| // Copyright 2010 the V8 project authors. All rights reserved. | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | //       notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | //       copyright notice, this list of conditions and the following | 
 | //       disclaimer in the documentation and/or other materials provided | 
 | //       with the distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | //       contributors may be used to endorse or promote products derived | 
 | //       from this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | #include "v8.h" | 
 |  | 
 | #include "api.h" | 
 | #include "arguments.h" | 
 | #include "bootstrapper.h" | 
 | #include "codegen.h" | 
 | #include "debug.h" | 
 | #include "deoptimizer.h" | 
 | #include "execution.h" | 
 | #include "full-codegen.h" | 
 | #include "hydrogen.h" | 
 | #include "objects-inl.h" | 
 | #include "objects-visiting.h" | 
 | #include "macro-assembler.h" | 
 | #include "safepoint-table.h" | 
 | #include "scanner-base.h" | 
 | #include "scopeinfo.h" | 
 | #include "string-stream.h" | 
 | #include "utils.h" | 
 | #include "vm-state-inl.h" | 
 |  | 
 | #ifdef ENABLE_DISASSEMBLER | 
 | #include "disasm.h" | 
 | #include "disassembler.h" | 
 | #endif | 
 |  | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | // Getters and setters are stored in a fixed array property.  These are | 
 | // constants for their indices. | 
 | const int kGetterIndex = 0; | 
 | const int kSetterIndex = 1; | 
 |  | 
 |  | 
 | MUST_USE_RESULT static MaybeObject* CreateJSValue(JSFunction* constructor, | 
 |                                                   Object* value) { | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = Heap::AllocateJSObject(constructor); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |   JSValue::cast(result)->set_value(value); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Object::ToObject(Context* global_context) { | 
 |   if (IsNumber()) { | 
 |     return CreateJSValue(global_context->number_function(), this); | 
 |   } else if (IsBoolean()) { | 
 |     return CreateJSValue(global_context->boolean_function(), this); | 
 |   } else if (IsString()) { | 
 |     return CreateJSValue(global_context->string_function(), this); | 
 |   } | 
 |   ASSERT(IsJSObject()); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Object::ToObject() { | 
 |   Context* global_context = Top::context()->global_context(); | 
 |   if (IsJSObject()) { | 
 |     return this; | 
 |   } else if (IsNumber()) { | 
 |     return CreateJSValue(global_context->number_function(), this); | 
 |   } else if (IsBoolean()) { | 
 |     return CreateJSValue(global_context->boolean_function(), this); | 
 |   } else if (IsString()) { | 
 |     return CreateJSValue(global_context->string_function(), this); | 
 |   } | 
 |  | 
 |   // Throw a type error. | 
 |   return Failure::InternalError(); | 
 | } | 
 |  | 
 |  | 
 | Object* Object::ToBoolean() { | 
 |   if (IsTrue()) return Heap::true_value(); | 
 |   if (IsFalse()) return Heap::false_value(); | 
 |   if (IsSmi()) { | 
 |     return Heap::ToBoolean(Smi::cast(this)->value() != 0); | 
 |   } | 
 |   if (IsUndefined() || IsNull()) return Heap::false_value(); | 
 |   // Undetectable object is false | 
 |   if (IsUndetectableObject()) { | 
 |     return Heap::false_value(); | 
 |   } | 
 |   if (IsString()) { | 
 |     return Heap::ToBoolean(String::cast(this)->length() != 0); | 
 |   } | 
 |   if (IsHeapNumber()) { | 
 |     return HeapNumber::cast(this)->HeapNumberToBoolean(); | 
 |   } | 
 |   return Heap::true_value(); | 
 | } | 
 |  | 
 |  | 
 | void Object::Lookup(String* name, LookupResult* result) { | 
 |   if (IsJSObject()) return JSObject::cast(this)->Lookup(name, result); | 
 |   Object* holder = NULL; | 
 |   Context* global_context = Top::context()->global_context(); | 
 |   if (IsString()) { | 
 |     holder = global_context->string_function()->instance_prototype(); | 
 |   } else if (IsNumber()) { | 
 |     holder = global_context->number_function()->instance_prototype(); | 
 |   } else if (IsBoolean()) { | 
 |     holder = global_context->boolean_function()->instance_prototype(); | 
 |   } | 
 |   ASSERT(holder != NULL);  // Cannot handle null or undefined. | 
 |   JSObject::cast(holder)->Lookup(name, result); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Object::GetPropertyWithReceiver(Object* receiver, | 
 |                                              String* name, | 
 |                                              PropertyAttributes* attributes) { | 
 |   LookupResult result; | 
 |   Lookup(name, &result); | 
 |   MaybeObject* value = GetProperty(receiver, &result, name, attributes); | 
 |   ASSERT(*attributes <= ABSENT); | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Object::GetPropertyWithCallback(Object* receiver, | 
 |                                              Object* structure, | 
 |                                              String* name, | 
 |                                              Object* holder) { | 
 |   // To accommodate both the old and the new api we switch on the | 
 |   // data structure used to store the callbacks.  Eventually proxy | 
 |   // callbacks should be phased out. | 
 |   if (structure->IsProxy()) { | 
 |     AccessorDescriptor* callback = | 
 |         reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy()); | 
 |     MaybeObject* value = (callback->getter)(receiver, callback->data); | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     return value; | 
 |   } | 
 |  | 
 |   // api style callbacks. | 
 |   if (structure->IsAccessorInfo()) { | 
 |     AccessorInfo* data = AccessorInfo::cast(structure); | 
 |     Object* fun_obj = data->getter(); | 
 |     v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj); | 
 |     HandleScope scope; | 
 |     JSObject* self = JSObject::cast(receiver); | 
 |     JSObject* holder_handle = JSObject::cast(holder); | 
 |     Handle<String> key(name); | 
 |     LOG(ApiNamedPropertyAccess("load", self, name)); | 
 |     CustomArguments args(data->data(), self, holder_handle); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     v8::Handle<v8::Value> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = call_fun(v8::Utils::ToLocal(key), info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     if (result.IsEmpty()) return Heap::undefined_value(); | 
 |     return *v8::Utils::OpenHandle(*result); | 
 |   } | 
 |  | 
 |   // __defineGetter__ callback | 
 |   if (structure->IsFixedArray()) { | 
 |     Object* getter = FixedArray::cast(structure)->get(kGetterIndex); | 
 |     if (getter->IsJSFunction()) { | 
 |       return Object::GetPropertyWithDefinedGetter(receiver, | 
 |                                                   JSFunction::cast(getter)); | 
 |     } | 
 |     // Getter is not a function. | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Object::GetPropertyWithDefinedGetter(Object* receiver, | 
 |                                                   JSFunction* getter) { | 
 |   HandleScope scope; | 
 |   Handle<JSFunction> fun(JSFunction::cast(getter)); | 
 |   Handle<Object> self(receiver); | 
 | #ifdef ENABLE_DEBUGGER_SUPPORT | 
 |   // Handle stepping into a getter if step into is active. | 
 |   if (Debug::StepInActive()) { | 
 |     Debug::HandleStepIn(fun, Handle<Object>::null(), 0, false); | 
 |   } | 
 | #endif | 
 |   bool has_pending_exception; | 
 |   Handle<Object> result = | 
 |       Execution::Call(fun, self, 0, NULL, &has_pending_exception); | 
 |   // Check for pending exception and return the result. | 
 |   if (has_pending_exception) return Failure::Exception(); | 
 |   return *result; | 
 | } | 
 |  | 
 |  | 
 | // Only deal with CALLBACKS and INTERCEPTOR | 
 | MaybeObject* JSObject::GetPropertyWithFailedAccessCheck( | 
 |     Object* receiver, | 
 |     LookupResult* result, | 
 |     String* name, | 
 |     PropertyAttributes* attributes) { | 
 |   if (result->IsProperty()) { | 
 |     switch (result->type()) { | 
 |       case CALLBACKS: { | 
 |         // Only allow API accessors. | 
 |         Object* obj = result->GetCallbackObject(); | 
 |         if (obj->IsAccessorInfo()) { | 
 |           AccessorInfo* info = AccessorInfo::cast(obj); | 
 |           if (info->all_can_read()) { | 
 |             *attributes = result->GetAttributes(); | 
 |             return GetPropertyWithCallback(receiver, | 
 |                                            result->GetCallbackObject(), | 
 |                                            name, | 
 |                                            result->holder()); | 
 |           } | 
 |         } | 
 |         break; | 
 |       } | 
 |       case NORMAL: | 
 |       case FIELD: | 
 |       case CONSTANT_FUNCTION: { | 
 |         // Search ALL_CAN_READ accessors in prototype chain. | 
 |         LookupResult r; | 
 |         result->holder()->LookupRealNamedPropertyInPrototypes(name, &r); | 
 |         if (r.IsProperty()) { | 
 |           return GetPropertyWithFailedAccessCheck(receiver, | 
 |                                                   &r, | 
 |                                                   name, | 
 |                                                   attributes); | 
 |         } | 
 |         break; | 
 |       } | 
 |       case INTERCEPTOR: { | 
 |         // If the object has an interceptor, try real named properties. | 
 |         // No access check in GetPropertyAttributeWithInterceptor. | 
 |         LookupResult r; | 
 |         result->holder()->LookupRealNamedProperty(name, &r); | 
 |         if (r.IsProperty()) { | 
 |           return GetPropertyWithFailedAccessCheck(receiver, | 
 |                                                   &r, | 
 |                                                   name, | 
 |                                                   attributes); | 
 |         } | 
 |         break; | 
 |       } | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |  | 
 |   // No accessible property found. | 
 |   *attributes = ABSENT; | 
 |   Top::ReportFailedAccessCheck(this, v8::ACCESS_GET); | 
 |   return Heap::undefined_value(); | 
 | } | 
 |  | 
 |  | 
 | PropertyAttributes JSObject::GetPropertyAttributeWithFailedAccessCheck( | 
 |     Object* receiver, | 
 |     LookupResult* result, | 
 |     String* name, | 
 |     bool continue_search) { | 
 |   if (result->IsProperty()) { | 
 |     switch (result->type()) { | 
 |       case CALLBACKS: { | 
 |         // Only allow API accessors. | 
 |         Object* obj = result->GetCallbackObject(); | 
 |         if (obj->IsAccessorInfo()) { | 
 |           AccessorInfo* info = AccessorInfo::cast(obj); | 
 |           if (info->all_can_read()) { | 
 |             return result->GetAttributes(); | 
 |           } | 
 |         } | 
 |         break; | 
 |       } | 
 |  | 
 |       case NORMAL: | 
 |       case FIELD: | 
 |       case CONSTANT_FUNCTION: { | 
 |         if (!continue_search) break; | 
 |         // Search ALL_CAN_READ accessors in prototype chain. | 
 |         LookupResult r; | 
 |         result->holder()->LookupRealNamedPropertyInPrototypes(name, &r); | 
 |         if (r.IsProperty()) { | 
 |           return GetPropertyAttributeWithFailedAccessCheck(receiver, | 
 |                                                            &r, | 
 |                                                            name, | 
 |                                                            continue_search); | 
 |         } | 
 |         break; | 
 |       } | 
 |  | 
 |       case INTERCEPTOR: { | 
 |         // If the object has an interceptor, try real named properties. | 
 |         // No access check in GetPropertyAttributeWithInterceptor. | 
 |         LookupResult r; | 
 |         if (continue_search) { | 
 |           result->holder()->LookupRealNamedProperty(name, &r); | 
 |         } else { | 
 |           result->holder()->LocalLookupRealNamedProperty(name, &r); | 
 |         } | 
 |         if (r.IsProperty()) { | 
 |           return GetPropertyAttributeWithFailedAccessCheck(receiver, | 
 |                                                            &r, | 
 |                                                            name, | 
 |                                                            continue_search); | 
 |         } | 
 |         break; | 
 |       } | 
 |  | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |  | 
 |   Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
 |   return ABSENT; | 
 | } | 
 |  | 
 |  | 
 | Object* JSObject::GetNormalizedProperty(LookupResult* result) { | 
 |   ASSERT(!HasFastProperties()); | 
 |   Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry()); | 
 |   if (IsGlobalObject()) { | 
 |     value = JSGlobalPropertyCell::cast(value)->value(); | 
 |   } | 
 |   ASSERT(!value->IsJSGlobalPropertyCell()); | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | Object* JSObject::SetNormalizedProperty(LookupResult* result, Object* value) { | 
 |   ASSERT(!HasFastProperties()); | 
 |   if (IsGlobalObject()) { | 
 |     JSGlobalPropertyCell* cell = | 
 |         JSGlobalPropertyCell::cast( | 
 |             property_dictionary()->ValueAt(result->GetDictionaryEntry())); | 
 |     cell->set_value(value); | 
 |   } else { | 
 |     property_dictionary()->ValueAtPut(result->GetDictionaryEntry(), value); | 
 |   } | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetNormalizedProperty(String* name, | 
 |                                              Object* value, | 
 |                                              PropertyDetails details) { | 
 |   ASSERT(!HasFastProperties()); | 
 |   int entry = property_dictionary()->FindEntry(name); | 
 |   if (entry == StringDictionary::kNotFound) { | 
 |     Object* store_value = value; | 
 |     if (IsGlobalObject()) { | 
 |       { MaybeObject* maybe_store_value = | 
 |             Heap::AllocateJSGlobalPropertyCell(value); | 
 |         if (!maybe_store_value->ToObject(&store_value)) { | 
 |           return maybe_store_value; | 
 |         } | 
 |       } | 
 |     } | 
 |     Object* dict; | 
 |     { MaybeObject* maybe_dict = | 
 |           property_dictionary()->Add(name, store_value, details); | 
 |       if (!maybe_dict->ToObject(&dict)) return maybe_dict; | 
 |     } | 
 |     set_properties(StringDictionary::cast(dict)); | 
 |     return value; | 
 |   } | 
 |   // Preserve enumeration index. | 
 |   details = PropertyDetails(details.attributes(), | 
 |                             details.type(), | 
 |                             property_dictionary()->DetailsAt(entry).index()); | 
 |   if (IsGlobalObject()) { | 
 |     JSGlobalPropertyCell* cell = | 
 |         JSGlobalPropertyCell::cast(property_dictionary()->ValueAt(entry)); | 
 |     cell->set_value(value); | 
 |     // Please note we have to update the property details. | 
 |     property_dictionary()->DetailsAtPut(entry, details); | 
 |   } else { | 
 |     property_dictionary()->SetEntry(entry, name, value, details); | 
 |   } | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DeleteNormalizedProperty(String* name, DeleteMode mode) { | 
 |   ASSERT(!HasFastProperties()); | 
 |   StringDictionary* dictionary = property_dictionary(); | 
 |   int entry = dictionary->FindEntry(name); | 
 |   if (entry != StringDictionary::kNotFound) { | 
 |     // If we have a global object set the cell to the hole. | 
 |     if (IsGlobalObject()) { | 
 |       PropertyDetails details = dictionary->DetailsAt(entry); | 
 |       if (details.IsDontDelete()) { | 
 |         if (mode != FORCE_DELETION) return Heap::false_value(); | 
 |         // When forced to delete global properties, we have to make a | 
 |         // map change to invalidate any ICs that think they can load | 
 |         // from the DontDelete cell without checking if it contains | 
 |         // the hole value. | 
 |         Object* new_map; | 
 |         { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); | 
 |           if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; | 
 |         } | 
 |         set_map(Map::cast(new_map)); | 
 |       } | 
 |       JSGlobalPropertyCell* cell = | 
 |           JSGlobalPropertyCell::cast(dictionary->ValueAt(entry)); | 
 |       cell->set_value(Heap::the_hole_value()); | 
 |       dictionary->DetailsAtPut(entry, details.AsDeleted()); | 
 |     } else { | 
 |       return dictionary->DeleteProperty(entry, mode); | 
 |     } | 
 |   } | 
 |   return Heap::true_value(); | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::IsDirty() { | 
 |   Object* cons_obj = map()->constructor(); | 
 |   if (!cons_obj->IsJSFunction()) | 
 |     return true; | 
 |   JSFunction* fun = JSFunction::cast(cons_obj); | 
 |   if (!fun->shared()->IsApiFunction()) | 
 |     return true; | 
 |   // If the object is fully fast case and has the same map it was | 
 |   // created with then no changes can have been made to it. | 
 |   return map() != fun->initial_map() | 
 |       || !HasFastElements() | 
 |       || !HasFastProperties(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Object::GetProperty(Object* receiver, | 
 |                                  LookupResult* result, | 
 |                                  String* name, | 
 |                                  PropertyAttributes* attributes) { | 
 |   // Make sure that the top context does not change when doing | 
 |   // callbacks or interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |  | 
 |   // Traverse the prototype chain from the current object (this) to | 
 |   // the holder and check for access rights. This avoid traversing the | 
 |   // objects more than once in case of interceptors, because the | 
 |   // holder will always be the interceptor holder and the search may | 
 |   // only continue with a current object just after the interceptor | 
 |   // holder in the prototype chain. | 
 |   Object* last = result->IsProperty() ? result->holder() : Heap::null_value(); | 
 |   for (Object* current = this; true; current = current->GetPrototype()) { | 
 |     if (current->IsAccessCheckNeeded()) { | 
 |       // Check if we're allowed to read from the current object. Note | 
 |       // that even though we may not actually end up loading the named | 
 |       // property from the current object, we still check that we have | 
 |       // access to it. | 
 |       JSObject* checked = JSObject::cast(current); | 
 |       if (!Top::MayNamedAccess(checked, name, v8::ACCESS_GET)) { | 
 |         return checked->GetPropertyWithFailedAccessCheck(receiver, | 
 |                                                          result, | 
 |                                                          name, | 
 |                                                          attributes); | 
 |       } | 
 |     } | 
 |     // Stop traversing the chain once we reach the last object in the | 
 |     // chain; either the holder of the result or null in case of an | 
 |     // absent property. | 
 |     if (current == last) break; | 
 |   } | 
 |  | 
 |   if (!result->IsProperty()) { | 
 |     *attributes = ABSENT; | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |   *attributes = result->GetAttributes(); | 
 |   Object* value; | 
 |   JSObject* holder = result->holder(); | 
 |   switch (result->type()) { | 
 |     case NORMAL: | 
 |       value = holder->GetNormalizedProperty(result); | 
 |       ASSERT(!value->IsTheHole() || result->IsReadOnly()); | 
 |       return value->IsTheHole() ? Heap::undefined_value() : value; | 
 |     case FIELD: | 
 |       value = holder->FastPropertyAt(result->GetFieldIndex()); | 
 |       ASSERT(!value->IsTheHole() || result->IsReadOnly()); | 
 |       return value->IsTheHole() ? Heap::undefined_value() : value; | 
 |     case CONSTANT_FUNCTION: | 
 |       return result->GetConstantFunction(); | 
 |     case CALLBACKS: | 
 |       return GetPropertyWithCallback(receiver, | 
 |                                      result->GetCallbackObject(), | 
 |                                      name, | 
 |                                      holder); | 
 |     case INTERCEPTOR: { | 
 |       JSObject* recvr = JSObject::cast(receiver); | 
 |       return holder->GetPropertyWithInterceptor(recvr, name, attributes); | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       return NULL; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Object::GetElementWithReceiver(Object* receiver, uint32_t index) { | 
 |   // Non-JS objects do not have integer indexed properties. | 
 |   if (!IsJSObject()) return Heap::undefined_value(); | 
 |   return JSObject::cast(this)->GetElementWithReceiver(JSObject::cast(receiver), | 
 |                                                       index); | 
 | } | 
 |  | 
 |  | 
 | Object* Object::GetPrototype() { | 
 |   // The object is either a number, a string, a boolean, or a real JS object. | 
 |   if (IsJSObject()) return JSObject::cast(this)->map()->prototype(); | 
 |   Context* context = Top::context()->global_context(); | 
 |  | 
 |   if (IsNumber()) return context->number_function()->instance_prototype(); | 
 |   if (IsString()) return context->string_function()->instance_prototype(); | 
 |   if (IsBoolean()) { | 
 |     return context->boolean_function()->instance_prototype(); | 
 |   } else { | 
 |     return Heap::null_value(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Object::ShortPrint(FILE* out) { | 
 |   HeapStringAllocator allocator; | 
 |   StringStream accumulator(&allocator); | 
 |   ShortPrint(&accumulator); | 
 |   accumulator.OutputToFile(out); | 
 | } | 
 |  | 
 |  | 
 | void Object::ShortPrint(StringStream* accumulator) { | 
 |   if (IsSmi()) { | 
 |     Smi::cast(this)->SmiPrint(accumulator); | 
 |   } else if (IsFailure()) { | 
 |     Failure::cast(this)->FailurePrint(accumulator); | 
 |   } else { | 
 |     HeapObject::cast(this)->HeapObjectShortPrint(accumulator); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Smi::SmiPrint(FILE* out) { | 
 |   PrintF(out, "%d", value()); | 
 | } | 
 |  | 
 |  | 
 | void Smi::SmiPrint(StringStream* accumulator) { | 
 |   accumulator->Add("%d", value()); | 
 | } | 
 |  | 
 |  | 
 | void Failure::FailurePrint(StringStream* accumulator) { | 
 |   accumulator->Add("Failure(%p)", reinterpret_cast<void*>(value())); | 
 | } | 
 |  | 
 |  | 
 | void Failure::FailurePrint(FILE* out) { | 
 |   PrintF(out, "Failure(%p)", reinterpret_cast<void*>(value())); | 
 | } | 
 |  | 
 |  | 
 | // Should a word be prefixed by 'a' or 'an' in order to read naturally in | 
 | // English?  Returns false for non-ASCII or words that don't start with | 
 | // a capital letter.  The a/an rule follows pronunciation in English. | 
 | // We don't use the BBC's overcorrect "an historic occasion" though if | 
 | // you speak a dialect you may well say "an 'istoric occasion". | 
 | static bool AnWord(String* str) { | 
 |   if (str->length() == 0) return false;  // A nothing. | 
 |   int c0 = str->Get(0); | 
 |   int c1 = str->length() > 1 ? str->Get(1) : 0; | 
 |   if (c0 == 'U') { | 
 |     if (c1 > 'Z') { | 
 |       return true;  // An Umpire, but a UTF8String, a U. | 
 |     } | 
 |   } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') { | 
 |     return true;    // An Ape, an ABCBook. | 
 |   } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) && | 
 |            (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' || | 
 |             c0 == 'S' || c0 == 'X')) { | 
 |     return true;    // An MP3File, an M. | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* String::SlowTryFlatten(PretenureFlag pretenure) { | 
 | #ifdef DEBUG | 
 |   // Do not attempt to flatten in debug mode when allocation is not | 
 |   // allowed.  This is to avoid an assertion failure when allocating. | 
 |   // Flattening strings is the only case where we always allow | 
 |   // allocation because no GC is performed if the allocation fails. | 
 |   if (!Heap::IsAllocationAllowed()) return this; | 
 | #endif | 
 |  | 
 |   switch (StringShape(this).representation_tag()) { | 
 |     case kConsStringTag: { | 
 |       ConsString* cs = ConsString::cast(this); | 
 |       if (cs->second()->length() == 0) { | 
 |         return cs->first(); | 
 |       } | 
 |       // There's little point in putting the flat string in new space if the | 
 |       // cons string is in old space.  It can never get GCed until there is | 
 |       // an old space GC. | 
 |       PretenureFlag tenure = Heap::InNewSpace(this) ? pretenure : TENURED; | 
 |       int len = length(); | 
 |       Object* object; | 
 |       String* result; | 
 |       if (IsAsciiRepresentation()) { | 
 |         { MaybeObject* maybe_object = Heap::AllocateRawAsciiString(len, tenure); | 
 |           if (!maybe_object->ToObject(&object)) return maybe_object; | 
 |         } | 
 |         result = String::cast(object); | 
 |         String* first = cs->first(); | 
 |         int first_length = first->length(); | 
 |         char* dest = SeqAsciiString::cast(result)->GetChars(); | 
 |         WriteToFlat(first, dest, 0, first_length); | 
 |         String* second = cs->second(); | 
 |         WriteToFlat(second, | 
 |                     dest + first_length, | 
 |                     0, | 
 |                     len - first_length); | 
 |       } else { | 
 |         { MaybeObject* maybe_object = | 
 |               Heap::AllocateRawTwoByteString(len, tenure); | 
 |           if (!maybe_object->ToObject(&object)) return maybe_object; | 
 |         } | 
 |         result = String::cast(object); | 
 |         uc16* dest = SeqTwoByteString::cast(result)->GetChars(); | 
 |         String* first = cs->first(); | 
 |         int first_length = first->length(); | 
 |         WriteToFlat(first, dest, 0, first_length); | 
 |         String* second = cs->second(); | 
 |         WriteToFlat(second, | 
 |                     dest + first_length, | 
 |                     0, | 
 |                     len - first_length); | 
 |       } | 
 |       cs->set_first(result); | 
 |       cs->set_second(Heap::empty_string()); | 
 |       return result; | 
 |     } | 
 |     default: | 
 |       return this; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool String::MakeExternal(v8::String::ExternalStringResource* resource) { | 
 |   // Externalizing twice leaks the external resource, so it's | 
 |   // prohibited by the API. | 
 |   ASSERT(!this->IsExternalString()); | 
 | #ifdef DEBUG | 
 |   if (FLAG_enable_slow_asserts) { | 
 |     // Assert that the resource and the string are equivalent. | 
 |     ASSERT(static_cast<size_t>(this->length()) == resource->length()); | 
 |     ScopedVector<uc16> smart_chars(this->length()); | 
 |     String::WriteToFlat(this, smart_chars.start(), 0, this->length()); | 
 |     ASSERT(memcmp(smart_chars.start(), | 
 |                   resource->data(), | 
 |                   resource->length() * sizeof(smart_chars[0])) == 0); | 
 |   } | 
 | #endif  // DEBUG | 
 |  | 
 |   int size = this->Size();  // Byte size of the original string. | 
 |   if (size < ExternalString::kSize) { | 
 |     // The string is too small to fit an external String in its place. This can | 
 |     // only happen for zero length strings. | 
 |     return false; | 
 |   } | 
 |   ASSERT(size >= ExternalString::kSize); | 
 |   bool is_ascii = this->IsAsciiRepresentation(); | 
 |   bool is_symbol = this->IsSymbol(); | 
 |   int length = this->length(); | 
 |   int hash_field = this->hash_field(); | 
 |  | 
 |   // Morph the object to an external string by adjusting the map and | 
 |   // reinitializing the fields. | 
 |   this->set_map(is_ascii ? | 
 |                 Heap::external_string_with_ascii_data_map() : | 
 |                 Heap::external_string_map()); | 
 |   ExternalTwoByteString* self = ExternalTwoByteString::cast(this); | 
 |   self->set_length(length); | 
 |   self->set_hash_field(hash_field); | 
 |   self->set_resource(resource); | 
 |   // Additionally make the object into an external symbol if the original string | 
 |   // was a symbol to start with. | 
 |   if (is_symbol) { | 
 |     self->Hash();  // Force regeneration of the hash value. | 
 |     // Now morph this external string into a external symbol. | 
 |     this->set_map(is_ascii ? | 
 |                   Heap::external_symbol_with_ascii_data_map() : | 
 |                   Heap::external_symbol_map()); | 
 |   } | 
 |  | 
 |   // Fill the remainder of the string with dead wood. | 
 |   int new_size = this->Size();  // Byte size of the external String object. | 
 |   Heap::CreateFillerObjectAt(this->address() + new_size, size - new_size); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool String::MakeExternal(v8::String::ExternalAsciiStringResource* resource) { | 
 | #ifdef DEBUG | 
 |   if (FLAG_enable_slow_asserts) { | 
 |     // Assert that the resource and the string are equivalent. | 
 |     ASSERT(static_cast<size_t>(this->length()) == resource->length()); | 
 |     ScopedVector<char> smart_chars(this->length()); | 
 |     String::WriteToFlat(this, smart_chars.start(), 0, this->length()); | 
 |     ASSERT(memcmp(smart_chars.start(), | 
 |                   resource->data(), | 
 |                   resource->length() * sizeof(smart_chars[0])) == 0); | 
 |   } | 
 | #endif  // DEBUG | 
 |  | 
 |   int size = this->Size();  // Byte size of the original string. | 
 |   if (size < ExternalString::kSize) { | 
 |     // The string is too small to fit an external String in its place. This can | 
 |     // only happen for zero length strings. | 
 |     return false; | 
 |   } | 
 |   ASSERT(size >= ExternalString::kSize); | 
 |   bool is_symbol = this->IsSymbol(); | 
 |   int length = this->length(); | 
 |   int hash_field = this->hash_field(); | 
 |  | 
 |   // Morph the object to an external string by adjusting the map and | 
 |   // reinitializing the fields. | 
 |   this->set_map(Heap::external_ascii_string_map()); | 
 |   ExternalAsciiString* self = ExternalAsciiString::cast(this); | 
 |   self->set_length(length); | 
 |   self->set_hash_field(hash_field); | 
 |   self->set_resource(resource); | 
 |   // Additionally make the object into an external symbol if the original string | 
 |   // was a symbol to start with. | 
 |   if (is_symbol) { | 
 |     self->Hash();  // Force regeneration of the hash value. | 
 |     // Now morph this external string into a external symbol. | 
 |     this->set_map(Heap::external_ascii_symbol_map()); | 
 |   } | 
 |  | 
 |   // Fill the remainder of the string with dead wood. | 
 |   int new_size = this->Size();  // Byte size of the external String object. | 
 |   Heap::CreateFillerObjectAt(this->address() + new_size, size - new_size); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void String::StringShortPrint(StringStream* accumulator) { | 
 |   int len = length(); | 
 |   if (len > kMaxShortPrintLength) { | 
 |     accumulator->Add("<Very long string[%u]>", len); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!LooksValid()) { | 
 |     accumulator->Add("<Invalid String>"); | 
 |     return; | 
 |   } | 
 |  | 
 |   StringInputBuffer buf(this); | 
 |  | 
 |   bool truncated = false; | 
 |   if (len > kMaxShortPrintLength) { | 
 |     len = kMaxShortPrintLength; | 
 |     truncated = true; | 
 |   } | 
 |   bool ascii = true; | 
 |   for (int i = 0; i < len; i++) { | 
 |     int c = buf.GetNext(); | 
 |  | 
 |     if (c < 32 || c >= 127) { | 
 |       ascii = false; | 
 |     } | 
 |   } | 
 |   buf.Reset(this); | 
 |   if (ascii) { | 
 |     accumulator->Add("<String[%u]: ", length()); | 
 |     for (int i = 0; i < len; i++) { | 
 |       accumulator->Put(buf.GetNext()); | 
 |     } | 
 |     accumulator->Put('>'); | 
 |   } else { | 
 |     // Backslash indicates that the string contains control | 
 |     // characters and that backslashes are therefore escaped. | 
 |     accumulator->Add("<String[%u]\\: ", length()); | 
 |     for (int i = 0; i < len; i++) { | 
 |       int c = buf.GetNext(); | 
 |       if (c == '\n') { | 
 |         accumulator->Add("\\n"); | 
 |       } else if (c == '\r') { | 
 |         accumulator->Add("\\r"); | 
 |       } else if (c == '\\') { | 
 |         accumulator->Add("\\\\"); | 
 |       } else if (c < 32 || c > 126) { | 
 |         accumulator->Add("\\x%02x", c); | 
 |       } else { | 
 |         accumulator->Put(c); | 
 |       } | 
 |     } | 
 |     if (truncated) { | 
 |       accumulator->Put('.'); | 
 |       accumulator->Put('.'); | 
 |       accumulator->Put('.'); | 
 |     } | 
 |     accumulator->Put('>'); | 
 |   } | 
 |   return; | 
 | } | 
 |  | 
 |  | 
 | void JSObject::JSObjectShortPrint(StringStream* accumulator) { | 
 |   switch (map()->instance_type()) { | 
 |     case JS_ARRAY_TYPE: { | 
 |       double length = JSArray::cast(this)->length()->Number(); | 
 |       accumulator->Add("<JS array[%u]>", static_cast<uint32_t>(length)); | 
 |       break; | 
 |     } | 
 |     case JS_REGEXP_TYPE: { | 
 |       accumulator->Add("<JS RegExp>"); | 
 |       break; | 
 |     } | 
 |     case JS_FUNCTION_TYPE: { | 
 |       Object* fun_name = JSFunction::cast(this)->shared()->name(); | 
 |       bool printed = false; | 
 |       if (fun_name->IsString()) { | 
 |         String* str = String::cast(fun_name); | 
 |         if (str->length() > 0) { | 
 |           accumulator->Add("<JS Function "); | 
 |           accumulator->Put(str); | 
 |           accumulator->Put('>'); | 
 |           printed = true; | 
 |         } | 
 |       } | 
 |       if (!printed) { | 
 |         accumulator->Add("<JS Function>"); | 
 |       } | 
 |       break; | 
 |     } | 
 |     // All other JSObjects are rather similar to each other (JSObject, | 
 |     // JSGlobalProxy, JSGlobalObject, JSUndetectableObject, JSValue). | 
 |     default: { | 
 |       Object* constructor = map()->constructor(); | 
 |       bool printed = false; | 
 |       if (constructor->IsHeapObject() && | 
 |           !Heap::Contains(HeapObject::cast(constructor))) { | 
 |         accumulator->Add("!!!INVALID CONSTRUCTOR!!!"); | 
 |       } else { | 
 |         bool global_object = IsJSGlobalProxy(); | 
 |         if (constructor->IsJSFunction()) { | 
 |           if (!Heap::Contains(JSFunction::cast(constructor)->shared())) { | 
 |             accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!"); | 
 |           } else { | 
 |             Object* constructor_name = | 
 |                 JSFunction::cast(constructor)->shared()->name(); | 
 |             if (constructor_name->IsString()) { | 
 |               String* str = String::cast(constructor_name); | 
 |               if (str->length() > 0) { | 
 |                 bool vowel = AnWord(str); | 
 |                 accumulator->Add("<%sa%s ", | 
 |                        global_object ? "Global Object: " : "", | 
 |                        vowel ? "n" : ""); | 
 |                 accumulator->Put(str); | 
 |                 accumulator->Put('>'); | 
 |                 printed = true; | 
 |               } | 
 |             } | 
 |           } | 
 |         } | 
 |         if (!printed) { | 
 |           accumulator->Add("<JS %sObject", global_object ? "Global " : ""); | 
 |         } | 
 |       } | 
 |       if (IsJSValue()) { | 
 |         accumulator->Add(" value = "); | 
 |         JSValue::cast(this)->value()->ShortPrint(accumulator); | 
 |       } | 
 |       accumulator->Put('>'); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void HeapObject::HeapObjectShortPrint(StringStream* accumulator) { | 
 |   // if (!Heap::InNewSpace(this)) PrintF("*", this); | 
 |   if (!Heap::Contains(this)) { | 
 |     accumulator->Add("!!!INVALID POINTER!!!"); | 
 |     return; | 
 |   } | 
 |   if (!Heap::Contains(map())) { | 
 |     accumulator->Add("!!!INVALID MAP!!!"); | 
 |     return; | 
 |   } | 
 |  | 
 |   accumulator->Add("%p ", this); | 
 |  | 
 |   if (IsString()) { | 
 |     String::cast(this)->StringShortPrint(accumulator); | 
 |     return; | 
 |   } | 
 |   if (IsJSObject()) { | 
 |     JSObject::cast(this)->JSObjectShortPrint(accumulator); | 
 |     return; | 
 |   } | 
 |   switch (map()->instance_type()) { | 
 |     case MAP_TYPE: | 
 |       accumulator->Add("<Map>"); | 
 |       break; | 
 |     case FIXED_ARRAY_TYPE: | 
 |       accumulator->Add("<FixedArray[%u]>", FixedArray::cast(this)->length()); | 
 |       break; | 
 |     case BYTE_ARRAY_TYPE: | 
 |       accumulator->Add("<ByteArray[%u]>", ByteArray::cast(this)->length()); | 
 |       break; | 
 |     case PIXEL_ARRAY_TYPE: | 
 |       accumulator->Add("<PixelArray[%u]>", PixelArray::cast(this)->length()); | 
 |       break; | 
 |     case EXTERNAL_BYTE_ARRAY_TYPE: | 
 |       accumulator->Add("<ExternalByteArray[%u]>", | 
 |                        ExternalByteArray::cast(this)->length()); | 
 |       break; | 
 |     case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: | 
 |       accumulator->Add("<ExternalUnsignedByteArray[%u]>", | 
 |                        ExternalUnsignedByteArray::cast(this)->length()); | 
 |       break; | 
 |     case EXTERNAL_SHORT_ARRAY_TYPE: | 
 |       accumulator->Add("<ExternalShortArray[%u]>", | 
 |                        ExternalShortArray::cast(this)->length()); | 
 |       break; | 
 |     case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: | 
 |       accumulator->Add("<ExternalUnsignedShortArray[%u]>", | 
 |                        ExternalUnsignedShortArray::cast(this)->length()); | 
 |       break; | 
 |     case EXTERNAL_INT_ARRAY_TYPE: | 
 |       accumulator->Add("<ExternalIntArray[%u]>", | 
 |                        ExternalIntArray::cast(this)->length()); | 
 |       break; | 
 |     case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: | 
 |       accumulator->Add("<ExternalUnsignedIntArray[%u]>", | 
 |                        ExternalUnsignedIntArray::cast(this)->length()); | 
 |       break; | 
 |     case EXTERNAL_FLOAT_ARRAY_TYPE: | 
 |       accumulator->Add("<ExternalFloatArray[%u]>", | 
 |                        ExternalFloatArray::cast(this)->length()); | 
 |       break; | 
 |     case SHARED_FUNCTION_INFO_TYPE: | 
 |       accumulator->Add("<SharedFunctionInfo>"); | 
 |       break; | 
 | #define MAKE_STRUCT_CASE(NAME, Name, name) \ | 
 |   case NAME##_TYPE:                        \ | 
 |     accumulator->Put('<');                 \ | 
 |     accumulator->Add(#Name);               \ | 
 |     accumulator->Put('>');                 \ | 
 |     break; | 
 |   STRUCT_LIST(MAKE_STRUCT_CASE) | 
 | #undef MAKE_STRUCT_CASE | 
 |     case CODE_TYPE: | 
 |       accumulator->Add("<Code>"); | 
 |       break; | 
 |     case ODDBALL_TYPE: { | 
 |       if (IsUndefined()) | 
 |         accumulator->Add("<undefined>"); | 
 |       else if (IsTheHole()) | 
 |         accumulator->Add("<the hole>"); | 
 |       else if (IsNull()) | 
 |         accumulator->Add("<null>"); | 
 |       else if (IsTrue()) | 
 |         accumulator->Add("<true>"); | 
 |       else if (IsFalse()) | 
 |         accumulator->Add("<false>"); | 
 |       else | 
 |         accumulator->Add("<Odd Oddball>"); | 
 |       break; | 
 |     } | 
 |     case HEAP_NUMBER_TYPE: | 
 |       accumulator->Add("<Number: "); | 
 |       HeapNumber::cast(this)->HeapNumberPrint(accumulator); | 
 |       accumulator->Put('>'); | 
 |       break; | 
 |     case PROXY_TYPE: | 
 |       accumulator->Add("<Proxy>"); | 
 |       break; | 
 |     case JS_GLOBAL_PROPERTY_CELL_TYPE: | 
 |       accumulator->Add("Cell for "); | 
 |       JSGlobalPropertyCell::cast(this)->value()->ShortPrint(accumulator); | 
 |       break; | 
 |     default: | 
 |       accumulator->Add("<Other heap object (%d)>", map()->instance_type()); | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void HeapObject::Iterate(ObjectVisitor* v) { | 
 |   // Handle header | 
 |   IteratePointer(v, kMapOffset); | 
 |   // Handle object body | 
 |   Map* m = map(); | 
 |   IterateBody(m->instance_type(), SizeFromMap(m), v); | 
 | } | 
 |  | 
 |  | 
 | void HeapObject::IterateBody(InstanceType type, int object_size, | 
 |                              ObjectVisitor* v) { | 
 |   // Avoiding <Type>::cast(this) because it accesses the map pointer field. | 
 |   // During GC, the map pointer field is encoded. | 
 |   if (type < FIRST_NONSTRING_TYPE) { | 
 |     switch (type & kStringRepresentationMask) { | 
 |       case kSeqStringTag: | 
 |         break; | 
 |       case kConsStringTag: | 
 |         ConsString::BodyDescriptor::IterateBody(this, v); | 
 |         break; | 
 |       case kExternalStringTag: | 
 |         if ((type & kStringEncodingMask) == kAsciiStringTag) { | 
 |           reinterpret_cast<ExternalAsciiString*>(this)-> | 
 |               ExternalAsciiStringIterateBody(v); | 
 |         } else { | 
 |           reinterpret_cast<ExternalTwoByteString*>(this)-> | 
 |               ExternalTwoByteStringIterateBody(v); | 
 |         } | 
 |         break; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (type) { | 
 |     case FIXED_ARRAY_TYPE: | 
 |       FixedArray::BodyDescriptor::IterateBody(this, object_size, v); | 
 |       break; | 
 |     case JS_OBJECT_TYPE: | 
 |     case JS_CONTEXT_EXTENSION_OBJECT_TYPE: | 
 |     case JS_VALUE_TYPE: | 
 |     case JS_ARRAY_TYPE: | 
 |     case JS_REGEXP_TYPE: | 
 |     case JS_GLOBAL_PROXY_TYPE: | 
 |     case JS_GLOBAL_OBJECT_TYPE: | 
 |     case JS_BUILTINS_OBJECT_TYPE: | 
 |       JSObject::BodyDescriptor::IterateBody(this, object_size, v); | 
 |       break; | 
 |     case JS_FUNCTION_TYPE: | 
 |       reinterpret_cast<JSFunction*>(this) | 
 |           ->JSFunctionIterateBody(object_size, v); | 
 |       break; | 
 |     case ODDBALL_TYPE: | 
 |       Oddball::BodyDescriptor::IterateBody(this, v); | 
 |       break; | 
 |     case PROXY_TYPE: | 
 |       reinterpret_cast<Proxy*>(this)->ProxyIterateBody(v); | 
 |       break; | 
 |     case MAP_TYPE: | 
 |       Map::BodyDescriptor::IterateBody(this, v); | 
 |       break; | 
 |     case CODE_TYPE: | 
 |       reinterpret_cast<Code*>(this)->CodeIterateBody(v); | 
 |       break; | 
 |     case JS_GLOBAL_PROPERTY_CELL_TYPE: | 
 |       JSGlobalPropertyCell::BodyDescriptor::IterateBody(this, v); | 
 |       break; | 
 |     case HEAP_NUMBER_TYPE: | 
 |     case FILLER_TYPE: | 
 |     case BYTE_ARRAY_TYPE: | 
 |     case PIXEL_ARRAY_TYPE: | 
 |     case EXTERNAL_BYTE_ARRAY_TYPE: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE: | 
 |     case EXTERNAL_SHORT_ARRAY_TYPE: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE: | 
 |     case EXTERNAL_INT_ARRAY_TYPE: | 
 |     case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE: | 
 |     case EXTERNAL_FLOAT_ARRAY_TYPE: | 
 |       break; | 
 |     case SHARED_FUNCTION_INFO_TYPE: | 
 |       SharedFunctionInfo::BodyDescriptor::IterateBody(this, v); | 
 |       break; | 
 |  | 
 | #define MAKE_STRUCT_CASE(NAME, Name, name) \ | 
 |         case NAME##_TYPE: | 
 |       STRUCT_LIST(MAKE_STRUCT_CASE) | 
 | #undef MAKE_STRUCT_CASE | 
 |       StructBodyDescriptor::IterateBody(this, object_size, v); | 
 |       break; | 
 |     default: | 
 |       PrintF("Unknown type: %d\n", type); | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | Object* HeapNumber::HeapNumberToBoolean() { | 
 |   // NaN, +0, and -0 should return the false object | 
 | #if __BYTE_ORDER == __LITTLE_ENDIAN | 
 |   union IeeeDoubleLittleEndianArchType u; | 
 | #elif __BYTE_ORDER == __BIG_ENDIAN | 
 |   union IeeeDoubleBigEndianArchType u; | 
 | #endif | 
 |   u.d = value(); | 
 |   if (u.bits.exp == 2047) { | 
 |     // Detect NaN for IEEE double precision floating point. | 
 |     if ((u.bits.man_low | u.bits.man_high) != 0) | 
 |       return Heap::false_value(); | 
 |   } | 
 |   if (u.bits.exp == 0) { | 
 |     // Detect +0, and -0 for IEEE double precision floating point. | 
 |     if ((u.bits.man_low | u.bits.man_high) == 0) | 
 |       return Heap::false_value(); | 
 |   } | 
 |   return Heap::true_value(); | 
 | } | 
 |  | 
 |  | 
 | void HeapNumber::HeapNumberPrint(FILE* out) { | 
 |   PrintF(out, "%.16g", Number()); | 
 | } | 
 |  | 
 |  | 
 | void HeapNumber::HeapNumberPrint(StringStream* accumulator) { | 
 |   // The Windows version of vsnprintf can allocate when printing a %g string | 
 |   // into a buffer that may not be big enough.  We don't want random memory | 
 |   // allocation when producing post-crash stack traces, so we print into a | 
 |   // buffer that is plenty big enough for any floating point number, then | 
 |   // print that using vsnprintf (which may truncate but never allocate if | 
 |   // there is no more space in the buffer). | 
 |   EmbeddedVector<char, 100> buffer; | 
 |   OS::SNPrintF(buffer, "%.16g", Number()); | 
 |   accumulator->Add("%s", buffer.start()); | 
 | } | 
 |  | 
 |  | 
 | String* JSObject::class_name() { | 
 |   if (IsJSFunction()) { | 
 |     return Heap::function_class_symbol(); | 
 |   } | 
 |   if (map()->constructor()->IsJSFunction()) { | 
 |     JSFunction* constructor = JSFunction::cast(map()->constructor()); | 
 |     return String::cast(constructor->shared()->instance_class_name()); | 
 |   } | 
 |   // If the constructor is not present, return "Object". | 
 |   return Heap::Object_symbol(); | 
 | } | 
 |  | 
 |  | 
 | String* JSObject::constructor_name() { | 
 |   if (map()->constructor()->IsJSFunction()) { | 
 |     JSFunction* constructor = JSFunction::cast(map()->constructor()); | 
 |     String* name = String::cast(constructor->shared()->name()); | 
 |     if (name->length() > 0) return name; | 
 |     String* inferred_name = constructor->shared()->inferred_name(); | 
 |     if (inferred_name->length() > 0) return inferred_name; | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsJSObject()) return JSObject::cast(proto)->constructor_name(); | 
 |   } | 
 |   // If the constructor is not present, return "Object". | 
 |   return Heap::Object_symbol(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::AddFastPropertyUsingMap(Map* new_map, | 
 |                                                String* name, | 
 |                                                Object* value) { | 
 |   int index = new_map->PropertyIndexFor(name); | 
 |   if (map()->unused_property_fields() == 0) { | 
 |     ASSERT(map()->unused_property_fields() == 0); | 
 |     int new_unused = new_map->unused_property_fields(); | 
 |     Object* values; | 
 |     { MaybeObject* maybe_values = | 
 |           properties()->CopySize(properties()->length() + new_unused + 1); | 
 |       if (!maybe_values->ToObject(&values)) return maybe_values; | 
 |     } | 
 |     set_properties(FixedArray::cast(values)); | 
 |   } | 
 |   set_map(new_map); | 
 |   return FastPropertyAtPut(index, value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::AddFastProperty(String* name, | 
 |                                        Object* value, | 
 |                                        PropertyAttributes attributes) { | 
 |   // Normalize the object if the name is an actual string (not the | 
 |   // hidden symbols) and is not a real identifier. | 
 |   StringInputBuffer buffer(name); | 
 |   if (!ScannerConstants::IsIdentifier(&buffer) | 
 |       && name != Heap::hidden_symbol()) { | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = | 
 |           NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |     return AddSlowProperty(name, value, attributes); | 
 |   } | 
 |  | 
 |   DescriptorArray* old_descriptors = map()->instance_descriptors(); | 
 |   // Compute the new index for new field. | 
 |   int index = map()->NextFreePropertyIndex(); | 
 |  | 
 |   // Allocate new instance descriptors with (name, index) added | 
 |   FieldDescriptor new_field(name, index, attributes); | 
 |   Object* new_descriptors; | 
 |   { MaybeObject* maybe_new_descriptors = | 
 |         old_descriptors->CopyInsert(&new_field, REMOVE_TRANSITIONS); | 
 |     if (!maybe_new_descriptors->ToObject(&new_descriptors)) { | 
 |       return maybe_new_descriptors; | 
 |     } | 
 |   } | 
 |  | 
 |   // Only allow map transition if the object's map is NOT equal to the | 
 |   // global object_function's map and there is not a transition for name. | 
 |   bool allow_map_transition = | 
 |         !old_descriptors->Contains(name) && | 
 |         (Top::context()->global_context()->object_function()->map() != map()); | 
 |  | 
 |   ASSERT(index < map()->inobject_properties() || | 
 |          (index - map()->inobject_properties()) < properties()->length() || | 
 |          map()->unused_property_fields() == 0); | 
 |   // Allocate a new map for the object. | 
 |   Object* r; | 
 |   { MaybeObject* maybe_r = map()->CopyDropDescriptors(); | 
 |     if (!maybe_r->ToObject(&r)) return maybe_r; | 
 |   } | 
 |   Map* new_map = Map::cast(r); | 
 |   if (allow_map_transition) { | 
 |     // Allocate new instance descriptors for the old map with map transition. | 
 |     MapTransitionDescriptor d(name, Map::cast(new_map), attributes); | 
 |     Object* r; | 
 |     { MaybeObject* maybe_r = old_descriptors->CopyInsert(&d, KEEP_TRANSITIONS); | 
 |       if (!maybe_r->ToObject(&r)) return maybe_r; | 
 |     } | 
 |     old_descriptors = DescriptorArray::cast(r); | 
 |   } | 
 |  | 
 |   if (map()->unused_property_fields() == 0) { | 
 |     if (properties()->length() > MaxFastProperties()) { | 
 |       Object* obj; | 
 |       { MaybeObject* maybe_obj = | 
 |             NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
 |         if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |       } | 
 |       return AddSlowProperty(name, value, attributes); | 
 |     } | 
 |     // Make room for the new value | 
 |     Object* values; | 
 |     { MaybeObject* maybe_values = | 
 |           properties()->CopySize(properties()->length() + kFieldsAdded); | 
 |       if (!maybe_values->ToObject(&values)) return maybe_values; | 
 |     } | 
 |     set_properties(FixedArray::cast(values)); | 
 |     new_map->set_unused_property_fields(kFieldsAdded - 1); | 
 |   } else { | 
 |     new_map->set_unused_property_fields(map()->unused_property_fields() - 1); | 
 |   } | 
 |   // We have now allocated all the necessary objects. | 
 |   // All the changes can be applied at once, so they are atomic. | 
 |   map()->set_instance_descriptors(old_descriptors); | 
 |   new_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); | 
 |   set_map(new_map); | 
 |   return FastPropertyAtPut(index, value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::AddConstantFunctionProperty( | 
 |     String* name, | 
 |     JSFunction* function, | 
 |     PropertyAttributes attributes) { | 
 |   ASSERT(!Heap::InNewSpace(function)); | 
 |  | 
 |   // Allocate new instance descriptors with (name, function) added | 
 |   ConstantFunctionDescriptor d(name, function, attributes); | 
 |   Object* new_descriptors; | 
 |   { MaybeObject* maybe_new_descriptors = | 
 |         map()->instance_descriptors()->CopyInsert(&d, REMOVE_TRANSITIONS); | 
 |     if (!maybe_new_descriptors->ToObject(&new_descriptors)) { | 
 |       return maybe_new_descriptors; | 
 |     } | 
 |   } | 
 |  | 
 |   // Allocate a new map for the object. | 
 |   Object* new_map; | 
 |   { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); | 
 |     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; | 
 |   } | 
 |  | 
 |   DescriptorArray* descriptors = DescriptorArray::cast(new_descriptors); | 
 |   Map::cast(new_map)->set_instance_descriptors(descriptors); | 
 |   Map* old_map = map(); | 
 |   set_map(Map::cast(new_map)); | 
 |  | 
 |   // If the old map is the global object map (from new Object()), | 
 |   // then transitions are not added to it, so we are done. | 
 |   if (old_map == Top::context()->global_context()->object_function()->map()) { | 
 |     return function; | 
 |   } | 
 |  | 
 |   // Do not add CONSTANT_TRANSITIONS to global objects | 
 |   if (IsGlobalObject()) { | 
 |     return function; | 
 |   } | 
 |  | 
 |   // Add a CONSTANT_TRANSITION descriptor to the old map, | 
 |   // so future assignments to this property on other objects | 
 |   // of the same type will create a normal field, not a constant function. | 
 |   // Don't do this for special properties, with non-trival attributes. | 
 |   if (attributes != NONE) { | 
 |     return function; | 
 |   } | 
 |   ConstTransitionDescriptor mark(name, Map::cast(new_map)); | 
 |   { MaybeObject* maybe_new_descriptors = | 
 |         old_map->instance_descriptors()->CopyInsert(&mark, KEEP_TRANSITIONS); | 
 |     if (!maybe_new_descriptors->ToObject(&new_descriptors)) { | 
 |       // We have accomplished the main goal, so return success. | 
 |       return function; | 
 |     } | 
 |   } | 
 |   old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); | 
 |  | 
 |   return function; | 
 | } | 
 |  | 
 |  | 
 | // Add property in slow mode | 
 | MaybeObject* JSObject::AddSlowProperty(String* name, | 
 |                                        Object* value, | 
 |                                        PropertyAttributes attributes) { | 
 |   ASSERT(!HasFastProperties()); | 
 |   StringDictionary* dict = property_dictionary(); | 
 |   Object* store_value = value; | 
 |   if (IsGlobalObject()) { | 
 |     // In case name is an orphaned property reuse the cell. | 
 |     int entry = dict->FindEntry(name); | 
 |     if (entry != StringDictionary::kNotFound) { | 
 |       store_value = dict->ValueAt(entry); | 
 |       JSGlobalPropertyCell::cast(store_value)->set_value(value); | 
 |       // Assign an enumeration index to the property and update | 
 |       // SetNextEnumerationIndex. | 
 |       int index = dict->NextEnumerationIndex(); | 
 |       PropertyDetails details = PropertyDetails(attributes, NORMAL, index); | 
 |       dict->SetNextEnumerationIndex(index + 1); | 
 |       dict->SetEntry(entry, name, store_value, details); | 
 |       return value; | 
 |     } | 
 |     { MaybeObject* maybe_store_value = | 
 |           Heap::AllocateJSGlobalPropertyCell(value); | 
 |       if (!maybe_store_value->ToObject(&store_value)) return maybe_store_value; | 
 |     } | 
 |     JSGlobalPropertyCell::cast(store_value)->set_value(value); | 
 |   } | 
 |   PropertyDetails details = PropertyDetails(attributes, NORMAL); | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = dict->Add(name, store_value, details); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |   if (dict != result) set_properties(StringDictionary::cast(result)); | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::AddProperty(String* name, | 
 |                                    Object* value, | 
 |                                    PropertyAttributes attributes) { | 
 |   ASSERT(!IsJSGlobalProxy()); | 
 |   if (!map()->is_extensible()) { | 
 |     Handle<Object> args[1] = {Handle<String>(name)}; | 
 |     return Top::Throw(*Factory::NewTypeError("object_not_extensible", | 
 |                                                HandleVector(args, 1))); | 
 |   } | 
 |   if (HasFastProperties()) { | 
 |     // Ensure the descriptor array does not get too big. | 
 |     if (map()->instance_descriptors()->number_of_descriptors() < | 
 |         DescriptorArray::kMaxNumberOfDescriptors) { | 
 |       if (value->IsJSFunction() && !Heap::InNewSpace(value)) { | 
 |         return AddConstantFunctionProperty(name, | 
 |                                            JSFunction::cast(value), | 
 |                                            attributes); | 
 |       } else { | 
 |         return AddFastProperty(name, value, attributes); | 
 |       } | 
 |     } else { | 
 |       // Normalize the object to prevent very large instance descriptors. | 
 |       // This eliminates unwanted N^2 allocation and lookup behavior. | 
 |       Object* obj; | 
 |       { MaybeObject* maybe_obj = | 
 |             NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
 |         if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |       } | 
 |     } | 
 |   } | 
 |   return AddSlowProperty(name, value, attributes); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetPropertyPostInterceptor( | 
 |     String* name, | 
 |     Object* value, | 
 |     PropertyAttributes attributes) { | 
 |   // Check local property, ignore interceptor. | 
 |   LookupResult result; | 
 |   LocalLookupRealNamedProperty(name, &result); | 
 |   if (result.IsFound()) { | 
 |     // An existing property, a map transition or a null descriptor was | 
 |     // found.  Use set property to handle all these cases. | 
 |     return SetProperty(&result, name, value, attributes); | 
 |   } | 
 |   // Add a new real property. | 
 |   return AddProperty(name, value, attributes); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::ReplaceSlowProperty(String* name, | 
 |                                            Object* value, | 
 |                                            PropertyAttributes attributes) { | 
 |   StringDictionary* dictionary = property_dictionary(); | 
 |   int old_index = dictionary->FindEntry(name); | 
 |   int new_enumeration_index = 0;  // 0 means "Use the next available index." | 
 |   if (old_index != -1) { | 
 |     // All calls to ReplaceSlowProperty have had all transitions removed. | 
 |     ASSERT(!dictionary->DetailsAt(old_index).IsTransition()); | 
 |     new_enumeration_index = dictionary->DetailsAt(old_index).index(); | 
 |   } | 
 |  | 
 |   PropertyDetails new_details(attributes, NORMAL, new_enumeration_index); | 
 |   return SetNormalizedProperty(name, value, new_details); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::ConvertDescriptorToFieldAndMapTransition( | 
 |     String* name, | 
 |     Object* new_value, | 
 |     PropertyAttributes attributes) { | 
 |   Map* old_map = map(); | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = | 
 |         ConvertDescriptorToField(name, new_value, attributes); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |   // If we get to this point we have succeeded - do not return failure | 
 |   // after this point.  Later stuff is optional. | 
 |   if (!HasFastProperties()) { | 
 |     return result; | 
 |   } | 
 |   // Do not add transitions to the map of "new Object()". | 
 |   if (map() == Top::context()->global_context()->object_function()->map()) { | 
 |     return result; | 
 |   } | 
 |  | 
 |   MapTransitionDescriptor transition(name, | 
 |                                      map(), | 
 |                                      attributes); | 
 |   Object* new_descriptors; | 
 |   { MaybeObject* maybe_new_descriptors = old_map->instance_descriptors()-> | 
 |         CopyInsert(&transition, KEEP_TRANSITIONS); | 
 |     if (!maybe_new_descriptors->ToObject(&new_descriptors)) { | 
 |       return result;  // Yes, return _result_. | 
 |     } | 
 |   } | 
 |   old_map->set_instance_descriptors(DescriptorArray::cast(new_descriptors)); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::ConvertDescriptorToField(String* name, | 
 |                                                 Object* new_value, | 
 |                                                 PropertyAttributes attributes) { | 
 |   if (map()->unused_property_fields() == 0 && | 
 |       properties()->length() > MaxFastProperties()) { | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = | 
 |           NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |     return ReplaceSlowProperty(name, new_value, attributes); | 
 |   } | 
 |  | 
 |   int index = map()->NextFreePropertyIndex(); | 
 |   FieldDescriptor new_field(name, index, attributes); | 
 |   // Make a new DescriptorArray replacing an entry with FieldDescriptor. | 
 |   Object* descriptors_unchecked; | 
 |   { MaybeObject* maybe_descriptors_unchecked = map()->instance_descriptors()-> | 
 |                                   CopyInsert(&new_field, REMOVE_TRANSITIONS); | 
 |     if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) { | 
 |       return maybe_descriptors_unchecked; | 
 |     } | 
 |   } | 
 |   DescriptorArray* new_descriptors = | 
 |       DescriptorArray::cast(descriptors_unchecked); | 
 |  | 
 |   // Make a new map for the object. | 
 |   Object* new_map_unchecked; | 
 |   { MaybeObject* maybe_new_map_unchecked = map()->CopyDropDescriptors(); | 
 |     if (!maybe_new_map_unchecked->ToObject(&new_map_unchecked)) { | 
 |       return maybe_new_map_unchecked; | 
 |     } | 
 |   } | 
 |   Map* new_map = Map::cast(new_map_unchecked); | 
 |   new_map->set_instance_descriptors(new_descriptors); | 
 |  | 
 |   // Make new properties array if necessary. | 
 |   FixedArray* new_properties = 0;  // Will always be NULL or a valid pointer. | 
 |   int new_unused_property_fields = map()->unused_property_fields() - 1; | 
 |   if (map()->unused_property_fields() == 0) { | 
 |     new_unused_property_fields = kFieldsAdded - 1; | 
 |     Object* new_properties_object; | 
 |     { MaybeObject* maybe_new_properties_object = | 
 |           properties()->CopySize(properties()->length() + kFieldsAdded); | 
 |       if (!maybe_new_properties_object->ToObject(&new_properties_object)) { | 
 |         return maybe_new_properties_object; | 
 |       } | 
 |     } | 
 |     new_properties = FixedArray::cast(new_properties_object); | 
 |   } | 
 |  | 
 |   // Update pointers to commit changes. | 
 |   // Object points to the new map. | 
 |   new_map->set_unused_property_fields(new_unused_property_fields); | 
 |   set_map(new_map); | 
 |   if (new_properties) { | 
 |     set_properties(FixedArray::cast(new_properties)); | 
 |   } | 
 |   return FastPropertyAtPut(index, new_value); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetPropertyWithInterceptor( | 
 |     String* name, | 
 |     Object* value, | 
 |     PropertyAttributes attributes) { | 
 |   HandleScope scope; | 
 |   Handle<JSObject> this_handle(this); | 
 |   Handle<String> name_handle(name); | 
 |   Handle<Object> value_handle(value); | 
 |   Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); | 
 |   if (!interceptor->setter()->IsUndefined()) { | 
 |     LOG(ApiNamedPropertyAccess("interceptor-named-set", this, name)); | 
 |     CustomArguments args(interceptor->data(), this, this); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     v8::NamedPropertySetter setter = | 
 |         v8::ToCData<v8::NamedPropertySetter>(interceptor->setter()); | 
 |     v8::Handle<v8::Value> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       Handle<Object> value_unhole(value->IsTheHole() ? | 
 |                                   Heap::undefined_value() : | 
 |                                   value); | 
 |       result = setter(v8::Utils::ToLocal(name_handle), | 
 |                       v8::Utils::ToLocal(value_unhole), | 
 |                       info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     if (!result.IsEmpty()) return *value_handle; | 
 |   } | 
 |   MaybeObject* raw_result = | 
 |       this_handle->SetPropertyPostInterceptor(*name_handle, | 
 |                                               *value_handle, | 
 |                                               attributes); | 
 |   RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |   return raw_result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetProperty(String* name, | 
 |                                    Object* value, | 
 |                                    PropertyAttributes attributes) { | 
 |   LookupResult result; | 
 |   LocalLookup(name, &result); | 
 |   return SetProperty(&result, name, value, attributes); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetPropertyWithCallback(Object* structure, | 
 |                                                String* name, | 
 |                                                Object* value, | 
 |                                                JSObject* holder) { | 
 |   HandleScope scope; | 
 |  | 
 |   // We should never get here to initialize a const with the hole | 
 |   // value since a const declaration would conflict with the setter. | 
 |   ASSERT(!value->IsTheHole()); | 
 |   Handle<Object> value_handle(value); | 
 |  | 
 |   // To accommodate both the old and the new api we switch on the | 
 |   // data structure used to store the callbacks.  Eventually proxy | 
 |   // callbacks should be phased out. | 
 |   if (structure->IsProxy()) { | 
 |     AccessorDescriptor* callback = | 
 |         reinterpret_cast<AccessorDescriptor*>(Proxy::cast(structure)->proxy()); | 
 |     MaybeObject* obj = (callback->setter)(this,  value, callback->data); | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     if (obj->IsFailure()) return obj; | 
 |     return *value_handle; | 
 |   } | 
 |  | 
 |   if (structure->IsAccessorInfo()) { | 
 |     // api style callbacks | 
 |     AccessorInfo* data = AccessorInfo::cast(structure); | 
 |     Object* call_obj = data->setter(); | 
 |     v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj); | 
 |     if (call_fun == NULL) return value; | 
 |     Handle<String> key(name); | 
 |     LOG(ApiNamedPropertyAccess("store", this, name)); | 
 |     CustomArguments args(data->data(), this, JSObject::cast(holder)); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       call_fun(v8::Utils::ToLocal(key), | 
 |                v8::Utils::ToLocal(value_handle), | 
 |                info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     return *value_handle; | 
 |   } | 
 |  | 
 |   if (structure->IsFixedArray()) { | 
 |     Object* setter = FixedArray::cast(structure)->get(kSetterIndex); | 
 |     if (setter->IsJSFunction()) { | 
 |      return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value); | 
 |     } else { | 
 |       Handle<String> key(name); | 
 |       Handle<Object> holder_handle(holder); | 
 |       Handle<Object> args[2] = { key, holder_handle }; | 
 |       return Top::Throw(*Factory::NewTypeError("no_setter_in_callback", | 
 |                                                HandleVector(args, 2))); | 
 |     } | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetPropertyWithDefinedSetter(JSFunction* setter, | 
 |                                                     Object* value) { | 
 |   Handle<Object> value_handle(value); | 
 |   Handle<JSFunction> fun(JSFunction::cast(setter)); | 
 |   Handle<JSObject> self(this); | 
 | #ifdef ENABLE_DEBUGGER_SUPPORT | 
 |   // Handle stepping into a setter if step into is active. | 
 |   if (Debug::StepInActive()) { | 
 |     Debug::HandleStepIn(fun, Handle<Object>::null(), 0, false); | 
 |   } | 
 | #endif | 
 |   bool has_pending_exception; | 
 |   Object** argv[] = { value_handle.location() }; | 
 |   Execution::Call(fun, self, 1, argv, &has_pending_exception); | 
 |   // Check for pending exception and return the result. | 
 |   if (has_pending_exception) return Failure::Exception(); | 
 |   return *value_handle; | 
 | } | 
 |  | 
 |  | 
 | void JSObject::LookupCallbackSetterInPrototypes(String* name, | 
 |                                                 LookupResult* result) { | 
 |   for (Object* pt = GetPrototype(); | 
 |        pt != Heap::null_value(); | 
 |        pt = pt->GetPrototype()) { | 
 |     JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); | 
 |     if (result->IsProperty()) { | 
 |       if (result->IsReadOnly()) { | 
 |         result->NotFound(); | 
 |         return; | 
 |       } | 
 |       if (result->type() == CALLBACKS) { | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |   result->NotFound(); | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::SetElementWithCallbackSetterInPrototypes(uint32_t index, | 
 |                                                         Object* value) { | 
 |   for (Object* pt = GetPrototype(); | 
 |        pt != Heap::null_value(); | 
 |        pt = pt->GetPrototype()) { | 
 |     if (!JSObject::cast(pt)->HasDictionaryElements()) { | 
 |         continue; | 
 |     } | 
 |     NumberDictionary* dictionary = JSObject::cast(pt)->element_dictionary(); | 
 |     int entry = dictionary->FindEntry(index); | 
 |     if (entry != NumberDictionary::kNotFound) { | 
 |       Object* element = dictionary->ValueAt(entry); | 
 |       PropertyDetails details = dictionary->DetailsAt(entry); | 
 |       if (details.type() == CALLBACKS) { | 
 |         SetElementWithCallback(element, index, value, JSObject::cast(pt)); | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | void JSObject::LookupInDescriptor(String* name, LookupResult* result) { | 
 |   DescriptorArray* descriptors = map()->instance_descriptors(); | 
 |   int number = descriptors->SearchWithCache(name); | 
 |   if (number != DescriptorArray::kNotFound) { | 
 |     result->DescriptorResult(this, descriptors->GetDetails(number), number); | 
 |   } else { | 
 |     result->NotFound(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Map::LookupInDescriptors(JSObject* holder, | 
 |                               String* name, | 
 |                               LookupResult* result) { | 
 |   DescriptorArray* descriptors = instance_descriptors(); | 
 |   int number = DescriptorLookupCache::Lookup(descriptors, name); | 
 |   if (number == DescriptorLookupCache::kAbsent) { | 
 |     number = descriptors->Search(name); | 
 |     DescriptorLookupCache::Update(descriptors, name, number); | 
 |   } | 
 |   if (number != DescriptorArray::kNotFound) { | 
 |     result->DescriptorResult(holder, descriptors->GetDetails(number), number); | 
 |   } else { | 
 |     result->NotFound(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void JSObject::LocalLookupRealNamedProperty(String* name, | 
 |                                             LookupResult* result) { | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return result->NotFound(); | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSObject::cast(proto)->LocalLookupRealNamedProperty(name, result); | 
 |   } | 
 |  | 
 |   if (HasFastProperties()) { | 
 |     LookupInDescriptor(name, result); | 
 |     if (result->IsFound()) { | 
 |       // A property, a map transition or a null descriptor was found. | 
 |       // We return all of these result types because | 
 |       // LocalLookupRealNamedProperty is used when setting properties | 
 |       // where map transitions and null descriptors are handled. | 
 |       ASSERT(result->holder() == this && result->type() != NORMAL); | 
 |       // Disallow caching for uninitialized constants. These can only | 
 |       // occur as fields. | 
 |       if (result->IsReadOnly() && result->type() == FIELD && | 
 |           FastPropertyAt(result->GetFieldIndex())->IsTheHole()) { | 
 |         result->DisallowCaching(); | 
 |       } | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     int entry = property_dictionary()->FindEntry(name); | 
 |     if (entry != StringDictionary::kNotFound) { | 
 |       Object* value = property_dictionary()->ValueAt(entry); | 
 |       if (IsGlobalObject()) { | 
 |         PropertyDetails d = property_dictionary()->DetailsAt(entry); | 
 |         if (d.IsDeleted()) { | 
 |           result->NotFound(); | 
 |           return; | 
 |         } | 
 |         value = JSGlobalPropertyCell::cast(value)->value(); | 
 |       } | 
 |       // Make sure to disallow caching for uninitialized constants | 
 |       // found in the dictionary-mode objects. | 
 |       if (value->IsTheHole()) result->DisallowCaching(); | 
 |       result->DictionaryResult(this, entry); | 
 |       return; | 
 |     } | 
 |   } | 
 |   result->NotFound(); | 
 | } | 
 |  | 
 |  | 
 | void JSObject::LookupRealNamedProperty(String* name, LookupResult* result) { | 
 |   LocalLookupRealNamedProperty(name, result); | 
 |   if (result->IsProperty()) return; | 
 |  | 
 |   LookupRealNamedPropertyInPrototypes(name, result); | 
 | } | 
 |  | 
 |  | 
 | void JSObject::LookupRealNamedPropertyInPrototypes(String* name, | 
 |                                                    LookupResult* result) { | 
 |   for (Object* pt = GetPrototype(); | 
 |        pt != Heap::null_value(); | 
 |        pt = JSObject::cast(pt)->GetPrototype()) { | 
 |     JSObject::cast(pt)->LocalLookupRealNamedProperty(name, result); | 
 |     if (result->IsProperty() && (result->type() != INTERCEPTOR)) return; | 
 |   } | 
 |   result->NotFound(); | 
 | } | 
 |  | 
 |  | 
 | // We only need to deal with CALLBACKS and INTERCEPTORS | 
 | MaybeObject* JSObject::SetPropertyWithFailedAccessCheck(LookupResult* result, | 
 |                                                         String* name, | 
 |                                                         Object* value, | 
 |                                                         bool check_prototype) { | 
 |   if (check_prototype && !result->IsProperty()) { | 
 |     LookupCallbackSetterInPrototypes(name, result); | 
 |   } | 
 |  | 
 |   if (result->IsProperty()) { | 
 |     if (!result->IsReadOnly()) { | 
 |       switch (result->type()) { | 
 |         case CALLBACKS: { | 
 |           Object* obj = result->GetCallbackObject(); | 
 |           if (obj->IsAccessorInfo()) { | 
 |             AccessorInfo* info = AccessorInfo::cast(obj); | 
 |             if (info->all_can_write()) { | 
 |               return SetPropertyWithCallback(result->GetCallbackObject(), | 
 |                                              name, | 
 |                                              value, | 
 |                                              result->holder()); | 
 |             } | 
 |           } | 
 |           break; | 
 |         } | 
 |         case INTERCEPTOR: { | 
 |           // Try lookup real named properties. Note that only property can be | 
 |           // set is callbacks marked as ALL_CAN_WRITE on the prototype chain. | 
 |           LookupResult r; | 
 |           LookupRealNamedProperty(name, &r); | 
 |           if (r.IsProperty()) { | 
 |             return SetPropertyWithFailedAccessCheck(&r, name, value, | 
 |                                                     check_prototype); | 
 |           } | 
 |           break; | 
 |         } | 
 |         default: { | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   HandleScope scope; | 
 |   Handle<Object> value_handle(value); | 
 |   Top::ReportFailedAccessCheck(this, v8::ACCESS_SET); | 
 |   return *value_handle; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetProperty(LookupResult* result, | 
 |                                    String* name, | 
 |                                    Object* value, | 
 |                                    PropertyAttributes attributes) { | 
 |   // Make sure that the top context does not change when doing callbacks or | 
 |   // interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |  | 
 |   // Optimization for 2-byte strings often used as keys in a decompression | 
 |   // dictionary.  We make these short keys into symbols to avoid constantly | 
 |   // reallocating them. | 
 |   if (!name->IsSymbol() && name->length() <= 2) { | 
 |     Object* symbol_version; | 
 |     { MaybeObject* maybe_symbol_version = Heap::LookupSymbol(name); | 
 |       if (maybe_symbol_version->ToObject(&symbol_version)) { | 
 |         name = String::cast(symbol_version); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() | 
 |       && !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) { | 
 |     return SetPropertyWithFailedAccessCheck(result, name, value, true); | 
 |   } | 
 |  | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return value; | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSObject::cast(proto)->SetProperty(result, name, value, attributes); | 
 |   } | 
 |  | 
 |   if (!result->IsProperty() && !IsJSContextExtensionObject()) { | 
 |     // We could not find a local property so let's check whether there is an | 
 |     // accessor that wants to handle the property. | 
 |     LookupResult accessor_result; | 
 |     LookupCallbackSetterInPrototypes(name, &accessor_result); | 
 |     if (accessor_result.IsProperty()) { | 
 |       return SetPropertyWithCallback(accessor_result.GetCallbackObject(), | 
 |                                      name, | 
 |                                      value, | 
 |                                      accessor_result.holder()); | 
 |     } | 
 |   } | 
 |   if (!result->IsFound()) { | 
 |     // Neither properties nor transitions found. | 
 |     return AddProperty(name, value, attributes); | 
 |   } | 
 |   if (result->IsReadOnly() && result->IsProperty()) return value; | 
 |   // This is a real property that is not read-only, or it is a | 
 |   // transition or null descriptor and there are no setters in the prototypes. | 
 |   switch (result->type()) { | 
 |     case NORMAL: | 
 |       return SetNormalizedProperty(result, value); | 
 |     case FIELD: | 
 |       return FastPropertyAtPut(result->GetFieldIndex(), value); | 
 |     case MAP_TRANSITION: | 
 |       if (attributes == result->GetAttributes()) { | 
 |         // Only use map transition if the attributes match. | 
 |         return AddFastPropertyUsingMap(result->GetTransitionMap(), | 
 |                                        name, | 
 |                                        value); | 
 |       } | 
 |       return ConvertDescriptorToField(name, value, attributes); | 
 |     case CONSTANT_FUNCTION: | 
 |       // Only replace the function if necessary. | 
 |       if (value == result->GetConstantFunction()) return value; | 
 |       // Preserve the attributes of this existing property. | 
 |       attributes = result->GetAttributes(); | 
 |       return ConvertDescriptorToField(name, value, attributes); | 
 |     case CALLBACKS: | 
 |       return SetPropertyWithCallback(result->GetCallbackObject(), | 
 |                                      name, | 
 |                                      value, | 
 |                                      result->holder()); | 
 |     case INTERCEPTOR: | 
 |       return SetPropertyWithInterceptor(name, value, attributes); | 
 |     case CONSTANT_TRANSITION: { | 
 |       // If the same constant function is being added we can simply | 
 |       // transition to the target map. | 
 |       Map* target_map = result->GetTransitionMap(); | 
 |       DescriptorArray* target_descriptors = target_map->instance_descriptors(); | 
 |       int number = target_descriptors->SearchWithCache(name); | 
 |       ASSERT(number != DescriptorArray::kNotFound); | 
 |       ASSERT(target_descriptors->GetType(number) == CONSTANT_FUNCTION); | 
 |       JSFunction* function = | 
 |           JSFunction::cast(target_descriptors->GetValue(number)); | 
 |       ASSERT(!Heap::InNewSpace(function)); | 
 |       if (value == function) { | 
 |         set_map(target_map); | 
 |         return value; | 
 |       } | 
 |       // Otherwise, replace with a MAP_TRANSITION to a new map with a | 
 |       // FIELD, even if the value is a constant function. | 
 |       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); | 
 |     } | 
 |     case NULL_DESCRIPTOR: | 
 |       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | // Set a real local property, even if it is READ_ONLY.  If the property is not | 
 | // present, add it with attributes NONE.  This code is an exact clone of | 
 | // SetProperty, with the check for IsReadOnly and the check for a | 
 | // callback setter removed.  The two lines looking up the LookupResult | 
 | // result are also added.  If one of the functions is changed, the other | 
 | // should be. | 
 | MaybeObject* JSObject::SetLocalPropertyIgnoreAttributes( | 
 |     String* name, | 
 |     Object* value, | 
 |     PropertyAttributes attributes) { | 
 |   // Make sure that the top context does not change when doing callbacks or | 
 |   // interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |   LookupResult result; | 
 |   LocalLookup(name, &result); | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() | 
 |       && !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) { | 
 |     return SetPropertyWithFailedAccessCheck(&result, name, value, false); | 
 |   } | 
 |  | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return value; | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSObject::cast(proto)->SetLocalPropertyIgnoreAttributes( | 
 |         name, | 
 |         value, | 
 |         attributes); | 
 |   } | 
 |  | 
 |   // Check for accessor in prototype chain removed here in clone. | 
 |   if (!result.IsFound()) { | 
 |     // Neither properties nor transitions found. | 
 |     return AddProperty(name, value, attributes); | 
 |   } | 
 |  | 
 |   PropertyDetails details = PropertyDetails(attributes, NORMAL); | 
 |  | 
 |   // Check of IsReadOnly removed from here in clone. | 
 |   switch (result.type()) { | 
 |     case NORMAL: | 
 |       return SetNormalizedProperty(name, value, details); | 
 |     case FIELD: | 
 |       return FastPropertyAtPut(result.GetFieldIndex(), value); | 
 |     case MAP_TRANSITION: | 
 |       if (attributes == result.GetAttributes()) { | 
 |         // Only use map transition if the attributes match. | 
 |         return AddFastPropertyUsingMap(result.GetTransitionMap(), | 
 |                                        name, | 
 |                                        value); | 
 |       } | 
 |       return ConvertDescriptorToField(name, value, attributes); | 
 |     case CONSTANT_FUNCTION: | 
 |       // Only replace the function if necessary. | 
 |       if (value == result.GetConstantFunction()) return value; | 
 |       // Preserve the attributes of this existing property. | 
 |       attributes = result.GetAttributes(); | 
 |       return ConvertDescriptorToField(name, value, attributes); | 
 |     case CALLBACKS: | 
 |     case INTERCEPTOR: | 
 |       // Override callback in clone | 
 |       return ConvertDescriptorToField(name, value, attributes); | 
 |     case CONSTANT_TRANSITION: | 
 |       // Replace with a MAP_TRANSITION to a new map with a FIELD, even | 
 |       // if the value is a function. | 
 |       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); | 
 |     case NULL_DESCRIPTOR: | 
 |       return ConvertDescriptorToFieldAndMapTransition(name, value, attributes); | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | PropertyAttributes JSObject::GetPropertyAttributePostInterceptor( | 
 |       JSObject* receiver, | 
 |       String* name, | 
 |       bool continue_search) { | 
 |   // Check local property, ignore interceptor. | 
 |   LookupResult result; | 
 |   LocalLookupRealNamedProperty(name, &result); | 
 |   if (result.IsProperty()) return result.GetAttributes(); | 
 |  | 
 |   if (continue_search) { | 
 |     // Continue searching via the prototype chain. | 
 |     Object* pt = GetPrototype(); | 
 |     if (pt != Heap::null_value()) { | 
 |       return JSObject::cast(pt)-> | 
 |         GetPropertyAttributeWithReceiver(receiver, name); | 
 |     } | 
 |   } | 
 |   return ABSENT; | 
 | } | 
 |  | 
 |  | 
 | PropertyAttributes JSObject::GetPropertyAttributeWithInterceptor( | 
 |       JSObject* receiver, | 
 |       String* name, | 
 |       bool continue_search) { | 
 |   // Make sure that the top context does not change when doing | 
 |   // callbacks or interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |  | 
 |   HandleScope scope; | 
 |   Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); | 
 |   Handle<JSObject> receiver_handle(receiver); | 
 |   Handle<JSObject> holder_handle(this); | 
 |   Handle<String> name_handle(name); | 
 |   CustomArguments args(interceptor->data(), receiver, this); | 
 |   v8::AccessorInfo info(args.end()); | 
 |   if (!interceptor->query()->IsUndefined()) { | 
 |     v8::NamedPropertyQuery query = | 
 |         v8::ToCData<v8::NamedPropertyQuery>(interceptor->query()); | 
 |     LOG(ApiNamedPropertyAccess("interceptor-named-has", *holder_handle, name)); | 
 |     v8::Handle<v8::Integer> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = query(v8::Utils::ToLocal(name_handle), info); | 
 |     } | 
 |     if (!result.IsEmpty()) { | 
 |       ASSERT(result->IsInt32()); | 
 |       return static_cast<PropertyAttributes>(result->Int32Value()); | 
 |     } | 
 |   } else if (!interceptor->getter()->IsUndefined()) { | 
 |     v8::NamedPropertyGetter getter = | 
 |         v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter()); | 
 |     LOG(ApiNamedPropertyAccess("interceptor-named-get-has", this, name)); | 
 |     v8::Handle<v8::Value> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = getter(v8::Utils::ToLocal(name_handle), info); | 
 |     } | 
 |     if (!result.IsEmpty()) return DONT_ENUM; | 
 |   } | 
 |   return holder_handle->GetPropertyAttributePostInterceptor(*receiver_handle, | 
 |                                                             *name_handle, | 
 |                                                             continue_search); | 
 | } | 
 |  | 
 |  | 
 | PropertyAttributes JSObject::GetPropertyAttributeWithReceiver( | 
 |       JSObject* receiver, | 
 |       String* key) { | 
 |   uint32_t index = 0; | 
 |   if (key->AsArrayIndex(&index)) { | 
 |     if (HasElementWithReceiver(receiver, index)) return NONE; | 
 |     return ABSENT; | 
 |   } | 
 |   // Named property. | 
 |   LookupResult result; | 
 |   Lookup(key, &result); | 
 |   return GetPropertyAttribute(receiver, &result, key, true); | 
 | } | 
 |  | 
 |  | 
 | PropertyAttributes JSObject::GetPropertyAttribute(JSObject* receiver, | 
 |                                                   LookupResult* result, | 
 |                                                   String* name, | 
 |                                                   bool continue_search) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) { | 
 |     return GetPropertyAttributeWithFailedAccessCheck(receiver, | 
 |                                                      result, | 
 |                                                      name, | 
 |                                                      continue_search); | 
 |   } | 
 |   if (result->IsProperty()) { | 
 |     switch (result->type()) { | 
 |       case NORMAL:  // fall through | 
 |       case FIELD: | 
 |       case CONSTANT_FUNCTION: | 
 |       case CALLBACKS: | 
 |         return result->GetAttributes(); | 
 |       case INTERCEPTOR: | 
 |         return result->holder()-> | 
 |           GetPropertyAttributeWithInterceptor(receiver, name, continue_search); | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |   return ABSENT; | 
 | } | 
 |  | 
 |  | 
 | PropertyAttributes JSObject::GetLocalPropertyAttribute(String* name) { | 
 |   // Check whether the name is an array index. | 
 |   uint32_t index = 0; | 
 |   if (name->AsArrayIndex(&index)) { | 
 |     if (HasLocalElement(index)) return NONE; | 
 |     return ABSENT; | 
 |   } | 
 |   // Named property. | 
 |   LookupResult result; | 
 |   LocalLookup(name, &result); | 
 |   return GetPropertyAttribute(this, &result, name, false); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* NormalizedMapCache::Get(JSObject* obj, | 
 |                                      PropertyNormalizationMode mode) { | 
 |   Map* fast = obj->map(); | 
 |   int index = Hash(fast) % kEntries; | 
 |   Object* result = get(index); | 
 |   if (result->IsMap() && CheckHit(Map::cast(result), fast, mode)) { | 
 | #ifdef DEBUG | 
 |     if (FLAG_enable_slow_asserts) { | 
 |       // The cached map should match newly created normalized map bit-by-bit. | 
 |       Object* fresh; | 
 |       { MaybeObject* maybe_fresh = | 
 |             fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); | 
 |         if (maybe_fresh->ToObject(&fresh)) { | 
 |           ASSERT(memcmp(Map::cast(fresh)->address(), | 
 |                         Map::cast(result)->address(), | 
 |                         Map::kSize) == 0); | 
 |         } | 
 |       } | 
 |     } | 
 | #endif | 
 |     return result; | 
 |   } | 
 |  | 
 |   { MaybeObject* maybe_result = | 
 |         fast->CopyNormalized(mode, SHARED_NORMALIZED_MAP); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |   set(index, result); | 
 |   Counters::normalized_maps.Increment(); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | void NormalizedMapCache::Clear() { | 
 |   int entries = length(); | 
 |   for (int i = 0; i != entries; i++) { | 
 |     set_undefined(i); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | int NormalizedMapCache::Hash(Map* fast) { | 
 |   // For performance reasons we only hash the 3 most variable fields of a map: | 
 |   // constructor, prototype and bit_field2. | 
 |  | 
 |   // Shift away the tag. | 
 |   int hash = (static_cast<uint32_t>( | 
 |         reinterpret_cast<uintptr_t>(fast->constructor())) >> 2); | 
 |  | 
 |   // XOR-ing the prototype and constructor directly yields too many zero bits | 
 |   // when the two pointers are close (which is fairly common). | 
 |   // To avoid this we shift the prototype 4 bits relatively to the constructor. | 
 |   hash ^= (static_cast<uint32_t>( | 
 |         reinterpret_cast<uintptr_t>(fast->prototype())) << 2); | 
 |  | 
 |   return hash ^ (hash >> 16) ^ fast->bit_field2(); | 
 | } | 
 |  | 
 |  | 
 | bool NormalizedMapCache::CheckHit(Map* slow, | 
 |                                   Map* fast, | 
 |                                   PropertyNormalizationMode mode) { | 
 | #ifdef DEBUG | 
 |   slow->SharedMapVerify(); | 
 | #endif | 
 |   return | 
 |     slow->constructor() == fast->constructor() && | 
 |     slow->prototype() == fast->prototype() && | 
 |     slow->inobject_properties() == ((mode == CLEAR_INOBJECT_PROPERTIES) ? | 
 |                                     0 : | 
 |                                     fast->inobject_properties()) && | 
 |     slow->instance_type() == fast->instance_type() && | 
 |     slow->bit_field() == fast->bit_field() && | 
 |     (slow->bit_field2() & ~(1<<Map::kIsShared)) == fast->bit_field2(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::UpdateMapCodeCache(String* name, Code* code) { | 
 |   if (map()->is_shared()) { | 
 |     // Fast case maps are never marked as shared. | 
 |     ASSERT(!HasFastProperties()); | 
 |     // Replace the map with an identical copy that can be safely modified. | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = map()->CopyNormalized(KEEP_INOBJECT_PROPERTIES, | 
 |                                                      UNIQUE_NORMALIZED_MAP); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |     Counters::normalized_maps.Increment(); | 
 |  | 
 |     set_map(Map::cast(obj)); | 
 |   } | 
 |   return map()->UpdateCodeCache(name, code); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::NormalizeProperties(PropertyNormalizationMode mode, | 
 |                                            int expected_additional_properties) { | 
 |   if (!HasFastProperties()) return this; | 
 |  | 
 |   // The global object is always normalized. | 
 |   ASSERT(!IsGlobalObject()); | 
 |  | 
 |   // Allocate new content. | 
 |   int property_count = map()->NumberOfDescribedProperties(); | 
 |   if (expected_additional_properties > 0) { | 
 |     property_count += expected_additional_properties; | 
 |   } else { | 
 |     property_count += 2;  // Make space for two more properties. | 
 |   } | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = | 
 |         StringDictionary::Allocate(property_count); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   StringDictionary* dictionary = StringDictionary::cast(obj); | 
 |  | 
 |   DescriptorArray* descs = map()->instance_descriptors(); | 
 |   for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
 |     PropertyDetails details = descs->GetDetails(i); | 
 |     switch (details.type()) { | 
 |       case CONSTANT_FUNCTION: { | 
 |         PropertyDetails d = | 
 |             PropertyDetails(details.attributes(), NORMAL, details.index()); | 
 |         Object* value = descs->GetConstantFunction(i); | 
 |         Object* result; | 
 |         { MaybeObject* maybe_result = | 
 |               dictionary->Add(descs->GetKey(i), value, d); | 
 |           if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |         } | 
 |         dictionary = StringDictionary::cast(result); | 
 |         break; | 
 |       } | 
 |       case FIELD: { | 
 |         PropertyDetails d = | 
 |             PropertyDetails(details.attributes(), NORMAL, details.index()); | 
 |         Object* value = FastPropertyAt(descs->GetFieldIndex(i)); | 
 |         Object* result; | 
 |         { MaybeObject* maybe_result = | 
 |               dictionary->Add(descs->GetKey(i), value, d); | 
 |           if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |         } | 
 |         dictionary = StringDictionary::cast(result); | 
 |         break; | 
 |       } | 
 |       case CALLBACKS: { | 
 |         PropertyDetails d = | 
 |             PropertyDetails(details.attributes(), CALLBACKS, details.index()); | 
 |         Object* value = descs->GetCallbacksObject(i); | 
 |         Object* result; | 
 |         { MaybeObject* maybe_result = | 
 |               dictionary->Add(descs->GetKey(i), value, d); | 
 |           if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |         } | 
 |         dictionary = StringDictionary::cast(result); | 
 |         break; | 
 |       } | 
 |       case MAP_TRANSITION: | 
 |       case CONSTANT_TRANSITION: | 
 |       case NULL_DESCRIPTOR: | 
 |       case INTERCEPTOR: | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Copy the next enumeration index from instance descriptor. | 
 |   int index = map()->instance_descriptors()->NextEnumerationIndex(); | 
 |   dictionary->SetNextEnumerationIndex(index); | 
 |  | 
 |   { MaybeObject* maybe_obj = Top::context()->global_context()-> | 
 |                 normalized_map_cache()->Get(this, mode); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   Map* new_map = Map::cast(obj); | 
 |  | 
 |   // We have now successfully allocated all the necessary objects. | 
 |   // Changes can now be made with the guarantee that all of them take effect. | 
 |  | 
 |   // Resize the object in the heap if necessary. | 
 |   int new_instance_size = new_map->instance_size(); | 
 |   int instance_size_delta = map()->instance_size() - new_instance_size; | 
 |   ASSERT(instance_size_delta >= 0); | 
 |   Heap::CreateFillerObjectAt(this->address() + new_instance_size, | 
 |                              instance_size_delta); | 
 |  | 
 |   set_map(new_map); | 
 |  | 
 |   set_properties(dictionary); | 
 |  | 
 |   Counters::props_to_dictionary.Increment(); | 
 |  | 
 | #ifdef DEBUG | 
 |   if (FLAG_trace_normalization) { | 
 |     PrintF("Object properties have been normalized:\n"); | 
 |     Print(); | 
 |   } | 
 | #endif | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::TransformToFastProperties(int unused_property_fields) { | 
 |   if (HasFastProperties()) return this; | 
 |   ASSERT(!IsGlobalObject()); | 
 |   return property_dictionary()-> | 
 |       TransformPropertiesToFastFor(this, unused_property_fields); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::NormalizeElements() { | 
 |   ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
 |   if (HasDictionaryElements()) return this; | 
 |   ASSERT(map()->has_fast_elements()); | 
 |  | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = map()->GetSlowElementsMap(); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   Map* new_map = Map::cast(obj); | 
 |  | 
 |   // Get number of entries. | 
 |   FixedArray* array = FixedArray::cast(elements()); | 
 |  | 
 |   // Compute the effective length. | 
 |   int length = IsJSArray() ? | 
 |                Smi::cast(JSArray::cast(this)->length())->value() : | 
 |                array->length(); | 
 |   { MaybeObject* maybe_obj = NumberDictionary::Allocate(length); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   NumberDictionary* dictionary = NumberDictionary::cast(obj); | 
 |   // Copy entries. | 
 |   for (int i = 0; i < length; i++) { | 
 |     Object* value = array->get(i); | 
 |     if (!value->IsTheHole()) { | 
 |       PropertyDetails details = PropertyDetails(NONE, NORMAL); | 
 |       Object* result; | 
 |       { MaybeObject* maybe_result = | 
 |             dictionary->AddNumberEntry(i, array->get(i), details); | 
 |         if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |       } | 
 |       dictionary = NumberDictionary::cast(result); | 
 |     } | 
 |   } | 
 |   // Switch to using the dictionary as the backing storage for | 
 |   // elements. Set the new map first to satify the elements type | 
 |   // assert in set_elements(). | 
 |   set_map(new_map); | 
 |   set_elements(dictionary); | 
 |  | 
 |   Counters::elements_to_dictionary.Increment(); | 
 |  | 
 | #ifdef DEBUG | 
 |   if (FLAG_trace_normalization) { | 
 |     PrintF("Object elements have been normalized:\n"); | 
 |     Print(); | 
 |   } | 
 | #endif | 
 |  | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DeletePropertyPostInterceptor(String* name, | 
 |                                                      DeleteMode mode) { | 
 |   // Check local property, ignore interceptor. | 
 |   LookupResult result; | 
 |   LocalLookupRealNamedProperty(name, &result); | 
 |   if (!result.IsProperty()) return Heap::true_value(); | 
 |  | 
 |   // Normalize object if needed. | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   return DeleteNormalizedProperty(name, mode); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DeletePropertyWithInterceptor(String* name) { | 
 |   HandleScope scope; | 
 |   Handle<InterceptorInfo> interceptor(GetNamedInterceptor()); | 
 |   Handle<String> name_handle(name); | 
 |   Handle<JSObject> this_handle(this); | 
 |   if (!interceptor->deleter()->IsUndefined()) { | 
 |     v8::NamedPropertyDeleter deleter = | 
 |         v8::ToCData<v8::NamedPropertyDeleter>(interceptor->deleter()); | 
 |     LOG(ApiNamedPropertyAccess("interceptor-named-delete", *this_handle, name)); | 
 |     CustomArguments args(interceptor->data(), this, this); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     v8::Handle<v8::Boolean> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = deleter(v8::Utils::ToLocal(name_handle), info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     if (!result.IsEmpty()) { | 
 |       ASSERT(result->IsBoolean()); | 
 |       return *v8::Utils::OpenHandle(*result); | 
 |     } | 
 |   } | 
 |   MaybeObject* raw_result = | 
 |       this_handle->DeletePropertyPostInterceptor(*name_handle, NORMAL_DELETION); | 
 |   RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |   return raw_result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DeleteElementPostInterceptor(uint32_t index, | 
 |                                                     DeleteMode mode) { | 
 |   ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       Object* obj; | 
 |       { MaybeObject* maybe_obj = EnsureWritableFastElements(); | 
 |         if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |       } | 
 |       uint32_t length = IsJSArray() ? | 
 |       static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) : | 
 |       static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
 |       if (index < length) { | 
 |         FixedArray::cast(elements())->set_the_hole(index); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       NumberDictionary* dictionary = element_dictionary(); | 
 |       int entry = dictionary->FindEntry(index); | 
 |       if (entry != NumberDictionary::kNotFound) { | 
 |         return dictionary->DeleteProperty(entry, mode); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |   return Heap::true_value(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DeleteElementWithInterceptor(uint32_t index) { | 
 |   // Make sure that the top context does not change when doing | 
 |   // callbacks or interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |   HandleScope scope; | 
 |   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); | 
 |   if (interceptor->deleter()->IsUndefined()) return Heap::false_value(); | 
 |   v8::IndexedPropertyDeleter deleter = | 
 |       v8::ToCData<v8::IndexedPropertyDeleter>(interceptor->deleter()); | 
 |   Handle<JSObject> this_handle(this); | 
 |   LOG(ApiIndexedPropertyAccess("interceptor-indexed-delete", this, index)); | 
 |   CustomArguments args(interceptor->data(), this, this); | 
 |   v8::AccessorInfo info(args.end()); | 
 |   v8::Handle<v8::Boolean> result; | 
 |   { | 
 |     // Leaving JavaScript. | 
 |     VMState state(EXTERNAL); | 
 |     result = deleter(index, info); | 
 |   } | 
 |   RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |   if (!result.IsEmpty()) { | 
 |     ASSERT(result->IsBoolean()); | 
 |     return *v8::Utils::OpenHandle(*result); | 
 |   } | 
 |   MaybeObject* raw_result = | 
 |       this_handle->DeleteElementPostInterceptor(index, NORMAL_DELETION); | 
 |   RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |   return raw_result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DeleteElement(uint32_t index, DeleteMode mode) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayIndexedAccess(this, index, v8::ACCESS_DELETE)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_DELETE); | 
 |     return Heap::false_value(); | 
 |   } | 
 |  | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return Heap::false_value(); | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSGlobalObject::cast(proto)->DeleteElement(index, mode); | 
 |   } | 
 |  | 
 |   if (HasIndexedInterceptor()) { | 
 |     // Skip interceptor if forcing deletion. | 
 |     if (mode == FORCE_DELETION) { | 
 |       return DeleteElementPostInterceptor(index, mode); | 
 |     } | 
 |     return DeleteElementWithInterceptor(index); | 
 |   } | 
 |  | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       Object* obj; | 
 |       { MaybeObject* maybe_obj = EnsureWritableFastElements(); | 
 |         if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |       } | 
 |       uint32_t length = IsJSArray() ? | 
 |       static_cast<uint32_t>(Smi::cast(JSArray::cast(this)->length())->value()) : | 
 |       static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
 |       if (index < length) { | 
 |         FixedArray::cast(elements())->set_the_hole(index); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case PIXEL_ELEMENTS: | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: | 
 |       // Pixel and external array elements cannot be deleted. Just | 
 |       // silently ignore here. | 
 |       break; | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       NumberDictionary* dictionary = element_dictionary(); | 
 |       int entry = dictionary->FindEntry(index); | 
 |       if (entry != NumberDictionary::kNotFound) { | 
 |         return dictionary->DeleteProperty(entry, mode); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |   return Heap::true_value(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DeleteProperty(String* name, DeleteMode mode) { | 
 |   // ECMA-262, 3rd, 8.6.2.5 | 
 |   ASSERT(name->IsString()); | 
 |  | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayNamedAccess(this, name, v8::ACCESS_DELETE)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_DELETE); | 
 |     return Heap::false_value(); | 
 |   } | 
 |  | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return Heap::false_value(); | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSGlobalObject::cast(proto)->DeleteProperty(name, mode); | 
 |   } | 
 |  | 
 |   uint32_t index = 0; | 
 |   if (name->AsArrayIndex(&index)) { | 
 |     return DeleteElement(index, mode); | 
 |   } else { | 
 |     LookupResult result; | 
 |     LocalLookup(name, &result); | 
 |     if (!result.IsProperty()) return Heap::true_value(); | 
 |     // Ignore attributes if forcing a deletion. | 
 |     if (result.IsDontDelete() && mode != FORCE_DELETION) { | 
 |       return Heap::false_value(); | 
 |     } | 
 |     // Check for interceptor. | 
 |     if (result.type() == INTERCEPTOR) { | 
 |       // Skip interceptor if forcing a deletion. | 
 |       if (mode == FORCE_DELETION) { | 
 |         return DeletePropertyPostInterceptor(name, mode); | 
 |       } | 
 |       return DeletePropertyWithInterceptor(name); | 
 |     } | 
 |     // Normalize object if needed. | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = | 
 |           NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |     // Make sure the properties are normalized before removing the entry. | 
 |     return DeleteNormalizedProperty(name, mode); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Check whether this object references another object. | 
 | bool JSObject::ReferencesObject(Object* obj) { | 
 |   AssertNoAllocation no_alloc; | 
 |  | 
 |   // Is the object the constructor for this object? | 
 |   if (map()->constructor() == obj) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Is the object the prototype for this object? | 
 |   if (map()->prototype() == obj) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Check if the object is among the named properties. | 
 |   Object* key = SlowReverseLookup(obj); | 
 |   if (key != Heap::undefined_value()) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Check if the object is among the indexed properties. | 
 |   switch (GetElementsKind()) { | 
 |     case PIXEL_ELEMENTS: | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: | 
 |       // Raw pixels and external arrays do not reference other | 
 |       // objects. | 
 |       break; | 
 |     case FAST_ELEMENTS: { | 
 |       int length = IsJSArray() ? | 
 |           Smi::cast(JSArray::cast(this)->length())->value() : | 
 |           FixedArray::cast(elements())->length(); | 
 |       for (int i = 0; i < length; i++) { | 
 |         Object* element = FixedArray::cast(elements())->get(i); | 
 |         if (!element->IsTheHole() && element == obj) { | 
 |           return true; | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       key = element_dictionary()->SlowReverseLookup(obj); | 
 |       if (key != Heap::undefined_value()) { | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   // For functions check the context. | 
 |   if (IsJSFunction()) { | 
 |     // Get the constructor function for arguments array. | 
 |     JSObject* arguments_boilerplate = | 
 |         Top::context()->global_context()->arguments_boilerplate(); | 
 |     JSFunction* arguments_function = | 
 |         JSFunction::cast(arguments_boilerplate->map()->constructor()); | 
 |  | 
 |     // Get the context and don't check if it is the global context. | 
 |     JSFunction* f = JSFunction::cast(this); | 
 |     Context* context = f->context(); | 
 |     if (context->IsGlobalContext()) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Check the non-special context slots. | 
 |     for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { | 
 |       // Only check JS objects. | 
 |       if (context->get(i)->IsJSObject()) { | 
 |         JSObject* ctxobj = JSObject::cast(context->get(i)); | 
 |         // If it is an arguments array check the content. | 
 |         if (ctxobj->map()->constructor() == arguments_function) { | 
 |           if (ctxobj->ReferencesObject(obj)) { | 
 |             return true; | 
 |           } | 
 |         } else if (ctxobj == obj) { | 
 |           return true; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Check the context extension if any. | 
 |     if (context->has_extension()) { | 
 |       return context->extension()->ReferencesObject(obj); | 
 |     } | 
 |   } | 
 |  | 
 |   // No references to object. | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::PreventExtensions() { | 
 |   // If there are fast elements we normalize. | 
 |   if (HasFastElements()) { | 
 |     Object* ok; | 
 |     { MaybeObject* maybe_ok = NormalizeElements(); | 
 |       if (!maybe_ok->ToObject(&ok)) return maybe_ok; | 
 |     } | 
 |   } | 
 |   // Make sure that we never go back to fast case. | 
 |   element_dictionary()->set_requires_slow_elements(); | 
 |  | 
 |   // Do a map transition, other objects with this map may still | 
 |   // be extensible. | 
 |   Object* new_map; | 
 |   { MaybeObject* maybe_new_map = map()->CopyDropTransitions(); | 
 |     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; | 
 |   } | 
 |   Map::cast(new_map)->set_is_extensible(false); | 
 |   set_map(Map::cast(new_map)); | 
 |   ASSERT(!map()->is_extensible()); | 
 |   return new_map; | 
 | } | 
 |  | 
 |  | 
 | // Tests for the fast common case for property enumeration: | 
 | // - This object and all prototypes has an enum cache (which means that it has | 
 | //   no interceptors and needs no access checks). | 
 | // - This object has no elements. | 
 | // - No prototype has enumerable properties/elements. | 
 | bool JSObject::IsSimpleEnum() { | 
 |   for (Object* o = this; | 
 |        o != Heap::null_value(); | 
 |        o = JSObject::cast(o)->GetPrototype()) { | 
 |     JSObject* curr = JSObject::cast(o); | 
 |     if (!curr->map()->instance_descriptors()->HasEnumCache()) return false; | 
 |     ASSERT(!curr->HasNamedInterceptor()); | 
 |     ASSERT(!curr->HasIndexedInterceptor()); | 
 |     ASSERT(!curr->IsAccessCheckNeeded()); | 
 |     if (curr->NumberOfEnumElements() > 0) return false; | 
 |     if (curr != this) { | 
 |       FixedArray* curr_fixed_array = | 
 |           FixedArray::cast(curr->map()->instance_descriptors()->GetEnumCache()); | 
 |       if (curr_fixed_array->length() > 0) return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | int Map::NumberOfDescribedProperties() { | 
 |   int result = 0; | 
 |   DescriptorArray* descs = instance_descriptors(); | 
 |   for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
 |     if (descs->IsProperty(i)) result++; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | int Map::PropertyIndexFor(String* name) { | 
 |   DescriptorArray* descs = instance_descriptors(); | 
 |   for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
 |     if (name->Equals(descs->GetKey(i)) && !descs->IsNullDescriptor(i)) { | 
 |       return descs->GetFieldIndex(i); | 
 |     } | 
 |   } | 
 |   return -1; | 
 | } | 
 |  | 
 |  | 
 | int Map::NextFreePropertyIndex() { | 
 |   int max_index = -1; | 
 |   DescriptorArray* descs = instance_descriptors(); | 
 |   for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
 |     if (descs->GetType(i) == FIELD) { | 
 |       int current_index = descs->GetFieldIndex(i); | 
 |       if (current_index > max_index) max_index = current_index; | 
 |     } | 
 |   } | 
 |   return max_index + 1; | 
 | } | 
 |  | 
 |  | 
 | AccessorDescriptor* Map::FindAccessor(String* name) { | 
 |   DescriptorArray* descs = instance_descriptors(); | 
 |   for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
 |     if (name->Equals(descs->GetKey(i)) && descs->GetType(i) == CALLBACKS) { | 
 |       return descs->GetCallbacks(i); | 
 |     } | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | void JSObject::LocalLookup(String* name, LookupResult* result) { | 
 |   ASSERT(name->IsString()); | 
 |  | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return result->NotFound(); | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSObject::cast(proto)->LocalLookup(name, result); | 
 |   } | 
 |  | 
 |   // Do not use inline caching if the object is a non-global object | 
 |   // that requires access checks. | 
 |   if (!IsJSGlobalProxy() && IsAccessCheckNeeded()) { | 
 |     result->DisallowCaching(); | 
 |   } | 
 |  | 
 |   // Check __proto__ before interceptor. | 
 |   if (name->Equals(Heap::Proto_symbol()) && !IsJSContextExtensionObject()) { | 
 |     result->ConstantResult(this); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check for lookup interceptor except when bootstrapping. | 
 |   if (HasNamedInterceptor() && !Bootstrapper::IsActive()) { | 
 |     result->InterceptorResult(this); | 
 |     return; | 
 |   } | 
 |  | 
 |   LocalLookupRealNamedProperty(name, result); | 
 | } | 
 |  | 
 |  | 
 | void JSObject::Lookup(String* name, LookupResult* result) { | 
 |   // Ecma-262 3rd 8.6.2.4 | 
 |   for (Object* current = this; | 
 |        current != Heap::null_value(); | 
 |        current = JSObject::cast(current)->GetPrototype()) { | 
 |     JSObject::cast(current)->LocalLookup(name, result); | 
 |     if (result->IsProperty()) return; | 
 |   } | 
 |   result->NotFound(); | 
 | } | 
 |  | 
 |  | 
 | // Search object and it's prototype chain for callback properties. | 
 | void JSObject::LookupCallback(String* name, LookupResult* result) { | 
 |   for (Object* current = this; | 
 |        current != Heap::null_value(); | 
 |        current = JSObject::cast(current)->GetPrototype()) { | 
 |     JSObject::cast(current)->LocalLookupRealNamedProperty(name, result); | 
 |     if (result->IsProperty() && result->type() == CALLBACKS) return; | 
 |   } | 
 |   result->NotFound(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DefineGetterSetter(String* name, | 
 |                                           PropertyAttributes attributes) { | 
 |   // Make sure that the top context does not change when doing callbacks or | 
 |   // interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |  | 
 |   // Try to flatten before operating on the string. | 
 |   name->TryFlatten(); | 
 |  | 
 |   if (!CanSetCallback(name)) { | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |  | 
 |   uint32_t index = 0; | 
 |   bool is_element = name->AsArrayIndex(&index); | 
 |  | 
 |   if (is_element) { | 
 |     switch (GetElementsKind()) { | 
 |       case FAST_ELEMENTS: | 
 |         break; | 
 |       case PIXEL_ELEMENTS: | 
 |       case EXTERNAL_BYTE_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |       case EXTERNAL_SHORT_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |       case EXTERNAL_INT_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |       case EXTERNAL_FLOAT_ELEMENTS: | 
 |         // Ignore getters and setters on pixel and external array | 
 |         // elements. | 
 |         return Heap::undefined_value(); | 
 |       case DICTIONARY_ELEMENTS: { | 
 |         // Lookup the index. | 
 |         NumberDictionary* dictionary = element_dictionary(); | 
 |         int entry = dictionary->FindEntry(index); | 
 |         if (entry != NumberDictionary::kNotFound) { | 
 |           Object* result = dictionary->ValueAt(entry); | 
 |           PropertyDetails details = dictionary->DetailsAt(entry); | 
 |           if (details.IsReadOnly()) return Heap::undefined_value(); | 
 |           if (details.type() == CALLBACKS) { | 
 |             if (result->IsFixedArray()) { | 
 |               return result; | 
 |             } | 
 |             // Otherwise allow to override it. | 
 |           } | 
 |         } | 
 |         break; | 
 |       } | 
 |       default: | 
 |         UNREACHABLE(); | 
 |         break; | 
 |     } | 
 |   } else { | 
 |     // Lookup the name. | 
 |     LookupResult result; | 
 |     LocalLookup(name, &result); | 
 |     if (result.IsProperty()) { | 
 |       if (result.IsReadOnly()) return Heap::undefined_value(); | 
 |       if (result.type() == CALLBACKS) { | 
 |         Object* obj = result.GetCallbackObject(); | 
 |         // Need to preserve old getters/setters. | 
 |         if (obj->IsFixedArray()) { | 
 |           // Use set to update attributes. | 
 |           return SetPropertyCallback(name, obj, attributes); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Allocate the fixed array to hold getter and setter. | 
 |   Object* structure; | 
 |   { MaybeObject* maybe_structure = Heap::AllocateFixedArray(2, TENURED); | 
 |     if (!maybe_structure->ToObject(&structure)) return maybe_structure; | 
 |   } | 
 |  | 
 |   if (is_element) { | 
 |     return SetElementCallback(index, structure, attributes); | 
 |   } else { | 
 |     return SetPropertyCallback(name, structure, attributes); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::CanSetCallback(String* name) { | 
 |   ASSERT(!IsAccessCheckNeeded() | 
 |          || Top::MayNamedAccess(this, name, v8::ACCESS_SET)); | 
 |  | 
 |   // Check if there is an API defined callback object which prohibits | 
 |   // callback overwriting in this object or it's prototype chain. | 
 |   // This mechanism is needed for instance in a browser setting, where | 
 |   // certain accessors such as window.location should not be allowed | 
 |   // to be overwritten because allowing overwriting could potentially | 
 |   // cause security problems. | 
 |   LookupResult callback_result; | 
 |   LookupCallback(name, &callback_result); | 
 |   if (callback_result.IsProperty()) { | 
 |     Object* obj = callback_result.GetCallbackObject(); | 
 |     if (obj->IsAccessorInfo() && | 
 |         AccessorInfo::cast(obj)->prohibits_overwriting()) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetElementCallback(uint32_t index, | 
 |                                           Object* structure, | 
 |                                           PropertyAttributes attributes) { | 
 |   PropertyDetails details = PropertyDetails(attributes, CALLBACKS); | 
 |  | 
 |   // Normalize elements to make this operation simple. | 
 |   Object* ok; | 
 |   { MaybeObject* maybe_ok = NormalizeElements(); | 
 |     if (!maybe_ok->ToObject(&ok)) return maybe_ok; | 
 |   } | 
 |  | 
 |   // Update the dictionary with the new CALLBACKS property. | 
 |   Object* dict; | 
 |   { MaybeObject* maybe_dict = | 
 |         element_dictionary()->Set(index, structure, details); | 
 |     if (!maybe_dict->ToObject(&dict)) return maybe_dict; | 
 |   } | 
 |  | 
 |   NumberDictionary* elements = NumberDictionary::cast(dict); | 
 |   elements->set_requires_slow_elements(); | 
 |   // Set the potential new dictionary on the object. | 
 |   set_elements(elements); | 
 |  | 
 |   return structure; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetPropertyCallback(String* name, | 
 |                                            Object* structure, | 
 |                                            PropertyAttributes attributes) { | 
 |   PropertyDetails details = PropertyDetails(attributes, CALLBACKS); | 
 |  | 
 |   bool convert_back_to_fast = HasFastProperties() && | 
 |       (map()->instance_descriptors()->number_of_descriptors() | 
 |           < DescriptorArray::kMaxNumberOfDescriptors); | 
 |  | 
 |   // Normalize object to make this operation simple. | 
 |   Object* ok; | 
 |   { MaybeObject* maybe_ok = NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0); | 
 |     if (!maybe_ok->ToObject(&ok)) return maybe_ok; | 
 |   } | 
 |  | 
 |   // For the global object allocate a new map to invalidate the global inline | 
 |   // caches which have a global property cell reference directly in the code. | 
 |   if (IsGlobalObject()) { | 
 |     Object* new_map; | 
 |     { MaybeObject* maybe_new_map = map()->CopyDropDescriptors(); | 
 |       if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; | 
 |     } | 
 |     set_map(Map::cast(new_map)); | 
 |     // When running crankshaft, changing the map is not enough. We | 
 |     // need to deoptimize all functions that rely on this global | 
 |     // object. | 
 |     Deoptimizer::DeoptimizeGlobalObject(this); | 
 |   } | 
 |  | 
 |   // Update the dictionary with the new CALLBACKS property. | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = SetNormalizedProperty(name, structure, details); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |  | 
 |   if (convert_back_to_fast) { | 
 |     { MaybeObject* maybe_ok = TransformToFastProperties(0); | 
 |       if (!maybe_ok->ToObject(&ok)) return maybe_ok; | 
 |     } | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | MaybeObject* JSObject::DefineAccessor(String* name, | 
 |                                       bool is_getter, | 
 |                                       Object* fun, | 
 |                                       PropertyAttributes attributes) { | 
 |   ASSERT(fun->IsJSFunction() || fun->IsUndefined()); | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_SET); | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |  | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return this; | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSObject::cast(proto)->DefineAccessor(name, is_getter, | 
 |                                                  fun, attributes); | 
 |   } | 
 |  | 
 |   Object* array; | 
 |   { MaybeObject* maybe_array = DefineGetterSetter(name, attributes); | 
 |     if (!maybe_array->ToObject(&array)) return maybe_array; | 
 |   } | 
 |   if (array->IsUndefined()) return array; | 
 |   FixedArray::cast(array)->set(is_getter ? 0 : 1, fun); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::DefineAccessor(AccessorInfo* info) { | 
 |   String* name = String::cast(info->name()); | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayNamedAccess(this, name, v8::ACCESS_SET)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_SET); | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |  | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return this; | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSObject::cast(proto)->DefineAccessor(info); | 
 |   } | 
 |  | 
 |   // Make sure that the top context does not change when doing callbacks or | 
 |   // interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |  | 
 |   // Try to flatten before operating on the string. | 
 |   name->TryFlatten(); | 
 |  | 
 |   if (!CanSetCallback(name)) { | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |  | 
 |   uint32_t index = 0; | 
 |   bool is_element = name->AsArrayIndex(&index); | 
 |  | 
 |   if (is_element) { | 
 |     if (IsJSArray()) return Heap::undefined_value(); | 
 |  | 
 |     // Accessors overwrite previous callbacks (cf. with getters/setters). | 
 |     switch (GetElementsKind()) { | 
 |       case FAST_ELEMENTS: | 
 |         break; | 
 |       case PIXEL_ELEMENTS: | 
 |       case EXTERNAL_BYTE_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |       case EXTERNAL_SHORT_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |       case EXTERNAL_INT_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |       case EXTERNAL_FLOAT_ELEMENTS: | 
 |         // Ignore getters and setters on pixel and external array | 
 |         // elements. | 
 |         return Heap::undefined_value(); | 
 |       case DICTIONARY_ELEMENTS: | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |         break; | 
 |     } | 
 |  | 
 |     Object* ok; | 
 |     { MaybeObject* maybe_ok = | 
 |           SetElementCallback(index, info, info->property_attributes()); | 
 |       if (!maybe_ok->ToObject(&ok)) return maybe_ok; | 
 |     } | 
 |   } else { | 
 |     // Lookup the name. | 
 |     LookupResult result; | 
 |     LocalLookup(name, &result); | 
 |     // ES5 forbids turning a property into an accessor if it's not | 
 |     // configurable (that is IsDontDelete in ES3 and v8), see 8.6.1 (Table 5). | 
 |     if (result.IsProperty() && (result.IsReadOnly() || result.IsDontDelete())) { | 
 |       return Heap::undefined_value(); | 
 |     } | 
 |     Object* ok; | 
 |     { MaybeObject* maybe_ok = | 
 |           SetPropertyCallback(name, info, info->property_attributes()); | 
 |       if (!maybe_ok->ToObject(&ok)) return maybe_ok; | 
 |     } | 
 |   } | 
 |  | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | Object* JSObject::LookupAccessor(String* name, bool is_getter) { | 
 |   // Make sure that the top context does not change when doing callbacks or | 
 |   // interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |  | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayNamedAccess(this, name, v8::ACCESS_HAS)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |  | 
 |   // Make the lookup and include prototypes. | 
 |   int accessor_index = is_getter ? kGetterIndex : kSetterIndex; | 
 |   uint32_t index = 0; | 
 |   if (name->AsArrayIndex(&index)) { | 
 |     for (Object* obj = this; | 
 |          obj != Heap::null_value(); | 
 |          obj = JSObject::cast(obj)->GetPrototype()) { | 
 |       JSObject* js_object = JSObject::cast(obj); | 
 |       if (js_object->HasDictionaryElements()) { | 
 |         NumberDictionary* dictionary = js_object->element_dictionary(); | 
 |         int entry = dictionary->FindEntry(index); | 
 |         if (entry != NumberDictionary::kNotFound) { | 
 |           Object* element = dictionary->ValueAt(entry); | 
 |           PropertyDetails details = dictionary->DetailsAt(entry); | 
 |           if (details.type() == CALLBACKS) { | 
 |             if (element->IsFixedArray()) { | 
 |               return FixedArray::cast(element)->get(accessor_index); | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } else { | 
 |     for (Object* obj = this; | 
 |          obj != Heap::null_value(); | 
 |          obj = JSObject::cast(obj)->GetPrototype()) { | 
 |       LookupResult result; | 
 |       JSObject::cast(obj)->LocalLookup(name, &result); | 
 |       if (result.IsProperty()) { | 
 |         if (result.IsReadOnly()) return Heap::undefined_value(); | 
 |         if (result.type() == CALLBACKS) { | 
 |           Object* obj = result.GetCallbackObject(); | 
 |           if (obj->IsFixedArray()) { | 
 |             return FixedArray::cast(obj)->get(accessor_index); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return Heap::undefined_value(); | 
 | } | 
 |  | 
 |  | 
 | Object* JSObject::SlowReverseLookup(Object* value) { | 
 |   if (HasFastProperties()) { | 
 |     DescriptorArray* descs = map()->instance_descriptors(); | 
 |     for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
 |       if (descs->GetType(i) == FIELD) { | 
 |         if (FastPropertyAt(descs->GetFieldIndex(i)) == value) { | 
 |           return descs->GetKey(i); | 
 |         } | 
 |       } else if (descs->GetType(i) == CONSTANT_FUNCTION) { | 
 |         if (descs->GetConstantFunction(i) == value) { | 
 |           return descs->GetKey(i); | 
 |         } | 
 |       } | 
 |     } | 
 |     return Heap::undefined_value(); | 
 |   } else { | 
 |     return property_dictionary()->SlowReverseLookup(value); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Map::CopyDropDescriptors() { | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = | 
 |         Heap::AllocateMap(instance_type(), instance_size()); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |   Map::cast(result)->set_prototype(prototype()); | 
 |   Map::cast(result)->set_constructor(constructor()); | 
 |   // Don't copy descriptors, so map transitions always remain a forest. | 
 |   // If we retained the same descriptors we would have two maps | 
 |   // pointing to the same transition which is bad because the garbage | 
 |   // collector relies on being able to reverse pointers from transitions | 
 |   // to maps.  If properties need to be retained use CopyDropTransitions. | 
 |   Map::cast(result)->set_instance_descriptors(Heap::empty_descriptor_array()); | 
 |   // Please note instance_type and instance_size are set when allocated. | 
 |   Map::cast(result)->set_inobject_properties(inobject_properties()); | 
 |   Map::cast(result)->set_unused_property_fields(unused_property_fields()); | 
 |  | 
 |   // If the map has pre-allocated properties always start out with a descriptor | 
 |   // array describing these properties. | 
 |   if (pre_allocated_property_fields() > 0) { | 
 |     ASSERT(constructor()->IsJSFunction()); | 
 |     JSFunction* ctor = JSFunction::cast(constructor()); | 
 |     Object* descriptors; | 
 |     { MaybeObject* maybe_descriptors = | 
 |           ctor->initial_map()->instance_descriptors()->RemoveTransitions(); | 
 |       if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; | 
 |     } | 
 |     Map::cast(result)->set_instance_descriptors( | 
 |         DescriptorArray::cast(descriptors)); | 
 |     Map::cast(result)->set_pre_allocated_property_fields( | 
 |         pre_allocated_property_fields()); | 
 |   } | 
 |   Map::cast(result)->set_bit_field(bit_field()); | 
 |   Map::cast(result)->set_bit_field2(bit_field2()); | 
 |   Map::cast(result)->set_is_shared(false); | 
 |   Map::cast(result)->ClearCodeCache(); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Map::CopyNormalized(PropertyNormalizationMode mode, | 
 |                                  NormalizedMapSharingMode sharing) { | 
 |   int new_instance_size = instance_size(); | 
 |   if (mode == CLEAR_INOBJECT_PROPERTIES) { | 
 |     new_instance_size -= inobject_properties() * kPointerSize; | 
 |   } | 
 |  | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = | 
 |         Heap::AllocateMap(instance_type(), new_instance_size); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |  | 
 |   if (mode != CLEAR_INOBJECT_PROPERTIES) { | 
 |     Map::cast(result)->set_inobject_properties(inobject_properties()); | 
 |   } | 
 |  | 
 |   Map::cast(result)->set_prototype(prototype()); | 
 |   Map::cast(result)->set_constructor(constructor()); | 
 |  | 
 |   Map::cast(result)->set_bit_field(bit_field()); | 
 |   Map::cast(result)->set_bit_field2(bit_field2()); | 
 |  | 
 |   Map::cast(result)->set_is_shared(sharing == SHARED_NORMALIZED_MAP); | 
 |  | 
 | #ifdef DEBUG | 
 |   if (Map::cast(result)->is_shared()) { | 
 |     Map::cast(result)->SharedMapVerify(); | 
 |   } | 
 | #endif | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Map::CopyDropTransitions() { | 
 |   Object* new_map; | 
 |   { MaybeObject* maybe_new_map = CopyDropDescriptors(); | 
 |     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; | 
 |   } | 
 |   Object* descriptors; | 
 |   { MaybeObject* maybe_descriptors = | 
 |         instance_descriptors()->RemoveTransitions(); | 
 |     if (!maybe_descriptors->ToObject(&descriptors)) return maybe_descriptors; | 
 |   } | 
 |   cast(new_map)->set_instance_descriptors(DescriptorArray::cast(descriptors)); | 
 |   return new_map; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Map::UpdateCodeCache(String* name, Code* code) { | 
 |   // Allocate the code cache if not present. | 
 |   if (code_cache()->IsFixedArray()) { | 
 |     Object* result; | 
 |     { MaybeObject* maybe_result = Heap::AllocateCodeCache(); | 
 |       if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |     } | 
 |     set_code_cache(result); | 
 |   } | 
 |  | 
 |   // Update the code cache. | 
 |   return CodeCache::cast(code_cache())->Update(name, code); | 
 | } | 
 |  | 
 |  | 
 | Object* Map::FindInCodeCache(String* name, Code::Flags flags) { | 
 |   // Do a lookup if a code cache exists. | 
 |   if (!code_cache()->IsFixedArray()) { | 
 |     return CodeCache::cast(code_cache())->Lookup(name, flags); | 
 |   } else { | 
 |     return Heap::undefined_value(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | int Map::IndexInCodeCache(Object* name, Code* code) { | 
 |   // Get the internal index if a code cache exists. | 
 |   if (!code_cache()->IsFixedArray()) { | 
 |     return CodeCache::cast(code_cache())->GetIndex(name, code); | 
 |   } | 
 |   return -1; | 
 | } | 
 |  | 
 |  | 
 | void Map::RemoveFromCodeCache(String* name, Code* code, int index) { | 
 |   // No GC is supposed to happen between a call to IndexInCodeCache and | 
 |   // RemoveFromCodeCache so the code cache must be there. | 
 |   ASSERT(!code_cache()->IsFixedArray()); | 
 |   CodeCache::cast(code_cache())->RemoveByIndex(name, code, index); | 
 | } | 
 |  | 
 |  | 
 | void Map::TraverseTransitionTree(TraverseCallback callback, void* data) { | 
 |   Map* current = this; | 
 |   while (current != Heap::meta_map()) { | 
 |     DescriptorArray* d = reinterpret_cast<DescriptorArray*>( | 
 |         *RawField(current, Map::kInstanceDescriptorsOffset)); | 
 |     if (d == Heap::empty_descriptor_array()) { | 
 |       Map* prev = current->map(); | 
 |       current->set_map(Heap::meta_map()); | 
 |       callback(current, data); | 
 |       current = prev; | 
 |       continue; | 
 |     } | 
 |  | 
 |     FixedArray* contents = reinterpret_cast<FixedArray*>( | 
 |         d->get(DescriptorArray::kContentArrayIndex)); | 
 |     Object** map_or_index_field = RawField(contents, HeapObject::kMapOffset); | 
 |     Object* map_or_index = *map_or_index_field; | 
 |     bool map_done = true; | 
 |     for (int i = map_or_index->IsSmi() ? Smi::cast(map_or_index)->value() : 0; | 
 |          i < contents->length(); | 
 |          i += 2) { | 
 |       PropertyDetails details(Smi::cast(contents->get(i + 1))); | 
 |       if (details.IsTransition()) { | 
 |         Map* next = reinterpret_cast<Map*>(contents->get(i)); | 
 |         next->set_map(current); | 
 |         *map_or_index_field = Smi::FromInt(i + 2); | 
 |         current = next; | 
 |         map_done = false; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (!map_done) continue; | 
 |     *map_or_index_field = Heap::fixed_array_map(); | 
 |     Map* prev = current->map(); | 
 |     current->set_map(Heap::meta_map()); | 
 |     callback(current, data); | 
 |     current = prev; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* CodeCache::Update(String* name, Code* code) { | 
 |   ASSERT(code->ic_state() == MONOMORPHIC); | 
 |  | 
 |   // The number of monomorphic stubs for normal load/store/call IC's can grow to | 
 |   // a large number and therefore they need to go into a hash table. They are | 
 |   // used to load global properties from cells. | 
 |   if (code->type() == NORMAL) { | 
 |     // Make sure that a hash table is allocated for the normal load code cache. | 
 |     if (normal_type_cache()->IsUndefined()) { | 
 |       Object* result; | 
 |       { MaybeObject* maybe_result = | 
 |             CodeCacheHashTable::Allocate(CodeCacheHashTable::kInitialSize); | 
 |         if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |       } | 
 |       set_normal_type_cache(result); | 
 |     } | 
 |     return UpdateNormalTypeCache(name, code); | 
 |   } else { | 
 |     ASSERT(default_cache()->IsFixedArray()); | 
 |     return UpdateDefaultCache(name, code); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* CodeCache::UpdateDefaultCache(String* name, Code* code) { | 
 |   // When updating the default code cache we disregard the type encoded in the | 
 |   // flags. This allows call constant stubs to overwrite call field | 
 |   // stubs, etc. | 
 |   Code::Flags flags = Code::RemoveTypeFromFlags(code->flags()); | 
 |  | 
 |   // First check whether we can update existing code cache without | 
 |   // extending it. | 
 |   FixedArray* cache = default_cache(); | 
 |   int length = cache->length(); | 
 |   int deleted_index = -1; | 
 |   for (int i = 0; i < length; i += kCodeCacheEntrySize) { | 
 |     Object* key = cache->get(i); | 
 |     if (key->IsNull()) { | 
 |       if (deleted_index < 0) deleted_index = i; | 
 |       continue; | 
 |     } | 
 |     if (key->IsUndefined()) { | 
 |       if (deleted_index >= 0) i = deleted_index; | 
 |       cache->set(i + kCodeCacheEntryNameOffset, name); | 
 |       cache->set(i + kCodeCacheEntryCodeOffset, code); | 
 |       return this; | 
 |     } | 
 |     if (name->Equals(String::cast(key))) { | 
 |       Code::Flags found = | 
 |           Code::cast(cache->get(i + kCodeCacheEntryCodeOffset))->flags(); | 
 |       if (Code::RemoveTypeFromFlags(found) == flags) { | 
 |         cache->set(i + kCodeCacheEntryCodeOffset, code); | 
 |         return this; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Reached the end of the code cache.  If there were deleted | 
 |   // elements, reuse the space for the first of them. | 
 |   if (deleted_index >= 0) { | 
 |     cache->set(deleted_index + kCodeCacheEntryNameOffset, name); | 
 |     cache->set(deleted_index + kCodeCacheEntryCodeOffset, code); | 
 |     return this; | 
 |   } | 
 |  | 
 |   // Extend the code cache with some new entries (at least one). Must be a | 
 |   // multiple of the entry size. | 
 |   int new_length = length + ((length >> 1)) + kCodeCacheEntrySize; | 
 |   new_length = new_length - new_length % kCodeCacheEntrySize; | 
 |   ASSERT((new_length % kCodeCacheEntrySize) == 0); | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = cache->CopySize(new_length); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |  | 
 |   // Add the (name, code) pair to the new cache. | 
 |   cache = FixedArray::cast(result); | 
 |   cache->set(length + kCodeCacheEntryNameOffset, name); | 
 |   cache->set(length + kCodeCacheEntryCodeOffset, code); | 
 |   set_default_cache(cache); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* CodeCache::UpdateNormalTypeCache(String* name, Code* code) { | 
 |   // Adding a new entry can cause a new cache to be allocated. | 
 |   CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); | 
 |   Object* new_cache; | 
 |   { MaybeObject* maybe_new_cache = cache->Put(name, code); | 
 |     if (!maybe_new_cache->ToObject(&new_cache)) return maybe_new_cache; | 
 |   } | 
 |   set_normal_type_cache(new_cache); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | Object* CodeCache::Lookup(String* name, Code::Flags flags) { | 
 |   if (Code::ExtractTypeFromFlags(flags) == NORMAL) { | 
 |     return LookupNormalTypeCache(name, flags); | 
 |   } else { | 
 |     return LookupDefaultCache(name, flags); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | Object* CodeCache::LookupDefaultCache(String* name, Code::Flags flags) { | 
 |   FixedArray* cache = default_cache(); | 
 |   int length = cache->length(); | 
 |   for (int i = 0; i < length; i += kCodeCacheEntrySize) { | 
 |     Object* key = cache->get(i + kCodeCacheEntryNameOffset); | 
 |     // Skip deleted elements. | 
 |     if (key->IsNull()) continue; | 
 |     if (key->IsUndefined()) return key; | 
 |     if (name->Equals(String::cast(key))) { | 
 |       Code* code = Code::cast(cache->get(i + kCodeCacheEntryCodeOffset)); | 
 |       if (code->flags() == flags) { | 
 |         return code; | 
 |       } | 
 |     } | 
 |   } | 
 |   return Heap::undefined_value(); | 
 | } | 
 |  | 
 |  | 
 | Object* CodeCache::LookupNormalTypeCache(String* name, Code::Flags flags) { | 
 |   if (!normal_type_cache()->IsUndefined()) { | 
 |     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); | 
 |     return cache->Lookup(name, flags); | 
 |   } else { | 
 |     return Heap::undefined_value(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | int CodeCache::GetIndex(Object* name, Code* code) { | 
 |   if (code->type() == NORMAL) { | 
 |     if (normal_type_cache()->IsUndefined()) return -1; | 
 |     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); | 
 |     return cache->GetIndex(String::cast(name), code->flags()); | 
 |   } | 
 |  | 
 |   FixedArray* array = default_cache(); | 
 |   int len = array->length(); | 
 |   for (int i = 0; i < len; i += kCodeCacheEntrySize) { | 
 |     if (array->get(i + kCodeCacheEntryCodeOffset) == code) return i + 1; | 
 |   } | 
 |   return -1; | 
 | } | 
 |  | 
 |  | 
 | void CodeCache::RemoveByIndex(Object* name, Code* code, int index) { | 
 |   if (code->type() == NORMAL) { | 
 |     ASSERT(!normal_type_cache()->IsUndefined()); | 
 |     CodeCacheHashTable* cache = CodeCacheHashTable::cast(normal_type_cache()); | 
 |     ASSERT(cache->GetIndex(String::cast(name), code->flags()) == index); | 
 |     cache->RemoveByIndex(index); | 
 |   } else { | 
 |     FixedArray* array = default_cache(); | 
 |     ASSERT(array->length() >= index && array->get(index)->IsCode()); | 
 |     // Use null instead of undefined for deleted elements to distinguish | 
 |     // deleted elements from unused elements.  This distinction is used | 
 |     // when looking up in the cache and when updating the cache. | 
 |     ASSERT_EQ(1, kCodeCacheEntryCodeOffset - kCodeCacheEntryNameOffset); | 
 |     array->set_null(index - 1);  // Name. | 
 |     array->set_null(index);  // Code. | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // The key in the code cache hash table consists of the property name and the | 
 | // code object. The actual match is on the name and the code flags. If a key | 
 | // is created using the flags and not a code object it can only be used for | 
 | // lookup not to create a new entry. | 
 | class CodeCacheHashTableKey : public HashTableKey { | 
 |  public: | 
 |   CodeCacheHashTableKey(String* name, Code::Flags flags) | 
 |       : name_(name), flags_(flags), code_(NULL) { } | 
 |  | 
 |   CodeCacheHashTableKey(String* name, Code* code) | 
 |       : name_(name), | 
 |         flags_(code->flags()), | 
 |         code_(code) { } | 
 |  | 
 |  | 
 |   bool IsMatch(Object* other) { | 
 |     if (!other->IsFixedArray()) return false; | 
 |     FixedArray* pair = FixedArray::cast(other); | 
 |     String* name = String::cast(pair->get(0)); | 
 |     Code::Flags flags = Code::cast(pair->get(1))->flags(); | 
 |     if (flags != flags_) { | 
 |       return false; | 
 |     } | 
 |     return name_->Equals(name); | 
 |   } | 
 |  | 
 |   static uint32_t NameFlagsHashHelper(String* name, Code::Flags flags) { | 
 |     return name->Hash() ^ flags; | 
 |   } | 
 |  | 
 |   uint32_t Hash() { return NameFlagsHashHelper(name_, flags_); } | 
 |  | 
 |   uint32_t HashForObject(Object* obj) { | 
 |     FixedArray* pair = FixedArray::cast(obj); | 
 |     String* name = String::cast(pair->get(0)); | 
 |     Code* code = Code::cast(pair->get(1)); | 
 |     return NameFlagsHashHelper(name, code->flags()); | 
 |   } | 
 |  | 
 |   MUST_USE_RESULT MaybeObject* AsObject() { | 
 |     ASSERT(code_ != NULL); | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = Heap::AllocateFixedArray(2); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |     FixedArray* pair = FixedArray::cast(obj); | 
 |     pair->set(0, name_); | 
 |     pair->set(1, code_); | 
 |     return pair; | 
 |   } | 
 |  | 
 |  private: | 
 |   String* name_; | 
 |   Code::Flags flags_; | 
 |   Code* code_; | 
 | }; | 
 |  | 
 |  | 
 | Object* CodeCacheHashTable::Lookup(String* name, Code::Flags flags) { | 
 |   CodeCacheHashTableKey key(name, flags); | 
 |   int entry = FindEntry(&key); | 
 |   if (entry == kNotFound) return Heap::undefined_value(); | 
 |   return get(EntryToIndex(entry) + 1); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* CodeCacheHashTable::Put(String* name, Code* code) { | 
 |   CodeCacheHashTableKey key(name, code); | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = EnsureCapacity(1, &key); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   // Don't use this, as the table might have grown. | 
 |   CodeCacheHashTable* cache = reinterpret_cast<CodeCacheHashTable*>(obj); | 
 |  | 
 |   int entry = cache->FindInsertionEntry(key.Hash()); | 
 |   Object* k; | 
 |   { MaybeObject* maybe_k = key.AsObject(); | 
 |     if (!maybe_k->ToObject(&k)) return maybe_k; | 
 |   } | 
 |  | 
 |   cache->set(EntryToIndex(entry), k); | 
 |   cache->set(EntryToIndex(entry) + 1, code); | 
 |   cache->ElementAdded(); | 
 |   return cache; | 
 | } | 
 |  | 
 |  | 
 | int CodeCacheHashTable::GetIndex(String* name, Code::Flags flags) { | 
 |   CodeCacheHashTableKey key(name, flags); | 
 |   int entry = FindEntry(&key); | 
 |   return (entry == kNotFound) ? -1 : entry; | 
 | } | 
 |  | 
 |  | 
 | void CodeCacheHashTable::RemoveByIndex(int index) { | 
 |   ASSERT(index >= 0); | 
 |   set(EntryToIndex(index), Heap::null_value()); | 
 |   set(EntryToIndex(index) + 1, Heap::null_value()); | 
 |   ElementRemoved(); | 
 | } | 
 |  | 
 |  | 
 | static bool HasKey(FixedArray* array, Object* key) { | 
 |   int len0 = array->length(); | 
 |   for (int i = 0; i < len0; i++) { | 
 |     Object* element = array->get(i); | 
 |     if (element->IsSmi() && key->IsSmi() && (element == key)) return true; | 
 |     if (element->IsString() && | 
 |         key->IsString() && String::cast(element)->Equals(String::cast(key))) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* FixedArray::AddKeysFromJSArray(JSArray* array) { | 
 |   ASSERT(!array->HasPixelElements() && !array->HasExternalArrayElements()); | 
 |   switch (array->GetElementsKind()) { | 
 |     case JSObject::FAST_ELEMENTS: | 
 |       return UnionOfKeys(FixedArray::cast(array->elements())); | 
 |     case JSObject::DICTIONARY_ELEMENTS: { | 
 |       NumberDictionary* dict = array->element_dictionary(); | 
 |       int size = dict->NumberOfElements(); | 
 |  | 
 |       // Allocate a temporary fixed array. | 
 |       Object* object; | 
 |       { MaybeObject* maybe_object = Heap::AllocateFixedArray(size); | 
 |         if (!maybe_object->ToObject(&object)) return maybe_object; | 
 |       } | 
 |       FixedArray* key_array = FixedArray::cast(object); | 
 |  | 
 |       int capacity = dict->Capacity(); | 
 |       int pos = 0; | 
 |       // Copy the elements from the JSArray to the temporary fixed array. | 
 |       for (int i = 0; i < capacity; i++) { | 
 |         if (dict->IsKey(dict->KeyAt(i))) { | 
 |           key_array->set(pos++, dict->ValueAt(i)); | 
 |         } | 
 |       } | 
 |       // Compute the union of this and the temporary fixed array. | 
 |       return UnionOfKeys(key_array); | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return Heap::null_value();  // Failure case needs to "return" a value. | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* FixedArray::UnionOfKeys(FixedArray* other) { | 
 |   int len0 = length(); | 
 | #ifdef DEBUG | 
 |   if (FLAG_enable_slow_asserts) { | 
 |     for (int i = 0; i < len0; i++) { | 
 |       ASSERT(get(i)->IsString() || get(i)->IsNumber()); | 
 |     } | 
 |   } | 
 | #endif | 
 |   int len1 = other->length(); | 
 |   // Optimize if 'other' is empty. | 
 |   // We cannot optimize if 'this' is empty, as other may have holes | 
 |   // or non keys. | 
 |   if (len1 == 0) return this; | 
 |  | 
 |   // Compute how many elements are not in this. | 
 |   int extra = 0; | 
 |   for (int y = 0; y < len1; y++) { | 
 |     Object* value = other->get(y); | 
 |     if (!value->IsTheHole() && !HasKey(this, value)) extra++; | 
 |   } | 
 |  | 
 |   if (extra == 0) return this; | 
 |  | 
 |   // Allocate the result | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = Heap::AllocateFixedArray(len0 + extra); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   // Fill in the content | 
 |   AssertNoAllocation no_gc; | 
 |   FixedArray* result = FixedArray::cast(obj); | 
 |   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); | 
 |   for (int i = 0; i < len0; i++) { | 
 |     Object* e = get(i); | 
 |     ASSERT(e->IsString() || e->IsNumber()); | 
 |     result->set(i, e, mode); | 
 |   } | 
 |   // Fill in the extra keys. | 
 |   int index = 0; | 
 |   for (int y = 0; y < len1; y++) { | 
 |     Object* value = other->get(y); | 
 |     if (!value->IsTheHole() && !HasKey(this, value)) { | 
 |       Object* e = other->get(y); | 
 |       ASSERT(e->IsString() || e->IsNumber()); | 
 |       result->set(len0 + index, e, mode); | 
 |       index++; | 
 |     } | 
 |   } | 
 |   ASSERT(extra == index); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* FixedArray::CopySize(int new_length) { | 
 |   if (new_length == 0) return Heap::empty_fixed_array(); | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = Heap::AllocateFixedArray(new_length); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   FixedArray* result = FixedArray::cast(obj); | 
 |   // Copy the content | 
 |   AssertNoAllocation no_gc; | 
 |   int len = length(); | 
 |   if (new_length < len) len = new_length; | 
 |   result->set_map(map()); | 
 |   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); | 
 |   for (int i = 0; i < len; i++) { | 
 |     result->set(i, get(i), mode); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { | 
 |   AssertNoAllocation no_gc; | 
 |   WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); | 
 |   for (int index = 0; index < len; index++) { | 
 |     dest->set(dest_pos+index, get(pos+index), mode); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | bool FixedArray::IsEqualTo(FixedArray* other) { | 
 |   if (length() != other->length()) return false; | 
 |   for (int i = 0 ; i < length(); ++i) { | 
 |     if (get(i) != other->get(i)) return false; | 
 |   } | 
 |   return true; | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | MaybeObject* DescriptorArray::Allocate(int number_of_descriptors) { | 
 |   if (number_of_descriptors == 0) { | 
 |     return Heap::empty_descriptor_array(); | 
 |   } | 
 |   // Allocate the array of keys. | 
 |   Object* array; | 
 |   { MaybeObject* maybe_array = | 
 |         Heap::AllocateFixedArray(ToKeyIndex(number_of_descriptors)); | 
 |     if (!maybe_array->ToObject(&array)) return maybe_array; | 
 |   } | 
 |   // Do not use DescriptorArray::cast on incomplete object. | 
 |   FixedArray* result = FixedArray::cast(array); | 
 |  | 
 |   // Allocate the content array and set it in the descriptor array. | 
 |   { MaybeObject* maybe_array = | 
 |         Heap::AllocateFixedArray(number_of_descriptors << 1); | 
 |     if (!maybe_array->ToObject(&array)) return maybe_array; | 
 |   } | 
 |   result->set(kContentArrayIndex, array); | 
 |   result->set(kEnumerationIndexIndex, | 
 |               Smi::FromInt(PropertyDetails::kInitialIndex)); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | void DescriptorArray::SetEnumCache(FixedArray* bridge_storage, | 
 |                                    FixedArray* new_cache) { | 
 |   ASSERT(bridge_storage->length() >= kEnumCacheBridgeLength); | 
 |   if (HasEnumCache()) { | 
 |     FixedArray::cast(get(kEnumerationIndexIndex))-> | 
 |       set(kEnumCacheBridgeCacheIndex, new_cache); | 
 |   } else { | 
 |     if (IsEmpty()) return;  // Do nothing for empty descriptor array. | 
 |     FixedArray::cast(bridge_storage)-> | 
 |       set(kEnumCacheBridgeCacheIndex, new_cache); | 
 |     fast_set(FixedArray::cast(bridge_storage), | 
 |              kEnumCacheBridgeEnumIndex, | 
 |              get(kEnumerationIndexIndex)); | 
 |     set(kEnumerationIndexIndex, bridge_storage); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* DescriptorArray::CopyInsert(Descriptor* descriptor, | 
 |                                          TransitionFlag transition_flag) { | 
 |   // Transitions are only kept when inserting another transition. | 
 |   // This precondition is not required by this function's implementation, but | 
 |   // is currently required by the semantics of maps, so we check it. | 
 |   // Conversely, we filter after replacing, so replacing a transition and | 
 |   // removing all other transitions is not supported. | 
 |   bool remove_transitions = transition_flag == REMOVE_TRANSITIONS; | 
 |   ASSERT(remove_transitions == !descriptor->GetDetails().IsTransition()); | 
 |   ASSERT(descriptor->GetDetails().type() != NULL_DESCRIPTOR); | 
 |  | 
 |   // Ensure the key is a symbol. | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = descriptor->KeyToSymbol(); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |  | 
 |   int transitions = 0; | 
 |   int null_descriptors = 0; | 
 |   if (remove_transitions) { | 
 |     for (int i = 0; i < number_of_descriptors(); i++) { | 
 |       if (IsTransition(i)) transitions++; | 
 |       if (IsNullDescriptor(i)) null_descriptors++; | 
 |     } | 
 |   } else { | 
 |     for (int i = 0; i < number_of_descriptors(); i++) { | 
 |       if (IsNullDescriptor(i)) null_descriptors++; | 
 |     } | 
 |   } | 
 |   int new_size = number_of_descriptors() - transitions - null_descriptors; | 
 |  | 
 |   // If key is in descriptor, we replace it in-place when filtering. | 
 |   // Count a null descriptor for key as inserted, not replaced. | 
 |   int index = Search(descriptor->GetKey()); | 
 |   const bool inserting = (index == kNotFound); | 
 |   const bool replacing = !inserting; | 
 |   bool keep_enumeration_index = false; | 
 |   if (inserting) { | 
 |     ++new_size; | 
 |   } | 
 |   if (replacing) { | 
 |     // We are replacing an existing descriptor.  We keep the enumeration | 
 |     // index of a visible property. | 
 |     PropertyType t = PropertyDetails(GetDetails(index)).type(); | 
 |     if (t == CONSTANT_FUNCTION || | 
 |         t == FIELD || | 
 |         t == CALLBACKS || | 
 |         t == INTERCEPTOR) { | 
 |       keep_enumeration_index = true; | 
 |     } else if (remove_transitions) { | 
 |      // Replaced descriptor has been counted as removed if it is | 
 |      // a transition that will be replaced.  Adjust count in this case. | 
 |       ++new_size; | 
 |     } | 
 |   } | 
 |   { MaybeObject* maybe_result = Allocate(new_size); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |   DescriptorArray* new_descriptors = DescriptorArray::cast(result); | 
 |   // Set the enumeration index in the descriptors and set the enumeration index | 
 |   // in the result. | 
 |   int enumeration_index = NextEnumerationIndex(); | 
 |   if (!descriptor->GetDetails().IsTransition()) { | 
 |     if (keep_enumeration_index) { | 
 |       descriptor->SetEnumerationIndex( | 
 |           PropertyDetails(GetDetails(index)).index()); | 
 |     } else { | 
 |       descriptor->SetEnumerationIndex(enumeration_index); | 
 |       ++enumeration_index; | 
 |     } | 
 |   } | 
 |   new_descriptors->SetNextEnumerationIndex(enumeration_index); | 
 |  | 
 |   // Copy the descriptors, filtering out transitions and null descriptors, | 
 |   // and inserting or replacing a descriptor. | 
 |   uint32_t descriptor_hash = descriptor->GetKey()->Hash(); | 
 |   int from_index = 0; | 
 |   int to_index = 0; | 
 |  | 
 |   for (; from_index < number_of_descriptors(); from_index++) { | 
 |     String* key = GetKey(from_index); | 
 |     if (key->Hash() > descriptor_hash || key == descriptor->GetKey()) { | 
 |       break; | 
 |     } | 
 |     if (IsNullDescriptor(from_index)) continue; | 
 |     if (remove_transitions && IsTransition(from_index)) continue; | 
 |     new_descriptors->CopyFrom(to_index++, this, from_index); | 
 |   } | 
 |  | 
 |   new_descriptors->Set(to_index++, descriptor); | 
 |   if (replacing) from_index++; | 
 |  | 
 |   for (; from_index < number_of_descriptors(); from_index++) { | 
 |     if (IsNullDescriptor(from_index)) continue; | 
 |     if (remove_transitions && IsTransition(from_index)) continue; | 
 |     new_descriptors->CopyFrom(to_index++, this, from_index); | 
 |   } | 
 |  | 
 |   ASSERT(to_index == new_descriptors->number_of_descriptors()); | 
 |   SLOW_ASSERT(new_descriptors->IsSortedNoDuplicates()); | 
 |  | 
 |   return new_descriptors; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* DescriptorArray::RemoveTransitions() { | 
 |   // Remove all transitions and null descriptors. Return a copy of the array | 
 |   // with all transitions removed, or a Failure object if the new array could | 
 |   // not be allocated. | 
 |  | 
 |   // Compute the size of the map transition entries to be removed. | 
 |   int num_removed = 0; | 
 |   for (int i = 0; i < number_of_descriptors(); i++) { | 
 |     if (!IsProperty(i)) num_removed++; | 
 |   } | 
 |  | 
 |   // Allocate the new descriptor array. | 
 |   Object* result; | 
 |   { MaybeObject* maybe_result = Allocate(number_of_descriptors() - num_removed); | 
 |     if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |   } | 
 |   DescriptorArray* new_descriptors = DescriptorArray::cast(result); | 
 |  | 
 |   // Copy the content. | 
 |   int next_descriptor = 0; | 
 |   for (int i = 0; i < number_of_descriptors(); i++) { | 
 |     if (IsProperty(i)) new_descriptors->CopyFrom(next_descriptor++, this, i); | 
 |   } | 
 |   ASSERT(next_descriptor == new_descriptors->number_of_descriptors()); | 
 |  | 
 |   return new_descriptors; | 
 | } | 
 |  | 
 |  | 
 | void DescriptorArray::SortUnchecked() { | 
 |   // In-place heap sort. | 
 |   int len = number_of_descriptors(); | 
 |  | 
 |   // Bottom-up max-heap construction. | 
 |   // Index of the last node with children | 
 |   const int max_parent_index = (len / 2) - 1; | 
 |   for (int i = max_parent_index; i >= 0; --i) { | 
 |     int parent_index = i; | 
 |     const uint32_t parent_hash = GetKey(i)->Hash(); | 
 |     while (parent_index <= max_parent_index) { | 
 |       int child_index = 2 * parent_index + 1; | 
 |       uint32_t child_hash = GetKey(child_index)->Hash(); | 
 |       if (child_index + 1 < len) { | 
 |         uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); | 
 |         if (right_child_hash > child_hash) { | 
 |           child_index++; | 
 |           child_hash = right_child_hash; | 
 |         } | 
 |       } | 
 |       if (child_hash <= parent_hash) break; | 
 |       Swap(parent_index, child_index); | 
 |       // Now element at child_index could be < its children. | 
 |       parent_index = child_index;  // parent_hash remains correct. | 
 |     } | 
 |   } | 
 |  | 
 |   // Extract elements and create sorted array. | 
 |   for (int i = len - 1; i > 0; --i) { | 
 |     // Put max element at the back of the array. | 
 |     Swap(0, i); | 
 |     // Sift down the new top element. | 
 |     int parent_index = 0; | 
 |     const uint32_t parent_hash = GetKey(parent_index)->Hash(); | 
 |     const int max_parent_index = (i / 2) - 1; | 
 |     while (parent_index <= max_parent_index) { | 
 |       int child_index = parent_index * 2 + 1; | 
 |       uint32_t child_hash = GetKey(child_index)->Hash(); | 
 |       if (child_index + 1 < i) { | 
 |         uint32_t right_child_hash = GetKey(child_index + 1)->Hash(); | 
 |         if (right_child_hash > child_hash) { | 
 |           child_index++; | 
 |           child_hash = right_child_hash; | 
 |         } | 
 |       } | 
 |       if (child_hash <= parent_hash) break; | 
 |       Swap(parent_index, child_index); | 
 |       parent_index = child_index; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void DescriptorArray::Sort() { | 
 |   SortUnchecked(); | 
 |   SLOW_ASSERT(IsSortedNoDuplicates()); | 
 | } | 
 |  | 
 |  | 
 | int DescriptorArray::BinarySearch(String* name, int low, int high) { | 
 |   uint32_t hash = name->Hash(); | 
 |  | 
 |   while (low <= high) { | 
 |     int mid = (low + high) / 2; | 
 |     String* mid_name = GetKey(mid); | 
 |     uint32_t mid_hash = mid_name->Hash(); | 
 |  | 
 |     if (mid_hash > hash) { | 
 |       high = mid - 1; | 
 |       continue; | 
 |     } | 
 |     if (mid_hash < hash) { | 
 |       low = mid + 1; | 
 |       continue; | 
 |     } | 
 |     // Found an element with the same hash-code. | 
 |     ASSERT(hash == mid_hash); | 
 |     // There might be more, so we find the first one and | 
 |     // check them all to see if we have a match. | 
 |     if (name == mid_name  && !is_null_descriptor(mid)) return mid; | 
 |     while ((mid > low) && (GetKey(mid - 1)->Hash() == hash)) mid--; | 
 |     for (; (mid <= high) && (GetKey(mid)->Hash() == hash); mid++) { | 
 |       if (GetKey(mid)->Equals(name) && !is_null_descriptor(mid)) return mid; | 
 |     } | 
 |     break; | 
 |   } | 
 |   return kNotFound; | 
 | } | 
 |  | 
 |  | 
 | int DescriptorArray::LinearSearch(String* name, int len) { | 
 |   uint32_t hash = name->Hash(); | 
 |   for (int number = 0; number < len; number++) { | 
 |     String* entry = GetKey(number); | 
 |     if ((entry->Hash() == hash) && | 
 |         name->Equals(entry) && | 
 |         !is_null_descriptor(number)) { | 
 |       return number; | 
 |     } | 
 |   } | 
 |   return kNotFound; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* DeoptimizationInputData::Allocate(int deopt_entry_count, | 
 |                                                PretenureFlag pretenure) { | 
 |   ASSERT(deopt_entry_count > 0); | 
 |   return Heap::AllocateFixedArray(LengthFor(deopt_entry_count), | 
 |                                   pretenure); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* DeoptimizationOutputData::Allocate(int number_of_deopt_points, | 
 |                                                 PretenureFlag pretenure) { | 
 |   if (number_of_deopt_points == 0) return Heap::empty_fixed_array(); | 
 |   return Heap::AllocateFixedArray(LengthOfFixedArray(number_of_deopt_points), | 
 |                                   pretenure); | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 | bool DescriptorArray::IsEqualTo(DescriptorArray* other) { | 
 |   if (IsEmpty()) return other->IsEmpty(); | 
 |   if (other->IsEmpty()) return false; | 
 |   if (length() != other->length()) return false; | 
 |   for (int i = 0; i < length(); ++i) { | 
 |     if (get(i) != other->get(i) && i != kContentArrayIndex) return false; | 
 |   } | 
 |   return GetContentArray()->IsEqualTo(other->GetContentArray()); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | static StaticResource<StringInputBuffer> string_input_buffer; | 
 |  | 
 |  | 
 | bool String::LooksValid() { | 
 |   if (!Heap::Contains(this)) return false; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | int String::Utf8Length() { | 
 |   if (IsAsciiRepresentation()) return length(); | 
 |   // Attempt to flatten before accessing the string.  It probably | 
 |   // doesn't make Utf8Length faster, but it is very likely that | 
 |   // the string will be accessed later (for example by WriteUtf8) | 
 |   // so it's still a good idea. | 
 |   TryFlatten(); | 
 |   Access<StringInputBuffer> buffer(&string_input_buffer); | 
 |   buffer->Reset(0, this); | 
 |   int result = 0; | 
 |   while (buffer->has_more()) | 
 |     result += unibrow::Utf8::Length(buffer->GetNext()); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | Vector<const char> String::ToAsciiVector() { | 
 |   ASSERT(IsAsciiRepresentation()); | 
 |   ASSERT(IsFlat()); | 
 |  | 
 |   int offset = 0; | 
 |   int length = this->length(); | 
 |   StringRepresentationTag string_tag = StringShape(this).representation_tag(); | 
 |   String* string = this; | 
 |   if (string_tag == kConsStringTag) { | 
 |     ConsString* cons = ConsString::cast(string); | 
 |     ASSERT(cons->second()->length() == 0); | 
 |     string = cons->first(); | 
 |     string_tag = StringShape(string).representation_tag(); | 
 |   } | 
 |   if (string_tag == kSeqStringTag) { | 
 |     SeqAsciiString* seq = SeqAsciiString::cast(string); | 
 |     char* start = seq->GetChars(); | 
 |     return Vector<const char>(start + offset, length); | 
 |   } | 
 |   ASSERT(string_tag == kExternalStringTag); | 
 |   ExternalAsciiString* ext = ExternalAsciiString::cast(string); | 
 |   const char* start = ext->resource()->data(); | 
 |   return Vector<const char>(start + offset, length); | 
 | } | 
 |  | 
 |  | 
 | Vector<const uc16> String::ToUC16Vector() { | 
 |   ASSERT(IsTwoByteRepresentation()); | 
 |   ASSERT(IsFlat()); | 
 |  | 
 |   int offset = 0; | 
 |   int length = this->length(); | 
 |   StringRepresentationTag string_tag = StringShape(this).representation_tag(); | 
 |   String* string = this; | 
 |   if (string_tag == kConsStringTag) { | 
 |     ConsString* cons = ConsString::cast(string); | 
 |     ASSERT(cons->second()->length() == 0); | 
 |     string = cons->first(); | 
 |     string_tag = StringShape(string).representation_tag(); | 
 |   } | 
 |   if (string_tag == kSeqStringTag) { | 
 |     SeqTwoByteString* seq = SeqTwoByteString::cast(string); | 
 |     return Vector<const uc16>(seq->GetChars() + offset, length); | 
 |   } | 
 |   ASSERT(string_tag == kExternalStringTag); | 
 |   ExternalTwoByteString* ext = ExternalTwoByteString::cast(string); | 
 |   const uc16* start = | 
 |       reinterpret_cast<const uc16*>(ext->resource()->data()); | 
 |   return Vector<const uc16>(start + offset, length); | 
 | } | 
 |  | 
 |  | 
 | SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls, | 
 |                                      RobustnessFlag robust_flag, | 
 |                                      int offset, | 
 |                                      int length, | 
 |                                      int* length_return) { | 
 |   ASSERT(NativeAllocationChecker::allocation_allowed()); | 
 |   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { | 
 |     return SmartPointer<char>(NULL); | 
 |   } | 
 |  | 
 |   // Negative length means the to the end of the string. | 
 |   if (length < 0) length = kMaxInt - offset; | 
 |  | 
 |   // Compute the size of the UTF-8 string. Start at the specified offset. | 
 |   Access<StringInputBuffer> buffer(&string_input_buffer); | 
 |   buffer->Reset(offset, this); | 
 |   int character_position = offset; | 
 |   int utf8_bytes = 0; | 
 |   while (buffer->has_more()) { | 
 |     uint16_t character = buffer->GetNext(); | 
 |     if (character_position < offset + length) { | 
 |       utf8_bytes += unibrow::Utf8::Length(character); | 
 |     } | 
 |     character_position++; | 
 |   } | 
 |  | 
 |   if (length_return) { | 
 |     *length_return = utf8_bytes; | 
 |   } | 
 |  | 
 |   char* result = NewArray<char>(utf8_bytes + 1); | 
 |  | 
 |   // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. | 
 |   buffer->Rewind(); | 
 |   buffer->Seek(offset); | 
 |   character_position = offset; | 
 |   int utf8_byte_position = 0; | 
 |   while (buffer->has_more()) { | 
 |     uint16_t character = buffer->GetNext(); | 
 |     if (character_position < offset + length) { | 
 |       if (allow_nulls == DISALLOW_NULLS && character == 0) { | 
 |         character = ' '; | 
 |       } | 
 |       utf8_byte_position += | 
 |           unibrow::Utf8::Encode(result + utf8_byte_position, character); | 
 |     } | 
 |     character_position++; | 
 |   } | 
 |   result[utf8_byte_position] = 0; | 
 |   return SmartPointer<char>(result); | 
 | } | 
 |  | 
 |  | 
 | SmartPointer<char> String::ToCString(AllowNullsFlag allow_nulls, | 
 |                                      RobustnessFlag robust_flag, | 
 |                                      int* length_return) { | 
 |   return ToCString(allow_nulls, robust_flag, 0, -1, length_return); | 
 | } | 
 |  | 
 |  | 
 | const uc16* String::GetTwoByteData() { | 
 |   return GetTwoByteData(0); | 
 | } | 
 |  | 
 |  | 
 | const uc16* String::GetTwoByteData(unsigned start) { | 
 |   ASSERT(!IsAsciiRepresentation()); | 
 |   switch (StringShape(this).representation_tag()) { | 
 |     case kSeqStringTag: | 
 |       return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); | 
 |     case kExternalStringTag: | 
 |       return ExternalTwoByteString::cast(this)-> | 
 |         ExternalTwoByteStringGetData(start); | 
 |     case kConsStringTag: | 
 |       UNREACHABLE(); | 
 |       return NULL; | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | SmartPointer<uc16> String::ToWideCString(RobustnessFlag robust_flag) { | 
 |   ASSERT(NativeAllocationChecker::allocation_allowed()); | 
 |  | 
 |   if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { | 
 |     return SmartPointer<uc16>(); | 
 |   } | 
 |  | 
 |   Access<StringInputBuffer> buffer(&string_input_buffer); | 
 |   buffer->Reset(this); | 
 |  | 
 |   uc16* result = NewArray<uc16>(length() + 1); | 
 |  | 
 |   int i = 0; | 
 |   while (buffer->has_more()) { | 
 |     uint16_t character = buffer->GetNext(); | 
 |     result[i++] = character; | 
 |   } | 
 |   result[i] = 0; | 
 |   return SmartPointer<uc16>(result); | 
 | } | 
 |  | 
 |  | 
 | const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { | 
 |   return reinterpret_cast<uc16*>( | 
 |       reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start; | 
 | } | 
 |  | 
 |  | 
 | void SeqTwoByteString::SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, | 
 |                                                            unsigned* offset_ptr, | 
 |                                                            unsigned max_chars) { | 
 |   unsigned chars_read = 0; | 
 |   unsigned offset = *offset_ptr; | 
 |   while (chars_read < max_chars) { | 
 |     uint16_t c = *reinterpret_cast<uint16_t*>( | 
 |         reinterpret_cast<char*>(this) - | 
 |             kHeapObjectTag + kHeaderSize + offset * kShortSize); | 
 |     if (c <= kMaxAsciiCharCode) { | 
 |       // Fast case for ASCII characters.   Cursor is an input output argument. | 
 |       if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, | 
 |                                                           rbb->util_buffer, | 
 |                                                           rbb->capacity, | 
 |                                                           rbb->cursor)) { | 
 |         break; | 
 |       } | 
 |     } else { | 
 |       if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, | 
 |                                                              rbb->util_buffer, | 
 |                                                              rbb->capacity, | 
 |                                                              rbb->cursor)) { | 
 |         break; | 
 |       } | 
 |     } | 
 |     offset++; | 
 |     chars_read++; | 
 |   } | 
 |   *offset_ptr = offset; | 
 |   rbb->remaining += chars_read; | 
 | } | 
 |  | 
 |  | 
 | const unibrow::byte* SeqAsciiString::SeqAsciiStringReadBlock( | 
 |     unsigned* remaining, | 
 |     unsigned* offset_ptr, | 
 |     unsigned max_chars) { | 
 |   const unibrow::byte* b = reinterpret_cast<unibrow::byte*>(this) - | 
 |       kHeapObjectTag + kHeaderSize + *offset_ptr * kCharSize; | 
 |   *remaining = max_chars; | 
 |   *offset_ptr += max_chars; | 
 |   return b; | 
 | } | 
 |  | 
 |  | 
 | // This will iterate unless the block of string data spans two 'halves' of | 
 | // a ConsString, in which case it will recurse.  Since the block of string | 
 | // data to be read has a maximum size this limits the maximum recursion | 
 | // depth to something sane.  Since C++ does not have tail call recursion | 
 | // elimination, the iteration must be explicit. Since this is not an | 
 | // -IntoBuffer method it can delegate to one of the efficient | 
 | // *AsciiStringReadBlock routines. | 
 | const unibrow::byte* ConsString::ConsStringReadBlock(ReadBlockBuffer* rbb, | 
 |                                                      unsigned* offset_ptr, | 
 |                                                      unsigned max_chars) { | 
 |   ConsString* current = this; | 
 |   unsigned offset = *offset_ptr; | 
 |   int offset_correction = 0; | 
 |  | 
 |   while (true) { | 
 |     String* left = current->first(); | 
 |     unsigned left_length = (unsigned)left->length(); | 
 |     if (left_length > offset && | 
 |         (max_chars <= left_length - offset || | 
 |          (rbb->capacity <= left_length - offset && | 
 |           (max_chars = left_length - offset, true)))) {  // comma operator! | 
 |       // Left hand side only - iterate unless we have reached the bottom of | 
 |       // the cons tree.  The assignment on the left of the comma operator is | 
 |       // in order to make use of the fact that the -IntoBuffer routines can | 
 |       // produce at most 'capacity' characters.  This enables us to postpone | 
 |       // the point where we switch to the -IntoBuffer routines (below) in order | 
 |       // to maximize the chances of delegating a big chunk of work to the | 
 |       // efficient *AsciiStringReadBlock routines. | 
 |       if (StringShape(left).IsCons()) { | 
 |         current = ConsString::cast(left); | 
 |         continue; | 
 |       } else { | 
 |         const unibrow::byte* answer = | 
 |             String::ReadBlock(left, rbb, &offset, max_chars); | 
 |         *offset_ptr = offset + offset_correction; | 
 |         return answer; | 
 |       } | 
 |     } else if (left_length <= offset) { | 
 |       // Right hand side only - iterate unless we have reached the bottom of | 
 |       // the cons tree. | 
 |       String* right = current->second(); | 
 |       offset -= left_length; | 
 |       offset_correction += left_length; | 
 |       if (StringShape(right).IsCons()) { | 
 |         current = ConsString::cast(right); | 
 |         continue; | 
 |       } else { | 
 |         const unibrow::byte* answer = | 
 |             String::ReadBlock(right, rbb, &offset, max_chars); | 
 |         *offset_ptr = offset + offset_correction; | 
 |         return answer; | 
 |       } | 
 |     } else { | 
 |       // The block to be read spans two sides of the ConsString, so we call the | 
 |       // -IntoBuffer version, which will recurse.  The -IntoBuffer methods | 
 |       // are able to assemble data from several part strings because they use | 
 |       // the util_buffer to store their data and never return direct pointers | 
 |       // to their storage.  We don't try to read more than the buffer capacity | 
 |       // here or we can get too much recursion. | 
 |       ASSERT(rbb->remaining == 0); | 
 |       ASSERT(rbb->cursor == 0); | 
 |       current->ConsStringReadBlockIntoBuffer( | 
 |           rbb, | 
 |           &offset, | 
 |           max_chars > rbb->capacity ? rbb->capacity : max_chars); | 
 |       *offset_ptr = offset + offset_correction; | 
 |       return rbb->util_buffer; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | uint16_t ExternalAsciiString::ExternalAsciiStringGet(int index) { | 
 |   ASSERT(index >= 0 && index < length()); | 
 |   return resource()->data()[index]; | 
 | } | 
 |  | 
 |  | 
 | const unibrow::byte* ExternalAsciiString::ExternalAsciiStringReadBlock( | 
 |       unsigned* remaining, | 
 |       unsigned* offset_ptr, | 
 |       unsigned max_chars) { | 
 |   // Cast const char* to unibrow::byte* (signedness difference). | 
 |   const unibrow::byte* b = | 
 |       reinterpret_cast<const unibrow::byte*>(resource()->data()) + *offset_ptr; | 
 |   *remaining = max_chars; | 
 |   *offset_ptr += max_chars; | 
 |   return b; | 
 | } | 
 |  | 
 |  | 
 | const uc16* ExternalTwoByteString::ExternalTwoByteStringGetData( | 
 |       unsigned start) { | 
 |   return resource()->data() + start; | 
 | } | 
 |  | 
 |  | 
 | uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) { | 
 |   ASSERT(index >= 0 && index < length()); | 
 |   return resource()->data()[index]; | 
 | } | 
 |  | 
 |  | 
 | void ExternalTwoByteString::ExternalTwoByteStringReadBlockIntoBuffer( | 
 |       ReadBlockBuffer* rbb, | 
 |       unsigned* offset_ptr, | 
 |       unsigned max_chars) { | 
 |   unsigned chars_read = 0; | 
 |   unsigned offset = *offset_ptr; | 
 |   const uint16_t* data = resource()->data(); | 
 |   while (chars_read < max_chars) { | 
 |     uint16_t c = data[offset]; | 
 |     if (c <= kMaxAsciiCharCode) { | 
 |       // Fast case for ASCII characters. Cursor is an input output argument. | 
 |       if (!unibrow::CharacterStream::EncodeAsciiCharacter(c, | 
 |                                                           rbb->util_buffer, | 
 |                                                           rbb->capacity, | 
 |                                                           rbb->cursor)) | 
 |         break; | 
 |     } else { | 
 |       if (!unibrow::CharacterStream::EncodeNonAsciiCharacter(c, | 
 |                                                              rbb->util_buffer, | 
 |                                                              rbb->capacity, | 
 |                                                              rbb->cursor)) | 
 |         break; | 
 |     } | 
 |     offset++; | 
 |     chars_read++; | 
 |   } | 
 |   *offset_ptr = offset; | 
 |   rbb->remaining += chars_read; | 
 | } | 
 |  | 
 |  | 
 | void SeqAsciiString::SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, | 
 |                                                  unsigned* offset_ptr, | 
 |                                                  unsigned max_chars) { | 
 |   unsigned capacity = rbb->capacity - rbb->cursor; | 
 |   if (max_chars > capacity) max_chars = capacity; | 
 |   memcpy(rbb->util_buffer + rbb->cursor, | 
 |          reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize + | 
 |              *offset_ptr * kCharSize, | 
 |          max_chars); | 
 |   rbb->remaining += max_chars; | 
 |   *offset_ptr += max_chars; | 
 |   rbb->cursor += max_chars; | 
 | } | 
 |  | 
 |  | 
 | void ExternalAsciiString::ExternalAsciiStringReadBlockIntoBuffer( | 
 |       ReadBlockBuffer* rbb, | 
 |       unsigned* offset_ptr, | 
 |       unsigned max_chars) { | 
 |   unsigned capacity = rbb->capacity - rbb->cursor; | 
 |   if (max_chars > capacity) max_chars = capacity; | 
 |   memcpy(rbb->util_buffer + rbb->cursor, | 
 |          resource()->data() + *offset_ptr, | 
 |          max_chars); | 
 |   rbb->remaining += max_chars; | 
 |   *offset_ptr += max_chars; | 
 |   rbb->cursor += max_chars; | 
 | } | 
 |  | 
 |  | 
 | // This method determines the type of string involved and then copies | 
 | // a whole chunk of characters into a buffer, or returns a pointer to a buffer | 
 | // where they can be found.  The pointer is not necessarily valid across a GC | 
 | // (see AsciiStringReadBlock). | 
 | const unibrow::byte* String::ReadBlock(String* input, | 
 |                                        ReadBlockBuffer* rbb, | 
 |                                        unsigned* offset_ptr, | 
 |                                        unsigned max_chars) { | 
 |   ASSERT(*offset_ptr <= static_cast<unsigned>(input->length())); | 
 |   if (max_chars == 0) { | 
 |     rbb->remaining = 0; | 
 |     return NULL; | 
 |   } | 
 |   switch (StringShape(input).representation_tag()) { | 
 |     case kSeqStringTag: | 
 |       if (input->IsAsciiRepresentation()) { | 
 |         SeqAsciiString* str = SeqAsciiString::cast(input); | 
 |         return str->SeqAsciiStringReadBlock(&rbb->remaining, | 
 |                                             offset_ptr, | 
 |                                             max_chars); | 
 |       } else { | 
 |         SeqTwoByteString* str = SeqTwoByteString::cast(input); | 
 |         str->SeqTwoByteStringReadBlockIntoBuffer(rbb, | 
 |                                                  offset_ptr, | 
 |                                                  max_chars); | 
 |         return rbb->util_buffer; | 
 |       } | 
 |     case kConsStringTag: | 
 |       return ConsString::cast(input)->ConsStringReadBlock(rbb, | 
 |                                                           offset_ptr, | 
 |                                                           max_chars); | 
 |     case kExternalStringTag: | 
 |       if (input->IsAsciiRepresentation()) { | 
 |         return ExternalAsciiString::cast(input)->ExternalAsciiStringReadBlock( | 
 |             &rbb->remaining, | 
 |             offset_ptr, | 
 |             max_chars); | 
 |       } else { | 
 |         ExternalTwoByteString::cast(input)-> | 
 |             ExternalTwoByteStringReadBlockIntoBuffer(rbb, | 
 |                                                      offset_ptr, | 
 |                                                      max_chars); | 
 |         return rbb->util_buffer; | 
 |       } | 
 |     default: | 
 |       break; | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | Relocatable* Relocatable::top_ = NULL; | 
 |  | 
 |  | 
 | void Relocatable::PostGarbageCollectionProcessing() { | 
 |   Relocatable* current = top_; | 
 |   while (current != NULL) { | 
 |     current->PostGarbageCollection(); | 
 |     current = current->prev_; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Reserve space for statics needing saving and restoring. | 
 | int Relocatable::ArchiveSpacePerThread() { | 
 |   return sizeof(top_); | 
 | } | 
 |  | 
 |  | 
 | // Archive statics that are thread local. | 
 | char* Relocatable::ArchiveState(char* to) { | 
 |   *reinterpret_cast<Relocatable**>(to) = top_; | 
 |   top_ = NULL; | 
 |   return to + ArchiveSpacePerThread(); | 
 | } | 
 |  | 
 |  | 
 | // Restore statics that are thread local. | 
 | char* Relocatable::RestoreState(char* from) { | 
 |   top_ = *reinterpret_cast<Relocatable**>(from); | 
 |   return from + ArchiveSpacePerThread(); | 
 | } | 
 |  | 
 |  | 
 | char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { | 
 |   Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage); | 
 |   Iterate(v, top); | 
 |   return thread_storage + ArchiveSpacePerThread(); | 
 | } | 
 |  | 
 |  | 
 | void Relocatable::Iterate(ObjectVisitor* v) { | 
 |   Iterate(v, top_); | 
 | } | 
 |  | 
 |  | 
 | void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { | 
 |   Relocatable* current = top; | 
 |   while (current != NULL) { | 
 |     current->IterateInstance(v); | 
 |     current = current->prev_; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | FlatStringReader::FlatStringReader(Handle<String> str) | 
 |     : str_(str.location()), | 
 |       length_(str->length()) { | 
 |   PostGarbageCollection(); | 
 | } | 
 |  | 
 |  | 
 | FlatStringReader::FlatStringReader(Vector<const char> input) | 
 |     : str_(0), | 
 |       is_ascii_(true), | 
 |       length_(input.length()), | 
 |       start_(input.start()) { } | 
 |  | 
 |  | 
 | void FlatStringReader::PostGarbageCollection() { | 
 |   if (str_ == NULL) return; | 
 |   Handle<String> str(str_); | 
 |   ASSERT(str->IsFlat()); | 
 |   is_ascii_ = str->IsAsciiRepresentation(); | 
 |   if (is_ascii_) { | 
 |     start_ = str->ToAsciiVector().start(); | 
 |   } else { | 
 |     start_ = str->ToUC16Vector().start(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void StringInputBuffer::Seek(unsigned pos) { | 
 |   Reset(pos, input_); | 
 | } | 
 |  | 
 |  | 
 | void SafeStringInputBuffer::Seek(unsigned pos) { | 
 |   Reset(pos, input_); | 
 | } | 
 |  | 
 |  | 
 | // This method determines the type of string involved and then copies | 
 | // a whole chunk of characters into a buffer.  It can be used with strings | 
 | // that have been glued together to form a ConsString and which must cooperate | 
 | // to fill up a buffer. | 
 | void String::ReadBlockIntoBuffer(String* input, | 
 |                                  ReadBlockBuffer* rbb, | 
 |                                  unsigned* offset_ptr, | 
 |                                  unsigned max_chars) { | 
 |   ASSERT(*offset_ptr <= (unsigned)input->length()); | 
 |   if (max_chars == 0) return; | 
 |  | 
 |   switch (StringShape(input).representation_tag()) { | 
 |     case kSeqStringTag: | 
 |       if (input->IsAsciiRepresentation()) { | 
 |         SeqAsciiString::cast(input)->SeqAsciiStringReadBlockIntoBuffer(rbb, | 
 |                                                                  offset_ptr, | 
 |                                                                  max_chars); | 
 |         return; | 
 |       } else { | 
 |         SeqTwoByteString::cast(input)->SeqTwoByteStringReadBlockIntoBuffer(rbb, | 
 |                                                                      offset_ptr, | 
 |                                                                      max_chars); | 
 |         return; | 
 |       } | 
 |     case kConsStringTag: | 
 |       ConsString::cast(input)->ConsStringReadBlockIntoBuffer(rbb, | 
 |                                                              offset_ptr, | 
 |                                                              max_chars); | 
 |       return; | 
 |     case kExternalStringTag: | 
 |       if (input->IsAsciiRepresentation()) { | 
 |         ExternalAsciiString::cast(input)-> | 
 |             ExternalAsciiStringReadBlockIntoBuffer(rbb, offset_ptr, max_chars); | 
 |       } else { | 
 |         ExternalTwoByteString::cast(input)-> | 
 |             ExternalTwoByteStringReadBlockIntoBuffer(rbb, | 
 |                                                      offset_ptr, | 
 |                                                      max_chars); | 
 |        } | 
 |        return; | 
 |     default: | 
 |       break; | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return; | 
 | } | 
 |  | 
 |  | 
 | const unibrow::byte* String::ReadBlock(String* input, | 
 |                                        unibrow::byte* util_buffer, | 
 |                                        unsigned capacity, | 
 |                                        unsigned* remaining, | 
 |                                        unsigned* offset_ptr) { | 
 |   ASSERT(*offset_ptr <= (unsigned)input->length()); | 
 |   unsigned chars = input->length() - *offset_ptr; | 
 |   ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); | 
 |   const unibrow::byte* answer = ReadBlock(input, &rbb, offset_ptr, chars); | 
 |   ASSERT(rbb.remaining <= static_cast<unsigned>(input->length())); | 
 |   *remaining = rbb.remaining; | 
 |   return answer; | 
 | } | 
 |  | 
 |  | 
 | const unibrow::byte* String::ReadBlock(String** raw_input, | 
 |                                        unibrow::byte* util_buffer, | 
 |                                        unsigned capacity, | 
 |                                        unsigned* remaining, | 
 |                                        unsigned* offset_ptr) { | 
 |   Handle<String> input(raw_input); | 
 |   ASSERT(*offset_ptr <= (unsigned)input->length()); | 
 |   unsigned chars = input->length() - *offset_ptr; | 
 |   if (chars > capacity) chars = capacity; | 
 |   ReadBlockBuffer rbb(util_buffer, 0, capacity, 0); | 
 |   ReadBlockIntoBuffer(*input, &rbb, offset_ptr, chars); | 
 |   ASSERT(rbb.remaining <= static_cast<unsigned>(input->length())); | 
 |   *remaining = rbb.remaining; | 
 |   return rbb.util_buffer; | 
 | } | 
 |  | 
 |  | 
 | // This will iterate unless the block of string data spans two 'halves' of | 
 | // a ConsString, in which case it will recurse.  Since the block of string | 
 | // data to be read has a maximum size this limits the maximum recursion | 
 | // depth to something sane.  Since C++ does not have tail call recursion | 
 | // elimination, the iteration must be explicit. | 
 | void ConsString::ConsStringReadBlockIntoBuffer(ReadBlockBuffer* rbb, | 
 |                                                unsigned* offset_ptr, | 
 |                                                unsigned max_chars) { | 
 |   ConsString* current = this; | 
 |   unsigned offset = *offset_ptr; | 
 |   int offset_correction = 0; | 
 |  | 
 |   while (true) { | 
 |     String* left = current->first(); | 
 |     unsigned left_length = (unsigned)left->length(); | 
 |     if (left_length > offset && | 
 |       max_chars <= left_length - offset) { | 
 |       // Left hand side only - iterate unless we have reached the bottom of | 
 |       // the cons tree. | 
 |       if (StringShape(left).IsCons()) { | 
 |         current = ConsString::cast(left); | 
 |         continue; | 
 |       } else { | 
 |         String::ReadBlockIntoBuffer(left, rbb, &offset, max_chars); | 
 |         *offset_ptr = offset + offset_correction; | 
 |         return; | 
 |       } | 
 |     } else if (left_length <= offset) { | 
 |       // Right hand side only - iterate unless we have reached the bottom of | 
 |       // the cons tree. | 
 |       offset -= left_length; | 
 |       offset_correction += left_length; | 
 |       String* right = current->second(); | 
 |       if (StringShape(right).IsCons()) { | 
 |         current = ConsString::cast(right); | 
 |         continue; | 
 |       } else { | 
 |         String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); | 
 |         *offset_ptr = offset + offset_correction; | 
 |         return; | 
 |       } | 
 |     } else { | 
 |       // The block to be read spans two sides of the ConsString, so we recurse. | 
 |       // First recurse on the left. | 
 |       max_chars -= left_length - offset; | 
 |       String::ReadBlockIntoBuffer(left, rbb, &offset, left_length - offset); | 
 |       // We may have reached the max or there may not have been enough space | 
 |       // in the buffer for the characters in the left hand side. | 
 |       if (offset == left_length) { | 
 |         // Recurse on the right. | 
 |         String* right = String::cast(current->second()); | 
 |         offset -= left_length; | 
 |         offset_correction += left_length; | 
 |         String::ReadBlockIntoBuffer(right, rbb, &offset, max_chars); | 
 |       } | 
 |       *offset_ptr = offset + offset_correction; | 
 |       return; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | uint16_t ConsString::ConsStringGet(int index) { | 
 |   ASSERT(index >= 0 && index < this->length()); | 
 |  | 
 |   // Check for a flattened cons string | 
 |   if (second()->length() == 0) { | 
 |     String* left = first(); | 
 |     return left->Get(index); | 
 |   } | 
 |  | 
 |   String* string = String::cast(this); | 
 |  | 
 |   while (true) { | 
 |     if (StringShape(string).IsCons()) { | 
 |       ConsString* cons_string = ConsString::cast(string); | 
 |       String* left = cons_string->first(); | 
 |       if (left->length() > index) { | 
 |         string = left; | 
 |       } else { | 
 |         index -= left->length(); | 
 |         string = cons_string->second(); | 
 |       } | 
 |     } else { | 
 |       return string->Get(index); | 
 |     } | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | template <typename sinkchar> | 
 | void String::WriteToFlat(String* src, | 
 |                          sinkchar* sink, | 
 |                          int f, | 
 |                          int t) { | 
 |   String* source = src; | 
 |   int from = f; | 
 |   int to = t; | 
 |   while (true) { | 
 |     ASSERT(0 <= from && from <= to && to <= source->length()); | 
 |     switch (StringShape(source).full_representation_tag()) { | 
 |       case kAsciiStringTag | kExternalStringTag: { | 
 |         CopyChars(sink, | 
 |                   ExternalAsciiString::cast(source)->resource()->data() + from, | 
 |                   to - from); | 
 |         return; | 
 |       } | 
 |       case kTwoByteStringTag | kExternalStringTag: { | 
 |         const uc16* data = | 
 |             ExternalTwoByteString::cast(source)->resource()->data(); | 
 |         CopyChars(sink, | 
 |                   data + from, | 
 |                   to - from); | 
 |         return; | 
 |       } | 
 |       case kAsciiStringTag | kSeqStringTag: { | 
 |         CopyChars(sink, | 
 |                   SeqAsciiString::cast(source)->GetChars() + from, | 
 |                   to - from); | 
 |         return; | 
 |       } | 
 |       case kTwoByteStringTag | kSeqStringTag: { | 
 |         CopyChars(sink, | 
 |                   SeqTwoByteString::cast(source)->GetChars() + from, | 
 |                   to - from); | 
 |         return; | 
 |       } | 
 |       case kAsciiStringTag | kConsStringTag: | 
 |       case kTwoByteStringTag | kConsStringTag: { | 
 |         ConsString* cons_string = ConsString::cast(source); | 
 |         String* first = cons_string->first(); | 
 |         int boundary = first->length(); | 
 |         if (to - boundary >= boundary - from) { | 
 |           // Right hand side is longer.  Recurse over left. | 
 |           if (from < boundary) { | 
 |             WriteToFlat(first, sink, from, boundary); | 
 |             sink += boundary - from; | 
 |             from = 0; | 
 |           } else { | 
 |             from -= boundary; | 
 |           } | 
 |           to -= boundary; | 
 |           source = cons_string->second(); | 
 |         } else { | 
 |           // Left hand side is longer.  Recurse over right. | 
 |           if (to > boundary) { | 
 |             String* second = cons_string->second(); | 
 |             WriteToFlat(second, | 
 |                         sink + boundary - from, | 
 |                         0, | 
 |                         to - boundary); | 
 |             to = boundary; | 
 |           } | 
 |           source = first; | 
 |         } | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | template <typename IteratorA, typename IteratorB> | 
 | static inline bool CompareStringContents(IteratorA* ia, IteratorB* ib) { | 
 |   // General slow case check.  We know that the ia and ib iterators | 
 |   // have the same length. | 
 |   while (ia->has_more()) { | 
 |     uc32 ca = ia->GetNext(); | 
 |     uc32 cb = ib->GetNext(); | 
 |     if (ca != cb) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | // Compares the contents of two strings by reading and comparing | 
 | // int-sized blocks of characters. | 
 | template <typename Char> | 
 | static inline bool CompareRawStringContents(Vector<Char> a, Vector<Char> b) { | 
 |   int length = a.length(); | 
 |   ASSERT_EQ(length, b.length()); | 
 |   const Char* pa = a.start(); | 
 |   const Char* pb = b.start(); | 
 |   int i = 0; | 
 | #ifndef V8_HOST_CAN_READ_UNALIGNED | 
 |   // If this architecture isn't comfortable reading unaligned ints | 
 |   // then we have to check that the strings are aligned before | 
 |   // comparing them blockwise. | 
 |   const int kAlignmentMask = sizeof(uint32_t) - 1;  // NOLINT | 
 |   uint32_t pa_addr = reinterpret_cast<uint32_t>(pa); | 
 |   uint32_t pb_addr = reinterpret_cast<uint32_t>(pb); | 
 |   if (((pa_addr & kAlignmentMask) | (pb_addr & kAlignmentMask)) == 0) { | 
 | #endif | 
 |     const int kStepSize = sizeof(int) / sizeof(Char);  // NOLINT | 
 |     int endpoint = length - kStepSize; | 
 |     // Compare blocks until we reach near the end of the string. | 
 |     for (; i <= endpoint; i += kStepSize) { | 
 |       uint32_t wa = *reinterpret_cast<const uint32_t*>(pa + i); | 
 |       uint32_t wb = *reinterpret_cast<const uint32_t*>(pb + i); | 
 |       if (wa != wb) { | 
 |         return false; | 
 |       } | 
 |     } | 
 | #ifndef V8_HOST_CAN_READ_UNALIGNED | 
 |   } | 
 | #endif | 
 |   // Compare the remaining characters that didn't fit into a block. | 
 |   for (; i < length; i++) { | 
 |     if (a[i] != b[i]) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | static StringInputBuffer string_compare_buffer_b; | 
 |  | 
 |  | 
 | template <typename IteratorA> | 
 | static inline bool CompareStringContentsPartial(IteratorA* ia, String* b) { | 
 |   if (b->IsFlat()) { | 
 |     if (b->IsAsciiRepresentation()) { | 
 |       VectorIterator<char> ib(b->ToAsciiVector()); | 
 |       return CompareStringContents(ia, &ib); | 
 |     } else { | 
 |       VectorIterator<uc16> ib(b->ToUC16Vector()); | 
 |       return CompareStringContents(ia, &ib); | 
 |     } | 
 |   } else { | 
 |     string_compare_buffer_b.Reset(0, b); | 
 |     return CompareStringContents(ia, &string_compare_buffer_b); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static StringInputBuffer string_compare_buffer_a; | 
 |  | 
 |  | 
 | bool String::SlowEquals(String* other) { | 
 |   // Fast check: negative check with lengths. | 
 |   int len = length(); | 
 |   if (len != other->length()) return false; | 
 |   if (len == 0) return true; | 
 |  | 
 |   // Fast check: if hash code is computed for both strings | 
 |   // a fast negative check can be performed. | 
 |   if (HasHashCode() && other->HasHashCode()) { | 
 |     if (Hash() != other->Hash()) return false; | 
 |   } | 
 |  | 
 |   // We know the strings are both non-empty. Compare the first chars | 
 |   // before we try to flatten the strings. | 
 |   if (this->Get(0) != other->Get(0)) return false; | 
 |  | 
 |   String* lhs = this->TryFlattenGetString(); | 
 |   String* rhs = other->TryFlattenGetString(); | 
 |  | 
 |   if (StringShape(lhs).IsSequentialAscii() && | 
 |       StringShape(rhs).IsSequentialAscii()) { | 
 |     const char* str1 = SeqAsciiString::cast(lhs)->GetChars(); | 
 |     const char* str2 = SeqAsciiString::cast(rhs)->GetChars(); | 
 |     return CompareRawStringContents(Vector<const char>(str1, len), | 
 |                                     Vector<const char>(str2, len)); | 
 |   } | 
 |  | 
 |   if (lhs->IsFlat()) { | 
 |     if (lhs->IsAsciiRepresentation()) { | 
 |       Vector<const char> vec1 = lhs->ToAsciiVector(); | 
 |       if (rhs->IsFlat()) { | 
 |         if (rhs->IsAsciiRepresentation()) { | 
 |           Vector<const char> vec2 = rhs->ToAsciiVector(); | 
 |           return CompareRawStringContents(vec1, vec2); | 
 |         } else { | 
 |           VectorIterator<char> buf1(vec1); | 
 |           VectorIterator<uc16> ib(rhs->ToUC16Vector()); | 
 |           return CompareStringContents(&buf1, &ib); | 
 |         } | 
 |       } else { | 
 |         VectorIterator<char> buf1(vec1); | 
 |         string_compare_buffer_b.Reset(0, rhs); | 
 |         return CompareStringContents(&buf1, &string_compare_buffer_b); | 
 |       } | 
 |     } else { | 
 |       Vector<const uc16> vec1 = lhs->ToUC16Vector(); | 
 |       if (rhs->IsFlat()) { | 
 |         if (rhs->IsAsciiRepresentation()) { | 
 |           VectorIterator<uc16> buf1(vec1); | 
 |           VectorIterator<char> ib(rhs->ToAsciiVector()); | 
 |           return CompareStringContents(&buf1, &ib); | 
 |         } else { | 
 |           Vector<const uc16> vec2(rhs->ToUC16Vector()); | 
 |           return CompareRawStringContents(vec1, vec2); | 
 |         } | 
 |       } else { | 
 |         VectorIterator<uc16> buf1(vec1); | 
 |         string_compare_buffer_b.Reset(0, rhs); | 
 |         return CompareStringContents(&buf1, &string_compare_buffer_b); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     string_compare_buffer_a.Reset(0, lhs); | 
 |     return CompareStringContentsPartial(&string_compare_buffer_a, rhs); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool String::MarkAsUndetectable() { | 
 |   if (StringShape(this).IsSymbol()) return false; | 
 |  | 
 |   Map* map = this->map(); | 
 |   if (map == Heap::string_map()) { | 
 |     this->set_map(Heap::undetectable_string_map()); | 
 |     return true; | 
 |   } else if (map == Heap::ascii_string_map()) { | 
 |     this->set_map(Heap::undetectable_ascii_string_map()); | 
 |     return true; | 
 |   } | 
 |   // Rest cannot be marked as undetectable | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | bool String::IsEqualTo(Vector<const char> str) { | 
 |   int slen = length(); | 
 |   Access<ScannerConstants::Utf8Decoder> | 
 |       decoder(ScannerConstants::utf8_decoder()); | 
 |   decoder->Reset(str.start(), str.length()); | 
 |   int i; | 
 |   for (i = 0; i < slen && decoder->has_more(); i++) { | 
 |     uc32 r = decoder->GetNext(); | 
 |     if (Get(i) != r) return false; | 
 |   } | 
 |   return i == slen && !decoder->has_more(); | 
 | } | 
 |  | 
 |  | 
 | bool String::IsAsciiEqualTo(Vector<const char> str) { | 
 |   int slen = length(); | 
 |   if (str.length() != slen) return false; | 
 |   for (int i = 0; i < slen; i++) { | 
 |     if (Get(i) != static_cast<uint16_t>(str[i])) return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool String::IsTwoByteEqualTo(Vector<const uc16> str) { | 
 |   int slen = length(); | 
 |   if (str.length() != slen) return false; | 
 |   for (int i = 0; i < slen; i++) { | 
 |     if (Get(i) != str[i]) return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | template <typename schar> | 
 | static inline uint32_t HashSequentialString(const schar* chars, int length) { | 
 |   StringHasher hasher(length); | 
 |   if (!hasher.has_trivial_hash()) { | 
 |     int i; | 
 |     for (i = 0; hasher.is_array_index() && (i < length); i++) { | 
 |       hasher.AddCharacter(chars[i]); | 
 |     } | 
 |     for (; i < length; i++) { | 
 |       hasher.AddCharacterNoIndex(chars[i]); | 
 |     } | 
 |   } | 
 |   return hasher.GetHashField(); | 
 | } | 
 |  | 
 |  | 
 | uint32_t String::ComputeAndSetHash() { | 
 |   // Should only be called if hash code has not yet been computed. | 
 |   ASSERT(!HasHashCode()); | 
 |  | 
 |   const int len = length(); | 
 |  | 
 |   // Compute the hash code. | 
 |   uint32_t field = 0; | 
 |   if (StringShape(this).IsSequentialAscii()) { | 
 |     field = HashSequentialString(SeqAsciiString::cast(this)->GetChars(), len); | 
 |   } else if (StringShape(this).IsSequentialTwoByte()) { | 
 |     field = HashSequentialString(SeqTwoByteString::cast(this)->GetChars(), len); | 
 |   } else { | 
 |     StringInputBuffer buffer(this); | 
 |     field = ComputeHashField(&buffer, len); | 
 |   } | 
 |  | 
 |   // Store the hash code in the object. | 
 |   set_hash_field(field); | 
 |  | 
 |   // Check the hash code is there. | 
 |   ASSERT(HasHashCode()); | 
 |   uint32_t result = field >> kHashShift; | 
 |   ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed. | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | bool String::ComputeArrayIndex(unibrow::CharacterStream* buffer, | 
 |                                uint32_t* index, | 
 |                                int length) { | 
 |   if (length == 0 || length > kMaxArrayIndexSize) return false; | 
 |   uc32 ch = buffer->GetNext(); | 
 |  | 
 |   // If the string begins with a '0' character, it must only consist | 
 |   // of it to be a legal array index. | 
 |   if (ch == '0') { | 
 |     *index = 0; | 
 |     return length == 1; | 
 |   } | 
 |  | 
 |   // Convert string to uint32 array index; character by character. | 
 |   int d = ch - '0'; | 
 |   if (d < 0 || d > 9) return false; | 
 |   uint32_t result = d; | 
 |   while (buffer->has_more()) { | 
 |     d = buffer->GetNext() - '0'; | 
 |     if (d < 0 || d > 9) return false; | 
 |     // Check that the new result is below the 32 bit limit. | 
 |     if (result > 429496729U - ((d > 5) ? 1 : 0)) return false; | 
 |     result = (result * 10) + d; | 
 |   } | 
 |  | 
 |   *index = result; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool String::SlowAsArrayIndex(uint32_t* index) { | 
 |   if (length() <= kMaxCachedArrayIndexLength) { | 
 |     Hash();  // force computation of hash code | 
 |     uint32_t field = hash_field(); | 
 |     if ((field & kIsNotArrayIndexMask) != 0) return false; | 
 |     // Isolate the array index form the full hash field. | 
 |     *index = (kArrayIndexHashMask & field) >> kHashShift; | 
 |     return true; | 
 |   } else { | 
 |     StringInputBuffer buffer(this); | 
 |     return ComputeArrayIndex(&buffer, index, length()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { | 
 |   // For array indexes mix the length into the hash as an array index could | 
 |   // be zero. | 
 |   ASSERT(length > 0); | 
 |   ASSERT(length <= String::kMaxArrayIndexSize); | 
 |   ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < | 
 |          (1 << String::kArrayIndexValueBits)); | 
 |  | 
 |   value <<= String::kHashShift; | 
 |   value |= length << String::kArrayIndexHashLengthShift; | 
 |  | 
 |   ASSERT((value & String::kIsNotArrayIndexMask) == 0); | 
 |   ASSERT((length > String::kMaxCachedArrayIndexLength) || | 
 |          (value & String::kContainsCachedArrayIndexMask) == 0); | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | uint32_t StringHasher::GetHashField() { | 
 |   ASSERT(is_valid()); | 
 |   if (length_ <= String::kMaxHashCalcLength) { | 
 |     if (is_array_index()) { | 
 |       return MakeArrayIndexHash(array_index(), length_); | 
 |     } | 
 |     return (GetHash() << String::kHashShift) | String::kIsNotArrayIndexMask; | 
 |   } else { | 
 |     return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | uint32_t String::ComputeHashField(unibrow::CharacterStream* buffer, | 
 |                                   int length) { | 
 |   StringHasher hasher(length); | 
 |  | 
 |   // Very long strings have a trivial hash that doesn't inspect the | 
 |   // string contents. | 
 |   if (hasher.has_trivial_hash()) { | 
 |     return hasher.GetHashField(); | 
 |   } | 
 |  | 
 |   // Do the iterative array index computation as long as there is a | 
 |   // chance this is an array index. | 
 |   while (buffer->has_more() && hasher.is_array_index()) { | 
 |     hasher.AddCharacter(buffer->GetNext()); | 
 |   } | 
 |  | 
 |   // Process the remaining characters without updating the array | 
 |   // index. | 
 |   while (buffer->has_more()) { | 
 |     hasher.AddCharacterNoIndex(buffer->GetNext()); | 
 |   } | 
 |  | 
 |   return hasher.GetHashField(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* String::SubString(int start, int end, PretenureFlag pretenure) { | 
 |   if (start == 0 && end == length()) return this; | 
 |   MaybeObject* result = Heap::AllocateSubString(this, start, end, pretenure); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | void String::PrintOn(FILE* file) { | 
 |   int length = this->length(); | 
 |   for (int i = 0; i < length; i++) { | 
 |     fprintf(file, "%c", Get(i)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Map::CreateBackPointers() { | 
 |   DescriptorArray* descriptors = instance_descriptors(); | 
 |   for (int i = 0; i < descriptors->number_of_descriptors(); i++) { | 
 |     if (descriptors->GetType(i) == MAP_TRANSITION || | 
 |         descriptors->GetType(i) == CONSTANT_TRANSITION) { | 
 |       // Get target. | 
 |       Map* target = Map::cast(descriptors->GetValue(i)); | 
 | #ifdef DEBUG | 
 |       // Verify target. | 
 |       Object* source_prototype = prototype(); | 
 |       Object* target_prototype = target->prototype(); | 
 |       ASSERT(source_prototype->IsJSObject() || | 
 |              source_prototype->IsMap() || | 
 |              source_prototype->IsNull()); | 
 |       ASSERT(target_prototype->IsJSObject() || | 
 |              target_prototype->IsNull()); | 
 |       ASSERT(source_prototype->IsMap() || | 
 |              source_prototype == target_prototype); | 
 | #endif | 
 |       // Point target back to source.  set_prototype() will not let us set | 
 |       // the prototype to a map, as we do here. | 
 |       *RawField(target, kPrototypeOffset) = this; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Map::ClearNonLiveTransitions(Object* real_prototype) { | 
 |   // Live DescriptorArray objects will be marked, so we must use | 
 |   // low-level accessors to get and modify their data. | 
 |   DescriptorArray* d = reinterpret_cast<DescriptorArray*>( | 
 |       *RawField(this, Map::kInstanceDescriptorsOffset)); | 
 |   if (d == Heap::raw_unchecked_empty_descriptor_array()) return; | 
 |   Smi* NullDescriptorDetails = | 
 |     PropertyDetails(NONE, NULL_DESCRIPTOR).AsSmi(); | 
 |   FixedArray* contents = reinterpret_cast<FixedArray*>( | 
 |       d->get(DescriptorArray::kContentArrayIndex)); | 
 |   ASSERT(contents->length() >= 2); | 
 |   for (int i = 0; i < contents->length(); i += 2) { | 
 |     // If the pair (value, details) is a map transition, | 
 |     // check if the target is live.  If not, null the descriptor. | 
 |     // Also drop the back pointer for that map transition, so that this | 
 |     // map is not reached again by following a back pointer from a | 
 |     // non-live object. | 
 |     PropertyDetails details(Smi::cast(contents->get(i + 1))); | 
 |     if (details.type() == MAP_TRANSITION || | 
 |         details.type() == CONSTANT_TRANSITION) { | 
 |       Map* target = reinterpret_cast<Map*>(contents->get(i)); | 
 |       ASSERT(target->IsHeapObject()); | 
 |       if (!target->IsMarked()) { | 
 |         ASSERT(target->IsMap()); | 
 |         contents->set_unchecked(i + 1, NullDescriptorDetails); | 
 |         contents->set_null_unchecked(i); | 
 |         ASSERT(target->prototype() == this || | 
 |                target->prototype() == real_prototype); | 
 |         // Getter prototype() is read-only, set_prototype() has side effects. | 
 |         *RawField(target, Map::kPrototypeOffset) = real_prototype; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void JSFunction::JSFunctionIterateBody(int object_size, ObjectVisitor* v) { | 
 |   // Iterate over all fields in the body but take care in dealing with | 
 |   // the code entry. | 
 |   IteratePointers(v, kPropertiesOffset, kCodeEntryOffset); | 
 |   v->VisitCodeEntry(this->address() + kCodeEntryOffset); | 
 |   IteratePointers(v, kCodeEntryOffset + kPointerSize, object_size); | 
 | } | 
 |  | 
 |  | 
 | void JSFunction::MarkForLazyRecompilation() { | 
 |   ASSERT(is_compiled() && !IsOptimized()); | 
 |   ASSERT(shared()->allows_lazy_compilation() || | 
 |          code()->optimizable()); | 
 |   ReplaceCode(Builtins::builtin(Builtins::LazyRecompile)); | 
 | } | 
 |  | 
 |  | 
 | uint32_t JSFunction::SourceHash() { | 
 |   uint32_t hash = 0; | 
 |   Object* script = shared()->script(); | 
 |   if (!script->IsUndefined()) { | 
 |     Object* source = Script::cast(script)->source(); | 
 |     if (source->IsUndefined()) hash = String::cast(source)->Hash(); | 
 |   } | 
 |   hash ^= ComputeIntegerHash(shared()->start_position_and_type()); | 
 |   hash += ComputeIntegerHash(shared()->end_position()); | 
 |   return hash; | 
 | } | 
 |  | 
 |  | 
 | bool JSFunction::IsInlineable() { | 
 |   if (IsBuiltin()) return false; | 
 |   // Check that the function has a script associated with it. | 
 |   if (!shared()->script()->IsScript()) return false; | 
 |   Code* code = shared()->code(); | 
 |   if (code->kind() == Code::OPTIMIZED_FUNCTION) return true; | 
 |   // If we never ran this (unlikely) then lets try to optimize it. | 
 |   if (code->kind() != Code::FUNCTION) return true; | 
 |   return code->optimizable(); | 
 | } | 
 |  | 
 |  | 
 | Object* JSFunction::SetInstancePrototype(Object* value) { | 
 |   ASSERT(value->IsJSObject()); | 
 |  | 
 |   if (has_initial_map()) { | 
 |     initial_map()->set_prototype(value); | 
 |   } else { | 
 |     // Put the value in the initial map field until an initial map is | 
 |     // needed.  At that point, a new initial map is created and the | 
 |     // prototype is put into the initial map where it belongs. | 
 |     set_prototype_or_initial_map(value); | 
 |   } | 
 |   Heap::ClearInstanceofCache(); | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSFunction::SetPrototype(Object* value) { | 
 |   ASSERT(should_have_prototype()); | 
 |   Object* construct_prototype = value; | 
 |  | 
 |   // If the value is not a JSObject, store the value in the map's | 
 |   // constructor field so it can be accessed.  Also, set the prototype | 
 |   // used for constructing objects to the original object prototype. | 
 |   // See ECMA-262 13.2.2. | 
 |   if (!value->IsJSObject()) { | 
 |     // Copy the map so this does not affect unrelated functions. | 
 |     // Remove map transitions because they point to maps with a | 
 |     // different prototype. | 
 |     Object* new_map; | 
 |     { MaybeObject* maybe_new_map = map()->CopyDropTransitions(); | 
 |       if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; | 
 |     } | 
 |     set_map(Map::cast(new_map)); | 
 |     map()->set_constructor(value); | 
 |     map()->set_non_instance_prototype(true); | 
 |     construct_prototype = | 
 |         Top::context()->global_context()->initial_object_prototype(); | 
 |   } else { | 
 |     map()->set_non_instance_prototype(false); | 
 |   } | 
 |  | 
 |   return SetInstancePrototype(construct_prototype); | 
 | } | 
 |  | 
 |  | 
 | Object* JSFunction::RemovePrototype() { | 
 |   ASSERT(map() == context()->global_context()->function_map()); | 
 |   set_map(context()->global_context()->function_without_prototype_map()); | 
 |   set_prototype_or_initial_map(Heap::the_hole_value()); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | Object* JSFunction::SetInstanceClassName(String* name) { | 
 |   shared()->set_instance_class_name(name); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | void JSFunction::PrintName(FILE* out) { | 
 |   SmartPointer<char> name = shared()->DebugName()->ToCString(); | 
 |   PrintF(out, "%s", *name); | 
 | } | 
 |  | 
 |  | 
 | Context* JSFunction::GlobalContextFromLiterals(FixedArray* literals) { | 
 |   return Context::cast(literals->get(JSFunction::kLiteralGlobalContextIndex)); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* Oddball::Initialize(const char* to_string, Object* to_number) { | 
 |   Object* symbol; | 
 |   { MaybeObject* maybe_symbol = Heap::LookupAsciiSymbol(to_string); | 
 |     if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol; | 
 |   } | 
 |   set_to_string(String::cast(symbol)); | 
 |   set_to_number(to_number); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | String* SharedFunctionInfo::DebugName() { | 
 |   Object* n = name(); | 
 |   if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name(); | 
 |   return String::cast(n); | 
 | } | 
 |  | 
 |  | 
 | bool SharedFunctionInfo::HasSourceCode() { | 
 |   return !script()->IsUndefined() && | 
 |          !reinterpret_cast<Script*>(script())->source()->IsUndefined(); | 
 | } | 
 |  | 
 |  | 
 | Object* SharedFunctionInfo::GetSourceCode() { | 
 |   if (!HasSourceCode()) return Heap::undefined_value(); | 
 |   HandleScope scope; | 
 |   Object* source = Script::cast(script())->source(); | 
 |   return *SubString(Handle<String>(String::cast(source)), | 
 |                     start_position(), end_position()); | 
 | } | 
 |  | 
 |  | 
 | int SharedFunctionInfo::SourceSize() { | 
 |   return end_position() - start_position(); | 
 | } | 
 |  | 
 |  | 
 | int SharedFunctionInfo::CalculateInstanceSize() { | 
 |   int instance_size = | 
 |       JSObject::kHeaderSize + | 
 |       expected_nof_properties() * kPointerSize; | 
 |   if (instance_size > JSObject::kMaxInstanceSize) { | 
 |     instance_size = JSObject::kMaxInstanceSize; | 
 |   } | 
 |   return instance_size; | 
 | } | 
 |  | 
 |  | 
 | int SharedFunctionInfo::CalculateInObjectProperties() { | 
 |   return (CalculateInstanceSize() - JSObject::kHeaderSize) / kPointerSize; | 
 | } | 
 |  | 
 |  | 
 | bool SharedFunctionInfo::CanGenerateInlineConstructor(Object* prototype) { | 
 |   // Check the basic conditions for generating inline constructor code. | 
 |   if (!FLAG_inline_new | 
 |       || !has_only_simple_this_property_assignments() | 
 |       || this_property_assignments_count() == 0) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // If the prototype is null inline constructors cause no problems. | 
 |   if (!prototype->IsJSObject()) { | 
 |     ASSERT(prototype->IsNull()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Traverse the proposed prototype chain looking for setters for properties of | 
 |   // the same names as are set by the inline constructor. | 
 |   for (Object* obj = prototype; | 
 |        obj != Heap::null_value(); | 
 |        obj = obj->GetPrototype()) { | 
 |     JSObject* js_object = JSObject::cast(obj); | 
 |     for (int i = 0; i < this_property_assignments_count(); i++) { | 
 |       LookupResult result; | 
 |       String* name = GetThisPropertyAssignmentName(i); | 
 |       js_object->LocalLookupRealNamedProperty(name, &result); | 
 |       if (result.IsProperty() && result.type() == CALLBACKS) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void SharedFunctionInfo::ForbidInlineConstructor() { | 
 |   set_compiler_hints(BooleanBit::set(compiler_hints(), | 
 |                                      kHasOnlySimpleThisPropertyAssignments, | 
 |                                      false)); | 
 | } | 
 |  | 
 |  | 
 | void SharedFunctionInfo::SetThisPropertyAssignmentsInfo( | 
 |     bool only_simple_this_property_assignments, | 
 |     FixedArray* assignments) { | 
 |   set_compiler_hints(BooleanBit::set(compiler_hints(), | 
 |                                      kHasOnlySimpleThisPropertyAssignments, | 
 |                                      only_simple_this_property_assignments)); | 
 |   set_this_property_assignments(assignments); | 
 |   set_this_property_assignments_count(assignments->length() / 3); | 
 | } | 
 |  | 
 |  | 
 | void SharedFunctionInfo::ClearThisPropertyAssignmentsInfo() { | 
 |   set_compiler_hints(BooleanBit::set(compiler_hints(), | 
 |                                      kHasOnlySimpleThisPropertyAssignments, | 
 |                                      false)); | 
 |   set_this_property_assignments(Heap::undefined_value()); | 
 |   set_this_property_assignments_count(0); | 
 | } | 
 |  | 
 |  | 
 | String* SharedFunctionInfo::GetThisPropertyAssignmentName(int index) { | 
 |   Object* obj = this_property_assignments(); | 
 |   ASSERT(obj->IsFixedArray()); | 
 |   ASSERT(index < this_property_assignments_count()); | 
 |   obj = FixedArray::cast(obj)->get(index * 3); | 
 |   ASSERT(obj->IsString()); | 
 |   return String::cast(obj); | 
 | } | 
 |  | 
 |  | 
 | bool SharedFunctionInfo::IsThisPropertyAssignmentArgument(int index) { | 
 |   Object* obj = this_property_assignments(); | 
 |   ASSERT(obj->IsFixedArray()); | 
 |   ASSERT(index < this_property_assignments_count()); | 
 |   obj = FixedArray::cast(obj)->get(index * 3 + 1); | 
 |   return Smi::cast(obj)->value() != -1; | 
 | } | 
 |  | 
 |  | 
 | int SharedFunctionInfo::GetThisPropertyAssignmentArgument(int index) { | 
 |   ASSERT(IsThisPropertyAssignmentArgument(index)); | 
 |   Object* obj = | 
 |       FixedArray::cast(this_property_assignments())->get(index * 3 + 1); | 
 |   return Smi::cast(obj)->value(); | 
 | } | 
 |  | 
 |  | 
 | Object* SharedFunctionInfo::GetThisPropertyAssignmentConstant(int index) { | 
 |   ASSERT(!IsThisPropertyAssignmentArgument(index)); | 
 |   Object* obj = | 
 |       FixedArray::cast(this_property_assignments())->get(index * 3 + 2); | 
 |   return obj; | 
 | } | 
 |  | 
 |  | 
 | // Support function for printing the source code to a StringStream | 
 | // without any allocation in the heap. | 
 | void SharedFunctionInfo::SourceCodePrint(StringStream* accumulator, | 
 |                                          int max_length) { | 
 |   // For some native functions there is no source. | 
 |   if (!HasSourceCode()) { | 
 |     accumulator->Add("<No Source>"); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Get the source for the script which this function came from. | 
 |   // Don't use String::cast because we don't want more assertion errors while | 
 |   // we are already creating a stack dump. | 
 |   String* script_source = | 
 |       reinterpret_cast<String*>(Script::cast(script())->source()); | 
 |  | 
 |   if (!script_source->LooksValid()) { | 
 |     accumulator->Add("<Invalid Source>"); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!is_toplevel()) { | 
 |     accumulator->Add("function "); | 
 |     Object* name = this->name(); | 
 |     if (name->IsString() && String::cast(name)->length() > 0) { | 
 |       accumulator->PrintName(name); | 
 |     } | 
 |   } | 
 |  | 
 |   int len = end_position() - start_position(); | 
 |   if (len <= max_length || max_length < 0) { | 
 |     accumulator->Put(script_source, start_position(), end_position()); | 
 |   } else { | 
 |     accumulator->Put(script_source, | 
 |                      start_position(), | 
 |                      start_position() + max_length); | 
 |     accumulator->Add("...\n"); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static bool IsCodeEquivalent(Code* code, Code* recompiled) { | 
 |   if (code->instruction_size() != recompiled->instruction_size()) return false; | 
 |   ByteArray* code_relocation = code->relocation_info(); | 
 |   ByteArray* recompiled_relocation = recompiled->relocation_info(); | 
 |   int length = code_relocation->length(); | 
 |   if (length != recompiled_relocation->length()) return false; | 
 |   int compare = memcmp(code_relocation->GetDataStartAddress(), | 
 |                        recompiled_relocation->GetDataStartAddress(), | 
 |                        length); | 
 |   return compare == 0; | 
 | } | 
 |  | 
 |  | 
 | void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) { | 
 |   ASSERT(!has_deoptimization_support()); | 
 |   AssertNoAllocation no_allocation; | 
 |   Code* code = this->code(); | 
 |   if (IsCodeEquivalent(code, recompiled)) { | 
 |     // Copy the deoptimization data from the recompiled code. | 
 |     code->set_deoptimization_data(recompiled->deoptimization_data()); | 
 |     code->set_has_deoptimization_support(true); | 
 |   } else { | 
 |     // TODO(3025757): In case the recompiled isn't equivalent to the | 
 |     // old code, we have to replace it. We should try to avoid this | 
 |     // altogether because it flushes valuable type feedback by | 
 |     // effectively resetting all IC state. | 
 |     set_code(recompiled); | 
 |   } | 
 |   ASSERT(has_deoptimization_support()); | 
 | } | 
 |  | 
 |  | 
 | bool SharedFunctionInfo::VerifyBailoutId(int id) { | 
 |   // TODO(srdjan): debugging ARM crashes in hydrogen. OK to disable while | 
 |   // we are always bailing out on ARM. | 
 |  | 
 |   ASSERT(id != AstNode::kNoNumber); | 
 |   Code* unoptimized = code(); | 
 |   DeoptimizationOutputData* data = | 
 |       DeoptimizationOutputData::cast(unoptimized->deoptimization_data()); | 
 |   unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this); | 
 |   USE(ignore); | 
 |   return true;  // Return true if there was no ASSERT. | 
 | } | 
 |  | 
 |  | 
 | void SharedFunctionInfo::StartInobjectSlackTracking(Map* map) { | 
 |   ASSERT(!IsInobjectSlackTrackingInProgress()); | 
 |  | 
 |   // Only initiate the tracking the first time. | 
 |   if (live_objects_may_exist()) return; | 
 |   set_live_objects_may_exist(true); | 
 |  | 
 |   // No tracking during the snapshot construction phase. | 
 |   if (Serializer::enabled()) return; | 
 |  | 
 |   if (map->unused_property_fields() == 0) return; | 
 |  | 
 |   // Nonzero counter is a leftover from the previous attempt interrupted | 
 |   // by GC, keep it. | 
 |   if (construction_count() == 0) { | 
 |     set_construction_count(kGenerousAllocationCount); | 
 |   } | 
 |   set_initial_map(map); | 
 |   ASSERT_EQ(Builtins::builtin(Builtins::JSConstructStubGeneric), | 
 |             construct_stub()); | 
 |   set_construct_stub(Builtins::builtin(Builtins::JSConstructStubCountdown)); | 
 | } | 
 |  | 
 |  | 
 | // Called from GC, hence reinterpret_cast and unchecked accessors. | 
 | void SharedFunctionInfo::DetachInitialMap() { | 
 |   Map* map = reinterpret_cast<Map*>(initial_map()); | 
 |  | 
 |   // Make the map remember to restore the link if it survives the GC. | 
 |   map->set_bit_field2( | 
 |       map->bit_field2() | (1 << Map::kAttachedToSharedFunctionInfo)); | 
 |  | 
 |   // Undo state changes made by StartInobjectTracking (except the | 
 |   // construction_count). This way if the initial map does not survive the GC | 
 |   // then StartInobjectTracking will be called again the next time the | 
 |   // constructor is called. The countdown will continue and (possibly after | 
 |   // several more GCs) CompleteInobjectSlackTracking will eventually be called. | 
 |   set_initial_map(Heap::raw_unchecked_undefined_value()); | 
 |   ASSERT_EQ(Builtins::builtin(Builtins::JSConstructStubCountdown), | 
 |             *RawField(this, kConstructStubOffset)); | 
 |   set_construct_stub(Builtins::builtin(Builtins::JSConstructStubGeneric)); | 
 |   // It is safe to clear the flag: it will be set again if the map is live. | 
 |   set_live_objects_may_exist(false); | 
 | } | 
 |  | 
 |  | 
 | // Called from GC, hence reinterpret_cast and unchecked accessors. | 
 | void SharedFunctionInfo::AttachInitialMap(Map* map) { | 
 |   map->set_bit_field2( | 
 |       map->bit_field2() & ~(1 << Map::kAttachedToSharedFunctionInfo)); | 
 |  | 
 |   // Resume inobject slack tracking. | 
 |   set_initial_map(map); | 
 |   ASSERT_EQ(Builtins::builtin(Builtins::JSConstructStubGeneric), | 
 |             *RawField(this, kConstructStubOffset)); | 
 |   set_construct_stub(Builtins::builtin(Builtins::JSConstructStubCountdown)); | 
 |   // The map survived the gc, so there may be objects referencing it. | 
 |   set_live_objects_may_exist(true); | 
 | } | 
 |  | 
 |  | 
 | static void GetMinInobjectSlack(Map* map, void* data) { | 
 |   int slack = map->unused_property_fields(); | 
 |   if (*reinterpret_cast<int*>(data) > slack) { | 
 |     *reinterpret_cast<int*>(data) = slack; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static void ShrinkInstanceSize(Map* map, void* data) { | 
 |   int slack = *reinterpret_cast<int*>(data); | 
 |   map->set_inobject_properties(map->inobject_properties() - slack); | 
 |   map->set_unused_property_fields(map->unused_property_fields() - slack); | 
 |   map->set_instance_size(map->instance_size() - slack * kPointerSize); | 
 |  | 
 |   // Visitor id might depend on the instance size, recalculate it. | 
 |   map->set_visitor_id(StaticVisitorBase::GetVisitorId(map)); | 
 | } | 
 |  | 
 |  | 
 | void SharedFunctionInfo::CompleteInobjectSlackTracking() { | 
 |   ASSERT(live_objects_may_exist() && IsInobjectSlackTrackingInProgress()); | 
 |   Map* map = Map::cast(initial_map()); | 
 |  | 
 |   set_initial_map(Heap::undefined_value()); | 
 |   ASSERT_EQ(Builtins::builtin(Builtins::JSConstructStubCountdown), | 
 |             construct_stub()); | 
 |   set_construct_stub(Builtins::builtin(Builtins::JSConstructStubGeneric)); | 
 |  | 
 |   int slack = map->unused_property_fields(); | 
 |   map->TraverseTransitionTree(&GetMinInobjectSlack, &slack); | 
 |   if (slack != 0) { | 
 |     // Resize the initial map and all maps in its transition tree. | 
 |     map->TraverseTransitionTree(&ShrinkInstanceSize, &slack); | 
 |     // Give the correct expected_nof_properties to initial maps created later. | 
 |     ASSERT(expected_nof_properties() >= slack); | 
 |     set_expected_nof_properties(expected_nof_properties() - slack); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) { | 
 |   ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); | 
 |   Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); | 
 |   Object* old_target = target; | 
 |   VisitPointer(&target); | 
 |   CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target. | 
 | } | 
 |  | 
 |  | 
 | void ObjectVisitor::VisitCodeEntry(Address entry_address) { | 
 |   Object* code = Code::GetObjectFromEntryAddress(entry_address); | 
 |   Object* old_code = code; | 
 |   VisitPointer(&code); | 
 |   if (code != old_code) { | 
 |     Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void ObjectVisitor::VisitGlobalPropertyCell(RelocInfo* rinfo) { | 
 |   ASSERT(rinfo->rmode() == RelocInfo::GLOBAL_PROPERTY_CELL); | 
 |   Object* cell = rinfo->target_cell(); | 
 |   Object* old_cell = cell; | 
 |   VisitPointer(&cell); | 
 |   if (cell != old_cell) { | 
 |     rinfo->set_target_cell(reinterpret_cast<JSGlobalPropertyCell*>(cell)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) { | 
 |   ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && | 
 |           rinfo->IsPatchedReturnSequence()) || | 
 |          (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && | 
 |           rinfo->IsPatchedDebugBreakSlotSequence())); | 
 |   Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); | 
 |   Object* old_target = target; | 
 |   VisitPointer(&target); | 
 |   CHECK_EQ(target, old_target);  // VisitPointer doesn't change Code* *target. | 
 | } | 
 |  | 
 |  | 
 | void Code::InvalidateRelocation() { | 
 |   HandleScope scope; | 
 |   set_relocation_info(Heap::empty_byte_array()); | 
 | } | 
 |  | 
 |  | 
 | void Code::Relocate(intptr_t delta) { | 
 |   for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) { | 
 |     it.rinfo()->apply(delta); | 
 |   } | 
 |   CPU::FlushICache(instruction_start(), instruction_size()); | 
 | } | 
 |  | 
 |  | 
 | void Code::CopyFrom(const CodeDesc& desc) { | 
 |   // copy code | 
 |   memmove(instruction_start(), desc.buffer, desc.instr_size); | 
 |  | 
 |   // copy reloc info | 
 |   memmove(relocation_start(), | 
 |           desc.buffer + desc.buffer_size - desc.reloc_size, | 
 |           desc.reloc_size); | 
 |  | 
 |   // unbox handles and relocate | 
 |   intptr_t delta = instruction_start() - desc.buffer; | 
 |   int mode_mask = RelocInfo::kCodeTargetMask | | 
 |                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | | 
 |                   RelocInfo::ModeMask(RelocInfo::GLOBAL_PROPERTY_CELL) | | 
 |                   RelocInfo::kApplyMask; | 
 |   Assembler* origin = desc.origin;  // Needed to find target_object on X64. | 
 |   for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { | 
 |     RelocInfo::Mode mode = it.rinfo()->rmode(); | 
 |     if (mode == RelocInfo::EMBEDDED_OBJECT) { | 
 |       Handle<Object> p = it.rinfo()->target_object_handle(origin); | 
 |       it.rinfo()->set_target_object(*p); | 
 |     } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) { | 
 |       Handle<JSGlobalPropertyCell> cell  = it.rinfo()->target_cell_handle(); | 
 |       it.rinfo()->set_target_cell(*cell); | 
 |     } else if (RelocInfo::IsCodeTarget(mode)) { | 
 |       // rewrite code handles in inline cache targets to direct | 
 |       // pointers to the first instruction in the code object | 
 |       Handle<Object> p = it.rinfo()->target_object_handle(origin); | 
 |       Code* code = Code::cast(*p); | 
 |       it.rinfo()->set_target_address(code->instruction_start()); | 
 |     } else { | 
 |       it.rinfo()->apply(delta); | 
 |     } | 
 |   } | 
 |   CPU::FlushICache(instruction_start(), instruction_size()); | 
 | } | 
 |  | 
 |  | 
 | // Locate the source position which is closest to the address in the code. This | 
 | // is using the source position information embedded in the relocation info. | 
 | // The position returned is relative to the beginning of the script where the | 
 | // source for this function is found. | 
 | int Code::SourcePosition(Address pc) { | 
 |   int distance = kMaxInt; | 
 |   int position = RelocInfo::kNoPosition;  // Initially no position found. | 
 |   // Run through all the relocation info to find the best matching source | 
 |   // position. All the code needs to be considered as the sequence of the | 
 |   // instructions in the code does not necessarily follow the same order as the | 
 |   // source. | 
 |   RelocIterator it(this, RelocInfo::kPositionMask); | 
 |   while (!it.done()) { | 
 |     // Only look at positions after the current pc. | 
 |     if (it.rinfo()->pc() < pc) { | 
 |       // Get position and distance. | 
 |  | 
 |       int dist = static_cast<int>(pc - it.rinfo()->pc()); | 
 |       int pos = static_cast<int>(it.rinfo()->data()); | 
 |       // If this position is closer than the current candidate or if it has the | 
 |       // same distance as the current candidate and the position is higher then | 
 |       // this position is the new candidate. | 
 |       if ((dist < distance) || | 
 |           (dist == distance && pos > position)) { | 
 |         position = pos; | 
 |         distance = dist; | 
 |       } | 
 |     } | 
 |     it.next(); | 
 |   } | 
 |   return position; | 
 | } | 
 |  | 
 |  | 
 | // Same as Code::SourcePosition above except it only looks for statement | 
 | // positions. | 
 | int Code::SourceStatementPosition(Address pc) { | 
 |   // First find the position as close as possible using all position | 
 |   // information. | 
 |   int position = SourcePosition(pc); | 
 |   // Now find the closest statement position before the position. | 
 |   int statement_position = 0; | 
 |   RelocIterator it(this, RelocInfo::kPositionMask); | 
 |   while (!it.done()) { | 
 |     if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) { | 
 |       int p = static_cast<int>(it.rinfo()->data()); | 
 |       if (statement_position < p && p <= position) { | 
 |         statement_position = p; | 
 |       } | 
 |     } | 
 |     it.next(); | 
 |   } | 
 |   return statement_position; | 
 | } | 
 |  | 
 |  | 
 | SafepointEntry Code::GetSafepointEntry(Address pc) { | 
 |   SafepointTable table(this); | 
 |   return table.FindEntry(pc); | 
 | } | 
 |  | 
 |  | 
 | void Code::SetNoStackCheckTable() { | 
 |   // Indicate the absence of a stack-check table by a table start after the | 
 |   // end of the instructions.  Table start must be aligned, so round up. | 
 |   set_stack_check_table_start(RoundUp(instruction_size(), kIntSize)); | 
 | } | 
 |  | 
 |  | 
 | Map* Code::FindFirstMap() { | 
 |   ASSERT(is_inline_cache_stub()); | 
 |   AssertNoAllocation no_allocation; | 
 |   int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); | 
 |   for (RelocIterator it(this, mask); !it.done(); it.next()) { | 
 |     RelocInfo* info = it.rinfo(); | 
 |     Object* object = info->target_object(); | 
 |     if (object->IsMap()) return Map::cast(object); | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | #ifdef ENABLE_DISASSEMBLER | 
 |  | 
 | #ifdef OBJECT_PRINT | 
 |  | 
 | void DeoptimizationInputData::DeoptimizationInputDataPrint(FILE* out) { | 
 |   disasm::NameConverter converter; | 
 |   int deopt_count = DeoptCount(); | 
 |   PrintF(out, "Deoptimization Input Data (deopt points = %d)\n", deopt_count); | 
 |   if (0 == deopt_count) return; | 
 |  | 
 |   PrintF(out, "%6s  %6s  %6s  %12s\n", "index", "ast id", "argc", "commands"); | 
 |   for (int i = 0; i < deopt_count; i++) { | 
 |     int command_count = 0; | 
 |     PrintF(out, "%6d  %6d  %6d", | 
 |            i, AstId(i)->value(), ArgumentsStackHeight(i)->value()); | 
 |     int translation_index = TranslationIndex(i)->value(); | 
 |     TranslationIterator iterator(TranslationByteArray(), translation_index); | 
 |     Translation::Opcode opcode = | 
 |         static_cast<Translation::Opcode>(iterator.Next()); | 
 |     ASSERT(Translation::BEGIN == opcode); | 
 |     int frame_count = iterator.Next(); | 
 |     if (FLAG_print_code_verbose) { | 
 |       PrintF(out, "  %s {count=%d}\n", Translation::StringFor(opcode), | 
 |              frame_count); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < frame_count; ++i) { | 
 |       opcode = static_cast<Translation::Opcode>(iterator.Next()); | 
 |       ASSERT(Translation::FRAME == opcode); | 
 |       int ast_id = iterator.Next(); | 
 |       int function_id = iterator.Next(); | 
 |       JSFunction* function = | 
 |           JSFunction::cast(LiteralArray()->get(function_id)); | 
 |       unsigned height = iterator.Next(); | 
 |       if (FLAG_print_code_verbose) { | 
 |         PrintF(out, "%24s  %s {ast_id=%d, function=", | 
 |                "", Translation::StringFor(opcode), ast_id); | 
 |         function->PrintName(out); | 
 |         PrintF(out, ", height=%u}\n", height); | 
 |       } | 
 |  | 
 |       // Size of translation is height plus all incoming arguments including | 
 |       // receiver. | 
 |       int size = height + function->shared()->formal_parameter_count() + 1; | 
 |       command_count += size; | 
 |       for (int j = 0; j < size; ++j) { | 
 |         opcode = static_cast<Translation::Opcode>(iterator.Next()); | 
 |         if (FLAG_print_code_verbose) { | 
 |           PrintF(out, "%24s    %s ", "", Translation::StringFor(opcode)); | 
 |         } | 
 |  | 
 |         if (opcode == Translation::DUPLICATE) { | 
 |           opcode = static_cast<Translation::Opcode>(iterator.Next()); | 
 |           if (FLAG_print_code_verbose) { | 
 |             PrintF(out, "%s ", Translation::StringFor(opcode)); | 
 |           } | 
 |           --j;  // Two commands share the same frame index. | 
 |         } | 
 |  | 
 |         switch (opcode) { | 
 |           case Translation::BEGIN: | 
 |           case Translation::FRAME: | 
 |           case Translation::DUPLICATE: | 
 |             UNREACHABLE(); | 
 |             break; | 
 |  | 
 |           case Translation::REGISTER: { | 
 |             int reg_code = iterator.Next(); | 
 |             if (FLAG_print_code_verbose)  { | 
 |               PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code)); | 
 |             } | 
 |             break; | 
 |           } | 
 |  | 
 |           case Translation::INT32_REGISTER: { | 
 |             int reg_code = iterator.Next(); | 
 |             if (FLAG_print_code_verbose)  { | 
 |               PrintF(out, "{input=%s}", converter.NameOfCPURegister(reg_code)); | 
 |             } | 
 |             break; | 
 |           } | 
 |  | 
 |           case Translation::DOUBLE_REGISTER: { | 
 |             int reg_code = iterator.Next(); | 
 |             if (FLAG_print_code_verbose)  { | 
 |               PrintF(out, "{input=%s}", | 
 |                      DoubleRegister::AllocationIndexToString(reg_code)); | 
 |             } | 
 |             break; | 
 |           } | 
 |  | 
 |           case Translation::STACK_SLOT: { | 
 |             int input_slot_index = iterator.Next(); | 
 |             if (FLAG_print_code_verbose)  { | 
 |               PrintF(out, "{input=%d}", input_slot_index); | 
 |             } | 
 |             break; | 
 |           } | 
 |  | 
 |           case Translation::INT32_STACK_SLOT: { | 
 |             int input_slot_index = iterator.Next(); | 
 |             if (FLAG_print_code_verbose)  { | 
 |               PrintF(out, "{input=%d}", input_slot_index); | 
 |             } | 
 |             break; | 
 |           } | 
 |  | 
 |           case Translation::DOUBLE_STACK_SLOT: { | 
 |             int input_slot_index = iterator.Next(); | 
 |             if (FLAG_print_code_verbose)  { | 
 |               PrintF(out, "{input=%d}", input_slot_index); | 
 |             } | 
 |             break; | 
 |           } | 
 |  | 
 |           case Translation::LITERAL: { | 
 |             unsigned literal_index = iterator.Next(); | 
 |             if (FLAG_print_code_verbose)  { | 
 |               PrintF(out, "{literal_id=%u}", literal_index); | 
 |             } | 
 |             break; | 
 |           } | 
 |  | 
 |           case Translation::ARGUMENTS_OBJECT: | 
 |             break; | 
 |         } | 
 |         if (FLAG_print_code_verbose) PrintF(out, "\n"); | 
 |       } | 
 |     } | 
 |     if (!FLAG_print_code_verbose) PrintF(out, "  %12d\n", command_count); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void DeoptimizationOutputData::DeoptimizationOutputDataPrint(FILE* out) { | 
 |   PrintF(out, "Deoptimization Output Data (deopt points = %d)\n", | 
 |          this->DeoptPoints()); | 
 |   if (this->DeoptPoints() == 0) return; | 
 |  | 
 |   PrintF("%6s  %8s  %s\n", "ast id", "pc", "state"); | 
 |   for (int i = 0; i < this->DeoptPoints(); i++) { | 
 |     int pc_and_state = this->PcAndState(i)->value(); | 
 |     PrintF("%6d  %8d  %s\n", | 
 |            this->AstId(i)->value(), | 
 |            FullCodeGenerator::PcField::decode(pc_and_state), | 
 |            FullCodeGenerator::State2String( | 
 |                FullCodeGenerator::StateField::decode(pc_and_state))); | 
 |   } | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 |  | 
 | // Identify kind of code. | 
 | const char* Code::Kind2String(Kind kind) { | 
 |   switch (kind) { | 
 |     case FUNCTION: return "FUNCTION"; | 
 |     case OPTIMIZED_FUNCTION: return "OPTIMIZED_FUNCTION"; | 
 |     case STUB: return "STUB"; | 
 |     case BUILTIN: return "BUILTIN"; | 
 |     case LOAD_IC: return "LOAD_IC"; | 
 |     case KEYED_LOAD_IC: return "KEYED_LOAD_IC"; | 
 |     case STORE_IC: return "STORE_IC"; | 
 |     case KEYED_STORE_IC: return "KEYED_STORE_IC"; | 
 |     case CALL_IC: return "CALL_IC"; | 
 |     case KEYED_CALL_IC: return "KEYED_CALL_IC"; | 
 |     case BINARY_OP_IC: return "BINARY_OP_IC"; | 
 |     case TYPE_RECORDING_BINARY_OP_IC: return "TYPE_RECORDING_BINARY_OP_IC"; | 
 |     case COMPARE_IC: return "COMPARE_IC"; | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | const char* Code::ICState2String(InlineCacheState state) { | 
 |   switch (state) { | 
 |     case UNINITIALIZED: return "UNINITIALIZED"; | 
 |     case PREMONOMORPHIC: return "PREMONOMORPHIC"; | 
 |     case MONOMORPHIC: return "MONOMORPHIC"; | 
 |     case MONOMORPHIC_PROTOTYPE_FAILURE: return "MONOMORPHIC_PROTOTYPE_FAILURE"; | 
 |     case MEGAMORPHIC: return "MEGAMORPHIC"; | 
 |     case DEBUG_BREAK: return "DEBUG_BREAK"; | 
 |     case DEBUG_PREPARE_STEP_IN: return "DEBUG_PREPARE_STEP_IN"; | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | const char* Code::PropertyType2String(PropertyType type) { | 
 |   switch (type) { | 
 |     case NORMAL: return "NORMAL"; | 
 |     case FIELD: return "FIELD"; | 
 |     case CONSTANT_FUNCTION: return "CONSTANT_FUNCTION"; | 
 |     case CALLBACKS: return "CALLBACKS"; | 
 |     case INTERCEPTOR: return "INTERCEPTOR"; | 
 |     case MAP_TRANSITION: return "MAP_TRANSITION"; | 
 |     case CONSTANT_TRANSITION: return "CONSTANT_TRANSITION"; | 
 |     case NULL_DESCRIPTOR: return "NULL_DESCRIPTOR"; | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | void Code::Disassemble(const char* name, FILE* out) { | 
 |   PrintF(out, "kind = %s\n", Kind2String(kind())); | 
 |   if (is_inline_cache_stub()) { | 
 |     PrintF(out, "ic_state = %s\n", ICState2String(ic_state())); | 
 |     PrintF(out, "ic_in_loop = %d\n", ic_in_loop() == IN_LOOP); | 
 |     if (ic_state() == MONOMORPHIC) { | 
 |       PrintF(out, "type = %s\n", PropertyType2String(type())); | 
 |     } | 
 |   } | 
 |   if ((name != NULL) && (name[0] != '\0')) { | 
 |     PrintF(out, "name = %s\n", name); | 
 |   } | 
 |   if (kind() == OPTIMIZED_FUNCTION) { | 
 |     PrintF(out, "stack_slots = %d\n", stack_slots()); | 
 |   } | 
 |  | 
 |   PrintF(out, "Instructions (size = %d)\n", instruction_size()); | 
 |   Disassembler::Decode(out, this); | 
 |   PrintF(out, "\n"); | 
 |  | 
 | #ifdef DEBUG | 
 |   if (kind() == FUNCTION) { | 
 |     DeoptimizationOutputData* data = | 
 |         DeoptimizationOutputData::cast(this->deoptimization_data()); | 
 |     data->DeoptimizationOutputDataPrint(out); | 
 |   } else if (kind() == OPTIMIZED_FUNCTION) { | 
 |     DeoptimizationInputData* data = | 
 |         DeoptimizationInputData::cast(this->deoptimization_data()); | 
 |     data->DeoptimizationInputDataPrint(out); | 
 |   } | 
 |   PrintF("\n"); | 
 | #endif | 
 |  | 
 |   if (kind() == OPTIMIZED_FUNCTION) { | 
 |     SafepointTable table(this); | 
 |     PrintF(out, "Safepoints (size = %u)\n", table.size()); | 
 |     for (unsigned i = 0; i < table.length(); i++) { | 
 |       unsigned pc_offset = table.GetPcOffset(i); | 
 |       PrintF(out, "%p  %4d  ", (instruction_start() + pc_offset), pc_offset); | 
 |       table.PrintEntry(i); | 
 |       PrintF(out, " (sp -> fp)"); | 
 |       SafepointEntry entry = table.GetEntry(i); | 
 |       if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) { | 
 |         PrintF(out, "  %6d", entry.deoptimization_index()); | 
 |       } else { | 
 |         PrintF(out, "  <none>"); | 
 |       } | 
 |       if (entry.argument_count() > 0) { | 
 |         PrintF(out, " argc: %d", entry.argument_count()); | 
 |       } | 
 |       PrintF(out, "\n"); | 
 |     } | 
 |     PrintF(out, "\n"); | 
 |   } else if (kind() == FUNCTION) { | 
 |     unsigned offset = stack_check_table_start(); | 
 |     // If there is no stack check table, the "table start" will at or after | 
 |     // (due to alignment) the end of the instruction stream. | 
 |     if (static_cast<int>(offset) < instruction_size()) { | 
 |       unsigned* address = | 
 |           reinterpret_cast<unsigned*>(instruction_start() + offset); | 
 |       unsigned length = address[0]; | 
 |       PrintF(out, "Stack checks (size = %u)\n", length); | 
 |       PrintF(out, "ast_id  pc_offset\n"); | 
 |       for (unsigned i = 0; i < length; ++i) { | 
 |         unsigned index = (2 * i) + 1; | 
 |         PrintF(out, "%6u  %9u\n", address[index], address[index + 1]); | 
 |       } | 
 |       PrintF(out, "\n"); | 
 |     } | 
 |   } | 
 |  | 
 |   PrintF("RelocInfo (size = %d)\n", relocation_size()); | 
 |   for (RelocIterator it(this); !it.done(); it.next()) it.rinfo()->Print(out); | 
 |   PrintF(out, "\n"); | 
 | } | 
 | #endif  // ENABLE_DISASSEMBLER | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetFastElementsCapacityAndLength(int capacity, | 
 |                                                         int length) { | 
 |   // We should never end in here with a pixel or external array. | 
 |   ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
 |  | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = Heap::AllocateFixedArrayWithHoles(capacity); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   FixedArray* elems = FixedArray::cast(obj); | 
 |  | 
 |   { MaybeObject* maybe_obj = map()->GetFastElementsMap(); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   Map* new_map = Map::cast(obj); | 
 |  | 
 |   AssertNoAllocation no_gc; | 
 |   WriteBarrierMode mode = elems->GetWriteBarrierMode(no_gc); | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       FixedArray* old_elements = FixedArray::cast(elements()); | 
 |       uint32_t old_length = static_cast<uint32_t>(old_elements->length()); | 
 |       // Fill out the new array with this content and array holes. | 
 |       for (uint32_t i = 0; i < old_length; i++) { | 
 |         elems->set(i, old_elements->get(i), mode); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       NumberDictionary* dictionary = NumberDictionary::cast(elements()); | 
 |       for (int i = 0; i < dictionary->Capacity(); i++) { | 
 |         Object* key = dictionary->KeyAt(i); | 
 |         if (key->IsNumber()) { | 
 |           uint32_t entry = static_cast<uint32_t>(key->Number()); | 
 |           elems->set(entry, dictionary->ValueAt(i), mode); | 
 |         } | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   set_map(new_map); | 
 |   set_elements(elems); | 
 |  | 
 |   if (IsJSArray()) { | 
 |     JSArray::cast(this)->set_length(Smi::FromInt(length)); | 
 |   } | 
 |  | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetSlowElements(Object* len) { | 
 |   // We should never end in here with a pixel or external array. | 
 |   ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
 |  | 
 |   uint32_t new_length = static_cast<uint32_t>(len->Number()); | 
 |  | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       // Make sure we never try to shrink dense arrays into sparse arrays. | 
 |       ASSERT(static_cast<uint32_t>(FixedArray::cast(elements())->length()) <= | 
 |                                    new_length); | 
 |       Object* obj; | 
 |       { MaybeObject* maybe_obj = NormalizeElements(); | 
 |         if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |       } | 
 |  | 
 |       // Update length for JSArrays. | 
 |       if (IsJSArray()) JSArray::cast(this)->set_length(len); | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       if (IsJSArray()) { | 
 |         uint32_t old_length = | 
 |             static_cast<uint32_t>(JSArray::cast(this)->length()->Number()); | 
 |         element_dictionary()->RemoveNumberEntries(new_length, old_length), | 
 |         JSArray::cast(this)->set_length(len); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSArray::Initialize(int capacity) { | 
 |   ASSERT(capacity >= 0); | 
 |   set_length(Smi::FromInt(0)); | 
 |   FixedArray* new_elements; | 
 |   if (capacity == 0) { | 
 |     new_elements = Heap::empty_fixed_array(); | 
 |   } else { | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = Heap::AllocateFixedArrayWithHoles(capacity); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |     new_elements = FixedArray::cast(obj); | 
 |   } | 
 |   set_elements(new_elements); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | void JSArray::Expand(int required_size) { | 
 |   Handle<JSArray> self(this); | 
 |   Handle<FixedArray> old_backing(FixedArray::cast(elements())); | 
 |   int old_size = old_backing->length(); | 
 |   int new_size = required_size > old_size ? required_size : old_size; | 
 |   Handle<FixedArray> new_backing = Factory::NewFixedArray(new_size); | 
 |   // Can't use this any more now because we may have had a GC! | 
 |   for (int i = 0; i < old_size; i++) new_backing->set(i, old_backing->get(i)); | 
 |   self->SetContent(*new_backing); | 
 | } | 
 |  | 
 |  | 
 | // Computes the new capacity when expanding the elements of a JSObject. | 
 | static int NewElementsCapacity(int old_capacity) { | 
 |   // (old_capacity + 50%) + 16 | 
 |   return old_capacity + (old_capacity >> 1) + 16; | 
 | } | 
 |  | 
 |  | 
 | static Failure* ArrayLengthRangeError() { | 
 |   HandleScope scope; | 
 |   return Top::Throw(*Factory::NewRangeError("invalid_array_length", | 
 |                                             HandleVector<Object>(NULL, 0))); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetElementsLength(Object* len) { | 
 |   // We should never end in here with a pixel or external array. | 
 |   ASSERT(AllowsSetElementsLength()); | 
 |  | 
 |   MaybeObject* maybe_smi_length = len->ToSmi(); | 
 |   Object* smi_length = Smi::FromInt(0); | 
 |   if (maybe_smi_length->ToObject(&smi_length) && smi_length->IsSmi()) { | 
 |     const int value = Smi::cast(smi_length)->value(); | 
 |     if (value < 0) return ArrayLengthRangeError(); | 
 |     switch (GetElementsKind()) { | 
 |       case FAST_ELEMENTS: { | 
 |         int old_capacity = FixedArray::cast(elements())->length(); | 
 |         if (value <= old_capacity) { | 
 |           if (IsJSArray()) { | 
 |             Object* obj; | 
 |             { MaybeObject* maybe_obj = EnsureWritableFastElements(); | 
 |               if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |             } | 
 |             int old_length = FastD2I(JSArray::cast(this)->length()->Number()); | 
 |             // NOTE: We may be able to optimize this by removing the | 
 |             // last part of the elements backing storage array and | 
 |             // setting the capacity to the new size. | 
 |             for (int i = value; i < old_length; i++) { | 
 |               FixedArray::cast(elements())->set_the_hole(i); | 
 |             } | 
 |             JSArray::cast(this)->set_length(Smi::cast(smi_length)); | 
 |           } | 
 |           return this; | 
 |         } | 
 |         int min = NewElementsCapacity(old_capacity); | 
 |         int new_capacity = value > min ? value : min; | 
 |         if (new_capacity <= kMaxFastElementsLength || | 
 |             !ShouldConvertToSlowElements(new_capacity)) { | 
 |           Object* obj; | 
 |           { MaybeObject* maybe_obj = | 
 |                 SetFastElementsCapacityAndLength(new_capacity, value); | 
 |             if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |           } | 
 |           return this; | 
 |         } | 
 |         break; | 
 |       } | 
 |       case DICTIONARY_ELEMENTS: { | 
 |         if (IsJSArray()) { | 
 |           if (value == 0) { | 
 |             // If the length of a slow array is reset to zero, we clear | 
 |             // the array and flush backing storage. This has the added | 
 |             // benefit that the array returns to fast mode. | 
 |             Object* obj; | 
 |             { MaybeObject* maybe_obj = ResetElements(); | 
 |               if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |             } | 
 |           } else { | 
 |             // Remove deleted elements. | 
 |             uint32_t old_length = | 
 |             static_cast<uint32_t>(JSArray::cast(this)->length()->Number()); | 
 |             element_dictionary()->RemoveNumberEntries(value, old_length); | 
 |           } | 
 |           JSArray::cast(this)->set_length(Smi::cast(smi_length)); | 
 |         } | 
 |         return this; | 
 |       } | 
 |       default: | 
 |         UNREACHABLE(); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   // General slow case. | 
 |   if (len->IsNumber()) { | 
 |     uint32_t length; | 
 |     if (len->ToArrayIndex(&length)) { | 
 |       return SetSlowElements(len); | 
 |     } else { | 
 |       return ArrayLengthRangeError(); | 
 |     } | 
 |   } | 
 |  | 
 |   // len is not a number so make the array size one and | 
 |   // set only element to len. | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = Heap::AllocateFixedArray(1); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   FixedArray::cast(obj)->set(0, len); | 
 |   if (IsJSArray()) JSArray::cast(this)->set_length(Smi::FromInt(1)); | 
 |   set_elements(FixedArray::cast(obj)); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetPrototype(Object* value, | 
 |                                     bool skip_hidden_prototypes) { | 
 |   // Silently ignore the change if value is not a JSObject or null. | 
 |   // SpiderMonkey behaves this way. | 
 |   if (!value->IsJSObject() && !value->IsNull()) return value; | 
 |  | 
 |   // Before we can set the prototype we need to be sure | 
 |   // prototype cycles are prevented. | 
 |   // It is sufficient to validate that the receiver is not in the new prototype | 
 |   // chain. | 
 |   for (Object* pt = value; pt != Heap::null_value(); pt = pt->GetPrototype()) { | 
 |     if (JSObject::cast(pt) == this) { | 
 |       // Cycle detected. | 
 |       HandleScope scope; | 
 |       return Top::Throw(*Factory::NewError("cyclic_proto", | 
 |                                            HandleVector<Object>(NULL, 0))); | 
 |     } | 
 |   } | 
 |  | 
 |   JSObject* real_receiver = this; | 
 |  | 
 |   if (skip_hidden_prototypes) { | 
 |     // Find the first object in the chain whose prototype object is not | 
 |     // hidden and set the new prototype on that object. | 
 |     Object* current_proto = real_receiver->GetPrototype(); | 
 |     while (current_proto->IsJSObject() && | 
 |           JSObject::cast(current_proto)->map()->is_hidden_prototype()) { | 
 |       real_receiver = JSObject::cast(current_proto); | 
 |       current_proto = current_proto->GetPrototype(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Set the new prototype of the object. | 
 |   Object* new_map; | 
 |   { MaybeObject* maybe_new_map = real_receiver->map()->CopyDropTransitions(); | 
 |     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; | 
 |   } | 
 |   Map::cast(new_map)->set_prototype(value); | 
 |   real_receiver->set_map(Map::cast(new_map)); | 
 |  | 
 |   Heap::ClearInstanceofCache(); | 
 |  | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::HasElementPostInterceptor(JSObject* receiver, uint32_t index) { | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       uint32_t length = IsJSArray() ? | 
 |           static_cast<uint32_t> | 
 |               (Smi::cast(JSArray::cast(this)->length())->value()) : | 
 |           static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
 |       if ((index < length) && | 
 |           !FixedArray::cast(elements())->get(index)->IsTheHole()) { | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case PIXEL_ELEMENTS: { | 
 |       // TODO(iposva): Add testcase. | 
 |       PixelArray* pixels = PixelArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(pixels->length())) { | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       // TODO(kbr): Add testcase. | 
 |       ExternalArray* array = ExternalArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       if (element_dictionary()->FindEntry(index) | 
 |           != NumberDictionary::kNotFound) { | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   // Handle [] on String objects. | 
 |   if (this->IsStringObjectWithCharacterAt(index)) return true; | 
 |  | 
 |   Object* pt = GetPrototype(); | 
 |   if (pt == Heap::null_value()) return false; | 
 |   return JSObject::cast(pt)->HasElementWithReceiver(receiver, index); | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::HasElementWithInterceptor(JSObject* receiver, uint32_t index) { | 
 |   // Make sure that the top context does not change when doing | 
 |   // callbacks or interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |   HandleScope scope; | 
 |   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); | 
 |   Handle<JSObject> receiver_handle(receiver); | 
 |   Handle<JSObject> holder_handle(this); | 
 |   CustomArguments args(interceptor->data(), receiver, this); | 
 |   v8::AccessorInfo info(args.end()); | 
 |   if (!interceptor->query()->IsUndefined()) { | 
 |     v8::IndexedPropertyQuery query = | 
 |         v8::ToCData<v8::IndexedPropertyQuery>(interceptor->query()); | 
 |     LOG(ApiIndexedPropertyAccess("interceptor-indexed-has", this, index)); | 
 |     v8::Handle<v8::Integer> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = query(index, info); | 
 |     } | 
 |     if (!result.IsEmpty()) { | 
 |       ASSERT(result->IsInt32()); | 
 |       return true;  // absence of property is signaled by empty handle. | 
 |     } | 
 |   } else if (!interceptor->getter()->IsUndefined()) { | 
 |     v8::IndexedPropertyGetter getter = | 
 |         v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter()); | 
 |     LOG(ApiIndexedPropertyAccess("interceptor-indexed-has-get", this, index)); | 
 |     v8::Handle<v8::Value> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = getter(index, info); | 
 |     } | 
 |     if (!result.IsEmpty()) return true; | 
 |   } | 
 |   return holder_handle->HasElementPostInterceptor(*receiver_handle, index); | 
 | } | 
 |  | 
 |  | 
 | JSObject::LocalElementType JSObject::HasLocalElement(uint32_t index) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
 |     return UNDEFINED_ELEMENT; | 
 |   } | 
 |  | 
 |   // Check for lookup interceptor | 
 |   if (HasIndexedInterceptor()) { | 
 |     return HasElementWithInterceptor(this, index) ? INTERCEPTED_ELEMENT | 
 |                                                   : UNDEFINED_ELEMENT; | 
 |   } | 
 |  | 
 |   // Handle [] on String objects. | 
 |   if (this->IsStringObjectWithCharacterAt(index)) { | 
 |     return STRING_CHARACTER_ELEMENT; | 
 |   } | 
 |  | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       uint32_t length = IsJSArray() ? | 
 |           static_cast<uint32_t> | 
 |               (Smi::cast(JSArray::cast(this)->length())->value()) : | 
 |           static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
 |       if ((index < length) && | 
 |           !FixedArray::cast(elements())->get(index)->IsTheHole()) { | 
 |         return FAST_ELEMENT; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case PIXEL_ELEMENTS: { | 
 |       PixelArray* pixels = PixelArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(pixels->length())) return FAST_ELEMENT; | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       ExternalArray* array = ExternalArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) return FAST_ELEMENT; | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       if (element_dictionary()->FindEntry(index) != | 
 |               NumberDictionary::kNotFound) { | 
 |         return DICTIONARY_ELEMENT; | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   return UNDEFINED_ELEMENT; | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::HasElementWithReceiver(JSObject* receiver, uint32_t index) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Check for lookup interceptor | 
 |   if (HasIndexedInterceptor()) { | 
 |     return HasElementWithInterceptor(receiver, index); | 
 |   } | 
 |  | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       uint32_t length = IsJSArray() ? | 
 |           static_cast<uint32_t> | 
 |               (Smi::cast(JSArray::cast(this)->length())->value()) : | 
 |           static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
 |       if ((index < length) && | 
 |           !FixedArray::cast(elements())->get(index)->IsTheHole()) return true; | 
 |       break; | 
 |     } | 
 |     case PIXEL_ELEMENTS: { | 
 |       PixelArray* pixels = PixelArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(pixels->length())) { | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       ExternalArray* array = ExternalArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       if (element_dictionary()->FindEntry(index) | 
 |           != NumberDictionary::kNotFound) { | 
 |         return true; | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   // Handle [] on String objects. | 
 |   if (this->IsStringObjectWithCharacterAt(index)) return true; | 
 |  | 
 |   Object* pt = GetPrototype(); | 
 |   if (pt == Heap::null_value()) return false; | 
 |   return JSObject::cast(pt)->HasElementWithReceiver(receiver, index); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetElementWithInterceptor(uint32_t index, | 
 |                                                  Object* value, | 
 |                                                  bool check_prototype) { | 
 |   // Make sure that the top context does not change when doing | 
 |   // callbacks or interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |   HandleScope scope; | 
 |   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); | 
 |   Handle<JSObject> this_handle(this); | 
 |   Handle<Object> value_handle(value); | 
 |   if (!interceptor->setter()->IsUndefined()) { | 
 |     v8::IndexedPropertySetter setter = | 
 |         v8::ToCData<v8::IndexedPropertySetter>(interceptor->setter()); | 
 |     LOG(ApiIndexedPropertyAccess("interceptor-indexed-set", this, index)); | 
 |     CustomArguments args(interceptor->data(), this, this); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     v8::Handle<v8::Value> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = setter(index, v8::Utils::ToLocal(value_handle), info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     if (!result.IsEmpty()) return *value_handle; | 
 |   } | 
 |   MaybeObject* raw_result = | 
 |       this_handle->SetElementWithoutInterceptor(index, | 
 |                                                 *value_handle, | 
 |                                                 check_prototype); | 
 |   RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |   return raw_result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::GetElementWithCallback(Object* receiver, | 
 |                                               Object* structure, | 
 |                                               uint32_t index, | 
 |                                               Object* holder) { | 
 |   ASSERT(!structure->IsProxy()); | 
 |  | 
 |   // api style callbacks. | 
 |   if (structure->IsAccessorInfo()) { | 
 |     AccessorInfo* data = AccessorInfo::cast(structure); | 
 |     Object* fun_obj = data->getter(); | 
 |     v8::AccessorGetter call_fun = v8::ToCData<v8::AccessorGetter>(fun_obj); | 
 |     HandleScope scope; | 
 |     Handle<JSObject> self(JSObject::cast(receiver)); | 
 |     Handle<JSObject> holder_handle(JSObject::cast(holder)); | 
 |     Handle<Object> number = Factory::NewNumberFromUint(index); | 
 |     Handle<String> key(Factory::NumberToString(number)); | 
 |     LOG(ApiNamedPropertyAccess("load", *self, *key)); | 
 |     CustomArguments args(data->data(), *self, *holder_handle); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     v8::Handle<v8::Value> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = call_fun(v8::Utils::ToLocal(key), info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     if (result.IsEmpty()) return Heap::undefined_value(); | 
 |     return *v8::Utils::OpenHandle(*result); | 
 |   } | 
 |  | 
 |   // __defineGetter__ callback | 
 |   if (structure->IsFixedArray()) { | 
 |     Object* getter = FixedArray::cast(structure)->get(kGetterIndex); | 
 |     if (getter->IsJSFunction()) { | 
 |       return Object::GetPropertyWithDefinedGetter(receiver, | 
 |                                                   JSFunction::cast(getter)); | 
 |     } | 
 |     // Getter is not a function. | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetElementWithCallback(Object* structure, | 
 |                                               uint32_t index, | 
 |                                               Object* value, | 
 |                                               JSObject* holder) { | 
 |   HandleScope scope; | 
 |  | 
 |   // We should never get here to initialize a const with the hole | 
 |   // value since a const declaration would conflict with the setter. | 
 |   ASSERT(!value->IsTheHole()); | 
 |   Handle<Object> value_handle(value); | 
 |  | 
 |   // To accommodate both the old and the new api we switch on the | 
 |   // data structure used to store the callbacks.  Eventually proxy | 
 |   // callbacks should be phased out. | 
 |   ASSERT(!structure->IsProxy()); | 
 |  | 
 |   if (structure->IsAccessorInfo()) { | 
 |     // api style callbacks | 
 |     AccessorInfo* data = AccessorInfo::cast(structure); | 
 |     Object* call_obj = data->setter(); | 
 |     v8::AccessorSetter call_fun = v8::ToCData<v8::AccessorSetter>(call_obj); | 
 |     if (call_fun == NULL) return value; | 
 |     Handle<Object> number = Factory::NewNumberFromUint(index); | 
 |     Handle<String> key(Factory::NumberToString(number)); | 
 |     LOG(ApiNamedPropertyAccess("store", this, *key)); | 
 |     CustomArguments args(data->data(), this, JSObject::cast(holder)); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       call_fun(v8::Utils::ToLocal(key), | 
 |                v8::Utils::ToLocal(value_handle), | 
 |                info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     return *value_handle; | 
 |   } | 
 |  | 
 |   if (structure->IsFixedArray()) { | 
 |     Object* setter = FixedArray::cast(structure)->get(kSetterIndex); | 
 |     if (setter->IsJSFunction()) { | 
 |      return SetPropertyWithDefinedSetter(JSFunction::cast(setter), value); | 
 |     } else { | 
 |       Handle<Object> holder_handle(holder); | 
 |       Handle<Object> key(Factory::NewNumberFromUint(index)); | 
 |       Handle<Object> args[2] = { key, holder_handle }; | 
 |       return Top::Throw(*Factory::NewTypeError("no_setter_in_callback", | 
 |                                                HandleVector(args, 2))); | 
 |     } | 
 |   } | 
 |  | 
 |   UNREACHABLE(); | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | // Adding n elements in fast case is O(n*n). | 
 | // Note: revisit design to have dual undefined values to capture absent | 
 | // elements. | 
 | MaybeObject* JSObject::SetFastElement(uint32_t index, | 
 |                                       Object* value, | 
 |                                       bool check_prototype) { | 
 |   ASSERT(HasFastElements()); | 
 |  | 
 |   Object* elms_obj; | 
 |   { MaybeObject* maybe_elms_obj = EnsureWritableFastElements(); | 
 |     if (!maybe_elms_obj->ToObject(&elms_obj)) return maybe_elms_obj; | 
 |   } | 
 |   FixedArray* elms = FixedArray::cast(elms_obj); | 
 |   uint32_t elms_length = static_cast<uint32_t>(elms->length()); | 
 |  | 
 |   if (check_prototype && | 
 |       (index >= elms_length || elms->get(index)->IsTheHole()) && | 
 |       SetElementWithCallbackSetterInPrototypes(index, value)) { | 
 |     return value; | 
 |   } | 
 |  | 
 |  | 
 |   // Check whether there is extra space in fixed array.. | 
 |   if (index < elms_length) { | 
 |     elms->set(index, value); | 
 |     if (IsJSArray()) { | 
 |       // Update the length of the array if needed. | 
 |       uint32_t array_length = 0; | 
 |       CHECK(JSArray::cast(this)->length()->ToArrayIndex(&array_length)); | 
 |       if (index >= array_length) { | 
 |         JSArray::cast(this)->set_length(Smi::FromInt(index + 1)); | 
 |       } | 
 |     } | 
 |     return value; | 
 |   } | 
 |  | 
 |   // Allow gap in fast case. | 
 |   if ((index - elms_length) < kMaxGap) { | 
 |     // Try allocating extra space. | 
 |     int new_capacity = NewElementsCapacity(index+1); | 
 |     if (new_capacity <= kMaxFastElementsLength || | 
 |         !ShouldConvertToSlowElements(new_capacity)) { | 
 |       ASSERT(static_cast<uint32_t>(new_capacity) > index); | 
 |       Object* obj; | 
 |       { MaybeObject* maybe_obj = | 
 |             SetFastElementsCapacityAndLength(new_capacity, index + 1); | 
 |         if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |       } | 
 |       FixedArray::cast(elements())->set(index, value); | 
 |       return value; | 
 |     } | 
 |   } | 
 |  | 
 |   // Otherwise default to slow case. | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = NormalizeElements(); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   ASSERT(HasDictionaryElements()); | 
 |   return SetElement(index, value, check_prototype); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetElement(uint32_t index, | 
 |                                   Object* value, | 
 |                                   bool check_prototype) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayIndexedAccess(this, index, v8::ACCESS_SET)) { | 
 |     HandleScope scope; | 
 |     Handle<Object> value_handle(value); | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_SET); | 
 |     return *value_handle; | 
 |   } | 
 |  | 
 |   if (IsJSGlobalProxy()) { | 
 |     Object* proto = GetPrototype(); | 
 |     if (proto->IsNull()) return value; | 
 |     ASSERT(proto->IsJSGlobalObject()); | 
 |     return JSObject::cast(proto)->SetElement(index, value, check_prototype); | 
 |   } | 
 |  | 
 |   // Check for lookup interceptor | 
 |   if (HasIndexedInterceptor()) { | 
 |     return SetElementWithInterceptor(index, value, check_prototype); | 
 |   } | 
 |  | 
 |   return SetElementWithoutInterceptor(index, value, check_prototype); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::SetElementWithoutInterceptor(uint32_t index, | 
 |                                                     Object* value, | 
 |                                                     bool check_prototype) { | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: | 
 |       // Fast case. | 
 |       return SetFastElement(index, value, check_prototype); | 
 |     case PIXEL_ELEMENTS: { | 
 |       PixelArray* pixels = PixelArray::cast(elements()); | 
 |       return pixels->SetValue(index, value); | 
 |     } | 
 |     case EXTERNAL_BYTE_ELEMENTS: { | 
 |       ExternalByteArray* array = ExternalByteArray::cast(elements()); | 
 |       return array->SetValue(index, value); | 
 |     } | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { | 
 |       ExternalUnsignedByteArray* array = | 
 |           ExternalUnsignedByteArray::cast(elements()); | 
 |       return array->SetValue(index, value); | 
 |     } | 
 |     case EXTERNAL_SHORT_ELEMENTS: { | 
 |       ExternalShortArray* array = ExternalShortArray::cast(elements()); | 
 |       return array->SetValue(index, value); | 
 |     } | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { | 
 |       ExternalUnsignedShortArray* array = | 
 |           ExternalUnsignedShortArray::cast(elements()); | 
 |       return array->SetValue(index, value); | 
 |     } | 
 |     case EXTERNAL_INT_ELEMENTS: { | 
 |       ExternalIntArray* array = ExternalIntArray::cast(elements()); | 
 |       return array->SetValue(index, value); | 
 |     } | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: { | 
 |       ExternalUnsignedIntArray* array = | 
 |           ExternalUnsignedIntArray::cast(elements()); | 
 |       return array->SetValue(index, value); | 
 |     } | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       ExternalFloatArray* array = ExternalFloatArray::cast(elements()); | 
 |       return array->SetValue(index, value); | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       // Insert element in the dictionary. | 
 |       FixedArray* elms = FixedArray::cast(elements()); | 
 |       NumberDictionary* dictionary = NumberDictionary::cast(elms); | 
 |  | 
 |       int entry = dictionary->FindEntry(index); | 
 |       if (entry != NumberDictionary::kNotFound) { | 
 |         Object* element = dictionary->ValueAt(entry); | 
 |         PropertyDetails details = dictionary->DetailsAt(entry); | 
 |         if (details.type() == CALLBACKS) { | 
 |           return SetElementWithCallback(element, index, value, this); | 
 |         } else { | 
 |           dictionary->UpdateMaxNumberKey(index); | 
 |           dictionary->ValueAtPut(entry, value); | 
 |         } | 
 |       } else { | 
 |         // Index not already used. Look for an accessor in the prototype chain. | 
 |         if (check_prototype && | 
 |             SetElementWithCallbackSetterInPrototypes(index, value)) { | 
 |           return value; | 
 |         } | 
 |         // When we set the is_extensible flag to false we always force | 
 |         // the element into dictionary mode (and force them to stay there). | 
 |         if (!map()->is_extensible()) { | 
 |           Handle<Object> number(Factory::NewNumberFromUint(index)); | 
 |           Handle<String> index_string(Factory::NumberToString(number)); | 
 |           Handle<Object> args[1] = { index_string }; | 
 |           return Top::Throw(*Factory::NewTypeError("object_not_extensible", | 
 |                                                    HandleVector(args, 1))); | 
 |         } | 
 |         Object* result; | 
 |         { MaybeObject* maybe_result = dictionary->AtNumberPut(index, value); | 
 |           if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |         } | 
 |         if (elms != FixedArray::cast(result)) { | 
 |           set_elements(FixedArray::cast(result)); | 
 |         } | 
 |       } | 
 |  | 
 |       // Update the array length if this JSObject is an array. | 
 |       if (IsJSArray()) { | 
 |         JSArray* array = JSArray::cast(this); | 
 |         Object* return_value; | 
 |         { MaybeObject* maybe_return_value = | 
 |               array->JSArrayUpdateLengthFromIndex(index, value); | 
 |           if (!maybe_return_value->ToObject(&return_value)) { | 
 |             return maybe_return_value; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Attempt to put this object back in fast case. | 
 |       if (ShouldConvertToFastElements()) { | 
 |         uint32_t new_length = 0; | 
 |         if (IsJSArray()) { | 
 |           CHECK(JSArray::cast(this)->length()->ToArrayIndex(&new_length)); | 
 |         } else { | 
 |           new_length = NumberDictionary::cast(elements())->max_number_key() + 1; | 
 |         } | 
 |         Object* obj; | 
 |         { MaybeObject* maybe_obj = | 
 |               SetFastElementsCapacityAndLength(new_length, new_length); | 
 |           if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |         } | 
 | #ifdef DEBUG | 
 |         if (FLAG_trace_normalization) { | 
 |           PrintF("Object elements are fast case again:\n"); | 
 |           Print(); | 
 |         } | 
 | #endif | 
 |       } | 
 |  | 
 |       return value; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |   // All possible cases have been handled above. Add a return to avoid the | 
 |   // complaints from the compiler. | 
 |   UNREACHABLE(); | 
 |   return Heap::null_value(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSArray::JSArrayUpdateLengthFromIndex(uint32_t index, | 
 |                                                    Object* value) { | 
 |   uint32_t old_len = 0; | 
 |   CHECK(length()->ToArrayIndex(&old_len)); | 
 |   // Check to see if we need to update the length. For now, we make | 
 |   // sure that the length stays within 32-bits (unsigned). | 
 |   if (index >= old_len && index != 0xffffffff) { | 
 |     Object* len; | 
 |     { MaybeObject* maybe_len = | 
 |           Heap::NumberFromDouble(static_cast<double>(index) + 1); | 
 |       if (!maybe_len->ToObject(&len)) return maybe_len; | 
 |     } | 
 |     set_length(len); | 
 |   } | 
 |   return value; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::GetElementPostInterceptor(JSObject* receiver, | 
 |                                                  uint32_t index) { | 
 |   // Get element works for both JSObject and JSArray since | 
 |   // JSArray::length cannot change. | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       FixedArray* elms = FixedArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(elms->length())) { | 
 |         Object* value = elms->get(index); | 
 |         if (!value->IsTheHole()) return value; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case PIXEL_ELEMENTS: { | 
 |       // TODO(iposva): Add testcase and implement. | 
 |       UNIMPLEMENTED(); | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       // TODO(kbr): Add testcase and implement. | 
 |       UNIMPLEMENTED(); | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       NumberDictionary* dictionary = element_dictionary(); | 
 |       int entry = dictionary->FindEntry(index); | 
 |       if (entry != NumberDictionary::kNotFound) { | 
 |         Object* element = dictionary->ValueAt(entry); | 
 |         PropertyDetails details = dictionary->DetailsAt(entry); | 
 |         if (details.type() == CALLBACKS) { | 
 |           return GetElementWithCallback(receiver, | 
 |                                         element, | 
 |                                         index, | 
 |                                         this); | 
 |         } | 
 |         return element; | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   // Continue searching via the prototype chain. | 
 |   Object* pt = GetPrototype(); | 
 |   if (pt == Heap::null_value()) return Heap::undefined_value(); | 
 |   return pt->GetElementWithReceiver(receiver, index); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::GetElementWithInterceptor(JSObject* receiver, | 
 |                                                  uint32_t index) { | 
 |   // Make sure that the top context does not change when doing | 
 |   // callbacks or interceptor calls. | 
 |   AssertNoContextChange ncc; | 
 |   HandleScope scope; | 
 |   Handle<InterceptorInfo> interceptor(GetIndexedInterceptor()); | 
 |   Handle<JSObject> this_handle(receiver); | 
 |   Handle<JSObject> holder_handle(this); | 
 |  | 
 |   if (!interceptor->getter()->IsUndefined()) { | 
 |     v8::IndexedPropertyGetter getter = | 
 |         v8::ToCData<v8::IndexedPropertyGetter>(interceptor->getter()); | 
 |     LOG(ApiIndexedPropertyAccess("interceptor-indexed-get", this, index)); | 
 |     CustomArguments args(interceptor->data(), receiver, this); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     v8::Handle<v8::Value> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = getter(index, info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result); | 
 |   } | 
 |  | 
 |   MaybeObject* raw_result = | 
 |       holder_handle->GetElementPostInterceptor(*this_handle, index); | 
 |   RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |   return raw_result; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::GetElementWithReceiver(JSObject* receiver, | 
 |                                               uint32_t index) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayIndexedAccess(this, index, v8::ACCESS_GET)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_GET); | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |  | 
 |   if (HasIndexedInterceptor()) { | 
 |     return GetElementWithInterceptor(receiver, index); | 
 |   } | 
 |  | 
 |   // Get element works for both JSObject and JSArray since | 
 |   // JSArray::length cannot change. | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       FixedArray* elms = FixedArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(elms->length())) { | 
 |         Object* value = elms->get(index); | 
 |         if (!value->IsTheHole()) return value; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case PIXEL_ELEMENTS: { | 
 |       PixelArray* pixels = PixelArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(pixels->length())) { | 
 |         uint8_t value = pixels->get(index); | 
 |         return Smi::FromInt(value); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_BYTE_ELEMENTS: { | 
 |       ExternalByteArray* array = ExternalByteArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         int8_t value = array->get(index); | 
 |         return Smi::FromInt(value); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: { | 
 |       ExternalUnsignedByteArray* array = | 
 |           ExternalUnsignedByteArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         uint8_t value = array->get(index); | 
 |         return Smi::FromInt(value); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_SHORT_ELEMENTS: { | 
 |       ExternalShortArray* array = ExternalShortArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         int16_t value = array->get(index); | 
 |         return Smi::FromInt(value); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: { | 
 |       ExternalUnsignedShortArray* array = | 
 |           ExternalUnsignedShortArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         uint16_t value = array->get(index); | 
 |         return Smi::FromInt(value); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_INT_ELEMENTS: { | 
 |       ExternalIntArray* array = ExternalIntArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         int32_t value = array->get(index); | 
 |         return Heap::NumberFromInt32(value); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: { | 
 |       ExternalUnsignedIntArray* array = | 
 |           ExternalUnsignedIntArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         uint32_t value = array->get(index); | 
 |         return Heap::NumberFromUint32(value); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       ExternalFloatArray* array = ExternalFloatArray::cast(elements()); | 
 |       if (index < static_cast<uint32_t>(array->length())) { | 
 |         float value = array->get(index); | 
 |         return Heap::AllocateHeapNumber(value); | 
 |       } | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       NumberDictionary* dictionary = element_dictionary(); | 
 |       int entry = dictionary->FindEntry(index); | 
 |       if (entry != NumberDictionary::kNotFound) { | 
 |         Object* element = dictionary->ValueAt(entry); | 
 |         PropertyDetails details = dictionary->DetailsAt(entry); | 
 |         if (details.type() == CALLBACKS) { | 
 |           return GetElementWithCallback(receiver, | 
 |                                         element, | 
 |                                         index, | 
 |                                         this); | 
 |         } | 
 |         return element; | 
 |       } | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   Object* pt = GetPrototype(); | 
 |   if (pt == Heap::null_value()) return Heap::undefined_value(); | 
 |   return pt->GetElementWithReceiver(receiver, index); | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::HasDenseElements() { | 
 |   int capacity = 0; | 
 |   int number_of_elements = 0; | 
 |  | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       FixedArray* elms = FixedArray::cast(elements()); | 
 |       capacity = elms->length(); | 
 |       for (int i = 0; i < capacity; i++) { | 
 |         if (!elms->get(i)->IsTheHole()) number_of_elements++; | 
 |       } | 
 |       break; | 
 |     } | 
 |     case PIXEL_ELEMENTS: | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       return true; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       NumberDictionary* dictionary = NumberDictionary::cast(elements()); | 
 |       capacity = dictionary->Capacity(); | 
 |       number_of_elements = dictionary->NumberOfElements(); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   if (capacity == 0) return true; | 
 |   return (number_of_elements > (capacity / 2)); | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::ShouldConvertToSlowElements(int new_capacity) { | 
 |   ASSERT(HasFastElements()); | 
 |   // Keep the array in fast case if the current backing storage is | 
 |   // almost filled and if the new capacity is no more than twice the | 
 |   // old capacity. | 
 |   int elements_length = FixedArray::cast(elements())->length(); | 
 |   return !HasDenseElements() || ((new_capacity / 2) > elements_length); | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::ShouldConvertToFastElements() { | 
 |   ASSERT(HasDictionaryElements()); | 
 |   NumberDictionary* dictionary = NumberDictionary::cast(elements()); | 
 |   // If the elements are sparse, we should not go back to fast case. | 
 |   if (!HasDenseElements()) return false; | 
 |   // If an element has been added at a very high index in the elements | 
 |   // dictionary, we cannot go back to fast case. | 
 |   if (dictionary->requires_slow_elements()) return false; | 
 |   // An object requiring access checks is never allowed to have fast | 
 |   // elements.  If it had fast elements we would skip security checks. | 
 |   if (IsAccessCheckNeeded()) return false; | 
 |   // If the dictionary backing storage takes up roughly half as much | 
 |   // space as a fast-case backing storage would the array should have | 
 |   // fast elements. | 
 |   uint32_t length = 0; | 
 |   if (IsJSArray()) { | 
 |     CHECK(JSArray::cast(this)->length()->ToArrayIndex(&length)); | 
 |   } else { | 
 |     length = dictionary->max_number_key(); | 
 |   } | 
 |   return static_cast<uint32_t>(dictionary->Capacity()) >= | 
 |       (length / (2 * NumberDictionary::kEntrySize)); | 
 | } | 
 |  | 
 |  | 
 | // Certain compilers request function template instantiation when they | 
 | // see the definition of the other template functions in the | 
 | // class. This requires us to have the template functions put | 
 | // together, so even though this function belongs in objects-debug.cc, | 
 | // we keep it here instead to satisfy certain compilers. | 
 | #ifdef OBJECT_PRINT | 
 | template<typename Shape, typename Key> | 
 | void Dictionary<Shape, Key>::Print(FILE* out) { | 
 |   int capacity = HashTable<Shape, Key>::Capacity(); | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* k = HashTable<Shape, Key>::KeyAt(i); | 
 |     if (HashTable<Shape, Key>::IsKey(k)) { | 
 |       PrintF(out, " "); | 
 |       if (k->IsString()) { | 
 |         String::cast(k)->StringPrint(out); | 
 |       } else { | 
 |         k->ShortPrint(out); | 
 |       } | 
 |       PrintF(out, ": "); | 
 |       ValueAt(i)->ShortPrint(out); | 
 |       PrintF(out, "\n"); | 
 |     } | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | void Dictionary<Shape, Key>::CopyValuesTo(FixedArray* elements) { | 
 |   int pos = 0; | 
 |   int capacity = HashTable<Shape, Key>::Capacity(); | 
 |   AssertNoAllocation no_gc; | 
 |   WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* k =  Dictionary<Shape, Key>::KeyAt(i); | 
 |     if (Dictionary<Shape, Key>::IsKey(k)) { | 
 |       elements->set(pos++, ValueAt(i), mode); | 
 |     } | 
 |   } | 
 |   ASSERT(pos == elements->length()); | 
 | } | 
 |  | 
 |  | 
 | InterceptorInfo* JSObject::GetNamedInterceptor() { | 
 |   ASSERT(map()->has_named_interceptor()); | 
 |   JSFunction* constructor = JSFunction::cast(map()->constructor()); | 
 |   ASSERT(constructor->shared()->IsApiFunction()); | 
 |   Object* result = | 
 |       constructor->shared()->get_api_func_data()->named_property_handler(); | 
 |   return InterceptorInfo::cast(result); | 
 | } | 
 |  | 
 |  | 
 | InterceptorInfo* JSObject::GetIndexedInterceptor() { | 
 |   ASSERT(map()->has_indexed_interceptor()); | 
 |   JSFunction* constructor = JSFunction::cast(map()->constructor()); | 
 |   ASSERT(constructor->shared()->IsApiFunction()); | 
 |   Object* result = | 
 |       constructor->shared()->get_api_func_data()->indexed_property_handler(); | 
 |   return InterceptorInfo::cast(result); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::GetPropertyPostInterceptor( | 
 |     JSObject* receiver, | 
 |     String* name, | 
 |     PropertyAttributes* attributes) { | 
 |   // Check local property in holder, ignore interceptor. | 
 |   LookupResult result; | 
 |   LocalLookupRealNamedProperty(name, &result); | 
 |   if (result.IsProperty()) { | 
 |     return GetProperty(receiver, &result, name, attributes); | 
 |   } | 
 |   // Continue searching via the prototype chain. | 
 |   Object* pt = GetPrototype(); | 
 |   *attributes = ABSENT; | 
 |   if (pt == Heap::null_value()) return Heap::undefined_value(); | 
 |   return pt->GetPropertyWithReceiver(receiver, name, attributes); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::GetLocalPropertyPostInterceptor( | 
 |     JSObject* receiver, | 
 |     String* name, | 
 |     PropertyAttributes* attributes) { | 
 |   // Check local property in holder, ignore interceptor. | 
 |   LookupResult result; | 
 |   LocalLookupRealNamedProperty(name, &result); | 
 |   if (result.IsProperty()) { | 
 |     return GetProperty(receiver, &result, name, attributes); | 
 |   } | 
 |   return Heap::undefined_value(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* JSObject::GetPropertyWithInterceptor( | 
 |     JSObject* receiver, | 
 |     String* name, | 
 |     PropertyAttributes* attributes) { | 
 |   InterceptorInfo* interceptor = GetNamedInterceptor(); | 
 |   HandleScope scope; | 
 |   Handle<JSObject> receiver_handle(receiver); | 
 |   Handle<JSObject> holder_handle(this); | 
 |   Handle<String> name_handle(name); | 
 |  | 
 |   if (!interceptor->getter()->IsUndefined()) { | 
 |     v8::NamedPropertyGetter getter = | 
 |         v8::ToCData<v8::NamedPropertyGetter>(interceptor->getter()); | 
 |     LOG(ApiNamedPropertyAccess("interceptor-named-get", *holder_handle, name)); | 
 |     CustomArguments args(interceptor->data(), receiver, this); | 
 |     v8::AccessorInfo info(args.end()); | 
 |     v8::Handle<v8::Value> result; | 
 |     { | 
 |       // Leaving JavaScript. | 
 |       VMState state(EXTERNAL); | 
 |       result = getter(v8::Utils::ToLocal(name_handle), info); | 
 |     } | 
 |     RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |     if (!result.IsEmpty()) { | 
 |       *attributes = NONE; | 
 |       return *v8::Utils::OpenHandle(*result); | 
 |     } | 
 |   } | 
 |  | 
 |   MaybeObject* result = holder_handle->GetPropertyPostInterceptor( | 
 |       *receiver_handle, | 
 |       *name_handle, | 
 |       attributes); | 
 |   RETURN_IF_SCHEDULED_EXCEPTION(); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::HasRealNamedProperty(String* key) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayNamedAccess(this, key, v8::ACCESS_HAS)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
 |     return false; | 
 |   } | 
 |  | 
 |   LookupResult result; | 
 |   LocalLookupRealNamedProperty(key, &result); | 
 |   return result.IsProperty() && (result.type() != INTERCEPTOR); | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::HasRealElementProperty(uint32_t index) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayIndexedAccess(this, index, v8::ACCESS_HAS)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Handle [] on String objects. | 
 |   if (this->IsStringObjectWithCharacterAt(index)) return true; | 
 |  | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       uint32_t length = IsJSArray() ? | 
 |           static_cast<uint32_t>( | 
 |               Smi::cast(JSArray::cast(this)->length())->value()) : | 
 |           static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
 |       return (index < length) && | 
 |           !FixedArray::cast(elements())->get(index)->IsTheHole(); | 
 |     } | 
 |     case PIXEL_ELEMENTS: { | 
 |       PixelArray* pixels = PixelArray::cast(elements()); | 
 |       return index < static_cast<uint32_t>(pixels->length()); | 
 |     } | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       ExternalArray* array = ExternalArray::cast(elements()); | 
 |       return index < static_cast<uint32_t>(array->length()); | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       return element_dictionary()->FindEntry(index) | 
 |           != NumberDictionary::kNotFound; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |   // All possibilities have been handled above already. | 
 |   UNREACHABLE(); | 
 |   return Heap::null_value(); | 
 | } | 
 |  | 
 |  | 
 | bool JSObject::HasRealNamedCallbackProperty(String* key) { | 
 |   // Check access rights if needed. | 
 |   if (IsAccessCheckNeeded() && | 
 |       !Top::MayNamedAccess(this, key, v8::ACCESS_HAS)) { | 
 |     Top::ReportFailedAccessCheck(this, v8::ACCESS_HAS); | 
 |     return false; | 
 |   } | 
 |  | 
 |   LookupResult result; | 
 |   LocalLookupRealNamedProperty(key, &result); | 
 |   return result.IsProperty() && (result.type() == CALLBACKS); | 
 | } | 
 |  | 
 |  | 
 | int JSObject::NumberOfLocalProperties(PropertyAttributes filter) { | 
 |   if (HasFastProperties()) { | 
 |     DescriptorArray* descs = map()->instance_descriptors(); | 
 |     int result = 0; | 
 |     for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
 |       PropertyDetails details = descs->GetDetails(i); | 
 |       if (details.IsProperty() && (details.attributes() & filter) == 0) { | 
 |         result++; | 
 |       } | 
 |     } | 
 |     return result; | 
 |   } else { | 
 |     return property_dictionary()->NumberOfElementsFilterAttributes(filter); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | int JSObject::NumberOfEnumProperties() { | 
 |   return NumberOfLocalProperties(static_cast<PropertyAttributes>(DONT_ENUM)); | 
 | } | 
 |  | 
 |  | 
 | void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) { | 
 |   Object* temp = get(i); | 
 |   set(i, get(j)); | 
 |   set(j, temp); | 
 |   if (this != numbers) { | 
 |     temp = numbers->get(i); | 
 |     numbers->set(i, numbers->get(j)); | 
 |     numbers->set(j, temp); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static void InsertionSortPairs(FixedArray* content, | 
 |                                FixedArray* numbers, | 
 |                                int len) { | 
 |   for (int i = 1; i < len; i++) { | 
 |     int j = i; | 
 |     while (j > 0 && | 
 |            (NumberToUint32(numbers->get(j - 1)) > | 
 |             NumberToUint32(numbers->get(j)))) { | 
 |       content->SwapPairs(numbers, j - 1, j); | 
 |       j--; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) { | 
 |   // In-place heap sort. | 
 |   ASSERT(content->length() == numbers->length()); | 
 |  | 
 |   // Bottom-up max-heap construction. | 
 |   for (int i = 1; i < len; ++i) { | 
 |     int child_index = i; | 
 |     while (child_index > 0) { | 
 |       int parent_index = ((child_index + 1) >> 1) - 1; | 
 |       uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); | 
 |       uint32_t child_value = NumberToUint32(numbers->get(child_index)); | 
 |       if (parent_value < child_value) { | 
 |         content->SwapPairs(numbers, parent_index, child_index); | 
 |       } else { | 
 |         break; | 
 |       } | 
 |       child_index = parent_index; | 
 |     } | 
 |   } | 
 |  | 
 |   // Extract elements and create sorted array. | 
 |   for (int i = len - 1; i > 0; --i) { | 
 |     // Put max element at the back of the array. | 
 |     content->SwapPairs(numbers, 0, i); | 
 |     // Sift down the new top element. | 
 |     int parent_index = 0; | 
 |     while (true) { | 
 |       int child_index = ((parent_index + 1) << 1) - 1; | 
 |       if (child_index >= i) break; | 
 |       uint32_t child1_value = NumberToUint32(numbers->get(child_index)); | 
 |       uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1)); | 
 |       uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); | 
 |       if (child_index + 1 >= i || child1_value > child2_value) { | 
 |         if (parent_value > child1_value) break; | 
 |         content->SwapPairs(numbers, parent_index, child_index); | 
 |         parent_index = child_index; | 
 |       } else { | 
 |         if (parent_value > child2_value) break; | 
 |         content->SwapPairs(numbers, parent_index, child_index + 1); | 
 |         parent_index = child_index + 1; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Sort this array and the numbers as pairs wrt. the (distinct) numbers. | 
 | void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) { | 
 |   ASSERT(this->length() == numbers->length()); | 
 |   // For small arrays, simply use insertion sort. | 
 |   if (len <= 10) { | 
 |     InsertionSortPairs(this, numbers, len); | 
 |     return; | 
 |   } | 
 |   // Check the range of indices. | 
 |   uint32_t min_index = NumberToUint32(numbers->get(0)); | 
 |   uint32_t max_index = min_index; | 
 |   uint32_t i; | 
 |   for (i = 1; i < len; i++) { | 
 |     if (NumberToUint32(numbers->get(i)) < min_index) { | 
 |       min_index = NumberToUint32(numbers->get(i)); | 
 |     } else if (NumberToUint32(numbers->get(i)) > max_index) { | 
 |       max_index = NumberToUint32(numbers->get(i)); | 
 |     } | 
 |   } | 
 |   if (max_index - min_index + 1 == len) { | 
 |     // Indices form a contiguous range, unless there are duplicates. | 
 |     // Do an in-place linear time sort assuming distinct numbers, but | 
 |     // avoid hanging in case they are not. | 
 |     for (i = 0; i < len; i++) { | 
 |       uint32_t p; | 
 |       uint32_t j = 0; | 
 |       // While the current element at i is not at its correct position p, | 
 |       // swap the elements at these two positions. | 
 |       while ((p = NumberToUint32(numbers->get(i)) - min_index) != i && | 
 |              j++ < len) { | 
 |         SwapPairs(numbers, i, p); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     HeapSortPairs(this, numbers, len); | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Fill in the names of local properties into the supplied storage. The main | 
 | // purpose of this function is to provide reflection information for the object | 
 | // mirrors. | 
 | void JSObject::GetLocalPropertyNames(FixedArray* storage, int index) { | 
 |   ASSERT(storage->length() >= (NumberOfLocalProperties(NONE) - index)); | 
 |   if (HasFastProperties()) { | 
 |     DescriptorArray* descs = map()->instance_descriptors(); | 
 |     for (int i = 0; i < descs->number_of_descriptors(); i++) { | 
 |       if (descs->IsProperty(i)) storage->set(index++, descs->GetKey(i)); | 
 |     } | 
 |     ASSERT(storage->length() >= index); | 
 |   } else { | 
 |     property_dictionary()->CopyKeysTo(storage); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | int JSObject::NumberOfLocalElements(PropertyAttributes filter) { | 
 |   return GetLocalElementKeys(NULL, filter); | 
 | } | 
 |  | 
 |  | 
 | int JSObject::NumberOfEnumElements() { | 
 |   // Fast case for objects with no elements. | 
 |   if (!IsJSValue() && HasFastElements()) { | 
 |     uint32_t length = IsJSArray() ? | 
 |         static_cast<uint32_t>( | 
 |             Smi::cast(JSArray::cast(this)->length())->value()) : | 
 |         static_cast<uint32_t>(FixedArray::cast(elements())->length()); | 
 |     if (length == 0) return 0; | 
 |   } | 
 |   // Compute the number of enumerable elements. | 
 |   return NumberOfLocalElements(static_cast<PropertyAttributes>(DONT_ENUM)); | 
 | } | 
 |  | 
 |  | 
 | int JSObject::GetLocalElementKeys(FixedArray* storage, | 
 |                                   PropertyAttributes filter) { | 
 |   int counter = 0; | 
 |   switch (GetElementsKind()) { | 
 |     case FAST_ELEMENTS: { | 
 |       int length = IsJSArray() ? | 
 |           Smi::cast(JSArray::cast(this)->length())->value() : | 
 |           FixedArray::cast(elements())->length(); | 
 |       for (int i = 0; i < length; i++) { | 
 |         if (!FixedArray::cast(elements())->get(i)->IsTheHole()) { | 
 |           if (storage != NULL) { | 
 |             storage->set(counter, Smi::FromInt(i)); | 
 |           } | 
 |           counter++; | 
 |         } | 
 |       } | 
 |       ASSERT(!storage || storage->length() >= counter); | 
 |       break; | 
 |     } | 
 |     case PIXEL_ELEMENTS: { | 
 |       int length = PixelArray::cast(elements())->length(); | 
 |       while (counter < length) { | 
 |         if (storage != NULL) { | 
 |           storage->set(counter, Smi::FromInt(counter)); | 
 |         } | 
 |         counter++; | 
 |       } | 
 |       ASSERT(!storage || storage->length() >= counter); | 
 |       break; | 
 |     } | 
 |     case EXTERNAL_BYTE_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |     case EXTERNAL_SHORT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |     case EXTERNAL_INT_ELEMENTS: | 
 |     case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |     case EXTERNAL_FLOAT_ELEMENTS: { | 
 |       int length = ExternalArray::cast(elements())->length(); | 
 |       while (counter < length) { | 
 |         if (storage != NULL) { | 
 |           storage->set(counter, Smi::FromInt(counter)); | 
 |         } | 
 |         counter++; | 
 |       } | 
 |       ASSERT(!storage || storage->length() >= counter); | 
 |       break; | 
 |     } | 
 |     case DICTIONARY_ELEMENTS: { | 
 |       if (storage != NULL) { | 
 |         element_dictionary()->CopyKeysTo(storage, filter); | 
 |       } | 
 |       counter = element_dictionary()->NumberOfElementsFilterAttributes(filter); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 |  | 
 |   if (this->IsJSValue()) { | 
 |     Object* val = JSValue::cast(this)->value(); | 
 |     if (val->IsString()) { | 
 |       String* str = String::cast(val); | 
 |       if (storage) { | 
 |         for (int i = 0; i < str->length(); i++) { | 
 |           storage->set(counter + i, Smi::FromInt(i)); | 
 |         } | 
 |       } | 
 |       counter += str->length(); | 
 |     } | 
 |   } | 
 |   ASSERT(!storage || storage->length() == counter); | 
 |   return counter; | 
 | } | 
 |  | 
 |  | 
 | int JSObject::GetEnumElementKeys(FixedArray* storage) { | 
 |   return GetLocalElementKeys(storage, | 
 |                              static_cast<PropertyAttributes>(DONT_ENUM)); | 
 | } | 
 |  | 
 |  | 
 | bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) { | 
 |   ASSERT(other->IsNumber()); | 
 |   return key == static_cast<uint32_t>(other->Number()); | 
 | } | 
 |  | 
 |  | 
 | uint32_t NumberDictionaryShape::Hash(uint32_t key) { | 
 |   return ComputeIntegerHash(key); | 
 | } | 
 |  | 
 |  | 
 | uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) { | 
 |   ASSERT(other->IsNumber()); | 
 |   return ComputeIntegerHash(static_cast<uint32_t>(other->Number())); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* NumberDictionaryShape::AsObject(uint32_t key) { | 
 |   return Heap::NumberFromUint32(key); | 
 | } | 
 |  | 
 |  | 
 | bool StringDictionaryShape::IsMatch(String* key, Object* other) { | 
 |   // We know that all entries in a hash table had their hash keys created. | 
 |   // Use that knowledge to have fast failure. | 
 |   if (key->Hash() != String::cast(other)->Hash()) return false; | 
 |   return key->Equals(String::cast(other)); | 
 | } | 
 |  | 
 |  | 
 | uint32_t StringDictionaryShape::Hash(String* key) { | 
 |   return key->Hash(); | 
 | } | 
 |  | 
 |  | 
 | uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) { | 
 |   return String::cast(other)->Hash(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* StringDictionaryShape::AsObject(String* key) { | 
 |   return key; | 
 | } | 
 |  | 
 |  | 
 | // StringKey simply carries a string object as key. | 
 | class StringKey : public HashTableKey { | 
 |  public: | 
 |   explicit StringKey(String* string) : | 
 |       string_(string), | 
 |       hash_(HashForObject(string)) { } | 
 |  | 
 |   bool IsMatch(Object* string) { | 
 |     // We know that all entries in a hash table had their hash keys created. | 
 |     // Use that knowledge to have fast failure. | 
 |     if (hash_ != HashForObject(string)) { | 
 |       return false; | 
 |     } | 
 |     return string_->Equals(String::cast(string)); | 
 |   } | 
 |  | 
 |   uint32_t Hash() { return hash_; } | 
 |  | 
 |   uint32_t HashForObject(Object* other) { return String::cast(other)->Hash(); } | 
 |  | 
 |   Object* AsObject() { return string_; } | 
 |  | 
 |   String* string_; | 
 |   uint32_t hash_; | 
 | }; | 
 |  | 
 |  | 
 | // StringSharedKeys are used as keys in the eval cache. | 
 | class StringSharedKey : public HashTableKey { | 
 |  public: | 
 |   StringSharedKey(String* source, SharedFunctionInfo* shared) | 
 |       : source_(source), shared_(shared) { } | 
 |  | 
 |   bool IsMatch(Object* other) { | 
 |     if (!other->IsFixedArray()) return false; | 
 |     FixedArray* pair = FixedArray::cast(other); | 
 |     SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0)); | 
 |     if (shared != shared_) return false; | 
 |     String* source = String::cast(pair->get(1)); | 
 |     return source->Equals(source_); | 
 |   } | 
 |  | 
 |   static uint32_t StringSharedHashHelper(String* source, | 
 |                                          SharedFunctionInfo* shared) { | 
 |     uint32_t hash = source->Hash(); | 
 |     if (shared->HasSourceCode()) { | 
 |       // Instead of using the SharedFunctionInfo pointer in the hash | 
 |       // code computation, we use a combination of the hash of the | 
 |       // script source code and the start and end positions.  We do | 
 |       // this to ensure that the cache entries can survive garbage | 
 |       // collection. | 
 |       Script* script = Script::cast(shared->script()); | 
 |       hash ^= String::cast(script->source())->Hash(); | 
 |       hash += shared->start_position(); | 
 |     } | 
 |     return hash; | 
 |   } | 
 |  | 
 |   uint32_t Hash() { | 
 |     return StringSharedHashHelper(source_, shared_); | 
 |   } | 
 |  | 
 |   uint32_t HashForObject(Object* obj) { | 
 |     FixedArray* pair = FixedArray::cast(obj); | 
 |     SharedFunctionInfo* shared = SharedFunctionInfo::cast(pair->get(0)); | 
 |     String* source = String::cast(pair->get(1)); | 
 |     return StringSharedHashHelper(source, shared); | 
 |   } | 
 |  | 
 |   MUST_USE_RESULT MaybeObject* AsObject() { | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = Heap::AllocateFixedArray(2); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |     FixedArray* pair = FixedArray::cast(obj); | 
 |     pair->set(0, shared_); | 
 |     pair->set(1, source_); | 
 |     return pair; | 
 |   } | 
 |  | 
 |  private: | 
 |   String* source_; | 
 |   SharedFunctionInfo* shared_; | 
 | }; | 
 |  | 
 |  | 
 | // RegExpKey carries the source and flags of a regular expression as key. | 
 | class RegExpKey : public HashTableKey { | 
 |  public: | 
 |   RegExpKey(String* string, JSRegExp::Flags flags) | 
 |       : string_(string), | 
 |         flags_(Smi::FromInt(flags.value())) { } | 
 |  | 
 |   // Rather than storing the key in the hash table, a pointer to the | 
 |   // stored value is stored where the key should be.  IsMatch then | 
 |   // compares the search key to the found object, rather than comparing | 
 |   // a key to a key. | 
 |   bool IsMatch(Object* obj) { | 
 |     FixedArray* val = FixedArray::cast(obj); | 
 |     return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex))) | 
 |         && (flags_ == val->get(JSRegExp::kFlagsIndex)); | 
 |   } | 
 |  | 
 |   uint32_t Hash() { return RegExpHash(string_, flags_); } | 
 |  | 
 |   Object* AsObject() { | 
 |     // Plain hash maps, which is where regexp keys are used, don't | 
 |     // use this function. | 
 |     UNREACHABLE(); | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   uint32_t HashForObject(Object* obj) { | 
 |     FixedArray* val = FixedArray::cast(obj); | 
 |     return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)), | 
 |                       Smi::cast(val->get(JSRegExp::kFlagsIndex))); | 
 |   } | 
 |  | 
 |   static uint32_t RegExpHash(String* string, Smi* flags) { | 
 |     return string->Hash() + flags->value(); | 
 |   } | 
 |  | 
 |   String* string_; | 
 |   Smi* flags_; | 
 | }; | 
 |  | 
 | // Utf8SymbolKey carries a vector of chars as key. | 
 | class Utf8SymbolKey : public HashTableKey { | 
 |  public: | 
 |   explicit Utf8SymbolKey(Vector<const char> string) | 
 |       : string_(string), hash_field_(0) { } | 
 |  | 
 |   bool IsMatch(Object* string) { | 
 |     return String::cast(string)->IsEqualTo(string_); | 
 |   } | 
 |  | 
 |   uint32_t Hash() { | 
 |     if (hash_field_ != 0) return hash_field_ >> String::kHashShift; | 
 |     unibrow::Utf8InputBuffer<> buffer(string_.start(), | 
 |                                       static_cast<unsigned>(string_.length())); | 
 |     chars_ = buffer.Length(); | 
 |     hash_field_ = String::ComputeHashField(&buffer, chars_); | 
 |     uint32_t result = hash_field_ >> String::kHashShift; | 
 |     ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed. | 
 |     return result; | 
 |   } | 
 |  | 
 |   uint32_t HashForObject(Object* other) { | 
 |     return String::cast(other)->Hash(); | 
 |   } | 
 |  | 
 |   MaybeObject* AsObject() { | 
 |     if (hash_field_ == 0) Hash(); | 
 |     return Heap::AllocateSymbol(string_, chars_, hash_field_); | 
 |   } | 
 |  | 
 |   Vector<const char> string_; | 
 |   uint32_t hash_field_; | 
 |   int chars_;  // Caches the number of characters when computing the hash code. | 
 | }; | 
 |  | 
 |  | 
 | template <typename Char> | 
 | class SequentialSymbolKey : public HashTableKey { | 
 |  public: | 
 |   explicit SequentialSymbolKey(Vector<const Char> string) | 
 |       : string_(string), hash_field_(0) { } | 
 |  | 
 |   uint32_t Hash() { | 
 |     StringHasher hasher(string_.length()); | 
 |  | 
 |     // Very long strings have a trivial hash that doesn't inspect the | 
 |     // string contents. | 
 |     if (hasher.has_trivial_hash()) { | 
 |       hash_field_ = hasher.GetHashField(); | 
 |     } else { | 
 |       int i = 0; | 
 |       // Do the iterative array index computation as long as there is a | 
 |       // chance this is an array index. | 
 |       while (i < string_.length() && hasher.is_array_index()) { | 
 |         hasher.AddCharacter(static_cast<uc32>(string_[i])); | 
 |         i++; | 
 |       } | 
 |  | 
 |       // Process the remaining characters without updating the array | 
 |       // index. | 
 |       while (i < string_.length()) { | 
 |         hasher.AddCharacterNoIndex(static_cast<uc32>(string_[i])); | 
 |         i++; | 
 |       } | 
 |       hash_field_ = hasher.GetHashField(); | 
 |     } | 
 |  | 
 |     uint32_t result = hash_field_ >> String::kHashShift; | 
 |     ASSERT(result != 0);  // Ensure that the hash value of 0 is never computed. | 
 |     return result; | 
 |   } | 
 |  | 
 |  | 
 |   uint32_t HashForObject(Object* other) { | 
 |     return String::cast(other)->Hash(); | 
 |   } | 
 |  | 
 |   Vector<const Char> string_; | 
 |   uint32_t hash_field_; | 
 | }; | 
 |  | 
 |  | 
 |  | 
 | class AsciiSymbolKey : public SequentialSymbolKey<char> { | 
 |  public: | 
 |   explicit AsciiSymbolKey(Vector<const char> str) | 
 |       : SequentialSymbolKey<char>(str) { } | 
 |  | 
 |   bool IsMatch(Object* string) { | 
 |     return String::cast(string)->IsAsciiEqualTo(string_); | 
 |   } | 
 |  | 
 |   MaybeObject* AsObject() { | 
 |     if (hash_field_ == 0) Hash(); | 
 |     return Heap::AllocateAsciiSymbol(string_, hash_field_); | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | class TwoByteSymbolKey : public SequentialSymbolKey<uc16> { | 
 |  public: | 
 |   explicit TwoByteSymbolKey(Vector<const uc16> str) | 
 |       : SequentialSymbolKey<uc16>(str) { } | 
 |  | 
 |   bool IsMatch(Object* string) { | 
 |     return String::cast(string)->IsTwoByteEqualTo(string_); | 
 |   } | 
 |  | 
 |   MaybeObject* AsObject() { | 
 |     if (hash_field_ == 0) Hash(); | 
 |     return Heap::AllocateTwoByteSymbol(string_, hash_field_); | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | // SymbolKey carries a string/symbol object as key. | 
 | class SymbolKey : public HashTableKey { | 
 |  public: | 
 |   explicit SymbolKey(String* string) : string_(string) { } | 
 |  | 
 |   bool IsMatch(Object* string) { | 
 |     return String::cast(string)->Equals(string_); | 
 |   } | 
 |  | 
 |   uint32_t Hash() { return string_->Hash(); } | 
 |  | 
 |   uint32_t HashForObject(Object* other) { | 
 |     return String::cast(other)->Hash(); | 
 |   } | 
 |  | 
 |   MaybeObject* AsObject() { | 
 |     // Attempt to flatten the string, so that symbols will most often | 
 |     // be flat strings. | 
 |     string_ = string_->TryFlattenGetString(); | 
 |     // Transform string to symbol if possible. | 
 |     Map* map = Heap::SymbolMapForString(string_); | 
 |     if (map != NULL) { | 
 |       string_->set_map(map); | 
 |       ASSERT(string_->IsSymbol()); | 
 |       return string_; | 
 |     } | 
 |     // Otherwise allocate a new symbol. | 
 |     StringInputBuffer buffer(string_); | 
 |     return Heap::AllocateInternalSymbol(&buffer, | 
 |                                         string_->length(), | 
 |                                         string_->hash_field()); | 
 |   } | 
 |  | 
 |   static uint32_t StringHash(Object* obj) { | 
 |     return String::cast(obj)->Hash(); | 
 |   } | 
 |  | 
 |   String* string_; | 
 | }; | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | void HashTable<Shape, Key>::IteratePrefix(ObjectVisitor* v) { | 
 |   IteratePointers(v, 0, kElementsStartOffset); | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | void HashTable<Shape, Key>::IterateElements(ObjectVisitor* v) { | 
 |   IteratePointers(v, | 
 |                   kElementsStartOffset, | 
 |                   kHeaderSize + length() * kPointerSize); | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | MaybeObject* HashTable<Shape, Key>::Allocate(int at_least_space_for, | 
 |                                              PretenureFlag pretenure) { | 
 |   const int kMinCapacity = 32; | 
 |   int capacity = RoundUpToPowerOf2(at_least_space_for * 2); | 
 |   if (capacity < kMinCapacity) { | 
 |     capacity = kMinCapacity;  // Guarantee min capacity. | 
 |   } else if (capacity > HashTable::kMaxCapacity) { | 
 |     return Failure::OutOfMemoryException(); | 
 |   } | 
 |  | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = | 
 |         Heap::AllocateHashTable(EntryToIndex(capacity), pretenure); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   HashTable::cast(obj)->SetNumberOfElements(0); | 
 |   HashTable::cast(obj)->SetNumberOfDeletedElements(0); | 
 |   HashTable::cast(obj)->SetCapacity(capacity); | 
 |   return obj; | 
 | } | 
 |  | 
 |  | 
 | // Find entry for key otherwise return kNotFound. | 
 | template<typename Shape, typename Key> | 
 | int HashTable<Shape, Key>::FindEntry(Key key) { | 
 |   uint32_t capacity = Capacity(); | 
 |   uint32_t entry = FirstProbe(Shape::Hash(key), capacity); | 
 |   uint32_t count = 1; | 
 |   // EnsureCapacity will guarantee the hash table is never full. | 
 |   while (true) { | 
 |     Object* element = KeyAt(entry); | 
 |     if (element->IsUndefined()) break;  // Empty entry. | 
 |     if (!element->IsNull() && Shape::IsMatch(key, element)) return entry; | 
 |     entry = NextProbe(entry, count++, capacity); | 
 |   } | 
 |   return kNotFound; | 
 | } | 
 |  | 
 |  | 
 | // Find entry for key otherwise return kNotFound. | 
 | int StringDictionary::FindEntry(String* key) { | 
 |   if (!key->IsSymbol()) { | 
 |     return HashTable<StringDictionaryShape, String*>::FindEntry(key); | 
 |   } | 
 |  | 
 |   // Optimized for symbol key. Knowledge of the key type allows: | 
 |   // 1. Move the check if the key is a symbol out of the loop. | 
 |   // 2. Avoid comparing hash codes in symbol to symbol comparision. | 
 |   // 3. Detect a case when a dictionary key is not a symbol but the key is. | 
 |   //    In case of positive result the dictionary key may be replaced by | 
 |   //    the symbol with minimal performance penalty. It gives a chance to | 
 |   //    perform further lookups in code stubs (and significant performance boost | 
 |   //    a certain style of code). | 
 |  | 
 |   // EnsureCapacity will guarantee the hash table is never full. | 
 |   uint32_t capacity = Capacity(); | 
 |   uint32_t entry = FirstProbe(key->Hash(), capacity); | 
 |   uint32_t count = 1; | 
 |  | 
 |   while (true) { | 
 |     int index = EntryToIndex(entry); | 
 |     Object* element = get(index); | 
 |     if (element->IsUndefined()) break;  // Empty entry. | 
 |     if (key == element) return entry; | 
 |     if (!element->IsSymbol() && | 
 |         !element->IsNull() && | 
 |         String::cast(element)->Equals(key)) { | 
 |       // Replace a non-symbol key by the equivalent symbol for faster further | 
 |       // lookups. | 
 |       set(index, key); | 
 |       return entry; | 
 |     } | 
 |     ASSERT(element->IsNull() || !String::cast(element)->Equals(key)); | 
 |     entry = NextProbe(entry, count++, capacity); | 
 |   } | 
 |   return kNotFound; | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | MaybeObject* HashTable<Shape, Key>::EnsureCapacity(int n, Key key) { | 
 |   int capacity = Capacity(); | 
 |   int nof = NumberOfElements() + n; | 
 |   int nod = NumberOfDeletedElements(); | 
 |   // Return if: | 
 |   //   50% is still free after adding n elements and | 
 |   //   at most 50% of the free elements are deleted elements. | 
 |   if (nod <= (capacity - nof) >> 1) { | 
 |     int needed_free = nof >> 1; | 
 |     if (nof + needed_free <= capacity) return this; | 
 |   } | 
 |  | 
 |   const int kMinCapacityForPretenure = 256; | 
 |   bool pretenure = | 
 |       (capacity > kMinCapacityForPretenure) && !Heap::InNewSpace(this); | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = | 
 |         Allocate(nof * 2, pretenure ? TENURED : NOT_TENURED); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   AssertNoAllocation no_gc; | 
 |   HashTable* table = HashTable::cast(obj); | 
 |   WriteBarrierMode mode = table->GetWriteBarrierMode(no_gc); | 
 |  | 
 |   // Copy prefix to new array. | 
 |   for (int i = kPrefixStartIndex; | 
 |        i < kPrefixStartIndex + Shape::kPrefixSize; | 
 |        i++) { | 
 |     table->set(i, get(i), mode); | 
 |   } | 
 |   // Rehash the elements. | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     uint32_t from_index = EntryToIndex(i); | 
 |     Object* k = get(from_index); | 
 |     if (IsKey(k)) { | 
 |       uint32_t hash = Shape::HashForObject(key, k); | 
 |       uint32_t insertion_index = | 
 |           EntryToIndex(table->FindInsertionEntry(hash)); | 
 |       for (int j = 0; j < Shape::kEntrySize; j++) { | 
 |         table->set(insertion_index + j, get(from_index + j), mode); | 
 |       } | 
 |     } | 
 |   } | 
 |   table->SetNumberOfElements(NumberOfElements()); | 
 |   table->SetNumberOfDeletedElements(0); | 
 |   return table; | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | uint32_t HashTable<Shape, Key>::FindInsertionEntry(uint32_t hash) { | 
 |   uint32_t capacity = Capacity(); | 
 |   uint32_t entry = FirstProbe(hash, capacity); | 
 |   uint32_t count = 1; | 
 |   // EnsureCapacity will guarantee the hash table is never full. | 
 |   while (true) { | 
 |     Object* element = KeyAt(entry); | 
 |     if (element->IsUndefined() || element->IsNull()) break; | 
 |     entry = NextProbe(entry, count++, capacity); | 
 |   } | 
 |   return entry; | 
 | } | 
 |  | 
 | // Force instantiation of template instances class. | 
 | // Please note this list is compiler dependent. | 
 |  | 
 | template class HashTable<SymbolTableShape, HashTableKey*>; | 
 |  | 
 | template class HashTable<CompilationCacheShape, HashTableKey*>; | 
 |  | 
 | template class HashTable<MapCacheShape, HashTableKey*>; | 
 |  | 
 | template class Dictionary<StringDictionaryShape, String*>; | 
 |  | 
 | template class Dictionary<NumberDictionaryShape, uint32_t>; | 
 |  | 
 | template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::Allocate( | 
 |     int); | 
 |  | 
 | template MaybeObject* Dictionary<StringDictionaryShape, String*>::Allocate( | 
 |     int); | 
 |  | 
 | template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::AtPut( | 
 |     uint32_t, Object*); | 
 |  | 
 | template Object* Dictionary<NumberDictionaryShape, uint32_t>::SlowReverseLookup( | 
 |     Object*); | 
 |  | 
 | template Object* Dictionary<StringDictionaryShape, String*>::SlowReverseLookup( | 
 |     Object*); | 
 |  | 
 | template void Dictionary<NumberDictionaryShape, uint32_t>::CopyKeysTo( | 
 |     FixedArray*, PropertyAttributes); | 
 |  | 
 | template Object* Dictionary<StringDictionaryShape, String*>::DeleteProperty( | 
 |     int, JSObject::DeleteMode); | 
 |  | 
 | template Object* Dictionary<NumberDictionaryShape, uint32_t>::DeleteProperty( | 
 |     int, JSObject::DeleteMode); | 
 |  | 
 | template void Dictionary<StringDictionaryShape, String*>::CopyKeysTo( | 
 |     FixedArray*); | 
 |  | 
 | template int | 
 | Dictionary<StringDictionaryShape, String*>::NumberOfElementsFilterAttributes( | 
 |     PropertyAttributes); | 
 |  | 
 | template MaybeObject* Dictionary<StringDictionaryShape, String*>::Add( | 
 |     String*, Object*, PropertyDetails); | 
 |  | 
 | template MaybeObject* | 
 | Dictionary<StringDictionaryShape, String*>::GenerateNewEnumerationIndices(); | 
 |  | 
 | template int | 
 | Dictionary<NumberDictionaryShape, uint32_t>::NumberOfElementsFilterAttributes( | 
 |     PropertyAttributes); | 
 |  | 
 | template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::Add( | 
 |     uint32_t, Object*, PropertyDetails); | 
 |  | 
 | template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>:: | 
 |     EnsureCapacity(int, uint32_t); | 
 |  | 
 | template MaybeObject* Dictionary<StringDictionaryShape, String*>:: | 
 |     EnsureCapacity(int, String*); | 
 |  | 
 | template MaybeObject* Dictionary<NumberDictionaryShape, uint32_t>::AddEntry( | 
 |     uint32_t, Object*, PropertyDetails, uint32_t); | 
 |  | 
 | template MaybeObject* Dictionary<StringDictionaryShape, String*>::AddEntry( | 
 |     String*, Object*, PropertyDetails, uint32_t); | 
 |  | 
 | template | 
 | int Dictionary<NumberDictionaryShape, uint32_t>::NumberOfEnumElements(); | 
 |  | 
 | template | 
 | int Dictionary<StringDictionaryShape, String*>::NumberOfEnumElements(); | 
 |  | 
 | template | 
 | int HashTable<NumberDictionaryShape, uint32_t>::FindEntry(uint32_t); | 
 |  | 
 |  | 
 | // Collates undefined and unexisting elements below limit from position | 
 | // zero of the elements. The object stays in Dictionary mode. | 
 | MaybeObject* JSObject::PrepareSlowElementsForSort(uint32_t limit) { | 
 |   ASSERT(HasDictionaryElements()); | 
 |   // Must stay in dictionary mode, either because of requires_slow_elements, | 
 |   // or because we are not going to sort (and therefore compact) all of the | 
 |   // elements. | 
 |   NumberDictionary* dict = element_dictionary(); | 
 |   HeapNumber* result_double = NULL; | 
 |   if (limit > static_cast<uint32_t>(Smi::kMaxValue)) { | 
 |     // Allocate space for result before we start mutating the object. | 
 |     Object* new_double; | 
 |     { MaybeObject* maybe_new_double = Heap::AllocateHeapNumber(0.0); | 
 |       if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double; | 
 |     } | 
 |     result_double = HeapNumber::cast(new_double); | 
 |   } | 
 |  | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = | 
 |         NumberDictionary::Allocate(dict->NumberOfElements()); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   NumberDictionary* new_dict = NumberDictionary::cast(obj); | 
 |  | 
 |   AssertNoAllocation no_alloc; | 
 |  | 
 |   uint32_t pos = 0; | 
 |   uint32_t undefs = 0; | 
 |   int capacity = dict->Capacity(); | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* k = dict->KeyAt(i); | 
 |     if (dict->IsKey(k)) { | 
 |       ASSERT(k->IsNumber()); | 
 |       ASSERT(!k->IsSmi() || Smi::cast(k)->value() >= 0); | 
 |       ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0); | 
 |       ASSERT(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32); | 
 |       Object* value = dict->ValueAt(i); | 
 |       PropertyDetails details = dict->DetailsAt(i); | 
 |       if (details.type() == CALLBACKS) { | 
 |         // Bail out and do the sorting of undefineds and array holes in JS. | 
 |         return Smi::FromInt(-1); | 
 |       } | 
 |       uint32_t key = NumberToUint32(k); | 
 |       // In the following we assert that adding the entry to the new dictionary | 
 |       // does not cause GC.  This is the case because we made sure to allocate | 
 |       // the dictionary big enough above, so it need not grow. | 
 |       if (key < limit) { | 
 |         if (value->IsUndefined()) { | 
 |           undefs++; | 
 |         } else { | 
 |           new_dict->AddNumberEntry(pos, value, details)->ToObjectUnchecked(); | 
 |           pos++; | 
 |         } | 
 |       } else { | 
 |         new_dict->AddNumberEntry(key, value, details)->ToObjectUnchecked(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   uint32_t result = pos; | 
 |   PropertyDetails no_details = PropertyDetails(NONE, NORMAL); | 
 |   while (undefs > 0) { | 
 |     new_dict->AddNumberEntry(pos, Heap::undefined_value(), no_details)-> | 
 |         ToObjectUnchecked(); | 
 |     pos++; | 
 |     undefs--; | 
 |   } | 
 |  | 
 |   set_elements(new_dict); | 
 |  | 
 |   if (result <= static_cast<uint32_t>(Smi::kMaxValue)) { | 
 |     return Smi::FromInt(static_cast<int>(result)); | 
 |   } | 
 |  | 
 |   ASSERT_NE(NULL, result_double); | 
 |   result_double->set_value(static_cast<double>(result)); | 
 |   return result_double; | 
 | } | 
 |  | 
 |  | 
 | // Collects all defined (non-hole) and non-undefined (array) elements at | 
 | // the start of the elements array. | 
 | // If the object is in dictionary mode, it is converted to fast elements | 
 | // mode. | 
 | MaybeObject* JSObject::PrepareElementsForSort(uint32_t limit) { | 
 |   ASSERT(!HasPixelElements() && !HasExternalArrayElements()); | 
 |  | 
 |   if (HasDictionaryElements()) { | 
 |     // Convert to fast elements containing only the existing properties. | 
 |     // Ordering is irrelevant, since we are going to sort anyway. | 
 |     NumberDictionary* dict = element_dictionary(); | 
 |     if (IsJSArray() || dict->requires_slow_elements() || | 
 |         dict->max_number_key() >= limit) { | 
 |       return PrepareSlowElementsForSort(limit); | 
 |     } | 
 |     // Convert to fast elements. | 
 |  | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = map()->GetFastElementsMap(); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |     Map* new_map = Map::cast(obj); | 
 |  | 
 |     PretenureFlag tenure = Heap::InNewSpace(this) ? NOT_TENURED: TENURED; | 
 |     Object* new_array; | 
 |     { MaybeObject* maybe_new_array = | 
 |           Heap::AllocateFixedArray(dict->NumberOfElements(), tenure); | 
 |       if (!maybe_new_array->ToObject(&new_array)) return maybe_new_array; | 
 |     } | 
 |     FixedArray* fast_elements = FixedArray::cast(new_array); | 
 |     dict->CopyValuesTo(fast_elements); | 
 |  | 
 |     set_map(new_map); | 
 |     set_elements(fast_elements); | 
 |   } else { | 
 |     Object* obj; | 
 |     { MaybeObject* maybe_obj = EnsureWritableFastElements(); | 
 |       if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |     } | 
 |   } | 
 |   ASSERT(HasFastElements()); | 
 |  | 
 |   // Collect holes at the end, undefined before that and the rest at the | 
 |   // start, and return the number of non-hole, non-undefined values. | 
 |  | 
 |   FixedArray* elements = FixedArray::cast(this->elements()); | 
 |   uint32_t elements_length = static_cast<uint32_t>(elements->length()); | 
 |   if (limit > elements_length) { | 
 |     limit = elements_length ; | 
 |   } | 
 |   if (limit == 0) { | 
 |     return Smi::FromInt(0); | 
 |   } | 
 |  | 
 |   HeapNumber* result_double = NULL; | 
 |   if (limit > static_cast<uint32_t>(Smi::kMaxValue)) { | 
 |     // Pessimistically allocate space for return value before | 
 |     // we start mutating the array. | 
 |     Object* new_double; | 
 |     { MaybeObject* maybe_new_double = Heap::AllocateHeapNumber(0.0); | 
 |       if (!maybe_new_double->ToObject(&new_double)) return maybe_new_double; | 
 |     } | 
 |     result_double = HeapNumber::cast(new_double); | 
 |   } | 
 |  | 
 |   AssertNoAllocation no_alloc; | 
 |  | 
 |   // Split elements into defined, undefined and the_hole, in that order. | 
 |   // Only count locations for undefined and the hole, and fill them afterwards. | 
 |   WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_alloc); | 
 |   unsigned int undefs = limit; | 
 |   unsigned int holes = limit; | 
 |   // Assume most arrays contain no holes and undefined values, so minimize the | 
 |   // number of stores of non-undefined, non-the-hole values. | 
 |   for (unsigned int i = 0; i < undefs; i++) { | 
 |     Object* current = elements->get(i); | 
 |     if (current->IsTheHole()) { | 
 |       holes--; | 
 |       undefs--; | 
 |     } else if (current->IsUndefined()) { | 
 |       undefs--; | 
 |     } else { | 
 |       continue; | 
 |     } | 
 |     // Position i needs to be filled. | 
 |     while (undefs > i) { | 
 |       current = elements->get(undefs); | 
 |       if (current->IsTheHole()) { | 
 |         holes--; | 
 |         undefs--; | 
 |       } else if (current->IsUndefined()) { | 
 |         undefs--; | 
 |       } else { | 
 |         elements->set(i, current, write_barrier); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |   uint32_t result = undefs; | 
 |   while (undefs < holes) { | 
 |     elements->set_undefined(undefs); | 
 |     undefs++; | 
 |   } | 
 |   while (holes < limit) { | 
 |     elements->set_the_hole(holes); | 
 |     holes++; | 
 |   } | 
 |  | 
 |   if (result <= static_cast<uint32_t>(Smi::kMaxValue)) { | 
 |     return Smi::FromInt(static_cast<int>(result)); | 
 |   } | 
 |   ASSERT_NE(NULL, result_double); | 
 |   result_double->set_value(static_cast<double>(result)); | 
 |   return result_double; | 
 | } | 
 |  | 
 |  | 
 | Object* PixelArray::SetValue(uint32_t index, Object* value) { | 
 |   uint8_t clamped_value = 0; | 
 |   if (index < static_cast<uint32_t>(length())) { | 
 |     if (value->IsSmi()) { | 
 |       int int_value = Smi::cast(value)->value(); | 
 |       if (int_value < 0) { | 
 |         clamped_value = 0; | 
 |       } else if (int_value > 255) { | 
 |         clamped_value = 255; | 
 |       } else { | 
 |         clamped_value = static_cast<uint8_t>(int_value); | 
 |       } | 
 |     } else if (value->IsHeapNumber()) { | 
 |       double double_value = HeapNumber::cast(value)->value(); | 
 |       if (!(double_value > 0)) { | 
 |         // NaN and less than zero clamp to zero. | 
 |         clamped_value = 0; | 
 |       } else if (double_value > 255) { | 
 |         // Greater than 255 clamp to 255. | 
 |         clamped_value = 255; | 
 |       } else { | 
 |         // Other doubles are rounded to the nearest integer. | 
 |         clamped_value = static_cast<uint8_t>(double_value + 0.5); | 
 |       } | 
 |     } else { | 
 |       // Clamp undefined to zero (default). All other types have been | 
 |       // converted to a number type further up in the call chain. | 
 |       ASSERT(value->IsUndefined()); | 
 |     } | 
 |     set(index, clamped_value); | 
 |   } | 
 |   return Smi::FromInt(clamped_value); | 
 | } | 
 |  | 
 |  | 
 | template<typename ExternalArrayClass, typename ValueType> | 
 | static MaybeObject* ExternalArrayIntSetter(ExternalArrayClass* receiver, | 
 |                                            uint32_t index, | 
 |                                            Object* value) { | 
 |   ValueType cast_value = 0; | 
 |   if (index < static_cast<uint32_t>(receiver->length())) { | 
 |     if (value->IsSmi()) { | 
 |       int int_value = Smi::cast(value)->value(); | 
 |       cast_value = static_cast<ValueType>(int_value); | 
 |     } else if (value->IsHeapNumber()) { | 
 |       double double_value = HeapNumber::cast(value)->value(); | 
 |       cast_value = static_cast<ValueType>(DoubleToInt32(double_value)); | 
 |     } else { | 
 |       // Clamp undefined to zero (default). All other types have been | 
 |       // converted to a number type further up in the call chain. | 
 |       ASSERT(value->IsUndefined()); | 
 |     } | 
 |     receiver->set(index, cast_value); | 
 |   } | 
 |   return Heap::NumberFromInt32(cast_value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* ExternalByteArray::SetValue(uint32_t index, Object* value) { | 
 |   return ExternalArrayIntSetter<ExternalByteArray, int8_t> | 
 |       (this, index, value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* ExternalUnsignedByteArray::SetValue(uint32_t index, | 
 |                                                  Object* value) { | 
 |   return ExternalArrayIntSetter<ExternalUnsignedByteArray, uint8_t> | 
 |       (this, index, value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* ExternalShortArray::SetValue(uint32_t index, | 
 |                                           Object* value) { | 
 |   return ExternalArrayIntSetter<ExternalShortArray, int16_t> | 
 |       (this, index, value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* ExternalUnsignedShortArray::SetValue(uint32_t index, | 
 |                                                   Object* value) { | 
 |   return ExternalArrayIntSetter<ExternalUnsignedShortArray, uint16_t> | 
 |       (this, index, value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* ExternalIntArray::SetValue(uint32_t index, Object* value) { | 
 |   return ExternalArrayIntSetter<ExternalIntArray, int32_t> | 
 |       (this, index, value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* ExternalUnsignedIntArray::SetValue(uint32_t index, Object* value) { | 
 |   uint32_t cast_value = 0; | 
 |   if (index < static_cast<uint32_t>(length())) { | 
 |     if (value->IsSmi()) { | 
 |       int int_value = Smi::cast(value)->value(); | 
 |       cast_value = static_cast<uint32_t>(int_value); | 
 |     } else if (value->IsHeapNumber()) { | 
 |       double double_value = HeapNumber::cast(value)->value(); | 
 |       cast_value = static_cast<uint32_t>(DoubleToUint32(double_value)); | 
 |     } else { | 
 |       // Clamp undefined to zero (default). All other types have been | 
 |       // converted to a number type further up in the call chain. | 
 |       ASSERT(value->IsUndefined()); | 
 |     } | 
 |     set(index, cast_value); | 
 |   } | 
 |   return Heap::NumberFromUint32(cast_value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* ExternalFloatArray::SetValue(uint32_t index, Object* value) { | 
 |   float cast_value = 0; | 
 |   if (index < static_cast<uint32_t>(length())) { | 
 |     if (value->IsSmi()) { | 
 |       int int_value = Smi::cast(value)->value(); | 
 |       cast_value = static_cast<float>(int_value); | 
 |     } else if (value->IsHeapNumber()) { | 
 |       double double_value = HeapNumber::cast(value)->value(); | 
 |       cast_value = static_cast<float>(double_value); | 
 |     } else { | 
 |       // Clamp undefined to zero (default). All other types have been | 
 |       // converted to a number type further up in the call chain. | 
 |       ASSERT(value->IsUndefined()); | 
 |     } | 
 |     set(index, cast_value); | 
 |   } | 
 |   return Heap::AllocateHeapNumber(cast_value); | 
 | } | 
 |  | 
 |  | 
 | JSGlobalPropertyCell* GlobalObject::GetPropertyCell(LookupResult* result) { | 
 |   ASSERT(!HasFastProperties()); | 
 |   Object* value = property_dictionary()->ValueAt(result->GetDictionaryEntry()); | 
 |   return JSGlobalPropertyCell::cast(value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* GlobalObject::EnsurePropertyCell(String* name) { | 
 |   ASSERT(!HasFastProperties()); | 
 |   int entry = property_dictionary()->FindEntry(name); | 
 |   if (entry == StringDictionary::kNotFound) { | 
 |     Object* cell; | 
 |     { MaybeObject* maybe_cell = | 
 |           Heap::AllocateJSGlobalPropertyCell(Heap::the_hole_value()); | 
 |       if (!maybe_cell->ToObject(&cell)) return maybe_cell; | 
 |     } | 
 |     PropertyDetails details(NONE, NORMAL); | 
 |     details = details.AsDeleted(); | 
 |     Object* dictionary; | 
 |     { MaybeObject* maybe_dictionary = | 
 |           property_dictionary()->Add(name, cell, details); | 
 |       if (!maybe_dictionary->ToObject(&dictionary)) return maybe_dictionary; | 
 |     } | 
 |     set_properties(StringDictionary::cast(dictionary)); | 
 |     return cell; | 
 |   } else { | 
 |     Object* value = property_dictionary()->ValueAt(entry); | 
 |     ASSERT(value->IsJSGlobalPropertyCell()); | 
 |     return value; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* SymbolTable::LookupString(String* string, Object** s) { | 
 |   SymbolKey key(string); | 
 |   return LookupKey(&key, s); | 
 | } | 
 |  | 
 |  | 
 | // This class is used for looking up two character strings in the symbol table. | 
 | // If we don't have a hit we don't want to waste much time so we unroll the | 
 | // string hash calculation loop here for speed.  Doesn't work if the two | 
 | // characters form a decimal integer, since such strings have a different hash | 
 | // algorithm. | 
 | class TwoCharHashTableKey : public HashTableKey { | 
 |  public: | 
 |   TwoCharHashTableKey(uint32_t c1, uint32_t c2) | 
 |     : c1_(c1), c2_(c2) { | 
 |     // Char 1. | 
 |     uint32_t hash = c1 + (c1 << 10); | 
 |     hash ^= hash >> 6; | 
 |     // Char 2. | 
 |     hash += c2; | 
 |     hash += hash << 10; | 
 |     hash ^= hash >> 6; | 
 |     // GetHash. | 
 |     hash += hash << 3; | 
 |     hash ^= hash >> 11; | 
 |     hash += hash << 15; | 
 |     if (hash == 0) hash = 27; | 
 | #ifdef DEBUG | 
 |     StringHasher hasher(2); | 
 |     hasher.AddCharacter(c1); | 
 |     hasher.AddCharacter(c2); | 
 |     // If this assert fails then we failed to reproduce the two-character | 
 |     // version of the string hashing algorithm above.  One reason could be | 
 |     // that we were passed two digits as characters, since the hash | 
 |     // algorithm is different in that case. | 
 |     ASSERT_EQ(static_cast<int>(hasher.GetHash()), static_cast<int>(hash)); | 
 | #endif | 
 |     hash_ = hash; | 
 |   } | 
 |  | 
 |   bool IsMatch(Object* o) { | 
 |     if (!o->IsString()) return false; | 
 |     String* other = String::cast(o); | 
 |     if (other->length() != 2) return false; | 
 |     if (other->Get(0) != c1_) return false; | 
 |     return other->Get(1) == c2_; | 
 |   } | 
 |  | 
 |   uint32_t Hash() { return hash_; } | 
 |   uint32_t HashForObject(Object* key) { | 
 |     if (!key->IsString()) return 0; | 
 |     return String::cast(key)->Hash(); | 
 |   } | 
 |  | 
 |   Object* AsObject() { | 
 |     // The TwoCharHashTableKey is only used for looking in the symbol | 
 |     // table, not for adding to it. | 
 |     UNREACHABLE(); | 
 |     return NULL; | 
 |   } | 
 |  private: | 
 |   uint32_t c1_; | 
 |   uint32_t c2_; | 
 |   uint32_t hash_; | 
 | }; | 
 |  | 
 |  | 
 | bool SymbolTable::LookupSymbolIfExists(String* string, String** symbol) { | 
 |   SymbolKey key(string); | 
 |   int entry = FindEntry(&key); | 
 |   if (entry == kNotFound) { | 
 |     return false; | 
 |   } else { | 
 |     String* result = String::cast(KeyAt(entry)); | 
 |     ASSERT(StringShape(result).IsSymbol()); | 
 |     *symbol = result; | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool SymbolTable::LookupTwoCharsSymbolIfExists(uint32_t c1, | 
 |                                                uint32_t c2, | 
 |                                                String** symbol) { | 
 |   TwoCharHashTableKey key(c1, c2); | 
 |   int entry = FindEntry(&key); | 
 |   if (entry == kNotFound) { | 
 |     return false; | 
 |   } else { | 
 |     String* result = String::cast(KeyAt(entry)); | 
 |     ASSERT(StringShape(result).IsSymbol()); | 
 |     *symbol = result; | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* SymbolTable::LookupSymbol(Vector<const char> str, Object** s) { | 
 |   Utf8SymbolKey key(str); | 
 |   return LookupKey(&key, s); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* SymbolTable::LookupAsciiSymbol(Vector<const char> str, | 
 |                                             Object** s) { | 
 |   AsciiSymbolKey key(str); | 
 |   return LookupKey(&key, s); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* SymbolTable::LookupTwoByteSymbol(Vector<const uc16> str, | 
 |                                               Object** s) { | 
 |   TwoByteSymbolKey key(str); | 
 |   return LookupKey(&key, s); | 
 | } | 
 |  | 
 | MaybeObject* SymbolTable::LookupKey(HashTableKey* key, Object** s) { | 
 |   int entry = FindEntry(key); | 
 |  | 
 |   // Symbol already in table. | 
 |   if (entry != kNotFound) { | 
 |     *s = KeyAt(entry); | 
 |     return this; | 
 |   } | 
 |  | 
 |   // Adding new symbol. Grow table if needed. | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = EnsureCapacity(1, key); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   // Create symbol object. | 
 |   Object* symbol; | 
 |   { MaybeObject* maybe_symbol = key->AsObject(); | 
 |     if (!maybe_symbol->ToObject(&symbol)) return maybe_symbol; | 
 |   } | 
 |  | 
 |   // If the symbol table grew as part of EnsureCapacity, obj is not | 
 |   // the current symbol table and therefore we cannot use | 
 |   // SymbolTable::cast here. | 
 |   SymbolTable* table = reinterpret_cast<SymbolTable*>(obj); | 
 |  | 
 |   // Add the new symbol and return it along with the symbol table. | 
 |   entry = table->FindInsertionEntry(key->Hash()); | 
 |   table->set(EntryToIndex(entry), symbol); | 
 |   table->ElementAdded(); | 
 |   *s = symbol; | 
 |   return table; | 
 | } | 
 |  | 
 |  | 
 | Object* CompilationCacheTable::Lookup(String* src) { | 
 |   StringKey key(src); | 
 |   int entry = FindEntry(&key); | 
 |   if (entry == kNotFound) return Heap::undefined_value(); | 
 |   return get(EntryToIndex(entry) + 1); | 
 | } | 
 |  | 
 |  | 
 | Object* CompilationCacheTable::LookupEval(String* src, Context* context) { | 
 |   StringSharedKey key(src, context->closure()->shared()); | 
 |   int entry = FindEntry(&key); | 
 |   if (entry == kNotFound) return Heap::undefined_value(); | 
 |   return get(EntryToIndex(entry) + 1); | 
 | } | 
 |  | 
 |  | 
 | Object* CompilationCacheTable::LookupRegExp(String* src, | 
 |                                             JSRegExp::Flags flags) { | 
 |   RegExpKey key(src, flags); | 
 |   int entry = FindEntry(&key); | 
 |   if (entry == kNotFound) return Heap::undefined_value(); | 
 |   return get(EntryToIndex(entry) + 1); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* CompilationCacheTable::Put(String* src, Object* value) { | 
 |   StringKey key(src); | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = EnsureCapacity(1, &key); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   CompilationCacheTable* cache = | 
 |       reinterpret_cast<CompilationCacheTable*>(obj); | 
 |   int entry = cache->FindInsertionEntry(key.Hash()); | 
 |   cache->set(EntryToIndex(entry), src); | 
 |   cache->set(EntryToIndex(entry) + 1, value); | 
 |   cache->ElementAdded(); | 
 |   return cache; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* CompilationCacheTable::PutEval(String* src, | 
 |                                             Context* context, | 
 |                                             Object* value) { | 
 |   StringSharedKey key(src, context->closure()->shared()); | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = EnsureCapacity(1, &key); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   CompilationCacheTable* cache = | 
 |       reinterpret_cast<CompilationCacheTable*>(obj); | 
 |   int entry = cache->FindInsertionEntry(key.Hash()); | 
 |  | 
 |   Object* k; | 
 |   { MaybeObject* maybe_k = key.AsObject(); | 
 |     if (!maybe_k->ToObject(&k)) return maybe_k; | 
 |   } | 
 |  | 
 |   cache->set(EntryToIndex(entry), k); | 
 |   cache->set(EntryToIndex(entry) + 1, value); | 
 |   cache->ElementAdded(); | 
 |   return cache; | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* CompilationCacheTable::PutRegExp(String* src, | 
 |                                               JSRegExp::Flags flags, | 
 |                                               FixedArray* value) { | 
 |   RegExpKey key(src, flags); | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = EnsureCapacity(1, &key); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   CompilationCacheTable* cache = | 
 |       reinterpret_cast<CompilationCacheTable*>(obj); | 
 |   int entry = cache->FindInsertionEntry(key.Hash()); | 
 |   // We store the value in the key slot, and compare the search key | 
 |   // to the stored value with a custon IsMatch function during lookups. | 
 |   cache->set(EntryToIndex(entry), value); | 
 |   cache->set(EntryToIndex(entry) + 1, value); | 
 |   cache->ElementAdded(); | 
 |   return cache; | 
 | } | 
 |  | 
 |  | 
 | void CompilationCacheTable::Remove(Object* value) { | 
 |   for (int entry = 0, size = Capacity(); entry < size; entry++) { | 
 |     int entry_index = EntryToIndex(entry); | 
 |     int value_index = entry_index + 1; | 
 |     if (get(value_index) == value) { | 
 |       fast_set(this, entry_index, Heap::null_value()); | 
 |       fast_set(this, value_index, Heap::null_value()); | 
 |       ElementRemoved(); | 
 |     } | 
 |   } | 
 |   return; | 
 | } | 
 |  | 
 |  | 
 | // SymbolsKey used for HashTable where key is array of symbols. | 
 | class SymbolsKey : public HashTableKey { | 
 |  public: | 
 |   explicit SymbolsKey(FixedArray* symbols) : symbols_(symbols) { } | 
 |  | 
 |   bool IsMatch(Object* symbols) { | 
 |     FixedArray* o = FixedArray::cast(symbols); | 
 |     int len = symbols_->length(); | 
 |     if (o->length() != len) return false; | 
 |     for (int i = 0; i < len; i++) { | 
 |       if (o->get(i) != symbols_->get(i)) return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   uint32_t Hash() { return HashForObject(symbols_); } | 
 |  | 
 |   uint32_t HashForObject(Object* obj) { | 
 |     FixedArray* symbols = FixedArray::cast(obj); | 
 |     int len = symbols->length(); | 
 |     uint32_t hash = 0; | 
 |     for (int i = 0; i < len; i++) { | 
 |       hash ^= String::cast(symbols->get(i))->Hash(); | 
 |     } | 
 |     return hash; | 
 |   } | 
 |  | 
 |   Object* AsObject() { return symbols_; } | 
 |  | 
 |  private: | 
 |   FixedArray* symbols_; | 
 | }; | 
 |  | 
 |  | 
 | Object* MapCache::Lookup(FixedArray* array) { | 
 |   SymbolsKey key(array); | 
 |   int entry = FindEntry(&key); | 
 |   if (entry == kNotFound) return Heap::undefined_value(); | 
 |   return get(EntryToIndex(entry) + 1); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* MapCache::Put(FixedArray* array, Map* value) { | 
 |   SymbolsKey key(array); | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = EnsureCapacity(1, &key); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   MapCache* cache = reinterpret_cast<MapCache*>(obj); | 
 |   int entry = cache->FindInsertionEntry(key.Hash()); | 
 |   cache->set(EntryToIndex(entry), array); | 
 |   cache->set(EntryToIndex(entry) + 1, value); | 
 |   cache->ElementAdded(); | 
 |   return cache; | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | MaybeObject* Dictionary<Shape, Key>::Allocate(int at_least_space_for) { | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = | 
 |         HashTable<Shape, Key>::Allocate(at_least_space_for); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   // Initialize the next enumeration index. | 
 |   Dictionary<Shape, Key>::cast(obj)-> | 
 |       SetNextEnumerationIndex(PropertyDetails::kInitialIndex); | 
 |   return obj; | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | MaybeObject* Dictionary<Shape, Key>::GenerateNewEnumerationIndices() { | 
 |   int length = HashTable<Shape, Key>::NumberOfElements(); | 
 |  | 
 |   // Allocate and initialize iteration order array. | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = Heap::AllocateFixedArray(length); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   FixedArray* iteration_order = FixedArray::cast(obj); | 
 |   for (int i = 0; i < length; i++) { | 
 |     iteration_order->set(i, Smi::FromInt(i)); | 
 |   } | 
 |  | 
 |   // Allocate array with enumeration order. | 
 |   { MaybeObject* maybe_obj = Heap::AllocateFixedArray(length); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   FixedArray* enumeration_order = FixedArray::cast(obj); | 
 |  | 
 |   // Fill the enumeration order array with property details. | 
 |   int capacity = HashTable<Shape, Key>::Capacity(); | 
 |   int pos = 0; | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) { | 
 |       enumeration_order->set(pos++, Smi::FromInt(DetailsAt(i).index())); | 
 |     } | 
 |   } | 
 |  | 
 |   // Sort the arrays wrt. enumeration order. | 
 |   iteration_order->SortPairs(enumeration_order, enumeration_order->length()); | 
 |  | 
 |   // Overwrite the enumeration_order with the enumeration indices. | 
 |   for (int i = 0; i < length; i++) { | 
 |     int index = Smi::cast(iteration_order->get(i))->value(); | 
 |     int enum_index = PropertyDetails::kInitialIndex + i; | 
 |     enumeration_order->set(index, Smi::FromInt(enum_index)); | 
 |   } | 
 |  | 
 |   // Update the dictionary with new indices. | 
 |   capacity = HashTable<Shape, Key>::Capacity(); | 
 |   pos = 0; | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     if (Dictionary<Shape, Key>::IsKey(Dictionary<Shape, Key>::KeyAt(i))) { | 
 |       int enum_index = Smi::cast(enumeration_order->get(pos++))->value(); | 
 |       PropertyDetails details = DetailsAt(i); | 
 |       PropertyDetails new_details = | 
 |           PropertyDetails(details.attributes(), details.type(), enum_index); | 
 |       DetailsAtPut(i, new_details); | 
 |     } | 
 |   } | 
 |  | 
 |   // Set the next enumeration index. | 
 |   SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length); | 
 |   return this; | 
 | } | 
 |  | 
 | template<typename Shape, typename Key> | 
 | MaybeObject* Dictionary<Shape, Key>::EnsureCapacity(int n, Key key) { | 
 |   // Check whether there are enough enumeration indices to add n elements. | 
 |   if (Shape::kIsEnumerable && | 
 |       !PropertyDetails::IsValidIndex(NextEnumerationIndex() + n)) { | 
 |     // If not, we generate new indices for the properties. | 
 |     Object* result; | 
 |     { MaybeObject* maybe_result = GenerateNewEnumerationIndices(); | 
 |       if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |     } | 
 |   } | 
 |   return HashTable<Shape, Key>::EnsureCapacity(n, key); | 
 | } | 
 |  | 
 |  | 
 | void NumberDictionary::RemoveNumberEntries(uint32_t from, uint32_t to) { | 
 |   // Do nothing if the interval [from, to) is empty. | 
 |   if (from >= to) return; | 
 |  | 
 |   int removed_entries = 0; | 
 |   Object* sentinel = Heap::null_value(); | 
 |   int capacity = Capacity(); | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* key = KeyAt(i); | 
 |     if (key->IsNumber()) { | 
 |       uint32_t number = static_cast<uint32_t>(key->Number()); | 
 |       if (from <= number && number < to) { | 
 |         SetEntry(i, sentinel, sentinel, Smi::FromInt(0)); | 
 |         removed_entries++; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Update the number of elements. | 
 |   ElementsRemoved(removed_entries); | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | Object* Dictionary<Shape, Key>::DeleteProperty(int entry, | 
 |                                                JSObject::DeleteMode mode) { | 
 |   PropertyDetails details = DetailsAt(entry); | 
 |   // Ignore attributes if forcing a deletion. | 
 |   if (details.IsDontDelete() && mode == JSObject::NORMAL_DELETION) { | 
 |     return Heap::false_value(); | 
 |   } | 
 |   SetEntry(entry, Heap::null_value(), Heap::null_value(), Smi::FromInt(0)); | 
 |   HashTable<Shape, Key>::ElementRemoved(); | 
 |   return Heap::true_value(); | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | MaybeObject* Dictionary<Shape, Key>::AtPut(Key key, Object* value) { | 
 |   int entry = this->FindEntry(key); | 
 |  | 
 |   // If the entry is present set the value; | 
 |   if (entry != Dictionary<Shape, Key>::kNotFound) { | 
 |     ValueAtPut(entry, value); | 
 |     return this; | 
 |   } | 
 |  | 
 |   // Check whether the dictionary should be extended. | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = EnsureCapacity(1, key); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |  | 
 |   Object* k; | 
 |   { MaybeObject* maybe_k = Shape::AsObject(key); | 
 |     if (!maybe_k->ToObject(&k)) return maybe_k; | 
 |   } | 
 |   PropertyDetails details = PropertyDetails(NONE, NORMAL); | 
 |   return Dictionary<Shape, Key>::cast(obj)-> | 
 |       AddEntry(key, value, details, Shape::Hash(key)); | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | MaybeObject* Dictionary<Shape, Key>::Add(Key key, | 
 |                                          Object* value, | 
 |                                          PropertyDetails details) { | 
 |   // Valdate key is absent. | 
 |   SLOW_ASSERT((this->FindEntry(key) == Dictionary<Shape, Key>::kNotFound)); | 
 |   // Check whether the dictionary should be extended. | 
 |   Object* obj; | 
 |   { MaybeObject* maybe_obj = EnsureCapacity(1, key); | 
 |     if (!maybe_obj->ToObject(&obj)) return maybe_obj; | 
 |   } | 
 |   return Dictionary<Shape, Key>::cast(obj)-> | 
 |       AddEntry(key, value, details, Shape::Hash(key)); | 
 | } | 
 |  | 
 |  | 
 | // Add a key, value pair to the dictionary. | 
 | template<typename Shape, typename Key> | 
 | MaybeObject* Dictionary<Shape, Key>::AddEntry(Key key, | 
 |                                               Object* value, | 
 |                                               PropertyDetails details, | 
 |                                               uint32_t hash) { | 
 |   // Compute the key object. | 
 |   Object* k; | 
 |   { MaybeObject* maybe_k = Shape::AsObject(key); | 
 |     if (!maybe_k->ToObject(&k)) return maybe_k; | 
 |   } | 
 |  | 
 |   uint32_t entry = Dictionary<Shape, Key>::FindInsertionEntry(hash); | 
 |   // Insert element at empty or deleted entry | 
 |   if (!details.IsDeleted() && details.index() == 0 && Shape::kIsEnumerable) { | 
 |     // Assign an enumeration index to the property and update | 
 |     // SetNextEnumerationIndex. | 
 |     int index = NextEnumerationIndex(); | 
 |     details = PropertyDetails(details.attributes(), details.type(), index); | 
 |     SetNextEnumerationIndex(index + 1); | 
 |   } | 
 |   SetEntry(entry, k, value, details); | 
 |   ASSERT((Dictionary<Shape, Key>::KeyAt(entry)->IsNumber() | 
 |           || Dictionary<Shape, Key>::KeyAt(entry)->IsString())); | 
 |   HashTable<Shape, Key>::ElementAdded(); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 | void NumberDictionary::UpdateMaxNumberKey(uint32_t key) { | 
 |   // If the dictionary requires slow elements an element has already | 
 |   // been added at a high index. | 
 |   if (requires_slow_elements()) return; | 
 |   // Check if this index is high enough that we should require slow | 
 |   // elements. | 
 |   if (key > kRequiresSlowElementsLimit) { | 
 |     set_requires_slow_elements(); | 
 |     return; | 
 |   } | 
 |   // Update max key value. | 
 |   Object* max_index_object = get(kMaxNumberKeyIndex); | 
 |   if (!max_index_object->IsSmi() || max_number_key() < key) { | 
 |     FixedArray::set(kMaxNumberKeyIndex, | 
 |                     Smi::FromInt(key << kRequiresSlowElementsTagSize)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* NumberDictionary::AddNumberEntry(uint32_t key, | 
 |                                               Object* value, | 
 |                                               PropertyDetails details) { | 
 |   UpdateMaxNumberKey(key); | 
 |   SLOW_ASSERT(this->FindEntry(key) == kNotFound); | 
 |   return Add(key, value, details); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* NumberDictionary::AtNumberPut(uint32_t key, Object* value) { | 
 |   UpdateMaxNumberKey(key); | 
 |   return AtPut(key, value); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* NumberDictionary::Set(uint32_t key, | 
 |                                    Object* value, | 
 |                                    PropertyDetails details) { | 
 |   int entry = FindEntry(key); | 
 |   if (entry == kNotFound) return AddNumberEntry(key, value, details); | 
 |   // Preserve enumeration index. | 
 |   details = PropertyDetails(details.attributes(), | 
 |                             details.type(), | 
 |                             DetailsAt(entry).index()); | 
 |   MaybeObject* maybe_object_key = NumberDictionaryShape::AsObject(key); | 
 |   Object* object_key; | 
 |   if (!maybe_object_key->ToObject(&object_key)) return maybe_object_key; | 
 |   SetEntry(entry, object_key, value, details); | 
 |   return this; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | int Dictionary<Shape, Key>::NumberOfElementsFilterAttributes( | 
 |     PropertyAttributes filter) { | 
 |   int capacity = HashTable<Shape, Key>::Capacity(); | 
 |   int result = 0; | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* k = HashTable<Shape, Key>::KeyAt(i); | 
 |     if (HashTable<Shape, Key>::IsKey(k)) { | 
 |       PropertyDetails details = DetailsAt(i); | 
 |       if (details.IsDeleted()) continue; | 
 |       PropertyAttributes attr = details.attributes(); | 
 |       if ((attr & filter) == 0) result++; | 
 |     } | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | int Dictionary<Shape, Key>::NumberOfEnumElements() { | 
 |   return NumberOfElementsFilterAttributes( | 
 |       static_cast<PropertyAttributes>(DONT_ENUM)); | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage, | 
 |                                         PropertyAttributes filter) { | 
 |   ASSERT(storage->length() >= NumberOfEnumElements()); | 
 |   int capacity = HashTable<Shape, Key>::Capacity(); | 
 |   int index = 0; | 
 |   for (int i = 0; i < capacity; i++) { | 
 |      Object* k = HashTable<Shape, Key>::KeyAt(i); | 
 |      if (HashTable<Shape, Key>::IsKey(k)) { | 
 |        PropertyDetails details = DetailsAt(i); | 
 |        if (details.IsDeleted()) continue; | 
 |        PropertyAttributes attr = details.attributes(); | 
 |        if ((attr & filter) == 0) storage->set(index++, k); | 
 |      } | 
 |   } | 
 |   storage->SortPairs(storage, index); | 
 |   ASSERT(storage->length() >= index); | 
 | } | 
 |  | 
 |  | 
 | void StringDictionary::CopyEnumKeysTo(FixedArray* storage, | 
 |                                       FixedArray* sort_array) { | 
 |   ASSERT(storage->length() >= NumberOfEnumElements()); | 
 |   int capacity = Capacity(); | 
 |   int index = 0; | 
 |   for (int i = 0; i < capacity; i++) { | 
 |      Object* k = KeyAt(i); | 
 |      if (IsKey(k)) { | 
 |        PropertyDetails details = DetailsAt(i); | 
 |        if (details.IsDeleted() || details.IsDontEnum()) continue; | 
 |        storage->set(index, k); | 
 |        sort_array->set(index, Smi::FromInt(details.index())); | 
 |        index++; | 
 |      } | 
 |   } | 
 |   storage->SortPairs(sort_array, sort_array->length()); | 
 |   ASSERT(storage->length() >= index); | 
 | } | 
 |  | 
 |  | 
 | template<typename Shape, typename Key> | 
 | void Dictionary<Shape, Key>::CopyKeysTo(FixedArray* storage) { | 
 |   ASSERT(storage->length() >= NumberOfElementsFilterAttributes( | 
 |       static_cast<PropertyAttributes>(NONE))); | 
 |   int capacity = HashTable<Shape, Key>::Capacity(); | 
 |   int index = 0; | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* k = HashTable<Shape, Key>::KeyAt(i); | 
 |     if (HashTable<Shape, Key>::IsKey(k)) { | 
 |       PropertyDetails details = DetailsAt(i); | 
 |       if (details.IsDeleted()) continue; | 
 |       storage->set(index++, k); | 
 |     } | 
 |   } | 
 |   ASSERT(storage->length() >= index); | 
 | } | 
 |  | 
 |  | 
 | // Backwards lookup (slow). | 
 | template<typename Shape, typename Key> | 
 | Object* Dictionary<Shape, Key>::SlowReverseLookup(Object* value) { | 
 |   int capacity = HashTable<Shape, Key>::Capacity(); | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* k =  HashTable<Shape, Key>::KeyAt(i); | 
 |     if (Dictionary<Shape, Key>::IsKey(k)) { | 
 |       Object* e = ValueAt(i); | 
 |       if (e->IsJSGlobalPropertyCell()) { | 
 |         e = JSGlobalPropertyCell::cast(e)->value(); | 
 |       } | 
 |       if (e == value) return k; | 
 |     } | 
 |   } | 
 |   return Heap::undefined_value(); | 
 | } | 
 |  | 
 |  | 
 | MaybeObject* StringDictionary::TransformPropertiesToFastFor( | 
 |     JSObject* obj, int unused_property_fields) { | 
 |   // Make sure we preserve dictionary representation if there are too many | 
 |   // descriptors. | 
 |   if (NumberOfElements() > DescriptorArray::kMaxNumberOfDescriptors) return obj; | 
 |  | 
 |   // Figure out if it is necessary to generate new enumeration indices. | 
 |   int max_enumeration_index = | 
 |       NextEnumerationIndex() + | 
 |           (DescriptorArray::kMaxNumberOfDescriptors - | 
 |            NumberOfElements()); | 
 |   if (!PropertyDetails::IsValidIndex(max_enumeration_index)) { | 
 |     Object* result; | 
 |     { MaybeObject* maybe_result = GenerateNewEnumerationIndices(); | 
 |       if (!maybe_result->ToObject(&result)) return maybe_result; | 
 |     } | 
 |   } | 
 |  | 
 |   int instance_descriptor_length = 0; | 
 |   int number_of_fields = 0; | 
 |  | 
 |   // Compute the length of the instance descriptor. | 
 |   int capacity = Capacity(); | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* k = KeyAt(i); | 
 |     if (IsKey(k)) { | 
 |       Object* value = ValueAt(i); | 
 |       PropertyType type = DetailsAt(i).type(); | 
 |       ASSERT(type != FIELD); | 
 |       instance_descriptor_length++; | 
 |       if (type == NORMAL && | 
 |           (!value->IsJSFunction() || Heap::InNewSpace(value))) { | 
 |         number_of_fields += 1; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Allocate the instance descriptor. | 
 |   Object* descriptors_unchecked; | 
 |   { MaybeObject* maybe_descriptors_unchecked = | 
 |         DescriptorArray::Allocate(instance_descriptor_length); | 
 |     if (!maybe_descriptors_unchecked->ToObject(&descriptors_unchecked)) { | 
 |       return maybe_descriptors_unchecked; | 
 |     } | 
 |   } | 
 |   DescriptorArray* descriptors = DescriptorArray::cast(descriptors_unchecked); | 
 |  | 
 |   int inobject_props = obj->map()->inobject_properties(); | 
 |   int number_of_allocated_fields = | 
 |       number_of_fields + unused_property_fields - inobject_props; | 
 |   if (number_of_allocated_fields < 0) { | 
 |     // There is enough inobject space for all fields (including unused). | 
 |     number_of_allocated_fields = 0; | 
 |     unused_property_fields = inobject_props - number_of_fields; | 
 |   } | 
 |  | 
 |   // Allocate the fixed array for the fields. | 
 |   Object* fields; | 
 |   { MaybeObject* maybe_fields = | 
 |         Heap::AllocateFixedArray(number_of_allocated_fields); | 
 |     if (!maybe_fields->ToObject(&fields)) return maybe_fields; | 
 |   } | 
 |  | 
 |   // Fill in the instance descriptor and the fields. | 
 |   int next_descriptor = 0; | 
 |   int current_offset = 0; | 
 |   for (int i = 0; i < capacity; i++) { | 
 |     Object* k = KeyAt(i); | 
 |     if (IsKey(k)) { | 
 |       Object* value = ValueAt(i); | 
 |       // Ensure the key is a symbol before writing into the instance descriptor. | 
 |       Object* key; | 
 |       { MaybeObject* maybe_key = Heap::LookupSymbol(String::cast(k)); | 
 |         if (!maybe_key->ToObject(&key)) return maybe_key; | 
 |       } | 
 |       PropertyDetails details = DetailsAt(i); | 
 |       PropertyType type = details.type(); | 
 |  | 
 |       if (value->IsJSFunction() && !Heap::InNewSpace(value)) { | 
 |         ConstantFunctionDescriptor d(String::cast(key), | 
 |                                      JSFunction::cast(value), | 
 |                                      details.attributes(), | 
 |                                      details.index()); | 
 |         descriptors->Set(next_descriptor++, &d); | 
 |       } else if (type == NORMAL) { | 
 |         if (current_offset < inobject_props) { | 
 |           obj->InObjectPropertyAtPut(current_offset, | 
 |                                      value, | 
 |                                      UPDATE_WRITE_BARRIER); | 
 |         } else { | 
 |           int offset = current_offset - inobject_props; | 
 |           FixedArray::cast(fields)->set(offset, value); | 
 |         } | 
 |         FieldDescriptor d(String::cast(key), | 
 |                           current_offset++, | 
 |                           details.attributes(), | 
 |                           details.index()); | 
 |         descriptors->Set(next_descriptor++, &d); | 
 |       } else if (type == CALLBACKS) { | 
 |         CallbacksDescriptor d(String::cast(key), | 
 |                               value, | 
 |                               details.attributes(), | 
 |                               details.index()); | 
 |         descriptors->Set(next_descriptor++, &d); | 
 |       } else { | 
 |         UNREACHABLE(); | 
 |       } | 
 |     } | 
 |   } | 
 |   ASSERT(current_offset == number_of_fields); | 
 |  | 
 |   descriptors->Sort(); | 
 |   // Allocate new map. | 
 |   Object* new_map; | 
 |   { MaybeObject* maybe_new_map = obj->map()->CopyDropDescriptors(); | 
 |     if (!maybe_new_map->ToObject(&new_map)) return maybe_new_map; | 
 |   } | 
 |  | 
 |   // Transform the object. | 
 |   obj->set_map(Map::cast(new_map)); | 
 |   obj->map()->set_instance_descriptors(descriptors); | 
 |   obj->map()->set_unused_property_fields(unused_property_fields); | 
 |  | 
 |   obj->set_properties(FixedArray::cast(fields)); | 
 |   ASSERT(obj->IsJSObject()); | 
 |  | 
 |   descriptors->SetNextEnumerationIndex(NextEnumerationIndex()); | 
 |   // Check that it really works. | 
 |   ASSERT(obj->HasFastProperties()); | 
 |  | 
 |   return obj; | 
 | } | 
 |  | 
 |  | 
 | #ifdef ENABLE_DEBUGGER_SUPPORT | 
 | // Check if there is a break point at this code position. | 
 | bool DebugInfo::HasBreakPoint(int code_position) { | 
 |   // Get the break point info object for this code position. | 
 |   Object* break_point_info = GetBreakPointInfo(code_position); | 
 |  | 
 |   // If there is no break point info object or no break points in the break | 
 |   // point info object there is no break point at this code position. | 
 |   if (break_point_info->IsUndefined()) return false; | 
 |   return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0; | 
 | } | 
 |  | 
 |  | 
 | // Get the break point info object for this code position. | 
 | Object* DebugInfo::GetBreakPointInfo(int code_position) { | 
 |   // Find the index of the break point info object for this code position. | 
 |   int index = GetBreakPointInfoIndex(code_position); | 
 |  | 
 |   // Return the break point info object if any. | 
 |   if (index == kNoBreakPointInfo) return Heap::undefined_value(); | 
 |   return BreakPointInfo::cast(break_points()->get(index)); | 
 | } | 
 |  | 
 |  | 
 | // Clear a break point at the specified code position. | 
 | void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, | 
 |                                 int code_position, | 
 |                                 Handle<Object> break_point_object) { | 
 |   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position)); | 
 |   if (break_point_info->IsUndefined()) return; | 
 |   BreakPointInfo::ClearBreakPoint( | 
 |       Handle<BreakPointInfo>::cast(break_point_info), | 
 |       break_point_object); | 
 | } | 
 |  | 
 |  | 
 | void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, | 
 |                               int code_position, | 
 |                               int source_position, | 
 |                               int statement_position, | 
 |                               Handle<Object> break_point_object) { | 
 |   Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_position)); | 
 |   if (!break_point_info->IsUndefined()) { | 
 |     BreakPointInfo::SetBreakPoint( | 
 |         Handle<BreakPointInfo>::cast(break_point_info), | 
 |         break_point_object); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Adding a new break point for a code position which did not have any | 
 |   // break points before. Try to find a free slot. | 
 |   int index = kNoBreakPointInfo; | 
 |   for (int i = 0; i < debug_info->break_points()->length(); i++) { | 
 |     if (debug_info->break_points()->get(i)->IsUndefined()) { | 
 |       index = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (index == kNoBreakPointInfo) { | 
 |     // No free slot - extend break point info array. | 
 |     Handle<FixedArray> old_break_points = | 
 |         Handle<FixedArray>(FixedArray::cast(debug_info->break_points())); | 
 |     Handle<FixedArray> new_break_points = | 
 |         Factory::NewFixedArray(old_break_points->length() + | 
 |                                Debug::kEstimatedNofBreakPointsInFunction); | 
 |  | 
 |     debug_info->set_break_points(*new_break_points); | 
 |     for (int i = 0; i < old_break_points->length(); i++) { | 
 |       new_break_points->set(i, old_break_points->get(i)); | 
 |     } | 
 |     index = old_break_points->length(); | 
 |   } | 
 |   ASSERT(index != kNoBreakPointInfo); | 
 |  | 
 |   // Allocate new BreakPointInfo object and set the break point. | 
 |   Handle<BreakPointInfo> new_break_point_info = | 
 |       Handle<BreakPointInfo>::cast(Factory::NewStruct(BREAK_POINT_INFO_TYPE)); | 
 |   new_break_point_info->set_code_position(Smi::FromInt(code_position)); | 
 |   new_break_point_info->set_source_position(Smi::FromInt(source_position)); | 
 |   new_break_point_info-> | 
 |       set_statement_position(Smi::FromInt(statement_position)); | 
 |   new_break_point_info->set_break_point_objects(Heap::undefined_value()); | 
 |   BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object); | 
 |   debug_info->break_points()->set(index, *new_break_point_info); | 
 | } | 
 |  | 
 |  | 
 | // Get the break point objects for a code position. | 
 | Object* DebugInfo::GetBreakPointObjects(int code_position) { | 
 |   Object* break_point_info = GetBreakPointInfo(code_position); | 
 |   if (break_point_info->IsUndefined()) { | 
 |     return Heap::undefined_value(); | 
 |   } | 
 |   return BreakPointInfo::cast(break_point_info)->break_point_objects(); | 
 | } | 
 |  | 
 |  | 
 | // Get the total number of break points. | 
 | int DebugInfo::GetBreakPointCount() { | 
 |   if (break_points()->IsUndefined()) return 0; | 
 |   int count = 0; | 
 |   for (int i = 0; i < break_points()->length(); i++) { | 
 |     if (!break_points()->get(i)->IsUndefined()) { | 
 |       BreakPointInfo* break_point_info = | 
 |           BreakPointInfo::cast(break_points()->get(i)); | 
 |       count += break_point_info->GetBreakPointCount(); | 
 |     } | 
 |   } | 
 |   return count; | 
 | } | 
 |  | 
 |  | 
 | Object* DebugInfo::FindBreakPointInfo(Handle<DebugInfo> debug_info, | 
 |                                       Handle<Object> break_point_object) { | 
 |   if (debug_info->break_points()->IsUndefined()) return Heap::undefined_value(); | 
 |   for (int i = 0; i < debug_info->break_points()->length(); i++) { | 
 |     if (!debug_info->break_points()->get(i)->IsUndefined()) { | 
 |       Handle<BreakPointInfo> break_point_info = | 
 |           Handle<BreakPointInfo>(BreakPointInfo::cast( | 
 |               debug_info->break_points()->get(i))); | 
 |       if (BreakPointInfo::HasBreakPointObject(break_point_info, | 
 |                                               break_point_object)) { | 
 |         return *break_point_info; | 
 |       } | 
 |     } | 
 |   } | 
 |   return Heap::undefined_value(); | 
 | } | 
 |  | 
 |  | 
 | // Find the index of the break point info object for the specified code | 
 | // position. | 
 | int DebugInfo::GetBreakPointInfoIndex(int code_position) { | 
 |   if (break_points()->IsUndefined()) return kNoBreakPointInfo; | 
 |   for (int i = 0; i < break_points()->length(); i++) { | 
 |     if (!break_points()->get(i)->IsUndefined()) { | 
 |       BreakPointInfo* break_point_info = | 
 |           BreakPointInfo::cast(break_points()->get(i)); | 
 |       if (break_point_info->code_position()->value() == code_position) { | 
 |         return i; | 
 |       } | 
 |     } | 
 |   } | 
 |   return kNoBreakPointInfo; | 
 | } | 
 |  | 
 |  | 
 | // Remove the specified break point object. | 
 | void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info, | 
 |                                      Handle<Object> break_point_object) { | 
 |   // If there are no break points just ignore. | 
 |   if (break_point_info->break_point_objects()->IsUndefined()) return; | 
 |   // If there is a single break point clear it if it is the same. | 
 |   if (!break_point_info->break_point_objects()->IsFixedArray()) { | 
 |     if (break_point_info->break_point_objects() == *break_point_object) { | 
 |       break_point_info->set_break_point_objects(Heap::undefined_value()); | 
 |     } | 
 |     return; | 
 |   } | 
 |   // If there are multiple break points shrink the array | 
 |   ASSERT(break_point_info->break_point_objects()->IsFixedArray()); | 
 |   Handle<FixedArray> old_array = | 
 |       Handle<FixedArray>( | 
 |           FixedArray::cast(break_point_info->break_point_objects())); | 
 |   Handle<FixedArray> new_array = | 
 |       Factory::NewFixedArray(old_array->length() - 1); | 
 |   int found_count = 0; | 
 |   for (int i = 0; i < old_array->length(); i++) { | 
 |     if (old_array->get(i) == *break_point_object) { | 
 |       ASSERT(found_count == 0); | 
 |       found_count++; | 
 |     } else { | 
 |       new_array->set(i - found_count, old_array->get(i)); | 
 |     } | 
 |   } | 
 |   // If the break point was found in the list change it. | 
 |   if (found_count > 0) break_point_info->set_break_point_objects(*new_array); | 
 | } | 
 |  | 
 |  | 
 | // Add the specified break point object. | 
 | void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info, | 
 |                                    Handle<Object> break_point_object) { | 
 |   // If there was no break point objects before just set it. | 
 |   if (break_point_info->break_point_objects()->IsUndefined()) { | 
 |     break_point_info->set_break_point_objects(*break_point_object); | 
 |     return; | 
 |   } | 
 |   // If the break point object is the same as before just ignore. | 
 |   if (break_point_info->break_point_objects() == *break_point_object) return; | 
 |   // If there was one break point object before replace with array. | 
 |   if (!break_point_info->break_point_objects()->IsFixedArray()) { | 
 |     Handle<FixedArray> array = Factory::NewFixedArray(2); | 
 |     array->set(0, break_point_info->break_point_objects()); | 
 |     array->set(1, *break_point_object); | 
 |     break_point_info->set_break_point_objects(*array); | 
 |     return; | 
 |   } | 
 |   // If there was more than one break point before extend array. | 
 |   Handle<FixedArray> old_array = | 
 |       Handle<FixedArray>( | 
 |           FixedArray::cast(break_point_info->break_point_objects())); | 
 |   Handle<FixedArray> new_array = | 
 |       Factory::NewFixedArray(old_array->length() + 1); | 
 |   for (int i = 0; i < old_array->length(); i++) { | 
 |     // If the break point was there before just ignore. | 
 |     if (old_array->get(i) == *break_point_object) return; | 
 |     new_array->set(i, old_array->get(i)); | 
 |   } | 
 |   // Add the new break point. | 
 |   new_array->set(old_array->length(), *break_point_object); | 
 |   break_point_info->set_break_point_objects(*new_array); | 
 | } | 
 |  | 
 |  | 
 | bool BreakPointInfo::HasBreakPointObject( | 
 |     Handle<BreakPointInfo> break_point_info, | 
 |     Handle<Object> break_point_object) { | 
 |   // No break point. | 
 |   if (break_point_info->break_point_objects()->IsUndefined()) return false; | 
 |   // Single beak point. | 
 |   if (!break_point_info->break_point_objects()->IsFixedArray()) { | 
 |     return break_point_info->break_point_objects() == *break_point_object; | 
 |   } | 
 |   // Multiple break points. | 
 |   FixedArray* array = FixedArray::cast(break_point_info->break_point_objects()); | 
 |   for (int i = 0; i < array->length(); i++) { | 
 |     if (array->get(i) == *break_point_object) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | // Get the number of break points. | 
 | int BreakPointInfo::GetBreakPointCount() { | 
 |   // No break point. | 
 |   if (break_point_objects()->IsUndefined()) return 0; | 
 |   // Single beak point. | 
 |   if (!break_point_objects()->IsFixedArray()) return 1; | 
 |   // Multiple break points. | 
 |   return FixedArray::cast(break_point_objects())->length(); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | } }  // namespace v8::internal |