| // Copyright 2010 the V8 project authors. All rights reserved. | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | //       notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | //       copyright notice, this list of conditions and the following | 
 | //       disclaimer in the documentation and/or other materials provided | 
 | //       with the distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | //       contributors may be used to endorse or promote products derived | 
 | //       from this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | #ifndef V8_ARM_CONSTANTS_ARM_H_ | 
 | #define V8_ARM_CONSTANTS_ARM_H_ | 
 |  | 
 | // The simulator emulates the EABI so we define the USE_ARM_EABI macro if we | 
 | // are not running on real ARM hardware.  One reason for this is that the | 
 | // old ABI uses fp registers in the calling convention and the simulator does | 
 | // not simulate fp registers or coroutine instructions. | 
 | #if defined(__ARM_EABI__) || !defined(__arm__) | 
 | # define USE_ARM_EABI 1 | 
 | #endif | 
 |  | 
 | // This means that interwork-compatible jump instructions are generated.  We | 
 | // want to generate them on the simulator too so it makes snapshots that can | 
 | // be used on real hardware. | 
 | #if defined(__THUMB_INTERWORK__) || !defined(__arm__) | 
 | # define USE_THUMB_INTERWORK 1 | 
 | #endif | 
 |  | 
 | #if defined(__ARM_ARCH_7A__) || \ | 
 |     defined(__ARM_ARCH_7R__) || \ | 
 |     defined(__ARM_ARCH_7__) | 
 | # define CAN_USE_ARMV7_INSTRUCTIONS 1 | 
 | #endif | 
 |  | 
 | #if defined(__ARM_ARCH_6__) ||   \ | 
 |     defined(__ARM_ARCH_6J__) ||  \ | 
 |     defined(__ARM_ARCH_6K__) ||  \ | 
 |     defined(__ARM_ARCH_6Z__) ||  \ | 
 |     defined(__ARM_ARCH_6ZK__) || \ | 
 |     defined(__ARM_ARCH_6T2__) || \ | 
 |     defined(CAN_USE_ARMV7_INSTRUCTIONS) | 
 | # define CAN_USE_ARMV6_INSTRUCTIONS 1 | 
 | #endif | 
 |  | 
 | #if defined(__ARM_ARCH_5T__)            || \ | 
 |     defined(__ARM_ARCH_5TE__)           || \ | 
 |     defined(CAN_USE_ARMV6_INSTRUCTIONS) | 
 | # define CAN_USE_ARMV5_INSTRUCTIONS 1 | 
 | # define CAN_USE_THUMB_INSTRUCTIONS 1 | 
 | #endif | 
 |  | 
 | // Simulator should support ARM5 instructions and unaligned access by default. | 
 | #if !defined(__arm__) | 
 | # define CAN_USE_ARMV5_INSTRUCTIONS 1 | 
 | # define CAN_USE_THUMB_INSTRUCTIONS 1 | 
 |  | 
 | # ifndef CAN_USE_UNALIGNED_ACCESSES | 
 | #  define CAN_USE_UNALIGNED_ACCESSES 1 | 
 | # endif | 
 |  | 
 | #endif | 
 |  | 
 | #if CAN_USE_UNALIGNED_ACCESSES | 
 | #define V8_TARGET_CAN_READ_UNALIGNED 1 | 
 | #endif | 
 |  | 
 | // Using blx may yield better code, so use it when required or when available | 
 | #if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS) | 
 | #define USE_BLX 1 | 
 | #endif | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | // Number of registers in normal ARM mode. | 
 | static const int kNumRegisters = 16; | 
 |  | 
 | // VFP support. | 
 | static const int kNumVFPSingleRegisters = 32; | 
 | static const int kNumVFPDoubleRegisters = 16; | 
 | static const int kNumVFPRegisters = | 
 |     kNumVFPSingleRegisters + kNumVFPDoubleRegisters; | 
 |  | 
 | // PC is register 15. | 
 | static const int kPCRegister = 15; | 
 | static const int kNoRegister = -1; | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Conditions. | 
 |  | 
 | // Defines constants and accessor classes to assemble, disassemble and | 
 | // simulate ARM instructions. | 
 | // | 
 | // Section references in the code refer to the "ARM Architecture Reference | 
 | // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) | 
 | // | 
 | // Constants for specific fields are defined in their respective named enums. | 
 | // General constants are in an anonymous enum in class Instr. | 
 |  | 
 | // Values for the condition field as defined in section A3.2 | 
 | enum Condition { | 
 |   kNoCondition = -1, | 
 |  | 
 |   eq =  0 << 28,                 // Z set            Equal. | 
 |   ne =  1 << 28,                 // Z clear          Not equal. | 
 |   cs =  2 << 28,                 // C set            Unsigned higher or same. | 
 |   cc =  3 << 28,                 // C clear          Unsigned lower. | 
 |   mi =  4 << 28,                 // N set            Negative. | 
 |   pl =  5 << 28,                 // N clear          Positive or zero. | 
 |   vs =  6 << 28,                 // V set            Overflow. | 
 |   vc =  7 << 28,                 // V clear          No overflow. | 
 |   hi =  8 << 28,                 // C set, Z clear   Unsigned higher. | 
 |   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same. | 
 |   ge = 10 << 28,                 // N == V           Greater or equal. | 
 |   lt = 11 << 28,                 // N != V           Less than. | 
 |   gt = 12 << 28,                 // Z clear, N == V  Greater than. | 
 |   le = 13 << 28,                 // Z set or N != V  Less then or equal | 
 |   al = 14 << 28,                 //                  Always. | 
 |  | 
 |   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1). | 
 |   kNumberOfConditions = 16, | 
 |  | 
 |   // Aliases. | 
 |   hs = cs,                       // C set            Unsigned higher or same. | 
 |   lo = cc                        // C clear          Unsigned lower. | 
 | }; | 
 |  | 
 |  | 
 | inline Condition NegateCondition(Condition cond) { | 
 |   ASSERT(cond != al); | 
 |   return static_cast<Condition>(cond ^ ne); | 
 | } | 
 |  | 
 |  | 
 | // Corresponds to transposing the operands of a comparison. | 
 | inline Condition ReverseCondition(Condition cond) { | 
 |   switch (cond) { | 
 |     case lo: | 
 |       return hi; | 
 |     case hi: | 
 |       return lo; | 
 |     case hs: | 
 |       return ls; | 
 |     case ls: | 
 |       return hs; | 
 |     case lt: | 
 |       return gt; | 
 |     case gt: | 
 |       return lt; | 
 |     case ge: | 
 |       return le; | 
 |     case le: | 
 |       return ge; | 
 |     default: | 
 |       return cond; | 
 |   }; | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Instructions encoding. | 
 |  | 
 | // Instr is merely used by the Assembler to distinguish 32bit integers | 
 | // representing instructions from usual 32 bit values. | 
 | // Instruction objects are pointers to 32bit values, and provide methods to | 
 | // access the various ISA fields. | 
 | typedef int32_t Instr; | 
 |  | 
 |  | 
 | // Opcodes for Data-processing instructions (instructions with a type 0 and 1) | 
 | // as defined in section A3.4 | 
 | enum Opcode { | 
 |   AND =  0 << 21,  // Logical AND. | 
 |   EOR =  1 << 21,  // Logical Exclusive OR. | 
 |   SUB =  2 << 21,  // Subtract. | 
 |   RSB =  3 << 21,  // Reverse Subtract. | 
 |   ADD =  4 << 21,  // Add. | 
 |   ADC =  5 << 21,  // Add with Carry. | 
 |   SBC =  6 << 21,  // Subtract with Carry. | 
 |   RSC =  7 << 21,  // Reverse Subtract with Carry. | 
 |   TST =  8 << 21,  // Test. | 
 |   TEQ =  9 << 21,  // Test Equivalence. | 
 |   CMP = 10 << 21,  // Compare. | 
 |   CMN = 11 << 21,  // Compare Negated. | 
 |   ORR = 12 << 21,  // Logical (inclusive) OR. | 
 |   MOV = 13 << 21,  // Move. | 
 |   BIC = 14 << 21,  // Bit Clear. | 
 |   MVN = 15 << 21   // Move Not. | 
 | }; | 
 |  | 
 |  | 
 | // The bits for bit 7-4 for some type 0 miscellaneous instructions. | 
 | enum MiscInstructionsBits74 { | 
 |   // With bits 22-21 01. | 
 |   BX   =  1 << 4, | 
 |   BXJ  =  2 << 4, | 
 |   BLX  =  3 << 4, | 
 |   BKPT =  7 << 4, | 
 |  | 
 |   // With bits 22-21 11. | 
 |   CLZ  =  1 << 4 | 
 | }; | 
 |  | 
 |  | 
 | // Instruction encoding bits and masks. | 
 | enum { | 
 |   H   = 1 << 5,   // Halfword (or byte). | 
 |   S6  = 1 << 6,   // Signed (or unsigned). | 
 |   L   = 1 << 20,  // Load (or store). | 
 |   S   = 1 << 20,  // Set condition code (or leave unchanged). | 
 |   W   = 1 << 21,  // Writeback base register (or leave unchanged). | 
 |   A   = 1 << 21,  // Accumulate in multiply instruction (or not). | 
 |   B   = 1 << 22,  // Unsigned byte (or word). | 
 |   N   = 1 << 22,  // Long (or short). | 
 |   U   = 1 << 23,  // Positive (or negative) offset/index. | 
 |   P   = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing). | 
 |   I   = 1 << 25,  // Immediate shifter operand (or not). | 
 |  | 
 |   B4  = 1 << 4, | 
 |   B5  = 1 << 5, | 
 |   B6  = 1 << 6, | 
 |   B7  = 1 << 7, | 
 |   B8  = 1 << 8, | 
 |   B9  = 1 << 9, | 
 |   B12 = 1 << 12, | 
 |   B16 = 1 << 16, | 
 |   B18 = 1 << 18, | 
 |   B19 = 1 << 19, | 
 |   B20 = 1 << 20, | 
 |   B21 = 1 << 21, | 
 |   B22 = 1 << 22, | 
 |   B23 = 1 << 23, | 
 |   B24 = 1 << 24, | 
 |   B25 = 1 << 25, | 
 |   B26 = 1 << 26, | 
 |   B27 = 1 << 27, | 
 |   B28 = 1 << 28, | 
 |  | 
 |   // Instruction bit masks. | 
 |   kCondMask   = 15 << 28, | 
 |   kALUMask    = 0x6f << 21, | 
 |   kRdMask     = 15 << 12,  // In str instruction. | 
 |   kCoprocessorMask = 15 << 8, | 
 |   kOpCodeMask = 15 << 21,  // In data-processing instructions. | 
 |   kImm24Mask  = (1 << 24) - 1, | 
 |   kOff12Mask  = (1 << 12) - 1 | 
 | }; | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Addressing modes and instruction variants. | 
 |  | 
 | // Condition code updating mode. | 
 | enum SBit { | 
 |   SetCC   = 1 << 20,  // Set condition code. | 
 |   LeaveCC = 0 << 20   // Leave condition code unchanged. | 
 | }; | 
 |  | 
 |  | 
 | // Status register selection. | 
 | enum SRegister { | 
 |   CPSR = 0 << 22, | 
 |   SPSR = 1 << 22 | 
 | }; | 
 |  | 
 |  | 
 | // Shifter types for Data-processing operands as defined in section A5.1.2. | 
 | enum ShiftOp { | 
 |   LSL = 0 << 5,   // Logical shift left. | 
 |   LSR = 1 << 5,   // Logical shift right. | 
 |   ASR = 2 << 5,   // Arithmetic shift right. | 
 |   ROR = 3 << 5,   // Rotate right. | 
 |  | 
 |   // RRX is encoded as ROR with shift_imm == 0. | 
 |   // Use a special code to make the distinction. The RRX ShiftOp is only used | 
 |   // as an argument, and will never actually be encoded. The Assembler will | 
 |   // detect it and emit the correct ROR shift operand with shift_imm == 0. | 
 |   RRX = -1, | 
 |   kNumberOfShifts = 4 | 
 | }; | 
 |  | 
 |  | 
 | // Status register fields. | 
 | enum SRegisterField { | 
 |   CPSR_c = CPSR | 1 << 16, | 
 |   CPSR_x = CPSR | 1 << 17, | 
 |   CPSR_s = CPSR | 1 << 18, | 
 |   CPSR_f = CPSR | 1 << 19, | 
 |   SPSR_c = SPSR | 1 << 16, | 
 |   SPSR_x = SPSR | 1 << 17, | 
 |   SPSR_s = SPSR | 1 << 18, | 
 |   SPSR_f = SPSR | 1 << 19 | 
 | }; | 
 |  | 
 | // Status register field mask (or'ed SRegisterField enum values). | 
 | typedef uint32_t SRegisterFieldMask; | 
 |  | 
 |  | 
 | // Memory operand addressing mode. | 
 | enum AddrMode { | 
 |   // Bit encoding P U W. | 
 |   Offset       = (8|4|0) << 21,  // Offset (without writeback to base). | 
 |   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback. | 
 |   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback. | 
 |   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base). | 
 |   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback. | 
 |   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback. | 
 | }; | 
 |  | 
 |  | 
 | // Load/store multiple addressing mode. | 
 | enum BlockAddrMode { | 
 |   // Bit encoding P U W . | 
 |   da           = (0|0|0) << 21,  // Decrement after. | 
 |   ia           = (0|4|0) << 21,  // Increment after. | 
 |   db           = (8|0|0) << 21,  // Decrement before. | 
 |   ib           = (8|4|0) << 21,  // Increment before. | 
 |   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base. | 
 |   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base. | 
 |   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base. | 
 |   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base. | 
 |  | 
 |   // Alias modes for comparison when writeback does not matter. | 
 |   da_x         = (0|0|0) << 21,  // Decrement after. | 
 |   ia_x         = (0|4|0) << 21,  // Increment after. | 
 |   db_x         = (8|0|0) << 21,  // Decrement before. | 
 |   ib_x         = (8|4|0) << 21   // Increment before. | 
 | }; | 
 |  | 
 |  | 
 | // Coprocessor load/store operand size. | 
 | enum LFlag { | 
 |   Long  = 1 << 22,  // Long load/store coprocessor. | 
 |   Short = 0 << 22   // Short load/store coprocessor. | 
 | }; | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Supervisor Call (svc) specific support. | 
 |  | 
 | // Special Software Interrupt codes when used in the presence of the ARM | 
 | // simulator. | 
 | // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for | 
 | // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. | 
 | enum SoftwareInterruptCodes { | 
 |   // transition to C code | 
 |   kCallRtRedirected= 0x10, | 
 |   // break point | 
 |   kBreakpoint= 0x20, | 
 |   // stop | 
 |   kStopCode = 1 << 23 | 
 | }; | 
 | static const uint32_t kStopCodeMask = kStopCode - 1; | 
 | static const uint32_t kMaxStopCode = kStopCode - 1; | 
 | static const int32_t  kDefaultStopCode = -1; | 
 |  | 
 |  | 
 | // Type of VFP register. Determines register encoding. | 
 | enum VFPRegPrecision { | 
 |   kSinglePrecision = 0, | 
 |   kDoublePrecision = 1 | 
 | }; | 
 |  | 
 |  | 
 | // VFP FPSCR constants. | 
 | static const uint32_t kVFPExceptionMask = 0xf; | 
 | static const uint32_t kVFPRoundingModeMask = 3 << 22; | 
 | static const uint32_t kVFPFlushToZeroMask = 1 << 24; | 
 | static const uint32_t kVFPRoundToMinusInfinityBits = 2 << 22; | 
 | static const uint32_t kVFPInvalidExceptionBit = 1; | 
 |  | 
 | static const uint32_t kVFPNConditionFlagBit = 1 << 31; | 
 | static const uint32_t kVFPZConditionFlagBit = 1 << 30; | 
 | static const uint32_t kVFPCConditionFlagBit = 1 << 29; | 
 | static const uint32_t kVFPVConditionFlagBit = 1 << 28; | 
 |  | 
 |  | 
 | // VFP rounding modes. See ARM DDI 0406B Page A2-29. | 
 | enum FPSCRRoundingModes { | 
 |   RN,   // Round to Nearest. | 
 |   RP,   // Round towards Plus Infinity. | 
 |   RM,   // Round towards Minus Infinity. | 
 |   RZ    // Round towards zero. | 
 | }; | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Hints. | 
 |  | 
 | // Branch hints are not used on the ARM.  They are defined so that they can | 
 | // appear in shared function signatures, but will be ignored in ARM | 
 | // implementations. | 
 | enum Hint { no_hint }; | 
 |  | 
 | // Hints are not used on the arm.  Negating is trivial. | 
 | inline Hint NegateHint(Hint ignored) { return no_hint; } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Specific instructions, constants, and masks. | 
 | // These constants are declared in assembler-arm.cc, as they use named registers | 
 | // and other constants. | 
 |  | 
 |  | 
 | // add(sp, sp, 4) instruction (aka Pop()) | 
 | extern const Instr kPopInstruction; | 
 |  | 
 | // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) | 
 | // register r is not encoded. | 
 | extern const Instr kPushRegPattern; | 
 |  | 
 | // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) | 
 | // register r is not encoded. | 
 | extern const Instr kPopRegPattern; | 
 |  | 
 | // mov lr, pc | 
 | extern const Instr kMovLrPc; | 
 | // ldr rd, [pc, #offset] | 
 | extern const Instr kLdrPCMask; | 
 | extern const Instr kLdrPCPattern; | 
 | // blxcc rm | 
 | extern const Instr kBlxRegMask; | 
 |  | 
 | extern const Instr kBlxRegPattern; | 
 |  | 
 | extern const Instr kMovMvnMask; | 
 | extern const Instr kMovMvnPattern; | 
 | extern const Instr kMovMvnFlip; | 
 | extern const Instr kMovLeaveCCMask; | 
 | extern const Instr kMovLeaveCCPattern; | 
 | extern const Instr kMovwMask; | 
 | extern const Instr kMovwPattern; | 
 | extern const Instr kMovwLeaveCCFlip; | 
 | extern const Instr kCmpCmnMask; | 
 | extern const Instr kCmpCmnPattern; | 
 | extern const Instr kCmpCmnFlip; | 
 | extern const Instr kAddSubFlip; | 
 | extern const Instr kAndBicFlip; | 
 |  | 
 | // A mask for the Rd register for push, pop, ldr, str instructions. | 
 | extern const Instr kLdrRegFpOffsetPattern; | 
 |  | 
 | extern const Instr kStrRegFpOffsetPattern; | 
 |  | 
 | extern const Instr kLdrRegFpNegOffsetPattern; | 
 |  | 
 | extern const Instr kStrRegFpNegOffsetPattern; | 
 |  | 
 | extern const Instr kLdrStrInstrTypeMask; | 
 | extern const Instr kLdrStrInstrArgumentMask; | 
 | extern const Instr kLdrStrOffsetMask; | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Instruction abstraction. | 
 |  | 
 | // The class Instruction enables access to individual fields defined in the ARM | 
 | // architecture instruction set encoding as described in figure A3-1. | 
 | // Note that the Assembler uses typedef int32_t Instr. | 
 | // | 
 | // Example: Test whether the instruction at ptr does set the condition code | 
 | // bits. | 
 | // | 
 | // bool InstructionSetsConditionCodes(byte* ptr) { | 
 | //   Instruction* instr = Instruction::At(ptr); | 
 | //   int type = instr->TypeValue(); | 
 | //   return ((type == 0) || (type == 1)) && instr->HasS(); | 
 | // } | 
 | // | 
 | class Instruction { | 
 |  public: | 
 |   enum { | 
 |     kInstrSize = 4, | 
 |     kInstrSizeLog2 = 2, | 
 |     kPCReadOffset = 8 | 
 |   }; | 
 |  | 
 |   // Helper macro to define static accessors. | 
 |   // We use the cast to char* trick to bypass the strict anti-aliasing rules. | 
 |   #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name)                     \ | 
 |     static inline return_type Name(Instr instr) {                              \ | 
 |       char* temp = reinterpret_cast<char*>(&instr);                            \ | 
 |       return reinterpret_cast<Instruction*>(temp)->Name();                     \ | 
 |     } | 
 |  | 
 |   #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) | 
 |  | 
 |   // Get the raw instruction bits. | 
 |   inline Instr InstructionBits() const { | 
 |     return *reinterpret_cast<const Instr*>(this); | 
 |   } | 
 |  | 
 |   // Set the raw instruction bits to value. | 
 |   inline void SetInstructionBits(Instr value) { | 
 |     *reinterpret_cast<Instr*>(this) = value; | 
 |   } | 
 |  | 
 |   // Read one particular bit out of the instruction bits. | 
 |   inline int Bit(int nr) const { | 
 |     return (InstructionBits() >> nr) & 1; | 
 |   } | 
 |  | 
 |   // Read a bit field's value out of the instruction bits. | 
 |   inline int Bits(int hi, int lo) const { | 
 |     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); | 
 |   } | 
 |  | 
 |   // Read a bit field out of the instruction bits. | 
 |   inline int BitField(int hi, int lo) const { | 
 |     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); | 
 |   } | 
 |  | 
 |   // Static support. | 
 |  | 
 |   // Read one particular bit out of the instruction bits. | 
 |   static inline int Bit(Instr instr, int nr) { | 
 |     return (instr >> nr) & 1; | 
 |   } | 
 |  | 
 |   // Read the value of a bit field out of the instruction bits. | 
 |   static inline int Bits(Instr instr, int hi, int lo) { | 
 |     return (instr >> lo) & ((2 << (hi - lo)) - 1); | 
 |   } | 
 |  | 
 |  | 
 |   // Read a bit field out of the instruction bits. | 
 |   static inline int BitField(Instr instr, int hi, int lo) { | 
 |     return instr & (((2 << (hi - lo)) - 1) << lo); | 
 |   } | 
 |  | 
 |  | 
 |   // Accessors for the different named fields used in the ARM encoding. | 
 |   // The naming of these accessor corresponds to figure A3-1. | 
 |   // | 
 |   // Two kind of accessors are declared: | 
 |   // - <Name>Field() will return the raw field, ie the field's bits at their | 
 |   //   original place in the instruction encoding. | 
 |   //   eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002 | 
 |   //   ConditionField(instr) will return 0xC0000000. | 
 |   // - <Name>Value() will return the field value, shifted back to bit 0. | 
 |   //   eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002 | 
 |   //   ConditionField(instr) will return 0xC. | 
 |  | 
 |  | 
 |   // Generally applicable fields | 
 |   inline Condition ConditionValue() const { | 
 |     return static_cast<Condition>(Bits(31, 28)); | 
 |   } | 
 |   inline Condition ConditionField() const { | 
 |     return static_cast<Condition>(BitField(31, 28)); | 
 |   } | 
 |   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue); | 
 |   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField); | 
 |  | 
 |   inline int TypeValue() const { return Bits(27, 25); } | 
 |  | 
 |   inline int RnValue() const { return Bits(19, 16); } | 
 |   inline int RdValue() const { return Bits(15, 12); } | 
 |   DECLARE_STATIC_ACCESSOR(RdValue); | 
 |  | 
 |   inline int CoprocessorValue() const { return Bits(11, 8); } | 
 |   // Support for VFP. | 
 |   // Vn(19-16) | Vd(15-12) |  Vm(3-0) | 
 |   inline int VnValue() const { return Bits(19, 16); } | 
 |   inline int VmValue() const { return Bits(3, 0); } | 
 |   inline int VdValue() const { return Bits(15, 12); } | 
 |   inline int NValue() const { return Bit(7); } | 
 |   inline int MValue() const { return Bit(5); } | 
 |   inline int DValue() const { return Bit(22); } | 
 |   inline int RtValue() const { return Bits(15, 12); } | 
 |   inline int PValue() const { return Bit(24); } | 
 |   inline int UValue() const { return Bit(23); } | 
 |   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } | 
 |   inline int Opc2Value() const { return Bits(19, 16); } | 
 |   inline int Opc3Value() const { return Bits(7, 6); } | 
 |   inline int SzValue() const { return Bit(8); } | 
 |   inline int VLValue() const { return Bit(20); } | 
 |   inline int VCValue() const { return Bit(8); } | 
 |   inline int VAValue() const { return Bits(23, 21); } | 
 |   inline int VBValue() const { return Bits(6, 5); } | 
 |   inline int VFPNRegValue(VFPRegPrecision pre) { | 
 |     return VFPGlueRegValue(pre, 16, 7); | 
 |   } | 
 |   inline int VFPMRegValue(VFPRegPrecision pre) { | 
 |     return VFPGlueRegValue(pre, 0, 5); | 
 |   } | 
 |   inline int VFPDRegValue(VFPRegPrecision pre) { | 
 |     return VFPGlueRegValue(pre, 12, 22); | 
 |   } | 
 |  | 
 |   // Fields used in Data processing instructions | 
 |   inline int OpcodeValue() const { | 
 |     return static_cast<Opcode>(Bits(24, 21)); | 
 |   } | 
 |   inline Opcode OpcodeField() const { | 
 |     return static_cast<Opcode>(BitField(24, 21)); | 
 |   } | 
 |   inline int SValue() const { return Bit(20); } | 
 |     // with register | 
 |   inline int RmValue() const { return Bits(3, 0); } | 
 |   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } | 
 |   inline ShiftOp ShiftField() const { | 
 |     return static_cast<ShiftOp>(BitField(6, 5)); | 
 |   } | 
 |   inline int RegShiftValue() const { return Bit(4); } | 
 |   inline int RsValue() const { return Bits(11, 8); } | 
 |   inline int ShiftAmountValue() const { return Bits(11, 7); } | 
 |     // with immediate | 
 |   inline int RotateValue() const { return Bits(11, 8); } | 
 |   inline int Immed8Value() const { return Bits(7, 0); } | 
 |   inline int Immed4Value() const { return Bits(19, 16); } | 
 |   inline int ImmedMovwMovtValue() const { | 
 |       return Immed4Value() << 12 | Offset12Value(); } | 
 |  | 
 |   // Fields used in Load/Store instructions | 
 |   inline int PUValue() const { return Bits(24, 23); } | 
 |   inline int PUField() const { return BitField(24, 23); } | 
 |   inline int  BValue() const { return Bit(22); } | 
 |   inline int  WValue() const { return Bit(21); } | 
 |   inline int  LValue() const { return Bit(20); } | 
 |     // with register uses same fields as Data processing instructions above | 
 |     // with immediate | 
 |   inline int Offset12Value() const { return Bits(11, 0); } | 
 |     // multiple | 
 |   inline int RlistValue() const { return Bits(15, 0); } | 
 |     // extra loads and stores | 
 |   inline int SignValue() const { return Bit(6); } | 
 |   inline int HValue() const { return Bit(5); } | 
 |   inline int ImmedHValue() const { return Bits(11, 8); } | 
 |   inline int ImmedLValue() const { return Bits(3, 0); } | 
 |  | 
 |   // Fields used in Branch instructions | 
 |   inline int LinkValue() const { return Bit(24); } | 
 |   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); } | 
 |  | 
 |   // Fields used in Software interrupt instructions | 
 |   inline SoftwareInterruptCodes SvcValue() const { | 
 |     return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); | 
 |   } | 
 |  | 
 |   // Test for special encodings of type 0 instructions (extra loads and stores, | 
 |   // as well as multiplications). | 
 |   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } | 
 |  | 
 |   // Test for miscellaneous instructions encodings of type 0 instructions. | 
 |   inline bool IsMiscType0() const { return (Bit(24) == 1) | 
 |                                            && (Bit(23) == 0) | 
 |                                            && (Bit(20) == 0) | 
 |                                            && ((Bit(7) == 0)); } | 
 |  | 
 |   // Test for a stop instruction. | 
 |   inline bool IsStop() const { | 
 |     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); | 
 |   } | 
 |  | 
 |   // Special accessors that test for existence of a value. | 
 |   inline bool HasS()    const { return SValue() == 1; } | 
 |   inline bool HasB()    const { return BValue() == 1; } | 
 |   inline bool HasW()    const { return WValue() == 1; } | 
 |   inline bool HasL()    const { return LValue() == 1; } | 
 |   inline bool HasU()    const { return UValue() == 1; } | 
 |   inline bool HasSign() const { return SignValue() == 1; } | 
 |   inline bool HasH()    const { return HValue() == 1; } | 
 |   inline bool HasLink() const { return LinkValue() == 1; } | 
 |  | 
 |   // Decoding the double immediate in the vmov instruction. | 
 |   double DoubleImmedVmov() const; | 
 |  | 
 |   // Instructions are read of out a code stream. The only way to get a | 
 |   // reference to an instruction is to convert a pointer. There is no way | 
 |   // to allocate or create instances of class Instruction. | 
 |   // Use the At(pc) function to create references to Instruction. | 
 |   static Instruction* At(byte* pc) { | 
 |     return reinterpret_cast<Instruction*>(pc); | 
 |   } | 
 |  | 
 |  | 
 |  private: | 
 |   // Join split register codes, depending on single or double precision. | 
 |   // four_bit is the position of the least-significant bit of the four | 
 |   // bit specifier. one_bit is the position of the additional single bit | 
 |   // specifier. | 
 |   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { | 
 |     if (pre == kSinglePrecision) { | 
 |       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); | 
 |     } | 
 |     return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); | 
 |   } | 
 |  | 
 |   // We need to prevent the creation of instances of class Instruction. | 
 |   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); | 
 | }; | 
 |  | 
 |  | 
 | // Helper functions for converting between register numbers and names. | 
 | class Registers { | 
 |  public: | 
 |   // Return the name of the register. | 
 |   static const char* Name(int reg); | 
 |  | 
 |   // Lookup the register number for the name provided. | 
 |   static int Number(const char* name); | 
 |  | 
 |   struct RegisterAlias { | 
 |     int reg; | 
 |     const char* name; | 
 |   }; | 
 |  | 
 |  private: | 
 |   static const char* names_[kNumRegisters]; | 
 |   static const RegisterAlias aliases_[]; | 
 | }; | 
 |  | 
 | // Helper functions for converting between VFP register numbers and names. | 
 | class VFPRegisters { | 
 |  public: | 
 |   // Return the name of the register. | 
 |   static const char* Name(int reg, bool is_double); | 
 |  | 
 |   // Lookup the register number for the name provided. | 
 |   // Set flag pointed by is_double to true if register | 
 |   // is double-precision. | 
 |   static int Number(const char* name, bool* is_double); | 
 |  | 
 |  private: | 
 |   static const char* names_[kNumVFPRegisters]; | 
 | }; | 
 |  | 
 |  | 
 | } }  // namespace v8::internal | 
 |  | 
 | #endif  // V8_ARM_CONSTANTS_ARM_H_ |