| // Copyright 2012 the V8 project authors. All rights reserved. | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | //       notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | //       copyright notice, this list of conditions and the following | 
 | //       disclaimer in the documentation and/or other materials provided | 
 | //       with the distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | //       contributors may be used to endorse or promote products derived | 
 | //       from this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | // Platform specific code for Win32. | 
 |  | 
 | #define V8_WIN32_HEADERS_FULL | 
 | #include "win32-headers.h" | 
 |  | 
 | #include "v8.h" | 
 |  | 
 | #include "codegen.h" | 
 | #include "platform.h" | 
 | #include "vm-state-inl.h" | 
 |  | 
 | #ifdef _MSC_VER | 
 |  | 
 | // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually | 
 | // defined in strings.h. | 
 | int strncasecmp(const char* s1, const char* s2, int n) { | 
 |   return _strnicmp(s1, s2, n); | 
 | } | 
 |  | 
 | #endif  // _MSC_VER | 
 |  | 
 |  | 
 | // Extra functions for MinGW. Most of these are the _s functions which are in | 
 | // the Microsoft Visual Studio C++ CRT. | 
 | #ifdef __MINGW32__ | 
 |  | 
 |  | 
 | #ifndef __MINGW64_VERSION_MAJOR | 
 |  | 
 | #define _TRUNCATE 0 | 
 | #define STRUNCATE 80 | 
 |  | 
 | inline void MemoryBarrier() { | 
 |   int barrier = 0; | 
 |   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier)); | 
 | } | 
 |  | 
 | #endif  // __MINGW64_VERSION_MAJOR | 
 |  | 
 |  | 
 | #ifndef MINGW_HAS_SECURE_API | 
 |  | 
 | int localtime_s(tm* out_tm, const time_t* time) { | 
 |   tm* posix_local_time_struct = localtime(time); | 
 |   if (posix_local_time_struct == NULL) return 1; | 
 |   *out_tm = *posix_local_time_struct; | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | int fopen_s(FILE** pFile, const char* filename, const char* mode) { | 
 |   *pFile = fopen(filename, mode); | 
 |   return *pFile != NULL ? 0 : 1; | 
 | } | 
 |  | 
 | int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count, | 
 |                  const char* format, va_list argptr) { | 
 |   ASSERT(count == _TRUNCATE); | 
 |   return _vsnprintf(buffer, sizeOfBuffer, format, argptr); | 
 | } | 
 |  | 
 |  | 
 | int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) { | 
 |   CHECK(source != NULL); | 
 |   CHECK(dest != NULL); | 
 |   CHECK_GT(dest_size, 0); | 
 |  | 
 |   if (count == _TRUNCATE) { | 
 |     while (dest_size > 0 && *source != 0) { | 
 |       *(dest++) = *(source++); | 
 |       --dest_size; | 
 |     } | 
 |     if (dest_size == 0) { | 
 |       *(dest - 1) = 0; | 
 |       return STRUNCATE; | 
 |     } | 
 |   } else { | 
 |     while (dest_size > 0 && count > 0 && *source != 0) { | 
 |       *(dest++) = *(source++); | 
 |       --dest_size; | 
 |       --count; | 
 |     } | 
 |   } | 
 |   CHECK_GT(dest_size, 0); | 
 |   *dest = 0; | 
 |   return 0; | 
 | } | 
 |  | 
 | #endif  // MINGW_HAS_SECURE_API | 
 |  | 
 | #endif  // __MINGW32__ | 
 |  | 
 | // Generate a pseudo-random number in the range 0-2^31-1. Usually | 
 | // defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW. | 
 | int random() { | 
 |   return rand(); | 
 | } | 
 |  | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | intptr_t OS::MaxVirtualMemory() { | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | double ceiling(double x) { | 
 |   return ceil(x); | 
 | } | 
 |  | 
 |  | 
 | static Mutex* limit_mutex = NULL; | 
 |  | 
 | #if defined(V8_TARGET_ARCH_IA32) | 
 | static OS::MemCopyFunction memcopy_function = NULL; | 
 | // Defined in codegen-ia32.cc. | 
 | OS::MemCopyFunction CreateMemCopyFunction(); | 
 |  | 
 | // Copy memory area to disjoint memory area. | 
 | void OS::MemCopy(void* dest, const void* src, size_t size) { | 
 |   // Note: here we rely on dependent reads being ordered. This is true | 
 |   // on all architectures we currently support. | 
 |   (*memcopy_function)(dest, src, size); | 
 | #ifdef DEBUG | 
 |   CHECK_EQ(0, memcmp(dest, src, size)); | 
 | #endif | 
 | } | 
 | #endif  // V8_TARGET_ARCH_IA32 | 
 |  | 
 | #ifdef _WIN64 | 
 | typedef double (*ModuloFunction)(double, double); | 
 | static ModuloFunction modulo_function = NULL; | 
 | // Defined in codegen-x64.cc. | 
 | ModuloFunction CreateModuloFunction(); | 
 |  | 
 | void init_modulo_function() { | 
 |   modulo_function = CreateModuloFunction(); | 
 | } | 
 |  | 
 | double modulo(double x, double y) { | 
 |   // Note: here we rely on dependent reads being ordered. This is true | 
 |   // on all architectures we currently support. | 
 |   return (*modulo_function)(x, y); | 
 | } | 
 | #else  // Win32 | 
 |  | 
 | double modulo(double x, double y) { | 
 |   // Workaround MS fmod bugs. ECMA-262 says: | 
 |   // dividend is finite and divisor is an infinity => result equals dividend | 
 |   // dividend is a zero and divisor is nonzero finite => result equals dividend | 
 |   if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) && | 
 |       !(x == 0 && (y != 0 && isfinite(y)))) { | 
 |     x = fmod(x, y); | 
 |   } | 
 |   return x; | 
 | } | 
 |  | 
 | #endif  // _WIN64 | 
 |  | 
 |  | 
 | #define UNARY_MATH_FUNCTION(name, generator)             \ | 
 | static UnaryMathFunction fast_##name##_function = NULL;  \ | 
 | void init_fast_##name##_function() {                     \ | 
 |   fast_##name##_function = generator;                    \ | 
 | }                                                        \ | 
 | double fast_##name(double x) {                           \ | 
 |   return (*fast_##name##_function)(x);                   \ | 
 | } | 
 |  | 
 | UNARY_MATH_FUNCTION(sin, CreateTranscendentalFunction(TranscendentalCache::SIN)) | 
 | UNARY_MATH_FUNCTION(cos, CreateTranscendentalFunction(TranscendentalCache::COS)) | 
 | UNARY_MATH_FUNCTION(tan, CreateTranscendentalFunction(TranscendentalCache::TAN)) | 
 | UNARY_MATH_FUNCTION(log, CreateTranscendentalFunction(TranscendentalCache::LOG)) | 
 | UNARY_MATH_FUNCTION(sqrt, CreateSqrtFunction()) | 
 |  | 
 | #undef MATH_FUNCTION | 
 |  | 
 |  | 
 | void MathSetup() { | 
 | #ifdef _WIN64 | 
 |   init_modulo_function(); | 
 | #endif | 
 |   init_fast_sin_function(); | 
 |   init_fast_cos_function(); | 
 |   init_fast_tan_function(); | 
 |   init_fast_log_function(); | 
 |   init_fast_sqrt_function(); | 
 | } | 
 |  | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // The Time class represents time on win32. A timestamp is represented as | 
 | // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript | 
 | // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC, | 
 | // January 1, 1970. | 
 |  | 
 | class Time { | 
 |  public: | 
 |   // Constructors. | 
 |   Time(); | 
 |   explicit Time(double jstime); | 
 |   Time(int year, int mon, int day, int hour, int min, int sec); | 
 |  | 
 |   // Convert timestamp to JavaScript representation. | 
 |   double ToJSTime(); | 
 |  | 
 |   // Set timestamp to current time. | 
 |   void SetToCurrentTime(); | 
 |  | 
 |   // Returns the local timezone offset in milliseconds east of UTC. This is | 
 |   // the number of milliseconds you must add to UTC to get local time, i.e. | 
 |   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This | 
 |   // routine also takes into account whether daylight saving is effect | 
 |   // at the time. | 
 |   int64_t LocalOffset(); | 
 |  | 
 |   // Returns the daylight savings time offset for the time in milliseconds. | 
 |   int64_t DaylightSavingsOffset(); | 
 |  | 
 |   // Returns a string identifying the current timezone for the | 
 |   // timestamp taking into account daylight saving. | 
 |   char* LocalTimezone(); | 
 |  | 
 |  private: | 
 |   // Constants for time conversion. | 
 |   static const int64_t kTimeEpoc = 116444736000000000LL; | 
 |   static const int64_t kTimeScaler = 10000; | 
 |   static const int64_t kMsPerMinute = 60000; | 
 |  | 
 |   // Constants for timezone information. | 
 |   static const int kTzNameSize = 128; | 
 |   static const bool kShortTzNames = false; | 
 |  | 
 |   // Timezone information. We need to have static buffers for the | 
 |   // timezone names because we return pointers to these in | 
 |   // LocalTimezone(). | 
 |   static bool tz_initialized_; | 
 |   static TIME_ZONE_INFORMATION tzinfo_; | 
 |   static char std_tz_name_[kTzNameSize]; | 
 |   static char dst_tz_name_[kTzNameSize]; | 
 |  | 
 |   // Initialize the timezone information (if not already done). | 
 |   static void TzSet(); | 
 |  | 
 |   // Guess the name of the timezone from the bias. | 
 |   static const char* GuessTimezoneNameFromBias(int bias); | 
 |  | 
 |   // Return whether or not daylight savings time is in effect at this time. | 
 |   bool InDST(); | 
 |  | 
 |   // Return the difference (in milliseconds) between this timestamp and | 
 |   // another timestamp. | 
 |   int64_t Diff(Time* other); | 
 |  | 
 |   // Accessor for FILETIME representation. | 
 |   FILETIME& ft() { return time_.ft_; } | 
 |  | 
 |   // Accessor for integer representation. | 
 |   int64_t& t() { return time_.t_; } | 
 |  | 
 |   // Although win32 uses 64-bit integers for representing timestamps, | 
 |   // these are packed into a FILETIME structure. The FILETIME structure | 
 |   // is just a struct representing a 64-bit integer. The TimeStamp union | 
 |   // allows access to both a FILETIME and an integer representation of | 
 |   // the timestamp. | 
 |   union TimeStamp { | 
 |     FILETIME ft_; | 
 |     int64_t t_; | 
 |   }; | 
 |  | 
 |   TimeStamp time_; | 
 | }; | 
 |  | 
 | // Static variables. | 
 | bool Time::tz_initialized_ = false; | 
 | TIME_ZONE_INFORMATION Time::tzinfo_; | 
 | char Time::std_tz_name_[kTzNameSize]; | 
 | char Time::dst_tz_name_[kTzNameSize]; | 
 |  | 
 |  | 
 | // Initialize timestamp to start of epoc. | 
 | Time::Time() { | 
 |   t() = 0; | 
 | } | 
 |  | 
 |  | 
 | // Initialize timestamp from a JavaScript timestamp. | 
 | Time::Time(double jstime) { | 
 |   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc; | 
 | } | 
 |  | 
 |  | 
 | // Initialize timestamp from date/time components. | 
 | Time::Time(int year, int mon, int day, int hour, int min, int sec) { | 
 |   SYSTEMTIME st; | 
 |   st.wYear = year; | 
 |   st.wMonth = mon; | 
 |   st.wDay = day; | 
 |   st.wHour = hour; | 
 |   st.wMinute = min; | 
 |   st.wSecond = sec; | 
 |   st.wMilliseconds = 0; | 
 |   SystemTimeToFileTime(&st, &ft()); | 
 | } | 
 |  | 
 |  | 
 | // Convert timestamp to JavaScript timestamp. | 
 | double Time::ToJSTime() { | 
 |   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler); | 
 | } | 
 |  | 
 |  | 
 | // Guess the name of the timezone from the bias. | 
 | // The guess is very biased towards the northern hemisphere. | 
 | const char* Time::GuessTimezoneNameFromBias(int bias) { | 
 |   static const int kHour = 60; | 
 |   switch (-bias) { | 
 |     case -9*kHour: return "Alaska"; | 
 |     case -8*kHour: return "Pacific"; | 
 |     case -7*kHour: return "Mountain"; | 
 |     case -6*kHour: return "Central"; | 
 |     case -5*kHour: return "Eastern"; | 
 |     case -4*kHour: return "Atlantic"; | 
 |     case  0*kHour: return "GMT"; | 
 |     case +1*kHour: return "Central Europe"; | 
 |     case +2*kHour: return "Eastern Europe"; | 
 |     case +3*kHour: return "Russia"; | 
 |     case +5*kHour + 30: return "India"; | 
 |     case +8*kHour: return "China"; | 
 |     case +9*kHour: return "Japan"; | 
 |     case +12*kHour: return "New Zealand"; | 
 |     default: return "Local"; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Initialize timezone information. The timezone information is obtained from | 
 | // windows. If we cannot get the timezone information we fall back to CET. | 
 | // Please notice that this code is not thread-safe. | 
 | void Time::TzSet() { | 
 |   // Just return if timezone information has already been initialized. | 
 |   if (tz_initialized_) return; | 
 |  | 
 |   // Initialize POSIX time zone data. | 
 |   _tzset(); | 
 |   // Obtain timezone information from operating system. | 
 |   memset(&tzinfo_, 0, sizeof(tzinfo_)); | 
 |   if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) { | 
 |     // If we cannot get timezone information we fall back to CET. | 
 |     tzinfo_.Bias = -60; | 
 |     tzinfo_.StandardDate.wMonth = 10; | 
 |     tzinfo_.StandardDate.wDay = 5; | 
 |     tzinfo_.StandardDate.wHour = 3; | 
 |     tzinfo_.StandardBias = 0; | 
 |     tzinfo_.DaylightDate.wMonth = 3; | 
 |     tzinfo_.DaylightDate.wDay = 5; | 
 |     tzinfo_.DaylightDate.wHour = 2; | 
 |     tzinfo_.DaylightBias = -60; | 
 |   } | 
 |  | 
 |   // Make standard and DST timezone names. | 
 |   WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1, | 
 |                       std_tz_name_, kTzNameSize, NULL, NULL); | 
 |   std_tz_name_[kTzNameSize - 1] = '\0'; | 
 |   WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1, | 
 |                       dst_tz_name_, kTzNameSize, NULL, NULL); | 
 |   dst_tz_name_[kTzNameSize - 1] = '\0'; | 
 |  | 
 |   // If OS returned empty string or resource id (like "@tzres.dll,-211") | 
 |   // simply guess the name from the UTC bias of the timezone. | 
 |   // To properly resolve the resource identifier requires a library load, | 
 |   // which is not possible in a sandbox. | 
 |   if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') { | 
 |     OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1), | 
 |                  "%s Standard Time", | 
 |                  GuessTimezoneNameFromBias(tzinfo_.Bias)); | 
 |   } | 
 |   if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') { | 
 |     OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1), | 
 |                  "%s Daylight Time", | 
 |                  GuessTimezoneNameFromBias(tzinfo_.Bias)); | 
 |   } | 
 |  | 
 |   // Timezone information initialized. | 
 |   tz_initialized_ = true; | 
 | } | 
 |  | 
 |  | 
 | // Return the difference in milliseconds between this and another timestamp. | 
 | int64_t Time::Diff(Time* other) { | 
 |   return (t() - other->t()) / kTimeScaler; | 
 | } | 
 |  | 
 |  | 
 | // Set timestamp to current time. | 
 | void Time::SetToCurrentTime() { | 
 |   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution. | 
 |   // Because we're fast, we like fast timers which have at least a | 
 |   // 1ms resolution. | 
 |   // | 
 |   // timeGetTime() provides 1ms granularity when combined with | 
 |   // timeBeginPeriod().  If the host application for v8 wants fast | 
 |   // timers, it can use timeBeginPeriod to increase the resolution. | 
 |   // | 
 |   // Using timeGetTime() has a drawback because it is a 32bit value | 
 |   // and hence rolls-over every ~49days. | 
 |   // | 
 |   // To use the clock, we use GetSystemTimeAsFileTime as our base; | 
 |   // and then use timeGetTime to extrapolate current time from the | 
 |   // start time.  To deal with rollovers, we resync the clock | 
 |   // any time when more than kMaxClockElapsedTime has passed or | 
 |   // whenever timeGetTime creates a rollover. | 
 |  | 
 |   static bool initialized = false; | 
 |   static TimeStamp init_time; | 
 |   static DWORD init_ticks; | 
 |   static const int64_t kHundredNanosecondsPerSecond = 10000000; | 
 |   static const int64_t kMaxClockElapsedTime = | 
 |       60*kHundredNanosecondsPerSecond;  // 1 minute | 
 |  | 
 |   // If we are uninitialized, we need to resync the clock. | 
 |   bool needs_resync = !initialized; | 
 |  | 
 |   // Get the current time. | 
 |   TimeStamp time_now; | 
 |   GetSystemTimeAsFileTime(&time_now.ft_); | 
 |   DWORD ticks_now = timeGetTime(); | 
 |  | 
 |   // Check if we need to resync due to clock rollover. | 
 |   needs_resync |= ticks_now < init_ticks; | 
 |  | 
 |   // Check if we need to resync due to elapsed time. | 
 |   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime; | 
 |  | 
 |   // Check if we need to resync due to backwards time change. | 
 |   needs_resync |= time_now.t_ < init_time.t_; | 
 |  | 
 |   // Resync the clock if necessary. | 
 |   if (needs_resync) { | 
 |     GetSystemTimeAsFileTime(&init_time.ft_); | 
 |     init_ticks = ticks_now = timeGetTime(); | 
 |     initialized = true; | 
 |   } | 
 |  | 
 |   // Finally, compute the actual time.  Why is this so hard. | 
 |   DWORD elapsed = ticks_now - init_ticks; | 
 |   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000); | 
 | } | 
 |  | 
 |  | 
 | // Return the local timezone offset in milliseconds east of UTC. This | 
 | // takes into account whether daylight saving is in effect at the time. | 
 | // Only times in the 32-bit Unix range may be passed to this function. | 
 | // Also, adding the time-zone offset to the input must not overflow. | 
 | // The function EquivalentTime() in date.js guarantees this. | 
 | int64_t Time::LocalOffset() { | 
 |   // Initialize timezone information, if needed. | 
 |   TzSet(); | 
 |  | 
 |   Time rounded_to_second(*this); | 
 |   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler * | 
 |       1000 * kTimeScaler; | 
 |   // Convert to local time using POSIX localtime function. | 
 |   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime() | 
 |   // very slow.  Other browsers use localtime(). | 
 |  | 
 |   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to | 
 |   // POSIX seconds past 1/1/1970 0:00:00. | 
 |   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000; | 
 |   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) { | 
 |     return 0; | 
 |   } | 
 |   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int. | 
 |   time_t posix_time = static_cast<time_t>(unchecked_posix_time); | 
 |  | 
 |   // Convert to local time, as struct with fields for day, hour, year, etc. | 
 |   tm posix_local_time_struct; | 
 |   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0; | 
 |  | 
 |   if (posix_local_time_struct.tm_isdst > 0) { | 
 |     return (tzinfo_.Bias + tzinfo_.DaylightBias) * -kMsPerMinute; | 
 |   } else if (posix_local_time_struct.tm_isdst == 0) { | 
 |     return (tzinfo_.Bias + tzinfo_.StandardBias) * -kMsPerMinute; | 
 |   } else { | 
 |     return tzinfo_.Bias * -kMsPerMinute; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Return whether or not daylight savings time is in effect at this time. | 
 | bool Time::InDST() { | 
 |   // Initialize timezone information, if needed. | 
 |   TzSet(); | 
 |  | 
 |   // Determine if DST is in effect at the specified time. | 
 |   bool in_dst = false; | 
 |   if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) { | 
 |     // Get the local timezone offset for the timestamp in milliseconds. | 
 |     int64_t offset = LocalOffset(); | 
 |  | 
 |     // Compute the offset for DST. The bias parameters in the timezone info | 
 |     // are specified in minutes. These must be converted to milliseconds. | 
 |     int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute; | 
 |  | 
 |     // If the local time offset equals the timezone bias plus the daylight | 
 |     // bias then DST is in effect. | 
 |     in_dst = offset == dstofs; | 
 |   } | 
 |  | 
 |   return in_dst; | 
 | } | 
 |  | 
 |  | 
 | // Return the daylight savings time offset for this time. | 
 | int64_t Time::DaylightSavingsOffset() { | 
 |   return InDST() ? 60 * kMsPerMinute : 0; | 
 | } | 
 |  | 
 |  | 
 | // Returns a string identifying the current timezone for the | 
 | // timestamp taking into account daylight saving. | 
 | char* Time::LocalTimezone() { | 
 |   // Return the standard or DST time zone name based on whether daylight | 
 |   // saving is in effect at the given time. | 
 |   return InDST() ? dst_tz_name_ : std_tz_name_; | 
 | } | 
 |  | 
 |  | 
 | void OS::PostSetUp() { | 
 |   // Math functions depend on CPU features therefore they are initialized after | 
 |   // CPU. | 
 |   MathSetup(); | 
 | #if defined(V8_TARGET_ARCH_IA32) | 
 |   memcopy_function = CreateMemCopyFunction(); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | // Returns the accumulated user time for thread. | 
 | int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) { | 
 |   FILETIME dummy; | 
 |   uint64_t usertime; | 
 |  | 
 |   // Get the amount of time that the thread has executed in user mode. | 
 |   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy, | 
 |                       reinterpret_cast<FILETIME*>(&usertime))) return -1; | 
 |  | 
 |   // Adjust the resolution to micro-seconds. | 
 |   usertime /= 10; | 
 |  | 
 |   // Convert to seconds and microseconds | 
 |   *secs = static_cast<uint32_t>(usertime / 1000000); | 
 |   *usecs = static_cast<uint32_t>(usertime % 1000000); | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | // Returns current time as the number of milliseconds since | 
 | // 00:00:00 UTC, January 1, 1970. | 
 | double OS::TimeCurrentMillis() { | 
 |   Time t; | 
 |   t.SetToCurrentTime(); | 
 |   return t.ToJSTime(); | 
 | } | 
 |  | 
 | // Returns the tickcounter based on timeGetTime. | 
 | int64_t OS::Ticks() { | 
 |   return timeGetTime() * 1000;  // Convert to microseconds. | 
 | } | 
 |  | 
 |  | 
 | // Returns a string identifying the current timezone taking into | 
 | // account daylight saving. | 
 | const char* OS::LocalTimezone(double time) { | 
 |   return Time(time).LocalTimezone(); | 
 | } | 
 |  | 
 |  | 
 | // Returns the local time offset in milliseconds east of UTC without | 
 | // taking daylight savings time into account. | 
 | double OS::LocalTimeOffset() { | 
 |   // Use current time, rounded to the millisecond. | 
 |   Time t(TimeCurrentMillis()); | 
 |   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it. | 
 |   return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset()); | 
 | } | 
 |  | 
 |  | 
 | // Returns the daylight savings offset in milliseconds for the given | 
 | // time. | 
 | double OS::DaylightSavingsOffset(double time) { | 
 |   int64_t offset = Time(time).DaylightSavingsOffset(); | 
 |   return static_cast<double>(offset); | 
 | } | 
 |  | 
 |  | 
 | int OS::GetLastError() { | 
 |   return ::GetLastError(); | 
 | } | 
 |  | 
 |  | 
 | int OS::GetCurrentProcessId() { | 
 |   return static_cast<int>(::GetCurrentProcessId()); | 
 | } | 
 |  | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Win32 console output. | 
 | // | 
 | // If a Win32 application is linked as a console application it has a normal | 
 | // standard output and standard error. In this case normal printf works fine | 
 | // for output. However, if the application is linked as a GUI application, | 
 | // the process doesn't have a console, and therefore (debugging) output is lost. | 
 | // This is the case if we are embedded in a windows program (like a browser). | 
 | // In order to be able to get debug output in this case the the debugging | 
 | // facility using OutputDebugString. This output goes to the active debugger | 
 | // for the process (if any). Else the output can be monitored using DBMON.EXE. | 
 |  | 
 | enum OutputMode { | 
 |   UNKNOWN,  // Output method has not yet been determined. | 
 |   CONSOLE,  // Output is written to stdout. | 
 |   ODS       // Output is written to debug facility. | 
 | }; | 
 |  | 
 | static OutputMode output_mode = UNKNOWN;  // Current output mode. | 
 |  | 
 |  | 
 | // Determine if the process has a console for output. | 
 | static bool HasConsole() { | 
 |   // Only check the first time. Eventual race conditions are not a problem, | 
 |   // because all threads will eventually determine the same mode. | 
 |   if (output_mode == UNKNOWN) { | 
 |     // We cannot just check that the standard output is attached to a console | 
 |     // because this would fail if output is redirected to a file. Therefore we | 
 |     // say that a process does not have an output console if either the | 
 |     // standard output handle is invalid or its file type is unknown. | 
 |     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE && | 
 |         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN) | 
 |       output_mode = CONSOLE; | 
 |     else | 
 |       output_mode = ODS; | 
 |   } | 
 |   return output_mode == CONSOLE; | 
 | } | 
 |  | 
 |  | 
 | static void VPrintHelper(FILE* stream, const char* format, va_list args) { | 
 |   if (HasConsole()) { | 
 |     vfprintf(stream, format, args); | 
 |   } else { | 
 |     // It is important to use safe print here in order to avoid | 
 |     // overflowing the buffer. We might truncate the output, but this | 
 |     // does not crash. | 
 |     EmbeddedVector<char, 4096> buffer; | 
 |     OS::VSNPrintF(buffer, format, args); | 
 |     OutputDebugStringA(buffer.start()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | FILE* OS::FOpen(const char* path, const char* mode) { | 
 |   FILE* result; | 
 |   if (fopen_s(&result, path, mode) == 0) { | 
 |     return result; | 
 |   } else { | 
 |     return NULL; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool OS::Remove(const char* path) { | 
 |   return (DeleteFileA(path) != 0); | 
 | } | 
 |  | 
 |  | 
 | FILE* OS::OpenTemporaryFile() { | 
 |   // tmpfile_s tries to use the root dir, don't use it. | 
 |   char tempPathBuffer[MAX_PATH]; | 
 |   DWORD path_result = 0; | 
 |   path_result = GetTempPathA(MAX_PATH, tempPathBuffer); | 
 |   if (path_result > MAX_PATH || path_result == 0) return NULL; | 
 |   UINT name_result = 0; | 
 |   char tempNameBuffer[MAX_PATH]; | 
 |   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer); | 
 |   if (name_result == 0) return NULL; | 
 |   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses. | 
 |   if (result != NULL) { | 
 |     Remove(tempNameBuffer);  // Delete on close. | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | // Open log file in binary mode to avoid /n -> /r/n conversion. | 
 | const char* const OS::LogFileOpenMode = "wb"; | 
 |  | 
 |  | 
 | // Print (debug) message to console. | 
 | void OS::Print(const char* format, ...) { | 
 |   va_list args; | 
 |   va_start(args, format); | 
 |   VPrint(format, args); | 
 |   va_end(args); | 
 | } | 
 |  | 
 |  | 
 | void OS::VPrint(const char* format, va_list args) { | 
 |   VPrintHelper(stdout, format, args); | 
 | } | 
 |  | 
 |  | 
 | void OS::FPrint(FILE* out, const char* format, ...) { | 
 |   va_list args; | 
 |   va_start(args, format); | 
 |   VFPrint(out, format, args); | 
 |   va_end(args); | 
 | } | 
 |  | 
 |  | 
 | void OS::VFPrint(FILE* out, const char* format, va_list args) { | 
 |   VPrintHelper(out, format, args); | 
 | } | 
 |  | 
 |  | 
 | // Print error message to console. | 
 | void OS::PrintError(const char* format, ...) { | 
 |   va_list args; | 
 |   va_start(args, format); | 
 |   VPrintError(format, args); | 
 |   va_end(args); | 
 | } | 
 |  | 
 |  | 
 | void OS::VPrintError(const char* format, va_list args) { | 
 |   VPrintHelper(stderr, format, args); | 
 | } | 
 |  | 
 |  | 
 | int OS::SNPrintF(Vector<char> str, const char* format, ...) { | 
 |   va_list args; | 
 |   va_start(args, format); | 
 |   int result = VSNPrintF(str, format, args); | 
 |   va_end(args); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) { | 
 |   int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args); | 
 |   // Make sure to zero-terminate the string if the output was | 
 |   // truncated or if there was an error. | 
 |   if (n < 0 || n >= str.length()) { | 
 |     if (str.length() > 0) | 
 |       str[str.length() - 1] = '\0'; | 
 |     return -1; | 
 |   } else { | 
 |     return n; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | char* OS::StrChr(char* str, int c) { | 
 |   return const_cast<char*>(strchr(str, c)); | 
 | } | 
 |  | 
 |  | 
 | void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) { | 
 |   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small. | 
 |   size_t buffer_size = static_cast<size_t>(dest.length()); | 
 |   if (n + 1 > buffer_size)  // count for trailing '\0' | 
 |     n = _TRUNCATE; | 
 |   int result = strncpy_s(dest.start(), dest.length(), src, n); | 
 |   USE(result); | 
 |   ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE)); | 
 | } | 
 |  | 
 |  | 
 | // We keep the lowest and highest addresses mapped as a quick way of | 
 | // determining that pointers are outside the heap (used mostly in assertions | 
 | // and verification).  The estimate is conservative, i.e., not all addresses in | 
 | // 'allocated' space are actually allocated to our heap.  The range is | 
 | // [lowest, highest), inclusive on the low and and exclusive on the high end. | 
 | static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); | 
 | static void* highest_ever_allocated = reinterpret_cast<void*>(0); | 
 |  | 
 |  | 
 | static void UpdateAllocatedSpaceLimits(void* address, int size) { | 
 |   ASSERT(limit_mutex != NULL); | 
 |   ScopedLock lock(limit_mutex); | 
 |  | 
 |   lowest_ever_allocated = Min(lowest_ever_allocated, address); | 
 |   highest_ever_allocated = | 
 |       Max(highest_ever_allocated, | 
 |           reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); | 
 | } | 
 |  | 
 |  | 
 | bool OS::IsOutsideAllocatedSpace(void* pointer) { | 
 |   if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated) | 
 |     return true; | 
 |   // Ask the Windows API | 
 |   if (IsBadWritePtr(pointer, 1)) | 
 |     return true; | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | // Get the system's page size used by VirtualAlloc() or the next power | 
 | // of two. The reason for always returning a power of two is that the | 
 | // rounding up in OS::Allocate expects that. | 
 | static size_t GetPageSize() { | 
 |   static size_t page_size = 0; | 
 |   if (page_size == 0) { | 
 |     SYSTEM_INFO info; | 
 |     GetSystemInfo(&info); | 
 |     page_size = RoundUpToPowerOf2(info.dwPageSize); | 
 |   } | 
 |   return page_size; | 
 | } | 
 |  | 
 |  | 
 | // The allocation alignment is the guaranteed alignment for | 
 | // VirtualAlloc'ed blocks of memory. | 
 | size_t OS::AllocateAlignment() { | 
 |   static size_t allocate_alignment = 0; | 
 |   if (allocate_alignment == 0) { | 
 |     SYSTEM_INFO info; | 
 |     GetSystemInfo(&info); | 
 |     allocate_alignment = info.dwAllocationGranularity; | 
 |   } | 
 |   return allocate_alignment; | 
 | } | 
 |  | 
 |  | 
 | static void* GetRandomAddr() { | 
 |   Isolate* isolate = Isolate::UncheckedCurrent(); | 
 |   // Note that the current isolate isn't set up in a call path via | 
 |   // CpuFeatures::Probe. We don't care about randomization in this case because | 
 |   // the code page is immediately freed. | 
 |   if (isolate != NULL) { | 
 |     // The address range used to randomize RWX allocations in OS::Allocate | 
 |     // Try not to map pages into the default range that windows loads DLLs | 
 |     // Use a multiple of 64k to prevent committing unused memory. | 
 |     // Note: This does not guarantee RWX regions will be within the | 
 |     // range kAllocationRandomAddressMin to kAllocationRandomAddressMax | 
 | #ifdef V8_HOST_ARCH_64_BIT | 
 |     static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000; | 
 |     static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000; | 
 | #else | 
 |     static const intptr_t kAllocationRandomAddressMin = 0x04000000; | 
 |     static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000; | 
 | #endif | 
 |     uintptr_t address = (V8::RandomPrivate(isolate) << kPageSizeBits) | 
 |         | kAllocationRandomAddressMin; | 
 |     address &= kAllocationRandomAddressMax; | 
 |     return reinterpret_cast<void *>(address); | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | static void* RandomizedVirtualAlloc(size_t size, int action, int protection) { | 
 |   LPVOID base = NULL; | 
 |  | 
 |   if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) { | 
 |     // For exectutable pages try and randomize the allocation address | 
 |     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) { | 
 |       base = VirtualAlloc(GetRandomAddr(), size, action, protection); | 
 |     } | 
 |   } | 
 |  | 
 |   // After three attempts give up and let the OS find an address to use. | 
 |   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection); | 
 |  | 
 |   return base; | 
 | } | 
 |  | 
 |  | 
 | void* OS::Allocate(const size_t requested, | 
 |                    size_t* allocated, | 
 |                    bool is_executable) { | 
 |   // VirtualAlloc rounds allocated size to page size automatically. | 
 |   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize())); | 
 |  | 
 |   // Windows XP SP2 allows Data Excution Prevention (DEP). | 
 |   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; | 
 |  | 
 |   LPVOID mbase = RandomizedVirtualAlloc(msize, | 
 |                                         MEM_COMMIT | MEM_RESERVE, | 
 |                                         prot); | 
 |  | 
 |   if (mbase == NULL) { | 
 |     LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed")); | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment())); | 
 |  | 
 |   *allocated = msize; | 
 |   UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize)); | 
 |   return mbase; | 
 | } | 
 |  | 
 |  | 
 | void OS::Free(void* address, const size_t size) { | 
 |   // TODO(1240712): VirtualFree has a return value which is ignored here. | 
 |   VirtualFree(address, 0, MEM_RELEASE); | 
 |   USE(size); | 
 | } | 
 |  | 
 |  | 
 | intptr_t OS::CommitPageSize() { | 
 |   return 4096; | 
 | } | 
 |  | 
 |  | 
 | void OS::ProtectCode(void* address, const size_t size) { | 
 |   DWORD old_protect; | 
 |   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect); | 
 | } | 
 |  | 
 |  | 
 | void OS::Guard(void* address, const size_t size) { | 
 |   DWORD oldprotect; | 
 |   VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect); | 
 | } | 
 |  | 
 |  | 
 | void OS::Sleep(int milliseconds) { | 
 |   ::Sleep(milliseconds); | 
 | } | 
 |  | 
 |  | 
 | void OS::Abort() { | 
 |   if (IsDebuggerPresent() || FLAG_break_on_abort) { | 
 |     DebugBreak(); | 
 |   } else { | 
 |     // Make the MSVCRT do a silent abort. | 
 |     raise(SIGABRT); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void OS::DebugBreak() { | 
 | #ifdef _MSC_VER | 
 |   __debugbreak(); | 
 | #else | 
 |   ::DebugBreak(); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | class Win32MemoryMappedFile : public OS::MemoryMappedFile { | 
 |  public: | 
 |   Win32MemoryMappedFile(HANDLE file, | 
 |                         HANDLE file_mapping, | 
 |                         void* memory, | 
 |                         int size) | 
 |       : file_(file), | 
 |         file_mapping_(file_mapping), | 
 |         memory_(memory), | 
 |         size_(size) { } | 
 |   virtual ~Win32MemoryMappedFile(); | 
 |   virtual void* memory() { return memory_; } | 
 |   virtual int size() { return size_; } | 
 |  private: | 
 |   HANDLE file_; | 
 |   HANDLE file_mapping_; | 
 |   void* memory_; | 
 |   int size_; | 
 | }; | 
 |  | 
 |  | 
 | OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) { | 
 |   // Open a physical file | 
 |   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, | 
 |       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); | 
 |   if (file == INVALID_HANDLE_VALUE) return NULL; | 
 |  | 
 |   int size = static_cast<int>(GetFileSize(file, NULL)); | 
 |  | 
 |   // Create a file mapping for the physical file | 
 |   HANDLE file_mapping = CreateFileMapping(file, NULL, | 
 |       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); | 
 |   if (file_mapping == NULL) return NULL; | 
 |  | 
 |   // Map a view of the file into memory | 
 |   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); | 
 |   return new Win32MemoryMappedFile(file, file_mapping, memory, size); | 
 | } | 
 |  | 
 |  | 
 | OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, | 
 |     void* initial) { | 
 |   // Open a physical file | 
 |   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE, | 
 |       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL); | 
 |   if (file == NULL) return NULL; | 
 |   // Create a file mapping for the physical file | 
 |   HANDLE file_mapping = CreateFileMapping(file, NULL, | 
 |       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL); | 
 |   if (file_mapping == NULL) return NULL; | 
 |   // Map a view of the file into memory | 
 |   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size); | 
 |   if (memory) memmove(memory, initial, size); | 
 |   return new Win32MemoryMappedFile(file, file_mapping, memory, size); | 
 | } | 
 |  | 
 |  | 
 | Win32MemoryMappedFile::~Win32MemoryMappedFile() { | 
 |   if (memory_ != NULL) | 
 |     UnmapViewOfFile(memory_); | 
 |   CloseHandle(file_mapping_); | 
 |   CloseHandle(file_); | 
 | } | 
 |  | 
 |  | 
 | // The following code loads functions defined in DbhHelp.h and TlHelp32.h | 
 | // dynamically. This is to avoid being depending on dbghelp.dll and | 
 | // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to | 
 | // kernel32.dll at some point so loading functions defines in TlHelp32.h | 
 | // dynamically might not be necessary any more - for some versions of Windows?). | 
 |  | 
 | // Function pointers to functions dynamically loaded from dbghelp.dll. | 
 | #define DBGHELP_FUNCTION_LIST(V)  \ | 
 |   V(SymInitialize)                \ | 
 |   V(SymGetOptions)                \ | 
 |   V(SymSetOptions)                \ | 
 |   V(SymGetSearchPath)             \ | 
 |   V(SymLoadModule64)              \ | 
 |   V(StackWalk64)                  \ | 
 |   V(SymGetSymFromAddr64)          \ | 
 |   V(SymGetLineFromAddr64)         \ | 
 |   V(SymFunctionTableAccess64)     \ | 
 |   V(SymGetModuleBase64) | 
 |  | 
 | // Function pointers to functions dynamically loaded from dbghelp.dll. | 
 | #define TLHELP32_FUNCTION_LIST(V)  \ | 
 |   V(CreateToolhelp32Snapshot)      \ | 
 |   V(Module32FirstW)                \ | 
 |   V(Module32NextW) | 
 |  | 
 | // Define the decoration to use for the type and variable name used for | 
 | // dynamically loaded DLL function.. | 
 | #define DLL_FUNC_TYPE(name) _##name##_ | 
 | #define DLL_FUNC_VAR(name) _##name | 
 |  | 
 | // Define the type for each dynamically loaded DLL function. The function | 
 | // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros | 
 | // from the Windows include files are redefined here to have the function | 
 | // definitions to be as close to the ones in the original .h files as possible. | 
 | #ifndef IN | 
 | #define IN | 
 | #endif | 
 | #ifndef VOID | 
 | #define VOID void | 
 | #endif | 
 |  | 
 | // DbgHelp isn't supported on MinGW yet | 
 | #ifndef __MINGW32__ | 
 | // DbgHelp.h functions. | 
 | typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess, | 
 |                                                        IN PSTR UserSearchPath, | 
 |                                                        IN BOOL fInvadeProcess); | 
 | typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID); | 
 | typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions); | 
 | typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))( | 
 |     IN HANDLE hProcess, | 
 |     OUT PSTR SearchPath, | 
 |     IN DWORD SearchPathLength); | 
 | typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))( | 
 |     IN HANDLE hProcess, | 
 |     IN HANDLE hFile, | 
 |     IN PSTR ImageName, | 
 |     IN PSTR ModuleName, | 
 |     IN DWORD64 BaseOfDll, | 
 |     IN DWORD SizeOfDll); | 
 | typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))( | 
 |     DWORD MachineType, | 
 |     HANDLE hProcess, | 
 |     HANDLE hThread, | 
 |     LPSTACKFRAME64 StackFrame, | 
 |     PVOID ContextRecord, | 
 |     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine, | 
 |     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine, | 
 |     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine, | 
 |     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress); | 
 | typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))( | 
 |     IN HANDLE hProcess, | 
 |     IN DWORD64 qwAddr, | 
 |     OUT PDWORD64 pdwDisplacement, | 
 |     OUT PIMAGEHLP_SYMBOL64 Symbol); | 
 | typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))( | 
 |     IN HANDLE hProcess, | 
 |     IN DWORD64 qwAddr, | 
 |     OUT PDWORD pdwDisplacement, | 
 |     OUT PIMAGEHLP_LINE64 Line64); | 
 | // DbgHelp.h typedefs. Implementation found in dbghelp.dll. | 
 | typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))( | 
 |     HANDLE hProcess, | 
 |     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64 | 
 | typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))( | 
 |     HANDLE hProcess, | 
 |     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64 | 
 |  | 
 | // TlHelp32.h functions. | 
 | typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))( | 
 |     DWORD dwFlags, | 
 |     DWORD th32ProcessID); | 
 | typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot, | 
 |                                                         LPMODULEENTRY32W lpme); | 
 | typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot, | 
 |                                                        LPMODULEENTRY32W lpme); | 
 |  | 
 | #undef IN | 
 | #undef VOID | 
 |  | 
 | // Declare a variable for each dynamically loaded DLL function. | 
 | #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL; | 
 | DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION) | 
 | TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION) | 
 | #undef DEF_DLL_FUNCTION | 
 |  | 
 | // Load the functions. This function has a lot of "ugly" macros in order to | 
 | // keep down code duplication. | 
 |  | 
 | static bool LoadDbgHelpAndTlHelp32() { | 
 |   static bool dbghelp_loaded = false; | 
 |  | 
 |   if (dbghelp_loaded) return true; | 
 |  | 
 |   HMODULE module; | 
 |  | 
 |   // Load functions from the dbghelp.dll module. | 
 |   module = LoadLibrary(TEXT("dbghelp.dll")); | 
 |   if (module == NULL) { | 
 |     return false; | 
 |   } | 
 |  | 
 | #define LOAD_DLL_FUNC(name)                                                 \ | 
 |   DLL_FUNC_VAR(name) =                                                      \ | 
 |       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); | 
 |  | 
 | DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC) | 
 |  | 
 | #undef LOAD_DLL_FUNC | 
 |  | 
 |   // Load functions from the kernel32.dll module (the TlHelp32.h function used | 
 |   // to be in tlhelp32.dll but are now moved to kernel32.dll). | 
 |   module = LoadLibrary(TEXT("kernel32.dll")); | 
 |   if (module == NULL) { | 
 |     return false; | 
 |   } | 
 |  | 
 | #define LOAD_DLL_FUNC(name)                                                 \ | 
 |   DLL_FUNC_VAR(name) =                                                      \ | 
 |       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name)); | 
 |  | 
 | TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC) | 
 |  | 
 | #undef LOAD_DLL_FUNC | 
 |  | 
 |   // Check that all functions where loaded. | 
 |   bool result = | 
 | #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) && | 
 |  | 
 | DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED) | 
 | TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED) | 
 |  | 
 | #undef DLL_FUNC_LOADED | 
 |   true; | 
 |  | 
 |   dbghelp_loaded = result; | 
 |   return result; | 
 |   // NOTE: The modules are never unloaded and will stay around until the | 
 |   // application is closed. | 
 | } | 
 |  | 
 |  | 
 | // Load the symbols for generating stack traces. | 
 | static bool LoadSymbols(HANDLE process_handle) { | 
 |   static bool symbols_loaded = false; | 
 |  | 
 |   if (symbols_loaded) return true; | 
 |  | 
 |   BOOL ok; | 
 |  | 
 |   // Initialize the symbol engine. | 
 |   ok = _SymInitialize(process_handle,  // hProcess | 
 |                       NULL,            // UserSearchPath | 
 |                       false);          // fInvadeProcess | 
 |   if (!ok) return false; | 
 |  | 
 |   DWORD options = _SymGetOptions(); | 
 |   options |= SYMOPT_LOAD_LINES; | 
 |   options |= SYMOPT_FAIL_CRITICAL_ERRORS; | 
 |   options = _SymSetOptions(options); | 
 |  | 
 |   char buf[OS::kStackWalkMaxNameLen] = {0}; | 
 |   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen); | 
 |   if (!ok) { | 
 |     int err = GetLastError(); | 
 |     PrintF("%d\n", err); | 
 |     return false; | 
 |   } | 
 |  | 
 |   HANDLE snapshot = _CreateToolhelp32Snapshot( | 
 |       TH32CS_SNAPMODULE,       // dwFlags | 
 |       GetCurrentProcessId());  // th32ProcessId | 
 |   if (snapshot == INVALID_HANDLE_VALUE) return false; | 
 |   MODULEENTRY32W module_entry; | 
 |   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure. | 
 |   BOOL cont = _Module32FirstW(snapshot, &module_entry); | 
 |   while (cont) { | 
 |     DWORD64 base; | 
 |     // NOTE the SymLoadModule64 function has the peculiarity of accepting a | 
 |     // both unicode and ASCII strings even though the parameter is PSTR. | 
 |     base = _SymLoadModule64( | 
 |         process_handle,                                       // hProcess | 
 |         0,                                                    // hFile | 
 |         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName | 
 |         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName | 
 |         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll | 
 |         module_entry.modBaseSize);                            // SizeOfDll | 
 |     if (base == 0) { | 
 |       int err = GetLastError(); | 
 |       if (err != ERROR_MOD_NOT_FOUND && | 
 |           err != ERROR_INVALID_HANDLE) return false; | 
 |     } | 
 |     LOG(i::Isolate::Current(), | 
 |         SharedLibraryEvent( | 
 |             module_entry.szExePath, | 
 |             reinterpret_cast<unsigned int>(module_entry.modBaseAddr), | 
 |             reinterpret_cast<unsigned int>(module_entry.modBaseAddr + | 
 |                                            module_entry.modBaseSize))); | 
 |     cont = _Module32NextW(snapshot, &module_entry); | 
 |   } | 
 |   CloseHandle(snapshot); | 
 |  | 
 |   symbols_loaded = true; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void OS::LogSharedLibraryAddresses() { | 
 |   // SharedLibraryEvents are logged when loading symbol information. | 
 |   // Only the shared libraries loaded at the time of the call to | 
 |   // LogSharedLibraryAddresses are logged.  DLLs loaded after | 
 |   // initialization are not accounted for. | 
 |   if (!LoadDbgHelpAndTlHelp32()) return; | 
 |   HANDLE process_handle = GetCurrentProcess(); | 
 |   LoadSymbols(process_handle); | 
 | } | 
 |  | 
 |  | 
 | void OS::SignalCodeMovingGC() { | 
 | } | 
 |  | 
 |  | 
 | // Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll | 
 |  | 
 | // Switch off warning 4748 (/GS can not protect parameters and local variables | 
 | // from local buffer overrun because optimizations are disabled in function) as | 
 | // it is triggered by the use of inline assembler. | 
 | #pragma warning(push) | 
 | #pragma warning(disable : 4748) | 
 | int OS::StackWalk(Vector<OS::StackFrame> frames) { | 
 |   BOOL ok; | 
 |  | 
 |   // Load the required functions from DLL's. | 
 |   if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError; | 
 |  | 
 |   // Get the process and thread handles. | 
 |   HANDLE process_handle = GetCurrentProcess(); | 
 |   HANDLE thread_handle = GetCurrentThread(); | 
 |  | 
 |   // Read the symbols. | 
 |   if (!LoadSymbols(process_handle)) return kStackWalkError; | 
 |  | 
 |   // Capture current context. | 
 |   CONTEXT context; | 
 |   RtlCaptureContext(&context); | 
 |  | 
 |   // Initialize the stack walking | 
 |   STACKFRAME64 stack_frame; | 
 |   memset(&stack_frame, 0, sizeof(stack_frame)); | 
 | #ifdef  _WIN64 | 
 |   stack_frame.AddrPC.Offset = context.Rip; | 
 |   stack_frame.AddrFrame.Offset = context.Rbp; | 
 |   stack_frame.AddrStack.Offset = context.Rsp; | 
 | #else | 
 |   stack_frame.AddrPC.Offset = context.Eip; | 
 |   stack_frame.AddrFrame.Offset = context.Ebp; | 
 |   stack_frame.AddrStack.Offset = context.Esp; | 
 | #endif | 
 |   stack_frame.AddrPC.Mode = AddrModeFlat; | 
 |   stack_frame.AddrFrame.Mode = AddrModeFlat; | 
 |   stack_frame.AddrStack.Mode = AddrModeFlat; | 
 |   int frames_count = 0; | 
 |  | 
 |   // Collect stack frames. | 
 |   int frames_size = frames.length(); | 
 |   while (frames_count < frames_size) { | 
 |     ok = _StackWalk64( | 
 |         IMAGE_FILE_MACHINE_I386,    // MachineType | 
 |         process_handle,             // hProcess | 
 |         thread_handle,              // hThread | 
 |         &stack_frame,               // StackFrame | 
 |         &context,                   // ContextRecord | 
 |         NULL,                       // ReadMemoryRoutine | 
 |         _SymFunctionTableAccess64,  // FunctionTableAccessRoutine | 
 |         _SymGetModuleBase64,        // GetModuleBaseRoutine | 
 |         NULL);                      // TranslateAddress | 
 |     if (!ok) break; | 
 |  | 
 |     // Store the address. | 
 |     ASSERT((stack_frame.AddrPC.Offset >> 32) == 0);  // 32-bit address. | 
 |     frames[frames_count].address = | 
 |         reinterpret_cast<void*>(stack_frame.AddrPC.Offset); | 
 |  | 
 |     // Try to locate a symbol for this frame. | 
 |     DWORD64 symbol_displacement; | 
 |     SmartArrayPointer<IMAGEHLP_SYMBOL64> symbol( | 
 |         NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen)); | 
 |     if (symbol.is_empty()) return kStackWalkError;  // Out of memory. | 
 |     memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen); | 
 |     (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64); | 
 |     (*symbol)->MaxNameLength = kStackWalkMaxNameLen; | 
 |     ok = _SymGetSymFromAddr64(process_handle,             // hProcess | 
 |                               stack_frame.AddrPC.Offset,  // Address | 
 |                               &symbol_displacement,       // Displacement | 
 |                               *symbol);                   // Symbol | 
 |     if (ok) { | 
 |       // Try to locate more source information for the symbol. | 
 |       IMAGEHLP_LINE64 Line; | 
 |       memset(&Line, 0, sizeof(Line)); | 
 |       Line.SizeOfStruct = sizeof(Line); | 
 |       DWORD line_displacement; | 
 |       ok = _SymGetLineFromAddr64( | 
 |           process_handle,             // hProcess | 
 |           stack_frame.AddrPC.Offset,  // dwAddr | 
 |           &line_displacement,         // pdwDisplacement | 
 |           &Line);                     // Line | 
 |       // Format a text representation of the frame based on the information | 
 |       // available. | 
 |       if (ok) { | 
 |         SNPrintF(MutableCStrVector(frames[frames_count].text, | 
 |                                    kStackWalkMaxTextLen), | 
 |                  "%s %s:%d:%d", | 
 |                  (*symbol)->Name, Line.FileName, Line.LineNumber, | 
 |                  line_displacement); | 
 |       } else { | 
 |         SNPrintF(MutableCStrVector(frames[frames_count].text, | 
 |                                    kStackWalkMaxTextLen), | 
 |                  "%s", | 
 |                  (*symbol)->Name); | 
 |       } | 
 |       // Make sure line termination is in place. | 
 |       frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0'; | 
 |     } else { | 
 |       // No text representation of this frame | 
 |       frames[frames_count].text[0] = '\0'; | 
 |  | 
 |       // Continue if we are just missing a module (for non C/C++ frames a | 
 |       // module will never be found). | 
 |       int err = GetLastError(); | 
 |       if (err != ERROR_MOD_NOT_FOUND) { | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     frames_count++; | 
 |   } | 
 |  | 
 |   // Return the number of frames filled in. | 
 |   return frames_count; | 
 | } | 
 |  | 
 | // Restore warnings to previous settings. | 
 | #pragma warning(pop) | 
 |  | 
 | #else  // __MINGW32__ | 
 | void OS::LogSharedLibraryAddresses() { } | 
 | void OS::SignalCodeMovingGC() { } | 
 | int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; } | 
 | #endif  // __MINGW32__ | 
 |  | 
 |  | 
 | uint64_t OS::CpuFeaturesImpliedByPlatform() { | 
 |   return 0;  // Windows runs on anything. | 
 | } | 
 |  | 
 |  | 
 | double OS::nan_value() { | 
 | #ifdef _MSC_VER | 
 |   // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits | 
 |   // in mask set, so value equals mask. | 
 |   static const __int64 nanval = kQuietNaNMask; | 
 |   return *reinterpret_cast<const double*>(&nanval); | 
 | #else  // _MSC_VER | 
 |   return NAN; | 
 | #endif  // _MSC_VER | 
 | } | 
 |  | 
 |  | 
 | int OS::ActivationFrameAlignment() { | 
 | #ifdef _WIN64 | 
 |   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned. | 
 | #else | 
 |   return 8;  // Floating-point math runs faster with 8-byte alignment. | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) { | 
 |   MemoryBarrier(); | 
 |   *ptr = value; | 
 | } | 
 |  | 
 |  | 
 | VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { } | 
 |  | 
 |  | 
 | VirtualMemory::VirtualMemory(size_t size) | 
 |     : address_(ReserveRegion(size)), size_(size) { } | 
 |  | 
 |  | 
 | VirtualMemory::VirtualMemory(size_t size, size_t alignment) | 
 |     : address_(NULL), size_(0) { | 
 |   ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment()))); | 
 |   size_t request_size = RoundUp(size + alignment, | 
 |                                 static_cast<intptr_t>(OS::AllocateAlignment())); | 
 |   void* address = ReserveRegion(request_size); | 
 |   if (address == NULL) return; | 
 |   Address base = RoundUp(static_cast<Address>(address), alignment); | 
 |   // Try reducing the size by freeing and then reallocating a specific area. | 
 |   bool result = ReleaseRegion(address, request_size); | 
 |   USE(result); | 
 |   ASSERT(result); | 
 |   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS); | 
 |   if (address != NULL) { | 
 |     request_size = size; | 
 |     ASSERT(base == static_cast<Address>(address)); | 
 |   } else { | 
 |     // Resizing failed, just go with a bigger area. | 
 |     address = ReserveRegion(request_size); | 
 |     if (address == NULL) return; | 
 |   } | 
 |   address_ = address; | 
 |   size_ = request_size; | 
 | } | 
 |  | 
 |  | 
 | VirtualMemory::~VirtualMemory() { | 
 |   if (IsReserved()) { | 
 |     bool result = ReleaseRegion(address_, size_); | 
 |     ASSERT(result); | 
 |     USE(result); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool VirtualMemory::IsReserved() { | 
 |   return address_ != NULL; | 
 | } | 
 |  | 
 |  | 
 | void VirtualMemory::Reset() { | 
 |   address_ = NULL; | 
 |   size_ = 0; | 
 | } | 
 |  | 
 |  | 
 | bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { | 
 |   if (CommitRegion(address, size, is_executable)) { | 
 |     UpdateAllocatedSpaceLimits(address, static_cast<int>(size)); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | bool VirtualMemory::Uncommit(void* address, size_t size) { | 
 |   ASSERT(IsReserved()); | 
 |   return UncommitRegion(address, size); | 
 | } | 
 |  | 
 |  | 
 | void* VirtualMemory::ReserveRegion(size_t size) { | 
 |   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS); | 
 | } | 
 |  | 
 |  | 
 | bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { | 
 |   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; | 
 |   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   UpdateAllocatedSpaceLimits(base, static_cast<int>(size)); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool VirtualMemory::Guard(void* address) { | 
 |   if (NULL == VirtualAlloc(address, | 
 |                            OS::CommitPageSize(), | 
 |                            MEM_COMMIT, | 
 |                            PAGE_READONLY | PAGE_GUARD)) { | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | bool VirtualMemory::UncommitRegion(void* base, size_t size) { | 
 |   return VirtualFree(base, size, MEM_DECOMMIT) != 0; | 
 | } | 
 |  | 
 |  | 
 | bool VirtualMemory::ReleaseRegion(void* base, size_t size) { | 
 |   return VirtualFree(base, 0, MEM_RELEASE) != 0; | 
 | } | 
 |  | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Win32 thread support. | 
 |  | 
 | // Definition of invalid thread handle and id. | 
 | static const HANDLE kNoThread = INVALID_HANDLE_VALUE; | 
 |  | 
 | // Entry point for threads. The supplied argument is a pointer to the thread | 
 | // object. The entry function dispatches to the run method in the thread | 
 | // object. It is important that this function has __stdcall calling | 
 | // convention. | 
 | static unsigned int __stdcall ThreadEntry(void* arg) { | 
 |   Thread* thread = reinterpret_cast<Thread*>(arg); | 
 |   thread->Run(); | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | class Thread::PlatformData : public Malloced { | 
 |  public: | 
 |   explicit PlatformData(HANDLE thread) : thread_(thread) {} | 
 |   HANDLE thread_; | 
 |   unsigned thread_id_; | 
 | }; | 
 |  | 
 |  | 
 | // Initialize a Win32 thread object. The thread has an invalid thread | 
 | // handle until it is started. | 
 |  | 
 | Thread::Thread(const Options& options) | 
 |     : stack_size_(options.stack_size()) { | 
 |   data_ = new PlatformData(kNoThread); | 
 |   set_name(options.name()); | 
 | } | 
 |  | 
 |  | 
 | void Thread::set_name(const char* name) { | 
 |   OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name)); | 
 |   name_[sizeof(name_) - 1] = '\0'; | 
 | } | 
 |  | 
 |  | 
 | // Close our own handle for the thread. | 
 | Thread::~Thread() { | 
 |   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_); | 
 |   delete data_; | 
 | } | 
 |  | 
 |  | 
 | // Create a new thread. It is important to use _beginthreadex() instead of | 
 | // the Win32 function CreateThread(), because the CreateThread() does not | 
 | // initialize thread specific structures in the C runtime library. | 
 | void Thread::Start() { | 
 |   data_->thread_ = reinterpret_cast<HANDLE>( | 
 |       _beginthreadex(NULL, | 
 |                      static_cast<unsigned>(stack_size_), | 
 |                      ThreadEntry, | 
 |                      this, | 
 |                      0, | 
 |                      &data_->thread_id_)); | 
 | } | 
 |  | 
 |  | 
 | // Wait for thread to terminate. | 
 | void Thread::Join() { | 
 |   if (data_->thread_id_ != GetCurrentThreadId()) { | 
 |     WaitForSingleObject(data_->thread_, INFINITE); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | Thread::LocalStorageKey Thread::CreateThreadLocalKey() { | 
 |   DWORD result = TlsAlloc(); | 
 |   ASSERT(result != TLS_OUT_OF_INDEXES); | 
 |   return static_cast<LocalStorageKey>(result); | 
 | } | 
 |  | 
 |  | 
 | void Thread::DeleteThreadLocalKey(LocalStorageKey key) { | 
 |   BOOL result = TlsFree(static_cast<DWORD>(key)); | 
 |   USE(result); | 
 |   ASSERT(result); | 
 | } | 
 |  | 
 |  | 
 | void* Thread::GetThreadLocal(LocalStorageKey key) { | 
 |   return TlsGetValue(static_cast<DWORD>(key)); | 
 | } | 
 |  | 
 |  | 
 | void Thread::SetThreadLocal(LocalStorageKey key, void* value) { | 
 |   BOOL result = TlsSetValue(static_cast<DWORD>(key), value); | 
 |   USE(result); | 
 |   ASSERT(result); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | void Thread::YieldCPU() { | 
 |   Sleep(0); | 
 | } | 
 |  | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Win32 mutex support. | 
 | // | 
 | // On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are | 
 | // faster than Win32 Mutex objects because they are implemented using user mode | 
 | // atomic instructions. Therefore we only do ring transitions if there is lock | 
 | // contention. | 
 |  | 
 | class Win32Mutex : public Mutex { | 
 |  public: | 
 |   Win32Mutex() { InitializeCriticalSection(&cs_); } | 
 |  | 
 |   virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); } | 
 |  | 
 |   virtual int Lock() { | 
 |     EnterCriticalSection(&cs_); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   virtual int Unlock() { | 
 |     LeaveCriticalSection(&cs_); | 
 |     return 0; | 
 |   } | 
 |  | 
 |  | 
 |   virtual bool TryLock() { | 
 |     // Returns non-zero if critical section is entered successfully entered. | 
 |     return TryEnterCriticalSection(&cs_); | 
 |   } | 
 |  | 
 |  private: | 
 |   CRITICAL_SECTION cs_;  // Critical section used for mutex | 
 | }; | 
 |  | 
 |  | 
 | Mutex* OS::CreateMutex() { | 
 |   return new Win32Mutex(); | 
 | } | 
 |  | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Win32 semaphore support. | 
 | // | 
 | // On Win32 semaphores are implemented using Win32 Semaphore objects. The | 
 | // semaphores are anonymous. Also, the semaphores are initialized to have | 
 | // no upper limit on count. | 
 |  | 
 |  | 
 | class Win32Semaphore : public Semaphore { | 
 |  public: | 
 |   explicit Win32Semaphore(int count) { | 
 |     sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL); | 
 |   } | 
 |  | 
 |   ~Win32Semaphore() { | 
 |     CloseHandle(sem); | 
 |   } | 
 |  | 
 |   void Wait() { | 
 |     WaitForSingleObject(sem, INFINITE); | 
 |   } | 
 |  | 
 |   bool Wait(int timeout) { | 
 |     // Timeout in Windows API is in milliseconds. | 
 |     DWORD millis_timeout = timeout / 1000; | 
 |     return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT; | 
 |   } | 
 |  | 
 |   void Signal() { | 
 |     LONG dummy; | 
 |     ReleaseSemaphore(sem, 1, &dummy); | 
 |   } | 
 |  | 
 |  private: | 
 |   HANDLE sem; | 
 | }; | 
 |  | 
 |  | 
 | Semaphore* OS::CreateSemaphore(int count) { | 
 |   return new Win32Semaphore(count); | 
 | } | 
 |  | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Win32 socket support. | 
 | // | 
 |  | 
 | class Win32Socket : public Socket { | 
 |  public: | 
 |   explicit Win32Socket() { | 
 |     // Create the socket. | 
 |     socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); | 
 |   } | 
 |   explicit Win32Socket(SOCKET socket): socket_(socket) { } | 
 |   virtual ~Win32Socket() { Shutdown(); } | 
 |  | 
 |   // Server initialization. | 
 |   bool Bind(const int port); | 
 |   bool Listen(int backlog) const; | 
 |   Socket* Accept() const; | 
 |  | 
 |   // Client initialization. | 
 |   bool Connect(const char* host, const char* port); | 
 |  | 
 |   // Shutdown socket for both read and write. | 
 |   bool Shutdown(); | 
 |  | 
 |   // Data Transimission | 
 |   int Send(const char* data, int len) const; | 
 |   int Receive(char* data, int len) const; | 
 |  | 
 |   bool SetReuseAddress(bool reuse_address); | 
 |  | 
 |   bool IsValid() const { return socket_ != INVALID_SOCKET; } | 
 |  | 
 |  private: | 
 |   SOCKET socket_; | 
 | }; | 
 |  | 
 |  | 
 | bool Win32Socket::Bind(const int port) { | 
 |   if (!IsValid())  { | 
 |     return false; | 
 |   } | 
 |  | 
 |   sockaddr_in addr; | 
 |   memset(&addr, 0, sizeof(addr)); | 
 |   addr.sin_family = AF_INET; | 
 |   addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); | 
 |   addr.sin_port = htons(port); | 
 |   int status = bind(socket_, | 
 |                     reinterpret_cast<struct sockaddr *>(&addr), | 
 |                     sizeof(addr)); | 
 |   return status == 0; | 
 | } | 
 |  | 
 |  | 
 | bool Win32Socket::Listen(int backlog) const { | 
 |   if (!IsValid()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   int status = listen(socket_, backlog); | 
 |   return status == 0; | 
 | } | 
 |  | 
 |  | 
 | Socket* Win32Socket::Accept() const { | 
 |   if (!IsValid()) { | 
 |     return NULL; | 
 |   } | 
 |  | 
 |   SOCKET socket = accept(socket_, NULL, NULL); | 
 |   if (socket == INVALID_SOCKET) { | 
 |     return NULL; | 
 |   } else { | 
 |     return new Win32Socket(socket); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool Win32Socket::Connect(const char* host, const char* port) { | 
 |   if (!IsValid()) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Lookup host and port. | 
 |   struct addrinfo *result = NULL; | 
 |   struct addrinfo hints; | 
 |   memset(&hints, 0, sizeof(addrinfo)); | 
 |   hints.ai_family = AF_INET; | 
 |   hints.ai_socktype = SOCK_STREAM; | 
 |   hints.ai_protocol = IPPROTO_TCP; | 
 |   int status = getaddrinfo(host, port, &hints, &result); | 
 |   if (status != 0) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Connect. | 
 |   status = connect(socket_, | 
 |                    result->ai_addr, | 
 |                    static_cast<int>(result->ai_addrlen)); | 
 |   freeaddrinfo(result); | 
 |   return status == 0; | 
 | } | 
 |  | 
 |  | 
 | bool Win32Socket::Shutdown() { | 
 |   if (IsValid()) { | 
 |     // Shutdown socket for both read and write. | 
 |     int status = shutdown(socket_, SD_BOTH); | 
 |     closesocket(socket_); | 
 |     socket_ = INVALID_SOCKET; | 
 |     return status == SOCKET_ERROR; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | int Win32Socket::Send(const char* data, int len) const { | 
 |   if (len <= 0) return 0; | 
 |   int written = 0; | 
 |   while (written < len) { | 
 |     int status = send(socket_, data + written, len - written, 0); | 
 |     if (status == 0) { | 
 |       break; | 
 |     } else if (status > 0) { | 
 |       written += status; | 
 |     } else { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |   return written; | 
 | } | 
 |  | 
 |  | 
 | int Win32Socket::Receive(char* data, int len) const { | 
 |   if (len <= 0) return 0; | 
 |   int status = recv(socket_, data, len, 0); | 
 |   return (status == SOCKET_ERROR) ? 0 : status; | 
 | } | 
 |  | 
 |  | 
 | bool Win32Socket::SetReuseAddress(bool reuse_address) { | 
 |   BOOL on = reuse_address ? true : false; | 
 |   int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, | 
 |                           reinterpret_cast<char*>(&on), sizeof(on)); | 
 |   return status == SOCKET_ERROR; | 
 | } | 
 |  | 
 |  | 
 | bool Socket::SetUp() { | 
 |   // Initialize Winsock32 | 
 |   int err; | 
 |   WSADATA winsock_data; | 
 |   WORD version_requested = MAKEWORD(1, 0); | 
 |   err = WSAStartup(version_requested, &winsock_data); | 
 |   if (err != 0) { | 
 |     PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError()); | 
 |   } | 
 |  | 
 |   return err == 0; | 
 | } | 
 |  | 
 |  | 
 | int Socket::LastError() { | 
 |   return WSAGetLastError(); | 
 | } | 
 |  | 
 |  | 
 | uint16_t Socket::HToN(uint16_t value) { | 
 |   return htons(value); | 
 | } | 
 |  | 
 |  | 
 | uint16_t Socket::NToH(uint16_t value) { | 
 |   return ntohs(value); | 
 | } | 
 |  | 
 |  | 
 | uint32_t Socket::HToN(uint32_t value) { | 
 |   return htonl(value); | 
 | } | 
 |  | 
 |  | 
 | uint32_t Socket::NToH(uint32_t value) { | 
 |   return ntohl(value); | 
 | } | 
 |  | 
 |  | 
 | Socket* OS::CreateSocket() { | 
 |   return new Win32Socket(); | 
 | } | 
 |  | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // Win32 profiler support. | 
 |  | 
 | class Sampler::PlatformData : public Malloced { | 
 |  public: | 
 |   // Get a handle to the calling thread. This is the thread that we are | 
 |   // going to profile. We need to make a copy of the handle because we are | 
 |   // going to use it in the sampler thread. Using GetThreadHandle() will | 
 |   // not work in this case. We're using OpenThread because DuplicateHandle | 
 |   // for some reason doesn't work in Chrome's sandbox. | 
 |   PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT | | 
 |                                                THREAD_SUSPEND_RESUME | | 
 |                                                THREAD_QUERY_INFORMATION, | 
 |                                                false, | 
 |                                                GetCurrentThreadId())) {} | 
 |  | 
 |   ~PlatformData() { | 
 |     if (profiled_thread_ != NULL) { | 
 |       CloseHandle(profiled_thread_); | 
 |       profiled_thread_ = NULL; | 
 |     } | 
 |   } | 
 |  | 
 |   HANDLE profiled_thread() { return profiled_thread_; } | 
 |  | 
 |  private: | 
 |   HANDLE profiled_thread_; | 
 | }; | 
 |  | 
 |  | 
 | class SamplerThread : public Thread { | 
 |  public: | 
 |   static const int kSamplerThreadStackSize = 64 * KB; | 
 |  | 
 |   explicit SamplerThread(int interval) | 
 |       : Thread(Thread::Options("SamplerThread", kSamplerThreadStackSize)), | 
 |         interval_(interval) {} | 
 |  | 
 |   static void SetUp() { if (!mutex_) mutex_ = OS::CreateMutex(); } | 
 |   static void TearDown() { delete mutex_; } | 
 |  | 
 |   static void AddActiveSampler(Sampler* sampler) { | 
 |     ScopedLock lock(mutex_); | 
 |     SamplerRegistry::AddActiveSampler(sampler); | 
 |     if (instance_ == NULL) { | 
 |       instance_ = new SamplerThread(sampler->interval()); | 
 |       instance_->Start(); | 
 |     } else { | 
 |       ASSERT(instance_->interval_ == sampler->interval()); | 
 |     } | 
 |   } | 
 |  | 
 |   static void RemoveActiveSampler(Sampler* sampler) { | 
 |     ScopedLock lock(mutex_); | 
 |     SamplerRegistry::RemoveActiveSampler(sampler); | 
 |     if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) { | 
 |       RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_); | 
 |       delete instance_; | 
 |       instance_ = NULL; | 
 |     } | 
 |   } | 
 |  | 
 |   // Implement Thread::Run(). | 
 |   virtual void Run() { | 
 |     SamplerRegistry::State state; | 
 |     while ((state = SamplerRegistry::GetState()) != | 
 |            SamplerRegistry::HAS_NO_SAMPLERS) { | 
 |       bool cpu_profiling_enabled = | 
 |           (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS); | 
 |       bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled(); | 
 |       // When CPU profiling is enabled both JavaScript and C++ code is | 
 |       // profiled. We must not suspend. | 
 |       if (!cpu_profiling_enabled) { | 
 |         if (rate_limiter_.SuspendIfNecessary()) continue; | 
 |       } | 
 |       if (cpu_profiling_enabled) { | 
 |         if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) { | 
 |           return; | 
 |         } | 
 |       } | 
 |       if (runtime_profiler_enabled) { | 
 |         if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) { | 
 |           return; | 
 |         } | 
 |       } | 
 |       OS::Sleep(interval_); | 
 |     } | 
 |   } | 
 |  | 
 |   static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) { | 
 |     if (!sampler->isolate()->IsInitialized()) return; | 
 |     if (!sampler->IsProfiling()) return; | 
 |     SamplerThread* sampler_thread = | 
 |         reinterpret_cast<SamplerThread*>(raw_sampler_thread); | 
 |     sampler_thread->SampleContext(sampler); | 
 |   } | 
 |  | 
 |   static void DoRuntimeProfile(Sampler* sampler, void* ignored) { | 
 |     if (!sampler->isolate()->IsInitialized()) return; | 
 |     sampler->isolate()->runtime_profiler()->NotifyTick(); | 
 |   } | 
 |  | 
 |   void SampleContext(Sampler* sampler) { | 
 |     HANDLE profiled_thread = sampler->platform_data()->profiled_thread(); | 
 |     if (profiled_thread == NULL) return; | 
 |  | 
 |     // Context used for sampling the register state of the profiled thread. | 
 |     CONTEXT context; | 
 |     memset(&context, 0, sizeof(context)); | 
 |  | 
 |     TickSample sample_obj; | 
 |     TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate()); | 
 |     if (sample == NULL) sample = &sample_obj; | 
 |  | 
 |     static const DWORD kSuspendFailed = static_cast<DWORD>(-1); | 
 |     if (SuspendThread(profiled_thread) == kSuspendFailed) return; | 
 |     sample->state = sampler->isolate()->current_vm_state(); | 
 |  | 
 |     context.ContextFlags = CONTEXT_FULL; | 
 |     if (GetThreadContext(profiled_thread, &context) != 0) { | 
 | #if V8_HOST_ARCH_X64 | 
 |       sample->pc = reinterpret_cast<Address>(context.Rip); | 
 |       sample->sp = reinterpret_cast<Address>(context.Rsp); | 
 |       sample->fp = reinterpret_cast<Address>(context.Rbp); | 
 | #else | 
 |       sample->pc = reinterpret_cast<Address>(context.Eip); | 
 |       sample->sp = reinterpret_cast<Address>(context.Esp); | 
 |       sample->fp = reinterpret_cast<Address>(context.Ebp); | 
 | #endif | 
 |       sampler->SampleStack(sample); | 
 |       sampler->Tick(sample); | 
 |     } | 
 |     ResumeThread(profiled_thread); | 
 |   } | 
 |  | 
 |   const int interval_; | 
 |   RuntimeProfilerRateLimiter rate_limiter_; | 
 |  | 
 |   // Protects the process wide state below. | 
 |   static Mutex* mutex_; | 
 |   static SamplerThread* instance_; | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(SamplerThread); | 
 | }; | 
 |  | 
 |  | 
 | Mutex* SamplerThread::mutex_ = NULL; | 
 | SamplerThread* SamplerThread::instance_ = NULL; | 
 |  | 
 |  | 
 | void OS::SetUp() { | 
 |   // Seed the random number generator. | 
 |   // Convert the current time to a 64-bit integer first, before converting it | 
 |   // to an unsigned. Going directly can cause an overflow and the seed to be | 
 |   // set to all ones. The seed will be identical for different instances that | 
 |   // call this setup code within the same millisecond. | 
 |   uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); | 
 |   srand(static_cast<unsigned int>(seed)); | 
 |   limit_mutex = CreateMutex(); | 
 |   SamplerThread::SetUp(); | 
 | } | 
 |  | 
 |  | 
 | void OS::TearDown() { | 
 |   SamplerThread::TearDown(); | 
 |   delete limit_mutex; | 
 | } | 
 |  | 
 |  | 
 | Sampler::Sampler(Isolate* isolate, int interval) | 
 |     : isolate_(isolate), | 
 |       interval_(interval), | 
 |       profiling_(false), | 
 |       active_(false), | 
 |       samples_taken_(0) { | 
 |   data_ = new PlatformData; | 
 | } | 
 |  | 
 |  | 
 | Sampler::~Sampler() { | 
 |   ASSERT(!IsActive()); | 
 |   delete data_; | 
 | } | 
 |  | 
 |  | 
 | void Sampler::Start() { | 
 |   ASSERT(!IsActive()); | 
 |   SetActive(true); | 
 |   SamplerThread::AddActiveSampler(this); | 
 | } | 
 |  | 
 |  | 
 | void Sampler::Stop() { | 
 |   ASSERT(IsActive()); | 
 |   SamplerThread::RemoveActiveSampler(this); | 
 |   SetActive(false); | 
 | } | 
 |  | 
 |  | 
 | } }  // namespace v8::internal |