 
|  | // 3. Detect a case when a dictionary key is not a symbol but the key is. | 
|  | //    In case of positive result the dictionary key may be replaced by | 
|  | //    the symbol with minimal performance penalty. It gives a chance to | 
|  | //    perform further lookups in code stubs (and significant performance boost | 
|  | //    a certain style of code). | 
|  |  | 
|  | // EnsureCapacity will guarantee the hash table is never full. | 
|  | uint32_t capacity = Capacity(); | 
|  | uint32_t entry = FirstProbe(key->Hash(), capacity); | 
|  | uint32_t count = 1; | 
|  |  | 
|  | while (true) { | 
|  | int index = EntryToIndex(entry); | 
|  | Object* element = get(index); | 
|  | if (element->IsUndefined()) break;  // Empty entry. | 
|  | if (key == element) return entry; | 
|  | if (!element->IsSymbol() && | 
|  | !element->IsNull() && | 
|  | String::cast(element)->Equals(key)) { | 
|  | // Replace a non-symbol key by the equivalent symbol for faster further | 
|  | // lookups. | 
|  | set(index, key); | 
|  | return entry; | 
|  | } | 
|  | ASSERT(element->IsNull() || !String::cast(element)->Equals(key)); | 
|  | entry = NextProbe(entry, count++, capacity); | 
|  | } | 
|  | return kNotFound; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | Object* HashTable<Shape, Key>::EnsureCapacity(int n, Key key) { | 
|  | int capacity = Capacity(); | 
|  | int nof = NumberOfElements() + n; | 
|  | int nod = NumberOfDeletedElements(); | 
|  | // Return if: | 
|  | //   50% is still free after adding n elements and | 
|  | //   at most 50% of the free elements are deleted elements. | 
|  | if (nod <= (capacity - nof) >> 1) { | 
|  | int needed_free = nof >> 1; | 
|  | if (nof + needed_free <= capacity) return this; | 
|  | } | 
|  |  | 
|  | const int kMinCapacityForPretenure = 256; | 
|  | bool pretenure = | 
|  | (capacity > kMinCapacityForPretenure) && !Heap::InNewSpace(this); | 
|  | Object* obj = Allocate(nof * 2, pretenure ? TENURED : NOT_TENURED); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | AssertNoAllocation no_gc; | 
|  | HashTable* table = HashTable::cast(obj); | 
|  | WriteBarrierMode mode = table->GetWriteBarrierMode(no_gc); | 
|  |  | 
|  | // Copy prefix to new array. | 
|  | for (int i = kPrefixStartIndex; | 
|  | i < kPrefixStartIndex + Shape::kPrefixSize; | 
|  | i++) { | 
|  | table->set(i, get(i), mode); | 
|  | } | 
|  | // Rehash the elements. | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | uint32_t from_index = EntryToIndex(i); | 
|  | Object* k = get(from_index); | 
|  | if (IsKey(k)) { | 
|  | uint32_t hash = Shape::HashForObject(key, k); | 
|  | uint32_t insertion_index = | 
|  | EntryToIndex(table->FindInsertionEntry(hash)); | 
|  | for (int j = 0; j < Shape::kEntrySize; j++) { | 
|  | table->set(insertion_index + j, get(from_index + j), mode); | 
|  | } | 
|  | } | 
|  | } | 
|  | table->SetNumberOfElements(NumberOfElements()); | 
|  | table->SetNumberOfDeletedElements(0); | 
|  | return table; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) { | 
|  | uint32_t capacity = Capacity(); | 
|  | uint32_t entry = FirstProbe(hash, capacity); | 
|  | uint32_t count = 1; | 
|  | // EnsureCapacity will guarantee the hash table is never full. | 
|  | while (true) { | 
|  | Object* element = KeyAt(entry); | 
|  | if (element->IsUndefined() || element->IsNull()) break; | 
|  | entry = NextProbe(entry, count++, capacity); | 
|  | } | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | // Force instantiation of template instances class. | 
|  | // Please note this list is compiler dependent. | 
|  |  | 
|  | template class HashTable<SymbolTableShape, HashTableKey*>; | 
|  |  | 
|  | template class HashTable<CompilationCacheShape, HashTableKey*>; | 
|  |  | 
|  | template class HashTable<MapCacheShape, HashTableKey*>; | 
|  |  | 
|  | template class Dictionary<StringDictionaryShape, String*>; | 
|  |  | 
|  | template class Dictionary<NumberDictionaryShape, uint32_t>; | 
|  |  | 
|  | template Object* Dictionary<NumberDictionaryShape, uint32_t>::Allocate( | 
|  | int); | 
|  |  | 
|  | template Object* Dictionary<StringDictionaryShape, String*>::Allocate( | 
|  | int); | 
|  |  | 
|  | template Object* Dictionary<NumberDictionaryShape, uint32_t>::AtPut( | 
|  | uint32_t, Object*); | 
|  |  | 
|  | template Object* Dictionary<NumberDictionaryShape, uint32_t>::SlowReverseLookup( | 
|  | Object*); | 
|  |  | 
|  | template Object* Dictionary<StringDictionaryShape, String*>::SlowReverseLookup( | 
|  | Object*); | 
|  |  | 
|  | template void Dictionary<NumberDictionaryShape, uint32_t>::CopyKeysTo( | 
|  | FixedArray*, PropertyAttributes); | 
|  |  | 
|  | template Object* Dictionary<StringDictionaryShape, String*>::DeleteProperty( | 
|  | int, JSObject::DeleteMode); | 
|  |  | 
|  | template Object* Dictionary<NumberDictionaryShape, uint32_t>::DeleteProperty( | 
|  | int, JSObject::DeleteMode); | 
|  |  | 
|  | template void Dictionary<StringDictionaryShape, String*>::CopyKeysTo( | 
|  | FixedArray*); | 
|  |  | 
|  | template int | 
|  | Dictionary<StringDictionaryShape, String*>::NumberOfElementsFilterAttributes( | 
|  | PropertyAttributes); | 
|  |  | 
|  | template Object* Dictionary<StringDictionaryShape, String*>::Add( | 
|  | String*, Object*, PropertyDetails); | 
|  |  | 
|  | template Object* | 
|  | Dictionary<StringDictionaryShape, String*>::GenerateNewEnumerationIndices(); | 
|  |  | 
|  | template int | 
|  | Dictionary<NumberDictionaryShape, uint32_t>::NumberOfElementsFilterAttributes( | 
|  | PropertyAttributes); | 
|  |  | 
|  | template Object* Dictionary<NumberDictionaryShape, uint32_t>::Add( | 
|  | uint32_t, Object*, PropertyDetails); | 
|  |  | 
|  | template Object* Dictionary<NumberDictionaryShape, uint32_t>::EnsureCapacity( | 
|  | int, uint32_t); | 
|  |  | 
|  | template Object* Dictionary<StringDictionaryShape, String*>::EnsureCapacity( | 
|  | int, String*); | 
|  |  | 
|  | template Object* Dictionary<NumberDictionaryShape, uint32_t>::AddEntry( | 
|  | uint32_t, Object*, PropertyDetails, uint32_t); | 
|  |  | 
|  | template Object* Dictionary<StringDictionaryShape, String*>::AddEntry( | 
|  | String*, Object*, PropertyDetails, uint32_t); | 
|  |  | 
|  | template | 
|  | int Dictionary<NumberDictionaryShape, uint32_t>::NumberOfEnumElements(); | 
|  |  | 
|  | template | 
|  | int Dictionary<StringDictionaryShape, String*>::NumberOfEnumElements(); | 
|  |  | 
|  | template | 
|  | int HashTable<NumberDictionaryShape, uint32_t>::FindEntry(uint32_t); | 
|  |  | 
|  |  | 
|  | // Collates undefined and unexisting elements below limit from position | 
|  | // zero of the elements. The object stays in Dictionary mode. | 
|  | Object* JSObject::PrepareSlowElementsForSort(uint32_t limit) { | 
|  | ASSERT(HasDictionaryElements()); | 
|  | // Must stay in dictionary mode, either because of requires_slow_elements, | 
|  | // or because we are not going to sort (and therefore compact) all of the | 
|  | // elements. | 
|  | NumberDictionary* dict = element_dictionary(); | 
|  | HeapNumber* result_double = NULL; | 
|  | if (limit > static_cast<uint32_t>(Smi::kMaxValue)) { | 
|  | // Allocate space for result before we start mutating the object. | 
|  | Object* new_double = Heap::AllocateHeapNumber(0.0); | 
|  | if (new_double->IsFailure()) return new_double; | 
|  | result_double = HeapNumber::cast(new_double); | 
|  | } | 
|  |  | 
|  | Object* obj = NumberDictionary::Allocate(dict->NumberOfElements()); | 
|  | if (obj->IsFailure()) return obj; | 
|  | NumberDictionary* new_dict = NumberDictionary::cast(obj); | 
|  |  | 
|  | AssertNoAllocation no_alloc; | 
|  |  | 
|  | uint32_t pos = 0; | 
|  | uint32_t undefs = 0; | 
|  | int capacity = dict->Capacity(); | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k = dict->KeyAt(i); | 
|  | if (dict->IsKey(k)) { | 
|  | ASSERT(k->IsNumber()); | 
|  | ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0); | 
|  | ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0); | 
|  | ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32); | 
|  | Object* value = dict->ValueAt(i); | 
|  | PropertyDetails details = dict->DetailsAt(i); | 
|  | if (details.type() == CALLBACKS) { | 
|  | // Bail out and do the sorting of undefineds and array holes in JS. | 
|  | return Smi::FromInt(-1); | 
|  | } | 
|  | uint32_t key = NumberToUint32(k); | 
|  | if (key < limit) { | 
|  | if (value->IsUndefined()) { | 
|  | undefs++; | 
|  | } else { | 
|  | new_dict->AddNumberEntry(pos, value, details); | 
|  | pos++; | 
|  | } | 
|  | } else { | 
|  | new_dict->AddNumberEntry(key, value, details); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t result = pos; | 
|  | PropertyDetails no_details = PropertyDetails(NONE, NORMAL); | 
|  | while (undefs > 0) { | 
|  | new_dict->AddNumberEntry(pos, Heap::undefined_value(), no_details); | 
|  | pos++; | 
|  | undefs--; | 
|  | } | 
|  |  | 
|  | set_elements(new_dict); | 
|  |  | 
|  | if (result <= static_cast<uint32_t>(Smi::kMaxValue)) { | 
|  | return Smi::FromInt(static_cast<int>(result)); | 
|  | } | 
|  |  | 
|  | ASSERT_NE(NULL, result_double); | 
|  | result_double->set_value(static_cast<double>(result)); | 
|  | return result_double; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Collects all defined (non-hole) and non-undefined (array) elements at | 
|  | // the start of the elements array. | 
|  | // If the object is in dictionary mode, it is converted to fast elements | 
|  | // mode. | 
|  | Object* JSObject::PrepareElementsForSort(uint32_t limit) { | 
|  | ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
|  |  | 
|  | if (HasDictionaryElements()) { | 
|  | // Convert to fast elements containing only the existing properties. | 
|  | // Ordering is irrelevant, since we are going to sort anyway. | 
|  | NumberDictionary* dict = element_dictionary(); | 
|  | if (IsJSArray() || dict->requires_slow_elements() || | 
|  | dict->max_number_key() >= limit) { | 
|  | return PrepareSlowElementsForSort(limit); | 
|  | } | 
|  | // Convert to fast elements. | 
|  |  | 
|  | Object* obj = map()->GetFastElementsMap(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | Map* new_map = Map::cast(obj); | 
|  |  | 
|  | PretenureFlag tenure = Heap::InNewSpace(this) ? NOT_TENURED: TENURED; | 
|  | Object* new_array = | 
|  | Heap::AllocateFixedArray(dict->NumberOfElements(), tenure); | 
|  | if (new_array->IsFailure()) return new_array; | 
|  | FixedArray* fast_elements = FixedArray::cast(new_array); | 
|  | dict->CopyValuesTo(fast_elements); | 
|  |  | 
|  | set_map(new_map); | 
|  | set_elements(fast_elements); | 
|  | } else { | 
|  | Object* obj = EnsureWritableFastElements(); | 
|  | if (obj->IsFailure()) return obj; | 
|  | } | 
|  | ASSERT(HasFastElements()); | 
|  |  | 
|  | // Collect holes at the end, undefined before that and the rest at the | 
|  | // start, and return the number of non-hole, non-undefined values. | 
|  |  | 
|  | FixedArray* elements = FixedArray::cast(this->elements()); | 
|  | uint32_t elements_length = static_cast<uint32_t>(elements->length()); | 
|  | if (limit > elements_length) { | 
|  | limit = elements_length ; | 
|  | } | 
|  | if (limit == 0) { | 
|  | return Smi::FromInt(0); | 
|  | } | 
|  |  | 
|  | HeapNumber* result_double = NULL; | 
|  | if (limit > static_cast<uint32_t>(Smi::kMaxValue)) { | 
|  | // Pessimistically allocate space for return value before | 
|  | // we start mutating the array. | 
|  | Object* new_double = Heap::AllocateHeapNumber(0.0); | 
|  | if (new_double->IsFailure()) return new_double; | 
|  | result_double = HeapNumber::cast(new_double); | 
|  | } | 
|  |  | 
|  | AssertNoAllocation no_alloc; | 
|  |  | 
|  | // Split elements into defined, undefined and the_hole, in that order. | 
|  | // Only count locations for undefined and the hole, and fill them afterwards. | 
|  | WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_alloc); | 
|  | unsigned int undefs = limit; | 
|  | unsigned int holes = limit; | 
|  | // Assume most arrays contain no holes and undefined values, so minimize the | 
|  | // number of stores of non-undefined, non-the-hole values. | 
|  | for (unsigned int i = 0; i < undefs; i++) { | 
|  | Object* current = elements->get(i); | 
|  | if (current->IsTheHole()) { | 
|  | holes--; | 
|  | undefs--; | 
|  | } else if (current->IsUndefined()) { | 
|  | undefs--; | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | // Position i needs to be filled. | 
|  | while (undefs > i) { | 
|  | current = elements->get(undefs); | 
|  | if (current->IsTheHole()) { | 
|  | holes--; | 
|  | undefs--; | 
|  | } else if (current->IsUndefined()) { | 
|  | undefs--; | 
|  | } else { | 
|  | elements->set(i, current, write_barrier); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | uint32_t result = undefs; | 
|  | while (undefs < holes) { | 
|  | elements->set_undefined(undefs); | 
|  | undefs++; | 
|  | } | 
|  | while (holes < limit) { | 
|  | elements->set_the_hole(holes); | 
|  | holes++; | 
|  | } | 
|  |  | 
|  | if (result <= static_cast<uint32_t>(Smi::kMaxValue)) { | 
|  | return Smi::FromInt(static_cast<int>(result)); | 
|  | } | 
|  | ASSERT_NE(NULL, result_double); | 
|  | result_double->set_value(static_cast<double>(result)); | 
|  | return result_double; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* PixelArray::SetValue(uint32_t index, Object* value) { | 
|  | uint8_t clamped_value = 0; | 
|  | if (index < static_cast<uint32_t>(length())) { | 
|  | if (value->IsSmi()) { | 
|  | int int_value = Smi::cast(value)->value(); | 
|  | if (int_value < 0) { | 
|  | clamped_value = 0; | 
|  | } else if (int_value > 255) { | 
|  | clamped_value = 255; | 
|  | } else { | 
|  | clamped_value = static_cast<uint8_t>(int_value); | 
|  | } | 
|  | } else if (value->IsHeapNumber()) { | 
|  | double double_value = HeapNumber::cast(value)->value(); | 
|  | if (!(double_value > 0)) { | 
|  | // NaN and less than zero clamp to zero. | 
|  | clamped_value = 0; | 
|  | } else if (double_value > 255) { | 
|  | // Greater than 255 clamp to 255. | 
|  | clamped_value = 255; | 
|  | } else { | 
|  | // Other doubles are rounded to the nearest integer. | 
|  | clamped_value = static_cast<uint8_t>(double_value + 0.5); | 
|  | } | 
|  | } else { | 
|  | // Clamp undefined to zero (default). All other types have been | 
|  | // converted to a number type further up in the call chain. | 
|  | ASSERT(value->IsUndefined()); | 
|  | } | 
|  | set(index, clamped_value); | 
|  | } | 
|  | return Smi::FromInt(clamped_value); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename ExternalArrayClass, typename ValueType> | 
|  | static Object* ExternalArrayIntSetter(ExternalArrayClass* receiver, | 
|  | uint32_t index, | 
|  | Object* value) { | 
|  | ValueType cast_value = 0; | 
|  | if (index < static_cast<uint32_t>(receiver->length())) { | 
|  | if (value->IsSmi()) { | 
|  | int int_value = Smi::cast(value)->value(); | 
|  | cast_value = static_cast<ValueType>(int_value); | 
|  | } else if (value->IsHeapNumber()) { | 
|  | double double_value = HeapNumber::cast(value)->value(); | 
|  | cast_value = static_cast<ValueType>(DoubleToInt32(double_value)); | 
|  | } else { | 
|  | // Clamp undefined to zero (default). All other types have been | 
|  | // converted to a number type further up in the call chain. | 
|  | ASSERT(value->IsUndefined()); | 
|  | } | 
|  | receiver->set(index, cast_value); | 
|  | } | 
|  | return Heap::NumberFromInt32(cast_value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* ExternalByteArray::SetValue(uint32_t index, Object* value) { | 
|  | return ExternalArrayIntSetter<ExternalByteArray, int8_t> | 
|  | (this, index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* ExternalUnsignedByteArray::SetValue(uint32_t index, Object* value) { | 
|  | return ExternalArrayIntSetter<ExternalUnsignedByteArray, uint8_t> | 
|  | (this, index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* ExternalShortArray::SetValue(uint32_t index, Object* value) { | 
|  | return ExternalArrayIntSetter<ExternalShortArray, int16_t> | 
|  | (this, index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* ExternalUnsignedShortArray::SetValue(uint32_t index, Object* value) { | 
|  | return ExternalArrayIntSetter<ExternalUnsignedShortArray, uint16_t> | 
|  | (this, index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* ExternalIntArray::SetValue(uint32_t index, Object* value) { | 
|  | return ExternalArrayIntSetter<ExternalIntArray, int32_t> | 
|  | (this, index, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* ExternalUnsignedIntArray::SetValue(uint32_t index, Object* value) { | 
|  | uint32_t cast_value = 0; | 
|  | if (index < static_cast<uint32_t>(length())) { | 
|  | if (value->IsSmi()) { | 
|  | int int_value = Smi::cast(value)->value(); | 
|  | cast_value = static_cast<uint32_t>(int_value); | 
|  | } else if (value->IsHeapNumber()) { | 
|  | double double_value = HeapNumber::cast(value)->value(); | 
|  | cast_value = static_cast<uint32_t>(DoubleToUint32(double_value)); | 
|  | } else { | 
|  | // Clamp undefined to zero (default). All other types have been | 
|  | // converted to a number type further up in the call chain. | 
|  | ASSERT(value->IsUndefined()); | 
|  | } | 
|  | set(index, cast_value); | 
|  | } | 
|  | return Heap::NumberFromUint32(cast_value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* ExternalFloatArray::SetValue(uint32_t index, Object* value) { | 
|  | float cast_value = 0; | 
|  | if (index < static_cast<uint32_t>(length())) { | 
|  | if (value->IsSmi()) { | 
|  | int int_value = Smi::cast(value)->value(); | 
|  | cast_value = static_cast<float>(int_value); | 
|  | } else if (value->IsHeapNumber()) { | 
|  | double double_value = HeapNumber::cast(value)->value(); | 
|  | cast_value = static_cast<float>(double_value); | 
|  | } else { | 
|  | // Clamp undefined to zero (default). All other types have been | 
|  | // converted to a number type further up in the call chain. | 
|  | ASSERT(value->IsUndefined()); | 
|  | } | 
|  | set(index, cast_value); | 
|  | } | 
|  | return Heap::AllocateHeapNumber(cast_value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* GlobalObject::GetPropertyCell(LookupResult* result) { | 
|  | ASSERT(!HasFastProperties()); | 
|  | Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry()); | 
|  | ASSERT(value->IsJSGlobalPropertyCell()); | 
|  | return value; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* GlobalObject::EnsurePropertyCell(String* name) { | 
|  | ASSERT(!HasFastProperties()); | 
|  | int entry = property_dictionary()->FindEntry(name); | 
|  | if (entry == StringDictionary::kNotFound) { | 
|  | Object* cell = Heap::AllocateJSGlobalPropertyCell(Heap::the_hole_value()); | 
|  | if (cell->IsFailure()) return cell; | 
|  | PropertyDetails details(NONE, NORMAL); | 
|  | details = details.AsDeleted(); | 
|  | Object* dictionary = property_dictionary()->Add(name, cell, details); | 
|  | if (dictionary->IsFailure()) return dictionary; | 
|  | set_properties(StringDictionary::cast(dictionary)); | 
|  | return cell; | 
|  | } else { | 
|  | Object* value = property_dictionary()->ValueAt(entry); | 
|  | ASSERT(value->IsJSGlobalPropertyCell()); | 
|  | return value; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* SymbolTable::LookupString(String* string, Object** s) { | 
|  | SymbolKey key(string); | 
|  | return LookupKey(&key, s); | 
|  | } | 
|  |  | 
|  |  | 
|  | // This class is used for looking up two character strings in the symbol table. | 
|  | // If we don't have a hit we don't want to waste much time so we unroll the | 
|  | // string hash calculation loop here for speed.  Doesn't work if the two | 
|  | // characters form a decimal integer, since such strings have a different hash | 
|  | // algorithm. | 
|  | class TwoCharHashTableKey : public HashTableKey { | 
|  | public: | 
|  | TwoCharHashTableKey(uint32_t c1, uint32_t c2) | 
|  | : c1_(c1), c2_(c2) { | 
|  | // Char 1. | 
|  | uint32_t hash = c1 + (c1 << 10); | 
|  | hash ^= hash >> 6; | 
|  | // Char 2. | 
|  | hash += c2; | 
|  | hash += hash << 10; | 
|  | hash ^= hash >> 6; | 
|  | // GetHash. | 
|  | hash += hash << 3; | 
|  | hash ^= hash >> 11; | 
|  | hash += hash << 15; | 
|  | if (hash == 0) hash = 27; | 
|  | #ifdef DEBUG | 
|  | StringHasher hasher(2); | 
|  | hasher.AddCharacter(c1); | 
|  | hasher.AddCharacter(c2); | 
|  | // If this assert fails then we failed to reproduce the two-character | 
|  | // version of the string hashing algorithm above.  One reason could be | 
|  | // that we were passed two digits as characters, since the hash | 
|  | // algorithm is different in that case. | 
|  | ASSERT_EQ(static_cast<int>(hasher.GetHash()), static_cast<int>(hash)); | 
|  | #endif | 
|  | hash_ = hash; | 
|  | } | 
|  |  | 
|  | bool IsMatch(Object* o) { | 
|  | if (!o->IsString()) return false; | 
|  | String* other = String::cast(o); | 
|  | if (other->length() != 2) return false; | 
|  | if (other->Get(0) != c1_) return false; | 
|  | return other->Get(1) == c2_; | 
|  | } | 
|  |  | 
|  | uint32_t Hash() { return hash_; } | 
|  | uint32_t HashForObject(Object* key) { | 
|  | if (!key->IsString()) return 0; | 
|  | return String::cast(key)->Hash(); | 
|  | } | 
|  |  | 
|  | Object* AsObject() { | 
|  | // The TwoCharHashTableKey is only used for looking in the symbol | 
|  | // table, not for adding to it. | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  | private: | 
|  | uint32_t c1_; | 
|  | uint32_t c2_; | 
|  | uint32_t hash_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | bool SymbolTable::LookupSymbolIfExists(String* string, String** symbol) { | 
|  | SymbolKey key(string); | 
|  | int entry = FindEntry(&key); | 
|  | if (entry == kNotFound) { | 
|  | return false; | 
|  | } else { | 
|  | String* result = String::cast(KeyAt(entry)); | 
|  | ASSERT(StringShape(result).IsSymbol()); | 
|  | *symbol = result; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | bool SymbolTable::LookupTwoCharsSymbolIfExists(uint32_t c1, | 
|  | uint32_t c2, | 
|  | String** symbol) { | 
|  | TwoCharHashTableKey key(c1, c2); | 
|  | int entry = FindEntry(&key); | 
|  | if (entry == kNotFound) { | 
|  | return false; | 
|  | } else { | 
|  | String* result = String::cast(KeyAt(entry)); | 
|  | ASSERT(StringShape(result).IsSymbol()); | 
|  | *symbol = result; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* SymbolTable::LookupSymbol(Vector<const char> str, Object** s) { | 
|  | Utf8SymbolKey key(str); | 
|  | return LookupKey(&key, s); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* SymbolTable::LookupKey(HashTableKey* key, Object** s) { | 
|  | int entry = FindEntry(key); | 
|  |  | 
|  | // Symbol already in table. | 
|  | if (entry != kNotFound) { | 
|  | *s = KeyAt(entry); | 
|  | return this; | 
|  | } | 
|  |  | 
|  | // Adding new symbol. Grow table if needed. | 
|  | Object* obj = EnsureCapacity(1, key); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | // Create symbol object. | 
|  | Object* symbol = key->AsObject(); | 
|  | if (symbol->IsFailure()) return symbol; | 
|  |  | 
|  | // If the symbol table grew as part of EnsureCapacity, obj is not | 
|  | // the current symbol table and therefore we cannot use | 
|  | // SymbolTable::cast here. | 
|  | SymbolTable* table = reinterpret_cast<SymbolTable*>(obj); | 
|  |  | 
|  | // Add the new symbol and return it along with the symbol table. | 
|  | entry = table->FindInsertionEntry(key->Hash()); | 
|  | table->set(EntryToIndex(entry), symbol); | 
|  | table->ElementAdded(); | 
|  | *s = symbol; | 
|  | return table; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CompilationCacheTable::Lookup(String* src) { | 
|  | StringKey key(src); | 
|  | int entry = FindEntry(&key); | 
|  | if (entry == kNotFound) return Heap::undefined_value(); | 
|  | return get(EntryToIndex(entry) + 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CompilationCacheTable::LookupEval(String* src, Context* context) { | 
|  | StringSharedKey key(src, context->closure()->shared()); | 
|  | int entry = FindEntry(&key); | 
|  | if (entry == kNotFound) return Heap::undefined_value(); | 
|  | return get(EntryToIndex(entry) + 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CompilationCacheTable::LookupRegExp(String* src, | 
|  | JSRegExp::Flags flags) { | 
|  | RegExpKey key(src, flags); | 
|  | int entry = FindEntry(&key); | 
|  | if (entry == kNotFound) return Heap::undefined_value(); | 
|  | return get(EntryToIndex(entry) + 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CompilationCacheTable::Put(String* src, Object* value) { | 
|  | StringKey key(src); | 
|  | Object* obj = EnsureCapacity(1, &key); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | CompilationCacheTable* cache = | 
|  | reinterpret_cast<CompilationCacheTable*>(obj); | 
|  | int entry = cache->FindInsertionEntry(key.Hash()); | 
|  | cache->set(EntryToIndex(entry), src); | 
|  | cache->set(EntryToIndex(entry) + 1, value); | 
|  | cache->ElementAdded(); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CompilationCacheTable::PutEval(String* src, | 
|  | Context* context, | 
|  | Object* value) { | 
|  | StringSharedKey key(src, context->closure()->shared()); | 
|  | Object* obj = EnsureCapacity(1, &key); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | CompilationCacheTable* cache = | 
|  | reinterpret_cast<CompilationCacheTable*>(obj); | 
|  | int entry = cache->FindInsertionEntry(key.Hash()); | 
|  |  | 
|  | Object* k = key.AsObject(); | 
|  | if (k->IsFailure()) return k; | 
|  |  | 
|  | cache->set(EntryToIndex(entry), k); | 
|  | cache->set(EntryToIndex(entry) + 1, value); | 
|  | cache->ElementAdded(); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* CompilationCacheTable::PutRegExp(String* src, | 
|  | JSRegExp::Flags flags, | 
|  | FixedArray* value) { | 
|  | RegExpKey key(src, flags); | 
|  | Object* obj = EnsureCapacity(1, &key); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | CompilationCacheTable* cache = | 
|  | reinterpret_cast<CompilationCacheTable*>(obj); | 
|  | int entry = cache->FindInsertionEntry(key.Hash()); | 
|  | // We store the value in the key slot, and compare the search key | 
|  | // to the stored value with a custon IsMatch function during lookups. | 
|  | cache->set(EntryToIndex(entry), value); | 
|  | cache->set(EntryToIndex(entry) + 1, value); | 
|  | cache->ElementAdded(); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  |  | 
|  | // SymbolsKey used for HashTable where key is array of symbols. | 
|  | class SymbolsKey : public HashTableKey { | 
|  | public: | 
|  | explicit SymbolsKey(FixedArray* symbols) : symbols_(symbols) { } | 
|  |  | 
|  | bool IsMatch(Object* symbols) { | 
|  | FixedArray* o = FixedArray::cast(symbols); | 
|  | int len = symbols_->length(); | 
|  | if (o->length() != len) return false; | 
|  | for (int i = 0; i < len; i++) { | 
|  | if (o->get(i) != symbols_->get(i)) return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint32_t Hash() { return HashForObject(symbols_); } | 
|  |  | 
|  | uint32_t HashForObject(Object* obj) { | 
|  | FixedArray* symbols = FixedArray::cast(obj); | 
|  | int len = symbols->length(); | 
|  | uint32_t hash = 0; | 
|  | for (int i = 0; i < len; i++) { | 
|  | hash ^= String::cast(symbols->get(i))->Hash(); | 
|  | } | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | Object* AsObject() { return symbols_; } | 
|  |  | 
|  | private: | 
|  | FixedArray* symbols_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | Object* MapCache::Lookup(FixedArray* array) { | 
|  | SymbolsKey key(array); | 
|  | int entry = FindEntry(&key); | 
|  | if (entry == kNotFound) return Heap::undefined_value(); | 
|  | return get(EntryToIndex(entry) + 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* MapCache::Put(FixedArray* array, Map* value) { | 
|  | SymbolsKey key(array); | 
|  | Object* obj = EnsureCapacity(1, &key); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | MapCache* cache = reinterpret_cast<MapCache*>(obj); | 
|  | int entry = cache->FindInsertionEntry(key.Hash()); | 
|  | cache->set(EntryToIndex(entry), array); | 
|  | cache->set(EntryToIndex(entry) + 1, value); | 
|  | cache->ElementAdded(); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | Object* Dictionary<Shape, Key>::Allocate(int at_least_space_for) { | 
|  | Object* obj = HashTable<Shape, Key>::Allocate(at_least_space_for); | 
|  | // Initialize the next enumeration index. | 
|  | if (!obj->IsFailure()) { | 
|  | Dictionary<Shape, Key>::cast(obj)-> | 
|  | SetNextEnumerationIndex(PropertyDetails::kInitialIndex); | 
|  | } | 
|  | return obj; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | Object* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() { | 
|  | int length = HashTable<Shape, Key>::NumberOfElements(); | 
|  |  | 
|  | // Allocate and initialize iteration order array. | 
|  | Object* obj = Heap::AllocateFixedArray(length); | 
|  | if (obj->IsFailure()) return obj; | 
|  | FixedArray* iteration_order = FixedArray::cast(obj); | 
|  | for (int i = 0; i < length; i++) { | 
|  | iteration_order->set(i, Smi::FromInt(i)); | 
|  | } | 
|  |  | 
|  | // Allocate array with enumeration order. | 
|  | obj = Heap::AllocateFixedArray(length); | 
|  | if (obj->IsFailure()) return obj; | 
|  | FixedArray* enumeration_order = FixedArray::cast(obj); | 
|  |  | 
|  | // Fill the enumeration order array with property details. | 
|  | int capacity = HashTable<Shape, Key>::Capacity(); | 
|  | int pos = 0; | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) { | 
|  | enumeration_order->set(pos++, Smi::FromInt(DetailsAt(i).index())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Sort the arrays wrt. enumeration order. | 
|  | iteration_order->SortPairs(enumeration_order, enumeration_order->length()); | 
|  |  | 
|  | // Overwrite the enumeration_order with the enumeration indices. | 
|  | for (int i = 0; i < length; i++) { | 
|  | int index = Smi::cast(iteration_order->get(i))->value(); | 
|  | int enum_index = PropertyDetails::kInitialIndex + i; | 
|  | enumeration_order->set(index, Smi::FromInt(enum_index)); | 
|  | } | 
|  |  | 
|  | // Update the dictionary with new indices. | 
|  | capacity = HashTable<Shape, Key>::Capacity(); | 
|  | pos = 0; | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) { | 
|  | int enum_index = Smi::cast(enumeration_order->get(pos++))->value(); | 
|  | PropertyDetails details = DetailsAt(i); | 
|  | PropertyDetails new_details = | 
|  | PropertyDetails(details.attributes(), details.type(), enum_index); | 
|  | DetailsAtPut(i, new_details); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set the next enumeration index. | 
|  | SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length); | 
|  | return this; | 
|  | } | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | Object* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) { | 
|  | // Check whether there are enough enumeration indices to add n elements. | 
|  | if (Shape::kIsEnumerable && | 
|  | !PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) { | 
|  | // If not, we generate new indices for the properties. | 
|  | Object* result = GenerateNewEnumerationIndices(); | 
|  | if (result->IsFailure()) return result; | 
|  | } | 
|  | return HashTable<Shape, Key>::EnsureCapacity(n, key); | 
|  | } | 
|  |  | 
|  |  | 
|  | void NumberDictionary::RemoveNumberEntries(uint32_t from, uint32_t to) { | 
|  | // Do nothing if the interval [from, to) is empty. | 
|  | if (from >= to) return; | 
|  |  | 
|  | int removed_entries = 0; | 
|  | Object* sentinel = Heap::null_value(); | 
|  | int capacity = Capacity(); | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* key = KeyAt(i); | 
|  | if (key->IsNumber()) { | 
|  | uint32_t number = static_cast<uint32_t>(key->Number()); | 
|  | if (from <= number && number < to) { | 
|  | SetEntry(i, sentinel, sentinel, Smi::FromInt(0)); | 
|  | removed_entries++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update the number of elements. | 
|  | ElementsRemoved(removed_entries); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | Object* Dictionary<Shape, Key>::DeleteProperty(int entry, | 
|  | JSObject::DeleteMode mode) { | 
|  | PropertyDetails details = DetailsAt(entry); | 
|  | // Ignore attributes if forcing a deletion. | 
|  | if (details.IsDontDelete() && mode == JSObject::NORMAL_DELETION) { | 
|  | return Heap::false_value(); | 
|  | } | 
|  | SetEntry(entry, Heap::null_value(), Heap::null_value(), Smi::FromInt(0)); | 
|  | HashTable<Shape, Key>::ElementRemoved(); | 
|  | return Heap::true_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | Object* Dictionary<Shape, Key>::AtPut(Key key, Object* value) { | 
|  | int entry = this->FindEntry(key); | 
|  |  | 
|  | // If the entry is present set the value; | 
|  | if (entry != Dictionary<Shape, Key>::kNotFound) { | 
|  | ValueAtPut(entry, value); | 
|  | return this; | 
|  | } | 
|  |  | 
|  | // Check whether the dictionary should be extended. | 
|  | Object* obj = EnsureCapacity(1, key); | 
|  | if (obj->IsFailure()) return obj; | 
|  |  | 
|  | Object* k = Shape::AsObject(key); | 
|  | if (k->IsFailure()) return k; | 
|  | PropertyDetails details = PropertyDetails(NONE, NORMAL); | 
|  | return Dictionary<Shape, Key>::cast(obj)-> | 
|  | AddEntry(key, value, details, Shape::Hash(key)); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | Object* Dictionary<Shape, Key>::Add(Key key, | 
|  | Object* value, | 
|  | PropertyDetails details) { | 
|  | // Valdate key is absent. | 
|  | SLOW_ASSERT((this->FindEntry(key) == Dictionary<Shape, Key>::kNotFound)); | 
|  | // Check whether the dictionary should be extended. | 
|  | Object* obj = EnsureCapacity(1, key); | 
|  | if (obj->IsFailure()) return obj; | 
|  | return Dictionary<Shape, Key>::cast(obj)-> | 
|  | AddEntry(key, value, details, Shape::Hash(key)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Add a key, value pair to the dictionary. | 
|  | template<typename Shape, typename Key> | 
|  | Object* Dictionary<Shape, Key>::AddEntry(Key key, | 
|  | Object* value, | 
|  | PropertyDetails details, | 
|  | uint32_t hash) { | 
|  | // Compute the key object. | 
|  | Object* k = Shape::AsObject(key); | 
|  | if (k->IsFailure()) return k; | 
|  |  | 
|  | uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash); | 
|  | // Insert element at empty or deleted entry | 
|  | if (!details.IsDeleted() && details.index() == 0 && Shape::kIsEnumerable) { | 
|  | // Assign an enumeration index to the property and update | 
|  | // SetNextEnumerationIndex. | 
|  | int index = NextEnumerationIndex(); | 
|  | details = PropertyDetails(details.attributes(), details.type(), index); | 
|  | SetNextEnumerationIndex(index + 1); | 
|  | } | 
|  | SetEntry(entry, k, value, details); | 
|  | ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber() | 
|  | || Dictionary<Shape, Key>::KeyAt(entry)->IsString())); | 
|  | HashTable<Shape, Key>::ElementAdded(); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  | void NumberDictionary::UpdateMaxNumberKey(uint32_t key) { | 
|  | // If the dictionary requires slow elements an element has already | 
|  | // been added at a high index. | 
|  | if (requires_slow_elements()) return; | 
|  | // Check if this index is high enough that we should require slow | 
|  | // elements. | 
|  | if (key > kRequiresSlowElementsLimit) { | 
|  | set_requires_slow_elements(); | 
|  | return; | 
|  | } | 
|  | // Update max key value. | 
|  | Object* max_index_object = get(kMaxNumberKeyIndex); | 
|  | if (!max_index_object->IsSmi() || max_number_key() < key) { | 
|  | FixedArray::set(kMaxNumberKeyIndex, | 
|  | Smi::FromInt(key << kRequiresSlowElementsTagSize)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* NumberDictionary::AddNumberEntry(uint32_t key, | 
|  | Object* value, | 
|  | PropertyDetails details) { | 
|  | UpdateMaxNumberKey(key); | 
|  | SLOW_ASSERT(this->FindEntry(key) == kNotFound); | 
|  | return Add(key, value, details); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* NumberDictionary::AtNumberPut(uint32_t key, Object* value) { | 
|  | UpdateMaxNumberKey(key); | 
|  | return AtPut(key, value); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* NumberDictionary::Set(uint32_t key, | 
|  | Object* value, | 
|  | PropertyDetails details) { | 
|  | int entry = FindEntry(key); | 
|  | if (entry == kNotFound) return AddNumberEntry(key, value, details); | 
|  | // Preserve enumeration index. | 
|  | details = PropertyDetails(details.attributes(), | 
|  | details.type(), | 
|  | DetailsAt(entry).index()); | 
|  | SetEntry(entry, NumberDictionaryShape::AsObject(key), value, details); | 
|  | return this; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes( | 
|  | PropertyAttributes filter) { | 
|  | int capacity = HashTable<Shape, Key>::Capacity(); | 
|  | int result = 0; | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k = HashTable<Shape, Key>::KeyAt(i); | 
|  | if (HashTable<Shape, Key>::IsKey(k)) { | 
|  | PropertyDetails details = DetailsAt(i); | 
|  | if (details.IsDeleted()) continue; | 
|  | PropertyAttributes attr = details.attributes(); | 
|  | if ((attr & filter) == 0) result++; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | int Dictionary<Shape, Key>::NumberOfEnumElements() { | 
|  | return NumberOfElementsFilterAttributes( | 
|  | static_cast<PropertyAttributes>(DONT_ENUM)); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage, | 
|  | PropertyAttributes filter) { | 
|  | ASSERT(storage->length() >= NumberOfEnumElements()); | 
|  | int capacity = HashTable<Shape, Key>::Capacity(); | 
|  | int index = 0; | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k = HashTable<Shape, Key>::KeyAt(i); | 
|  | if (HashTable<Shape, Key>::IsKey(k)) { | 
|  | PropertyDetails details = DetailsAt(i); | 
|  | if (details.IsDeleted()) continue; | 
|  | PropertyAttributes attr = details.attributes(); | 
|  | if ((attr & filter) == 0) storage->set(index++, k); | 
|  | } | 
|  | } | 
|  | storage->SortPairs(storage, index); | 
|  | ASSERT(storage->length() >= index); | 
|  | } | 
|  |  | 
|  |  | 
|  | void StringDictionary::CopyEnumKeysTo(FixedArray* storage, | 
|  | FixedArray* sort_array) { | 
|  | ASSERT(storage->length() >= NumberOfEnumElements()); | 
|  | int capacity = Capacity(); | 
|  | int index = 0; | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k = KeyAt(i); | 
|  | if (IsKey(k)) { | 
|  | PropertyDetails details = DetailsAt(i); | 
|  | if (details.IsDeleted() || details.IsDontEnum()) continue; | 
|  | storage->set(index, k); | 
|  | sort_array->set(index, Smi::FromInt(details.index())); | 
|  | index++; | 
|  | } | 
|  | } | 
|  | storage->SortPairs(sort_array, sort_array->length()); | 
|  | ASSERT(storage->length() >= index); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Shape, typename Key> | 
|  | void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage) { | 
|  | ASSERT(storage->length() >= NumberOfElementsFilterAttributes( | 
|  | static_cast<PropertyAttributes>(NONE))); | 
|  | int capacity = HashTable<Shape, Key>::Capacity(); | 
|  | int index = 0; | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k = HashTable<Shape, Key>::KeyAt(i); | 
|  | if (HashTable<Shape, Key>::IsKey(k)) { | 
|  | PropertyDetails details = DetailsAt(i); | 
|  | if (details.IsDeleted()) continue; | 
|  | storage->set(index++, k); | 
|  | } | 
|  | } | 
|  | ASSERT(storage->length() >= index); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Backwards lookup (slow). | 
|  | template<typename Shape, typename Key> | 
|  | Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) { | 
|  | int capacity = HashTable<Shape, Key>::Capacity(); | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k =  HashTable<Shape, Key>::KeyAt(i); | 
|  | if (Dictionary<Shape, Key>::IsKey(k)) { | 
|  | Object* e = ValueAt(i); | 
|  | if (e->IsJSGlobalPropertyCell()) { | 
|  | e = JSGlobalPropertyCell::cast(e)->value(); | 
|  | } | 
|  | if (e == value) return k; | 
|  | } | 
|  | } | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* StringDictionary::TransformPropertiesToFastFor( | 
|  | JSObject* obj, int unused_property_fields) { | 
|  | // Make sure we preserve dictionary representation if there are too many | 
|  | // descriptors. | 
|  | if (NumberOfElements() > DescriptorArray::kMaxNumberOfDescriptors) return obj; | 
|  |  | 
|  | // Figure out if it is necessary to generate new enumeration indices. | 
|  | int max_enumeration_index = | 
|  | NextEnumerationIndex() + | 
|  | (DescriptorArray::kMaxNumberOfDescriptors - | 
|  | NumberOfElements()); | 
|  | if (!PropertyDetails::IsValidIndex(max_enumeration_index)) { | 
|  | Object* result = GenerateNewEnumerationIndices(); | 
|  | if (result->IsFailure()) return result; | 
|  | } | 
|  |  | 
|  | int instance_descriptor_length = 0; | 
|  | int number_of_fields = 0; | 
|  |  | 
|  | // Compute the length of the instance descriptor. | 
|  | int capacity = Capacity(); | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k = KeyAt(i); | 
|  | if (IsKey(k)) { | 
|  | Object* value = ValueAt(i); | 
|  | PropertyType type = DetailsAt(i).type(); | 
|  | ASSERT(type != FIELD); | 
|  | instance_descriptor_length++; | 
|  | if (type == NORMAL && | 
|  | (!value->IsJSFunction() || Heap::InNewSpace(value))) { | 
|  | number_of_fields += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Allocate the instance descriptor. | 
|  | Object* descriptors_unchecked = | 
|  | DescriptorArray::Allocate(instance_descriptor_length); | 
|  | if (descriptors_unchecked->IsFailure()) return descriptors_unchecked; | 
|  | DescriptorArray* descriptors = DescriptorArray::cast(descriptors_unchecked); | 
|  |  | 
|  | int inobject_props = obj->map()->inobject_properties(); | 
|  | int number_of_allocated_fields = | 
|  | number_of_fields + unused_property_fields - inobject_props; | 
|  | if (number_of_allocated_fields < 0) { | 
|  | // There is enough inobject space for all fields (including unused). | 
|  | number_of_allocated_fields = 0; | 
|  | unused_property_fields = inobject_props - number_of_fields; | 
|  | } | 
|  |  | 
|  | // Allocate the fixed array for the fields. | 
|  | Object* fields = Heap::AllocateFixedArray(number_of_allocated_fields); | 
|  | if (fields->IsFailure()) return fields; | 
|  |  | 
|  | // Fill in the instance descriptor and the fields. | 
|  | int next_descriptor = 0; | 
|  | int current_offset = 0; | 
|  | for (int i = 0; i < capacity; i++) { | 
|  | Object* k = KeyAt(i); | 
|  | if (IsKey(k)) { | 
|  | Object* value = ValueAt(i); | 
|  | // Ensure the key is a symbol before writing into the instance descriptor. | 
|  | Object* key = Heap::LookupSymbol(String::cast(k)); | 
|  | if (key->IsFailure()) return key; | 
|  | PropertyDetails details = DetailsAt(i); | 
|  | PropertyType type = details.type(); | 
|  |  | 
|  | if (value->IsJSFunction() && !Heap::InNewSpace(value)) { | 
|  | ConstantFunctionDescriptor d(String::cast(key), | 
|  | JSFunction::cast(value), | 
|  | details.attributes(), | 
|  | details.index()); | 
|  | descriptors->Set(next_descriptor++, &d); | 
|  | } else if (type == NORMAL) { | 
|  | if (current_offset < inobject_props) { | 
|  | obj->InObjectPropertyAtPut(current_offset, | 
|  | value, | 
|  | UPDATE_WRITE_BARRIER); | 
|  | } else { | 
|  | int offset = current_offset - inobject_props; | 
|  | FixedArray::cast(fields)->set(offset, value); | 
|  | } | 
|  | FieldDescriptor d(String::cast(key), | 
|  | current_offset++, | 
|  | details.attributes(), | 
|  | details.index()); | 
|  | descriptors->Set(next_descriptor++, &d); | 
|  | } else if (type == CALLBACKS) { | 
|  | CallbacksDescriptor d(String::cast(key), | 
|  | value, | 
|  | details.attributes(), | 
|  | details.index()); | 
|  | descriptors->Set(next_descriptor++, &d); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  | ASSERT(current_offset == number_of_fields); | 
|  |  | 
|  | descriptors->Sort(); | 
|  | // Allocate new map. | 
|  | Object* new_map = obj->map()->CopyDropDescriptors(); | 
|  | if (new_map->IsFailure()) return new_map; | 
|  |  | 
|  | // Transform the object. | 
|  | obj->set_map(Map::cast(new_map)); | 
|  | obj->map()->set_instance_descriptors(descriptors); | 
|  | obj->map()->set_unused_property_fields(unused_property_fields); | 
|  |  | 
|  | obj->set_properties(FixedArray::cast(fields)); | 
|  | ASSERT(obj->IsJSObject()); | 
|  |  | 
|  | descriptors->SetNextEnumerationIndex(NextEnumerationIndex()); | 
|  | // Check that it really works. | 
|  | ASSERT(obj->HasFastProperties()); | 
|  |  | 
|  | return obj; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef ENABLE_DEBUGGER_SUPPORT | 
|  | // Check if there is a break point at this code position. | 
|  | bool DebugInfo::HasBreakPoint(int code_position) { | 
|  | // Get the break point info object for this code position. | 
|  | Object* break_point_info = GetBreakPointInfo(code_position); | 
|  |  | 
|  | // If there is no break point info object or no break points in the break | 
|  | // point info object there is no break point at this code position. | 
|  | if (break_point_info->IsUndefined()) return false; | 
|  | return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Get the break point info object for this code position. | 
|  | Object* DebugInfo::GetBreakPointInfo(int code_position) { | 
|  | // Find the index of the break point info object for this code position. | 
|  | int index = GetBreakPointInfoIndex(code_position); | 
|  |  | 
|  | // Return the break point info object if any. | 
|  | if (index == kNoBreakPointInfo) return Heap::undefined_value(); | 
|  | return BreakPointInfo::cast(break_points()->get(index)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Clear a break point at the specified code position. | 
|  | void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, | 
|  | int code_position, | 
|  | Handle<Object> break_point_object) { | 
|  | Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position)); | 
|  | if (break_point_info->IsUndefined()) return; | 
|  | BreakPointInfo::ClearBreakPoint( | 
|  | Handle<BreakPointInfo>::cast(break_point_info), | 
|  | break_point_object); | 
|  | } | 
|  |  | 
|  |  | 
|  | void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, | 
|  | int code_position, | 
|  | int source_position, | 
|  | int statement_position, | 
|  | Handle<Object> break_point_object) { | 
|  | Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position)); | 
|  | if (!break_point_info->IsUndefined()) { | 
|  | BreakPointInfo::SetBreakPoint( | 
|  | Handle<BreakPointInfo>::cast(break_point_info), | 
|  | break_point_object); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Adding a new break point for a code position which did not have any | 
|  | // break points before. Try to find a free slot. | 
|  | int index = kNoBreakPointInfo; | 
|  | for (int i = 0; i < debug_info->break_points()->length(); i++) { | 
|  | if (debug_info->break_points()->get(i)->IsUndefined()) { | 
|  | index = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (index == kNoBreakPointInfo) { | 
|  | // No free slot - extend break point info array. | 
|  | Handle<FixedArray> old_break_points = | 
|  | Handle<FixedArray>(FixedArray::cast(debug_info->break_points())); | 
|  | Handle<FixedArray> new_break_points = | 
|  | Factory::NewFixedArray(old_break_points->length() + | 
|  | Debug::kEstimatedNofBreakPointsInFunction); | 
|  |  | 
|  | debug_info->set_break_points(*new_break_points); | 
|  | for (int i = 0; i < old_break_points->length(); i++) { | 
|  | new_break_points->set(i, old_break_points->get(i)); | 
|  | } | 
|  | index = old_break_points->length(); | 
|  | } | 
|  | ASSERT(index != kNoBreakPointInfo); | 
|  |  | 
|  | // Allocate new BreakPointInfo object and set the break point. | 
|  | Handle<BreakPointInfo> new_break_point_info = | 
|  | Handle<BreakPointInfo>::cast(Factory::NewStruct(BREAK_POINT_INFO_TYPE)); | 
|  | new_break_point_info->set_code_position(Smi::FromInt(code_position)); | 
|  | new_break_point_info->set_source_position(Smi::FromInt(source_position)); | 
|  | new_break_point_info-> | 
|  | set_statement_position(Smi::FromInt(statement_position)); | 
|  | new_break_point_info->set_break_point_objects(Heap::undefined_value()); | 
|  | BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object); | 
|  | debug_info->break_points()->set(index, *new_break_point_info); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Get the break point objects for a code position. | 
|  | Object* DebugInfo::GetBreakPointObjects(int code_position) { | 
|  | Object* break_point_info = GetBreakPointInfo(code_position); | 
|  | if (break_point_info->IsUndefined()) { | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  | return BreakPointInfo::cast(break_point_info)->break_point_objects(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Get the total number of break points. | 
|  | int DebugInfo::GetBreakPointCount() { | 
|  | if (break_points()->IsUndefined()) return 0; | 
|  | int count = 0; | 
|  | for (int i = 0; i < break_points()->length(); i++) { | 
|  | if (!break_points()->get(i)->IsUndefined()) { | 
|  | BreakPointInfo* break_point_info = | 
|  | BreakPointInfo::cast(break_points()->get(i)); | 
|  | count += break_point_info->GetBreakPointCount(); | 
|  | } | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  |  | 
|  | Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info, | 
|  | Handle<Object> break_point_object) { | 
|  | if (debug_info->break_points()->IsUndefined()) return Heap::undefined_value(); | 
|  | for (int i = 0; i < debug_info->break_points()->length(); i++) { | 
|  | if (!debug_info->break_points()->get(i)->IsUndefined()) { | 
|  | Handle<BreakPointInfo> break_point_info = | 
|  | Handle<BreakPointInfo>(BreakPointInfo::cast( | 
|  | debug_info->break_points()->get(i))); | 
|  | if (BreakPointInfo::HasBreakPointObject(break_point_info, | 
|  | break_point_object)) { | 
|  | return *break_point_info; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Heap::undefined_value(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Find the index of the break point info object for the specified code | 
|  | // position. | 
|  | int DebugInfo::GetBreakPointInfoIndex(int code_position) { | 
|  | if (break_points()->IsUndefined()) return kNoBreakPointInfo; | 
|  | for (int i = 0; i < break_points()->length(); i++) { | 
|  | if (!break_points()->get(i)->IsUndefined()) { | 
|  | BreakPointInfo* break_point_info = | 
|  | BreakPointInfo::cast(break_points()->get(i)); | 
|  | if (break_point_info->code_position()->value() == code_position) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | } | 
|  | return kNoBreakPointInfo; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Remove the specified break point object. | 
|  | void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info, | 
|  | Handle<Object> break_point_object) { | 
|  | // If there are no break points just ignore. | 
|  | if (break_point_info->break_point_objects()->IsUndefined()) return; | 
|  | // If there is a single break point clear it if it is the same. | 
|  | if (!break_point_info->break_point_objects()->IsFixedArray()) { | 
|  | if (break_point_info->break_point_objects() == *break_point_object) { | 
|  | break_point_info->set_break_point_objects(Heap::undefined_value()); | 
|  | } | 
|  | return; | 
|  | } | 
|  | // If there are multiple break points shrink the array | 
|  | ASSERT(break_point_info->break_point_objects()->IsFixedArray()); | 
|  | Handle<FixedArray> old_array = | 
|  | Handle<FixedArray>( | 
|  | FixedArray::cast(break_point_info->break_point_objects())); | 
|  | Handle<FixedArray> new_array = | 
|  | Factory::NewFixedArray(old_array->length() - 1); | 
|  | int found_count = 0; | 
|  | for (int i = 0; i < old_array->length(); i++) { | 
|  | if (old_array->get(i) == *break_point_object) { | 
|  | ASSERT(found_count == 0); | 
|  | found_count++; | 
|  | } else { | 
|  | new_array->set(i - found_count, old_array->get(i)); | 
|  | } | 
|  | } | 
|  | // If the break point was found in the list change it. | 
|  | if (found_count > 0) break_point_info->set_break_point_objects(*new_array); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Add the specified break point object. | 
|  | void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info, | 
|  | Handle<Object> break_point_object) { | 
|  | // If there was no break point objects before just set it. | 
|  | if (break_point_info->break_point_objects()->IsUndefined()) { | 
|  | break_point_info->set_break_point_objects(*break_point_object); | 
|  | return; | 
|  | } | 
|  | // If the break point object is the same as before just ignore. | 
|  | if (break_point_info->break_point_objects() == *break_point_object) return; | 
|  | // If there was one break point object before replace with array. | 
|  | if (!break_point_info->break_point_objects()->IsFixedArray()) { | 
|  | Handle<FixedArray> array = Factory::NewFixedArray(2); | 
|  | array->set(0, break_point_info->break_point_objects()); | 
|  | array->set(1, *break_point_object); | 
|  | break_point_info->set_break_point_objects(*array); | 
|  | return; | 
|  | } | 
|  | // If there was more than one break point before extend array. | 
|  | Handle<FixedArray> old_array = | 
|  | Handle<FixedArray>( | 
|  | FixedArray::cast(break_point_info->break_point_objects())); | 
|  | Handle<FixedArray> new_array = | 
|  | Factory::NewFixedArray(old_array->length() + 1); | 
|  | for (int i = 0; i < old_array->length(); i++) { | 
|  | // If the break point was there before just ignore. | 
|  | if (old_array->get(i) == *break_point_object) return; | 
|  | new_array->set(i, old_array->get(i)); | 
|  | } | 
|  | // Add the new break point. | 
|  | new_array->set(old_array->length(), *break_point_object); | 
|  | break_point_info->set_break_point_objects(*new_array); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool BreakPointInfo::HasBreakPointObject( | 
|  | Handle<BreakPointInfo> break_point_info, | 
|  | Handle<Object> break_point_object) { | 
|  | // No break point. | 
|  | if (break_point_info->break_point_objects()->IsUndefined()) return false; | 
|  | // Single beak point. | 
|  | if (!break_point_info->break_point_objects()->IsFixedArray()) { | 
|  | return break_point_info->break_point_objects() == *break_point_object; | 
|  | } | 
|  | // Multiple break points. | 
|  | FixedArray* array = FixedArray::cast(break_point_info->break_point_objects()); | 
|  | for (int i = 0; i < array->length(); i++) { | 
|  | if (array->get(i) == *break_point_object) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Get the number of break points. | 
|  | int BreakPointInfo::GetBreakPointCount() { | 
|  | // No break point. | 
|  | if (break_point_objects()->IsUndefined()) return 0; | 
|  | // Single beak point. | 
|  | if (!break_point_objects()->IsFixedArray()) return 1; | 
|  | // Multiple break points. | 
|  | return FixedArray::cast(break_point_objects())->length(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | } }  // namespace v8::internal |