| // Copyright 2006-2008 the V8 project authors. All rights reserved. | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | //       notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | //       copyright notice, this list of conditions and the following | 
 | //       disclaimer in the documentation and/or other materials provided | 
 | //       with the distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | //       contributors may be used to endorse or promote products derived | 
 | //       from this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | #include "v8.h" | 
 |  | 
 | #include "macro-assembler.h" | 
 | #include "mark-compact.h" | 
 | #include "platform.h" | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | // For contiguous spaces, top should be in the space (or at the end) and limit | 
 | // should be the end of the space. | 
 | #define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \ | 
 |   ASSERT((space).low() <= (info).top                  \ | 
 |          && (info).top <= (space).high()              \ | 
 |          && (info).limit == (space).high()) | 
 |  | 
 | intptr_t Page::watermark_invalidated_mark_ = 1 << Page::WATERMARK_INVALIDATED; | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // HeapObjectIterator | 
 |  | 
 | HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { | 
 |   Initialize(space->bottom(), space->top(), NULL); | 
 | } | 
 |  | 
 |  | 
 | HeapObjectIterator::HeapObjectIterator(PagedSpace* space, | 
 |                                        HeapObjectCallback size_func) { | 
 |   Initialize(space->bottom(), space->top(), size_func); | 
 | } | 
 |  | 
 |  | 
 | HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) { | 
 |   Initialize(start, space->top(), NULL); | 
 | } | 
 |  | 
 |  | 
 | HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start, | 
 |                                        HeapObjectCallback size_func) { | 
 |   Initialize(start, space->top(), size_func); | 
 | } | 
 |  | 
 |  | 
 | HeapObjectIterator::HeapObjectIterator(Page* page, | 
 |                                        HeapObjectCallback size_func) { | 
 |   Initialize(page->ObjectAreaStart(), page->AllocationTop(), size_func); | 
 | } | 
 |  | 
 |  | 
 | void HeapObjectIterator::Initialize(Address cur, Address end, | 
 |                                     HeapObjectCallback size_f) { | 
 |   cur_addr_ = cur; | 
 |   end_addr_ = end; | 
 |   end_page_ = Page::FromAllocationTop(end); | 
 |   size_func_ = size_f; | 
 |   Page* p = Page::FromAllocationTop(cur_addr_); | 
 |   cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop(); | 
 |  | 
 | #ifdef DEBUG | 
 |   Verify(); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | HeapObject* HeapObjectIterator::FromNextPage() { | 
 |   if (cur_addr_ == end_addr_) return NULL; | 
 |  | 
 |   Page* cur_page = Page::FromAllocationTop(cur_addr_); | 
 |   cur_page = cur_page->next_page(); | 
 |   ASSERT(cur_page->is_valid()); | 
 |  | 
 |   cur_addr_ = cur_page->ObjectAreaStart(); | 
 |   cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop(); | 
 |  | 
 |   if (cur_addr_ == end_addr_) return NULL; | 
 |   ASSERT(cur_addr_ < cur_limit_); | 
 | #ifdef DEBUG | 
 |   Verify(); | 
 | #endif | 
 |   return FromCurrentPage(); | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | void HeapObjectIterator::Verify() { | 
 |   Page* p = Page::FromAllocationTop(cur_addr_); | 
 |   ASSERT(p == Page::FromAllocationTop(cur_limit_)); | 
 |   ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_)); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // PageIterator | 
 |  | 
 | PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) { | 
 |   prev_page_ = NULL; | 
 |   switch (mode) { | 
 |     case PAGES_IN_USE: | 
 |       stop_page_ = space->AllocationTopPage(); | 
 |       break; | 
 |     case PAGES_USED_BY_MC: | 
 |       stop_page_ = space->MCRelocationTopPage(); | 
 |       break; | 
 |     case ALL_PAGES: | 
 | #ifdef DEBUG | 
 |       // Verify that the cached last page in the space is actually the | 
 |       // last page. | 
 |       for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) { | 
 |         if (!p->next_page()->is_valid()) { | 
 |           ASSERT(space->last_page_ == p); | 
 |         } | 
 |       } | 
 | #endif | 
 |       stop_page_ = space->last_page_; | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // CodeRange | 
 |  | 
 | List<CodeRange::FreeBlock> CodeRange::free_list_(0); | 
 | List<CodeRange::FreeBlock> CodeRange::allocation_list_(0); | 
 | int CodeRange::current_allocation_block_index_ = 0; | 
 | VirtualMemory* CodeRange::code_range_ = NULL; | 
 |  | 
 |  | 
 | bool CodeRange::Setup(const size_t requested) { | 
 |   ASSERT(code_range_ == NULL); | 
 |  | 
 |   code_range_ = new VirtualMemory(requested); | 
 |   CHECK(code_range_ != NULL); | 
 |   if (!code_range_->IsReserved()) { | 
 |     delete code_range_; | 
 |     code_range_ = NULL; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // We are sure that we have mapped a block of requested addresses. | 
 |   ASSERT(code_range_->size() == requested); | 
 |   LOG(NewEvent("CodeRange", code_range_->address(), requested)); | 
 |   allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size())); | 
 |   current_allocation_block_index_ = 0; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, | 
 |                                        const FreeBlock* right) { | 
 |   // The entire point of CodeRange is that the difference between two | 
 |   // addresses in the range can be represented as a signed 32-bit int, | 
 |   // so the cast is semantically correct. | 
 |   return static_cast<int>(left->start - right->start); | 
 | } | 
 |  | 
 |  | 
 | void CodeRange::GetNextAllocationBlock(size_t requested) { | 
 |   for (current_allocation_block_index_++; | 
 |        current_allocation_block_index_ < allocation_list_.length(); | 
 |        current_allocation_block_index_++) { | 
 |     if (requested <= allocation_list_[current_allocation_block_index_].size) { | 
 |       return;  // Found a large enough allocation block. | 
 |     } | 
 |   } | 
 |  | 
 |   // Sort and merge the free blocks on the free list and the allocation list. | 
 |   free_list_.AddAll(allocation_list_); | 
 |   allocation_list_.Clear(); | 
 |   free_list_.Sort(&CompareFreeBlockAddress); | 
 |   for (int i = 0; i < free_list_.length();) { | 
 |     FreeBlock merged = free_list_[i]; | 
 |     i++; | 
 |     // Add adjacent free blocks to the current merged block. | 
 |     while (i < free_list_.length() && | 
 |            free_list_[i].start == merged.start + merged.size) { | 
 |       merged.size += free_list_[i].size; | 
 |       i++; | 
 |     } | 
 |     if (merged.size > 0) { | 
 |       allocation_list_.Add(merged); | 
 |     } | 
 |   } | 
 |   free_list_.Clear(); | 
 |  | 
 |   for (current_allocation_block_index_ = 0; | 
 |        current_allocation_block_index_ < allocation_list_.length(); | 
 |        current_allocation_block_index_++) { | 
 |     if (requested <= allocation_list_[current_allocation_block_index_].size) { | 
 |       return;  // Found a large enough allocation block. | 
 |     } | 
 |   } | 
 |  | 
 |   // Code range is full or too fragmented. | 
 |   V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock"); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) { | 
 |   ASSERT(current_allocation_block_index_ < allocation_list_.length()); | 
 |   if (requested > allocation_list_[current_allocation_block_index_].size) { | 
 |     // Find an allocation block large enough.  This function call may | 
 |     // call V8::FatalProcessOutOfMemory if it cannot find a large enough block. | 
 |     GetNextAllocationBlock(requested); | 
 |   } | 
 |   // Commit the requested memory at the start of the current allocation block. | 
 |   *allocated = RoundUp(requested, Page::kPageSize); | 
 |   FreeBlock current = allocation_list_[current_allocation_block_index_]; | 
 |   if (*allocated >= current.size - Page::kPageSize) { | 
 |     // Don't leave a small free block, useless for a large object or chunk. | 
 |     *allocated = current.size; | 
 |   } | 
 |   ASSERT(*allocated <= current.size); | 
 |   if (!code_range_->Commit(current.start, *allocated, true)) { | 
 |     *allocated = 0; | 
 |     return NULL; | 
 |   } | 
 |   allocation_list_[current_allocation_block_index_].start += *allocated; | 
 |   allocation_list_[current_allocation_block_index_].size -= *allocated; | 
 |   if (*allocated == current.size) { | 
 |     GetNextAllocationBlock(0);  // This block is used up, get the next one. | 
 |   } | 
 |   return current.start; | 
 | } | 
 |  | 
 |  | 
 | void CodeRange::FreeRawMemory(void* address, size_t length) { | 
 |   free_list_.Add(FreeBlock(address, length)); | 
 |   code_range_->Uncommit(address, length); | 
 | } | 
 |  | 
 |  | 
 | void CodeRange::TearDown() { | 
 |     delete code_range_;  // Frees all memory in the virtual memory range. | 
 |     code_range_ = NULL; | 
 |     free_list_.Free(); | 
 |     allocation_list_.Free(); | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // MemoryAllocator | 
 | // | 
 | intptr_t MemoryAllocator::capacity_ = 0; | 
 | intptr_t MemoryAllocator::capacity_executable_ = 0; | 
 | intptr_t MemoryAllocator::size_ = 0; | 
 | intptr_t MemoryAllocator::size_executable_ = 0; | 
 |  | 
 | List<MemoryAllocator::MemoryAllocationCallbackRegistration> | 
 |   MemoryAllocator::memory_allocation_callbacks_; | 
 |  | 
 | VirtualMemory* MemoryAllocator::initial_chunk_ = NULL; | 
 |  | 
 | // 270 is an estimate based on the static default heap size of a pair of 256K | 
 | // semispaces and a 64M old generation. | 
 | const int kEstimatedNumberOfChunks = 270; | 
 | List<MemoryAllocator::ChunkInfo> MemoryAllocator::chunks_( | 
 |     kEstimatedNumberOfChunks); | 
 | List<int> MemoryAllocator::free_chunk_ids_(kEstimatedNumberOfChunks); | 
 | int MemoryAllocator::max_nof_chunks_ = 0; | 
 | int MemoryAllocator::top_ = 0; | 
 |  | 
 |  | 
 | void MemoryAllocator::Push(int free_chunk_id) { | 
 |   ASSERT(max_nof_chunks_ > 0); | 
 |   ASSERT(top_ < max_nof_chunks_); | 
 |   free_chunk_ids_[top_++] = free_chunk_id; | 
 | } | 
 |  | 
 |  | 
 | int MemoryAllocator::Pop() { | 
 |   ASSERT(top_ > 0); | 
 |   return free_chunk_ids_[--top_]; | 
 | } | 
 |  | 
 |  | 
 | bool MemoryAllocator::Setup(intptr_t capacity, intptr_t capacity_executable) { | 
 |   capacity_ = RoundUp(capacity, Page::kPageSize); | 
 |   capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize); | 
 |   ASSERT_GE(capacity_, capacity_executable_); | 
 |  | 
 |   // Over-estimate the size of chunks_ array.  It assumes the expansion of old | 
 |   // space is always in the unit of a chunk (kChunkSize) except the last | 
 |   // expansion. | 
 |   // | 
 |   // Due to alignment, allocated space might be one page less than required | 
 |   // number (kPagesPerChunk) of pages for old spaces. | 
 |   // | 
 |   // Reserve two chunk ids for semispaces, one for map space, one for old | 
 |   // space, and one for code space. | 
 |   max_nof_chunks_ = | 
 |       static_cast<int>((capacity_ / (kChunkSize - Page::kPageSize))) + 5; | 
 |   if (max_nof_chunks_ > kMaxNofChunks) return false; | 
 |  | 
 |   size_ = 0; | 
 |   size_executable_ = 0; | 
 |   ChunkInfo info;  // uninitialized element. | 
 |   for (int i = max_nof_chunks_ - 1; i >= 0; i--) { | 
 |     chunks_.Add(info); | 
 |     free_chunk_ids_.Add(i); | 
 |   } | 
 |   top_ = max_nof_chunks_; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void MemoryAllocator::TearDown() { | 
 |   for (int i = 0; i < max_nof_chunks_; i++) { | 
 |     if (chunks_[i].address() != NULL) DeleteChunk(i); | 
 |   } | 
 |   chunks_.Clear(); | 
 |   free_chunk_ids_.Clear(); | 
 |  | 
 |   if (initial_chunk_ != NULL) { | 
 |     LOG(DeleteEvent("InitialChunk", initial_chunk_->address())); | 
 |     delete initial_chunk_; | 
 |     initial_chunk_ = NULL; | 
 |   } | 
 |  | 
 |   ASSERT(top_ == max_nof_chunks_);  // all chunks are free | 
 |   top_ = 0; | 
 |   capacity_ = 0; | 
 |   capacity_executable_ = 0; | 
 |   size_ = 0; | 
 |   max_nof_chunks_ = 0; | 
 | } | 
 |  | 
 |  | 
 | void* MemoryAllocator::AllocateRawMemory(const size_t requested, | 
 |                                          size_t* allocated, | 
 |                                          Executability executable) { | 
 |   if (size_ + static_cast<size_t>(requested) > static_cast<size_t>(capacity_)) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   void* mem; | 
 |   if (executable == EXECUTABLE) { | 
 |     // Check executable memory limit. | 
 |     if (size_executable_ + requested > | 
 |         static_cast<size_t>(capacity_executable_)) { | 
 |       LOG(StringEvent("MemoryAllocator::AllocateRawMemory", | 
 |                       "V8 Executable Allocation capacity exceeded")); | 
 |       return NULL; | 
 |     } | 
 |     // Allocate executable memory either from code range or from the | 
 |     // OS. | 
 |     if (CodeRange::exists()) { | 
 |       mem = CodeRange::AllocateRawMemory(requested, allocated); | 
 |     } else { | 
 |       mem = OS::Allocate(requested, allocated, true); | 
 |     } | 
 |     // Update executable memory size. | 
 |     size_executable_ += static_cast<int>(*allocated); | 
 |   } else { | 
 |     mem = OS::Allocate(requested, allocated, false); | 
 |   } | 
 |   int alloced = static_cast<int>(*allocated); | 
 |   size_ += alloced; | 
 |  | 
 | #ifdef DEBUG | 
 |   ZapBlock(reinterpret_cast<Address>(mem), alloced); | 
 | #endif | 
 |   Counters::memory_allocated.Increment(alloced); | 
 |   return mem; | 
 | } | 
 |  | 
 |  | 
 | void MemoryAllocator::FreeRawMemory(void* mem, | 
 |                                     size_t length, | 
 |                                     Executability executable) { | 
 | #ifdef DEBUG | 
 |   ZapBlock(reinterpret_cast<Address>(mem), length); | 
 | #endif | 
 |   if (CodeRange::contains(static_cast<Address>(mem))) { | 
 |     CodeRange::FreeRawMemory(mem, length); | 
 |   } else { | 
 |     OS::Free(mem, length); | 
 |   } | 
 |   Counters::memory_allocated.Decrement(static_cast<int>(length)); | 
 |   size_ -= static_cast<int>(length); | 
 |   if (executable == EXECUTABLE) size_executable_ -= static_cast<int>(length); | 
 |  | 
 |   ASSERT(size_ >= 0); | 
 |   ASSERT(size_executable_ >= 0); | 
 | } | 
 |  | 
 |  | 
 | void MemoryAllocator::PerformAllocationCallback(ObjectSpace space, | 
 |                                                 AllocationAction action, | 
 |                                                 size_t size) { | 
 |   for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { | 
 |     MemoryAllocationCallbackRegistration registration = | 
 |       memory_allocation_callbacks_[i]; | 
 |     if ((registration.space & space) == space && | 
 |         (registration.action & action) == action) | 
 |       registration.callback(space, action, static_cast<int>(size)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool MemoryAllocator::MemoryAllocationCallbackRegistered( | 
 |     MemoryAllocationCallback callback) { | 
 |   for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { | 
 |     if (memory_allocation_callbacks_[i].callback == callback) return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | void MemoryAllocator::AddMemoryAllocationCallback( | 
 |     MemoryAllocationCallback callback, | 
 |     ObjectSpace space, | 
 |     AllocationAction action) { | 
 |   ASSERT(callback != NULL); | 
 |   MemoryAllocationCallbackRegistration registration(callback, space, action); | 
 |   ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback)); | 
 |   return memory_allocation_callbacks_.Add(registration); | 
 | } | 
 |  | 
 |  | 
 | void MemoryAllocator::RemoveMemoryAllocationCallback( | 
 |      MemoryAllocationCallback callback) { | 
 |   ASSERT(callback != NULL); | 
 |   for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { | 
 |     if (memory_allocation_callbacks_[i].callback == callback) { | 
 |       memory_allocation_callbacks_.Remove(i); | 
 |       return; | 
 |     } | 
 |   } | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | void* MemoryAllocator::ReserveInitialChunk(const size_t requested) { | 
 |   ASSERT(initial_chunk_ == NULL); | 
 |  | 
 |   initial_chunk_ = new VirtualMemory(requested); | 
 |   CHECK(initial_chunk_ != NULL); | 
 |   if (!initial_chunk_->IsReserved()) { | 
 |     delete initial_chunk_; | 
 |     initial_chunk_ = NULL; | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   // We are sure that we have mapped a block of requested addresses. | 
 |   ASSERT(initial_chunk_->size() == requested); | 
 |   LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested)); | 
 |   size_ += static_cast<int>(requested); | 
 |   return initial_chunk_->address(); | 
 | } | 
 |  | 
 |  | 
 | static int PagesInChunk(Address start, size_t size) { | 
 |   // The first page starts on the first page-aligned address from start onward | 
 |   // and the last page ends on the last page-aligned address before | 
 |   // start+size.  Page::kPageSize is a power of two so we can divide by | 
 |   // shifting. | 
 |   return static_cast<int>((RoundDown(start + size, Page::kPageSize) | 
 |       - RoundUp(start, Page::kPageSize)) >> kPageSizeBits); | 
 | } | 
 |  | 
 |  | 
 | Page* MemoryAllocator::AllocatePages(int requested_pages, int* allocated_pages, | 
 |                                      PagedSpace* owner) { | 
 |   if (requested_pages <= 0) return Page::FromAddress(NULL); | 
 |   size_t chunk_size = requested_pages * Page::kPageSize; | 
 |  | 
 |   // There is not enough space to guarantee the desired number pages can be | 
 |   // allocated. | 
 |   if (size_ + static_cast<int>(chunk_size) > capacity_) { | 
 |     // Request as many pages as we can. | 
 |     chunk_size = capacity_ - size_; | 
 |     requested_pages = static_cast<int>(chunk_size >> kPageSizeBits); | 
 |  | 
 |     if (requested_pages <= 0) return Page::FromAddress(NULL); | 
 |   } | 
 |   void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable()); | 
 |   if (chunk == NULL) return Page::FromAddress(NULL); | 
 |   LOG(NewEvent("PagedChunk", chunk, chunk_size)); | 
 |  | 
 |   *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size); | 
 |   if (*allocated_pages == 0) { | 
 |     FreeRawMemory(chunk, chunk_size, owner->executable()); | 
 |     LOG(DeleteEvent("PagedChunk", chunk)); | 
 |     return Page::FromAddress(NULL); | 
 |   } | 
 |  | 
 |   int chunk_id = Pop(); | 
 |   chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner); | 
 |  | 
 |   ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity()); | 
 |   PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size); | 
 |   return InitializePagesInChunk(chunk_id, *allocated_pages, owner); | 
 | } | 
 |  | 
 |  | 
 | Page* MemoryAllocator::CommitPages(Address start, size_t size, | 
 |                                    PagedSpace* owner, int* num_pages) { | 
 |   ASSERT(start != NULL); | 
 |   *num_pages = PagesInChunk(start, size); | 
 |   ASSERT(*num_pages > 0); | 
 |   ASSERT(initial_chunk_ != NULL); | 
 |   ASSERT(InInitialChunk(start)); | 
 |   ASSERT(InInitialChunk(start + size - 1)); | 
 |   if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) { | 
 |     return Page::FromAddress(NULL); | 
 |   } | 
 | #ifdef DEBUG | 
 |   ZapBlock(start, size); | 
 | #endif | 
 |   Counters::memory_allocated.Increment(static_cast<int>(size)); | 
 |  | 
 |   // So long as we correctly overestimated the number of chunks we should not | 
 |   // run out of chunk ids. | 
 |   CHECK(!OutOfChunkIds()); | 
 |   int chunk_id = Pop(); | 
 |   chunks_[chunk_id].init(start, size, owner); | 
 |   return InitializePagesInChunk(chunk_id, *num_pages, owner); | 
 | } | 
 |  | 
 |  | 
 | bool MemoryAllocator::CommitBlock(Address start, | 
 |                                   size_t size, | 
 |                                   Executability executable) { | 
 |   ASSERT(start != NULL); | 
 |   ASSERT(size > 0); | 
 |   ASSERT(initial_chunk_ != NULL); | 
 |   ASSERT(InInitialChunk(start)); | 
 |   ASSERT(InInitialChunk(start + size - 1)); | 
 |  | 
 |   if (!initial_chunk_->Commit(start, size, executable)) return false; | 
 | #ifdef DEBUG | 
 |   ZapBlock(start, size); | 
 | #endif | 
 |   Counters::memory_allocated.Increment(static_cast<int>(size)); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool MemoryAllocator::UncommitBlock(Address start, size_t size) { | 
 |   ASSERT(start != NULL); | 
 |   ASSERT(size > 0); | 
 |   ASSERT(initial_chunk_ != NULL); | 
 |   ASSERT(InInitialChunk(start)); | 
 |   ASSERT(InInitialChunk(start + size - 1)); | 
 |  | 
 |   if (!initial_chunk_->Uncommit(start, size)) return false; | 
 |   Counters::memory_allocated.Decrement(static_cast<int>(size)); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void MemoryAllocator::ZapBlock(Address start, size_t size) { | 
 |   for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) { | 
 |     Memory::Address_at(start + s) = kZapValue; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk, | 
 |                                               PagedSpace* owner) { | 
 |   ASSERT(IsValidChunk(chunk_id)); | 
 |   ASSERT(pages_in_chunk > 0); | 
 |  | 
 |   Address chunk_start = chunks_[chunk_id].address(); | 
 |  | 
 |   Address low = RoundUp(chunk_start, Page::kPageSize); | 
 |  | 
 | #ifdef DEBUG | 
 |   size_t chunk_size = chunks_[chunk_id].size(); | 
 |   Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); | 
 |   ASSERT(pages_in_chunk <= | 
 |         ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize)); | 
 | #endif | 
 |  | 
 |   Address page_addr = low; | 
 |   for (int i = 0; i < pages_in_chunk; i++) { | 
 |     Page* p = Page::FromAddress(page_addr); | 
 |     p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; | 
 |     p->InvalidateWatermark(true); | 
 |     p->SetIsLargeObjectPage(false); | 
 |     p->SetAllocationWatermark(p->ObjectAreaStart()); | 
 |     p->SetCachedAllocationWatermark(p->ObjectAreaStart()); | 
 |     page_addr += Page::kPageSize; | 
 |   } | 
 |  | 
 |   // Set the next page of the last page to 0. | 
 |   Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); | 
 |   last_page->opaque_header = OffsetFrom(0) | chunk_id; | 
 |  | 
 |   return Page::FromAddress(low); | 
 | } | 
 |  | 
 |  | 
 | Page* MemoryAllocator::FreePages(Page* p) { | 
 |   if (!p->is_valid()) return p; | 
 |  | 
 |   // Find the first page in the same chunk as 'p' | 
 |   Page* first_page = FindFirstPageInSameChunk(p); | 
 |   Page* page_to_return = Page::FromAddress(NULL); | 
 |  | 
 |   if (p != first_page) { | 
 |     // Find the last page in the same chunk as 'prev'. | 
 |     Page* last_page = FindLastPageInSameChunk(p); | 
 |     first_page = GetNextPage(last_page);  // first page in next chunk | 
 |  | 
 |     // set the next_page of last_page to NULL | 
 |     SetNextPage(last_page, Page::FromAddress(NULL)); | 
 |     page_to_return = p;  // return 'p' when exiting | 
 |   } | 
 |  | 
 |   while (first_page->is_valid()) { | 
 |     int chunk_id = GetChunkId(first_page); | 
 |     ASSERT(IsValidChunk(chunk_id)); | 
 |  | 
 |     // Find the first page of the next chunk before deleting this chunk. | 
 |     first_page = GetNextPage(FindLastPageInSameChunk(first_page)); | 
 |  | 
 |     // Free the current chunk. | 
 |     DeleteChunk(chunk_id); | 
 |   } | 
 |  | 
 |   return page_to_return; | 
 | } | 
 |  | 
 |  | 
 | void MemoryAllocator::FreeAllPages(PagedSpace* space) { | 
 |   for (int i = 0, length = chunks_.length(); i < length; i++) { | 
 |     if (chunks_[i].owner() == space) { | 
 |       DeleteChunk(i); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MemoryAllocator::DeleteChunk(int chunk_id) { | 
 |   ASSERT(IsValidChunk(chunk_id)); | 
 |  | 
 |   ChunkInfo& c = chunks_[chunk_id]; | 
 |  | 
 |   // We cannot free a chunk contained in the initial chunk because it was not | 
 |   // allocated with AllocateRawMemory.  Instead we uncommit the virtual | 
 |   // memory. | 
 |   if (InInitialChunk(c.address())) { | 
 |     // TODO(1240712): VirtualMemory::Uncommit has a return value which | 
 |     // is ignored here. | 
 |     initial_chunk_->Uncommit(c.address(), c.size()); | 
 |     Counters::memory_allocated.Decrement(static_cast<int>(c.size())); | 
 |   } else { | 
 |     LOG(DeleteEvent("PagedChunk", c.address())); | 
 |     ObjectSpace space = static_cast<ObjectSpace>(1 << c.owner()->identity()); | 
 |     size_t size = c.size(); | 
 |     FreeRawMemory(c.address(), size, c.executable()); | 
 |     PerformAllocationCallback(space, kAllocationActionFree, size); | 
 |   } | 
 |   c.init(NULL, 0, NULL); | 
 |   Push(chunk_id); | 
 | } | 
 |  | 
 |  | 
 | Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) { | 
 |   int chunk_id = GetChunkId(p); | 
 |   ASSERT(IsValidChunk(chunk_id)); | 
 |  | 
 |   Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize); | 
 |   return Page::FromAddress(low); | 
 | } | 
 |  | 
 |  | 
 | Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) { | 
 |   int chunk_id = GetChunkId(p); | 
 |   ASSERT(IsValidChunk(chunk_id)); | 
 |  | 
 |   Address chunk_start = chunks_[chunk_id].address(); | 
 |   size_t chunk_size = chunks_[chunk_id].size(); | 
 |  | 
 |   Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); | 
 |   ASSERT(chunk_start <= p->address() && p->address() < high); | 
 |  | 
 |   return Page::FromAddress(high - Page::kPageSize); | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | void MemoryAllocator::ReportStatistics() { | 
 |   float pct = static_cast<float>(capacity_ - size_) / capacity_; | 
 |   PrintF("  capacity: %" V8_PTR_PREFIX "d" | 
 |              ", used: %" V8_PTR_PREFIX "d" | 
 |              ", available: %%%d\n\n", | 
 |          capacity_, size_, static_cast<int>(pct*100)); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void MemoryAllocator::RelinkPageListInChunkOrder(PagedSpace* space, | 
 |                                                  Page** first_page, | 
 |                                                  Page** last_page, | 
 |                                                  Page** last_page_in_use) { | 
 |   Page* first = NULL; | 
 |   Page* last = NULL; | 
 |  | 
 |   for (int i = 0, length = chunks_.length(); i < length; i++) { | 
 |     ChunkInfo& chunk = chunks_[i]; | 
 |  | 
 |     if (chunk.owner() == space) { | 
 |       if (first == NULL) { | 
 |         Address low = RoundUp(chunk.address(), Page::kPageSize); | 
 |         first = Page::FromAddress(low); | 
 |       } | 
 |       last = RelinkPagesInChunk(i, | 
 |                                 chunk.address(), | 
 |                                 chunk.size(), | 
 |                                 last, | 
 |                                 last_page_in_use); | 
 |     } | 
 |   } | 
 |  | 
 |   if (first_page != NULL) { | 
 |     *first_page = first; | 
 |   } | 
 |  | 
 |   if (last_page != NULL) { | 
 |     *last_page = last; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | Page* MemoryAllocator::RelinkPagesInChunk(int chunk_id, | 
 |                                           Address chunk_start, | 
 |                                           size_t chunk_size, | 
 |                                           Page* prev, | 
 |                                           Page** last_page_in_use) { | 
 |   Address page_addr = RoundUp(chunk_start, Page::kPageSize); | 
 |   int pages_in_chunk = PagesInChunk(chunk_start, chunk_size); | 
 |  | 
 |   if (prev->is_valid()) { | 
 |     SetNextPage(prev, Page::FromAddress(page_addr)); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < pages_in_chunk; i++) { | 
 |     Page* p = Page::FromAddress(page_addr); | 
 |     p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; | 
 |     page_addr += Page::kPageSize; | 
 |  | 
 |     p->InvalidateWatermark(true); | 
 |     if (p->WasInUseBeforeMC()) { | 
 |       *last_page_in_use = p; | 
 |     } | 
 |   } | 
 |  | 
 |   // Set the next page of the last page to 0. | 
 |   Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); | 
 |   last_page->opaque_header = OffsetFrom(0) | chunk_id; | 
 |  | 
 |   if (last_page->WasInUseBeforeMC()) { | 
 |     *last_page_in_use = last_page; | 
 |   } | 
 |  | 
 |   return last_page; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // PagedSpace implementation | 
 |  | 
 | PagedSpace::PagedSpace(intptr_t max_capacity, | 
 |                        AllocationSpace id, | 
 |                        Executability executable) | 
 |     : Space(id, executable) { | 
 |   max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize) | 
 |                   * Page::kObjectAreaSize; | 
 |   accounting_stats_.Clear(); | 
 |  | 
 |   allocation_info_.top = NULL; | 
 |   allocation_info_.limit = NULL; | 
 |  | 
 |   mc_forwarding_info_.top = NULL; | 
 |   mc_forwarding_info_.limit = NULL; | 
 | } | 
 |  | 
 |  | 
 | bool PagedSpace::Setup(Address start, size_t size) { | 
 |   if (HasBeenSetup()) return false; | 
 |  | 
 |   int num_pages = 0; | 
 |   // Try to use the virtual memory range passed to us.  If it is too small to | 
 |   // contain at least one page, ignore it and allocate instead. | 
 |   int pages_in_chunk = PagesInChunk(start, size); | 
 |   if (pages_in_chunk > 0) { | 
 |     first_page_ = MemoryAllocator::CommitPages(RoundUp(start, Page::kPageSize), | 
 |                                                Page::kPageSize * pages_in_chunk, | 
 |                                                this, &num_pages); | 
 |   } else { | 
 |     int requested_pages = | 
 |         Min(MemoryAllocator::kPagesPerChunk, | 
 |             static_cast<int>(max_capacity_ / Page::kObjectAreaSize)); | 
 |     first_page_ = | 
 |         MemoryAllocator::AllocatePages(requested_pages, &num_pages, this); | 
 |     if (!first_page_->is_valid()) return false; | 
 |   } | 
 |  | 
 |   // We are sure that the first page is valid and that we have at least one | 
 |   // page. | 
 |   ASSERT(first_page_->is_valid()); | 
 |   ASSERT(num_pages > 0); | 
 |   accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize); | 
 |   ASSERT(Capacity() <= max_capacity_); | 
 |  | 
 |   // Sequentially clear region marks in the newly allocated | 
 |   // pages and cache the current last page in the space. | 
 |   for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { | 
 |     p->SetRegionMarks(Page::kAllRegionsCleanMarks); | 
 |     last_page_ = p; | 
 |   } | 
 |  | 
 |   // Use first_page_ for allocation. | 
 |   SetAllocationInfo(&allocation_info_, first_page_); | 
 |  | 
 |   page_list_is_chunk_ordered_ = true; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool PagedSpace::HasBeenSetup() { | 
 |   return (Capacity() > 0); | 
 | } | 
 |  | 
 |  | 
 | void PagedSpace::TearDown() { | 
 |   MemoryAllocator::FreeAllPages(this); | 
 |   first_page_ = NULL; | 
 |   accounting_stats_.Clear(); | 
 | } | 
 |  | 
 |  | 
 | #ifdef ENABLE_HEAP_PROTECTION | 
 |  | 
 | void PagedSpace::Protect() { | 
 |   Page* page = first_page_; | 
 |   while (page->is_valid()) { | 
 |     MemoryAllocator::ProtectChunkFromPage(page); | 
 |     page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void PagedSpace::Unprotect() { | 
 |   Page* page = first_page_; | 
 |   while (page->is_valid()) { | 
 |     MemoryAllocator::UnprotectChunkFromPage(page); | 
 |     page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); | 
 |   } | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 |  | 
 | void PagedSpace::MarkAllPagesClean() { | 
 |   PageIterator it(this, PageIterator::ALL_PAGES); | 
 |   while (it.has_next()) { | 
 |     it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* PagedSpace::FindObject(Address addr) { | 
 |   // Note: this function can only be called before or after mark-compact GC | 
 |   // because it accesses map pointers. | 
 |   ASSERT(!MarkCompactCollector::in_use()); | 
 |  | 
 |   if (!Contains(addr)) return Failure::Exception(); | 
 |  | 
 |   Page* p = Page::FromAddress(addr); | 
 |   ASSERT(IsUsed(p)); | 
 |   Address cur = p->ObjectAreaStart(); | 
 |   Address end = p->AllocationTop(); | 
 |   while (cur < end) { | 
 |     HeapObject* obj = HeapObject::FromAddress(cur); | 
 |     Address next = cur + obj->Size(); | 
 |     if ((cur <= addr) && (addr < next)) return obj; | 
 |     cur = next; | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return Failure::Exception(); | 
 | } | 
 |  | 
 |  | 
 | bool PagedSpace::IsUsed(Page* page) { | 
 |   PageIterator it(this, PageIterator::PAGES_IN_USE); | 
 |   while (it.has_next()) { | 
 |     if (page == it.next()) return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) { | 
 |   alloc_info->top = p->ObjectAreaStart(); | 
 |   alloc_info->limit = p->ObjectAreaEnd(); | 
 |   ASSERT(alloc_info->VerifyPagedAllocation()); | 
 | } | 
 |  | 
 |  | 
 | void PagedSpace::MCResetRelocationInfo() { | 
 |   // Set page indexes. | 
 |   int i = 0; | 
 |   PageIterator it(this, PageIterator::ALL_PAGES); | 
 |   while (it.has_next()) { | 
 |     Page* p = it.next(); | 
 |     p->mc_page_index = i++; | 
 |   } | 
 |  | 
 |   // Set mc_forwarding_info_ to the first page in the space. | 
 |   SetAllocationInfo(&mc_forwarding_info_, first_page_); | 
 |   // All the bytes in the space are 'available'.  We will rediscover | 
 |   // allocated and wasted bytes during GC. | 
 |   accounting_stats_.Reset(); | 
 | } | 
 |  | 
 |  | 
 | int PagedSpace::MCSpaceOffsetForAddress(Address addr) { | 
 | #ifdef DEBUG | 
 |   // The Contains function considers the address at the beginning of a | 
 |   // page in the page, MCSpaceOffsetForAddress considers it is in the | 
 |   // previous page. | 
 |   if (Page::IsAlignedToPageSize(addr)) { | 
 |     ASSERT(Contains(addr - kPointerSize)); | 
 |   } else { | 
 |     ASSERT(Contains(addr)); | 
 |   } | 
 | #endif | 
 |  | 
 |   // If addr is at the end of a page, it belongs to previous page | 
 |   Page* p = Page::IsAlignedToPageSize(addr) | 
 |             ? Page::FromAllocationTop(addr) | 
 |             : Page::FromAddress(addr); | 
 |   int index = p->mc_page_index; | 
 |   return (index * Page::kPageSize) + p->Offset(addr); | 
 | } | 
 |  | 
 |  | 
 | // Slow case for reallocating and promoting objects during a compacting | 
 | // collection.  This function is not space-specific. | 
 | HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) { | 
 |   Page* current_page = TopPageOf(mc_forwarding_info_); | 
 |   if (!current_page->next_page()->is_valid()) { | 
 |     if (!Expand(current_page)) { | 
 |       return NULL; | 
 |     } | 
 |   } | 
 |  | 
 |   // There are surely more pages in the space now. | 
 |   ASSERT(current_page->next_page()->is_valid()); | 
 |   // We do not add the top of page block for current page to the space's | 
 |   // free list---the block may contain live objects so we cannot write | 
 |   // bookkeeping information to it.  Instead, we will recover top of page | 
 |   // blocks when we move objects to their new locations. | 
 |   // | 
 |   // We do however write the allocation pointer to the page.  The encoding | 
 |   // of forwarding addresses is as an offset in terms of live bytes, so we | 
 |   // need quick access to the allocation top of each page to decode | 
 |   // forwarding addresses. | 
 |   current_page->SetAllocationWatermark(mc_forwarding_info_.top); | 
 |   current_page->next_page()->InvalidateWatermark(true); | 
 |   SetAllocationInfo(&mc_forwarding_info_, current_page->next_page()); | 
 |   return AllocateLinearly(&mc_forwarding_info_, size_in_bytes); | 
 | } | 
 |  | 
 |  | 
 | bool PagedSpace::Expand(Page* last_page) { | 
 |   ASSERT(max_capacity_ % Page::kObjectAreaSize == 0); | 
 |   ASSERT(Capacity() % Page::kObjectAreaSize == 0); | 
 |  | 
 |   if (Capacity() == max_capacity_) return false; | 
 |  | 
 |   ASSERT(Capacity() < max_capacity_); | 
 |   // Last page must be valid and its next page is invalid. | 
 |   ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid()); | 
 |  | 
 |   int available_pages = | 
 |       static_cast<int>((max_capacity_ - Capacity()) / Page::kObjectAreaSize); | 
 |   if (available_pages <= 0) return false; | 
 |  | 
 |   int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk); | 
 |   Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this); | 
 |   if (!p->is_valid()) return false; | 
 |  | 
 |   accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize); | 
 |   ASSERT(Capacity() <= max_capacity_); | 
 |  | 
 |   MemoryAllocator::SetNextPage(last_page, p); | 
 |  | 
 |   // Sequentially clear region marks of new pages and and cache the | 
 |   // new last page in the space. | 
 |   while (p->is_valid()) { | 
 |     p->SetRegionMarks(Page::kAllRegionsCleanMarks); | 
 |     last_page_ = p; | 
 |     p = p->next_page(); | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | int PagedSpace::CountTotalPages() { | 
 |   int count = 0; | 
 |   for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { | 
 |     count++; | 
 |   } | 
 |   return count; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void PagedSpace::Shrink() { | 
 |   if (!page_list_is_chunk_ordered_) { | 
 |     // We can't shrink space if pages is not chunk-ordered | 
 |     // (see comment for class MemoryAllocator for definition). | 
 |     return; | 
 |   } | 
 |  | 
 |   // Release half of free pages. | 
 |   Page* top_page = AllocationTopPage(); | 
 |   ASSERT(top_page->is_valid()); | 
 |  | 
 |   // Count the number of pages we would like to free. | 
 |   int pages_to_free = 0; | 
 |   for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) { | 
 |     pages_to_free++; | 
 |   } | 
 |  | 
 |   // Free pages after top_page. | 
 |   Page* p = MemoryAllocator::FreePages(top_page->next_page()); | 
 |   MemoryAllocator::SetNextPage(top_page, p); | 
 |  | 
 |   // Find out how many pages we failed to free and update last_page_. | 
 |   // Please note pages can only be freed in whole chunks. | 
 |   last_page_ = top_page; | 
 |   for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) { | 
 |     pages_to_free--; | 
 |     last_page_ = p; | 
 |   } | 
 |  | 
 |   accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize); | 
 |   ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize); | 
 | } | 
 |  | 
 |  | 
 | bool PagedSpace::EnsureCapacity(int capacity) { | 
 |   if (Capacity() >= capacity) return true; | 
 |  | 
 |   // Start from the allocation top and loop to the last page in the space. | 
 |   Page* last_page = AllocationTopPage(); | 
 |   Page* next_page = last_page->next_page(); | 
 |   while (next_page->is_valid()) { | 
 |     last_page = MemoryAllocator::FindLastPageInSameChunk(next_page); | 
 |     next_page = last_page->next_page(); | 
 |   } | 
 |  | 
 |   // Expand the space until it has the required capacity or expansion fails. | 
 |   do { | 
 |     if (!Expand(last_page)) return false; | 
 |     ASSERT(last_page->next_page()->is_valid()); | 
 |     last_page = | 
 |         MemoryAllocator::FindLastPageInSameChunk(last_page->next_page()); | 
 |   } while (Capacity() < capacity); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | void PagedSpace::Print() { } | 
 | #endif | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | // We do not assume that the PageIterator works, because it depends on the | 
 | // invariants we are checking during verification. | 
 | void PagedSpace::Verify(ObjectVisitor* visitor) { | 
 |   // The allocation pointer should be valid, and it should be in a page in the | 
 |   // space. | 
 |   ASSERT(allocation_info_.VerifyPagedAllocation()); | 
 |   Page* top_page = Page::FromAllocationTop(allocation_info_.top); | 
 |   ASSERT(MemoryAllocator::IsPageInSpace(top_page, this)); | 
 |  | 
 |   // Loop over all the pages. | 
 |   bool above_allocation_top = false; | 
 |   Page* current_page = first_page_; | 
 |   while (current_page->is_valid()) { | 
 |     if (above_allocation_top) { | 
 |       // We don't care what's above the allocation top. | 
 |     } else { | 
 |       Address top = current_page->AllocationTop(); | 
 |       if (current_page == top_page) { | 
 |         ASSERT(top == allocation_info_.top); | 
 |         // The next page will be above the allocation top. | 
 |         above_allocation_top = true; | 
 |       } | 
 |  | 
 |       // It should be packed with objects from the bottom to the top. | 
 |       Address current = current_page->ObjectAreaStart(); | 
 |       while (current < top) { | 
 |         HeapObject* object = HeapObject::FromAddress(current); | 
 |  | 
 |         // The first word should be a map, and we expect all map pointers to | 
 |         // be in map space. | 
 |         Map* map = object->map(); | 
 |         ASSERT(map->IsMap()); | 
 |         ASSERT(Heap::map_space()->Contains(map)); | 
 |  | 
 |         // Perform space-specific object verification. | 
 |         VerifyObject(object); | 
 |  | 
 |         // The object itself should look OK. | 
 |         object->Verify(); | 
 |  | 
 |         // All the interior pointers should be contained in the heap and | 
 |         // have page regions covering intergenerational references should be | 
 |         // marked dirty. | 
 |         int size = object->Size(); | 
 |         object->IterateBody(map->instance_type(), size, visitor); | 
 |  | 
 |         current += size; | 
 |       } | 
 |  | 
 |       // The allocation pointer should not be in the middle of an object. | 
 |       ASSERT(current == top); | 
 |     } | 
 |  | 
 |     current_page = current_page->next_page(); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // NewSpace implementation | 
 |  | 
 |  | 
 | bool NewSpace::Setup(Address start, int size) { | 
 |   // Setup new space based on the preallocated memory block defined by | 
 |   // start and size. The provided space is divided into two semi-spaces. | 
 |   // To support fast containment testing in the new space, the size of | 
 |   // this chunk must be a power of two and it must be aligned to its size. | 
 |   int initial_semispace_capacity = Heap::InitialSemiSpaceSize(); | 
 |   int maximum_semispace_capacity = Heap::MaxSemiSpaceSize(); | 
 |  | 
 |   ASSERT(initial_semispace_capacity <= maximum_semispace_capacity); | 
 |   ASSERT(IsPowerOf2(maximum_semispace_capacity)); | 
 |  | 
 |   // Allocate and setup the histogram arrays if necessary. | 
 | #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 
 |   allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); | 
 |   promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); | 
 |  | 
 | #define SET_NAME(name) allocated_histogram_[name].set_name(#name); \ | 
 |                        promoted_histogram_[name].set_name(#name); | 
 |   INSTANCE_TYPE_LIST(SET_NAME) | 
 | #undef SET_NAME | 
 | #endif | 
 |  | 
 |   ASSERT(size == 2 * Heap::ReservedSemiSpaceSize()); | 
 |   ASSERT(IsAddressAligned(start, size, 0)); | 
 |  | 
 |   if (!to_space_.Setup(start, | 
 |                        initial_semispace_capacity, | 
 |                        maximum_semispace_capacity)) { | 
 |     return false; | 
 |   } | 
 |   if (!from_space_.Setup(start + maximum_semispace_capacity, | 
 |                          initial_semispace_capacity, | 
 |                          maximum_semispace_capacity)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   start_ = start; | 
 |   address_mask_ = ~(size - 1); | 
 |   object_mask_ = address_mask_ | kHeapObjectTagMask; | 
 |   object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; | 
 |  | 
 |   allocation_info_.top = to_space_.low(); | 
 |   allocation_info_.limit = to_space_.high(); | 
 |   mc_forwarding_info_.top = NULL; | 
 |   mc_forwarding_info_.limit = NULL; | 
 |  | 
 |   ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::TearDown() { | 
 | #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 
 |   if (allocated_histogram_) { | 
 |     DeleteArray(allocated_histogram_); | 
 |     allocated_histogram_ = NULL; | 
 |   } | 
 |   if (promoted_histogram_) { | 
 |     DeleteArray(promoted_histogram_); | 
 |     promoted_histogram_ = NULL; | 
 |   } | 
 | #endif | 
 |  | 
 |   start_ = NULL; | 
 |   allocation_info_.top = NULL; | 
 |   allocation_info_.limit = NULL; | 
 |   mc_forwarding_info_.top = NULL; | 
 |   mc_forwarding_info_.limit = NULL; | 
 |  | 
 |   to_space_.TearDown(); | 
 |   from_space_.TearDown(); | 
 | } | 
 |  | 
 |  | 
 | #ifdef ENABLE_HEAP_PROTECTION | 
 |  | 
 | void NewSpace::Protect() { | 
 |   MemoryAllocator::Protect(ToSpaceLow(), Capacity()); | 
 |   MemoryAllocator::Protect(FromSpaceLow(), Capacity()); | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::Unprotect() { | 
 |   MemoryAllocator::Unprotect(ToSpaceLow(), Capacity(), | 
 |                              to_space_.executable()); | 
 |   MemoryAllocator::Unprotect(FromSpaceLow(), Capacity(), | 
 |                              from_space_.executable()); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 |  | 
 | void NewSpace::Flip() { | 
 |   SemiSpace tmp = from_space_; | 
 |   from_space_ = to_space_; | 
 |   to_space_ = tmp; | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::Grow() { | 
 |   ASSERT(Capacity() < MaximumCapacity()); | 
 |   if (to_space_.Grow()) { | 
 |     // Only grow from space if we managed to grow to space. | 
 |     if (!from_space_.Grow()) { | 
 |       // If we managed to grow to space but couldn't grow from space, | 
 |       // attempt to shrink to space. | 
 |       if (!to_space_.ShrinkTo(from_space_.Capacity())) { | 
 |         // We are in an inconsistent state because we could not | 
 |         // commit/uncommit memory from new space. | 
 |         V8::FatalProcessOutOfMemory("Failed to grow new space."); | 
 |       } | 
 |     } | 
 |   } | 
 |   allocation_info_.limit = to_space_.high(); | 
 |   ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::Shrink() { | 
 |   int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt()); | 
 |   int rounded_new_capacity = | 
 |       RoundUp(new_capacity, static_cast<int>(OS::AllocateAlignment())); | 
 |   if (rounded_new_capacity < Capacity() && | 
 |       to_space_.ShrinkTo(rounded_new_capacity))  { | 
 |     // Only shrink from space if we managed to shrink to space. | 
 |     if (!from_space_.ShrinkTo(rounded_new_capacity)) { | 
 |       // If we managed to shrink to space but couldn't shrink from | 
 |       // space, attempt to grow to space again. | 
 |       if (!to_space_.GrowTo(from_space_.Capacity())) { | 
 |         // We are in an inconsistent state because we could not | 
 |         // commit/uncommit memory from new space. | 
 |         V8::FatalProcessOutOfMemory("Failed to shrink new space."); | 
 |       } | 
 |     } | 
 |   } | 
 |   allocation_info_.limit = to_space_.high(); | 
 |   ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::ResetAllocationInfo() { | 
 |   allocation_info_.top = to_space_.low(); | 
 |   allocation_info_.limit = to_space_.high(); | 
 |   ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::MCResetRelocationInfo() { | 
 |   mc_forwarding_info_.top = from_space_.low(); | 
 |   mc_forwarding_info_.limit = from_space_.high(); | 
 |   ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_); | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::MCCommitRelocationInfo() { | 
 |   // Assumes that the spaces have been flipped so that mc_forwarding_info_ is | 
 |   // valid allocation info for the to space. | 
 |   allocation_info_.top = mc_forwarding_info_.top; | 
 |   allocation_info_.limit = to_space_.high(); | 
 |   ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | // We do not use the SemispaceIterator because verification doesn't assume | 
 | // that it works (it depends on the invariants we are checking). | 
 | void NewSpace::Verify() { | 
 |   // The allocation pointer should be in the space or at the very end. | 
 |   ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); | 
 |  | 
 |   // There should be objects packed in from the low address up to the | 
 |   // allocation pointer. | 
 |   Address current = to_space_.low(); | 
 |   while (current < top()) { | 
 |     HeapObject* object = HeapObject::FromAddress(current); | 
 |  | 
 |     // The first word should be a map, and we expect all map pointers to | 
 |     // be in map space. | 
 |     Map* map = object->map(); | 
 |     ASSERT(map->IsMap()); | 
 |     ASSERT(Heap::map_space()->Contains(map)); | 
 |  | 
 |     // The object should not be code or a map. | 
 |     ASSERT(!object->IsMap()); | 
 |     ASSERT(!object->IsCode()); | 
 |  | 
 |     // The object itself should look OK. | 
 |     object->Verify(); | 
 |  | 
 |     // All the interior pointers should be contained in the heap. | 
 |     VerifyPointersVisitor visitor; | 
 |     int size = object->Size(); | 
 |     object->IterateBody(map->instance_type(), size, &visitor); | 
 |  | 
 |     current += size; | 
 |   } | 
 |  | 
 |   // The allocation pointer should not be in the middle of an object. | 
 |   ASSERT(current == top()); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | bool SemiSpace::Commit() { | 
 |   ASSERT(!is_committed()); | 
 |   if (!MemoryAllocator::CommitBlock(start_, capacity_, executable())) { | 
 |     return false; | 
 |   } | 
 |   committed_ = true; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool SemiSpace::Uncommit() { | 
 |   ASSERT(is_committed()); | 
 |   if (!MemoryAllocator::UncommitBlock(start_, capacity_)) { | 
 |     return false; | 
 |   } | 
 |   committed_ = false; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // SemiSpace implementation | 
 |  | 
 | bool SemiSpace::Setup(Address start, | 
 |                       int initial_capacity, | 
 |                       int maximum_capacity) { | 
 |   // Creates a space in the young generation. The constructor does not | 
 |   // allocate memory from the OS.  A SemiSpace is given a contiguous chunk of | 
 |   // memory of size 'capacity' when set up, and does not grow or shrink | 
 |   // otherwise.  In the mark-compact collector, the memory region of the from | 
 |   // space is used as the marking stack. It requires contiguous memory | 
 |   // addresses. | 
 |   initial_capacity_ = initial_capacity; | 
 |   capacity_ = initial_capacity; | 
 |   maximum_capacity_ = maximum_capacity; | 
 |   committed_ = false; | 
 |  | 
 |   start_ = start; | 
 |   address_mask_ = ~(maximum_capacity - 1); | 
 |   object_mask_ = address_mask_ | kHeapObjectTagMask; | 
 |   object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; | 
 |   age_mark_ = start_; | 
 |  | 
 |   return Commit(); | 
 | } | 
 |  | 
 |  | 
 | void SemiSpace::TearDown() { | 
 |   start_ = NULL; | 
 |   capacity_ = 0; | 
 | } | 
 |  | 
 |  | 
 | bool SemiSpace::Grow() { | 
 |   // Double the semispace size but only up to maximum capacity. | 
 |   int maximum_extra = maximum_capacity_ - capacity_; | 
 |   int extra = Min(RoundUp(capacity_, static_cast<int>(OS::AllocateAlignment())), | 
 |                   maximum_extra); | 
 |   if (!MemoryAllocator::CommitBlock(high(), extra, executable())) { | 
 |     return false; | 
 |   } | 
 |   capacity_ += extra; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool SemiSpace::GrowTo(int new_capacity) { | 
 |   ASSERT(new_capacity <= maximum_capacity_); | 
 |   ASSERT(new_capacity > capacity_); | 
 |   size_t delta = new_capacity - capacity_; | 
 |   ASSERT(IsAligned(delta, OS::AllocateAlignment())); | 
 |   if (!MemoryAllocator::CommitBlock(high(), delta, executable())) { | 
 |     return false; | 
 |   } | 
 |   capacity_ = new_capacity; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool SemiSpace::ShrinkTo(int new_capacity) { | 
 |   ASSERT(new_capacity >= initial_capacity_); | 
 |   ASSERT(new_capacity < capacity_); | 
 |   size_t delta = capacity_ - new_capacity; | 
 |   ASSERT(IsAligned(delta, OS::AllocateAlignment())); | 
 |   if (!MemoryAllocator::UncommitBlock(high() - delta, delta)) { | 
 |     return false; | 
 |   } | 
 |   capacity_ = new_capacity; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | void SemiSpace::Print() { } | 
 |  | 
 |  | 
 | void SemiSpace::Verify() { } | 
 | #endif | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // SemiSpaceIterator implementation. | 
 | SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { | 
 |   Initialize(space, space->bottom(), space->top(), NULL); | 
 | } | 
 |  | 
 |  | 
 | SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, | 
 |                                      HeapObjectCallback size_func) { | 
 |   Initialize(space, space->bottom(), space->top(), size_func); | 
 | } | 
 |  | 
 |  | 
 | SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) { | 
 |   Initialize(space, start, space->top(), NULL); | 
 | } | 
 |  | 
 |  | 
 | void SemiSpaceIterator::Initialize(NewSpace* space, Address start, | 
 |                                    Address end, | 
 |                                    HeapObjectCallback size_func) { | 
 |   ASSERT(space->ToSpaceContains(start)); | 
 |   ASSERT(space->ToSpaceLow() <= end | 
 |          && end <= space->ToSpaceHigh()); | 
 |   space_ = &space->to_space_; | 
 |   current_ = start; | 
 |   limit_ = end; | 
 |   size_func_ = size_func; | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | // A static array of histogram info for each type. | 
 | static HistogramInfo heap_histograms[LAST_TYPE+1]; | 
 | static JSObject::SpillInformation js_spill_information; | 
 |  | 
 | // heap_histograms is shared, always clear it before using it. | 
 | static void ClearHistograms() { | 
 |   // We reset the name each time, though it hasn't changed. | 
 | #define DEF_TYPE_NAME(name) heap_histograms[name].set_name(#name); | 
 |   INSTANCE_TYPE_LIST(DEF_TYPE_NAME) | 
 | #undef DEF_TYPE_NAME | 
 |  | 
 | #define CLEAR_HISTOGRAM(name) heap_histograms[name].clear(); | 
 |   INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) | 
 | #undef CLEAR_HISTOGRAM | 
 |  | 
 |   js_spill_information.Clear(); | 
 | } | 
 |  | 
 |  | 
 | static int code_kind_statistics[Code::NUMBER_OF_KINDS]; | 
 |  | 
 |  | 
 | static void ClearCodeKindStatistics() { | 
 |   for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { | 
 |     code_kind_statistics[i] = 0; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static void ReportCodeKindStatistics() { | 
 |   const char* table[Code::NUMBER_OF_KINDS] = { NULL }; | 
 |  | 
 | #define CASE(name)                            \ | 
 |   case Code::name: table[Code::name] = #name; \ | 
 |   break | 
 |  | 
 |   for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { | 
 |     switch (static_cast<Code::Kind>(i)) { | 
 |       CASE(FUNCTION); | 
 |       CASE(STUB); | 
 |       CASE(BUILTIN); | 
 |       CASE(LOAD_IC); | 
 |       CASE(KEYED_LOAD_IC); | 
 |       CASE(STORE_IC); | 
 |       CASE(KEYED_STORE_IC); | 
 |       CASE(CALL_IC); | 
 |       CASE(KEYED_CALL_IC); | 
 |       CASE(BINARY_OP_IC); | 
 |     } | 
 |   } | 
 |  | 
 | #undef CASE | 
 |  | 
 |   PrintF("\n   Code kind histograms: \n"); | 
 |   for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { | 
 |     if (code_kind_statistics[i] > 0) { | 
 |       PrintF("     %-20s: %10d bytes\n", table[i], code_kind_statistics[i]); | 
 |     } | 
 |   } | 
 |   PrintF("\n"); | 
 | } | 
 |  | 
 |  | 
 | static int CollectHistogramInfo(HeapObject* obj) { | 
 |   InstanceType type = obj->map()->instance_type(); | 
 |   ASSERT(0 <= type && type <= LAST_TYPE); | 
 |   ASSERT(heap_histograms[type].name() != NULL); | 
 |   heap_histograms[type].increment_number(1); | 
 |   heap_histograms[type].increment_bytes(obj->Size()); | 
 |  | 
 |   if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { | 
 |     JSObject::cast(obj)->IncrementSpillStatistics(&js_spill_information); | 
 |   } | 
 |  | 
 |   return obj->Size(); | 
 | } | 
 |  | 
 |  | 
 | static void ReportHistogram(bool print_spill) { | 
 |   PrintF("\n  Object Histogram:\n"); | 
 |   for (int i = 0; i <= LAST_TYPE; i++) { | 
 |     if (heap_histograms[i].number() > 0) { | 
 |       PrintF("    %-34s%10d (%10d bytes)\n", | 
 |              heap_histograms[i].name(), | 
 |              heap_histograms[i].number(), | 
 |              heap_histograms[i].bytes()); | 
 |     } | 
 |   } | 
 |   PrintF("\n"); | 
 |  | 
 |   // Summarize string types. | 
 |   int string_number = 0; | 
 |   int string_bytes = 0; | 
 | #define INCREMENT(type, size, name, camel_name)      \ | 
 |     string_number += heap_histograms[type].number(); \ | 
 |     string_bytes += heap_histograms[type].bytes(); | 
 |   STRING_TYPE_LIST(INCREMENT) | 
 | #undef INCREMENT | 
 |   if (string_number > 0) { | 
 |     PrintF("    %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, | 
 |            string_bytes); | 
 |   } | 
 |  | 
 |   if (FLAG_collect_heap_spill_statistics && print_spill) { | 
 |     js_spill_information.Print(); | 
 |   } | 
 | } | 
 | #endif  // DEBUG | 
 |  | 
 |  | 
 | // Support for statistics gathering for --heap-stats and --log-gc. | 
 | #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 
 | void NewSpace::ClearHistograms() { | 
 |   for (int i = 0; i <= LAST_TYPE; i++) { | 
 |     allocated_histogram_[i].clear(); | 
 |     promoted_histogram_[i].clear(); | 
 |   } | 
 | } | 
 |  | 
 | // Because the copying collector does not touch garbage objects, we iterate | 
 | // the new space before a collection to get a histogram of allocated objects. | 
 | // This only happens (1) when compiled with DEBUG and the --heap-stats flag is | 
 | // set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc | 
 | // flag is set. | 
 | void NewSpace::CollectStatistics() { | 
 |   ClearHistograms(); | 
 |   SemiSpaceIterator it(this); | 
 |   for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) | 
 |     RecordAllocation(obj); | 
 | } | 
 |  | 
 |  | 
 | #ifdef ENABLE_LOGGING_AND_PROFILING | 
 | static void DoReportStatistics(HistogramInfo* info, const char* description) { | 
 |   LOG(HeapSampleBeginEvent("NewSpace", description)); | 
 |   // Lump all the string types together. | 
 |   int string_number = 0; | 
 |   int string_bytes = 0; | 
 | #define INCREMENT(type, size, name, camel_name)       \ | 
 |     string_number += info[type].number();             \ | 
 |     string_bytes += info[type].bytes(); | 
 |   STRING_TYPE_LIST(INCREMENT) | 
 | #undef INCREMENT | 
 |   if (string_number > 0) { | 
 |     LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); | 
 |   } | 
 |  | 
 |   // Then do the other types. | 
 |   for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { | 
 |     if (info[i].number() > 0) { | 
 |       LOG(HeapSampleItemEvent(info[i].name(), info[i].number(), | 
 |                               info[i].bytes())); | 
 |     } | 
 |   } | 
 |   LOG(HeapSampleEndEvent("NewSpace", description)); | 
 | } | 
 | #endif  // ENABLE_LOGGING_AND_PROFILING | 
 |  | 
 |  | 
 | void NewSpace::ReportStatistics() { | 
 | #ifdef DEBUG | 
 |   if (FLAG_heap_stats) { | 
 |     float pct = static_cast<float>(Available()) / Capacity(); | 
 |     PrintF("  capacity: %" V8_PTR_PREFIX "d" | 
 |                ", available: %" V8_PTR_PREFIX "d, %%%d\n", | 
 |            Capacity(), Available(), static_cast<int>(pct*100)); | 
 |     PrintF("\n  Object Histogram:\n"); | 
 |     for (int i = 0; i <= LAST_TYPE; i++) { | 
 |       if (allocated_histogram_[i].number() > 0) { | 
 |         PrintF("    %-34s%10d (%10d bytes)\n", | 
 |                allocated_histogram_[i].name(), | 
 |                allocated_histogram_[i].number(), | 
 |                allocated_histogram_[i].bytes()); | 
 |       } | 
 |     } | 
 |     PrintF("\n"); | 
 |   } | 
 | #endif  // DEBUG | 
 |  | 
 | #ifdef ENABLE_LOGGING_AND_PROFILING | 
 |   if (FLAG_log_gc) { | 
 |     DoReportStatistics(allocated_histogram_, "allocated"); | 
 |     DoReportStatistics(promoted_histogram_, "promoted"); | 
 |   } | 
 | #endif  // ENABLE_LOGGING_AND_PROFILING | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::RecordAllocation(HeapObject* obj) { | 
 |   InstanceType type = obj->map()->instance_type(); | 
 |   ASSERT(0 <= type && type <= LAST_TYPE); | 
 |   allocated_histogram_[type].increment_number(1); | 
 |   allocated_histogram_[type].increment_bytes(obj->Size()); | 
 | } | 
 |  | 
 |  | 
 | void NewSpace::RecordPromotion(HeapObject* obj) { | 
 |   InstanceType type = obj->map()->instance_type(); | 
 |   ASSERT(0 <= type && type <= LAST_TYPE); | 
 |   promoted_histogram_[type].increment_number(1); | 
 |   promoted_histogram_[type].increment_bytes(obj->Size()); | 
 | } | 
 | #endif  // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Free lists for old object spaces implementation | 
 |  | 
 | void FreeListNode::set_size(int size_in_bytes) { | 
 |   ASSERT(size_in_bytes > 0); | 
 |   ASSERT(IsAligned(size_in_bytes, kPointerSize)); | 
 |  | 
 |   // We write a map and possibly size information to the block.  If the block | 
 |   // is big enough to be a ByteArray with at least one extra word (the next | 
 |   // pointer), we set its map to be the byte array map and its size to an | 
 |   // appropriate array length for the desired size from HeapObject::Size(). | 
 |   // If the block is too small (eg, one or two words), to hold both a size | 
 |   // field and a next pointer, we give it a filler map that gives it the | 
 |   // correct size. | 
 |   if (size_in_bytes > ByteArray::kHeaderSize) { | 
 |     set_map(Heap::raw_unchecked_byte_array_map()); | 
 |     // Can't use ByteArray::cast because it fails during deserialization. | 
 |     ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this); | 
 |     this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes)); | 
 |   } else if (size_in_bytes == kPointerSize) { | 
 |     set_map(Heap::raw_unchecked_one_pointer_filler_map()); | 
 |   } else if (size_in_bytes == 2 * kPointerSize) { | 
 |     set_map(Heap::raw_unchecked_two_pointer_filler_map()); | 
 |   } else { | 
 |     UNREACHABLE(); | 
 |   } | 
 |   // We would like to ASSERT(Size() == size_in_bytes) but this would fail during | 
 |   // deserialization because the byte array map is not done yet. | 
 | } | 
 |  | 
 |  | 
 | Address FreeListNode::next() { | 
 |   ASSERT(IsFreeListNode(this)); | 
 |   if (map() == Heap::raw_unchecked_byte_array_map()) { | 
 |     ASSERT(Size() >= kNextOffset + kPointerSize); | 
 |     return Memory::Address_at(address() + kNextOffset); | 
 |   } else { | 
 |     return Memory::Address_at(address() + kPointerSize); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void FreeListNode::set_next(Address next) { | 
 |   ASSERT(IsFreeListNode(this)); | 
 |   if (map() == Heap::raw_unchecked_byte_array_map()) { | 
 |     ASSERT(Size() >= kNextOffset + kPointerSize); | 
 |     Memory::Address_at(address() + kNextOffset) = next; | 
 |   } else { | 
 |     Memory::Address_at(address() + kPointerSize) = next; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | OldSpaceFreeList::OldSpaceFreeList(AllocationSpace owner) : owner_(owner) { | 
 |   Reset(); | 
 | } | 
 |  | 
 |  | 
 | void OldSpaceFreeList::Reset() { | 
 |   available_ = 0; | 
 |   for (int i = 0; i < kFreeListsLength; i++) { | 
 |     free_[i].head_node_ = NULL; | 
 |   } | 
 |   needs_rebuild_ = false; | 
 |   finger_ = kHead; | 
 |   free_[kHead].next_size_ = kEnd; | 
 | } | 
 |  | 
 |  | 
 | void OldSpaceFreeList::RebuildSizeList() { | 
 |   ASSERT(needs_rebuild_); | 
 |   int cur = kHead; | 
 |   for (int i = cur + 1; i < kFreeListsLength; i++) { | 
 |     if (free_[i].head_node_ != NULL) { | 
 |       free_[cur].next_size_ = i; | 
 |       cur = i; | 
 |     } | 
 |   } | 
 |   free_[cur].next_size_ = kEnd; | 
 |   needs_rebuild_ = false; | 
 | } | 
 |  | 
 |  | 
 | int OldSpaceFreeList::Free(Address start, int size_in_bytes) { | 
 | #ifdef DEBUG | 
 |   MemoryAllocator::ZapBlock(start, size_in_bytes); | 
 | #endif | 
 |   FreeListNode* node = FreeListNode::FromAddress(start); | 
 |   node->set_size(size_in_bytes); | 
 |  | 
 |   // We don't use the freelists in compacting mode.  This makes it more like a | 
 |   // GC that only has mark-sweep-compact and doesn't have a mark-sweep | 
 |   // collector. | 
 |   if (FLAG_always_compact) { | 
 |     return size_in_bytes; | 
 |   } | 
 |  | 
 |   // Early return to drop too-small blocks on the floor (one or two word | 
 |   // blocks cannot hold a map pointer, a size field, and a pointer to the | 
 |   // next block in the free list). | 
 |   if (size_in_bytes < kMinBlockSize) { | 
 |     return size_in_bytes; | 
 |   } | 
 |  | 
 |   // Insert other blocks at the head of an exact free list. | 
 |   int index = size_in_bytes >> kPointerSizeLog2; | 
 |   node->set_next(free_[index].head_node_); | 
 |   free_[index].head_node_ = node->address(); | 
 |   available_ += size_in_bytes; | 
 |   needs_rebuild_ = true; | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) { | 
 |   ASSERT(0 < size_in_bytes); | 
 |   ASSERT(size_in_bytes <= kMaxBlockSize); | 
 |   ASSERT(IsAligned(size_in_bytes, kPointerSize)); | 
 |  | 
 |   if (needs_rebuild_) RebuildSizeList(); | 
 |   int index = size_in_bytes >> kPointerSizeLog2; | 
 |   // Check for a perfect fit. | 
 |   if (free_[index].head_node_ != NULL) { | 
 |     FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_); | 
 |     // If this was the last block of its size, remove the size. | 
 |     if ((free_[index].head_node_ = node->next()) == NULL) RemoveSize(index); | 
 |     available_ -= size_in_bytes; | 
 |     *wasted_bytes = 0; | 
 |     ASSERT(!FLAG_always_compact);  // We only use the freelists with mark-sweep. | 
 |     return node; | 
 |   } | 
 |   // Search the size list for the best fit. | 
 |   int prev = finger_ < index ? finger_ : kHead; | 
 |   int cur = FindSize(index, &prev); | 
 |   ASSERT(index < cur); | 
 |   if (cur == kEnd) { | 
 |     // No large enough size in list. | 
 |     *wasted_bytes = 0; | 
 |     return Failure::RetryAfterGC(owner_); | 
 |   } | 
 |   ASSERT(!FLAG_always_compact);  // We only use the freelists with mark-sweep. | 
 |   int rem = cur - index; | 
 |   int rem_bytes = rem << kPointerSizeLog2; | 
 |   FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_); | 
 |   ASSERT(cur_node->Size() == (cur << kPointerSizeLog2)); | 
 |   FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ + | 
 |                                                      size_in_bytes); | 
 |   // Distinguish the cases prev < rem < cur and rem <= prev < cur | 
 |   // to avoid many redundant tests and calls to Insert/RemoveSize. | 
 |   if (prev < rem) { | 
 |     // Simple case: insert rem between prev and cur. | 
 |     finger_ = prev; | 
 |     free_[prev].next_size_ = rem; | 
 |     // If this was the last block of size cur, remove the size. | 
 |     if ((free_[cur].head_node_ = cur_node->next()) == NULL) { | 
 |       free_[rem].next_size_ = free_[cur].next_size_; | 
 |     } else { | 
 |       free_[rem].next_size_ = cur; | 
 |     } | 
 |     // Add the remainder block. | 
 |     rem_node->set_size(rem_bytes); | 
 |     rem_node->set_next(free_[rem].head_node_); | 
 |     free_[rem].head_node_ = rem_node->address(); | 
 |   } else { | 
 |     // If this was the last block of size cur, remove the size. | 
 |     if ((free_[cur].head_node_ = cur_node->next()) == NULL) { | 
 |       finger_ = prev; | 
 |       free_[prev].next_size_ = free_[cur].next_size_; | 
 |     } | 
 |     if (rem_bytes < kMinBlockSize) { | 
 |       // Too-small remainder is wasted. | 
 |       rem_node->set_size(rem_bytes); | 
 |       available_ -= size_in_bytes + rem_bytes; | 
 |       *wasted_bytes = rem_bytes; | 
 |       return cur_node; | 
 |     } | 
 |     // Add the remainder block and, if needed, insert its size. | 
 |     rem_node->set_size(rem_bytes); | 
 |     rem_node->set_next(free_[rem].head_node_); | 
 |     free_[rem].head_node_ = rem_node->address(); | 
 |     if (rem_node->next() == NULL) InsertSize(rem); | 
 |   } | 
 |   available_ -= size_in_bytes; | 
 |   *wasted_bytes = 0; | 
 |   return cur_node; | 
 | } | 
 |  | 
 |  | 
 | void OldSpaceFreeList::MarkNodes() { | 
 |   for (int i = 0; i < kFreeListsLength; i++) { | 
 |     Address cur_addr = free_[i].head_node_; | 
 |     while (cur_addr != NULL) { | 
 |       FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr); | 
 |       cur_addr = cur_node->next(); | 
 |       cur_node->SetMark(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | bool OldSpaceFreeList::Contains(FreeListNode* node) { | 
 |   for (int i = 0; i < kFreeListsLength; i++) { | 
 |     Address cur_addr = free_[i].head_node_; | 
 |     while (cur_addr != NULL) { | 
 |       FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr); | 
 |       if (cur_node == node) return true; | 
 |       cur_addr = cur_node->next(); | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | FixedSizeFreeList::FixedSizeFreeList(AllocationSpace owner, int object_size) | 
 |     : owner_(owner), object_size_(object_size) { | 
 |   Reset(); | 
 | } | 
 |  | 
 |  | 
 | void FixedSizeFreeList::Reset() { | 
 |   available_ = 0; | 
 |   head_ = tail_ = NULL; | 
 | } | 
 |  | 
 |  | 
 | void FixedSizeFreeList::Free(Address start) { | 
 | #ifdef DEBUG | 
 |   MemoryAllocator::ZapBlock(start, object_size_); | 
 | #endif | 
 |   // We only use the freelists with mark-sweep. | 
 |   ASSERT(!MarkCompactCollector::IsCompacting()); | 
 |   FreeListNode* node = FreeListNode::FromAddress(start); | 
 |   node->set_size(object_size_); | 
 |   node->set_next(NULL); | 
 |   if (head_ == NULL) { | 
 |     tail_ = head_ = node->address(); | 
 |   } else { | 
 |     FreeListNode::FromAddress(tail_)->set_next(node->address()); | 
 |     tail_ = node->address(); | 
 |   } | 
 |   available_ += object_size_; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* FixedSizeFreeList::Allocate() { | 
 |   if (head_ == NULL) { | 
 |     return Failure::RetryAfterGC(owner_); | 
 |   } | 
 |  | 
 |   ASSERT(!FLAG_always_compact);  // We only use the freelists with mark-sweep. | 
 |   FreeListNode* node = FreeListNode::FromAddress(head_); | 
 |   head_ = node->next(); | 
 |   available_ -= object_size_; | 
 |   return node; | 
 | } | 
 |  | 
 |  | 
 | void FixedSizeFreeList::MarkNodes() { | 
 |   Address cur_addr = head_; | 
 |   while (cur_addr != NULL && cur_addr != tail_) { | 
 |     FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr); | 
 |     cur_addr = cur_node->next(); | 
 |     cur_node->SetMark(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // OldSpace implementation | 
 |  | 
 | void OldSpace::PrepareForMarkCompact(bool will_compact) { | 
 |   // Call prepare of the super class. | 
 |   PagedSpace::PrepareForMarkCompact(will_compact); | 
 |  | 
 |   if (will_compact) { | 
 |     // Reset relocation info.  During a compacting collection, everything in | 
 |     // the space is considered 'available' and we will rediscover live data | 
 |     // and waste during the collection. | 
 |     MCResetRelocationInfo(); | 
 |     ASSERT(Available() == Capacity()); | 
 |   } else { | 
 |     // During a non-compacting collection, everything below the linear | 
 |     // allocation pointer is considered allocated (everything above is | 
 |     // available) and we will rediscover available and wasted bytes during | 
 |     // the collection. | 
 |     accounting_stats_.AllocateBytes(free_list_.available()); | 
 |     accounting_stats_.FillWastedBytes(Waste()); | 
 |   } | 
 |  | 
 |   // Clear the free list before a full GC---it will be rebuilt afterward. | 
 |   free_list_.Reset(); | 
 | } | 
 |  | 
 |  | 
 | void OldSpace::MCCommitRelocationInfo() { | 
 |   // Update fast allocation info. | 
 |   allocation_info_.top = mc_forwarding_info_.top; | 
 |   allocation_info_.limit = mc_forwarding_info_.limit; | 
 |   ASSERT(allocation_info_.VerifyPagedAllocation()); | 
 |  | 
 |   // The space is compacted and we haven't yet built free lists or | 
 |   // wasted any space. | 
 |   ASSERT(Waste() == 0); | 
 |   ASSERT(AvailableFree() == 0); | 
 |  | 
 |   // Build the free list for the space. | 
 |   int computed_size = 0; | 
 |   PageIterator it(this, PageIterator::PAGES_USED_BY_MC); | 
 |   while (it.has_next()) { | 
 |     Page* p = it.next(); | 
 |     // Space below the relocation pointer is allocated. | 
 |     computed_size += | 
 |         static_cast<int>(p->AllocationWatermark() - p->ObjectAreaStart()); | 
 |     if (it.has_next()) { | 
 |       // Free the space at the top of the page. | 
 |       int extra_size = | 
 |           static_cast<int>(p->ObjectAreaEnd() - p->AllocationWatermark()); | 
 |       if (extra_size > 0) { | 
 |         int wasted_bytes = free_list_.Free(p->AllocationWatermark(), | 
 |                                            extra_size); | 
 |         // The bytes we have just "freed" to add to the free list were | 
 |         // already accounted as available. | 
 |         accounting_stats_.WasteBytes(wasted_bytes); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Make sure the computed size - based on the used portion of the pages in | 
 |   // use - matches the size obtained while computing forwarding addresses. | 
 |   ASSERT(computed_size == Size()); | 
 | } | 
 |  | 
 |  | 
 | bool NewSpace::ReserveSpace(int bytes) { | 
 |   // We can't reliably unpack a partial snapshot that needs more new space | 
 |   // space than the minimum NewSpace size. | 
 |   ASSERT(bytes <= InitialCapacity()); | 
 |   Address limit = allocation_info_.limit; | 
 |   Address top = allocation_info_.top; | 
 |   return limit - top >= bytes; | 
 | } | 
 |  | 
 |  | 
 | void PagedSpace::FreePages(Page* prev, Page* last) { | 
 |   if (last == AllocationTopPage()) { | 
 |     // Pages are already at the end of used pages. | 
 |     return; | 
 |   } | 
 |  | 
 |   Page* first = NULL; | 
 |  | 
 |   // Remove pages from the list. | 
 |   if (prev == NULL) { | 
 |     first = first_page_; | 
 |     first_page_ = last->next_page(); | 
 |   } else { | 
 |     first = prev->next_page(); | 
 |     MemoryAllocator::SetNextPage(prev, last->next_page()); | 
 |   } | 
 |  | 
 |   // Attach it after the last page. | 
 |   MemoryAllocator::SetNextPage(last_page_, first); | 
 |   last_page_ = last; | 
 |   MemoryAllocator::SetNextPage(last, NULL); | 
 |  | 
 |   // Clean them up. | 
 |   do { | 
 |     first->InvalidateWatermark(true); | 
 |     first->SetAllocationWatermark(first->ObjectAreaStart()); | 
 |     first->SetCachedAllocationWatermark(first->ObjectAreaStart()); | 
 |     first->SetRegionMarks(Page::kAllRegionsCleanMarks); | 
 |     first = first->next_page(); | 
 |   } while (first != NULL); | 
 |  | 
 |   // Order of pages in this space might no longer be consistent with | 
 |   // order of pages in chunks. | 
 |   page_list_is_chunk_ordered_ = false; | 
 | } | 
 |  | 
 |  | 
 | void PagedSpace::RelinkPageListInChunkOrder(bool deallocate_blocks) { | 
 |   const bool add_to_freelist = true; | 
 |  | 
 |   // Mark used and unused pages to properly fill unused pages | 
 |   // after reordering. | 
 |   PageIterator all_pages_iterator(this, PageIterator::ALL_PAGES); | 
 |   Page* last_in_use = AllocationTopPage(); | 
 |   bool in_use = true; | 
 |  | 
 |   while (all_pages_iterator.has_next()) { | 
 |     Page* p = all_pages_iterator.next(); | 
 |     p->SetWasInUseBeforeMC(in_use); | 
 |     if (p == last_in_use) { | 
 |       // We passed a page containing allocation top. All consequent | 
 |       // pages are not used. | 
 |       in_use = false; | 
 |     } | 
 |   } | 
 |  | 
 |   if (page_list_is_chunk_ordered_) return; | 
 |  | 
 |   Page* new_last_in_use = Page::FromAddress(NULL); | 
 |   MemoryAllocator::RelinkPageListInChunkOrder(this, | 
 |                                               &first_page_, | 
 |                                               &last_page_, | 
 |                                               &new_last_in_use); | 
 |   ASSERT(new_last_in_use->is_valid()); | 
 |  | 
 |   if (new_last_in_use != last_in_use) { | 
 |     // Current allocation top points to a page which is now in the middle | 
 |     // of page list. We should move allocation top forward to the new last | 
 |     // used page so various object iterators will continue to work properly. | 
 |     int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) - | 
 |                                          last_in_use->AllocationTop()); | 
 |  | 
 |     last_in_use->SetAllocationWatermark(last_in_use->AllocationTop()); | 
 |     if (size_in_bytes > 0) { | 
 |       Address start = last_in_use->AllocationTop(); | 
 |       if (deallocate_blocks) { | 
 |         accounting_stats_.AllocateBytes(size_in_bytes); | 
 |         DeallocateBlock(start, size_in_bytes, add_to_freelist); | 
 |       } else { | 
 |         Heap::CreateFillerObjectAt(start, size_in_bytes); | 
 |       } | 
 |     } | 
 |  | 
 |     // New last in use page was in the middle of the list before | 
 |     // sorting so it full. | 
 |     SetTop(new_last_in_use->AllocationTop()); | 
 |  | 
 |     ASSERT(AllocationTopPage() == new_last_in_use); | 
 |     ASSERT(AllocationTopPage()->WasInUseBeforeMC()); | 
 |   } | 
 |  | 
 |   PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE); | 
 |   while (pages_in_use_iterator.has_next()) { | 
 |     Page* p = pages_in_use_iterator.next(); | 
 |     if (!p->WasInUseBeforeMC()) { | 
 |       // Empty page is in the middle of a sequence of used pages. | 
 |       // Allocate it as a whole and deallocate immediately. | 
 |       int size_in_bytes = static_cast<int>(PageAllocationLimit(p) - | 
 |                                            p->ObjectAreaStart()); | 
 |  | 
 |       p->SetAllocationWatermark(p->ObjectAreaStart()); | 
 |       Address start = p->ObjectAreaStart(); | 
 |       if (deallocate_blocks) { | 
 |         accounting_stats_.AllocateBytes(size_in_bytes); | 
 |         DeallocateBlock(start, size_in_bytes, add_to_freelist); | 
 |       } else { | 
 |         Heap::CreateFillerObjectAt(start, size_in_bytes); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   page_list_is_chunk_ordered_ = true; | 
 | } | 
 |  | 
 |  | 
 | void PagedSpace::PrepareForMarkCompact(bool will_compact) { | 
 |   if (will_compact) { | 
 |     RelinkPageListInChunkOrder(false); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool PagedSpace::ReserveSpace(int bytes) { | 
 |   Address limit = allocation_info_.limit; | 
 |   Address top = allocation_info_.top; | 
 |   if (limit - top >= bytes) return true; | 
 |  | 
 |   // There wasn't enough space in the current page.  Lets put the rest | 
 |   // of the page on the free list and start a fresh page. | 
 |   PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_)); | 
 |  | 
 |   Page* reserved_page = TopPageOf(allocation_info_); | 
 |   int bytes_left_to_reserve = bytes; | 
 |   while (bytes_left_to_reserve > 0) { | 
 |     if (!reserved_page->next_page()->is_valid()) { | 
 |       if (Heap::OldGenerationAllocationLimitReached()) return false; | 
 |       Expand(reserved_page); | 
 |     } | 
 |     bytes_left_to_reserve -= Page::kPageSize; | 
 |     reserved_page = reserved_page->next_page(); | 
 |     if (!reserved_page->is_valid()) return false; | 
 |   } | 
 |   ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid()); | 
 |   TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true); | 
 |   SetAllocationInfo(&allocation_info_, | 
 |                     TopPageOf(allocation_info_)->next_page()); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | // You have to call this last, since the implementation from PagedSpace | 
 | // doesn't know that memory was 'promised' to large object space. | 
 | bool LargeObjectSpace::ReserveSpace(int bytes) { | 
 |   return Heap::OldGenerationSpaceAvailable() >= bytes; | 
 | } | 
 |  | 
 |  | 
 | // Slow case for normal allocation.  Try in order: (1) allocate in the next | 
 | // page in the space, (2) allocate off the space's free list, (3) expand the | 
 | // space, (4) fail. | 
 | HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) { | 
 |   // Linear allocation in this space has failed.  If there is another page | 
 |   // in the space, move to that page and allocate there.  This allocation | 
 |   // should succeed (size_in_bytes should not be greater than a page's | 
 |   // object area size). | 
 |   Page* current_page = TopPageOf(allocation_info_); | 
 |   if (current_page->next_page()->is_valid()) { | 
 |     return AllocateInNextPage(current_page, size_in_bytes); | 
 |   } | 
 |  | 
 |   // There is no next page in this space.  Try free list allocation unless that | 
 |   // is currently forbidden. | 
 |   if (!Heap::linear_allocation()) { | 
 |     int wasted_bytes; | 
 |     Object* result; | 
 |     MaybeObject* maybe = free_list_.Allocate(size_in_bytes, &wasted_bytes); | 
 |     accounting_stats_.WasteBytes(wasted_bytes); | 
 |     if (maybe->ToObject(&result)) { | 
 |       accounting_stats_.AllocateBytes(size_in_bytes); | 
 |  | 
 |       HeapObject* obj = HeapObject::cast(result); | 
 |       Page* p = Page::FromAddress(obj->address()); | 
 |  | 
 |       if (obj->address() >= p->AllocationWatermark()) { | 
 |         // There should be no hole between the allocation watermark | 
 |         // and allocated object address. | 
 |         // Memory above the allocation watermark was not swept and | 
 |         // might contain garbage pointers to new space. | 
 |         ASSERT(obj->address() == p->AllocationWatermark()); | 
 |         p->SetAllocationWatermark(obj->address() + size_in_bytes); | 
 |       } | 
 |  | 
 |       return obj; | 
 |     } | 
 |   } | 
 |  | 
 |   // Free list allocation failed and there is no next page.  Fail if we have | 
 |   // hit the old generation size limit that should cause a garbage | 
 |   // collection. | 
 |   if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   // Try to expand the space and allocate in the new next page. | 
 |   ASSERT(!current_page->next_page()->is_valid()); | 
 |   if (Expand(current_page)) { | 
 |     return AllocateInNextPage(current_page, size_in_bytes); | 
 |   } | 
 |  | 
 |   // Finally, fail. | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { | 
 |   current_page->SetAllocationWatermark(allocation_info_.top); | 
 |   int free_size = | 
 |       static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); | 
 |   if (free_size > 0) { | 
 |     int wasted_bytes = free_list_.Free(allocation_info_.top, free_size); | 
 |     accounting_stats_.WasteBytes(wasted_bytes); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { | 
 |   current_page->SetAllocationWatermark(allocation_info_.top); | 
 |   int free_size = | 
 |       static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); | 
 |   // In the fixed space free list all the free list items have the right size. | 
 |   // We use up the rest of the page while preserving this invariant. | 
 |   while (free_size >= object_size_in_bytes_) { | 
 |     free_list_.Free(allocation_info_.top); | 
 |     allocation_info_.top += object_size_in_bytes_; | 
 |     free_size -= object_size_in_bytes_; | 
 |     accounting_stats_.WasteBytes(object_size_in_bytes_); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Add the block at the top of the page to the space's free list, set the | 
 | // allocation info to the next page (assumed to be one), and allocate | 
 | // linearly there. | 
 | HeapObject* OldSpace::AllocateInNextPage(Page* current_page, | 
 |                                          int size_in_bytes) { | 
 |   ASSERT(current_page->next_page()->is_valid()); | 
 |   Page* next_page = current_page->next_page(); | 
 |   next_page->ClearGCFields(); | 
 |   PutRestOfCurrentPageOnFreeList(current_page); | 
 |   SetAllocationInfo(&allocation_info_, next_page); | 
 |   return AllocateLinearly(&allocation_info_, size_in_bytes); | 
 | } | 
 |  | 
 |  | 
 | void OldSpace::DeallocateBlock(Address start, | 
 |                                  int size_in_bytes, | 
 |                                  bool add_to_freelist) { | 
 |   Free(start, size_in_bytes, add_to_freelist); | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | struct CommentStatistic { | 
 |   const char* comment; | 
 |   int size; | 
 |   int count; | 
 |   void Clear() { | 
 |     comment = NULL; | 
 |     size = 0; | 
 |     count = 0; | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | // must be small, since an iteration is used for lookup | 
 | const int kMaxComments = 64; | 
 | static CommentStatistic comments_statistics[kMaxComments+1]; | 
 |  | 
 |  | 
 | void PagedSpace::ReportCodeStatistics() { | 
 |   ReportCodeKindStatistics(); | 
 |   PrintF("Code comment statistics (\"   [ comment-txt   :    size/   " | 
 |          "count  (average)\"):\n"); | 
 |   for (int i = 0; i <= kMaxComments; i++) { | 
 |     const CommentStatistic& cs = comments_statistics[i]; | 
 |     if (cs.size > 0) { | 
 |       PrintF("   %-30s: %10d/%6d     (%d)\n", cs.comment, cs.size, cs.count, | 
 |              cs.size/cs.count); | 
 |     } | 
 |   } | 
 |   PrintF("\n"); | 
 | } | 
 |  | 
 |  | 
 | void PagedSpace::ResetCodeStatistics() { | 
 |   ClearCodeKindStatistics(); | 
 |   for (int i = 0; i < kMaxComments; i++) comments_statistics[i].Clear(); | 
 |   comments_statistics[kMaxComments].comment = "Unknown"; | 
 |   comments_statistics[kMaxComments].size = 0; | 
 |   comments_statistics[kMaxComments].count = 0; | 
 | } | 
 |  | 
 |  | 
 | // Adds comment to 'comment_statistics' table. Performance OK sa long as | 
 | // 'kMaxComments' is small | 
 | static void EnterComment(const char* comment, int delta) { | 
 |   // Do not count empty comments | 
 |   if (delta <= 0) return; | 
 |   CommentStatistic* cs = &comments_statistics[kMaxComments]; | 
 |   // Search for a free or matching entry in 'comments_statistics': 'cs' | 
 |   // points to result. | 
 |   for (int i = 0; i < kMaxComments; i++) { | 
 |     if (comments_statistics[i].comment == NULL) { | 
 |       cs = &comments_statistics[i]; | 
 |       cs->comment = comment; | 
 |       break; | 
 |     } else if (strcmp(comments_statistics[i].comment, comment) == 0) { | 
 |       cs = &comments_statistics[i]; | 
 |       break; | 
 |     } | 
 |   } | 
 |   // Update entry for 'comment' | 
 |   cs->size += delta; | 
 |   cs->count += 1; | 
 | } | 
 |  | 
 |  | 
 | // Call for each nested comment start (start marked with '[ xxx', end marked | 
 | // with ']'.  RelocIterator 'it' must point to a comment reloc info. | 
 | static void CollectCommentStatistics(RelocIterator* it) { | 
 |   ASSERT(!it->done()); | 
 |   ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT); | 
 |   const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data()); | 
 |   if (tmp[0] != '[') { | 
 |     // Not a nested comment; skip | 
 |     return; | 
 |   } | 
 |  | 
 |   // Search for end of nested comment or a new nested comment | 
 |   const char* const comment_txt = | 
 |       reinterpret_cast<const char*>(it->rinfo()->data()); | 
 |   const byte* prev_pc = it->rinfo()->pc(); | 
 |   int flat_delta = 0; | 
 |   it->next(); | 
 |   while (true) { | 
 |     // All nested comments must be terminated properly, and therefore exit | 
 |     // from loop. | 
 |     ASSERT(!it->done()); | 
 |     if (it->rinfo()->rmode() == RelocInfo::COMMENT) { | 
 |       const char* const txt = | 
 |           reinterpret_cast<const char*>(it->rinfo()->data()); | 
 |       flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc); | 
 |       if (txt[0] == ']') break;  // End of nested  comment | 
 |       // A new comment | 
 |       CollectCommentStatistics(it); | 
 |       // Skip code that was covered with previous comment | 
 |       prev_pc = it->rinfo()->pc(); | 
 |     } | 
 |     it->next(); | 
 |   } | 
 |   EnterComment(comment_txt, flat_delta); | 
 | } | 
 |  | 
 |  | 
 | // Collects code size statistics: | 
 | // - by code kind | 
 | // - by code comment | 
 | void PagedSpace::CollectCodeStatistics() { | 
 |   HeapObjectIterator obj_it(this); | 
 |   for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) { | 
 |     if (obj->IsCode()) { | 
 |       Code* code = Code::cast(obj); | 
 |       code_kind_statistics[code->kind()] += code->Size(); | 
 |       RelocIterator it(code); | 
 |       int delta = 0; | 
 |       const byte* prev_pc = code->instruction_start(); | 
 |       while (!it.done()) { | 
 |         if (it.rinfo()->rmode() == RelocInfo::COMMENT) { | 
 |           delta += static_cast<int>(it.rinfo()->pc() - prev_pc); | 
 |           CollectCommentStatistics(&it); | 
 |           prev_pc = it.rinfo()->pc(); | 
 |         } | 
 |         it.next(); | 
 |       } | 
 |  | 
 |       ASSERT(code->instruction_start() <= prev_pc && | 
 |              prev_pc <= code->instruction_end()); | 
 |       delta += static_cast<int>(code->instruction_end() - prev_pc); | 
 |       EnterComment("NoComment", delta); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void OldSpace::ReportStatistics() { | 
 |   int pct = static_cast<int>(Available() * 100 / Capacity()); | 
 |   PrintF("  capacity: %" V8_PTR_PREFIX "d" | 
 |              ", waste: %" V8_PTR_PREFIX "d" | 
 |              ", available: %" V8_PTR_PREFIX "d, %%%d\n", | 
 |          Capacity(), Waste(), Available(), pct); | 
 |  | 
 |   ClearHistograms(); | 
 |   HeapObjectIterator obj_it(this); | 
 |   for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) | 
 |     CollectHistogramInfo(obj); | 
 |   ReportHistogram(true); | 
 | } | 
 | #endif | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // FixedSpace implementation | 
 |  | 
 | void FixedSpace::PrepareForMarkCompact(bool will_compact) { | 
 |   // Call prepare of the super class. | 
 |   PagedSpace::PrepareForMarkCompact(will_compact); | 
 |  | 
 |   if (will_compact) { | 
 |     // Reset relocation info. | 
 |     MCResetRelocationInfo(); | 
 |  | 
 |     // During a compacting collection, everything in the space is considered | 
 |     // 'available' (set by the call to MCResetRelocationInfo) and we will | 
 |     // rediscover live and wasted bytes during the collection. | 
 |     ASSERT(Available() == Capacity()); | 
 |   } else { | 
 |     // During a non-compacting collection, everything below the linear | 
 |     // allocation pointer except wasted top-of-page blocks is considered | 
 |     // allocated and we will rediscover available bytes during the | 
 |     // collection. | 
 |     accounting_stats_.AllocateBytes(free_list_.available()); | 
 |   } | 
 |  | 
 |   // Clear the free list before a full GC---it will be rebuilt afterward. | 
 |   free_list_.Reset(); | 
 | } | 
 |  | 
 |  | 
 | void FixedSpace::MCCommitRelocationInfo() { | 
 |   // Update fast allocation info. | 
 |   allocation_info_.top = mc_forwarding_info_.top; | 
 |   allocation_info_.limit = mc_forwarding_info_.limit; | 
 |   ASSERT(allocation_info_.VerifyPagedAllocation()); | 
 |  | 
 |   // The space is compacted and we haven't yet wasted any space. | 
 |   ASSERT(Waste() == 0); | 
 |  | 
 |   // Update allocation_top of each page in use and compute waste. | 
 |   int computed_size = 0; | 
 |   PageIterator it(this, PageIterator::PAGES_USED_BY_MC); | 
 |   while (it.has_next()) { | 
 |     Page* page = it.next(); | 
 |     Address page_top = page->AllocationTop(); | 
 |     computed_size += static_cast<int>(page_top - page->ObjectAreaStart()); | 
 |     if (it.has_next()) { | 
 |       accounting_stats_.WasteBytes( | 
 |           static_cast<int>(page->ObjectAreaEnd() - page_top)); | 
 |       page->SetAllocationWatermark(page_top); | 
 |     } | 
 |   } | 
 |  | 
 |   // Make sure the computed size - based on the used portion of the | 
 |   // pages in use - matches the size we adjust during allocation. | 
 |   ASSERT(computed_size == Size()); | 
 | } | 
 |  | 
 |  | 
 | // Slow case for normal allocation. Try in order: (1) allocate in the next | 
 | // page in the space, (2) allocate off the space's free list, (3) expand the | 
 | // space, (4) fail. | 
 | HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) { | 
 |   ASSERT_EQ(object_size_in_bytes_, size_in_bytes); | 
 |   // Linear allocation in this space has failed.  If there is another page | 
 |   // in the space, move to that page and allocate there.  This allocation | 
 |   // should succeed. | 
 |   Page* current_page = TopPageOf(allocation_info_); | 
 |   if (current_page->next_page()->is_valid()) { | 
 |     return AllocateInNextPage(current_page, size_in_bytes); | 
 |   } | 
 |  | 
 |   // There is no next page in this space.  Try free list allocation unless | 
 |   // that is currently forbidden.  The fixed space free list implicitly assumes | 
 |   // that all free blocks are of the fixed size. | 
 |   if (!Heap::linear_allocation()) { | 
 |     Object* result; | 
 |     MaybeObject* maybe = free_list_.Allocate(); | 
 |     if (maybe->ToObject(&result)) { | 
 |       accounting_stats_.AllocateBytes(size_in_bytes); | 
 |       HeapObject* obj = HeapObject::cast(result); | 
 |       Page* p = Page::FromAddress(obj->address()); | 
 |  | 
 |       if (obj->address() >= p->AllocationWatermark()) { | 
 |         // There should be no hole between the allocation watermark | 
 |         // and allocated object address. | 
 |         // Memory above the allocation watermark was not swept and | 
 |         // might contain garbage pointers to new space. | 
 |         ASSERT(obj->address() == p->AllocationWatermark()); | 
 |         p->SetAllocationWatermark(obj->address() + size_in_bytes); | 
 |       } | 
 |  | 
 |       return obj; | 
 |     } | 
 |   } | 
 |  | 
 |   // Free list allocation failed and there is no next page.  Fail if we have | 
 |   // hit the old generation size limit that should cause a garbage | 
 |   // collection. | 
 |   if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   // Try to expand the space and allocate in the new next page. | 
 |   ASSERT(!current_page->next_page()->is_valid()); | 
 |   if (Expand(current_page)) { | 
 |     return AllocateInNextPage(current_page, size_in_bytes); | 
 |   } | 
 |  | 
 |   // Finally, fail. | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | // Move to the next page (there is assumed to be one) and allocate there. | 
 | // The top of page block is always wasted, because it is too small to hold a | 
 | // map. | 
 | HeapObject* FixedSpace::AllocateInNextPage(Page* current_page, | 
 |                                            int size_in_bytes) { | 
 |   ASSERT(current_page->next_page()->is_valid()); | 
 |   ASSERT(allocation_info_.top == PageAllocationLimit(current_page)); | 
 |   ASSERT_EQ(object_size_in_bytes_, size_in_bytes); | 
 |   Page* next_page = current_page->next_page(); | 
 |   next_page->ClearGCFields(); | 
 |   current_page->SetAllocationWatermark(allocation_info_.top); | 
 |   accounting_stats_.WasteBytes(page_extra_); | 
 |   SetAllocationInfo(&allocation_info_, next_page); | 
 |   return AllocateLinearly(&allocation_info_, size_in_bytes); | 
 | } | 
 |  | 
 |  | 
 | void FixedSpace::DeallocateBlock(Address start, | 
 |                                  int size_in_bytes, | 
 |                                  bool add_to_freelist) { | 
 |   // Free-list elements in fixed space are assumed to have a fixed size. | 
 |   // We break the free block into chunks and add them to the free list | 
 |   // individually. | 
 |   int size = object_size_in_bytes(); | 
 |   ASSERT(size_in_bytes % size == 0); | 
 |   Address end = start + size_in_bytes; | 
 |   for (Address a = start; a < end; a += size) { | 
 |     Free(a, add_to_freelist); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | void FixedSpace::ReportStatistics() { | 
 |   int pct = static_cast<int>(Available() * 100 / Capacity()); | 
 |   PrintF("  capacity: %" V8_PTR_PREFIX "d" | 
 |              ", waste: %" V8_PTR_PREFIX "d" | 
 |              ", available: %" V8_PTR_PREFIX "d, %%%d\n", | 
 |          Capacity(), Waste(), Available(), pct); | 
 |  | 
 |   ClearHistograms(); | 
 |   HeapObjectIterator obj_it(this); | 
 |   for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) | 
 |     CollectHistogramInfo(obj); | 
 |   ReportHistogram(false); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // MapSpace implementation | 
 |  | 
 | void MapSpace::PrepareForMarkCompact(bool will_compact) { | 
 |   // Call prepare of the super class. | 
 |   FixedSpace::PrepareForMarkCompact(will_compact); | 
 |  | 
 |   if (will_compact) { | 
 |     // Initialize map index entry. | 
 |     int page_count = 0; | 
 |     PageIterator it(this, PageIterator::ALL_PAGES); | 
 |     while (it.has_next()) { | 
 |       ASSERT_MAP_PAGE_INDEX(page_count); | 
 |  | 
 |       Page* p = it.next(); | 
 |       ASSERT(p->mc_page_index == page_count); | 
 |  | 
 |       page_addresses_[page_count++] = p->address(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | void MapSpace::VerifyObject(HeapObject* object) { | 
 |   // The object should be a map or a free-list node. | 
 |   ASSERT(object->IsMap() || object->IsByteArray()); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // GlobalPropertyCellSpace implementation | 
 |  | 
 | #ifdef DEBUG | 
 | void CellSpace::VerifyObject(HeapObject* object) { | 
 |   // The object should be a global object property cell or a free-list node. | 
 |   ASSERT(object->IsJSGlobalPropertyCell() || | 
 |          object->map() == Heap::two_pointer_filler_map()); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // LargeObjectIterator | 
 |  | 
 | LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { | 
 |   current_ = space->first_chunk_; | 
 |   size_func_ = NULL; | 
 | } | 
 |  | 
 |  | 
 | LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space, | 
 |                                          HeapObjectCallback size_func) { | 
 |   current_ = space->first_chunk_; | 
 |   size_func_ = size_func; | 
 | } | 
 |  | 
 |  | 
 | HeapObject* LargeObjectIterator::next() { | 
 |   if (current_ == NULL) return NULL; | 
 |  | 
 |   HeapObject* object = current_->GetObject(); | 
 |   current_ = current_->next(); | 
 |   return object; | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // LargeObjectChunk | 
 |  | 
 | LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes, | 
 |                                         size_t* chunk_size, | 
 |                                         Executability executable) { | 
 |   size_t requested = ChunkSizeFor(size_in_bytes); | 
 |   void* mem = MemoryAllocator::AllocateRawMemory(requested, | 
 |                                                  chunk_size, | 
 |                                                  executable); | 
 |   if (mem == NULL) return NULL; | 
 |   LOG(NewEvent("LargeObjectChunk", mem, *chunk_size)); | 
 |   if (*chunk_size < requested) { | 
 |     MemoryAllocator::FreeRawMemory(mem, *chunk_size, executable); | 
 |     LOG(DeleteEvent("LargeObjectChunk", mem)); | 
 |     return NULL; | 
 |   } | 
 |   ObjectSpace space = | 
 |       (executable == EXECUTABLE) ? kObjectSpaceCodeSpace : kObjectSpaceLoSpace; | 
 |   MemoryAllocator::PerformAllocationCallback(space, | 
 |                                              kAllocationActionAllocate, | 
 |                                              *chunk_size); | 
 |   return reinterpret_cast<LargeObjectChunk*>(mem); | 
 | } | 
 |  | 
 |  | 
 | int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) { | 
 |   int os_alignment = static_cast<int>(OS::AllocateAlignment()); | 
 |   if (os_alignment < Page::kPageSize) | 
 |     size_in_bytes += (Page::kPageSize - os_alignment); | 
 |   return size_in_bytes + Page::kObjectStartOffset; | 
 | } | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // LargeObjectSpace | 
 |  | 
 | LargeObjectSpace::LargeObjectSpace(AllocationSpace id) | 
 |     : Space(id, NOT_EXECUTABLE),  // Managed on a per-allocation basis | 
 |       first_chunk_(NULL), | 
 |       size_(0), | 
 |       page_count_(0), | 
 |       objects_size_(0) {} | 
 |  | 
 |  | 
 | bool LargeObjectSpace::Setup() { | 
 |   first_chunk_ = NULL; | 
 |   size_ = 0; | 
 |   page_count_ = 0; | 
 |   objects_size_ = 0; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void LargeObjectSpace::TearDown() { | 
 |   while (first_chunk_ != NULL) { | 
 |     LargeObjectChunk* chunk = first_chunk_; | 
 |     first_chunk_ = first_chunk_->next(); | 
 |     LOG(DeleteEvent("LargeObjectChunk", chunk->address())); | 
 |     Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize)); | 
 |     Executability executable = | 
 |         page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE; | 
 |     ObjectSpace space = kObjectSpaceLoSpace; | 
 |     if (executable == EXECUTABLE) space = kObjectSpaceCodeSpace; | 
 |     size_t size = chunk->size(); | 
 |     MemoryAllocator::FreeRawMemory(chunk->address(), size, executable); | 
 |     MemoryAllocator::PerformAllocationCallback( | 
 |         space, kAllocationActionFree, size); | 
 |   } | 
 |  | 
 |   size_ = 0; | 
 |   page_count_ = 0; | 
 |   objects_size_ = 0; | 
 | } | 
 |  | 
 |  | 
 | #ifdef ENABLE_HEAP_PROTECTION | 
 |  | 
 | void LargeObjectSpace::Protect() { | 
 |   LargeObjectChunk* chunk = first_chunk_; | 
 |   while (chunk != NULL) { | 
 |     MemoryAllocator::Protect(chunk->address(), chunk->size()); | 
 |     chunk = chunk->next(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LargeObjectSpace::Unprotect() { | 
 |   LargeObjectChunk* chunk = first_chunk_; | 
 |   while (chunk != NULL) { | 
 |     bool is_code = chunk->GetObject()->IsCode(); | 
 |     MemoryAllocator::Unprotect(chunk->address(), chunk->size(), | 
 |                                is_code ? EXECUTABLE : NOT_EXECUTABLE); | 
 |     chunk = chunk->next(); | 
 |   } | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 |  | 
 | MaybeObject* LargeObjectSpace::AllocateRawInternal(int requested_size, | 
 |                                                    int object_size, | 
 |                                                    Executability executable) { | 
 |   ASSERT(0 < object_size && object_size <= requested_size); | 
 |  | 
 |   // Check if we want to force a GC before growing the old space further. | 
 |   // If so, fail the allocation. | 
 |   if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { | 
 |     return Failure::RetryAfterGC(identity()); | 
 |   } | 
 |  | 
 |   size_t chunk_size; | 
 |   LargeObjectChunk* chunk = | 
 |       LargeObjectChunk::New(requested_size, &chunk_size, executable); | 
 |   if (chunk == NULL) { | 
 |     return Failure::RetryAfterGC(identity()); | 
 |   } | 
 |  | 
 |   size_ += static_cast<int>(chunk_size); | 
 |   objects_size_ += requested_size; | 
 |   page_count_++; | 
 |   chunk->set_next(first_chunk_); | 
 |   chunk->set_size(chunk_size); | 
 |   first_chunk_ = chunk; | 
 |  | 
 |   // Initialize page header. | 
 |   Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize)); | 
 |   Address object_address = page->ObjectAreaStart(); | 
 |   // Clear the low order bit of the second word in the page to flag it as a | 
 |   // large object page.  If the chunk_size happened to be written there, its | 
 |   // low order bit should already be clear. | 
 |   ASSERT((chunk_size & 0x1) == 0); | 
 |   page->SetIsLargeObjectPage(true); | 
 |   page->SetIsPageExecutable(executable); | 
 |   page->SetRegionMarks(Page::kAllRegionsCleanMarks); | 
 |   return HeapObject::FromAddress(object_address); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* LargeObjectSpace::AllocateRawCode(int size_in_bytes) { | 
 |   ASSERT(0 < size_in_bytes); | 
 |   return AllocateRawInternal(size_in_bytes, | 
 |                              size_in_bytes, | 
 |                              EXECUTABLE); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) { | 
 |   ASSERT(0 < size_in_bytes); | 
 |   return AllocateRawInternal(size_in_bytes, | 
 |                              size_in_bytes, | 
 |                              NOT_EXECUTABLE); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* LargeObjectSpace::AllocateRaw(int size_in_bytes) { | 
 |   ASSERT(0 < size_in_bytes); | 
 |   return AllocateRawInternal(size_in_bytes, | 
 |                              size_in_bytes, | 
 |                              NOT_EXECUTABLE); | 
 | } | 
 |  | 
 |  | 
 | // GC support | 
 | MaybeObject* LargeObjectSpace::FindObject(Address a) { | 
 |   for (LargeObjectChunk* chunk = first_chunk_; | 
 |        chunk != NULL; | 
 |        chunk = chunk->next()) { | 
 |     Address chunk_address = chunk->address(); | 
 |     if (chunk_address <= a && a < chunk_address + chunk->size()) { | 
 |       return chunk->GetObject(); | 
 |     } | 
 |   } | 
 |   return Failure::Exception(); | 
 | } | 
 |  | 
 |  | 
 | LargeObjectChunk* LargeObjectSpace::FindChunkContainingPc(Address pc) { | 
 |   // TODO(853): Change this implementation to only find executable | 
 |   // chunks and use some kind of hash-based approach to speed it up. | 
 |   for (LargeObjectChunk* chunk = first_chunk_; | 
 |        chunk != NULL; | 
 |        chunk = chunk->next()) { | 
 |     Address chunk_address = chunk->address(); | 
 |     if (chunk_address <= pc && pc < chunk_address + chunk->size()) { | 
 |       return chunk; | 
 |     } | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | void LargeObjectSpace::IterateDirtyRegions(ObjectSlotCallback copy_object) { | 
 |   LargeObjectIterator it(this); | 
 |   for (HeapObject* object = it.next(); object != NULL; object = it.next()) { | 
 |     // We only have code, sequential strings, or fixed arrays in large | 
 |     // object space, and only fixed arrays can possibly contain pointers to | 
 |     // the young generation. | 
 |     if (object->IsFixedArray()) { | 
 |       Page* page = Page::FromAddress(object->address()); | 
 |       uint32_t marks = page->GetRegionMarks(); | 
 |       uint32_t newmarks = Page::kAllRegionsCleanMarks; | 
 |  | 
 |       if (marks != Page::kAllRegionsCleanMarks) { | 
 |         // For a large page a single dirty mark corresponds to several | 
 |         // regions (modulo 32). So we treat a large page as a sequence of | 
 |         // normal pages of size Page::kPageSize having same dirty marks | 
 |         // and subsequently iterate dirty regions on each of these pages. | 
 |         Address start = object->address(); | 
 |         Address end = page->ObjectAreaEnd(); | 
 |         Address object_end = start + object->Size(); | 
 |  | 
 |         // Iterate regions of the first normal page covering object. | 
 |         uint32_t first_region_number = page->GetRegionNumberForAddress(start); | 
 |         newmarks |= | 
 |             Heap::IterateDirtyRegions(marks >> first_region_number, | 
 |                                       start, | 
 |                                       end, | 
 |                                       &Heap::IteratePointersInDirtyRegion, | 
 |                                       copy_object) << first_region_number; | 
 |  | 
 |         start = end; | 
 |         end = start + Page::kPageSize; | 
 |         while (end <= object_end) { | 
 |           // Iterate next 32 regions. | 
 |           newmarks |= | 
 |               Heap::IterateDirtyRegions(marks, | 
 |                                         start, | 
 |                                         end, | 
 |                                         &Heap::IteratePointersInDirtyRegion, | 
 |                                         copy_object); | 
 |           start = end; | 
 |           end = start + Page::kPageSize; | 
 |         } | 
 |  | 
 |         if (start != object_end) { | 
 |           // Iterate the last piece of an object which is less than | 
 |           // Page::kPageSize. | 
 |           newmarks |= | 
 |               Heap::IterateDirtyRegions(marks, | 
 |                                         start, | 
 |                                         object_end, | 
 |                                         &Heap::IteratePointersInDirtyRegion, | 
 |                                         copy_object); | 
 |         } | 
 |  | 
 |         page->SetRegionMarks(newmarks); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LargeObjectSpace::FreeUnmarkedObjects() { | 
 |   LargeObjectChunk* previous = NULL; | 
 |   LargeObjectChunk* current = first_chunk_; | 
 |   while (current != NULL) { | 
 |     HeapObject* object = current->GetObject(); | 
 |     if (object->IsMarked()) { | 
 |       object->ClearMark(); | 
 |       MarkCompactCollector::tracer()->decrement_marked_count(); | 
 |       previous = current; | 
 |       current = current->next(); | 
 |     } else { | 
 |       Page* page = Page::FromAddress(RoundUp(current->address(), | 
 |                                      Page::kPageSize)); | 
 |       Executability executable = | 
 |           page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE; | 
 |       Address chunk_address = current->address(); | 
 |       size_t chunk_size = current->size(); | 
 |  | 
 |       // Cut the chunk out from the chunk list. | 
 |       current = current->next(); | 
 |       if (previous == NULL) { | 
 |         first_chunk_ = current; | 
 |       } else { | 
 |         previous->set_next(current); | 
 |       } | 
 |  | 
 |       // Free the chunk. | 
 |       MarkCompactCollector::ReportDeleteIfNeeded(object); | 
 |       size_ -= static_cast<int>(chunk_size); | 
 |       objects_size_ -= object->Size(); | 
 |       page_count_--; | 
 |       ObjectSpace space = kObjectSpaceLoSpace; | 
 |       if (executable == EXECUTABLE) space = kObjectSpaceCodeSpace; | 
 |       MemoryAllocator::FreeRawMemory(chunk_address, chunk_size, executable); | 
 |       MemoryAllocator::PerformAllocationCallback(space, kAllocationActionFree, | 
 |                                                  size_); | 
 |       LOG(DeleteEvent("LargeObjectChunk", chunk_address)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool LargeObjectSpace::Contains(HeapObject* object) { | 
 |   Address address = object->address(); | 
 |   if (Heap::new_space()->Contains(address)) { | 
 |     return false; | 
 |   } | 
 |   Page* page = Page::FromAddress(address); | 
 |  | 
 |   SLOW_ASSERT(!page->IsLargeObjectPage() | 
 |               || !FindObject(address)->IsFailure()); | 
 |  | 
 |   return page->IsLargeObjectPage(); | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | // We do not assume that the large object iterator works, because it depends | 
 | // on the invariants we are checking during verification. | 
 | void LargeObjectSpace::Verify() { | 
 |   for (LargeObjectChunk* chunk = first_chunk_; | 
 |        chunk != NULL; | 
 |        chunk = chunk->next()) { | 
 |     // Each chunk contains an object that starts at the large object page's | 
 |     // object area start. | 
 |     HeapObject* object = chunk->GetObject(); | 
 |     Page* page = Page::FromAddress(object->address()); | 
 |     ASSERT(object->address() == page->ObjectAreaStart()); | 
 |  | 
 |     // The first word should be a map, and we expect all map pointers to be | 
 |     // in map space. | 
 |     Map* map = object->map(); | 
 |     ASSERT(map->IsMap()); | 
 |     ASSERT(Heap::map_space()->Contains(map)); | 
 |  | 
 |     // We have only code, sequential strings, external strings | 
 |     // (sequential strings that have been morphed into external | 
 |     // strings), fixed arrays, and byte arrays in large object space. | 
 |     ASSERT(object->IsCode() || object->IsSeqString() || | 
 |            object->IsExternalString() || object->IsFixedArray() || | 
 |            object->IsByteArray()); | 
 |  | 
 |     // The object itself should look OK. | 
 |     object->Verify(); | 
 |  | 
 |     // Byte arrays and strings don't have interior pointers. | 
 |     if (object->IsCode()) { | 
 |       VerifyPointersVisitor code_visitor; | 
 |       object->IterateBody(map->instance_type(), | 
 |                           object->Size(), | 
 |                           &code_visitor); | 
 |     } else if (object->IsFixedArray()) { | 
 |       // We loop over fixed arrays ourselves, rather then using the visitor, | 
 |       // because the visitor doesn't support the start/offset iteration | 
 |       // needed for IsRegionDirty. | 
 |       FixedArray* array = FixedArray::cast(object); | 
 |       for (int j = 0; j < array->length(); j++) { | 
 |         Object* element = array->get(j); | 
 |         if (element->IsHeapObject()) { | 
 |           HeapObject* element_object = HeapObject::cast(element); | 
 |           ASSERT(Heap::Contains(element_object)); | 
 |           ASSERT(element_object->map()->IsMap()); | 
 |           if (Heap::InNewSpace(element_object)) { | 
 |             Address array_addr = object->address(); | 
 |             Address element_addr = array_addr + FixedArray::kHeaderSize + | 
 |                 j * kPointerSize; | 
 |  | 
 |             ASSERT(Page::FromAddress(array_addr)->IsRegionDirty(element_addr)); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LargeObjectSpace::Print() { | 
 |   LargeObjectIterator it(this); | 
 |   for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { | 
 |     obj->Print(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LargeObjectSpace::ReportStatistics() { | 
 |   PrintF("  size: %" V8_PTR_PREFIX "d\n", size_); | 
 |   int num_objects = 0; | 
 |   ClearHistograms(); | 
 |   LargeObjectIterator it(this); | 
 |   for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { | 
 |     num_objects++; | 
 |     CollectHistogramInfo(obj); | 
 |   } | 
 |  | 
 |   PrintF("  number of objects %d, " | 
 |          "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_); | 
 |   if (num_objects > 0) ReportHistogram(false); | 
 | } | 
 |  | 
 |  | 
 | void LargeObjectSpace::CollectCodeStatistics() { | 
 |   LargeObjectIterator obj_it(this); | 
 |   for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) { | 
 |     if (obj->IsCode()) { | 
 |       Code* code = Code::cast(obj); | 
 |       code_kind_statistics[code->kind()] += code->Size(); | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // DEBUG | 
 |  | 
 | } }  // namespace v8::internal |