blob: ef5de6b1f94a1255a114d172b6ad3dfdd526d4be [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "hydrogen.h"
#include "codegen.h"
#include "full-codegen.h"
#include "hashmap.h"
#include "lithium-allocator.h"
#include "parser.h"
#include "scopeinfo.h"
#include "scopes.h"
#include "stub-cache.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/lithium-codegen-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/lithium-codegen-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/lithium-codegen-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/lithium-codegen-mips.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
HBasicBlock::HBasicBlock(HGraph* graph)
: block_id_(graph->GetNextBlockID()),
graph_(graph),
phis_(4, graph->zone()),
first_(NULL),
last_(NULL),
end_(NULL),
loop_information_(NULL),
predecessors_(2, graph->zone()),
dominator_(NULL),
dominated_blocks_(4, graph->zone()),
last_environment_(NULL),
argument_count_(-1),
first_instruction_index_(-1),
last_instruction_index_(-1),
deleted_phis_(4, graph->zone()),
parent_loop_header_(NULL),
is_inline_return_target_(false),
is_deoptimizing_(false),
dominates_loop_successors_(false),
is_osr_entry_(false) { }
void HBasicBlock::AttachLoopInformation() {
ASSERT(!IsLoopHeader());
loop_information_ = new(zone()) HLoopInformation(this, zone());
}
void HBasicBlock::DetachLoopInformation() {
ASSERT(IsLoopHeader());
loop_information_ = NULL;
}
void HBasicBlock::AddPhi(HPhi* phi) {
ASSERT(!IsStartBlock());
phis_.Add(phi, zone());
phi->SetBlock(this);
}
void HBasicBlock::RemovePhi(HPhi* phi) {
ASSERT(phi->block() == this);
ASSERT(phis_.Contains(phi));
ASSERT(phi->HasNoUses() || !phi->is_live());
phi->Kill();
phis_.RemoveElement(phi);
phi->SetBlock(NULL);
}
void HBasicBlock::AddInstruction(HInstruction* instr) {
ASSERT(!IsStartBlock() || !IsFinished());
ASSERT(!instr->IsLinked());
ASSERT(!IsFinished());
if (first_ == NULL) {
HBlockEntry* entry = new(zone()) HBlockEntry();
entry->InitializeAsFirst(this);
first_ = last_ = entry;
}
instr->InsertAfter(last_);
}
HDeoptimize* HBasicBlock::CreateDeoptimize(
HDeoptimize::UseEnvironment has_uses) {
ASSERT(HasEnvironment());
if (has_uses == HDeoptimize::kNoUses)
return new(zone()) HDeoptimize(0, zone());
HEnvironment* environment = last_environment();
HDeoptimize* instr = new(zone()) HDeoptimize(environment->length(), zone());
for (int i = 0; i < environment->length(); i++) {
HValue* val = environment->values()->at(i);
instr->AddEnvironmentValue(val, zone());
}
return instr;
}
HSimulate* HBasicBlock::CreateSimulate(BailoutId ast_id,
RemovableSimulate removable) {
ASSERT(HasEnvironment());
HEnvironment* environment = last_environment();
ASSERT(ast_id.IsNone() ||
ast_id == BailoutId::StubEntry() ||
environment->closure()->shared()->VerifyBailoutId(ast_id));
int push_count = environment->push_count();
int pop_count = environment->pop_count();
HSimulate* instr =
new(zone()) HSimulate(ast_id, pop_count, zone(), removable);
// Order of pushed values: newest (top of stack) first. This allows
// HSimulate::MergeInto() to easily append additional pushed values
// that are older (from further down the stack).
for (int i = 0; i < push_count; ++i) {
instr->AddPushedValue(environment->ExpressionStackAt(i));
}
for (GrowableBitVector::Iterator it(environment->assigned_variables(),
zone());
!it.Done();
it.Advance()) {
int index = it.Current();
instr->AddAssignedValue(index, environment->Lookup(index));
}
environment->ClearHistory();
return instr;
}
void HBasicBlock::Finish(HControlInstruction* end) {
ASSERT(!IsFinished());
AddInstruction(end);
end_ = end;
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
it.Current()->RegisterPredecessor(this);
}
}
void HBasicBlock::Goto(HBasicBlock* block, FunctionState* state) {
bool drop_extra = state != NULL &&
state->inlining_kind() == DROP_EXTRA_ON_RETURN;
if (block->IsInlineReturnTarget()) {
AddInstruction(new(zone()) HLeaveInlined());
last_environment_ = last_environment()->DiscardInlined(drop_extra);
}
AddSimulate(BailoutId::None());
HGoto* instr = new(zone()) HGoto(block);
Finish(instr);
}
void HBasicBlock::AddLeaveInlined(HValue* return_value,
FunctionState* state) {
HBasicBlock* target = state->function_return();
bool drop_extra = state->inlining_kind() == DROP_EXTRA_ON_RETURN;
ASSERT(target->IsInlineReturnTarget());
ASSERT(return_value != NULL);
AddInstruction(new(zone()) HLeaveInlined());
last_environment_ = last_environment()->DiscardInlined(drop_extra);
last_environment()->Push(return_value);
AddSimulate(BailoutId::None());
HGoto* instr = new(zone()) HGoto(target);
Finish(instr);
}
void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
ASSERT(!HasEnvironment());
ASSERT(first() == NULL);
UpdateEnvironment(env);
}
void HBasicBlock::SetJoinId(BailoutId ast_id) {
int length = predecessors_.length();
ASSERT(length > 0);
for (int i = 0; i < length; i++) {
HBasicBlock* predecessor = predecessors_[i];
ASSERT(predecessor->end()->IsGoto());
HSimulate* simulate = HSimulate::cast(predecessor->end()->previous());
// We only need to verify the ID once.
ASSERT(i != 0 ||
(predecessor->last_environment()->closure().is_null() ||
predecessor->last_environment()->closure()->shared()
->VerifyBailoutId(ast_id)));
simulate->set_ast_id(ast_id);
}
}
bool HBasicBlock::Dominates(HBasicBlock* other) const {
HBasicBlock* current = other->dominator();
while (current != NULL) {
if (current == this) return true;
current = current->dominator();
}
return false;
}
int HBasicBlock::LoopNestingDepth() const {
const HBasicBlock* current = this;
int result = (current->IsLoopHeader()) ? 1 : 0;
while (current->parent_loop_header() != NULL) {
current = current->parent_loop_header();
result++;
}
return result;
}
void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
ASSERT(IsLoopHeader());
SetJoinId(stmt->EntryId());
if (predecessors()->length() == 1) {
// This is a degenerated loop.
DetachLoopInformation();
return;
}
// Only the first entry into the loop is from outside the loop. All other
// entries must be back edges.
for (int i = 1; i < predecessors()->length(); ++i) {
loop_information()->RegisterBackEdge(predecessors()->at(i));
}
}
void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
if (HasPredecessor()) {
// Only loop header blocks can have a predecessor added after
// instructions have been added to the block (they have phis for all
// values in the environment, these phis may be eliminated later).
ASSERT(IsLoopHeader() || first_ == NULL);
HEnvironment* incoming_env = pred->last_environment();
if (IsLoopHeader()) {
ASSERT(phis()->length() == incoming_env->length());
for (int i = 0; i < phis_.length(); ++i) {
phis_[i]->AddInput(incoming_env->values()->at(i));
}
} else {
last_environment()->AddIncomingEdge(this, pred->last_environment());
}
} else if (!HasEnvironment() && !IsFinished()) {
ASSERT(!IsLoopHeader());
SetInitialEnvironment(pred->last_environment()->Copy());
}
predecessors_.Add(pred, zone());
}
void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
ASSERT(!dominated_blocks_.Contains(block));
// Keep the list of dominated blocks sorted such that if there is two
// succeeding block in this list, the predecessor is before the successor.
int index = 0;
while (index < dominated_blocks_.length() &&
dominated_blocks_[index]->block_id() < block->block_id()) {
++index;
}
dominated_blocks_.InsertAt(index, block, zone());
}
void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
if (dominator_ == NULL) {
dominator_ = other;
other->AddDominatedBlock(this);
} else if (other->dominator() != NULL) {
HBasicBlock* first = dominator_;
HBasicBlock* second = other;
while (first != second) {
if (first->block_id() > second->block_id()) {
first = first->dominator();
} else {
second = second->dominator();
}
ASSERT(first != NULL && second != NULL);
}
if (dominator_ != first) {
ASSERT(dominator_->dominated_blocks_.Contains(this));
dominator_->dominated_blocks_.RemoveElement(this);
dominator_ = first;
first->AddDominatedBlock(this);
}
}
}
void HBasicBlock::AssignLoopSuccessorDominators() {
// Mark blocks that dominate all subsequent reachable blocks inside their
// loop. Exploit the fact that blocks are sorted in reverse post order. When
// the loop is visited in increasing block id order, if the number of
// non-loop-exiting successor edges at the dominator_candidate block doesn't
// exceed the number of previously encountered predecessor edges, there is no
// path from the loop header to any block with higher id that doesn't go
// through the dominator_candidate block. In this case, the
// dominator_candidate block is guaranteed to dominate all blocks reachable
// from it with higher ids.
HBasicBlock* last = loop_information()->GetLastBackEdge();
int outstanding_successors = 1; // one edge from the pre-header
// Header always dominates everything.
MarkAsLoopSuccessorDominator();
for (int j = block_id(); j <= last->block_id(); ++j) {
HBasicBlock* dominator_candidate = graph_->blocks()->at(j);
for (HPredecessorIterator it(dominator_candidate); !it.Done();
it.Advance()) {
HBasicBlock* predecessor = it.Current();
// Don't count back edges.
if (predecessor->block_id() < dominator_candidate->block_id()) {
outstanding_successors--;
}
}
// If more successors than predecessors have been seen in the loop up to
// now, it's not possible to guarantee that the current block dominates
// all of the blocks with higher IDs. In this case, assume conservatively
// that those paths through loop that don't go through the current block
// contain all of the loop's dependencies. Also be careful to record
// dominator information about the current loop that's being processed,
// and not nested loops, which will be processed when
// AssignLoopSuccessorDominators gets called on their header.
ASSERT(outstanding_successors >= 0);
HBasicBlock* parent_loop_header = dominator_candidate->parent_loop_header();
if (outstanding_successors == 0 &&
(parent_loop_header == this && !dominator_candidate->IsLoopHeader())) {
dominator_candidate->MarkAsLoopSuccessorDominator();
}
HControlInstruction* end = dominator_candidate->end();
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
HBasicBlock* successor = it.Current();
// Only count successors that remain inside the loop and don't loop back
// to a loop header.
if (successor->block_id() > dominator_candidate->block_id() &&
successor->block_id() <= last->block_id()) {
// Backwards edges must land on loop headers.
ASSERT(successor->block_id() > dominator_candidate->block_id() ||
successor->IsLoopHeader());
outstanding_successors++;
}
}
}
}
int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
for (int i = 0; i < predecessors_.length(); ++i) {
if (predecessors_[i] == predecessor) return i;
}
UNREACHABLE();
return -1;
}
#ifdef DEBUG
void HBasicBlock::Verify() {
// Check that every block is finished.
ASSERT(IsFinished());
ASSERT(block_id() >= 0);
// Check that the incoming edges are in edge split form.
if (predecessors_.length() > 1) {
for (int i = 0; i < predecessors_.length(); ++i) {
ASSERT(predecessors_[i]->end()->SecondSuccessor() == NULL);
}
}
}
#endif
void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
this->back_edges_.Add(block, block->zone());
AddBlock(block);
}
HBasicBlock* HLoopInformation::GetLastBackEdge() const {
int max_id = -1;
HBasicBlock* result = NULL;
for (int i = 0; i < back_edges_.length(); ++i) {
HBasicBlock* cur = back_edges_[i];
if (cur->block_id() > max_id) {
max_id = cur->block_id();
result = cur;
}
}
return result;
}
void HLoopInformation::AddBlock(HBasicBlock* block) {
if (block == loop_header()) return;
if (block->parent_loop_header() == loop_header()) return;
if (block->parent_loop_header() != NULL) {
AddBlock(block->parent_loop_header());
} else {
block->set_parent_loop_header(loop_header());
blocks_.Add(block, block->zone());
for (int i = 0; i < block->predecessors()->length(); ++i) {
AddBlock(block->predecessors()->at(i));
}
}
}
#ifdef DEBUG
// Checks reachability of the blocks in this graph and stores a bit in
// the BitVector "reachable()" for every block that can be reached
// from the start block of the graph. If "dont_visit" is non-null, the given
// block is treated as if it would not be part of the graph. "visited_count()"
// returns the number of reachable blocks.
class ReachabilityAnalyzer BASE_EMBEDDED {
public:
ReachabilityAnalyzer(HBasicBlock* entry_block,
int block_count,
HBasicBlock* dont_visit)
: visited_count_(0),
stack_(16, entry_block->zone()),
reachable_(block_count, entry_block->zone()),
dont_visit_(dont_visit) {
PushBlock(entry_block);
Analyze();
}
int visited_count() const { return visited_count_; }
const BitVector* reachable() const { return &reachable_; }
private:
void PushBlock(HBasicBlock* block) {
if (block != NULL && block != dont_visit_ &&
!reachable_.Contains(block->block_id())) {
reachable_.Add(block->block_id());
stack_.Add(block, block->zone());
visited_count_++;
}
}
void Analyze() {
while (!stack_.is_empty()) {
HControlInstruction* end = stack_.RemoveLast()->end();
for (HSuccessorIterator it(end); !it.Done(); it.Advance()) {
PushBlock(it.Current());
}
}
}
int visited_count_;
ZoneList<HBasicBlock*> stack_;
BitVector reachable_;
HBasicBlock* dont_visit_;
};
void HGraph::Verify(bool do_full_verify) const {
// Allow dereferencing for debug mode verification.
AllowHandleDereference allow_handle_deref(isolate());
for (int i = 0; i < blocks_.length(); i++) {
HBasicBlock* block = blocks_.at(i);
block->Verify();
// Check that every block contains at least one node and that only the last
// node is a control instruction.
HInstruction* current = block->first();
ASSERT(current != NULL && current->IsBlockEntry());
while (current != NULL) {
ASSERT((current->next() == NULL) == current->IsControlInstruction());
ASSERT(current->block() == block);
current->Verify();
current = current->next();
}
// Check that successors are correctly set.
HBasicBlock* first = block->end()->FirstSuccessor();
HBasicBlock* second = block->end()->SecondSuccessor();
ASSERT(second == NULL || first != NULL);
// Check that the predecessor array is correct.
if (first != NULL) {
ASSERT(first->predecessors()->Contains(block));
if (second != NULL) {
ASSERT(second->predecessors()->Contains(block));
}
}
// Check that phis have correct arguments.
for (int j = 0; j < block->phis()->length(); j++) {
HPhi* phi = block->phis()->at(j);
phi->Verify();
}
// Check that all join blocks have predecessors that end with an
// unconditional goto and agree on their environment node id.
if (block->predecessors()->length() >= 2) {
BailoutId id =
block->predecessors()->first()->last_environment()->ast_id();
for (int k = 0; k < block->predecessors()->length(); k++) {
HBasicBlock* predecessor = block->predecessors()->at(k);
ASSERT(predecessor->end()->IsGoto());
ASSERT(predecessor->last_environment()->ast_id() == id);
}
}
}
// Check special property of first block to have no predecessors.
ASSERT(blocks_.at(0)->predecessors()->is_empty());
if (do_full_verify) {
// Check that the graph is fully connected.
ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
ASSERT(analyzer.visited_count() == blocks_.length());
// Check that entry block dominator is NULL.
ASSERT(entry_block_->dominator() == NULL);
// Check dominators.
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_.at(i);
if (block->dominator() == NULL) {
// Only start block may have no dominator assigned to.
ASSERT(i == 0);
} else {
// Assert that block is unreachable if dominator must not be visited.
ReachabilityAnalyzer dominator_analyzer(entry_block_,
blocks_.length(),
block->dominator());
ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
}
}
}
}
#endif
HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
Handle<Object> value) {
if (!pointer->is_set()) {
HConstant* constant = new(zone()) HConstant(value,
Representation::Tagged());
constant->InsertAfter(GetConstantUndefined());
pointer->set(constant);
}
return pointer->get();
}
HConstant* HGraph::GetConstantInt32(SetOncePointer<HConstant>* pointer,
int32_t value) {
if (!pointer->is_set()) {
HConstant* constant =
new(zone()) HConstant(value, Representation::Integer32());
constant->InsertAfter(GetConstantUndefined());
pointer->set(constant);
}
return pointer->get();
}
HConstant* HGraph::GetConstant0() {
return GetConstantInt32(&constant_0_, 0);
}
HConstant* HGraph::GetConstant1() {
return GetConstantInt32(&constant_1_, 1);
}
HConstant* HGraph::GetConstantMinus1() {
return GetConstantInt32(&constant_minus1_, -1);
}
HConstant* HGraph::GetConstantTrue() {
return GetConstant(&constant_true_, isolate()->factory()->true_value());
}
HConstant* HGraph::GetConstantFalse() {
return GetConstant(&constant_false_, isolate()->factory()->false_value());
}
HConstant* HGraph::GetConstantHole() {
return GetConstant(&constant_hole_, isolate()->factory()->the_hole_value());
}
HGraphBuilder::CheckBuilder::CheckBuilder(HGraphBuilder* builder, BailoutId id)
: builder_(builder),
finished_(false),
id_(id) {
HEnvironment* env = builder->environment();
failure_block_ = builder->CreateBasicBlock(env->Copy());
merge_block_ = builder->CreateBasicBlock(env->Copy());
}
void HGraphBuilder::CheckBuilder::CheckNotUndefined(HValue* value) {
HEnvironment* env = builder_->environment();
HIsNilAndBranch* compare =
new(zone()) HIsNilAndBranch(value, kStrictEquality, kUndefinedValue);
HBasicBlock* success_block = builder_->CreateBasicBlock(env->Copy());
HBasicBlock* failure_block = builder_->CreateBasicBlock(env->Copy());
compare->SetSuccessorAt(0, failure_block);
compare->SetSuccessorAt(1, success_block);
failure_block->Goto(failure_block_);
builder_->current_block()->Finish(compare);
builder_->set_current_block(success_block);
}
void HGraphBuilder::CheckBuilder::CheckIntegerEq(HValue* left, HValue* right) {
HEnvironment* env = builder_->environment();
HCompareIDAndBranch* compare =
new(zone()) HCompareIDAndBranch(left, right, Token::EQ);
compare->AssumeRepresentation(Representation::Integer32());
HBasicBlock* success_block = builder_->CreateBasicBlock(env->Copy());
HBasicBlock* failure_block = builder_->CreateBasicBlock(env->Copy());
compare->SetSuccessorAt(0, success_block);
compare->SetSuccessorAt(1, failure_block);
failure_block->Goto(failure_block_);
builder_->current_block()->Finish(compare);
builder_->set_current_block(success_block);
}
void HGraphBuilder::CheckBuilder::End() {
ASSERT(!finished_);
builder_->current_block()->Goto(merge_block_);
failure_block_->FinishExitWithDeoptimization(HDeoptimize::kUseAll);
failure_block_->SetJoinId(id_);
builder_->set_current_block(merge_block_);
merge_block_->SetJoinId(id_);
finished_ = true;
}
HGraphBuilder::IfBuilder::IfBuilder(HGraphBuilder* builder, BailoutId id)
: builder_(builder),
finished_(false),
id_(id) {
HEnvironment* env = builder->environment();
first_true_block_ = builder->CreateBasicBlock(env->Copy());
last_true_block_ = NULL;
first_false_block_ = builder->CreateBasicBlock(env->Copy());
}
HInstruction* HGraphBuilder::IfBuilder::BeginTrue(
HValue* left,
HValue* right,
Token::Value token,
Representation input_representation) {
HCompareIDAndBranch* compare =
new(zone()) HCompareIDAndBranch(left, right, token);
compare->set_observed_input_representation(input_representation,
input_representation);
compare->ChangeRepresentation(input_representation);
compare->SetSuccessorAt(0, first_true_block_);
compare->SetSuccessorAt(1, first_false_block_);
builder_->current_block()->Finish(compare);
builder_->set_current_block(first_true_block_);
return compare;
}
void HGraphBuilder::IfBuilder::BeginFalse() {
last_true_block_ = builder_->current_block();
ASSERT(!last_true_block_->IsFinished());
builder_->set_current_block(first_false_block_);
}
void HGraphBuilder::IfBuilder::End() {
ASSERT(!finished_);
ASSERT(!last_true_block_->IsFinished());
HBasicBlock* last_false_block = builder_->current_block();
ASSERT(!last_false_block->IsFinished());
HEnvironment* merge_env =
last_true_block_->last_environment()->Copy();
merge_block_ = builder_->CreateBasicBlock(merge_env);
last_true_block_->Goto(merge_block_);
last_false_block->Goto(merge_block_);
merge_block_->SetJoinId(id_);
builder_->set_current_block(merge_block_);
finished_ = true;
}
HGraphBuilder::LoopBuilder::LoopBuilder(HGraphBuilder* builder,
HValue* context,
LoopBuilder::Direction direction,
BailoutId id)
: builder_(builder),
context_(context),
direction_(direction),
id_(id),
finished_(false) {
header_block_ = builder->CreateLoopHeaderBlock();
body_block_ = NULL;
exit_block_ = NULL;
}
HValue* HGraphBuilder::LoopBuilder::BeginBody(
HValue* initial,
HValue* terminating,
Token::Value token,
Representation input_representation) {
HEnvironment* env = builder_->environment();
phi_ = new(zone()) HPhi(env->values()->length(), zone());
header_block_->AddPhi(phi_);
phi_->AddInput(initial);
phi_->ChangeRepresentation(Representation::Integer32());
env->Push(initial);
builder_->current_block()->Goto(header_block_);
HEnvironment* body_env = env->Copy();
HEnvironment* exit_env = env->Copy();
body_block_ = builder_->CreateBasicBlock(body_env);
exit_block_ = builder_->CreateBasicBlock(exit_env);
// Remove the phi from the expression stack
body_env->Pop();
builder_->set_current_block(header_block_);
HCompareIDAndBranch* compare =
new(zone()) HCompareIDAndBranch(phi_, terminating, token);
compare->set_observed_input_representation(input_representation,
input_representation);
compare->ChangeRepresentation(input_representation);
compare->SetSuccessorAt(0, body_block_);
compare->SetSuccessorAt(1, exit_block_);
builder_->current_block()->Finish(compare);
builder_->set_current_block(body_block_);
if (direction_ == kPreIncrement || direction_ == kPreDecrement) {
HValue* one = builder_->graph()->GetConstant1();
if (direction_ == kPreIncrement) {
increment_ = HAdd::New(zone(), context_, phi_, one);
} else {
increment_ = HSub::New(zone(), context_, phi_, one);
}
increment_->ClearFlag(HValue::kCanOverflow);
increment_->ChangeRepresentation(Representation::Integer32());
builder_->AddInstruction(increment_);
return increment_;
} else {
return phi_;
}
}
void HGraphBuilder::LoopBuilder::EndBody() {
ASSERT(!finished_);
if (direction_ == kPostIncrement || direction_ == kPostDecrement) {
HValue* one = builder_->graph()->GetConstant1();
if (direction_ == kPostIncrement) {
increment_ = HAdd::New(zone(), context_, phi_, one);
} else {
increment_ = HSub::New(zone(), context_, phi_, one);
}
increment_->ClearFlag(HValue::kCanOverflow);
increment_->ChangeRepresentation(Representation::Integer32());
builder_->AddInstruction(increment_);
}
// Push the new increment value on the expression stack to merge into the phi.
builder_->environment()->Push(increment_);
builder_->current_block()->Goto(header_block_);
header_block_->loop_information()->RegisterBackEdge(body_block_);
header_block_->SetJoinId(id_);
builder_->set_current_block(exit_block_);
// Pop the phi from the expression stack
builder_->environment()->Pop();
finished_ = true;
}
HGraph* HGraphBuilder::CreateGraph() {
graph_ = new(zone()) HGraph(info_);
if (FLAG_hydrogen_stats) HStatistics::Instance()->Initialize(info_);
HPhase phase("H_Block building");
set_current_block(graph()->entry_block());
if (!BuildGraph()) return NULL;
return graph_;
}
HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
ASSERT(current_block() != NULL);
current_block()->AddInstruction(instr);
return instr;
}
void HGraphBuilder::AddSimulate(BailoutId id,
RemovableSimulate removable) {
ASSERT(current_block() != NULL);
current_block()->AddSimulate(id, removable);
}
HBoundsCheck* HGraphBuilder::AddBoundsCheck(HValue* index,
HValue* length,
BoundsCheckKeyMode key_mode,
Representation r) {
if (!index->type().IsSmi()) {
index = new(graph()->zone()) HCheckSmiOrInt32(index);
AddInstruction(HCheckSmiOrInt32::cast(index));
}
if (!length->type().IsSmi()) {
length = new(graph()->zone()) HCheckSmiOrInt32(length);
AddInstruction(HCheckSmiOrInt32::cast(length));
}
HBoundsCheck* result = new(graph()->zone()) HBoundsCheck(
index, length, key_mode, r);
AddInstruction(result);
return result;
}
HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
HBasicBlock* b = graph()->CreateBasicBlock();
b->SetInitialEnvironment(env);
return b;
}
HBasicBlock* HGraphBuilder::CreateLoopHeaderBlock() {
HBasicBlock* header = graph()->CreateBasicBlock();
HEnvironment* entry_env = environment()->CopyAsLoopHeader(header);
header->SetInitialEnvironment(entry_env);
header->AttachLoopInformation();
return header;
}
HInstruction* HGraphBuilder::BuildExternalArrayElementAccess(
HValue* external_elements,
HValue* checked_key,
HValue* val,
HValue* dependency,
ElementsKind elements_kind,
bool is_store) {
Zone* zone = this->zone();
if (is_store) {
ASSERT(val != NULL);
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS: {
val = AddInstruction(new(zone) HClampToUint8(val));
break;
}
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS: {
break;
}
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
break;
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
return new(zone) HStoreKeyed(external_elements, checked_key,
val, elements_kind);
} else {
ASSERT(val == NULL);
HLoadKeyed* load =
new(zone) HLoadKeyed(
external_elements, checked_key, dependency, elements_kind);
if (FLAG_opt_safe_uint32_operations &&
elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
graph()->RecordUint32Instruction(load);
}
return load;
}
}
HInstruction* HGraphBuilder::BuildFastElementAccess(
HValue* elements,
HValue* checked_key,
HValue* val,
HValue* load_dependency,
ElementsKind elements_kind,
bool is_store) {
Zone* zone = this->zone();
if (is_store) {
ASSERT(val != NULL);
switch (elements_kind) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
// Smi-only arrays need a smi check.
AddInstruction(new(zone) HCheckSmi(val));
// Fall through.
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
return new(zone) HStoreKeyed(elements, checked_key, val, elements_kind);
default:
UNREACHABLE();
return NULL;
}
}
// It's an element load (!is_store).
return new(zone) HLoadKeyed(elements,
checked_key,
load_dependency,
elements_kind);
}
HInstruction* HGraphBuilder::BuildUncheckedMonomorphicElementAccess(
HValue* object,
HValue* key,
HValue* val,
HCheckMaps* mapcheck,
bool is_js_array,
ElementsKind elements_kind,
bool is_store,
Representation checked_index_representation) {
Zone* zone = this->zone();
// No GVNFlag is necessary for ElementsKind if there is an explicit dependency
// on a HElementsTransition instruction. The flag can also be removed if the
// map to check has FAST_HOLEY_ELEMENTS, since there can be no further
// ElementsKind transitions. Finally, the dependency can be removed for stores
// for FAST_ELEMENTS, since a transition to HOLEY elements won't change the
// generated store code.
if ((elements_kind == FAST_HOLEY_ELEMENTS) ||
(elements_kind == FAST_ELEMENTS && is_store)) {
if (mapcheck != NULL) {
mapcheck->ClearGVNFlag(kDependsOnElementsKind);
}
}
bool fast_smi_only_elements = IsFastSmiElementsKind(elements_kind);
bool fast_elements = IsFastObjectElementsKind(elements_kind);
HInstruction* elements =
AddInstruction(new(zone) HLoadElements(object, mapcheck));
if (is_store && (fast_elements || fast_smi_only_elements)) {
HCheckMaps* check_cow_map = new(zone) HCheckMaps(
elements, graph()->isolate()->factory()->fixed_array_map(), zone);
check_cow_map->ClearGVNFlag(kDependsOnElementsKind);
AddInstruction(check_cow_map);
}
HInstruction* length = NULL;
HInstruction* checked_key = NULL;
if (IsExternalArrayElementsKind(elements_kind)) {
length = AddInstruction(new(zone) HFixedArrayBaseLength(elements));
checked_key = AddBoundsCheck(
key, length, ALLOW_SMI_KEY, checked_index_representation);
HLoadExternalArrayPointer* external_elements =
new(zone) HLoadExternalArrayPointer(elements);
AddInstruction(external_elements);
return BuildExternalArrayElementAccess(
external_elements, checked_key, val, mapcheck,
elements_kind, is_store);
}
ASSERT(fast_smi_only_elements ||
fast_elements ||
IsFastDoubleElementsKind(elements_kind));
if (is_js_array) {
length = AddInstruction(new(zone) HJSArrayLength(object, mapcheck,
HType::Smi()));
} else {
length = AddInstruction(new(zone) HFixedArrayBaseLength(elements));
}
checked_key = AddBoundsCheck(
key, length, ALLOW_SMI_KEY, checked_index_representation);
return BuildFastElementAccess(elements, checked_key, val, mapcheck,
elements_kind, is_store);
}
HValue* HGraphBuilder::BuildAllocateElements(HContext* context,
ElementsKind kind,
HValue* capacity) {
Zone* zone = this->zone();
int elements_size = IsFastDoubleElementsKind(kind)
? kDoubleSize : kPointerSize;
HConstant* elements_size_value =
new(zone) HConstant(elements_size, Representation::Integer32());
AddInstruction(elements_size_value);
HValue* mul = AddInstruction(
HMul::New(zone, context, capacity, elements_size_value));
mul->ChangeRepresentation(Representation::Integer32());
mul->ClearFlag(HValue::kCanOverflow);
HConstant* header_size =
new(zone) HConstant(FixedArray::kHeaderSize, Representation::Integer32());
AddInstruction(header_size);
HValue* total_size = AddInstruction(
HAdd::New(zone, context, mul, header_size));
total_size->ChangeRepresentation(Representation::Integer32());
total_size->ClearFlag(HValue::kCanOverflow);
HAllocate::Flags flags = HAllocate::CAN_ALLOCATE_IN_NEW_SPACE;
if (IsFastDoubleElementsKind(kind)) {
flags = static_cast<HAllocate::Flags>(
flags | HAllocate::ALLOCATE_DOUBLE_ALIGNED);
}
HValue* elements =
AddInstruction(new(zone) HAllocate(context, total_size,
HType::JSArray(), flags));
Isolate* isolate = graph()->isolate();
Factory* factory = isolate->factory();
Handle<Map> map = IsFastDoubleElementsKind(kind)
? factory->fixed_double_array_map()
: factory->fixed_array_map();
BuildStoreMap(elements, map, BailoutId::StubEntry());
Handle<String> fixed_array_length_field_name =
isolate->factory()->length_field_symbol();
HInstruction* store_length =
new(zone) HStoreNamedField(elements, fixed_array_length_field_name,
capacity, true, FixedArray::kLengthOffset);
AddInstruction(store_length);
AddSimulate(BailoutId::StubEntry(), FIXED_SIMULATE);
return elements;
}
HInstruction* HGraphBuilder::BuildStoreMap(HValue* object,
HValue* map,
BailoutId id) {
Zone* zone = this->zone();
Isolate* isolate = graph()->isolate();
Factory* factory = isolate->factory();
Handle<String> map_field_name = factory->map_field_symbol();
HInstruction* store_map =
new(zone) HStoreNamedField(object, map_field_name, map,
true, JSObject::kMapOffset);
store_map->SetGVNFlag(kChangesMaps);
AddInstruction(store_map);
AddSimulate(id, FIXED_SIMULATE);
return store_map;
}
HInstruction* HGraphBuilder::BuildStoreMap(HValue* object,
Handle<Map> map,
BailoutId id) {
Zone* zone = this->zone();
HValue* map_constant =
AddInstruction(new(zone) HConstant(map, Representation::Tagged()));
return BuildStoreMap(object, map_constant, id);
}
void HGraphBuilder::BuildCopyElements(HContext* context,
HValue* from_elements,
ElementsKind from_elements_kind,
HValue* to_elements,
ElementsKind to_elements_kind,
HValue* length) {
LoopBuilder builder(this, context, LoopBuilder::kPostIncrement,
BailoutId::StubEntry());
HValue* key = builder.BeginBody(graph()->GetConstant0(),
length, Token::LT);
HValue* element =
AddInstruction(new(zone()) HLoadKeyed(from_elements, key, NULL,
from_elements_kind,
ALLOW_RETURN_HOLE));
AddInstruction(new(zone()) HStoreKeyed(to_elements, key, element,
to_elements_kind));
AddSimulate(BailoutId::StubEntry(), REMOVABLE_SIMULATE);
builder.EndBody();
}
HOptimizedGraphBuilder::HOptimizedGraphBuilder(CompilationInfo* info,
TypeFeedbackOracle* oracle)
: HGraphBuilder(info),
function_state_(NULL),
initial_function_state_(this, info, oracle, NORMAL_RETURN),
ast_context_(NULL),
break_scope_(NULL),
inlined_count_(0),
globals_(10, info->zone()),
inline_bailout_(false) {
// This is not initialized in the initializer list because the
// constructor for the initial state relies on function_state_ == NULL
// to know it's the initial state.
function_state_= &initial_function_state_;
InitializeAstVisitor();
}
HBasicBlock* HOptimizedGraphBuilder::CreateJoin(HBasicBlock* first,
HBasicBlock* second,
BailoutId join_id) {
if (first == NULL) {
return second;
} else if (second == NULL) {
return first;
} else {
HBasicBlock* join_block = graph()->CreateBasicBlock();
first->Goto(join_block);
second->Goto(join_block);
join_block->SetJoinId(join_id);
return join_block;
}
}
HBasicBlock* HOptimizedGraphBuilder::JoinContinue(IterationStatement* statement,
HBasicBlock* exit_block,
HBasicBlock* continue_block) {
if (continue_block != NULL) {
if (exit_block != NULL) exit_block->Goto(continue_block);
continue_block->SetJoinId(statement->ContinueId());
return continue_block;
}
return exit_block;
}
HBasicBlock* HOptimizedGraphBuilder::CreateLoop(IterationStatement* statement,
HBasicBlock* loop_entry,
HBasicBlock* body_exit,
HBasicBlock* loop_successor,
HBasicBlock* break_block) {
if (body_exit != NULL) body_exit->Goto(loop_entry);
loop_entry->PostProcessLoopHeader(statement);
if (break_block != NULL) {
if (loop_successor != NULL) loop_successor->Goto(break_block);
break_block->SetJoinId(statement->ExitId());
return break_block;
}
return loop_successor;
}
void HBasicBlock::FinishExit(HControlInstruction* instruction) {
Finish(instruction);
ClearEnvironment();
}
HGraph::HGraph(CompilationInfo* info)
: isolate_(info->isolate()),
next_block_id_(0),
entry_block_(NULL),
blocks_(8, info->zone()),
values_(16, info->zone()),
phi_list_(NULL),
uint32_instructions_(NULL),
info_(info),
zone_(info->zone()),
is_recursive_(false),
use_optimistic_licm_(false),
has_soft_deoptimize_(false),
type_change_checksum_(0) {
if (info->IsStub()) {
HydrogenCodeStub* stub = info->code_stub();
int param_count =
stub->GetInterfaceDescriptor(isolate_)->register_param_count_;
start_environment_ =
new(zone_) HEnvironment(zone_, param_count);
} else {
start_environment_ =
new(zone_) HEnvironment(NULL, info->scope(), info->closure(), zone_);
}
start_environment_->set_ast_id(BailoutId::FunctionEntry());
entry_block_ = CreateBasicBlock();
entry_block_->SetInitialEnvironment(start_environment_);
}
HBasicBlock* HGraph::CreateBasicBlock() {
HBasicBlock* result = new(zone()) HBasicBlock(this);
blocks_.Add(result, zone());
return result;
}
void HGraph::Canonicalize() {
if (!FLAG_use_canonicalizing) return;
HPhase phase("H_Canonicalize", this);
for (int i = 0; i < blocks()->length(); ++i) {
HInstruction* instr = blocks()->at(i)->first();
while (instr != NULL) {
HValue* value = instr->Canonicalize();
if (value != instr) instr->DeleteAndReplaceWith(value);
instr = instr->next();
}
}
}
// Block ordering was implemented with two mutually recursive methods,
// HGraph::Postorder and HGraph::PostorderLoopBlocks.
// The recursion could lead to stack overflow so the algorithm has been
// implemented iteratively.
// At a high level the algorithm looks like this:
//
// Postorder(block, loop_header) : {
// if (block has already been visited or is of another loop) return;
// mark block as visited;
// if (block is a loop header) {
// VisitLoopMembers(block, loop_header);
// VisitSuccessorsOfLoopHeader(block);
// } else {
// VisitSuccessors(block)
// }
// put block in result list;
// }
//
// VisitLoopMembers(block, outer_loop_header) {
// foreach (block b in block loop members) {
// VisitSuccessorsOfLoopMember(b, outer_loop_header);
// if (b is loop header) VisitLoopMembers(b);
// }
// }
//
// VisitSuccessorsOfLoopMember(block, outer_loop_header) {
// foreach (block b in block successors) Postorder(b, outer_loop_header)
// }
//
// VisitSuccessorsOfLoopHeader(block) {
// foreach (block b in block successors) Postorder(b, block)
// }
//
// VisitSuccessors(block, loop_header) {
// foreach (block b in block successors) Postorder(b, loop_header)
// }
//
// The ordering is started calling Postorder(entry, NULL).
//
// Each instance of PostorderProcessor represents the "stack frame" of the
// recursion, and particularly keeps the state of the loop (iteration) of the
// "Visit..." function it represents.
// To recycle memory we keep all the frames in a double linked list but
// this means that we cannot use constructors to initialize the frames.
//
class PostorderProcessor : public ZoneObject {
public:
// Back link (towards the stack bottom).
PostorderProcessor* parent() {return father_; }
// Forward link (towards the stack top).
PostorderProcessor* child() {return child_; }
HBasicBlock* block() { return block_; }
HLoopInformation* loop() { return loop_; }
HBasicBlock* loop_header() { return loop_header_; }
static PostorderProcessor* CreateEntryProcessor(Zone* zone,
HBasicBlock* block,
BitVector* visited) {
PostorderProcessor* result = new(zone) PostorderProcessor(NULL);
return result->SetupSuccessors(zone, block, NULL, visited);
}
PostorderProcessor* PerformStep(Zone* zone,
BitVector* visited,
ZoneList<HBasicBlock*>* order) {
PostorderProcessor* next =
PerformNonBacktrackingStep(zone, visited, order);
if (next != NULL) {
return next;
} else {
return Backtrack(zone, visited, order);
}
}
private:
explicit PostorderProcessor(PostorderProcessor* father)
: father_(father), child_(NULL), successor_iterator(NULL) { }
// Each enum value states the cycle whose state is kept by this instance.
enum LoopKind {
NONE,
SUCCESSORS,
SUCCESSORS_OF_LOOP_HEADER,
LOOP_MEMBERS,
SUCCESSORS_OF_LOOP_MEMBER
};
// Each "Setup..." method is like a constructor for a cycle state.
PostorderProcessor* SetupSuccessors(Zone* zone,
HBasicBlock* block,
HBasicBlock* loop_header,
BitVector* visited) {
if (block == NULL || visited->Contains(block->block_id()) ||
block->parent_loop_header() != loop_header) {
kind_ = NONE;
block_ = NULL;
loop_ = NULL;
loop_header_ = NULL;
return this;
} else {
block_ = block;
loop_ = NULL;
visited->Add(block->block_id());
if (block->IsLoopHeader()) {
kind_ = SUCCESSORS_OF_LOOP_HEADER;
loop_header_ = block;
InitializeSuccessors();
PostorderProcessor* result = Push(zone);
return result->SetupLoopMembers(zone, block, block->loop_information(),
loop_header);
} else {
ASSERT(block->IsFinished());
kind_ = SUCCESSORS;
loop_header_ = loop_header;
InitializeSuccessors();
return this;
}
}
}
PostorderProcessor* SetupLoopMembers(Zone* zone,
HBasicBlock* block,
HLoopInformation* loop,
HBasicBlock* loop_header) {
kind_ = LOOP_MEMBERS;
block_ = block;
loop_ = loop;
loop_header_ = loop_header;
InitializeLoopMembers();
return this;
}
PostorderProcessor* SetupSuccessorsOfLoopMember(
HBasicBlock* block,
HLoopInformation* loop,
HBasicBlock* loop_header) {
kind_ = SUCCESSORS_OF_LOOP_MEMBER;
block_ = block;
loop_ = loop;
loop_header_ = loop_header;
InitializeSuccessors();
return this;
}
// This method "allocates" a new stack frame.
PostorderProcessor* Push(Zone* zone) {
if (child_ == NULL) {
child_ = new(zone) PostorderProcessor(this);
}
return child_;
}
void ClosePostorder(ZoneList<HBasicBlock*>* order, Zone* zone) {
ASSERT(block_->end()->FirstSuccessor() == NULL ||
order->Contains(block_->end()->FirstSuccessor()) ||
block_->end()->FirstSuccessor()->IsLoopHeader());
ASSERT(block_->end()->SecondSuccessor() == NULL ||
order->Contains(block_->end()->SecondSuccessor()) ||
block_->end()->SecondSuccessor()->IsLoopHeader());
order->Add(block_, zone);
}
// This method is the basic block to walk up the stack.
PostorderProcessor* Pop(Zone* zone,
BitVector* visited,
ZoneList<HBasicBlock*>* order) {
switch (kind_) {
case SUCCESSORS:
case SUCCESSORS_OF_LOOP_HEADER:
ClosePostorder(order, zone);
return father_;
case LOOP_MEMBERS:
return father_;
case SUCCESSORS_OF_LOOP_MEMBER:
if (block()->IsLoopHeader() && block() != loop_->loop_header()) {
// In this case we need to perform a LOOP_MEMBERS cycle so we
// initialize it and return this instead of father.
return SetupLoopMembers(zone, block(),
block()->loop_information(), loop_header_);
} else {
return father_;
}
case NONE:
return father_;
}
UNREACHABLE();
return NULL;
}
// Walks up the stack.
PostorderProcessor* Backtrack(Zone* zone,
BitVector* visited,
ZoneList<HBasicBlock*>* order) {
PostorderProcessor* parent = Pop(zone, visited, order);
while (parent != NULL) {
PostorderProcessor* next =
parent->PerformNonBacktrackingStep(zone, visited, order);
if (next != NULL) {
return next;
} else {
parent = parent->Pop(zone, visited, order);
}
}
return NULL;
}
PostorderProcessor* PerformNonBacktrackingStep(
Zone* zone,
BitVector* visited,
ZoneList<HBasicBlock*>* order) {
HBasicBlock* next_block;
switch (kind_) {
case SUCCESSORS:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block,
loop_header_, visited);
}
break;
case SUCCESSORS_OF_LOOP_HEADER:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block,
block(), visited);
}
break;
case LOOP_MEMBERS:
next_block = AdvanceLoopMembers();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessorsOfLoopMember(next_block,
loop_, loop_header_);
}
break;
case SUCCESSORS_OF_LOOP_MEMBER:
next_block = AdvanceSuccessors();
if (next_block != NULL) {
PostorderProcessor* result = Push(zone);
return result->SetupSuccessors(zone, next_block,
loop_header_, visited);
}
break;
case NONE:
return NULL;
}
return NULL;
}
// The following two methods implement a "foreach b in successors" cycle.
void InitializeSuccessors() {
loop_index = 0;
loop_length = 0;
successor_iterator = HSuccessorIterator(block_->end());
}
HBasicBlock* AdvanceSuccessors() {
if (!successor_iterator.Done()) {
HBasicBlock* result = successor_iterator.Current();
successor_iterator.Advance();
return result;
}
return NULL;
}
// The following two methods implement a "foreach b in loop members" cycle.
void InitializeLoopMembers() {
loop_index = 0;
loop_length = loop_->blocks()->length();
}
HBasicBlock* AdvanceLoopMembers() {
if (loop_index < loop_length) {
HBasicBlock* result = loop_->blocks()->at(loop_index);
loop_index++;
return result;
} else {
return NULL;
}
}
LoopKind kind_;
PostorderProcessor* father_;
PostorderProcessor* child_;
HLoopInformation* loop_;
HBasicBlock* block_;
HBasicBlock* loop_header_;
int loop_index;
int loop_length;
HSuccessorIterator successor_iterator;
};
void HGraph::OrderBlocks() {
HPhase phase("H_Block ordering");
BitVector visited(blocks_.length(), zone());
ZoneList<HBasicBlock*> reverse_result(8, zone());
HBasicBlock* start = blocks_[0];
PostorderProcessor* postorder =
PostorderProcessor::CreateEntryProcessor(zone(), start, &visited);
while (postorder != NULL) {
postorder = postorder->PerformStep(zone(), &visited, &reverse_result);
}
blocks_.Rewind(0);
int index = 0;
for (int i = reverse_result.length() - 1; i >= 0; --i) {
HBasicBlock* b = reverse_result[i];
blocks_.Add(b, zone());
b->set_block_id(index++);
}
}
void HGraph::AssignDominators() {
HPhase phase("H_Assign dominators", this);
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_[i];
if (block->IsLoopHeader()) {
// Only the first predecessor of a loop header is from outside the loop.
// All others are back edges, and thus cannot dominate the loop header.
block->AssignCommonDominator(block->predecessors()->first());
block->AssignLoopSuccessorDominators();
} else {
for (int j = blocks_[i]->predecessors()->length() - 1; j >= 0; --j) {
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
}
}
}
}
// Mark all blocks that are dominated by an unconditional soft deoptimize to
// prevent code motion across those blocks.
void HGraph::PropagateDeoptimizingMark() {
HPhase phase("H_Propagate deoptimizing mark", this);
// Skip this phase if there is nothing to be done anyway.
if (!has_soft_deoptimize()) return;
MarkAsDeoptimizingRecursively(entry_block());
NullifyUnreachableInstructions();
}
void HGraph::MarkAsDeoptimizingRecursively(HBasicBlock* block) {
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
HBasicBlock* dominated = block->dominated_blocks()->at(i);
if (block->IsDeoptimizing()) dominated->MarkAsDeoptimizing();
MarkAsDeoptimizingRecursively(dominated);
}
}
void HGraph::NullifyUnreachableInstructions() {
if (!FLAG_unreachable_code_elimination) return;
int block_count = blocks_.length();
for (int i = 0; i < block_count; ++i) {
HBasicBlock* block = blocks_.at(i);
bool nullify = false;
const ZoneList<HBasicBlock*>* predecessors = block->predecessors();
int predecessors_length = predecessors->length();
bool all_predecessors_deoptimizing = (predecessors_length > 0);
for (int j = 0; j < predecessors_length; ++j) {
if (!predecessors->at(j)->IsDeoptimizing()) {
all_predecessors_deoptimizing = false;
break;
}
}
if (all_predecessors_deoptimizing) nullify = true;
for (HInstruction* instr = block->first(); instr != NULL;
instr = instr->next()) {
// Leave the basic structure of the graph intact.
if (instr->IsBlockEntry()) continue;
if (instr->IsControlInstruction()) continue;
if (instr->IsSimulate()) continue;
if (instr->IsEnterInlined()) continue;
if (instr->IsLeaveInlined()) continue;
if (nullify) {
HInstruction* last_dummy = NULL;
for (int j = 0; j < instr->OperandCount(); ++j) {
HValue* operand = instr->OperandAt(j);
// Insert an HDummyUse for each operand, unless the operand
// is an HDummyUse itself. If it's even from the same block,
// remember it as a potential replacement for the instruction.
if (operand->IsDummyUse()) {
if (operand->block() == instr->block() &&
last_dummy == NULL) {
last_dummy = HInstruction::cast(operand);
}
continue;
}
if (operand->IsControlInstruction()) {
// Inserting a dummy use for a value that's not defined anywhere
// will fail. Some instructions define fake inputs on such
// values as control flow dependencies.
continue;
}
HDummyUse* dummy = new(zone()) HDummyUse(operand);
dummy->InsertBefore(instr);
last_dummy = dummy;
}
if (last_dummy == NULL) last_dummy = GetConstant1();
instr->DeleteAndReplaceWith(last_dummy);
continue;
}
if (instr->IsSoftDeoptimize()) {
ASSERT(block->IsDeoptimizing());
nullify = true;
}
}
}
}
// Replace all phis consisting of a single non-loop operand plus any number of
// loop operands by that single non-loop operand.
void HGraph::EliminateRedundantPhis() {
HPhase phase("H_Redundant phi elimination", this);
// We do a simple fixed point iteration without any work list, because
// machine-generated JavaScript can lead to a very dense Hydrogen graph with
// an enormous work list and will consequently result in OOM. Experiments
// showed that this simple algorithm is good enough, and even e.g. tracking
// the set or range of blocks to consider is not a real improvement.
bool need_another_iteration;
ZoneList<HPhi*> redundant_phis(blocks_.length(), zone());
do {
need_another_iteration = false;
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_[i];
for (int j = 0; j < block->phis()->length(); j++) {
HPhi* phi = block->phis()->at(j);
HValue* replacement = phi->GetRedundantReplacement();
if (replacement != NULL) {
// Remember phi to avoid concurrent modification of the block's phis.
redundant_phis.Add(phi, zone());
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
HValue* value = it.value();
value->SetOperandAt(it.index(), replacement);
need_another_iteration |= value->IsPhi();
}
}
}
for (int i = 0; i < redundant_phis.length(); i++) {
block->RemovePhi(redundant_phis[i]);
}
redundant_phis.Clear();
}
} while (need_another_iteration);
#if DEBUG
// Make sure that we *really* removed all redundant phis.
for (int i = 0; i < blocks_.length(); ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); j++) {
ASSERT(blocks_[i]->phis()->at(j)->GetRedundantReplacement() == NULL);
}
}
#endif
}
void HGraph::EliminateUnreachablePhis() {
HPhase phase("H_Unreachable phi elimination", this);
// Initialize worklist.
ZoneList<HPhi*> phi_list(blocks_.length(), zone());
ZoneList<HPhi*> worklist(blocks_.length(), zone());
for (int i = 0; i < blocks_.length(); ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); j++) {
HPhi* phi = blocks_[i]->phis()->at(j);
phi_list.Add(phi, zone());
// We can't eliminate phis in the receiver position in the environment
// because in case of throwing an error we need this value to
// construct a stack trace.
if (phi->HasRealUses() || phi->IsReceiver()) {
phi->set_is_live(true);
worklist.Add(phi, zone());
}
}
}
// Iteratively mark live phis.
while (!worklist.is_empty()) {
HPhi* phi = worklist.RemoveLast();
for (int i = 0; i < phi->OperandCount(); i++) {
HValue* operand = phi->OperandAt(i);
if (operand->IsPhi() && !HPhi::cast(operand)->is_live()) {
HPhi::cast(operand)->set_is_live(true);
worklist.Add(HPhi::cast(operand), zone());
}
}
}
// Remove unreachable phis.
for (int i = 0; i < phi_list.length(); i++) {
HPhi* phi = phi_list[i];
if (!phi->is_live()) {
HBasicBlock* block = phi->block();
block->RemovePhi(phi);
block->RecordDeletedPhi(phi->merged_index());
}
}
}
bool HGraph::CheckArgumentsPhiUses() {
int block_count = blocks_.length();
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
// We don't support phi uses of arguments for now.
if (phi->CheckFlag(HValue::kIsArguments)) return false;
}
}
return true;
}
bool HGraph::CheckConstPhiUses() {
int block_count = blocks_.length();
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
// Check for the hole value (from an uninitialized const).
for (int k = 0; k < phi->OperandCount(); k++) {
if (phi->OperandAt(k) == GetConstantHole()) return false;
}
}
}
return true;
}
void HGraph::CollectPhis() {
int block_count = blocks_.length();
phi_list_ = new(zone()) ZoneList<HPhi*>(block_count, zone());
for (int i = 0; i < block_count; ++i) {
for (int j = 0; j < blocks_[i]->phis()->length(); ++j) {
HPhi* phi = blocks_[i]->phis()->at(j);
phi_list_->Add(phi, zone());
}
}
}
void HGraph::InferTypes(ZoneList<HValue*>* worklist) {
BitVector in_worklist(GetMaximumValueID(), zone());
for (int i = 0; i < worklist->length(); ++i) {
ASSERT(!in_worklist.Contains(worklist->at(i)->id()));
in_worklist.Add(worklist->at(i)->id());
}
while (!worklist->is_empty()) {
HValue* current = worklist->RemoveLast();
in_worklist.Remove(current->id());
if (current->UpdateInferredType()) {
for (HUseIterator it(current->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (!in_worklist.Contains(use->id())) {
in_worklist.Add(use->id());
worklist->Add(use, zone());
}
}
}
}
}
class HRangeAnalysis BASE_EMBEDDED {
public:
explicit HRangeAnalysis(HGraph* graph) :
graph_(graph), zone_(graph->zone()), changed_ranges_(16, zone_) { }
void Analyze();
private:
void TraceRange(const char* msg, ...);
void Analyze(HBasicBlock* block);
void InferControlFlowRange(HCompareIDAndBranch* test, HBasicBlock* dest);
void UpdateControlFlowRange(Token::Value op, HValue* value, HValue* other);
void InferRange(HValue* value);
void RollBackTo(int index);
void AddRange(HValue* value, Range* range);
HGraph* graph_;
Zone* zone_;
ZoneList<HValue*> changed_ranges_;
};
void HRangeAnalysis::TraceRange(const char* msg, ...) {
if (FLAG_trace_range) {
va_list arguments;
va_start(arguments, msg);
OS::VPrint(msg, arguments);
va_end(arguments);
}
}
void HRangeAnalysis::Analyze() {
HPhase phase("H_Range analysis", graph_);
Analyze(graph_->entry_block());
}
void HRangeAnalysis::Analyze(HBasicBlock* block) {
TraceRange("Analyzing block B%d\n", block->block_id());
int last_changed_range = changed_ranges_.length() - 1;
// Infer range based on control flow.
if (block->predecessors()->length() == 1) {
HBasicBlock* pred = block->predecessors()->first();
if (pred->end()->IsCompareIDAndBranch()) {
InferControlFlowRange(HCompareIDAndBranch::cast(pred->end()), block);
}
}
// Process phi instructions.
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
InferRange(phi);
}
// Go through all instructions of the current block.
HInstruction* instr = block->first();
while (instr != block->end()) {
InferRange(instr);
instr = instr->next();
}
// Continue analysis in all dominated blocks.
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
Analyze(block->dominated_blocks()->at(i));
}
RollBackTo(last_changed_range);
}
void HRangeAnalysis::InferControlFlowRange(HCompareIDAndBranch* test,
HBasicBlock* dest) {
ASSERT((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest));
if (test->representation().IsInteger32()) {
Token::Value op = test->token();
if (test->SecondSuccessor() == dest) {
op = Token::NegateCompareOp(op);
}
Token::Value inverted_op = Token::ReverseCompareOp(op);
UpdateControlFlowRange(op, test->left(), test->right());
UpdateControlFlowRange(inverted_op, test->right(), test->left());
}
}
// We know that value [op] other. Use this information to update the range on
// value.
void HRangeAnalysis::UpdateControlFlowRange(Token::Value op,
HValue* value,
HValue* other) {
Range temp_range;
Range* range = other->range() != NULL ? other->range() : &temp_range;
Range* new_range = NULL;
TraceRange("Control flow range infer %d %s %d\n",
value->id(),
Token::Name(op),
other->id());
if (op == Token::EQ || op == Token::EQ_STRICT) {
// The same range has to apply for value.
new_range = range->Copy(zone_);
} else if (op == Token::LT || op == Token::LTE) {
new_range = range->CopyClearLower(zone_);
if (op == Token::LT) {
new_range->AddConstant(-1);
}
} else if (op == Token::GT || op == Token::GTE) {
new_range = range->CopyClearUpper(zone_);
if (op == Token::GT) {
new_range->AddConstant(1);
}
}
if (new_range != NULL && !new_range->IsMostGeneric()) {
AddRange(value, new_range);
}
}
void HRangeAnalysis::InferRange(HValue* value) {
ASSERT(!value->HasRange());
if (!value->representation().IsNone()) {
value->ComputeInitialRange(zone_);
Range* range = value->range();
TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n",
value->id(),
value->Mnemonic(),
range->lower(),
range->upper());
}
}
void HRangeAnalysis::RollBackTo(int index) {
for (int i = index + 1; i < changed_ranges_.length(); ++i) {
changed_ranges_[i]->RemoveLastAddedRange();
}
changed_ranges_.Rewind(index + 1);
}
void HRangeAnalysis::AddRange(HValue* value, Range* range) {
Range* original_range = value->range();
value->AddNewRange(range, zone_);
changed_ranges_.Add(value, zone_);
Range* new_range = value->range();
TraceRange("Updated range of %d set to [%d,%d]\n",
value->id(),
new_range->lower(),
new_range->upper());
if (original_range != NULL) {
TraceRange("Original range was [%d,%d]\n",
original_range->lower(),
original_range->upper());
}
TraceRange("New information was [%d,%d]\n",
range->lower(),
range->upper());
}
void TraceGVN(const char* msg, ...) {
va_list arguments;
va_start(arguments, msg);
OS::VPrint(msg, arguments);
va_end(arguments);
}
// Wrap TraceGVN in macros to avoid the expense of evaluating its arguments when
// --trace-gvn is off.
#define TRACE_GVN_1(msg, a1) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1); \
}
#define TRACE_GVN_2(msg, a1, a2) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2); \
}
#define TRACE_GVN_3(msg, a1, a2, a3) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3); \
}
#define TRACE_GVN_4(msg, a1, a2, a3, a4) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3, a4); \
}
#define TRACE_GVN_5(msg, a1, a2, a3, a4, a5) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3, a4, a5); \
}
HValueMap::HValueMap(Zone* zone, const HValueMap* other)
: array_size_(other->array_size_),
lists_size_(other->lists_size_),
count_(other->count_),
present_flags_(other->present_flags_),
array_(zone->NewArray<HValueMapListElement>(other->array_size_)),
lists_(zone->NewArray<HValueMapListElement>(other->lists_size_)),
free_list_head_(other->free_list_head_) {
memcpy(array_, other->array_, array_size_ * sizeof(HValueMapListElement));
memcpy(lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement));
}
void HValueMap::Kill(GVNFlagSet flags) {
GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(flags);
if (!present_flags_.ContainsAnyOf(depends_flags)) return;
present_flags_.RemoveAll();
for (int i = 0; i < array_size_; ++i) {
HValue* value = array_[i].value;
if (value != NULL) {
// Clear list of collisions first, so we know if it becomes empty.
int kept = kNil; // List of kept elements.
int next;
for (int current = array_[i].next; current != kNil; current = next) {
next = lists_[current].next;
HValue* value = lists_[current].value;
if (value->gvn_flags().ContainsAnyOf(depends_flags)) {
// Drop it.
count_--;
lists_[current].next = free_list_head_;
free_list_head_ = current;
} else {
// Keep it.
lists_[current].next = kept;
kept = current;
present_flags_.Add(value->gvn_flags());
}
}
array_[i].next = kept;
// Now possibly drop directly indexed element.
value = array_[i].value;
if (value->gvn_flags().ContainsAnyOf(depends_flags)) { // Drop it.
count_--;
int head = array_[i].next;
if (head == kNil) {
array_[i].value = NULL;
} else {
array_[i].value = lists_[head].value;
array_[i].next = lists_[head].next;
lists_[head].next = free_list_head_;
free_list_head_ = head;
}
} else {
present_flags_.Add(value->gvn_flags()); // Keep it.
}
}
}
}
HValue* HValueMap::Lookup(HValue* value) const {
uint32_t hash = static_cast<uint32_t>(value->Hashcode());
uint32_t pos = Bound(hash);
if (array_[pos].value != NULL) {
if (array_[pos].value->Equals(value)) return array_[pos].value;
int next = array_[pos].next;
while (next != kNil) {
if (lists_[next].value->Equals(value)) return lists_[next].value;
next = lists_[next].next;
}
}
return NULL;
}
void HValueMap::Resize(int new_size, Zone* zone) {
ASSERT(new_size > count_);
// Hashing the values into the new array has no more collisions than in the
// old hash map, so we can use the existing lists_ array, if we are careful.
// Make sure we have at least one free element.
if (free_list_head_ == kNil) {
ResizeLists(lists_size_ << 1, zone);
}
HValueMapListElement* new_array =
zone->NewArray<HValueMapListElement>(new_size);
memset(new_array, 0, sizeof(HValueMapListElement) * new_size);
HValueMapListElement* old_array = array_;
int old_size = array_size_;
int old_count = count_;
count_ = 0;
// Do not modify present_flags_. It is currently correct.
array_size_ = new_size;
array_ = new_array;
if (old_array != NULL) {
// Iterate over all the elements in lists, rehashing them.
for (int i = 0; i < old_size; ++i) {
if (old_array[i].value != NULL) {
int current = old_array[i].next;
while (current != kNil) {
Insert(lists_[current].value, zone);
int next = lists_[current].next;
lists_[current].next = free_list_head_;
free_list_head_ = current;
current = next;
}
// Rehash the directly stored value.
Insert(old_array[i].value, zone);
}
}
}
USE(old_count);
ASSERT(count_ == old_count);
}
void HValueMap::ResizeLists(int new_size, Zone* zone) {
ASSERT(new_size > lists_size_);
HValueMapListElement* new_lists =
zone->NewArray<HValueMapListElement>(new_size);
memset(new_lists, 0, sizeof(HValueMapListElement) * new_size);
HValueMapListElement* old_lists = lists_;
int old_size = lists_size_;
lists_size_ = new_size;
lists_ = new_lists;
if (old_lists != NULL) {
memcpy(lists_, old_lists, old_size * sizeof(HValueMapListElement));
}
for (int i = old_size; i < lists_size_; ++i) {
lists_[i].next = free_list_head_;
free_list_head_ = i;
}
}
void HValueMap::Insert(HValue* value, Zone* zone) {
ASSERT(value != NULL);
// Resizing when half of the hashtable is filled up.
if (count_ >= array_size_ >> 1) Resize(array_size_ << 1, zone);
ASSERT(count_ < array_size_);
count_++;
uint32_t pos = Bound(static_cast<uint32_t>(value->Hashcode()));
if (array_[pos].value == NULL) {
array_[pos].value = value;
array_[pos].next = kNil;
} else {
if (free_list_head_ == kNil) {
ResizeLists(lists_size_ << 1, zone);
}
int new_element_pos = free_list_head_;
ASSERT(new_element_pos != kNil);
free_list_head_ = lists_[free_list_head_].next;
lists_[new_element_pos].value = value;
lists_[new_element_pos].next = array_[pos].next;
ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL);
array_[pos].next = new_element_pos;
}
}
HSideEffectMap::HSideEffectMap() : count_(0) {
memset(data_, 0, kNumberOfTrackedSideEffects * kPointerSize);
}
HSideEffectMap::HSideEffectMap(HSideEffectMap* other) : count_(other->count_) {
*this = *other; // Calls operator=.
}
HSideEffectMap& HSideEffectMap::operator= (const HSideEffectMap& other) {
if (this != &other) {
memcpy(data_, other.data_, kNumberOfTrackedSideEffects * kPointerSize);
}
return *this;
}
void HSideEffectMap::Kill(GVNFlagSet flags) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
if (flags.Contains(changes_flag)) {
if (data_[i] != NULL) count_--;
data_[i] = NULL;
}
}
}
void HSideEffectMap::Store(GVNFlagSet flags, HInstruction* instr) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
if (flags.Contains(changes_flag)) {
if (data_[i] == NULL) count_++;
data_[i] = instr;
}
}
}
class HStackCheckEliminator BASE_EMBEDDED {
public:
explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { }
void Process();
private:
HGraph* graph_;
};
void HStackCheckEliminator::Process() {
// For each loop block walk the dominator tree from the backwards branch to
// the loop header. If a call instruction is encountered the backwards branch
// is dominated by a call and the stack check in the backwards branch can be
// removed.
for (int i = 0; i < graph_->blocks()->length(); i++) {
HBasicBlock* block = graph_->blocks()->at(i);
if (block->IsLoopHeader()) {
HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
HBasicBlock* dominator = back_edge;
while (true) {
HInstruction* instr = dominator->first();
while (instr != NULL) {
if (instr->IsCall()) {
block->loop_information()->stack_check()->Eliminate();
break;
}
instr = instr->next();
}
// Done when the loop header is processed.
if (dominator == block) break;
// Move up the dominator tree.
dominator = dominator->dominator();
}
}
}
}
// Simple sparse set with O(1) add, contains, and clear.
class SparseSet {
public:
SparseSet(Zone* zone, int capacity)
: capacity_(capacity),
length_(0),
dense_(zone->NewArray<int>(capacity)),
sparse_(zone->NewArray<int>(capacity)) {
#ifndef NVALGRIND
// Initialize the sparse array to make valgrind happy.
memset(sparse_, 0, sizeof(sparse_[0]) * capacity);
#endif
}
bool Contains(int n) const {
ASSERT(0 <= n && n < capacity_);
int d = sparse_[n];
return 0 <= d && d < length_ && dense_[d] == n;
}
bool Add(int n) {
if (Contains(n)) return false;
dense_[length_] = n;
sparse_[n] = length_;
++length_;
return true;
}
void Clear() { length_ = 0; }
private:
int capacity_;
int length_;
int* dense_;
int* sparse_;
DISALLOW_COPY_AND_ASSIGN(SparseSet);
};
class HGlobalValueNumberer BASE_EMBEDDED {
public:
explicit HGlobalValueNumberer(HGraph* graph, CompilationInfo* info)
: graph_(graph),
info_(info),
removed_side_effects_(false),
block_side_effects_(graph->blocks()->length(), graph->zone()),
loop_side_effects_(graph->blocks()->length(), graph->zone()),
visited_on_paths_(graph->zone(), graph->blocks()->length()) {
#ifdef DEBUG
ASSERT(info->isolate()->optimizing_compiler_thread()->IsOptimizerThread() ||
!info->isolate()->heap()->IsAllocationAllowed());
#endif
block_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length(),
graph_->zone());
loop_side_effects_.AddBlock(GVNFlagSet(), graph_->blocks()->length(),
graph_->zone());
}
// Returns true if values with side effects are removed.
bool Analyze();
private:
GVNFlagSet CollectSideEffectsOnPathsToDominatedBlock(
HBasicBlock* dominator,
HBasicBlock* dominated);
void AnalyzeGraph();
void ComputeBlockSideEffects();
void LoopInvariantCodeMotion();
void ProcessLoopBlock(HBasicBlock* block,
HBasicBlock* before_loop,
GVNFlagSet loop_kills,
GVNFlagSet* accumulated_first_time_depends,
GVNFlagSet* accumulated_first_time_changes);
bool AllowCodeMotion();
bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header);
HGraph* graph() { return graph_; }
CompilationInfo* info() { return info_; }
Zone* zone() const { return graph_->zone(); }
HGraph* graph_;
CompilationInfo* info_;
bool removed_side_effects_;
// A map of block IDs to their side effects.
ZoneList<GVNFlagSet> block_side_effects_;
// A map of loop header block IDs to their loop's side effects.
ZoneList<GVNFlagSet> loop_side_effects_;
// Used when collecting side effects on paths from dominator to
// dominated.
SparseSet visited_on_paths_;
};
bool HGlobalValueNumberer::Analyze() {
removed_side_effects_ = false;
ComputeBlockSideEffects();
if (FLAG_loop_invariant_code_motion) {
LoopInvariantCodeMotion();
}
AnalyzeGraph();
return removed_side_effects_;
}
void HGlobalValueNumberer::ComputeBlockSideEffects() {
// The Analyze phase of GVN can be called multiple times. Clear loop side
// effects before computing them to erase the contents from previous Analyze
// passes.
for (int i = 0; i < loop_side_effects_.length(); ++i) {
loop_side_effects_[i].RemoveAll();
}
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
// Compute side effects for the block.
HBasicBlock* block = graph_->blocks()->at(i);
HInstruction* instr = block->first();
int id = block->block_id();
GVNFlagSet side_effects;
while (instr != NULL) {
side_effects.Add(instr->ChangesFlags());
if (instr->IsSoftDeoptimize()) {
block_side_effects_[id].RemoveAll();
side_effects.RemoveAll();
break;
}
instr = instr->next();
}
block_side_effects_[id].Add(side_effects);
// Loop headers are part of their loop.
if (block->IsLoopHeader()) {
loop_side_effects_[id].Add(side_effects);
}
// Propagate loop side effects upwards.
if (block->HasParentLoopHeader()) {
int header_id = block->parent_loop_header()->block_id();
loop_side_effects_[header_id].Add(block->IsLoopHeader()
? loop_side_effects_[id]
: side_effects);
}
}
}
SmartArrayPointer<char> GetGVNFlagsString(GVNFlagSet flags) {
char underlying_buffer[kLastFlag * 128];
Vector<char> buffer(underlying_buffer, sizeof(underlying_buffer));
#if DEBUG
int offset = 0;
const char* separator = "";
const char* comma = ", ";
buffer[0] = 0;
uint32_t set_depends_on = 0;
uint32_t set_changes = 0;
for (int bit = 0; bit < kLastFlag; ++bit) {
if ((flags.ToIntegral() & (1 << bit)) != 0) {
if (bit % 2 == 0) {
set_changes++;
} else {
set_depends_on++;
}
}
}
bool positive_changes = set_changes < (kLastFlag / 2);
bool positive_depends_on = set_depends_on < (kLastFlag / 2);
if (set_changes > 0) {
if (positive_changes) {
offset += OS::SNPrintF(buffer + offset, "changes [");
} else {
offset += OS::SNPrintF(buffer + offset, "changes all except [");
}
for (int bit = 0; bit < kLastFlag; ++bit) {
if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_changes) {
switch (static_cast<GVNFlag>(bit)) {
#define DECLARE_FLAG(type) \
case kChanges##type: \
offset += OS::SNPrintF(buffer + offset, separator); \
offset += OS::SNPrintF(buffer + offset, #type); \
separator = comma; \
break;
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
#undef DECLARE_FLAG
default:
break;
}
}
}
offset += OS::SNPrintF(buffer + offset, "]");
}
if (set_depends_on > 0) {
separator = "";
if (set_changes > 0) {
offset += OS::SNPrintF(buffer + offset, ", ");
}
if (positive_depends_on) {
offset += OS::SNPrintF(buffer + offset, "depends on [");
} else {
offset += OS::SNPrintF(buffer + offset, "depends on all except [");
}
for (int bit = 0; bit < kLastFlag; ++bit) {
if (((flags.ToIntegral() & (1 << bit)) != 0) == positive_depends_on) {
switch (static_cast<GVNFlag>(bit)) {
#define DECLARE_FLAG(type) \
case kDependsOn##type: \
offset += OS::SNPrintF(buffer + offset, separator); \
offset += OS::SNPrintF(buffer + offset, #type); \
separator = comma; \
break;
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
#undef DECLARE_FLAG
default:
break;
}
}
}
offset += OS::SNPrintF(buffer + offset, "]");
}
#else
OS::SNPrintF(buffer, "0x%08X", flags.ToIntegral());
#endif
size_t string_len = strlen(underlying_buffer) + 1;
ASSERT(string_len <= sizeof(underlying_buffer));
char* result = new char[strlen(underlying_buffer) + 1];
memcpy(result, underlying_buffer, string_len);
return SmartArrayPointer<char>(result);
}
void HGlobalValueNumberer::LoopInvariantCodeMotion() {
TRACE_GVN_1("Using optimistic loop invariant code motion: %s\n",
graph_->use_optimistic_licm() ? "yes" : "no");
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
HBasicBlock* block = graph_->blocks()->at(i);
if (block->IsLoopHeader()) {
GVNFlagSet side_effects = loop_side_effects_[block->block_id()];
TRACE_GVN_2("Try loop invariant motion for block B%d %s\n",
block->block_id(),
*GetGVNFlagsString(side_effects));
GVNFlagSet accumulated_first_time_depends;
GVNFlagSet accumulated_first_time_changes;
HBasicBlock* last = block->loop_information()->GetLastBackEdge();
for (int j = block->block_id(); j <= last->block_id(); ++j) {
ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects,
&accumulated_first_time_depends,
&accumulated_first_time_changes);
}
}
}
}
void HGlobalValueNumberer::ProcessLoopBlock(
HBasicBlock* block,
HBasicBlock* loop_header,
GVNFlagSet loop_kills,
GVNFlagSet* first_time_depends,
GVNFlagSet* first_time_changes) {
HBasicBlock* pre_header = loop_header->predecessors()->at(0);
GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills);
TRACE_GVN_2("Loop invariant motion for B%d %s\n",
block->block_id(),
*GetGVNFlagsString(depends_flags));
HInstruction* instr = block->first();
while (instr != NULL) {
HInstruction* next = instr->next();
bool hoisted = false;
if (instr->CheckFlag(HValue::kUseGVN)) {
TRACE_GVN_4("Checking instruction %d (%s) %s. Loop %s\n",
instr->id(),
instr->Mnemonic(),
*GetGVNFlagsString(instr->gvn_flags()),
*GetGVNFlagsString(loop_kills));
bool can_hoist = !instr->gvn_flags().ContainsAnyOf(depends_flags);
if (can_hoist && !graph()->use_optimistic_licm()) {
can_hoist = block->IsLoopSuccessorDominator();
}
if (can_hoist) {
bool inputs_loop_invariant = true;
for (int i = 0; i < instr->OperandCount(); ++i) {
if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) {
inputs_loop_invariant = false;
}
}
if (inputs_loop_invariant && ShouldMove(instr, loop_header)) {
TRACE_GVN_1("Hoisting loop invariant instruction %d\n", instr->id());
// Move the instruction out of the loop.
instr->Unlink();
instr->InsertBefore(pre_header->end());
if (instr->HasSideEffects()) removed_side_effects_ = true;
hoisted = true;
}
}
}
if (!hoisted) {
// If an instruction is not hoisted, we have to account for its side
// effects when hoisting later HTransitionElementsKind instructions.
GVNFlagSet previous_depends = *first_time_depends;
GVNFlagSet previous_changes = *first_time_changes;
first_time_depends->Add(instr->DependsOnFlags());
first_time_changes->Add(instr->ChangesFlags());
if (!(previous_depends == *first_time_depends)) {
TRACE_GVN_1("Updated first-time accumulated %s\n",
*GetGVNFlagsString(*first_time_depends));
}
if (!(previous_changes == *first_time_changes)) {
TRACE_GVN_1("Updated first-time accumulated %s\n",
*GetGVNFlagsString(*first_time_changes));
}
}
instr = next;
}
}
bool HGlobalValueNumberer::AllowCodeMotion() {
return info()->IsStub() || info()->opt_count() + 1 < FLAG_max_opt_count;
}
bool HGlobalValueNumberer::ShouldMove(HInstruction* instr,
HBasicBlock* loop_header) {
// If we've disabled code motion or we're in a block that unconditionally
// deoptimizes, don't move any instructions.
return AllowCodeMotion() && !instr->block()->IsDeoptimizing();
}
GVNFlagSet HGlobalValueNumberer::CollectSideEffectsOnPathsToDominatedBlock(
HBasicBlock* dominator, HBasicBlock* dominated) {
GVNFlagSet side_effects;
for (int i = 0; i < dominated->predecessors()->length(); ++i) {
HBasicBlock* block = dominated->predecessors()->at(i);
if (dominator->block_id() < block->block_id() &&
block->block_id() < dominated->block_id() &&
visited_on_paths_.Add(block->block_id())) {
side_effects.Add(block_side_effects_[block->block_id()]);
if (block->IsLoopHeader()) {
side_effects.Add(loop_side_effects_[block->block_id()]);
}
side_effects.Add(CollectSideEffectsOnPathsToDominatedBlock(
dominator, block));
}
}
return side_effects;
}
// Each instance of this class is like a "stack frame" for the recursive
// traversal of the dominator tree done during GVN (the stack is handled
// as a double linked list).
// We reuse frames when possible so the list length is limited by the depth
// of the dominator tree but this forces us to initialize each frame calling
// an explicit "Initialize" method instead of a using constructor.
class GvnBasicBlockState: public ZoneObject {
public:
static GvnBasicBlockState* CreateEntry(Zone* zone,
HBasicBlock* entry_block,
HValueMap* entry_map) {
return new(zone)
GvnBasicBlockState(NULL, entry_block, entry_map, NULL, zone);
}
HBasicBlock* block() { return block_; }
HValueMap* map() { return map_; }
HSideEffectMap* dominators() { return &dominators_; }
GvnBasicBlockState* next_in_dominator_tree_traversal(
Zone* zone,
HBasicBlock** dominator) {
// This assignment needs to happen before calling next_dominated() because
// that call can reuse "this" if we are at the last dominated block.
*dominator = block();
GvnBasicBlockState* result = next_dominated(zone);
if (result == NULL) {
GvnBasicBlockState* dominator_state = pop();
if (dominator_state != NULL) {
// This branch is guaranteed not to return NULL because pop() never
// returns a state where "is_done() == true".
*dominator = dominator_state->block();
result = dominator_state->next_dominated(zone);
} else {
// Unnecessary (we are returning NULL) but done for cleanness.
*dominator = NULL;
}
}
return result;
}
private:
void Initialize(HBasicBlock* block,
HValueMap* map,
HSideEffectMap* dominators,
bool copy_map,
Zone* zone) {
block_ = block;
map_ = copy_map ? map->Copy(zone) : map;
dominated_index_ = -1;
length_ = block->dominated_blocks()->length();
if (dominators != NULL) {
dominators_ = *dominators;
}
}
bool is_done() { return dominated_index_ >= length_; }
GvnBasicBlockState(GvnBasicBlockState* previous,
HBasicBlock* block,
HValueMap* map,
HSideEffectMap* dominators,
Zone* zone)
: previous_(previous), next_(NULL) {
Initialize(block, map, dominators, true, zone);
}
GvnBasicBlockState* next_dominated(Zone* zone) {
dominated_index_++;
if (dominated_index_ == length_ - 1) {
// No need to copy the map for the last child in the dominator tree.
Initialize(block_->dominated_blocks()->at(dominated_index_),
map(),
dominators(),
false,
zone);
return this;
} else if (dominated_index_ < length_) {
return push(zone,
block_->dominated_blocks()->at(dominated_index_),
dominators());
} else {
return NULL;
}
}
GvnBasicBlockState* push(Zone* zone,
HBasicBlock* block,
HSideEffectMap* dominators) {
if (next_ == NULL) {
next_ =
new(zone) GvnBasicBlockState(this, block, map(), dominators, zone);
} else {
next_->Initialize(block, map(), dominators, true, zone);
}
return next_;
}
GvnBasicBlockState* pop() {
GvnBasicBlockState* result = previous_;
while (result != NULL && result->is_done()) {
TRACE_GVN_2("Backtracking from block B%d to block b%d\n",
block()->block_id(),
previous_->block()->block_id())
result = result->previous_;
}
return result;
}
GvnBasicBlockState* previous_;
GvnBasicBlockState* next_;
HBasicBlock* block_;
HValueMap* map_;
HSideEffectMap dominators_;
int dominated_index_;
int length_;
};
// This is a recursive traversal of the dominator tree but it has been turned
// into a loop to avoid stack overflows.
// The logical "stack frames" of the recursion are kept in a list of
// GvnBasicBlockState instances.
void HGlobalValueNumberer::AnalyzeGraph() {
HBasicBlock* entry_block = graph_->entry_block();
HValueMap* entry_map = new(zone()) HValueMap(zone());
GvnBasicBlockState* current =
GvnBasicBlockState::CreateEntry(zone(), entry_block, entry_map);
while (current != NULL) {
HBasicBlock* block = current->block();
HValueMap* map = current->map();
HSideEffectMap* dominators = current->dominators();
TRACE_GVN_2("Analyzing block B%d%s\n",
block->block_id(),
block->IsLoopHeader() ? " (loop header)" : "");
// If this is a loop header kill everything killed by the loop.
if (block->IsLoopHeader()) {
map->Kill(loop_side_effects_[block->block_id()]);
}
// Go through all instructions of the current block.
HInstruction* instr = block->first();
while (instr != NULL) {
HInstruction* next = instr->next();
GVNFlagSet flags = instr->ChangesFlags();
if (!flags.IsEmpty()) {
// Clear all instructions in the map that are affected by side effects.
// Store instruction as the dominating one for tracked side effects.
map->Kill(flags);
dominators->Store(flags, instr);
TRACE_GVN_2("Instruction %d %s\n", instr->id(),
*GetGVNFlagsString(flags));
}
if (instr->CheckFlag(HValue::kUseGVN)) {
ASSERT(!instr->HasObservableSideEffects());
HValue* other = map->Lookup(instr);
if (other != NULL) {
ASSERT(instr->Equals(other) && other->Equals(instr));
TRACE_GVN_4("Replacing value %d (%s) with value %d (%s)\n",
instr->id(),
instr->Mnemonic(),
other->id(),
other->Mnemonic());
if (instr->HasSideEffects()) removed_side_effects_ = true;
instr->DeleteAndReplaceWith(other);
} else {
map->Add(instr, zone());
}
}
if (instr->IsLinked() &&
instr->CheckFlag(HValue::kTrackSideEffectDominators)) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
HValue* other = dominators->at(i);
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
GVNFlag depends_on_flag = HValue::DependsOnFlagFromInt(i);
if (instr->DependsOnFlags().Contains(depends_on_flag) &&
(other != NULL)) {
TRACE_GVN_5("Side-effect #%d in %d (%s) is dominated by %d (%s)\n",
i,
instr->id(),
instr->Mnemonic(),
other->id(),
other->Mnemonic());
instr->SetSideEffectDominator(changes_flag, other);
}
}
}
instr = next;
}
HBasicBlock* dominator_block;
GvnBasicBlockState* next =
current->next_in_dominator_tree_traversal(zone(), &dominator_block);
if (next != NULL) {
HBasicBlock* dominated = next->block();
HValueMap* successor_map = next->map();
HSideEffectMap* successor_dominators = next->dominators();
// Kill everything killed on any path between this block and the
// dominated block. We don't have to traverse these paths if the
// value map and the dominators list is already empty. If the range
// of block ids (block_id, dominated_id) is empty there are no such
// paths.
if ((!successor_map->IsEmpty() || !successor_dominators->IsEmpty()) &&
dominator_block->block_id() + 1 < dominated->block_id()) {
visited_on_paths_.Clear();
GVNFlagSet side_effects_on_all_paths =
CollectSideEffectsOnPathsToDominatedBlock(dominator_block,
dominated);
successor_map->Kill(side_effects_on_all_paths);
successor_dominators->Kill(side_effects_on_all_paths);
}
}
current = next;
}
}
void HInferRepresentation::AddToWorklist(HValue* current) {
if (current->representation().IsTagged()) return;
if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return;
if (in_worklist_.Contains(current->id())) return;
worklist_.Add(current, zone());
in_worklist_.Add(current->id());
}
void HInferRepresentation::Analyze() {
HPhase phase("H_Infer representations", graph_);
// (1) Initialize bit vectors and count real uses. Each phi gets a
// bit-vector of length <number of phis>.
const ZoneList<HPhi*>* phi_list = graph_->phi_list();
int phi_count = phi_list->length();
ZoneList<BitVector*> connected_phis(phi_count, graph_->zone());
for (int i = 0; i < phi_count; ++i) {
phi_list->at(i)->InitRealUses(i);
BitVector* connected_set = new(zone()) BitVector(phi_count, graph_->zone());
connected_set->Add(i);
connected_phis.Add(connected_set, zone());
}
// (2) Do a fixed point iteration to find the set of connected phis. A
// phi is connected to another phi if its value is used either directly or
// indirectly through a transitive closure of the def-use relation.
bool change = true;
while (change) {
change = false;
// We normally have far more "forward edges" than "backward edges",
// so we terminate faster when we walk backwards.
for (int i = phi_count - 1; i >= 0; --i) {
HPhi* phi = phi_list->at(i);
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (use->IsPhi()) {
int id = HPhi::cast(use)->phi_id();
if (connected_phis[i]->UnionIsChanged(*connected_phis[id]))
change = true;
}
}
}
}
// (3a) Use the phi reachability information from step 2 to
// push information about values which can't be converted to integer
// without deoptimization through the phi use-def chains, avoiding
// unnecessary deoptimizations later.
for (int i = 0; i < phi_count; ++i) {
HPhi* phi = phi_list->at(i);
bool cti = phi->AllOperandsConvertibleToInteger();
if (cti) continue;
for (BitVector::Iterator it(connected_phis.at(i));
!it.Done();
it.Advance()) {
HPhi* phi = phi_list->at(it.Current());
phi->set_is_convertible_to_integer(false);
}
}
// (3b) Use the phi reachability information from step 2 to
// sum up the non-phi use counts of all connected phis.
for (int i = 0; i < phi_count; ++i) {
HPhi* phi = phi_list->at(i);
for (BitVector::Iterator it(connected_phis.at(i));
!it.Done();
it.Advance()) {
int index = it.Current();
HPhi* it_use = phi_list->at(index);
if (index != i) phi->AddNonPhiUsesFrom(it_use); // Don't count twice.
}
}
// Initialize work list
for (int i = 0; i < graph_->blocks()->length(); ++i) {
HBasicBlock* block = graph_->blocks()->at(i);
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); ++j) {
AddToWorklist(phis->at(j));
}
HInstruction* current = block->first();
while (current != NULL) {
AddToWorklist(current);
current = current->next();
}
}
// Do a fixed point iteration, trying to improve representations
while (!worklist_.is_empty()) {
HValue* current = worklist_.RemoveLast();
in_worklist_.Remove(current->id());
current->InferRepresentation(this);
}
// Lastly: any instruction that we don't have representation information
// for defaults to Tagged.
for (int i = 0; i < graph_->blocks()->length(); ++i) {
HBasicBlock* block = graph_->blocks()->at(i);
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); ++j) {
HPhi* phi = phis->at(j);
if (phi->representation().IsNone()) {
phi->ChangeRepresentation(Representation::Tagged());
}
}
for (HInstruction* current = block->first();
current != NULL; current = current->next()) {
if (current->representation().IsNone() &&
current->CheckFlag(HInstruction::kFlexibleRepresentation)) {
current->ChangeRepresentation(Representation::Tagged());
}
}
}
}
void HGraph::MergeRemovableSimulates() {
ZoneList<HSimulate*> mergelist(2, zone());
for (int i = 0; i < blocks()->length(); ++i) {
HBasicBlock* block = blocks()->at(i);
// Make sure the merge list is empty at the start of a block.
ASSERT(mergelist.is_empty());
// Nasty heuristic: Never remove the first simulate in a block. This
// just so happens to have a beneficial effect on register allocation.
bool first = true;
for (HInstruction* current = block->first();
current != NULL; current = current->next()) {
if (current->IsLeaveInlined()) {
// Never fold simulates from inlined environments into simulates
// in the outer environment.
// (Before each HEnterInlined, there is a non-foldable HSimulate
// anyway, so we get the barrier in the other direction for free.)
// Simply remove all accumulated simulates without merging. This
// is safe because simulates after instructions with side effects
// are never added to the merge list.
while (!mergelist.is_empty()) {
mergelist.RemoveLast()->DeleteAndReplaceWith(NULL);
}
continue;
}
// Skip the non-simulates and the first simulate.
if (!current->IsSimulate()) continue;
if (first) {
first = false;
continue;
}
HSimulate* current_simulate = HSimulate::cast(current);
if ((current_simulate->previous()->HasObservableSideEffects() &&
!current_simulate->next()->IsSimulate()) ||
!current_simulate->is_candidate_for_removal()) {
// This simulate is not suitable for folding.
// Fold the ones accumulated so far.
current_simulate->MergeWith(&mergelist);
continue;
} else {
// Accumulate this simulate for folding later on.
mergelist.Add(current_simulate, zone());
}
}
if (!mergelist.is_empty()) {
// Merge the accumulated simulates at the end of the block.
HSimulate* last = mergelist.RemoveLast();
last->MergeWith(&mergelist);
}
}
}
void HGraph::InitializeInferredTypes() {
HPhase phase("H_Inferring types", this);
InitializeInferredTypes(0, this->blocks_.length() - 1);
}
void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) {
for (int i = from_inclusive; i <= to_inclusive; ++i) {
HBasicBlock* block = blocks_[i];
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); j++) {
phis->at(j)->UpdateInferredType();
}
HInstruction* current = block->first();
while (current != NULL) {
current->UpdateInferredType();
current = current->next();
}
if (block->IsLoopHeader()) {
HBasicBlock* last_back_edge =
block->loop_information()->GetLastBackEdge();
InitializeInferredTypes(i + 1, last_back_edge->block_id());
// Skip all blocks already processed by the recursive call.
i = last_back_edge->block_id();
// Update phis of the loop header now after the whole loop body is
// guaranteed to be processed.
ZoneList<HValue*> worklist(block->phis()->length(), zone());
for (int j = 0; j < block->phis()->length(); ++j) {
worklist.Add(block->phis()->at(j), zone());
}
InferTypes(&worklist);
}
}
}
void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) {
HValue* current = value;
while (current != NULL) {
if (visited->Contains(current->id())) return;
// For phis, we must propagate the check to all of its inputs.
if (current->IsPhi()) {
visited->Add(current->id());
HPhi* phi = HPhi::cast(current);
for (int i = 0; i < phi->OperandCount(); ++i) {
PropagateMinusZeroChecks(phi->OperandAt(i), visited);
}
break;
}
// For multiplication, division, and Math.min/max(), we must propagate
// to the left and the right side.
if (current->IsMul()) {
HMul* mul = HMul::cast(current);
mul->EnsureAndPropagateNotMinusZero(visited);
PropagateMinusZeroChecks(mul->left(), visited);
PropagateMinusZeroChecks(mul->right(), visited);
} else if (current->IsDiv()) {
HDiv* div = HDiv::cast(current);
div->EnsureAndPropagateNotMinusZero(visited);
PropagateMinusZeroChecks(div->left(), visited);
PropagateMinusZeroChecks(div->right(), visited);
} else if (current->IsMathMinMax()) {
HMathMinMax* minmax = HMathMinMax::cast(current);
visited->Add(minmax->id());
PropagateMinusZeroChecks(minmax->left(), visited);
PropagateMinusZeroChecks(minmax->right(), visited);
}
current = current->EnsureAndPropagateNotMinusZero(visited);
}
}
void HGraph::InsertRepresentationChangeForUse(HValue* value,
HValue* use_value,
int use_index,
Representation to) {
// Insert the representation change right before its use. For phi-uses we
// insert at the end of the corresponding predecessor.
HInstruction* next = NULL;
if (use_value->IsPhi()) {
next = use_value->block()->predecessors()->at(use_index)->end();
} else {
next = HInstruction::cast(use_value);
}
// For constants we try to make the representation change at compile
// time. When a representation change is not possible without loss of
// information we treat constants like normal instructions and insert the
// change instructions for them.
HInstruction* new_value = NULL;
bool is_truncating = use_value->CheckFlag(HValue::kTruncatingToInt32);
bool deoptimize_on_undefined =
use_value->CheckFlag(HValue::kDeoptimizeOnUndefined);
if (value->IsConstant()) {
HConstant* constant = HConstant::cast(value);
// Try to create a new copy of the constant with the new representation.
new_value = (is_truncating && to.IsInteger32())
? constant->CopyToTruncatedInt32(zone())
: constant->CopyToRepresentation(to, zone());
}
if (new_value == NULL) {
new_value = new(zone()) HChange(value, to,
is_truncating, deoptimize_on_undefined);
}
new_value->InsertBefore(next);
use_value->SetOperandAt(use_index, new_value);
}
void HGraph::InsertRepresentationChangesForValue(HValue* value) {
Representation r = value->representation();
if (r.IsNone()) return;
if (value->HasNoUses()) return;
for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) {
HValue* use_value = it.value();
int use_index = it.index();
Representation req = use_value->RequiredInputRepresentation(use_index);
if (req.IsNone() || req.Equals(r)) continue;
InsertRepresentationChangeForUse(value, use_value, use_index, req);
}
if (value->HasNoUses()) {
ASSERT(value->IsConstant());
value->DeleteAndReplaceWith(NULL);
}
// The only purpose of a HForceRepresentation is to represent the value
// after the (possible) HChange instruction. We make it disappear.
if (value->IsForceRepresentation()) {
value->DeleteAndReplaceWith(HForceRepresentation::cast(value)->value());
}
}
void HGraph::InsertRepresentationChanges() {
HPhase phase("H_Representation changes", this);
// Compute truncation flag for phis: Initially assume that all
// int32-phis allow truncation and iteratively remove the ones that
// are used in an operation that does not allow a truncating
// conversion.
// TODO(fschneider): Replace this with a worklist-based iteration.
for (int i = 0; i < phi_list()->length(); i++) {
HPhi* phi = phi_list()->at(i);
if (phi->representation().IsInteger32()) {
phi->SetFlag(HValue::kTruncatingToInt32);
}
}
bool change = true;
while (change) {
change = false;
for (int i = 0; i < phi_list()->length(); i++) {
HPhi* phi = phi_list()->at(i);
if (!phi->CheckFlag(HValue::kTruncatingToInt32)) continue;
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
// If a Phi is used as a non-truncating int32 or as a double,
// clear its "truncating" flag.
HValue* use = it.value();
Representation input_representation =
use->RequiredInputRepresentation(it.index());
if ((input_representation.IsInteger32() &&
!use->CheckFlag(HValue::kTruncatingToInt32)) ||
input_representation.IsDouble()) {
if (FLAG_trace_representation) {
PrintF("#%d Phi is not truncating because of #%d %s\n",
phi->id(), it.value()->id(), it.value()->Mnemonic());
}
phi->ClearFlag(HValue::kTruncatingToInt32);
change = true;
break;
}
}
}
}
for (int i = 0; i < blocks_.length(); ++i) {
// Process phi instructions first.
const ZoneList<HPhi*>* phis = blocks_[i]->phis();
for (int j = 0; j < phis->length(); j++) {
InsertRepresentationChangesForValue(phis->at(j));
}
// Process normal instructions.
HInstruction* current = blocks_[i]->first();
while (current != NULL) {
HInstruction* next = current->next();
InsertRepresentationChangesForValue(current);
current = next;
}
}
}
void HGraph::RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi* phi) {
if (phi->CheckFlag(HValue::kDeoptimizeOnUndefined)) return;
phi->SetFlag(HValue::kDeoptimizeOnUndefined);
for (int i = 0; i < phi->OperandCount(); ++i) {
HValue* input = phi->OperandAt(i);
if (input->IsPhi()) {
RecursivelyMarkPhiDeoptimizeOnUndefined(HPhi::cast(input));
}
}
}
void HGraph::MarkDeoptimizeOnUndefined() {
HPhase phase("H_MarkDeoptimizeOnUndefined", this);
// Compute DeoptimizeOnUndefined flag for phis.
// Any phi that can reach a use with DeoptimizeOnUndefined set must
// have DeoptimizeOnUndefined set. Currently only HCompareIDAndBranch, with
// double input representation, has this flag set.
// The flag is used by HChange tagged->double, which must deoptimize
// if one of its uses has this flag set.
for (int i = 0; i < phi_list()->length(); i++) {
HPhi* phi = phi_list()->at(i);
if (phi->representation().IsDouble()) {
for (HUseIterator it(phi->uses()); !it.Done(); it.Advance()) {
if (it.value()->CheckFlag(HValue::kDeoptimizeOnUndefined)) {
RecursivelyMarkPhiDeoptimizeOnUndefined(phi);
break;
}
}
}
}
}
// Discover instructions that can be marked with kUint32 flag allowing
// them to produce full range uint32 values.
class Uint32Analysis BASE_EMBEDDED {
public:
explicit Uint32Analysis(Zone* zone) : zone_(zone), phis_(4, zone) { }
void Analyze(HInstruction* current);
void UnmarkUnsafePhis();
private:
bool IsSafeUint32Use(HValue* val, HValue* use);
bool Uint32UsesAreSafe(HValue* uint32val);
bool CheckPhiOperands(HPhi* phi);
void UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist);
Zone* zone_;
ZoneList<HPhi*> phis_;
};
bool Uint32Analysis::IsSafeUint32Use(HValue* val, HValue* use) {
// Operations that operatate on bits are safe.
if (use->IsBitwise() ||
use->IsShl() ||
use->IsSar() ||
use->IsShr() ||
use->IsBitNot()) {
return true;
} else if (use->IsChange() || use->IsSimulate()) {
// Conversions and deoptimization have special support for unt32.
return true;
} else if (use->IsStoreKeyed()) {
HStoreKeyed* store = HStoreKeyed::cast(use);
if (store->is_external()) {
// Storing a value into an external integer array is a bit level
// operation.
if (store->value() == val) {
// Clamping or a conversion to double should have beed inserted.
ASSERT(store->elements_kind() != EXTERNAL_PIXEL_ELEMENTS);
ASSERT(store->elements_kind() != EXTERNAL_FLOAT_ELEMENTS);
ASSERT(store->elements_kind() != EXTERNAL_DOUBLE_ELEMENTS);
return true;
}
}
}
return false;
}
// Iterate over all uses and verify that they are uint32 safe: either don't
// distinguish between int32 and uint32 due to their bitwise nature or
// have special support for uint32 values.
// Encountered phis are optimisitically treated as safe uint32 uses,
// marked with kUint32 flag and collected in the phis_ list. A separate
// path will be performed later by UnmarkUnsafePhis to clear kUint32 from
// phis that are not actually uint32-safe (it requries fix point iteration).
bool Uint32Analysis::Uint32UsesAreSafe(HValue* uint32val) {
bool collect_phi_uses = false;
for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (use->IsPhi()) {
if (!use->CheckFlag(HInstruction::kUint32)) {
// There is a phi use of this value from a phis that is not yet
// collected in phis_ array. Separate pass is required.
collect_phi_uses = true;
}
// Optimistically treat phis as uint32 safe.
continue;
}
if (!IsSafeUint32Use(uint32val, use)) {
return false;
}
}
if (collect_phi_uses) {
for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
// There is a phi use of this value from a phis that is not yet
// collected in phis_ array. Separate pass is required.
if (use->IsPhi() && !use->CheckFlag(HInstruction::kUint32)) {
use->SetFlag(HInstruction::kUint32);
phis_.Add(HPhi::cast(use), zone_);
}
}
}
return true;
}
// Analyze instruction and mark it with kUint32 if all its uses are uint32
// safe.
void Uint32Analysis::Analyze(HInstruction* current) {
if (Uint32UsesAreSafe(current)) current->SetFlag(HInstruction::kUint32);
}
// Check if all operands to the given phi are marked with kUint32 flag.
bool Uint32Analysis::CheckPhiOperands(HPhi* phi) {
if (!phi->CheckFlag(HInstruction::kUint32)) {
// This phi is not uint32 safe. No need to check operands.
return false;
}
for (int j = 0; j < phi->OperandCount(); j++) {
HValue* operand = phi->OperandAt(j);
if (!operand->CheckFlag(HInstruction::kUint32)) {
// Lazyly mark constants that fit into uint32 range with kUint32 flag.
if (operand->IsConstant() &&
HConstant::cast(operand)->IsUint32()) {
operand->SetFlag(HInstruction::kUint32);
continue;
}
// This phi is not safe, some operands are not uint32 values.
return false;
}
}
return true;
}
// Remove kUint32 flag from the phi itself and its operands. If any operand
// was a phi marked with kUint32 place it into a worklist for
// transitive clearing of kUint32 flag.
void Uint32Analysis::UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist) {
phi->ClearFlag(HInstruction::kUint32);
for (int j = 0; j < phi->OperandCount(); j++) {
HValue* operand = phi->OperandAt(j);
if (operand->CheckFlag(HInstruction::kUint32)) {
operand->ClearFlag(HInstruction::kUint32);
if (operand->IsPhi()) {
worklist->Add(HPhi::cast(operand), zone_);
}
}
}
}
void Uint32Analysis::UnmarkUnsafePhis() {
// No phis were collected. Nothing to do.
if (phis_.length() == 0) return;
// Worklist used to transitively clear kUint32 from phis that
// are used as arguments to other phis.
ZoneList<HPhi*> worklist(phis_.length(), zone_);
// Phi can be used as a uint32 value if and only if
// all its operands are uint32 values and all its
// uses are uint32 safe.
// Iterate over collected phis and unmark those that
// are unsafe. When unmarking phi unmark its operands
// and add it to the worklist if it is a phi as well.
// Phis that are still marked as safe are shifted down
// so that all safe phis form a prefix of the phis_ array.
int phi_count = 0;
for (int i = 0; i < phis_.length(); i++) {
HPhi* phi = phis_[i];
if (CheckPhiOperands(phi) && Uint32UsesAreSafe(phi)) {
phis_[phi_count++] = phi;
} else {
UnmarkPhi(phi, &worklist);
}
}
// Now phis array contains only those phis that have safe
// non-phi uses. Start transitively clearing kUint32 flag
// from phi operands of discovered non-safe phies until
// only safe phies are left.
while (!worklist.is_empty()) {
while (!worklist.is_empty()) {
HPhi* phi = worklist.RemoveLast();
UnmarkPhi(phi, &worklist);
}
// Check if any operands to safe phies were unmarked
// turning a safe phi into unsafe. The same value
// can flow into several phis.
int new_phi_count = 0;
for (int i = 0; i < phi_count; i++) {
HPhi* phi = phis_[i];
if (CheckPhiOperands(phi)) {
phis_[new_phi_count++] = phi;
} else {
UnmarkPhi(phi, &worklist);
}
}
phi_count = new_phi_count;
}
}
void HGraph::ComputeSafeUint32Operations() {
if (!FLAG_opt_safe_uint32_operations || uint32_instructions_ == NULL) {
return;
}
Uint32Analysis analysis(zone());
for (int i = 0; i < uint32_instructions_->length(); ++i) {
HInstruction* current = uint32_instructions_->at(i);
if (current->IsLinked() && current->representation().IsInteger32()) {
analysis.Analyze(current);
}
}
// Some phis might have been optimistically marked with kUint32 flag.
// Remove this flag from those phis that are unsafe and propagate
// this information transitively potentially clearing kUint32 flag
// from some non-phi operations that are used as operands to unsafe phis.
analysis.UnmarkUnsafePhis();
}
void HGraph::ComputeMinusZeroChecks() {
BitVector visited(GetMaximumValueID(), zone());
for (int i = 0; i < blocks_.length(); ++i) {
for (HInstruction* current = blocks_[i]->first();
current != NULL;
current = current->next()) {
if (current->IsChange()) {
HChange* change = HChange::cast(current);
// Propagate flags for negative zero checks upwards from conversions
// int32-to-tagged and int32-to-double.
Representation from = change->value()->representation();
ASSERT(from.Equals(change->from()));
if (from.IsInteger32()) {
ASSERT(change->to().IsTagged() || change->to().IsDouble());
ASSERT(visited.IsEmpty());
PropagateMinusZeroChecks(change->value(), &visited);
visited.Clear();
}
}
}
}
}
// Implementation of utility class to encapsulate the translation state for
// a (possibly inlined) function.
FunctionState::FunctionState(HOptimizedGraphBuilder* owner,
CompilationInfo* info,
TypeFeedbackOracle* oracle,
InliningKind inlining_kind)
: owner_(owner),
compilation_info_(info),
oracle_(oracle),
call_context_(NULL),
inlining_kind_(inlining_kind),
function_return_(NULL),
test_context_(NULL),
entry_(NULL),
arguments_elements_(NULL),
outer_(owner->function_state()) {
if (outer_ != NULL) {
// State for an inline function.
if (owner->ast_context()->IsTest()) {
HBasicBlock* if_true = owner->graph()->CreateBasicBlock();
HBasicBlock* if_false = owner->graph()->CreateBasicBlock();
if_true->MarkAsInlineReturnTarget();
if_false->MarkAsInlineReturnTarget();
TestContext* outer_test_context = TestContext::cast(owner->ast_context());
Expression* cond = outer_test_context->condition();
TypeFeedbackOracle* outer_oracle = outer_test_context->oracle();
// The AstContext constructor pushed on the context stack. This newed
// instance is the reason that AstContext can't be BASE_EMBEDDED.
test_context_ =
new TestContext(owner, cond, outer_oracle, if_true, if_false);
} else {
function_return_ = owner->graph()->CreateBasicBlock();
function_return()->MarkAsInlineReturnTarget();
}
// Set this after possibly allocating a new TestContext above.
call_context_ = owner->ast_context();
}
// Push on the state stack.
owner->set_function_state(this);
}
FunctionState::~FunctionState() {
delete test_context_;
owner_->set_function_state(outer_);
}
// Implementation of utility classes to represent an expression's context in
// the AST.
AstContext::AstContext(HOptimizedGraphBuilder* owner, Expression::Context kind)
: owner_(owner),
kind_(kind),
outer_(owner->ast_context()),
for_typeof_(false) {
owner->set_ast_context(this); // Push.
#ifdef DEBUG
ASSERT(owner->environment()->frame_type() == JS_FUNCTION);
original_length_ = owner->environment()->length();
#endif
}
AstContext::~AstContext() {
owner_->set_ast_context(outer_); // Pop.
}
EffectContext::~EffectContext() {
ASSERT(owner()->HasStackOverflow() ||
owner()->current_block() == NULL ||
(owner()->environment()->length() == original_length_ &&
owner()->environment()->frame_type() == JS_FUNCTION));
}
ValueContext::~ValueContext() {
ASSERT(owner()->HasStackOverflow() ||
owner()->current_block() == NULL ||
(owner()->environment()->length() == original_length_ + 1 &&
owner()->environment()->frame_type() == JS_FUNCTION));
}
void EffectContext::ReturnValue(HValue* value) {
// The value is simply ignored.
}
void ValueContext::ReturnValue(HValue* value) {
// The value is tracked in the bailout environment, and communicated
// through the environment as the result of the expression.
if (!arguments_allowed() && value->CheckFlag(HValue::kIsArguments)) {
owner()->Bailout("bad value context for arguments value");
}
owner()->Push(value);
}
void TestContext::ReturnValue(HValue* value) {
BuildBranch(value);
}
void EffectContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->IsControlInstruction());
owner()->AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
owner()->AddSimulate(ast_id, REMOVABLE_SIMULATE);
}
}
void EffectContext::ReturnControl(HControlInstruction* instr,
BailoutId ast_id) {
ASSERT(!instr->HasObservableSideEffects());
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, empty_true);
instr->SetSuccessorAt(1, empty_false);
owner()->current_block()->Finish(instr);
HBasicBlock* join = owner()->CreateJoin(empty_true, empty_false, ast_id);
owner()->set_current_block(join);
}
void ValueContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->IsControlInstruction());
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
return owner()->Bailout("bad value context for arguments object value");
}
owner()->AddInstruction(instr);
owner()->Push(instr);
if (instr->HasObservableSideEffects()) {
owner()->AddSimulate(ast_id, REMOVABLE_SIMULATE);
}
}
void ValueContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->HasObservableSideEffects());
if (!arguments_allowed() && instr->CheckFlag(HValue::kIsArguments)) {
return owner()->Bailout("bad value context for arguments object value");
}
HBasicBlock* materialize_false = owner()->graph()->CreateBasicBlock();
HBasicBlock* materialize_true = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, materialize_true);
instr->SetSuccessorAt(1, materialize_false);
owner()->current_block()->Finish(instr);
owner()->set_current_block(materialize_true);
owner()->Push(owner()->graph()->GetConstantTrue());
owner()->set_current_block(materialize_false);
owner()->Push(owner()->graph()->GetConstantFalse());
HBasicBlock* join =
owner()->CreateJoin(materialize_true, materialize_false, ast_id);
owner()->set_current_block(join);
}
void TestContext::ReturnInstruction(HInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->IsControlInstruction());
HOptimizedGraphBuilder* builder = owner();
builder->AddInstruction(instr);
// We expect a simulate after every expression with side effects, though
// this one isn't actually needed (and wouldn't work if it were targeted).
if (instr->HasObservableSideEffects()) {
builder->Push(instr);
builder->AddSimulate(ast_id, REMOVABLE_SIMULATE);
builder->Pop();
}
BuildBranch(instr);
}
void TestContext::ReturnControl(HControlInstruction* instr, BailoutId ast_id) {
ASSERT(!instr->HasObservableSideEffects());
HBasicBlock* empty_true = owner()->graph()->CreateBasicBlock();
HBasicBlock* empty_false = owner()->graph()->CreateBasicBlock();
instr->SetSuccessorAt(0, empty_true);
instr->SetSuccessorAt(1, empty_false);
owner()->current_block()->Finish(instr);
empty_true->Goto(if_true(), owner()->function_state());
empty_false->Goto(if_false(), owner()->function_state());
owner()->set_current_block(NULL);
}
void TestContext::BuildBranch(HValue* value) {
// We expect the graph to be in edge-split form: there is no edge that
// connects a branch node to a join node. We conservatively ensure that
// property by always adding an empty block on the outgoing edges of this
// branch.
HOptimizedGraphBuilder* builder = owner();
if (value != NULL && value->CheckFlag(HValue::kIsArguments)) {
builder->Bailout("arguments object value in a test context");
}
if (value->IsConstant()) {
HConstant* constant_value = HConstant::cast(value);
if (constant_value->ToBoolean()) {
builder->current_block()->Goto(if_true(), builder->function_state());
} else {
builder->current_block()->Goto(if_false(), builder->function_state());
}
builder->set_current_block(NULL);
return;
}
HBasicBlock* empty_true = builder->graph()->CreateBasicBlock();
HBasicBlock* empty_false = builder->graph()->CreateBasicBlock();
TypeFeedbackId test_id = condition()->test_id();
ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id));
HBranch* test = new(zone()) HBranch(value, empty_true, empty_false, expected);
builder->current_block()->Finish(test);
empty_true->Goto(if_true(), builder->function_state());
empty_false->Goto(if_false(), builder->function_state());
builder->set_current_block(NULL);
}
// HOptimizedGraphBuilder infrastructure for bailing out and checking bailouts.
#define CHECK_BAILOUT(call) \
do { \
call; \
if (HasStackOverflow()) return; \
} while (false)
#define CHECK_ALIVE(call) \
do { \
call; \
if (HasStackOverflow() || current_block() == NULL) return; \
} while (false)
void HOptimizedGraphBuilder::Bailout(const char* reason) {
info()->set_bailout_reason(reason);
SetStackOverflow();
}
void HOptimizedGraphBuilder::VisitForEffect(Expression* expr) {
EffectContext for_effect(this);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForValue(Expression* expr,
ArgumentsAllowedFlag flag) {
ValueContext for_value(this, flag);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForTypeOf(Expression* expr) {
ValueContext for_value(this, ARGUMENTS_NOT_ALLOWED);
for_value.set_for_typeof(true);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitForControl(Expression* expr,
HBasicBlock* true_block,
HBasicBlock* false_block) {
TestContext for_test(this, expr, oracle(), true_block, false_block);
Visit(expr);
}
void HOptimizedGraphBuilder::VisitArgument(Expression* expr) {
CHECK_ALIVE(VisitForValue(expr));
Push(AddInstruction(new(zone()) HPushArgument(Pop())));
}
void HOptimizedGraphBuilder::VisitArgumentList(
ZoneList<Expression*>* arguments) {
for (int i = 0; i < arguments->length(); i++) {
CHECK_ALIVE(VisitArgument(arguments->at(i)));
}
}
void HOptimizedGraphBuilder::VisitExpressions(
ZoneList<Expression*>* exprs) {
for (int i = 0; i < exprs->length(); ++i) {
CHECK_ALIVE(VisitForValue(exprs->at(i)));
}
}
bool HOptimizedGraphBuilder::BuildGraph() {
Scope* scope = info()->scope();
if (scope->HasIllegalRedeclaration()) {
Bailout("function with illegal redeclaration");
return false;
}
if (scope->calls_eval()) {
Bailout("function calls eval");
return false;
}
SetUpScope(scope);
// Add an edge to the body entry. This is warty: the graph's start
// environment will be used by the Lithium translation as the initial
// environment on graph entry, but it has now been mutated by the
// Hydrogen translation of the instructions in the start block. This
// environment uses values which have not been defined yet. These
// Hydrogen instructions will then be replayed by the Lithium
// translation, so they cannot have an environment effect. The edge to
// the body's entry block (along with some special logic for the start
// block in HInstruction::InsertAfter) seals the start block from
// getting unwanted instructions inserted.
//
// TODO(kmillikin): Fix this. Stop mutating the initial environment.
// Make the Hydrogen instructions in the initial block into Hydrogen
// values (but not instructions), present in the initial environment and
// not replayed by the Lithium translation.
HEnvironment* initial_env = environment()->CopyWithoutHistory();
HBasicBlock* body_entry = CreateBasicBlock(initial_env);
current_block()->Goto(body_entry);
body_entry->SetJoinId(BailoutId::FunctionEntry());
set_current_block(body_entry);
// Handle implicit declaration of the function name in named function
// expressions before other declarations.
if (scope->is_function_scope() && scope->function() != NULL) {
VisitVariableDeclaration(scope->function());
}
VisitDeclarations(scope->declarations());
AddSimulate(BailoutId::Declarations());
HValue* context = environment()->LookupContext();
AddInstruction(
new(zone()) HStackCheck(context, HStackCheck::kFunctionEntry));
VisitStatements(info()->function()->body());
if (HasStackOverflow()) return false;
if (current_block() != NULL) {
HReturn* instr = new(zone()) HReturn(graph()->GetConstantUndefined(),
context);
current_block()->FinishExit(instr);
set_current_block(NULL);
}
// If the checksum of the number of type info changes is the same as the
// last time this function was compiled, then this recompile is likely not
// due to missing/inadequate type feedback, but rather too aggressive
// optimization. Disable optimistic LICM in that case.
Handle<Code> unoptimized_code(info()->shared_info()->code());
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
Handle<TypeFeedbackInfo> type_info(
TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
int checksum = type_info->own_type_change_checksum();
int composite_checksum = graph()->update_type_change_checksum(checksum);
graph()->set_use_optimistic_licm(
!type_info->matches_inlined_type_change_checksum(composite_checksum));
type_info->set_inlined_type_change_checksum(composite_checksum);
return true;
}
void HGraph::GlobalValueNumbering() {
// Perform common subexpression elimination and loop-invariant code motion.
if (FLAG_use_gvn) {
HPhase phase("H_Global value numbering", this);
HGlobalValueNumberer gvn(this, info());
bool removed_side_effects = gvn.Analyze();
// Trigger a second analysis pass to further eliminate duplicate values that
// could only be discovered by removing side-effect-generating instructions
// during the first pass.
if (FLAG_smi_only_arrays && removed_side_effects) {
removed_side_effects = gvn.Analyze();
ASSERT(!removed_side_effects);
}
}
}
bool HGraph::Optimize(SmartArrayPointer<char>* bailout_reason) {
*bailout_reason = SmartArrayPointer<char>();
OrderBlocks();
AssignDominators();
// We need to create a HConstant "zero" now so that GVN will fold every
// zero-valued constant in the graph together.
// The constant is needed to make idef-based bounds check work: the pass
// evaluates relations with "zero" and that zero cannot be created after GVN.
GetConstant0();
#ifdef DEBUG
// Do a full verify after building the graph and computing dominators.
Verify(true);
#endif
PropagateDeoptimizingMark();
if (!CheckConstPhiUses()) {
*bailout_reason = SmartArrayPointer<char>(StrDup(
"Unsupported phi use of const variable"));
return false;
}
EliminateRedundantPhis();
if (!CheckArgumentsPhiUses()) {
*bailout_reason = SmartArrayPointer<char>(StrDup(
"Unsupported phi use of arguments"));
return false;
}
if (FLAG_eliminate_dead_phis) EliminateUnreachablePhis();
CollectPhis();
if (has_osr_loop_entry()) {
const ZoneList<HPhi*>* phis = osr_loop_entry()->phis();
for (int j = 0; j < phis->length(); j++) {
HPhi* phi = phis->at(j);
osr_values()->at(phi->merged_index())->set_incoming_value(phi);
}
}
HInferRepresentation rep(this);
rep.Analyze();
// Remove HSimulate instructions that have turned out not to be needed
// after all by folding them into the following HSimulate.
// This must happen after inferring representations.
MergeRemovableSimulates();
MarkDeoptimizeOnUndefined();
InsertRepresentationChanges();
InitializeInferredTypes();
// Must be performed before canonicalization to ensure that Canonicalize
// will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
// zero.
ComputeSafeUint32Operations();
Canonicalize();
GlobalValueNumbering();
if (FLAG_use_range) {
HRangeAnalysis rangeAnalysis(this);
rangeAnalysis.Analyze();
}
ComputeMinusZeroChecks();
// Eliminate redundant stack checks on backwards branches.
HStackCheckEliminator sce(this);
sce.Process();
if (FLAG_idefs) SetupInformativeDefinitions();
if (FLAG_array_bounds_checks_elimination && !FLAG_idefs) {
EliminateRedundantBoundsChecks();
}
if (FLAG_array_index_dehoisting) DehoistSimpleArrayIndexComputations();
if (FLAG_dead_code_elimination) DeadCodeElimination();
RestoreActualValues();
return true;
}
void HGraph::SetupInformativeDefinitionsInBlock(HBasicBlock* block) {
for (int phi_index = 0; phi_index < block->phis()->length(); phi_index++) {
HPhi* phi = block->phis()->at(phi_index);
phi->AddInformativeDefinitions();
phi->SetFlag(HValue::kIDefsProcessingDone);
// We do not support phis that "redefine just one operand".
ASSERT(!phi->IsInformativeDefinition());
}
for (HInstruction* i = block->first(); i != NULL; i = i->next()) {
i->AddInformativeDefinitions();
i->SetFlag(HValue::kIDefsProcessingDone);
i->UpdateRedefinedUsesWhileSettingUpInformativeDefinitions();
}
}
// This method is recursive, so if its stack frame is large it could
// cause a stack overflow.
// To keep the individual stack frames small we do the actual work inside
// SetupInformativeDefinitionsInBlock();
void HGraph::SetupInformativeDefinitionsRecursively(HBasicBlock* block) {
SetupInformativeDefinitionsInBlock(block);
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
SetupInformativeDefinitionsRecursively(block->dominated_blocks()->at(i));
}
}
void HGraph::SetupInformativeDefinitions() {
HPhase phase("H_Setup informative definitions", this);
SetupInformativeDefinitionsRecursively(entry_block());
}
// We try to "factor up" HBoundsCheck instructions towards the root of the
// dominator tree.
// For now we handle checks where the index is like "exp + int32value".
// If in the dominator tree we check "exp + v1" and later (dominated)
// "exp + v2", if v2 <= v1 we can safely remove the second check, and if
// v2 > v1 we can use v2 in the 1st check and again remove the second.
// To do so we keep a dictionary of all checks where the key if the pair
// "exp, length".
// The class BoundsCheckKey represents this key.
class BoundsCheckKey : public ZoneObject {
public:
HValue* IndexBase() const { return index_base_; }
HValue* Length() const { return length_; }
uint32_t Hash() {
return static_cast<uint32_t>(index_base_->Hashcode() ^ length_->Hashcode());
}
static BoundsCheckKey* Create(Zone* zone,
HBoundsCheck* check,
int32_t* offset) {
if (!check->index()->representation().IsInteger32()) return NULL;
HValue* index_base = NULL;
HConstant* constant = NULL;
bool is_sub = false;
if (check->index()->IsAdd()) {
HAdd* index = HAdd::cast(check->index());
if (index->left()->IsConstant()) {
constant = HConstant::cast(index->left());
index_base = index->right();
} else if (index->right()->IsConstant()) {
constant = HConstant::cast(index->right());
index_base = index->left();
}
} else if (check->index()->IsSub()) {
HSub* index = HSub::cast(check->index());
is_sub = true;
if (index->left()->IsConstant()) {
constant = HConstant::cast(index->left());
index_base = index->right();
} else if (index->right()->IsConstant()) {
constant = HConstant::cast(index->right());
index_base = index->left();
}
}
if (constant != NULL && constant->HasInteger32Value()) {
*offset = is_sub ? - constant->Integer32Value()
: constant->Integer32Value();
} else {
*offset = 0;
index_base = check->index();
}
return new(zone) BoundsCheckKey(index_base, check->length());
}
private:
BoundsCheckKey(HValue* index_base, HValue* length)
: index_base_(index_base),
length_(length) { }
HValue* index_base_;
HValue* length_;
};
// Data about each HBoundsCheck that can be eliminated or moved.
// It is the "value" in the dictionary indexed by "base-index, length"
// (the key is BoundsCheckKey).
// We scan the code with a dominator tree traversal.
// Traversing the dominator tree we keep a stack (implemented as a singly
// linked list) of "data" for each basic block that contains a relevant check
// with the same key (the dictionary holds the head of the list).
// We also keep all the "data" created for a given basic block in a list, and
// use it to "clean up" the dictionary when backtracking in the dominator tree
// traversal.
// Doing this each dictionary entry always directly points to the check that
// is dominating the code being examined now.
// We also track the current "offset" of the index expression and use it to
// decide if any check is already "covered" (so it can be removed) or not.
class BoundsCheckBbData: public ZoneObject {
public:
BoundsCheckKey* Key() const { return key_; }
int32_t LowerOffset() const { return lower_offset_; }
int32_t UpperOffset() const { return upper_offset_; }
HBasicBlock* BasicBlock() const { return basic_block_; }
HBoundsCheck* LowerCheck() const { return lower_check_; }
HBoundsCheck* UpperCheck() const { return upper_check_; }
BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; }
BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; }
bool OffsetIsCovered(int32_t offset) const {
return offset >= LowerOffset() && offset <= UpperOffset();
}
bool HasSingleCheck() { return lower_check_ == upper_check_; }
// The goal of this method is to modify either upper_offset_ or
// lower_offset_ so that also new_offset is covered (the covered
// range grows).
//
// The precondition is that new_check follows UpperCheck() and
// LowerCheck() in the same basic block, and that new_offset is not
// covered (otherwise we could simply remove new_check).
//
// If HasSingleCheck() is true then new_check is added as "second check"
// (either upper or lower; note that HasSingleCheck() becomes false).
// Otherwise one of the current checks is modified so that it also covers
// new_offset, and new_check is removed.
//
// If the check cannot be modified because the context is unknown it
// returns false, otherwise it returns true.
bool CoverCheck(HBoundsCheck* new_check,
int32_t new_offset) {
ASSERT(new_check->index()->representation().IsInteger32());
bool keep_new_check = false;
if (new_offset > upper_offset_) {
upper_offset_ = new_offset;
if (HasSingleCheck()) {
keep_new_check = true;
upper_check_ = new_check;
} else {
bool result = BuildOffsetAdd(upper_check_,
&added_upper_index_,
&added_upper_offset_,
Key()->IndexBase(),
new_check->index()->representation(),
new_offset);
if (!result) return false;
upper_check_->ReplaceAllUsesWith(upper_check_->index());
upper_check_->SetOperandAt(0, added_upper_index_);
}
} else if (new_offset < lower_offset_) {
lower_offset_ = new_offset;
if (HasSingleCheck()) {
keep_new_check = true;
lower_check_ = new_check;
} else {
bool result = BuildOffsetAdd(lower_check_,
&added_lower_index_,
&added_lower_offset_,
Key()->IndexBase(),
new_check->index()->representation(),
new_offset);
if (!result) return false;
lower_check_->ReplaceAllUsesWith(lower_check_->index());
lower_check_->SetOperandAt(0, added_lower_index_);
}
} else {
ASSERT(false);
}
if (!keep_new_check) {
new_check->DeleteAndReplaceWith(new_check->ActualValue());
}
return true;
}
void RemoveZeroOperations() {
RemoveZeroAdd(&added_lower_index_, &added_lower_offset_);
RemoveZeroAdd(&added_upper_index_, &added_upper_offset_);
}
BoundsCheckBbData(BoundsCheckKey* key,
int32_t lower_offset,
int32_t upper_offset,
HBasicBlock* bb,
HBoundsCheck* lower_check,
HBoundsCheck* upper_check,
BoundsCheckBbData* next_in_bb,
BoundsCheckBbData* father_in_dt)
: key_(key),
lower_offset_(lower_offset),
upper_offset_(upper_offset),
basic_block_(bb),
lower_check_(lower_check),
upper_check_(upper_check),
added_lower_index_(NULL),
added_lower_offset_(NULL),
added_upper_index_(NULL),
added_upper_offset_(NULL),
next_in_bb_(next_in_bb),
father_in_dt_(father_in_dt) { }
private:
BoundsCheckKey* key_;
int32_t lower_offset_;
int32_t upper_offset_;
HBasicBlock* basic_block_;
HBoundsCheck* lower_check_;
HBoundsCheck* upper_check_;
HInstruction* added_lower_index_;
HConstant* added_lower_offset_;
HInstruction* added_upper_index_;
HConstant* added_upper_offset_;
BoundsCheckBbData* next_in_bb_;
BoundsCheckBbData* father_in_dt_;
// Given an existing add instruction and a bounds check it tries to
// find the current context (either of the add or of the check index).
HValue* IndexContext(HInstruction* add, HBoundsCheck* check) {
if (add != NULL && add->IsAdd()) {
return HAdd::cast(add)->context();
}
if (check->index()->IsBinaryOperation()) {
return HBinaryOperation::cast(check->index())->context();
}
return NULL;
}
// This function returns false if it cannot build the add because the
// current context cannot be determined.
bool BuildOffsetAdd(HBoundsCheck* check,
HInstruction** add,
HConstant** constant,
HValue* original_value,
Representation representation,
int32_t new_offset) {
HValue* index_context = IndexContext(*add, check);
if (index_context == NULL) return false;
HConstant* new_constant = new(BasicBlock()->zone())
HConstant(new_offset, Representation::Integer32());
if (*add == NULL) {
new_constant->InsertBefore(check);
(*add) = HAdd::New(
BasicBlock()->zone(), index_context, original_value, new_constant);
(*add)->AssumeRepresentation(representation);
(*add)->InsertBefore(check);
} else {
new_constant->InsertBefore(*add);
(*constant)->DeleteAndReplaceWith(new_constant);
}
*constant = new_constant;
return true;
}
void RemoveZeroAdd(HInstruction** add, HConstant** constant) {
if (*add != NULL && (*add)->IsAdd() && (*constant)->Integer32Value() == 0) {
(*add)->DeleteAndReplaceWith(HAdd::cast(*add)->left());
(*constant)->DeleteAndReplaceWith(NULL);
}
}
};
static bool BoundsCheckKeyMatch(void* key1, void* key2) {
BoundsCheckKey* k1 = static_cast<BoundsCheckKey*>(key1);
BoundsCheckKey* k2 = static_cast<BoundsCheckKey*>(key2);
return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length();
}
class BoundsCheckTable : private ZoneHashMap {
public:
BoundsCheckBbData** LookupOrInsert(BoundsCheckKey* key, Zone* zone) {
return reinterpret_cast<BoundsCheckBbData**>(
&(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value));
}
void Insert(BoundsCheckKey* key, BoundsCheckBbData* data, Zone* zone) {
Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data;
}
void Delete(BoundsCheckKey* key) {
Remove(key, key->Hash());
}
explicit BoundsCheckTable(Zone* zone)
: ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity,
ZoneAllocationPolicy(zone)) { }
};
// Eliminates checks in bb and recursively in the dominated blocks.
// Also replace the results of check instructions with the original value, if
// the result is used. This is safe now, since we don't do code motion after
// this point. It enables better register allocation since the value produced
// by check instructions is really a copy of the original value.
void HGraph::EliminateRedundantBoundsChecks(HBasicBlock* bb,
BoundsCheckTable* table) {
BoundsCheckBbData* bb_data_list = NULL;
for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
if (!i->IsBoundsCheck()) continue;
HBoundsCheck* check = HBoundsCheck::cast(i);
int32_t offset;
BoundsCheckKey* key =
BoundsCheckKey::Create(zone(), check, &offset);
if (key == NULL) continue;
BoundsCheckBbData** data_p = table->LookupOrInsert(key, zone());
BoundsCheckBbData* data = *data_p;
if (data == NULL) {
bb_data_list = new(zone()) BoundsCheckBbData(key,
offset,
offset,
bb,
check,
check,
bb_data_list,
NULL);
*data_p = bb_data_list;
} else if (data->OffsetIsCovered(offset)) {
check->DeleteAndReplaceWith(check->ActualValue());
} else if (data->BasicBlock() != bb ||
!data->CoverCheck(check, offset)) {
// If the check is in the current BB we try to modify it by calling
// "CoverCheck", but if also that fails we record the current offsets
// in a new data instance because from now on they are covered.
int32_t new_lower_offset = offset < data->LowerOffset()
? offset
: data->LowerOffset();
int32_t new_upper_offset = offset > data->UpperOffset()
? offset
: data->UpperOffset();
bb_data_list = new(zone()) BoundsCheckBbData(key,
new_lower_offset,
new_upper_offset,
bb,
data->LowerCheck(),
data->UpperCheck(),
bb_data_list,
data);
table->Insert(key, bb_data_list, zone());
}
}
for (int i = 0; i < bb->dominated_blocks()->length(); ++i) {
EliminateRedundantBoundsChecks(bb->dominated_blocks()->at(i), table);
}
for (BoundsCheckBbData* data = bb_data_list;
data != NULL;
data = data->NextInBasicBlock()) {
data->RemoveZeroOperations();
if (data->FatherInDominatorTree()) {
table->Insert(data->Key(), data->FatherInDominatorTree(), zone());
} else {
table->Delete(data->Key());
}
}
}
void HGraph::EliminateRedundantBoundsChecks() {
HPhase phase("H_Eliminate bounds checks", this);
BoundsCheckTable checks_table(zone());
EliminateRedundantBoundsChecks(entry_block(), &checks_table);
}
static void DehoistArrayIndex(ArrayInstructionInterface* array_operation) {
HValue* index = array_operation->GetKey()->ActualValue();
if (!index->representation().IsInteger32()) return;
HConstant* constant;
HValue* subexpression;
int32_t sign;
if (index->IsAdd()) {
sign = 1;
HAdd* add = HAdd::cast(index);
if (add->left()->IsConstant()) {
subexpression = add->right();
constant = HConstant::cast(add->left());
} else if (add->right()->IsConstant()) {
subexpression = add->left();
constant = HConstant::cast(add->right());
} else {
return;
}
} else if (index->IsSub()) {
sign = -1;
HSub* sub = HSub::cast(index);
if (sub->left()->IsConstant()) {
subexpression = sub->right();
constant = HConstant::cast(sub->left());
} else if (sub->right()->IsConstant()) {
subexpression = sub->left();
constant = HConstant::cast(sub->right());
} return;
} else {
return;
}
if (!constant->HasInteger32Value()) return;
int32_t value = constant->Integer32Value() * sign;
// We limit offset values to 30 bits because we want to avoid the risk of
// overflows when the offset is added to the object header size.
if (value >= 1 << 30 || value < 0) return;
array_operation->SetKey(subexpression);
if (index->HasNoUses()) {
index->DeleteAndReplaceWith(NULL);
}
ASSERT(value >= 0);
array_operation->SetIndexOffset(static_cast<uint32_t>(value));
array_operation->SetDehoisted(true);
}
void HGraph::DehoistSimpleArrayIndexComputations() {
HPhase phase("H_Dehoist index computations", this);
for (int i = 0; i < blocks()->length(); ++i) {
for (HInstruction* instr = blocks()->at(i)->first();
instr != NULL;
instr = instr->next()) {
ArrayInstructionInterface* array_instruction = NULL;
if (instr->IsLoadKeyed()) {
HLoadKeyed* op = HLoadKeyed::cast(instr);
array_instruction = static_cast<ArrayInstructionInterface*>(op);
} else if (instr->IsStoreKeyed()) {
HStoreKeyed* op = HStoreKeyed::cast(instr);
array_instruction = static_cast<ArrayInstructionInterface*>(op);
} else {
continue;
}
DehoistArrayIndex(array_instruction);
}
}
}
void HGraph::DeadCodeElimination() {
HPhase phase("H_Dead code elimination", this);
ZoneList<HInstruction*> worklist(blocks_.length(), zone());
for (int i = 0; i < blocks()->length(); ++i) {
for (HInstruction* instr = blocks()->at(i)->first();
instr != NULL;
instr = instr->next()) {
if (instr->IsDead()) worklist.Add(instr, zone());
}
}
while (!worklist.is_empty()) {
HInstruction* instr = worklist.RemoveLast();
if (FLAG_trace_dead_code_elimination) {
HeapStringAllocator allocator;
StringStream stream(&allocator);
instr->PrintNameTo(&stream);
stream.Add(" = ");
instr->PrintTo(&stream);
PrintF("[removing dead instruction %s]\n", *stream.ToCString());
}
instr->DeleteAndReplaceWith(NULL);
for (int i = 0; i < instr->OperandCount(); ++i) {
HValue* operand = instr->OperandAt(i);
if (operand->IsDead()) worklist.Add(HInstruction::cast(operand), zone());
}
}
}
void HGraph::RestoreActualValues() {
HPhase phase("H_Restore actual values", this);
for (int block_index = 0; block_index < blocks()->length(); block_index++) {
HBasicBlock* block = blocks()->at(block_index);
#ifdef DEBUG
for (int i = 0; i < block->phis()->length(); i++) {
HPhi* phi = block->phis()->at(i);
ASSERT(phi->ActualValue() == phi);
}
#endif
for (HInstruction* instruction = block->first();
instruction != NULL;
instruction = instruction->next()) {
if (instruction->ActualValue() != instruction) {
ASSERT(instruction->IsInformativeDefinition());
if (instruction->IsPurelyInformativeDefinition()) {
instruction->DeleteAndReplaceWith(instruction->RedefinedOperand());
} else {
instruction->ReplaceAllUsesWith(instruction->ActualValue());
}
}
}
}
}
void HOptimizedGraphBuilder::AddPhi(HPhi* instr) {
ASSERT(current_block() != NULL);
current_block()->AddPhi(instr);
}
void HOptimizedGraphBuilder::PushAndAdd(HInstruction* instr) {
Push(instr);
AddInstruction(instr);
}
void HOptimizedGraphBuilder::AddSoftDeoptimize() {
if (FLAG_always_opt) return;
if (current_block()->IsDeoptimizing()) return;
AddInstruction(new(zone()) HSoftDeoptimize());
current_block()->MarkAsDeoptimizing();
graph()->set_has_soft_deoptimize(true);
}
template <class Instruction>
HInstruction* HOptimizedGraphBuilder::PreProcessCall(Instruction* call) {
int count = call->argument_count();
ZoneList<HValue*> arguments(count, zone());
for (int i = 0; i < count; ++i) {
arguments.Add(Pop(), zone());
}
while (!arguments.is_empty()) {
AddInstruction(new(zone()) HPushArgument(arguments.RemoveLast()));
}
return call;
}
void HOptimizedGraphBuilder::SetUpScope(Scope* scope) {
HConstant* undefined_constant = new(zone()) HConstant(
isolate()->factory()->undefined_value(), Representation::Tagged());
AddInstruction(undefined_constant);
graph()->set_undefined_constant(undefined_constant);
HArgumentsObject* object = new(zone()) HArgumentsObject;
AddInstruction(object);
graph()->SetArgumentsObject(object);
// Set the initial values of parameters including "this". "This" has
// parameter index 0.
ASSERT_EQ(scope->num_parameters() + 1, environment()->parameter_count());
for (int i = 0; i < environment()->parameter_count(); ++i) {
HInstruction* parameter = AddInstruction(new(zone()) HParameter(i));
environment()->Bind(i, parameter);
}
// First special is HContext.
HInstruction* context = AddInstruction(new(zone()) HContext);
environment()->BindContext(context);
// Initialize specials and locals to undefined.
for (int i = environment()->parameter_count() + 1;
i < environment()->length();
++i) {
environment()->Bind(i, undefined_constant);
}
// Handle the arguments and arguments shadow variables specially (they do
// not have declarations).
if (scope->arguments() != NULL) {
if (!scope->arguments()->IsStackAllocated()) {
return Bailout("context-allocated arguments");
}
environment()->Bind(scope->arguments(),
graph()->GetArgumentsObject());
}
}
void HOptimizedGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
CHECK_ALIVE(Visit(statements->at(i)));
}
}
void HOptimizedGraphBuilder::VisitBlock(Block* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (stmt->scope() != NULL) {
return Bailout("ScopedBlock");
}
BreakAndContinueInfo break_info(stmt);
{ BreakAndContinueScope push(&break_info, this);
CHECK_BAILOUT(VisitStatements(stmt->statements()));
}
HBasicBlock* break_block = break_info.break_block();
if (break_block != NULL) {
if (current_block() != NULL) current_block()->Goto(break_block);
break_block->SetJoinId(stmt->ExitId());
set_current_block(break_block);
}
}
void HOptimizedGraphBuilder::VisitExpressionStatement(
ExpressionStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
VisitForEffect(stmt->expression());
}
void HOptimizedGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
}
void HOptimizedGraphBuilder::VisitIfStatement(IfStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (stmt->condition()->ToBooleanIsTrue()) {
AddSimulate(stmt->ThenId());
Visit(stmt->then_statement());
} else if (stmt->condition()->ToBooleanIsFalse()) {
AddSimulate(stmt->ElseId());
Visit(stmt->else_statement());
} else {
HBasicBlock* cond_true = graph()->CreateBasicBlock();
HBasicBlock* cond_false = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->condition(), cond_true, cond_false));
if (cond_true->HasPredecessor()) {
cond_true->SetJoinId(stmt->ThenId());
set_current_block(cond_true);
CHECK_BAILOUT(Visit(stmt->then_statement()));
cond_true = current_block();
} else {
cond_true = NULL;
}
if (cond_false->HasPredecessor()) {
cond_false->SetJoinId(stmt->ElseId());
set_current_block(cond_false);
CHECK_BAILOUT(Visit(stmt->else_statement()));
cond_false = current_block();
} else {
cond_false = NULL;
}
HBasicBlock* join = CreateJoin(cond_true, cond_false, stmt->IfId());
set_current_block(join);
}
}
HBasicBlock* HOptimizedGraphBuilder::BreakAndContinueScope::Get(
BreakableStatement* stmt,
BreakType type,
int* drop_extra) {
*drop_extra = 0;
BreakAndContinueScope* current = this;
while (current != NULL && current->info()->target() != stmt) {
*drop_extra += current->info()->drop_extra();
current = current->next();
}
ASSERT(current != NULL); // Always found (unless stack is malformed).
if (type == BREAK) {
*drop_extra += current->info()->drop_extra();
}
HBasicBlock* block = NULL;
switch (type) {
case BREAK:
block = current->info()->break_block();
if (block == NULL) {
block = current->owner()->graph()->CreateBasicBlock();
current->info()->set_break_block(block);
}
break;
case CONTINUE:
block = current->info()->continue_block();
if (block == NULL) {
block = current->owner()->graph()->CreateBasicBlock();
current->info()->set_continue_block(block);
}
break;
}
return block;
}
void HOptimizedGraphBuilder::VisitContinueStatement(
ContinueStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
int drop_extra = 0;
HBasicBlock* continue_block = break_scope()->Get(stmt->target(),
CONTINUE,
&drop_extra);
Drop(drop_extra);
current_block()->Goto(continue_block);
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
int drop_extra = 0;
HBasicBlock* break_block = break_scope()->Get(stmt->target(),
BREAK,
&drop_extra);
Drop(drop_extra);
current_block()->Goto(break_block);
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
FunctionState* state = function_state();
AstContext* context = call_context();
if (context == NULL) {
// Not an inlined return, so an actual one.
CHECK_ALIVE(VisitForValue(stmt->expression()));
HValue* result = environment()->Pop();
current_block()->FinishExit(new(zone()) HReturn(
result,
environment()->LookupContext()));
} else if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
// Return from an inlined construct call. In a test context the return value
// will always evaluate to true, in a value context the return value needs
// to be a JSObject.
if (context->IsTest()) {
TestContext* test = TestContext::cast(context);
CHECK_ALIVE(VisitForEffect(stmt->expression()));
current_block()->Goto(test->if_true(), state);
} else if (context->IsEffect()) {
CHECK_ALIVE(VisitForEffect(stmt->expression()));
current_block()->Goto(function_return(), state);
} else {
ASSERT(context->IsValue());
CHECK_ALIVE(VisitForValue(stmt->expression()));
HValue* return_value = Pop();
HValue* receiver = environment()->arguments_environment()->Lookup(0);
HHasInstanceTypeAndBranch* typecheck =
new(zone()) HHasInstanceTypeAndBranch(return_value,
FIRST_SPEC_OBJECT_TYPE,
LAST_SPEC_OBJECT_TYPE);
HBasicBlock* if_spec_object = graph()->CreateBasicBlock();
HBasicBlock* not_spec_object = graph()->CreateBasicBlock();
typecheck->SetSuccessorAt(0, if_spec_object);
typecheck->SetSuccessorAt(1, not_spec_object);
current_block()->Finish(typecheck);
if_spec_object->AddLeaveInlined(return_value, state);
not_spec_object->AddLeaveInlined(receiver, state);
}
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
// Return from an inlined setter call. The returned value is never used, the
// value of an assignment is always the value of the RHS of the assignment.
CHECK_ALIVE(VisitForEffect(stmt->expression()));
if (context->IsTest()) {
HValue* rhs = environment()->arguments_environment()->Lookup(1);
context->ReturnValue(rhs);
} else if (context->IsEffect()) {
current_block()->Goto(function_return(), state);
} else {
ASSERT(context->IsValue());
HValue* rhs = environment()->arguments_environment()->Lookup(1);
current_block()->AddLeaveInlined(rhs, state);
}
} else {
// Return from a normal inlined function. Visit the subexpression in the
// expression context of the call.
if (context->IsTest()) {
TestContext* test = TestContext::cast(context);
VisitForControl(stmt->expression(), test->if_true(), test->if_false());
} else if (context->IsEffect()) {
CHECK_ALIVE(VisitForEffect(stmt->expression()));
current_block()->Goto(function_return(), state);
} else {
ASSERT(context->IsValue());
CHECK_ALIVE(VisitForValue(stmt->expression()));
current_block()->AddLeaveInlined(Pop(), state);
}
}
set_current_block(NULL);
}
void HOptimizedGraphBuilder::VisitWithStatement(WithStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("WithStatement");
}
void HOptimizedGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
// We only optimize switch statements with smi-literal smi comparisons,
// with a bounded number of clauses.
const int kCaseClauseLimit = 128;
ZoneList<CaseClause*>* clauses = stmt->cases();
int clause_count = clauses->length();
if (clause_count > kCaseClauseLimit) {
return Bailout("SwitchStatement: too many clauses");
}
HValue* context = environment()->LookupContext();
CHECK_ALIVE(VisitForValue(stmt->tag()));
AddSimulate(stmt->EntryId());
HValue* tag_value = Pop();
HBasicBlock* first_test_block = current_block();
SwitchType switch_type = UNKNOWN_SWITCH;
// 1. Extract clause type
for (int i = 0; i < clause_count; ++i) {
CaseClause* clause = clauses->at(i);
if (clause->is_default()) continue;
if (switch_type == UNKNOWN_SWITCH) {
if (clause->label()->IsSmiLiteral()) {
switch_type = SMI_SWITCH;
} else if (clause->label()->IsStringLiteral()) {
switch_type = STRING_SWITCH;
} else {
return Bailout("SwitchStatement: non-literal switch label");
}
} else if ((switch_type == STRING_SWITCH &&
!clause->label()->IsStringLiteral()) ||
(switch_type == SMI_SWITCH &&
!clause->label()->IsSmiLiteral())) {
return Bailout("SwitchStatement: mixed label types are not supported");
}
}
HUnaryControlInstruction* string_check = NULL;
HBasicBlock* not_string_block = NULL;
// Test switch's tag value if all clauses are string literals
if (switch_type == STRING_SWITCH) {
string_check = new(zone()) HIsStringAndBranch(tag_value);
first_test_block = graph()->CreateBasicBlock();
not_string_block = graph()->CreateBasicBlock();
string_check->SetSuccessorAt(0, first_test_block);
string_check->SetSuccessorAt(1, not_string_block);
current_block()->Finish(string_check);
set_current_block(first_test_block);
}
// 2. Build all the tests, with dangling true branches
BailoutId default_id = BailoutId::None();
for (int i = 0; i < clause_count; ++i) {
CaseClause* clause = clauses->at(i);
if (clause->is_default()) {
default_id = clause->EntryId();
continue;
}
if (switch_type == SMI_SWITCH) {
clause->RecordTypeFeedback(oracle());
}
// Generate a compare and branch.
CHECK_ALIVE(VisitForValue(clause->label()));
HValue* label_value = Pop();
HBasicBlock* next_test_block = graph()->CreateBasicBlock();
HBasicBlock* body_block = graph()->CreateBasicBlock();
HControlInstruction* compare;
if (switch_type == SMI_SWITCH) {
if (!clause->IsSmiCompare()) {
// Finish with deoptimize and add uses of enviroment values to
// account for invisible uses.
current_block()->FinishExitWithDeoptimization(HDeoptimize::kUseAll);
set_current_block(NULL);
break;
}
HCompareIDAndBranch* compare_ =
new(zone()) HCompareIDAndBranch(tag_value,
label_value,
Token::EQ_STRICT);
compare_->set_observed_input_representation(
Representation::Integer32(), Representation::Integer32());
compare = compare_;
} else {
compare = new(zone()) HStringCompareAndBranch(context, tag_value,
label_value,
Token::EQ_STRICT);
}
compare->SetSuccessorAt(0, body_block);
compare->SetSuccessorAt(1, next_test_block);
current_block()->Finish(compare);
set_current_block(next_test_block);
}
// Save the current block to use for the default or to join with the
// exit. This block is NULL if we deoptimized.
HBasicBlock* last_block = current_block();
if (not_string_block != NULL) {
BailoutId join_id = !default_id.IsNone() ? default_id : stmt->ExitId();
last_block = CreateJoin(last_block, not_string_block, join_id);
}
// 3. Loop over the clauses and the linked list of tests in lockstep,
// translating the clause bodies.
HBasicBlock* curr_test_block = first_test_block;
HBasicBlock* fall_through_block = NULL;
BreakAndContinueInfo break_info(stmt);
{ BreakAndContinueScope push(&break_info, this);
for (int i = 0; i < clause_count; ++i) {
CaseClause* clause = clauses->at(i);
// Identify the block where normal (non-fall-through) control flow
// goes to.
HBasicBlock* normal_block = NULL;
if (clause->is_default()) {
if (last_block != NULL) {
normal_block = last_block;
last_block = NULL; // Cleared to indicate we've handled it.
}
} else if (!curr_test_block->end()->IsDeoptimize()) {
normal_block = curr_test_block->end()->FirstSuccessor();
curr_test_block = curr_test_block->end()->SecondSuccessor();
}
// Identify a block to emit the body into.
if (normal_block == NULL) {
if (fall_through_block == NULL) {
// (a) Unreachable.
if (clause->is_default()) {
continue; // Might still be reachable clause bodies.
} else {
break;
}
} else {
// (b) Reachable only as fall through.
set_current_block(fall_through_block);
}
} else if (fall_through_block == NULL) {
// (c) Reachable only normally.
set_current_block(normal_block);
} else {
// (d) Reachable both ways.
HBasicBlock* join = CreateJoin(fall_through_block,
normal_block,
clause->EntryId());
set_current_block(join);
}
CHECK_BAILOUT(VisitStatements(clause->statements()));
fall_through_block = current_block();
}
}
// Create an up-to-3-way join. Use the break block if it exists since
// it's already a join block.
HBasicBlock* break_block = break_info.break_block();
if (break_block == NULL) {
set_current_block(CreateJoin(fall_through_block,
last_block,
stmt->ExitId()));
} else {
if (fall_through_block != NULL) fall_through_block->Goto(break_block);
if (last_block != NULL) last_block->Goto(break_block);
break_block->SetJoinId(stmt->ExitId());
set_current_block(break_block);
}
}
bool HOptimizedGraphBuilder::HasOsrEntryAt(IterationStatement* statement) {
return statement->OsrEntryId() == info()->osr_ast_id();
}
bool HOptimizedGraphBuilder::PreProcessOsrEntry(IterationStatement* statement) {
if (!HasOsrEntryAt(statement)) return false;
HBasicBlock* non_osr_entry = graph()->CreateBasicBlock();
HBasicBlock* osr_entry = graph()->CreateBasicBlock();
HValue* true_value = graph()->GetConstantTrue();
HBranch* test = new(zone()) HBranch(true_value, non_osr_entry, osr_entry);
current_block()->Finish(test);
HBasicBlock* loop_predecessor = graph()->CreateBasicBlock();
non_osr_entry->Goto(loop_predecessor);
set_current_block(osr_entry);
osr_entry->set_osr_entry();
BailoutId osr_entry_id = statement->OsrEntryId();
int first_expression_index = environment()->first_expression_index();
int length = environment()->length();
ZoneList<HUnknownOSRValue*>* osr_values =
new(zone()) ZoneList<HUnknownOSRValue*>(length, zone());
for (int i = 0; i < first_expression_index; ++i) {
HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue;
AddInstruction(osr_value);
environment()->Bind(i, osr_value);
osr_values->Add(osr_value, zone());
}
if (first_expression_index != length) {
environment()->Drop(length - first_expression_index);
for (int i = first_expression_index; i < length; ++i) {
HUnknownOSRValue* osr_value = new(zone()) HUnknownOSRValue;
AddInstruction(osr_value);
environment()->Push(osr_value);
osr_values->Add(osr_value, zone());
}
}
graph()->set_osr_values(osr_values);
AddSimulate(osr_entry_id);
AddInstruction(new(zone()) HOsrEntry(osr_entry_id));
HContext* context = new(zone()) HContext;
AddInstruction(context);
environment()->BindContext(context);
current_block()->Goto(loop_predecessor);
loop_predecessor->SetJoinId(statement->EntryId());
set_current_block(loop_predecessor);
return true;
}
void HOptimizedGraphBuilder::VisitLoopBody(IterationStatement* stmt,
HBasicBlock* loop_entry,
BreakAndContinueInfo* break_info) {
BreakAndContinueScope push(break_info, this);
AddSimulate(stmt->StackCheckId());
HValue* context = environment()->LookupContext();
HStackCheck* stack_check =
new(zone()) HStackCheck(context, HStackCheck::kBackwardsBranch);
AddInstruction(stack_check);
ASSERT(loop_entry->IsLoopHeader());
loop_entry->loop_information()->set_stack_check(stack_check);
CHECK_BAILOUT(Visit(stmt->body()));
}
void HOptimizedGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
ASSERT(current_block() != NULL);
bool osr_entry = PreProcessOsrEntry(stmt);
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
current_block()->Goto(loop_entry);
set_current_block(loop_entry);
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
BreakAndContinueInfo break_info(stmt);
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
HBasicBlock* loop_successor = NULL;
if (body_exit != NULL && !stmt->cond()->ToBooleanIsTrue()) {
set_current_block(body_exit);
// The block for a true condition, the actual predecessor block of the
// back edge.
body_exit = graph()->CreateBasicBlock();
loop_successor = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_exit, loop_successor));
if (body_exit->HasPredecessor()) {
body_exit->SetJoinId(stmt->BackEdgeId());
} else {
body_exit = NULL;
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
ASSERT(current_block() != NULL);
bool osr_entry = PreProcessOsrEntry(stmt);
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
current_block()->Goto(loop_entry);
set_current_block(loop_entry);
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
// If the condition is constant true, do not generate a branch.
HBasicBlock* loop_successor = NULL;
if (!stmt->cond()->ToBooleanIsTrue()) {
HBasicBlock* body_entry = graph()->CreateBasicBlock();
loop_successor = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
if (body_entry->HasPredecessor()) {
body_entry->SetJoinId(stmt->BodyId());
set_current_block(body_entry);
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
BreakAndContinueInfo break_info(stmt);
if (current_block() != NULL) {
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
}
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitForStatement(ForStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (stmt->init() != NULL) {
CHECK_ALIVE(Visit(stmt->init()));
}
ASSERT(current_block() != NULL);
bool osr_entry = PreProcessOsrEntry(stmt);
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
current_block()->Goto(loop_entry);
set_current_block(loop_entry);
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
HBasicBlock* loop_successor = NULL;
if (stmt->cond() != NULL) {
HBasicBlock* body_entry = graph()->CreateBasicBlock();
loop_successor = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(stmt->cond(), body_entry, loop_successor));
if (body_entry->HasPredecessor()) {
body_entry->SetJoinId(stmt->BodyId());
set_current_block(body_entry);
}
if (loop_successor->HasPredecessor()) {
loop_successor->SetJoinId(stmt->ExitId());
} else {
loop_successor = NULL;
}
}
BreakAndContinueInfo break_info(stmt);
if (current_block() != NULL) {
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
}
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
if (stmt->next() != NULL && body_exit != NULL) {
set_current_block(body_exit);
CHECK_BAILOUT(Visit(stmt->next()));
body_exit = current_block();
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (!FLAG_optimize_for_in) {
return Bailout("ForInStatement optimization is disabled");
}
if (!oracle()->IsForInFastCase(stmt)) {
return Bailout("ForInStatement is not fast case");
}
if (!stmt->each()->IsVariableProxy() ||
!stmt->each()->AsVariableProxy()->var()->IsStackLocal()) {
return Bailout("ForInStatement with non-local each variable");
}
Variable* each_var = stmt->each()->AsVariableProxy()->var();
CHECK_ALIVE(VisitForValue(stmt->enumerable()));
HValue* enumerable = Top(); // Leave enumerable at the top.
HInstruction* map = AddInstruction(new(zone()) HForInPrepareMap(
environment()->LookupContext(), enumerable));
AddSimulate(stmt->PrepareId());
HInstruction* array = AddInstruction(
new(zone()) HForInCacheArray(
enumerable,
map,
DescriptorArray::kEnumCacheBridgeCacheIndex));
HInstruction* enum_length = AddInstruction(new(zone()) HMapEnumLength(map));
HInstruction* start_index = AddInstruction(new(zone()) HConstant(
Handle<Object>(Smi::FromInt(0), isolate()), Representation::Integer32()));
Push(map);
Push(array);
Push(enum_length);
Push(start_index);
HInstruction* index_cache = AddInstruction(
new(zone()) HForInCacheArray(
enumerable,
map,
DescriptorArray::kEnumCacheBridgeIndicesCacheIndex));
HForInCacheArray::cast(array)->set_index_cache(
HForInCacheArray::cast(index_cache));
bool osr_entry = PreProcessOsrEntry(stmt);
HBasicBlock* loop_entry = CreateLoopHeaderBlock();
current_block()->Goto(loop_entry);
set_current_block(loop_entry);
if (osr_entry) graph()->set_osr_loop_entry(loop_entry);
HValue* index = environment()->ExpressionStackAt(0);
HValue* limit = environment()->ExpressionStackAt(1);
// Check that we still have more keys.
HCompareIDAndBranch* compare_index =
new(zone()) HCompareIDAndBranch(index, limit, Token::LT);
compare_index->set_observed_input_representation(
Representation::Integer32(), Representation::Integer32());
HBasicBlock* loop_body = graph()->CreateBasicBlock();
HBasicBlock* loop_successor = graph()->CreateBasicBlock();
compare_index->SetSuccessorAt(0, loop_body);
compare_index->SetSuccessorAt(1, loop_successor);
current_block()->Finish(compare_index);
set_current_block(loop_successor);
Drop(5);
set_current_block(loop_body);
HValue* key = AddInstruction(
new(zone()) HLoadKeyed(
environment()->ExpressionStackAt(2), // Enum cache.
environment()->ExpressionStackAt(0), // Iteration index.
environment()->ExpressionStackAt(0),
FAST_ELEMENTS));
// Check if the expected map still matches that of the enumerable.
// If not just deoptimize.
AddInstruction(new(zone()) HCheckMapValue(
environment()->ExpressionStackAt(4),
environment()->ExpressionStackAt(3)));
Bind(each_var, key);
BreakAndContinueInfo break_info(stmt, 5);
CHECK_BAILOUT(VisitLoopBody(stmt, loop_entry, &break_info));
HBasicBlock* body_exit =
JoinContinue(stmt, current_block(), break_info.continue_block());
if (body_exit != NULL) {
set_current_block(body_exit);
HValue* current_index = Pop();
HInstruction* new_index = HAdd::New(zone(),
environment()->LookupContext(),
current_index,
graph()->GetConstant1());
new_index->AssumeRepresentation(Representation::Integer32());
PushAndAdd(new_index);
body_exit = current_block();
}
HBasicBlock* loop_exit = CreateLoop(stmt,
loop_entry,
body_exit,
loop_successor,
break_info.break_block());
set_current_block(loop_exit);
}
void HOptimizedGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("TryCatchStatement");
}
void HOptimizedGraphBuilder::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("TryFinallyStatement");
}
void HOptimizedGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("DebuggerStatement");
}
static Handle<SharedFunctionInfo> SearchSharedFunctionInfo(
Code* unoptimized_code, FunctionLiteral* expr) {
int start_position = expr->start_position();
RelocIterator it(unoptimized_code);
for (;!it.done(); it.next()) {
RelocInfo* rinfo = it.rinfo();
if (rinfo->rmode() != RelocInfo::EMBEDDED_OBJECT) continue;
Object* obj = rinfo->target_object();
if (obj->IsSharedFunctionInfo()) {
SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
if (shared->start_position() == start_position) {
return Handle<SharedFunctionInfo>(shared);
}
}
}
return Handle<SharedFunctionInfo>();
}
void HOptimizedGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Handle<SharedFunctionInfo> shared_info =
SearchSharedFunctionInfo(info()->shared_info()->code(),
expr);
if (shared_info.is_null()) {
shared_info = Compiler::BuildFunctionInfo(expr, info()->script());
}
// We also have a stack overflow if the recursive compilation did.
if (HasStackOverflow()) return;
HValue* context = environment()->LookupContext();
HFunctionLiteral* instr =
new(zone()) HFunctionLiteral(context, shared_info, expr->pretenure());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
return Bailout("SharedFunctionInfoLiteral");
}
void HOptimizedGraphBuilder::VisitConditional(Conditional* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
HBasicBlock* cond_true = graph()->CreateBasicBlock();
HBasicBlock* cond_false = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(expr->condition(), cond_true, cond_false));
// Visit the true and false subexpressions in the same AST context as the
// whole expression.
if (cond_true->HasPredecessor()) {
cond_true->SetJoinId(expr->ThenId());
set_current_block(cond_true);
CHECK_BAILOUT(Visit(expr->then_expression()));
cond_true = current_block();
} else {
cond_true = NULL;
}
if (cond_false->HasPredecessor()) {
cond_false->SetJoinId(expr->ElseId());
set_current_block(cond_false);
CHECK_BAILOUT(Visit(expr->else_expression()));
cond_false = current_block();
} else {
cond_false = NULL;
}
if (!ast_context()->IsTest()) {
HBasicBlock* join = CreateJoin(cond_true, cond_false, expr->id());
set_current_block(join);
if (join != NULL && !ast_context()->IsEffect()) {
return ast_context()->ReturnValue(Pop());
}
}
}
HOptimizedGraphBuilder::GlobalPropertyAccess
HOptimizedGraphBuilder::LookupGlobalProperty(
Variable* var, LookupResult* lookup, bool is_store) {
if (var->is_this() || !info()->has_global_object()) {
return kUseGeneric;
}
Handle<GlobalObject> global(info()->global_object());
global->Lookup(*var->name(), lookup);
if (!lookup->IsNormal() ||
(is_store && lookup->IsReadOnly()) ||
lookup->holder() != *global) {
return kUseGeneric;
}
return kUseCell;
}
HValue* HOptimizedGraphBuilder::BuildContextChainWalk(Variable* var) {
ASSERT(var->IsContextSlot());
HValue* context = environment()->LookupContext();
int length = info()->scope()->ContextChainLength(var->scope());
while (length-- > 0) {
HInstruction* context_instruction = new(zone()) HOuterContext(context);
AddInstruction(context_instruction);
context = context_instruction;
}
return context;
}
void HOptimizedGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Variable* variable = expr->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
if (IsLexicalVariableMode(variable->mode())) {
// TODO(rossberg): should this be an ASSERT?
return Bailout("reference to global lexical variable");
}
// Handle known global constants like 'undefined' specially to avoid a
// load from a global cell for them.
Handle<Object> constant_value =
isolate()->factory()->GlobalConstantFor(variable->name());
if (!constant_value.is_null()) {
HConstant* instr =
new(zone()) HConstant(constant_value, Representation::Tagged());
return ast_context()->ReturnInstruction(instr, expr->id());
}
LookupResult lookup(isolate());
GlobalPropertyAccess type =
LookupGlobalProperty(variable, &lookup, false);
if (type == kUseCell &&
info()->global_object()->IsAccessCheckNeeded()) {
type = kUseGeneric;
}
if (type == kUseCell) {
Handle<GlobalObject> global(info()->global_object());
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
HLoadGlobalCell* instr =
new(zone()) HLoadGlobalCell(cell, lookup.GetPropertyDetails());
return ast_context()->ReturnInstruction(instr, expr->id());
} else {
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HLoadGlobalGeneric* instr =
new(zone()) HLoadGlobalGeneric(context,
global_object,
variable->name(),
ast_context()->is_for_typeof());
instr->set_position(expr->position());
return ast_context()->ReturnInstruction(instr, expr->id());
}
}
case Variable::PARAMETER:
case Variable::LOCAL: {
HValue* value = environment()->Lookup(variable);
if (value == graph()->GetConstantHole()) {
ASSERT(IsDeclaredVariableMode(variable->mode()) &&
variable->mode() != VAR);
return Bailout("reference to uninitialized variable");
}
return ast_context()->ReturnValue(value);
}
case Variable::CONTEXT: {
HValue* context = BuildContextChainWalk(variable);
HLoadContextSlot* instr = new(zone()) HLoadContextSlot(context, variable);
return ast_context()->ReturnInstruction(instr, expr->id());
}
case Variable::LOOKUP:
return Bailout("reference to a variable which requires dynamic lookup");
}
}
void HOptimizedGraphBuilder::VisitLiteral(Literal* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
HConstant* instr =
new(zone()) HConstant(expr->handle(), Representation::None());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
Handle<FixedArray> literals(closure->literals());
HValue* context = environment()->LookupContext();
HRegExpLiteral* instr = new(zone()) HRegExpLiteral(context,
literals,
expr->pattern(),
expr->flags(),
expr->literal_index());
return ast_context()->ReturnInstruction(instr, expr->id());
}
static void LookupInPrototypes(Handle<Map> map,
Handle<String> name,
LookupResult* lookup) {
while (map->prototype()->IsJSObject()) {
Handle<JSObject> holder(JSObject::cast(map->prototype()));
if (!holder->HasFastProperties()) break;
map = Handle<Map>(holder->map());
map->LookupDescriptor(*holder, *name, lookup);
if (lookup->IsFound()) return;
}
lookup->NotFound();
}
// Tries to find a JavaScript accessor of the given name in the prototype chain
// starting at the given map. Return true iff there is one, including the
// corresponding AccessorPair plus its holder (which could be null when the
// accessor is found directly in the given map).
static bool LookupAccessorPair(Handle<Map> map,
Handle<String> name,
Handle<AccessorPair>* accessors,
Handle<JSObject>* holder) {
Isolate* isolate = map->GetIsolate();
LookupResult lookup(isolate);
// Check for a JavaScript accessor directly in the map.
map->LookupDescriptor(NULL, *name, &lookup);
if (lookup.IsPropertyCallbacks()) {
Handle<Object> callback(lookup.GetValueFromMap(*map), isolate);
if (!callback->IsAccessorPair()) return false;
*accessors = Handle<AccessorPair>::cast(callback);
*holder = Handle<JSObject>();
return true;
}
// Everything else, e.g. a field, can't be an accessor call.
if (lookup.IsFound()) return false;
// Check for a JavaScript accessor somewhere in the proto chain.
LookupInPrototypes(map, name, &lookup);
if (lookup.IsPropertyCallbacks()) {
Handle<Object> callback(lookup.GetValue(), isolate);
if (!callback->IsAccessorPair()) return false;
*accessors = Handle<AccessorPair>::cast(callback);
*holder = Handle<JSObject>(lookup.holder());
return true;
}
// We haven't found a JavaScript accessor anywhere.
return false;
}
static bool LookupGetter(Handle<Map> map,
Handle<String> name,
Handle<JSFunction>* getter,
Handle<JSObject>* holder) {
Handle<AccessorPair> accessors;
if (LookupAccessorPair(map, name, &accessors, holder) &&
accessors->getter()->IsJSFunction()) {
*getter = Handle<JSFunction>(JSFunction::cast(accessors->getter()));
return true;
}
return false;
}
static bool LookupSetter(Handle<Map> map,
Handle<String> name,
Handle<JSFunction>* setter,
Handle<JSObject>* holder) {
Handle<AccessorPair> accessors;
if (LookupAccessorPair(map, name, &accessors, holder) &&
accessors->setter()->IsJSFunction()) {
*setter = Handle<JSFunction>(JSFunction::cast(accessors->setter()));
return true;
}
return false;
}
// Determines whether the given array or object literal boilerplate satisfies
// all limits to be considered for fast deep-copying and computes the total
// size of all objects that are part of the graph.
static bool IsFastLiteral(Handle<JSObject> boilerplate,
int max_depth,
int* max_properties,
int* total_size) {
ASSERT(max_depth >= 0 && *max_properties >= 0);
if (max_depth == 0) return false;
Isolate* isolate = boilerplate->GetIsolate();
Handle<FixedArrayBase> elements(boilerplate->elements());
if (elements->length() > 0 &&
elements->map() != isolate->heap()->fixed_cow_array_map()) {
if (boilerplate->HasFastDoubleElements()) {
*total_size += FixedDoubleArray::SizeFor(elements->length());
} else if (boilerplate->HasFastObjectElements()) {
Handle<FixedArray> fast_elements = Handle<FixedArray>::cast(elements);
int length = elements->length();
for (int i = 0; i < length; i++) {
if ((*max_properties)-- == 0) return false;
Handle<Object> value(fast_elements->get(i), isolate);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
if (!IsFastLiteral(value_object,
max_depth - 1,
max_properties,
total_size)) {
return false;
}
}
}
*total_size += FixedArray::SizeFor(length);
} else {
return false;
}
}
Handle<FixedArray> properties(boilerplate->properties());
if (properties->length() > 0) {
return false;
} else {
int nof = boilerplate->map()->inobject_properties();
for (int i = 0; i < nof; i++) {
if ((*max_properties)-- == 0) return false;
Handle<Object> value(boilerplate->InObjectPropertyAt(i), isolate);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
if (!IsFastLiteral(value_object,
max_depth - 1,
max_properties,
total_size)) {
return false;
}
}
}
}
*total_size += boilerplate->map()->instance_size();
return true;
}
void HOptimizedGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Handle<JSFunction> closure = function_state()->compilation_info()->closure();
HValue* context = environment()->LookupContext();
HInstruction* literal;
// Check whether to use fast or slow deep-copying for boilerplate.
int total_size = 0;
int max_properties = HFastLiteral::kMaxLiteralProperties;
Handle<Object> boilerplate(closure->literals()->get(expr->literal_index()),
isolate());
if (boilerplate->IsJSObject() &&
IsFastLiteral(Handle<JSObject>::cast(boilerplate),
HFastLiteral::kMaxLiteralDepth,
&max_properties,
&total_size)) {
Handle<JSObject> boilerplate_object = Handle<JSObject>::cast(boilerplate);
literal = new(zone()) HFastLiteral(context,
boilerplate_object,
total_size,
expr->literal_index(),
expr->depth(),
DONT_TRACK_ALLOCATION_SITE);
} else {
literal = new(zone()) HObjectLiteral(context,
expr->constant_properties(),
expr->fast_elements(),
expr->literal_index(),
expr->depth(),
expr->has_function());
}
// The object is expected in the bailout environment during computation
// of the property values and is the value of the entire expression.
PushAndAdd(literal);
expr->CalculateEmitStore(zone());
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
if (property->emit_store()) {
property->RecordTypeFeedback(oracle());
CHECK_ALIVE(VisitForValue(value));
HValue* value = Pop();
Handle<Map> map = property->GetReceiverType();
Handle<String> name = property->key()->AsPropertyName();
HInstruction* store;
if (map.is_null()) {
// If we don't know the monomorphic type, do a generic store.
CHECK_ALIVE(store = BuildStoreNamedGeneric(literal, name, value));
} else {
#if DEBUG
Handle<JSFunction> setter;
Handle<JSObject> holder;
ASSERT(!LookupSetter(map, name, &setter, &holder));
#endif
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(literal,
name,
value,
map));
}
AddInstruction(store);
if (store->HasObservableSideEffects()) {
AddSimulate(key->id(), REMOVABLE_SIMULATE);
}
} else {
CHECK_ALIVE(VisitForEffect(value));
}
break;
}
// Fall through.
case ObjectLiteral::Property::PROTOTYPE:
case ObjectLiteral::Property::SETTER:
case ObjectLiteral::Property::GETTER:
return Bailout("Object literal with complex property");
default: UNREACHABLE();
}
}
if (expr->has_function()) {
// Return the result of the transformation to fast properties
// instead of the original since this operation changes the map
// of the object. This makes sure that the original object won't
// be used by other optimized code before it is transformed
// (e.g. because of code motion).
HToFastProperties* result = new(zone()) HToFastProperties(Pop());
AddInstruction(result);
return ast_context()->ReturnValue(result);
} else {
return ast_context()->ReturnValue(Pop());
}
}
void HOptimizedGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
HValue* context = environment()->LookupContext();
HInstruction* literal;
Handle<FixedArray> literals(environment()->closure()->literals());
Handle<Object> raw_boilerplate(literals->get(expr->literal_index()),
isolate());
if (raw_boilerplate->IsUndefined()) {
raw_boilerplate = Runtime::CreateArrayLiteralBoilerplate(
isolate(), literals, expr->constant_elements());
if (raw_boilerplate.is_null()) {
return Bailout("array boilerplate creation failed");
}
literals->set(expr->literal_index(), *raw_boilerplate);
if (JSObject::cast(*raw_boilerplate)->elements()->map() ==
isolate()->heap()->fixed_cow_array_map()) {
isolate()->counters()->cow_arrays_created_runtime()->Increment();
}
}
Handle<JSObject> boilerplate = Handle<JSObject>::cast(raw_boilerplate);
ElementsKind boilerplate_elements_kind =
Handle<JSObject>::cast(boilerplate)->GetElementsKind();
// TODO(mvstanton): This heuristic is only a temporary solution. In the
// end, we want to quit creating allocation site info after a certain number
// of GCs for a call site.
AllocationSiteMode mode = AllocationSiteInfo::GetMode(
boilerplate_elements_kind);
// Check whether to use fast or slow deep-copying for boilerplate.
int total_size = 0;
int max_properties = HFastLiteral::kMaxLiteralProperties;
if (IsFastLiteral(boilerplate,
HFastLiteral::kMaxLiteralDepth,
&max_properties,
&total_size)) {
if (mode == TRACK_ALLOCATION_SITE) {
total_size += AllocationSiteInfo::kSize;
}
literal = new(zone()) HFastLiteral(context,
boilerplate,
total_size,
expr->literal_index(),
expr->depth(),
mode);
} else {
literal = new(zone()) HArrayLiteral(context,
boilerplate,
length,
expr->literal_index(),
expr->depth(),
mode);
}
// The array is expected in the bailout environment during computation
// of the property values and is the value of the entire expression.
PushAndAdd(literal);
HLoadElements* elements = NULL;
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
CHECK_ALIVE(VisitForValue(subexpr));
HValue* value = Pop();
if (!Smi::IsValid(i)) return Bailout("Non-smi key in array literal");
// Pass in literal as dummy depedency, since the receiver always has
// elements.
elements = new(zone()) HLoadElements(literal, literal);
AddInstruction(elements);
HValue* key = AddInstruction(
new(zone()) HConstant(Handle<Object>(Smi::FromInt(i), isolate()),
Representation::Integer32()));
switch (boilerplate_elements_kind) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
// Smi-only arrays need a smi check.
AddInstruction(new(zone()) HCheckSmi(value));
// Fall through.
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
AddInstruction(new(zone()) HStoreKeyed(
elements,
key,
value,
boilerplate_elements_kind));
break;
default:
UNREACHABLE();
break;
}
AddSimulate(expr->GetIdForElement(i));
}
return ast_context()->ReturnValue(Pop());
}
// Sets the lookup result and returns true if the load/store can be inlined.
static bool ComputeLoadStoreField(Handle<Map> type,
Handle<String> name,
LookupResult* lookup,
bool is_store) {
if (type->has_named_interceptor()) {
lookup->InterceptorResult(NULL);
return false;
}
// If we directly find a field, the access can be inlined.
type->LookupDescriptor(NULL, *name, lookup);
if (lookup->IsField()) return true;
// For a load, we are out of luck if there is no such field.
if (!is_store) return false;
// 2nd chance: A store into a non-existent field can still be inlined if we
// have a matching transition and some room left in the object.
type->LookupTransition(NULL, *name, lookup);
return lookup->IsTransitionToField(*type) &&
(type->unused_property_fields() > 0);
}
static int ComputeLoadStoreFieldIndex(Handle<Map> type,
Handle<String> name,
LookupResult* lookup) {
ASSERT(lookup->IsField() || lookup->IsTransitionToField(*type));
if (lookup->IsField()) {
return lookup->GetLocalFieldIndexFromMap(*type);
} else {
Map* transition = lookup->GetTransitionMapFromMap(*type);
return transition->PropertyIndexFor(*name) - type->inobject_properties();
}
}
void HOptimizedGraphBuilder::AddCheckMapsWithTransitions(HValue* object,
Handle<Map> map) {
AddInstruction(new(zone()) HCheckNonSmi(object));
AddInstruction(HCheckMaps::NewWithTransitions(object, map, zone()));
}
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedField(
HValue* object,
Handle<String> name,
HValue* value,
Handle<Map> map,
LookupResult* lookup) {
ASSERT(lookup->IsFound());
// If the property does not exist yet, we have to check that it wasn't made
// readonly or turned into a setter by some meanwhile modifications on the
// prototype chain.
if (!lookup->IsProperty() && map->prototype()->IsJSReceiver()) {
Object* proto = map->prototype();
// First check that the prototype chain isn't affected already.
LookupResult proto_result(isolate());
proto->Lookup(*name, &proto_result);
if (proto_result.IsProperty()) {
// If the inherited property could induce readonly-ness, bail out.
if (proto_result.IsReadOnly() || !proto_result.IsCacheable()) {
Bailout("improper object on prototype chain for store");
return NULL;
}
// We only need to check up to the preexisting property.
proto = proto_result.holder();
} else {
// Otherwise, find the top prototype.
while (proto->GetPrototype(isolate())->IsJSObject()) {
proto = proto->GetPrototype(isolate());
}
ASSERT(proto->GetPrototype(isolate())->IsNull());
}
ASSERT(proto->IsJSObject());
AddInstruction(new(zone()) HCheckPrototypeMaps(
Handle<JSObject>(JSObject::cast(map->prototype())),
Handle<JSObject>(JSObject::cast(proto)),
zone()));
}
int index = ComputeLoadStoreFieldIndex(map, name, lookup);
bool is_in_object = index < 0;
int offset = index * kPointerSize;
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
offset += map->instance_size();
} else {
offset += FixedArray::kHeaderSize;
}
HStoreNamedField* instr =
new(zone()) HStoreNamedField(object, name, value, is_in_object, offset);
if (lookup->IsTransitionToField(*map)) {
Handle<Map> transition(lookup->GetTransitionMapFromMap(*map));
instr->set_transition(transition);
// TODO(fschneider): Record the new map type of the object in the IR to
// enable elimination of redundant checks after the transition store.
instr->SetGVNFlag(kChangesMaps);
}
return instr;
}
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedGeneric(
HValue* object,
Handle<String> name,
HValue* value) {
HValue* context = environment()->LookupContext();
return new(zone()) HStoreNamedGeneric(
context,
object,
name,
value,
function_strict_mode_flag());
}
HInstruction* HOptimizedGraphBuilder::BuildCallSetter(
HValue* object,
HValue* value,
Handle<Map> map,
Handle<JSFunction> setter,
Handle<JSObject> holder) {
AddCheckConstantFunction(holder, object, map);
AddInstruction(new(zone()) HPushArgument(object));
AddInstruction(new(zone()) HPushArgument(value));
return new(zone()) HCallConstantFunction(setter, 2);
}
HInstruction* HOptimizedGraphBuilder::BuildStoreNamedMonomorphic(
HValue* object,
Handle<String> name,
HValue* value,
Handle<Map> map) {
// Handle a store to a known field.
LookupResult lookup(isolate());
if (ComputeLoadStoreField(map, name, &lookup, true)) {
AddCheckMapsWithTransitions(object, map);
return BuildStoreNamedField(object, name, value, map, &lookup);
}
// No luck, do a generic store.
return BuildStoreNamedGeneric(object, name, value);
}
void HOptimizedGraphBuilder::HandlePolymorphicLoadNamedField(
Property* expr,
HValue* object,
SmallMapList* types,
Handle<String> name) {
int count = 0;
int previous_field_offset = 0;
bool previous_field_is_in_object = false;
bool is_monomorphic_field = true;
Handle<Map> map;
LookupResult lookup(isolate());
for (int i = 0; i < types->length() && count < kMaxLoadPolymorphism; ++i) {
map = types->at(i);
if (ComputeLoadStoreField(map, name, &lookup, false)) {
int index = ComputeLoadStoreFieldIndex(map, name, &lookup);
bool is_in_object = index < 0;
int offset = index * kPointerSize;
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
offset += map->instance_size();
} else {
offset += FixedArray::kHeaderSize;
}
if (count == 0) {
previous_field_offset = offset;
previous_field_is_in_object = is_in_object;
} else if (is_monomorphic_field) {
is_monomorphic_field = (offset == previous_field_offset) &&
(is_in_object == previous_field_is_in_object);
}
++count;
}
}
// Use monomorphic load if property lookup results in the same field index
// for all maps. Requires special map check on the set of all handled maps.
AddInstruction(new(zone()) HCheckNonSmi(object));
HInstruction* instr;
if (count == types->length() && is_monomorphic_field) {
AddInstruction(new(zone()) HCheckMaps(object, types, zone()));
instr = BuildLoadNamedField(object, map, &lookup);
} else {
HValue* context = environment()->LookupContext();
instr = new(zone()) HLoadNamedFieldPolymorphic(context,
object,
types,
name,
zone());
}
instr->set_position(expr->position());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::HandlePolymorphicStoreNamedField(
Assignment* expr,
HValue* object,
HValue* value,
SmallMapList* types,
Handle<String> name) {
// TODO(ager): We should recognize when the prototype chains for different
// maps are identical. In that case we can avoid repeatedly generating the
// same prototype map checks.
int count = 0;
HBasicBlock* join = NULL;
for (int i = 0; i < types->length() && count < kMaxStorePolymorphism; ++i) {
Handle<Map> map = types->at(i);
LookupResult lookup(isolate());
if (ComputeLoadStoreField(map, name, &lookup, true)) {
if (count == 0) {
AddInstruction(new(zone()) HCheckNonSmi(object)); // Only needed once.
join = graph()->CreateBasicBlock();
}
++count;
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
HCompareMap* compare =
new(zone()) HCompareMap(object, map, if_true, if_false);
current_block()->Finish(compare);
set_current_block(if_true);
HInstruction* instr;
CHECK_ALIVE(instr =
BuildStoreNamedField(object, name, value, map, &lookup));
instr->set_position(expr->position());
// Goto will add the HSimulate for the store.
AddInstruction(instr);
if (!ast_context()->IsEffect()) Push(value);
current_block()->Goto(join);
set_current_block(if_false);
}
}
// Finish up. Unconditionally deoptimize if we've handled all the maps we
// know about and do not want to handle ones we've never seen. Otherwise
// use a generic IC.
if (count == types->length() && FLAG_deoptimize_uncommon_cases) {
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
} else {
HInstruction* instr = BuildStoreNamedGeneric(object, name, value);
instr->set_position(expr->position());
AddInstruction(instr);
if (join != NULL) {
if (!ast_context()->IsEffect()) Push(value);
current_block()->Goto(join);
} else {
// The HSimulate for the store should not see the stored value in
// effect contexts (it is not materialized at expr->id() in the
// unoptimized code).
if (instr->HasObservableSideEffects()) {
if (ast_context()->IsEffect()) {
AddSimulate(expr->id(), REMOVABLE_SIMULATE);
} else {
Push(value);
AddSimulate(expr->id(), REMOVABLE_SIMULATE);
Drop(1);
}
}
return ast_context()->ReturnValue(value);
}
}
ASSERT(join != NULL);
join->SetJoinId(expr->id());
set_current_block(join);
if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
}
void HOptimizedGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
expr->RecordTypeFeedback(oracle(), zone());
CHECK_ALIVE(VisitForValue(prop->obj()));
if (prop->key()->IsPropertyName()) {
// Named store.
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* value = environment()->ExpressionStackAt(0);
HValue* object = environment()->ExpressionStackAt(1);
Literal* key = prop->key()->AsLiteral();
Handle<String> name = Handle<String>::cast(key->handle());
ASSERT(!name.is_null());
HInstruction* instr = NULL;
SmallMapList* types = expr->GetReceiverTypes();
bool monomorphic = expr->IsMonomorphic();
Handle<Map> map;
if (monomorphic) {
map = types->first();
if (map->is_dictionary_map()) monomorphic = false;
}
if (monomorphic) {
Handle<JSFunction> setter;
Handle<JSObject> holder;
if (LookupSetter(map, name, &setter, &holder)) {
AddCheckConstantFunction(holder, object, map);
if (FLAG_inline_accessors && TryInlineSetter(setter, expr, value)) {
return;
}
Drop(2);
AddInstruction(new(zone()) HPushArgument(object));
AddInstruction(new(zone()) HPushArgument(value));
instr = new(zone()) HCallConstantFunction(setter, 2);
} else {
Drop(2);
CHECK_ALIVE(instr = BuildStoreNamedMonomorphic(object,
name,
value,
map));
}
} else if (types != NULL && types->length() > 1) {
Drop(2);
return HandlePolymorphicStoreNamedField(expr, object, value, types, name);
} else {
Drop(2);
instr = BuildStoreNamedGeneric(object, name, value);
}
Push(value);
instr->set_position(expr->position());
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
return ast_context()->ReturnValue(Pop());
} else {
// Keyed store.
CHECK_ALIVE(VisitForValue(prop->key()));
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* value = Pop();
HValue* key = Pop();
HValue* object = Pop();
bool has_side_effects = false;
HandleKeyedElementAccess(object, key, value, expr, expr->AssignmentId(),
expr->position(),
true, // is_store
&has_side_effects);
Push(value);
ASSERT(has_side_effects); // Stores always have side effects.
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
return ast_context()->ReturnValue(Pop());
}
}
// Because not every expression has a position and there is not common
// superclass of Assignment and CountOperation, we cannot just pass the
// owning expression instead of position and ast_id separately.
void HOptimizedGraphBuilder::HandleGlobalVariableAssignment(
Variable* var,
HValue* value,
int position,
BailoutId ast_id) {
LookupResult lookup(isolate());
GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, true);
if (type == kUseCell) {
Handle<GlobalObject> global(info()->global_object());
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
HInstruction* instr =
new(zone()) HStoreGlobalCell(value, cell, lookup.GetPropertyDetails());
instr->set_position(position);
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(ast_id, REMOVABLE_SIMULATE);
}
} else {
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HStoreGlobalGeneric* instr =
new(zone()) HStoreGlobalGeneric(context,
global_object,
var->name(),
value,
function_strict_mode_flag());
instr->set_position(position);
AddInstruction(instr);
ASSERT(instr->HasObservableSideEffects());
AddSimulate(ast_id, REMOVABLE_SIMULATE);
}
}
void HOptimizedGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
Expression* target = expr->target();
VariableProxy* proxy = target->AsVariableProxy();
Property* prop = target->AsProperty();
ASSERT(proxy == NULL || prop == NULL);
// We have a second position recorded in the FullCodeGenerator to have
// type feedback for the binary operation.
BinaryOperation* operation = expr->binary_operation();
if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == LET) {
return Bailout("unsupported let compound assignment");
}
CHECK_ALIVE(VisitForValue(operation));
switch (var->location()) {
case Variable::UNALLOCATED:
HandleGlobalVariableAssignment(var,
Top(),
expr->position(),
expr->AssignmentId());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
if (var->mode() == CONST) {
return Bailout("unsupported const compound assignment");
}
Bind(var, Top());
break;
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function
// using the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (info()->scope()->arguments() != NULL) {
// Parameters will be allocated to context slots. We have no
// direct way to detect that the variable is a parameter so we do
// a linear search of the parameter variables.
int count = info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == info()->scope()->parameter(i)) {
Bailout(
"assignment to parameter, function uses arguments object");
}
}
}
HStoreContextSlot::Mode mode;
switch (var->mode()) {
case LET:
mode = HStoreContextSlot::kCheckDeoptimize;
break;
case CONST:
return ast_context()->ReturnValue(Pop());
case CONST_HARMONY:
// This case is checked statically so no need to
// perform checks here
UNREACHABLE();
default:
mode = HStoreContextSlot::kNoCheck;
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot* instr =
new(zone()) HStoreContextSlot(context, var->index(), mode, Top());
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout("compound assignment to lookup slot");
}
return ast_context()->ReturnValue(Pop());
} else if (prop != NULL) {
prop->RecordTypeFeedback(oracle(), zone());
if (prop->key()->IsPropertyName()) {
// Named property.
CHECK_ALIVE(VisitForValue(prop->obj()));
HValue* object = Top();
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
Handle<Map> map;
HInstruction* load;
bool monomorphic = prop->IsMonomorphic();
if (monomorphic) {
map = prop->GetReceiverTypes()->first();
// We can't generate code for a monomorphic dict mode load so
// just pretend it is not monomorphic.
if (map->is_dictionary_map()) monomorphic = false;
}
if (monomorphic) {
Handle<JSFunction> getter;
Handle<JSObject> holder;
if (LookupGetter(map, name, &getter, &holder)) {
load = BuildCallGetter(object, map, getter, holder);
} else {
load = BuildLoadNamedMonomorphic(object, name, prop, map);
}
} else {
load = BuildLoadNamedGeneric(object, name, prop);
}
PushAndAdd(load);
if (load->HasObservableSideEffects()) {
AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
}
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(operation, left, right);
PushAndAdd(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(operation->id(), REMOVABLE_SIMULATE);
}
HInstruction* store;
if (!monomorphic || map->is_observed()) {
// If we don't know the monomorphic type, do a generic store.
CHECK_ALIVE(store = BuildStoreNamedGeneric(object, name, instr));
} else {
Handle<JSFunction> setter;
Handle<JSObject> holder;
if (LookupSetter(map, name, &setter, &holder)) {
store = BuildCallSetter(object, instr, map, setter, holder);
} else {
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(object,
name,
instr,
map));
}
}
AddInstruction(store);
// Drop the simulated receiver and value. Return the value.
Drop(2);
Push(instr);
if (store->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
return ast_context()->ReturnValue(Pop());
} else {
// Keyed property.
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
HValue* obj = environment()->ExpressionStackAt(1);
HValue* key = environment()->ExpressionStackAt(0);
bool has_side_effects = false;
HValue* load = HandleKeyedElementAccess(
obj, key, NULL, prop, prop->LoadId(), RelocInfo::kNoPosition,
false, // is_store
&has_side_effects);
Push(load);
if (has_side_effects) AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
CHECK_ALIVE(VisitForValue(expr->value()));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(operation, left, right);
PushAndAdd(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(operation->id(), REMOVABLE_SIMULATE);
}
expr->RecordTypeFeedback(oracle(), zone());
HandleKeyedElementAccess(obj, key, instr, expr, expr->AssignmentId(),
RelocInfo::kNoPosition,
true, // is_store
&has_side_effects);
// Drop the simulated receiver, key, and value. Return the value.
Drop(3);
Push(instr);
ASSERT(has_side_effects); // Stores always have side effects.
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
return ast_context()->ReturnValue(Pop());
}
} else {
return Bailout("invalid lhs in compound assignment");
}
}
void HOptimizedGraphBuilder::VisitAssignment(Assignment* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
VariableProxy* proxy = expr->target()->AsVariableProxy();
Property* prop = expr->target()->AsProperty();
ASSERT(proxy == NULL || prop == NULL);
if (expr->is_compound()) {
HandleCompoundAssignment(expr);
return;
}
if (prop != NULL) {
HandlePropertyAssignment(expr);
} else if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == CONST) {
if (expr->op() != Token::INIT_CONST) {
CHECK_ALIVE(VisitForValue(expr->value()));
return ast_context()->ReturnValue(Pop());
}
if (var->IsStackAllocated()) {
// We insert a use of the old value to detect unsupported uses of const
// variables (e.g. initialization inside a loop).
HValue* old_value = environment()->Lookup(var);
AddInstruction(new(zone()) HUseConst(old_value));
}
} else if (var->mode() == CONST_HARMONY) {
if (expr->op() != Token::INIT_CONST_HARMONY) {
return Bailout("non-initializer assignment to const");
}
}
if (proxy->IsArguments()) return Bailout("assignment to arguments");
// Handle the assignment.
switch (var->location()) {
case Variable::UNALLOCATED:
CHECK_ALIVE(VisitForValue(expr->value()));
HandleGlobalVariableAssignment(var,
Top(),
expr->position(),
expr->AssignmentId());
return ast_context()->ReturnValue(Pop());
case Variable::PARAMETER:
case Variable::LOCAL: {
// Perform an initialization check for let declared variables
// or parameters.
if (var->mode() == LET && expr->op() == Token::ASSIGN) {
HValue* env_value = environment()->Lookup(var);
if (env_value == graph()->GetConstantHole()) {
return Bailout("assignment to let variable before initialization");
}
}
// We do not allow the arguments object to occur in a context where it
// may escape, but assignments to stack-allocated locals are
// permitted.
CHECK_ALIVE(VisitForValue(expr->value(), ARGUMENTS_ALLOWED));
HValue* value = Pop();
Bind(var, value);
return ast_context()->ReturnValue(value);
}
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function using
// the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (info()->scope()->arguments() != NULL) {
// Parameters will rewrite to context slots. We have no direct way
// to detect that the variable is a parameter.
int count = info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == info()->scope()->parameter(i)) {
return Bailout("assignment to parameter in arguments object");
}
}
}
CHECK_ALIVE(VisitForValue(expr->value()));
HStoreContextSlot::Mode mode;
if (expr->op() == Token::ASSIGN) {
switch (var->mode()) {
case LET:
mode = HStoreContextSlot::kCheckDeoptimize;
break;
case CONST:
return ast_context()->ReturnValue(Pop());
case CONST_HARMONY:
// This case is checked statically so no need to
// perform checks here
UNREACHABLE();
default:
mode = HStoreContextSlot::kNoCheck;
}
} else if (expr->op() == Token::INIT_VAR ||
expr->op() == Token::INIT_LET ||
expr->op() == Token::INIT_CONST_HARMONY) {
mode = HStoreContextSlot::kNoCheck;
} else {
ASSERT(expr->op() == Token::INIT_CONST);
mode = HStoreContextSlot::kCheckIgnoreAssignment;
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot* instr = new(zone()) HStoreContextSlot(
context, var->index(), mode, Top());
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
return ast_context()->ReturnValue(Pop());
}
case Variable::LOOKUP:
return Bailout("assignment to LOOKUP variable");
}
} else {
return Bailout("invalid left-hand side in assignment");
}
}
void HOptimizedGraphBuilder::VisitThrow(Throw* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
// We don't optimize functions with invalid left-hand sides in
// assignments, count operations, or for-in. Consequently throw can
// currently only occur in an effect context.
ASSERT(ast_context()->IsEffect());
CHECK_ALIVE(VisitForValue(expr->exception()));
HValue* context = environment()->LookupContext();
HValue* value = environment()->Pop();
HThrow* instr = new(zone()) HThrow(context, value);
instr->set_position(expr->position());
AddInstruction(instr);
AddSimulate(expr->id());
current_block()->FinishExit(new(zone()) HAbnormalExit);
set_current_block(NULL);
}
HLoadNamedField* HOptimizedGraphBuilder::BuildLoadNamedField(
HValue* object,
Handle<Map> map,
LookupResult* lookup) {
int index = lookup->GetLocalFieldIndexFromMap(*map);
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
int offset = (index * kPointerSize) + map->instance_size();
return new(zone()) HLoadNamedField(object, true, offset);
} else {
// Non-negative property indices are in the properties array.
int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
return new(zone()) HLoadNamedField(object, false, offset);
}
}
HInstruction* HOptimizedGraphBuilder::BuildLoadNamedGeneric(
HValue* object,
Handle<String> name,
Property* expr) {
if (expr->IsUninitialized()) {
AddSoftDeoptimize();
}
HValue* context = environment()->LookupContext();
return new(zone()) HLoadNamedGeneric(context, object, name);
}
HInstruction* HOptimizedGraphBuilder::BuildCallGetter(
HValue* object,
Handle<Map> map,
Handle<JSFunction> getter,
Handle<JSObject> holder) {
AddCheckConstantFunction(holder, object, map);
AddInstruction(new(zone()) HPushArgument(object));
return new(zone()) HCallConstantFunction(getter, 1);
}
HInstruction* HOptimizedGraphBuilder::BuildLoadNamedMonomorphic(
HValue* object,
Handle<String> name,
Property* expr,
Handle<Map> map) {
// Handle a load from a known field.
ASSERT(!map->is_dictionary_map());
LookupResult lookup(isolate());
map->LookupDescriptor(NULL, *name, &lookup);
if (lookup.IsField()) {
AddCheckMapsWithTransitions(object, map);
return BuildLoadNamedField(object, map, &lookup);
}
// Handle a load of a constant known function.
if (lookup.IsConstantFunction()) {
AddCheckMapsWithTransitions(object, map);
Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*map));
return new(zone()) HConstant(function, Representation::Tagged());
}
// Handle a load from a known field somewhere in the prototype chain.
LookupInPrototypes(map, name, &lookup);
if (lookup.IsField()) {
Handle<JSObject> prototype(JSObject::cast(map->prototype()));
Handle<JSObject> holder(lookup.holder());
Handle<Map> holder_map(holder->map());
AddCheckMapsWithTransitions(object, map);
HInstruction* holder_value = AddInstruction(
new(zone()) HCheckPrototypeMaps(prototype, holder, zone()));
return BuildLoadNamedField(holder_value, holder_map, &lookup);
}
// Handle a load of a constant function somewhere in the prototype chain.
if (lookup.IsConstantFunction()) {
Handle<JSObject> prototype(JSObject::cast(map->prototype()));
Handle<JSObject> holder(lookup.holder());
Handle<Map> holder_map(holder->map());
AddCheckMapsWithTransitions(object, map);
AddInstruction(new(zone()) HCheckPrototypeMaps(prototype, holder, zone()));
Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*holder_map));
return new(zone()) HConstant(function, Representation::Tagged());
}
// No luck, do a generic load.
return BuildLoadNamedGeneric(object, name, expr);
}
HInstruction* HOptimizedGraphBuilder::BuildLoadKeyedGeneric(HValue* object,
HValue* key) {
HValue* context = environment()->LookupContext();
return new(zone()) HLoadKeyedGeneric(context, object, key);
}
HInstruction* HOptimizedGraphBuilder::BuildMonomorphicElementAccess(
HValue* object,
HValue* key,
HValue* val,
HValue* dependency,
Handle<Map> map,
bool is_store) {
HCheckMaps* mapcheck = new(zone()) HCheckMaps(object, map,
zone(), dependency);
AddInstruction(mapcheck);
if (dependency) {
mapcheck->ClearGVNFlag(kDependsOnElementsKind);
}
return BuildUncheckedMonomorphicElementAccess(
object, key, val,
mapcheck, map->instance_type() == JS_ARRAY_TYPE,
map->elements_kind(), is_store);
}
HInstruction* HOptimizedGraphBuilder::TryBuildConsolidatedElementLoad(
HValue* object,
HValue* key,
HValue* val,
SmallMapList* maps) {
// For polymorphic loads of similar elements kinds (i.e. all tagged or all
// double), always use the "worst case" code without a transition. This is
// much faster than transitioning the elements to the worst case, trading a
// HTransitionElements for a HCheckMaps, and avoiding mutation of the array.
bool has_double_maps = false;
bool has_smi_or_object_maps = false;
bool has_js_array_access = false;
bool has_non_js_array_access = false;
Handle<Map> most_general_consolidated_map;
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
// Don't allow mixing of JSArrays with JSObjects.
if (map->instance_type() == JS_ARRAY_TYPE) {
if (has_non_js_array_access) return NULL;
has_js_array_access = true;
} else if (has_js_array_access) {
return NULL;
} else {
has_non_js_array_access = true;
}
// Don't allow mixed, incompatible elements kinds.
if (map->has_fast_double_elements()) {
if (has_smi_or_object_maps) return NULL;
has_double_maps = true;
} else if (map->has_fast_smi_or_object_elements()) {
if (has_double_maps) return NULL;
has_smi_or_object_maps = true;
} else {
return NULL;
}
// Remember the most general elements kind, the code for its load will
// properly handle all of the more specific cases.
if ((i == 0) || IsMoreGeneralElementsKindTransition(
most_general_consolidated_map->elements_kind(),
map->elements_kind())) {
most_general_consolidated_map = map;
}
}
if (!has_double_maps && !has_smi_or_object_maps) return NULL;
HCheckMaps* check_maps = new(zone()) HCheckMaps(object, maps, zone());
AddInstruction(check_maps);
HInstruction* instr = BuildUncheckedMonomorphicElementAccess(
object, key, val, check_maps,
most_general_consolidated_map->instance_type() == JS_ARRAY_TYPE,
most_general_consolidated_map->elements_kind(),
false);
return instr;
}
HValue* HOptimizedGraphBuilder::HandlePolymorphicElementAccess(
HValue* object,
HValue* key,
HValue* val,
Expression* prop,
BailoutId ast_id,
int position,
bool is_store,
bool* has_side_effects) {
*has_side_effects = false;
AddInstruction(new(zone()) HCheckNonSmi(object));
SmallMapList* maps = prop->GetReceiverTypes();
bool todo_external_array = false;
if (!is_store) {
HInstruction* consolidated_load =
TryBuildConsolidatedElementLoad(object, key, val, maps);
if (consolidated_load != NULL) {
AddInstruction(consolidated_load);
*has_side_effects |= consolidated_load->HasObservableSideEffects();
if (position != RelocInfo::kNoPosition) {
consolidated_load->set_position(position);
}
return consolidated_load;
}
}
static const int kNumElementTypes = kElementsKindCount;
bool type_todo[kNumElementTypes];
for (int i = 0; i < kNumElementTypes; ++i) {
type_todo[i] = false;
}
// Elements_kind transition support.
MapHandleList transition_target(maps->length());
// Collect possible transition targets.
MapHandleList possible_transitioned_maps(maps->length());
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
ElementsKind elements_kind = map->elements_kind();
if (IsFastElementsKind(elements_kind) &&
elements_kind != GetInitialFastElementsKind()) {
possible_transitioned_maps.Add(map);
}
}
// Get transition target for each map (NULL == no transition).
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
Handle<Map> transitioned_map =
map->FindTransitionedMap(&possible_transitioned_maps);
transition_target.Add(transitioned_map);
}
int num_untransitionable_maps = 0;
Handle<Map> untransitionable_map;
HTransitionElementsKind* transition = NULL;
for (int i = 0; i < maps->length(); ++i) {
Handle<Map> map = maps->at(i);
ASSERT(map->IsMap());
if (!transition_target.at(i).is_null()) {
ASSERT(Map::IsValidElementsTransition(
map->elements_kind(),
transition_target.at(i)->elements_kind()));
HValue* context = environment()->LookupContext();
transition = new(zone()) HTransitionElementsKind(
context, object, map, transition_target.at(i));
AddInstruction(transition);
} else {
type_todo[map->elements_kind()] = true;
if (IsExternalArrayElementsKind(map->elements_kind())) {
todo_external_array = true;
}
num_untransitionable_maps++;
untransitionable_map = map;
}
}
// If only one map is left after transitioning, handle this case
// monomorphically.
if (num_untransitionable_maps == 1) {
HInstruction* instr = NULL;
if (untransitionable_map->has_slow_elements_kind()) {
instr = AddInstruction(is_store ? BuildStoreKeyedGeneric(object, key, val)
: BuildLoadKeyedGeneric(object, key));
} else {
instr = AddInstruction(BuildMonomorphicElementAccess(
object, key, val, transition, untransitionable_map, is_store));
}
*has_side_effects |= instr->HasObservableSideEffects();
if (position != RelocInfo::kNoPosition) instr->set_position(position);
return is_store ? NULL : instr;
}
HInstruction* checkspec =
AddInstruction(HCheckInstanceType::NewIsSpecObject(object, zone()));
HBasicBlock* join = graph()->CreateBasicBlock();
HInstruction* elements_kind_instr =
AddInstruction(new(zone()) HElementsKind(object));
HInstruction* elements =
AddInstruction(new(zone()) HLoadElements(object, checkspec));
HLoadExternalArrayPointer* external_elements = NULL;
HInstruction* checked_key = NULL;
// Generated code assumes that FAST_* and DICTIONARY_ELEMENTS ElementsKinds
// are handled before external arrays.
STATIC_ASSERT(FAST_SMI_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
STATIC_ASSERT(DICTIONARY_ELEMENTS < FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND);
for (ElementsKind elements_kind = FIRST_ELEMENTS_KIND;
elements_kind <= LAST_ELEMENTS_KIND;
elements_kind = ElementsKind(elements_kind + 1)) {
// After having handled FAST_* and DICTIONARY_ELEMENTS, we need to add some
// code that's executed for all external array cases.
STATIC_ASSERT(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND ==
LAST_ELEMENTS_KIND);
if (elements_kind == FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND
&& todo_external_array) {
HInstruction* length =
AddInstruction(new(zone()) HFixedArrayBaseLength(elements));
checked_key = AddBoundsCheck(key, length);
external_elements = new(zone()) HLoadExternalArrayPointer(elements);
AddInstruction(external_elements);
}
if (type_todo[elements_kind]) {
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
HCompareConstantEqAndBranch* elements_kind_branch =
new(zone()) HCompareConstantEqAndBranch(
elements_kind_instr, elements_kind, Token::EQ_STRICT);
elements_kind_branch->SetSuccessorAt(0, if_true);
elements_kind_branch->SetSuccessorAt(1, if_false);
current_block()->Finish(elements_kind_branch);
set_current_block(if_true);
HInstruction* access;
if (IsFastElementsKind(elements_kind)) {
if (is_store && !IsFastDoubleElementsKind(elements_kind)) {
AddInstruction(new(zone()) HCheckMaps(
elements, isolate()->factory()->fixed_array_map(),
zone(), elements_kind_branch));
}
// TODO(jkummerow): The need for these two blocks could be avoided
// in one of two ways:
// (1) Introduce ElementsKinds for JSArrays that are distinct from
// those for fast objects.
// (2) Put the common instructions into a third "join" block. This
// requires additional AST IDs that we can deopt to from inside
// that join block. They must be added to the Property class (when
// it's a keyed property) and registered in the full codegen.
HBasicBlock* if_jsarray = graph()->CreateBasicBlock();
HBasicBlock* if_fastobject = graph()->CreateBasicBlock();
HHasInstanceTypeAndBranch* typecheck =
new(zone()) HHasInstanceTypeAndBranch(object, JS_ARRAY_TYPE);
typecheck->SetSuccessorAt(0, if_jsarray);
typecheck->SetSuccessorAt(1, if_fastobject);
current_block()->Finish(typecheck);
set_current_block(if_jsarray);
HInstruction* length;
length = AddInstruction(new(zone()) HJSArrayLength(object, typecheck,
HType::Smi()));
checked_key = AddBoundsCheck(key, length, ALLOW_SMI_KEY);
access = AddInstruction(BuildFastElementAccess(
elements, checked_key, val, elements_kind_branch,
elements_kind, is_store));
if (!is_store) {
Push(access);
}
*has_side_effects |= access->HasObservableSideEffects();
if (position != -1) {
access->set_position(position);
}
if_jsarray->Goto(join);
set_current_block(if_fastobject);
length = AddInstruction(new(zone()) HFixedArrayBaseLength(elements));
checked_key = AddBoundsCheck(key, length, ALLOW_SMI_KEY);
access = AddInstruction(BuildFastElementAccess(
elements, checked_key, val, elements_kind_branch,
elements_kind, is_store));
} else if (elements_kind == DICTIONARY_ELEMENTS) {
if (is_store) {
access = AddInstruction(BuildStoreKeyedGeneric(object, key, val));
} else {
access = AddInstruction(BuildLoadKeyedGeneric(object, key));
}
} else { // External array elements.
access = AddInstruction(BuildExternalArrayElementAccess(
external_elements, checked_key, val,
elements_kind_branch, elements_kind, is_store));
}
*has_side_effects |= access->HasObservableSideEffects();
if (position != RelocInfo::kNoPosition) access->set_position(position);
if (!is_store) {
Push(access);
}
current_block()->Goto(join);
set_current_block(if_false);
}
}
// Deopt if none of the cases matched.
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
join->SetJoinId(ast_id);
set_current_block(join);
return is_store ? NULL : Pop();
}
HValue* HOptimizedGraphBuilder::HandleKeyedElementAccess(
HValue* obj,
HValue* key,
HValue* val,
Expression* expr,
BailoutId ast_id,
int position,
bool is_store,
bool* has_side_effects) {
ASSERT(!expr->IsPropertyName());
HInstruction* instr = NULL;
if (expr->IsMonomorphic()) {
Handle<Map> map = expr->GetMonomorphicReceiverType();
if (map->has_slow_elements_kind()) {
instr = is_store ? BuildStoreKeyedGeneric(obj, key, val)
: BuildLoadKeyedGeneric(obj, key);
} else {
AddInstruction(new(zone()) HCheckNonSmi(obj));
instr = BuildMonomorphicElementAccess(obj, key, val, NULL, map, is_store);
}
} else if (expr->GetReceiverTypes() != NULL &&
!expr->GetReceiverTypes()->is_empty()) {
return HandlePolymorphicElementAccess(
obj, key, val, expr, ast_id, position, is_store, has_side_effects);
} else {
if (is_store) {
instr = BuildStoreKeyedGeneric(obj, key, val);
} else {
instr = BuildLoadKeyedGeneric(obj, key);
}
}
if (position != RelocInfo::kNoPosition) instr->set_position(position);
AddInstruction(instr);
*has_side_effects = instr->HasObservableSideEffects();
return instr;
}
HInstruction* HOptimizedGraphBuilder::BuildStoreKeyedGeneric(
HValue* object,
HValue* key,
HValue* value) {
HValue* context = environment()->LookupContext();
return new(zone()) HStoreKeyedGeneric(
context,
object,
key,
value,
function_strict_mode_flag());
}
void HOptimizedGraphBuilder::EnsureArgumentsArePushedForAccess() {
// Outermost function already has arguments on the stack.
if (function_state()->outer() == NULL) return;
if (function_state()->arguments_pushed()) return;
// Push arguments when entering inlined function.
HEnterInlined* entry = function_state()->entry();
entry->set_arguments_pushed();
ZoneList<HValue*>* arguments_values = entry->arguments_values();
HInstruction* insert_after = entry;
for (int i = 0; i < arguments_values->length(); i++) {
HValue* argument = arguments_values->at(i);
HInstruction* push_argument = new(zone()) HPushArgument(argument);
push_argument->InsertAfter(insert_after);
insert_after = push_argument;
}
HArgumentsElements* arguments_elements =
new(zone()) HArgumentsElements(true);
arguments_elements->ClearFlag(HValue::kUseGVN);
arguments_elements->InsertAfter(insert_after);
function_state()->set_arguments_elements(arguments_elements);
}
bool HOptimizedGraphBuilder::TryArgumentsAccess(Property* expr) {
VariableProxy* proxy = expr->obj()->AsVariableProxy();
if (proxy == NULL) return false;
if (!proxy->var()->IsStackAllocated()) return false;
if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
return false;
}
HInstruction* result = NULL;
if (expr->key()->IsPropertyName()) {
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
if (!name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("length"))) return false;
if (function_state()->outer() == NULL) {
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
result = new(zone()) HArgumentsLength(elements);
} else {
// Number of arguments without receiver.
int argument_count = environment()->
arguments_environment()->parameter_count() - 1;
result = new(zone()) HConstant(
Handle<Object>(Smi::FromInt(argument_count), isolate()),
Representation::Integer32());
}
} else {
Push(graph()->GetArgumentsObject());
VisitForValue(expr->key());
if (HasStackOverflow() || current_block() == NULL) return true;
HValue* key = Pop();
Drop(1); // Arguments object.
if (function_state()->outer() == NULL) {
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
HInstruction* length = AddInstruction(
new(zone()) HArgumentsLength(elements));
HInstruction* checked_key = AddBoundsCheck(key, length);
result = new(zone()) HAccessArgumentsAt(elements, length, checked_key);
} else {
EnsureArgumentsArePushedForAccess();
// Number of arguments without receiver.
HInstruction* elements = function_state()->arguments_elements();
int argument_count = environment()->
arguments_environment()->parameter_count() - 1;
HInstruction* length = AddInstruction(new(zone()) HConstant(
Handle<Object>(Smi::FromInt(argument_count), isolate()),
Representation::Integer32()));
HInstruction* checked_key = AddBoundsCheck(key, length);
result = new(zone()) HAccessArgumentsAt(elements, length, checked_key);
}
}
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
void HOptimizedGraphBuilder::VisitProperty(Property* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
expr->RecordTypeFeedback(oracle(), zone());
if (TryArgumentsAccess(expr)) return;
CHECK_ALIVE(VisitForValue(expr->obj()));
HInstruction* instr = NULL;
if (expr->AsProperty()->IsArrayLength()) {
HValue* array = Pop();
AddInstruction(new(zone()) HCheckNonSmi(array));
HInstruction* mapcheck =
AddInstruction(HCheckInstanceType::NewIsJSArray(array, zone()));
instr = new(zone()) HJSArrayLength(array, mapcheck);
} else if (expr->IsStringLength()) {
HValue* string = Pop();
AddInstruction(new(zone()) HCheckNonSmi(string));
AddInstruction(HCheckInstanceType::NewIsString(string, zone()));
instr = HStringLength::New(zone(), string);
} else if (expr->IsStringAccess()) {
CHECK_ALIVE(VisitForValue(expr->key()));
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
HInstruction* char_code =
BuildStringCharCodeAt(context, string, index);
AddInstruction(char_code);
instr = HStringCharFromCode::New(zone(), context, char_code);
} else if (expr->IsFunctionPrototype()) {
HValue* function = Pop();
AddInstruction(new(zone()) HCheckNonSmi(function));
instr = new(zone()) HLoadFunctionPrototype(function);
} else if (expr->key()->IsPropertyName()) {
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
SmallMapList* types = expr->GetReceiverTypes();
HValue* object = Top();
Handle<Map> map;
bool monomorphic = false;
if (expr->IsMonomorphic()) {
map = types->first();
monomorphic = !map->is_dictionary_map();
} else if (object->HasMonomorphicJSObjectType()) {
map = object->GetMonomorphicJSObjectMap();
monomorphic = !map->is_dictionary_map();
}
if (monomorphic) {
Handle<JSFunction> getter;
Handle<JSObject> holder;
if (LookupGetter(map, name, &getter, &holder)) {
AddCheckConstantFunction(holder, Top(), map);
if (FLAG_inline_accessors && TryInlineGetter(getter, expr)) return;
AddInstruction(new(zone()) HPushArgument(Pop()));
instr = new(zone()) HCallConstantFunction(getter, 1);
} else {
instr = BuildLoadNamedMonomorphic(Pop(), name, expr, map);
}
} else if (types != NULL && types->length() > 1) {
return HandlePolymorphicLoadNamedField(expr, Pop(), types, name);
} else {
instr = BuildLoadNamedGeneric(Pop(), name, expr);
}
} else {
CHECK_ALIVE(VisitForValue(expr->key()));
HValue* key = Pop();
HValue* obj = Pop();
bool has_side_effects = false;
HValue* load = HandleKeyedElementAccess(
obj, key, NULL, expr, expr->id(), expr->position(),
false, // is_store
&has_side_effects);
if (has_side_effects) {
if (ast_context()->IsEffect()) {
AddSimulate(expr->id(), REMOVABLE_SIMULATE);
} else {
Push(load);
AddSimulate(expr->id(), REMOVABLE_SIMULATE);
Drop(1);
}
}
return ast_context()->ReturnValue(load);
}
instr->set_position(expr->position());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::AddCheckPrototypeMaps(Handle<JSObject> holder,
Handle<Map> receiver_map) {
if (!holder.is_null()) {
Handle<JSObject> prototype(JSObject::cast(receiver_map->prototype()));
AddInstruction(
new(zone()) HCheckPrototypeMaps(prototype, holder, zone()));
}
}
void HOptimizedGraphBuilder::AddCheckConstantFunction(
Handle<JSObject> holder,
HValue* receiver,
Handle<Map> receiver_map) {
// Constant functions have the nice property that the map will change if they
// are overwritten. Therefore it is enough to check the map of the holder and
// its prototypes.
AddCheckMapsWithTransitions(receiver, receiver_map);
AddCheckPrototypeMaps(holder, receiver_map);
}
class FunctionSorter {
public:
FunctionSorter() : index_(0), ticks_(0), ast_length_(0), src_length_(0) { }
FunctionSorter(int index, int ticks, int ast_length, int src_length)
: index_(index),
ticks_(ticks),
ast_length_(ast_length),
src_length_(src_length) { }
int index() const { return index_; }
int ticks() const { return ticks_; }
int ast_length() const { return ast_length_; }
int src_length() const { return src_length_; }
private:
int index_;
int ticks_;
int ast_length_;
int src_length_;
};
static int CompareHotness(void const* a, void const* b) {
FunctionSorter const* function1 = reinterpret_cast<FunctionSorter const*>(a);
FunctionSorter const* function2 = reinterpret_cast<FunctionSorter const*>(b);
int diff = function1->ticks() - function2->ticks();
if (diff != 0) return -diff;
diff = function1->ast_length() - function2->ast_length();
if (diff != 0) return diff;
return function1->src_length() - function2->src_length();
}
void HOptimizedGraphBuilder::HandlePolymorphicCallNamed(
Call* expr,
HValue* receiver,
SmallMapList* types,
Handle<String> name) {
// TODO(ager): We should recognize when the prototype chains for different
// maps are identical. In that case we can avoid repeatedly generating the
// same prototype map checks.
int argument_count = expr->arguments()->length() + 1; // Includes receiver.
HBasicBlock* join = NULL;
FunctionSorter order[kMaxCallPolymorphism];
int ordered_functions = 0;
for (int i = 0;
i < types->length() && ordered_functions < kMaxCallPolymorphism;
++i) {
Handle<Map> map = types->at(i);
if (expr->ComputeTarget(map, name)) {
order[ordered_functions++] =
FunctionSorter(i,
expr->target()->shared()->profiler_ticks(),
InliningAstSize(expr->target()),
expr->target()->shared()->SourceSize());
}
}
qsort(reinterpret_cast<void*>(&order[0]),
ordered_functions,
sizeof(order[0]),
&CompareHotness);
for (int fn = 0; fn < ordered_functions; ++fn) {
int i = order[fn].index();
Handle<Map> map = types->at(i);
if (fn == 0) {
// Only needed once.
AddInstruction(new(zone()) HCheckNonSmi(receiver));
join = graph()->CreateBasicBlock();
}
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
HCompareMap* compare =
new(zone()) HCompareMap(receiver, map, if_true, if_false);
current_block()->Finish(compare);
set_current_block(if_true);
expr->ComputeTarget(map, name);
AddCheckPrototypeMaps(expr->holder(), map);
if (FLAG_trace_inlining && FLAG_polymorphic_inlining) {
Handle<JSFunction> caller = info()->closure();
SmartArrayPointer<char> caller_name =
caller->shared()->DebugName()->ToCString();
PrintF("Trying to inline the polymorphic call to %s from %s\n",
*name->ToCString(),
*caller_name);
}
if (FLAG_polymorphic_inlining && TryInlineCall(expr)) {
// Trying to inline will signal that we should bailout from the
// entire compilation by setting stack overflow on the visitor.
if (HasStackOverflow()) return;
} else {
HCallConstantFunction* call =
new(zone()) HCallConstantFunction(expr->target(), argument_count);
call->set_position(expr->position());
PreProcessCall(call);
AddInstruction(call);
if (!ast_context()->IsEffect()) Push(call);
}
if (current_block() != NULL) current_block()->Goto(join);
set_current_block(if_false);
}
// Finish up. Unconditionally deoptimize if we've handled all the maps we
// know about and do not want to handle ones we've never seen. Otherwise
// use a generic IC.
if (ordered_functions == types->length() && FLAG_deoptimize_uncommon_cases) {
current_block()->FinishExitWithDeoptimization(HDeoptimize::kNoUses);
} else {
HValue* context = environment()->LookupContext();
HCallNamed* call = new(zone()) HCallNamed(context, name, argument_count);
call->set_position(expr->position());
PreProcessCall(call);
if (join != NULL) {
AddInstruction(call);
if (!ast_context()->IsEffect()) Push(call);
current_block()->Goto(join);
} else {
return ast_context()->ReturnInstruction(call, expr->id());
}
}
// We assume that control flow is always live after an expression. So
// even without predecessors to the join block, we set it as the exit
// block and continue by adding instructions there.
ASSERT(join != NULL);
if (join->HasPredecessor()) {
set_current_block(join);
join->SetJoinId(expr->id());
if (!ast_context()->IsEffect()) return ast_context()->ReturnValue(Pop());
} else {
set_current_block(NULL);
}
}
void HOptimizedGraphBuilder::TraceInline(Handle<JSFunction> target,
Handle<JSFunction> caller,
const char* reason) {
if (FLAG_trace_inlining) {
SmartArrayPointer<char> target_name =
target->shared()->DebugName()->ToCString();
SmartArrayPointer<char> caller_name =
caller->shared()->DebugName()->ToCString();
if (reason == NULL) {
PrintF("Inlined %s called from %s.\n", *target_name, *caller_name);
} else {
PrintF("Did not inline %s called from %s (%s).\n",
*target_name, *caller_name, reason);
}
}
}
static const int kNotInlinable = 1000000000;
int HOptimizedGraphBuilder::InliningAstSize(Handle<JSFunction> target) {
if (!FLAG_use_inlining) return kNotInlinable;
// Precondition: call is monomorphic and we have found a target with the
// appropriate arity.
Handle<JSFunction> caller = info()->closure();
Handle<SharedFunctionInfo> target_shared(target->shared());
// Do a quick check on source code length to avoid parsing large
// inlining candidates.
if (target_shared->SourceSize() >
Min(FLAG_max_inlined_source_size, kUnlimitedMaxInlinedSourceSize)) {
TraceInline(target, caller, "target text too big");
return kNotInlinable;
}
// Target must be inlineable.
if (!target->IsInlineable()) {
TraceInline(target, caller, "target not inlineable");
return kNotInlinable;
}
if (target_shared->dont_inline() || target_shared->dont_optimize()) {
TraceInline(target, caller, "target contains unsupported syntax [early]");
return kNotInlinable;
}
int nodes_added = target_shared->ast_node_count();
return nodes_added;
}
bool HOptimizedGraphBuilder::TryInline(CallKind call_kind,
Handle<JSFunction> target,
int arguments_count,
HValue* implicit_return_value,
BailoutId ast_id,
BailoutId return_id,
InliningKind inlining_kind) {
int nodes_added = InliningAstSize(target);
if (nodes_added == kNotInlinable) return false;
Handle<JSFunction> caller = info()->closure();
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
TraceInline(target, caller, "target AST is too large [early]");
return false;
}
#if !defined(V8_TARGET_ARCH_IA32)
// Target must be able to use caller's context.
CompilationInfo* outer_info = info();
if (target->context() != outer_info->closure()->context() ||
outer_info->scope()->contains_with() ||
outer_info->scope()->num_heap_slots() > 0) {
TraceInline(target, caller, "target requires context change");
return false;
}
#endif
// Don't inline deeper than kMaxInliningLevels calls.
HEnvironment* env = environment();
int current_level = 1;
while (env->outer() != NULL) {
if (current_level == Compiler::kMaxInliningLevels) {
TraceInline(target, caller, "inline depth limit reached");
return false;
}
if (env->outer()->frame_type() == JS_FUNCTION) {
current_level++;
}
env = env->outer();
}
// Don't inline recursive functions.
for (FunctionState* state = function_state();
state != NULL;
state = state->outer()) {
if (*state->compilation_info()->closure() == *target) {
TraceInline(target, caller, "target is recursive");
return false;
}
}
// We don't want to add more than a certain number of nodes from inlining.
if (inlined_count_ > Min(FLAG_max_inlined_nodes_cumulative,
kUnlimitedMaxInlinedNodesCumulative)) {
TraceInline(target, caller, "cumulative AST node limit reached");
return false;
}
// Parse and allocate variables.
CompilationInfo target_info(target, zone());
Handle<SharedFunctionInfo> target_shared(target->shared());
if (!ParserApi::Parse(&target_info, kNoParsingFlags) ||
!Scope::Analyze(&target_info)) {
if (target_info.isolate()->has_pending_exception()) {
// Parse or scope error, never optimize this function.
SetStackOverflow();
target_shared->DisableOptimization("parse/scope error");
}
TraceInline(target, caller, "parse failure");
return false;
}
if (target_info.scope()->num_heap_slots() > 0) {
TraceInline(target, caller, "target has context-allocated variables");
return false;
}
FunctionLiteral* function = target_info.function();
// The following conditions must be checked again after re-parsing, because
// earlier the information might not have been complete due to lazy parsing.
nodes_added = function->ast_node_count();
if (nodes_added > Min(FLAG_max_inlined_nodes, kUnlimitedMaxInlinedNodes)) {
TraceInline(target, caller, "target AST is too large [late]");
return false;
}
AstProperties::Flags* flags(function->flags());
if (flags->Contains(kDontInline) || flags->Contains(kDontOptimize)) {
TraceInline(target, caller, "target contains unsupported syntax [late]");
return false;
}
// If the function uses the arguments object check that inlining of functions
// with arguments object is enabled and the arguments-variable is
// stack allocated.
if (function->scope()->arguments() != NULL) {
if (!FLAG_inline_arguments) {
TraceInline(target, caller, "target uses arguments object");
return false;
}
if (!function->scope()->arguments()->IsStackAllocated()) {
TraceInline(target,
caller,
"target uses non-stackallocated arguments object");
return false;
}
}
// All declarations must be inlineable.
ZoneList<Declaration*>* decls = target_info.scope()->declarations();
int decl_count = decls->length();
for (int i = 0; i < decl_count; ++i) {
if (!decls->at(i)->IsInlineable()) {
TraceInline(target, caller, "target has non-trivial declaration");
return false;
}
}
// Generate the deoptimization data for the unoptimized version of
// the target function if we don't already have it.
if (!target_shared->has_deoptimization_support()) {
// Note that we compile here using the same AST that we will use for
// generating the optimized inline code.
target_info.EnableDeoptimizationSupport();
if (!FullCodeGenerator::MakeCode(&target_info)) {
TraceInline(target, caller, "could not generate deoptimization info");
return false;
}
if (target_shared->scope_info() == ScopeInfo::Empty(isolate())) {
// The scope info might not have been set if a lazily compiled
// function is inlined before being called for the first time.
Handle<ScopeInfo> target_scope_info =
ScopeInfo::Create(target_info.scope(), zone());
target_shared->set_scope_info(*target_scope_info);
}
target_shared->EnableDeoptimizationSupport(*target_info.code());
Compiler::RecordFunctionCompilation(Logger::FUNCTION_TAG,
&target_info,
target_shared);
}
// ----------------------------------------------------------------
// After this point, we've made a decision to inline this function (so
// TryInline should always return true).
// Save the pending call context and type feedback oracle. Set up new ones
// for the inlined function.
ASSERT(target_shared->has_deoptimization_support());
Handle<Code> unoptimized_code(target_shared->code());
TypeFeedbackOracle target_oracle(
unoptimized_code,
Handle<Context>(target->context()->native_context()),
isolate(),
zone());
// The function state is new-allocated because we need to delete it
// in two different places.
FunctionState* target_state = new FunctionState(
this, &target_info, &target_oracle, inlining_kind);
HConstant* undefined = graph()->GetConstantUndefined();
bool undefined_receiver = HEnvironment::UseUndefinedReceiver(
target, function, call_kind, inlining_kind);
HEnvironment* inner_env =
environment()->CopyForInlining(target,
arguments_count,
function,
undefined,
function_state()->inlining_kind(),
undefined_receiver);
#ifdef V8_TARGET_ARCH_IA32
// IA32 only, overwrite the caller's context in the deoptimization
// environment with the correct one.
//
// TODO(kmillikin): implement the same inlining on other platforms so we
// can remove the unsightly ifdefs in this function.
HConstant* context =
new(zone()) HConstant(Handle<Context>(target->context()),
Representation::Tagged());
AddInstruction(context);
inner_env->BindContext(context);
#endif
AddSimulate(return_id);
current_block()->UpdateEnvironment(inner_env);
ZoneList<HValue*>* arguments_values = NULL;
// If the function uses arguments copy current arguments values
// to use them for materialization.
if (function->scope()->arguments() != NULL) {
HEnvironment* arguments_env = inner_env->arguments_environment();
int arguments_count = arguments_env->parameter_count();
arguments_values = new(zone()) ZoneList<HValue*>(arguments_count, zone());
for (int i = 0; i < arguments_count; i++) {
arguments_values->Add(arguments_env->Lookup(i), zone());
}
}
HEnterInlined* enter_inlined =
new(zone()) HEnterInlined(target,
arguments_count,
function,
function_state()->inlining_kind(),
function->scope()->arguments(),
arguments_values,
undefined_receiver);
function_state()->set_entry(enter_inlined);
AddInstruction(enter_inlined);
// If the function uses arguments object create and bind one.
if (function->scope()->arguments() != NULL) {
ASSERT(function->scope()->arguments()->IsStackAllocated());
inner_env->Bind(function->scope()->arguments(),
graph()->GetArgumentsObject());
}
VisitDeclarations(target_info.scope()->declarations());
VisitStatements(function->body());
if (HasStackOverflow()) {
// Bail out if the inline function did, as we cannot residualize a call
// instead.
TraceInline(target, caller, "inline graph construction failed");
target_shared->DisableOptimization("inlining bailed out");
inline_bailout_ = true;
delete target_state;
return true;
}
// Update inlined nodes count.
inlined_count_ += nodes_added;
ASSERT(unoptimized_code->kind() == Code::FUNCTION);
Handle<TypeFeedbackInfo> type_info(
TypeFeedbackInfo::cast(unoptimized_code->type_feedback_info()));
graph()->update_type_change_checksum(type_info->own_type_change_checksum());
TraceInline(target, caller, NULL);
if (current_block() != NULL) {
FunctionState* state = function_state();
if (state->inlining_kind() == CONSTRUCT_CALL_RETURN) {
// Falling off the end of an inlined construct call. In a test context the
// return value will always evaluate to true, in a value context the
// return value is the newly allocated receiver.
if (call_context()->IsTest()) {
current_block()->Goto(inlined_test_context()->if_true(), state);
} else if (call_context()->IsEffect()) {
current_block()->Goto(function_return(), state);
} else {
ASSERT(call_context()->IsValue());
current_block()->AddLeaveInlined(implicit_return_value, state);
}
} else if (state->inlining_kind() == SETTER_CALL_RETURN) {
// Falling off the end of an inlined setter call. The returned value is
// never used, the value of an assignment is always the value of the RHS
// of the assignment.
if (call_context()->IsTest()) {
inlined_test_context()->ReturnValue(implicit_return_value);
} else if (call_context()->IsEffect()) {
current_block()->Goto(function_return(), state);
} else {
ASSERT(call_context()->IsValue());
current_block()->AddLeaveInlined(implicit_return_value, state);
}
} else {
// Falling off the end of a normal inlined function. This basically means
// returning undefined.
if (call_context()->IsTest()) {
current_block()->Goto(inlined_test_context()->if_false(), state);
} else if (call_context()->IsEffect()) {
current_block()->Goto(function_return(), state);
} else {
ASSERT(call_context()->IsValue());
current_block()->AddLeaveInlined(undefined, state);
}
}
}
// Fix up the function exits.
if (inlined_test_context() != NULL) {
HBasicBlock* if_true = inlined_test_context()->if_true();
HBasicBlock* if_false = inlined_test_context()->if_false();
// Pop the return test context from the expression context stack.
ASSERT(ast_context() == inlined_test_context());
ClearInlinedTestContext();
delete target_state;
// Forward to the real test context.
if (if_true->HasPredecessor()) {
if_true->SetJoinId(ast_id);
HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
if_true->Goto(true_target, function_state());
}
if (if_false->HasPredecessor()) {
if_false->SetJoinId(ast_id);
HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
if_false->Goto(false_target, function_state());
}
set_current_block(NULL);
return true;
} else if (function_return()->HasPredecessor()) {
function_return()->SetJoinId(ast_id);
set_current_block(function_return());
} else {
set_current_block(NULL);
}
delete target_state;
return true;
}
bool HOptimizedGraphBuilder::TryInlineCall(Call* expr, bool drop_extra) {
// The function call we are inlining is a method call if the call
// is a property call.
CallKind call_kind = (expr->expression()->AsProperty() == NULL)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
return TryInline(call_kind,
expr->target(),
expr->arguments()->length(),
NULL,
expr->id(),
expr->ReturnId(),
drop_extra ? DROP_EXTRA_ON_RETURN : NORMAL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineConstruct(CallNew* expr,
HValue* implicit_return_value) {
return TryInline(CALL_AS_FUNCTION,
expr->target(),
expr->arguments()->length(),
implicit_return_value,
expr->id(),
expr->ReturnId(),
CONSTRUCT_CALL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineGetter(Handle<JSFunction> getter,
Property* prop) {
return TryInline(CALL_AS_METHOD,
getter,
0,
NULL,
prop->id(),
prop->LoadId(),
GETTER_CALL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineSetter(Handle<JSFunction> setter,
Assignment* assignment,
HValue* implicit_return_value) {
return TryInline(CALL_AS_METHOD,
setter,
1,
implicit_return_value,
assignment->id(),
assignment->AssignmentId(),
SETTER_CALL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineApply(Handle<JSFunction> function,
Call* expr,
int arguments_count) {
return TryInline(CALL_AS_METHOD,
function,
arguments_count,
NULL,
expr->id(),
expr->ReturnId(),
NORMAL_RETURN);
}
bool HOptimizedGraphBuilder::TryInlineBuiltinFunctionCall(Call* expr,
bool drop_extra) {
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
switch (id) {
case kMathExp:
if (!FLAG_fast_math) break;
// Fall through if FLAG_fast_math.
case kMathRound:
case kMathFloor:
case kMathAbs:
case kMathSqrt:
case kMathLog:
case kMathSin:
case kMathCos:
case kMathTan:
if (expr->arguments()->length() == 1) {
HValue* argument = Pop();
HValue* context = environment()->LookupContext();
Drop(1); // Receiver.
HInstruction* op =
HUnaryMathOperation::New(zone(), context, argument, id);
op->set_position(expr->position());
if (drop_extra) Drop(1); // Optionally drop the function.
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
default:
// Not supported for inlining yet.
break;
}
return false;
}
bool HOptimizedGraphBuilder::TryInlineBuiltinMethodCall(
Call* expr,
HValue* receiver,
Handle<Map> receiver_map,
CheckType check_type) {
ASSERT(check_type != RECEIVER_MAP_CHECK || !receiver_map.is_null());
// Try to inline calls like Math.* as operations in the calling function.
if (!expr->target()->shared()->HasBuiltinFunctionId()) return false;
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
switch (id) {
case kStringCharCodeAt:
case kStringCharAt:
if (argument_count == 2 && check_type == STRING_CHECK) {
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
ASSERT(!expr->holder().is_null());
AddInstruction(new(zone()) HCheckPrototypeMaps(
oracle()->GetPrototypeForPrimitiveCheck(STRING_CHECK),
expr->holder(),
zone()));
HInstruction* char_code =
BuildStringCharCodeAt(context, string, index);
if (id == kStringCharCodeAt) {
ast_context()->ReturnInstruction(char_code, expr->id());
return true;
}
AddInstruction(char_code);
HInstruction* result =
HStringCharFromCode::New(zone(), context, char_code);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathExp:
if (!FLAG_fast_math) break;
// Fall through if FLAG_fast_math.
case kMathRound:
case kMathFloor:
case kMathAbs:
case kMathSqrt:
case kMathLog:
case kMathSin:
case kMathCos:
case kMathTan:
if (argument_count == 2 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* argument = Pop();
HValue* context = environment()->LookupContext();
Drop(1); // Receiver.
HInstruction* op =
HUnaryMathOperation::New(zone(), context, argument, id);
op->set_position(expr->position());
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
case kMathPow:
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* right = Pop();
HValue* left = Pop();
Pop(); // Pop receiver.
HValue* context = environment()->LookupContext();
HInstruction* result = NULL;
// Use sqrt() if exponent is 0.5 or -0.5.
if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
double exponent = HConstant::cast(right)->DoubleValue();
if (exponent == 0.5) {
result =
HUnaryMathOperation::New(zone(), context, left, kMathPowHalf);
} else if (exponent == -0.5) {
HConstant* double_one =
new(zone()) HConstant(Handle<Object>(Smi::FromInt(1),
isolate()),
Representation::Double());
AddInstruction(double_one);
HInstruction* sqrt =
HUnaryMathOperation::New(zone(), context, left, kMathPowHalf);
AddInstruction(sqrt);
// MathPowHalf doesn't have side effects so there's no need for
// an environment simulation here.
ASSERT(!sqrt->HasObservableSideEffects());
result = HDiv::New(zone(), context, double_one, sqrt);
} else if (exponent == 2.0) {
result = HMul::New(zone(), context, left, left);
}
} else if (right->IsConstant() &&
HConstant::cast(right)->HasInteger32Value() &&
HConstant::cast(right)->Integer32Value() == 2) {
result = HMul::New(zone(), context, left, left);
}
if (result == NULL) {
result = HPower::New(zone(), left, right);
}
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathRandom:
if (argument_count == 1 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
Drop(1); // Receiver.
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HRandom* result = new(zone()) HRandom(global_object);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
case kMathMax:
case kMathMin:
if (argument_count == 3 && check_type == RECEIVER_MAP_CHECK) {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
HValue* right = Pop();
HValue* left = Pop();
Drop(1); // Receiver.
HValue* context = environment()->LookupContext();
HMathMinMax::Operation op = (id == kMathMin) ? HMathMinMax::kMathMin
: HMathMinMax::kMathMax;
HInstruction* result =
HMathMinMax::New(zone(), context, left, right, op);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
default:
// Not yet supported for inlining.
break;
}
return false;
}
bool HOptimizedGraphBuilder::TryCallApply(Call* expr) {
Expression* callee = expr->expression();
Property* prop = callee->AsProperty();
ASSERT(prop != NULL);
if (!expr->IsMonomorphic() || expr->check_type() != RECEIVER_MAP_CHECK) {
return false;
}
Handle<Map> function_map = expr->GetReceiverTypes()->first();
if (function_map->instance_type() != JS_FUNCTION_TYPE ||
!expr->target()->shared()->HasBuiltinFunctionId() ||
expr->target()->shared()->builtin_function_id() != kFunctionApply) {
return false;
}
if (info()->scope()->arguments() == NULL) return false;
ZoneList<Expression*>* args = expr->arguments();
if (args->length() != 2) return false;
VariableProxy* arg_two = args->at(1)->AsVariableProxy();
if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
HValue* arg_two_value = environment()->Lookup(arg_two->var());
if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
// Found pattern f.apply(receiver, arguments).
VisitForValue(prop->obj());
if (HasStackOverflow() || current_block() == NULL) return true;
HValue* function = Top();
AddCheckConstantFunction(expr->holder(), function, function_map);
Drop(1);
VisitForValue(args->at(0));
if (HasStackOverflow() || current_block() == NULL) return true;
HValue* receiver = Pop();
if (function_state()->outer() == NULL) {
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
HInstruction* length =
AddInstruction(new(zone()) HArgumentsLength(elements));
HValue* wrapped_receiver =
AddInstruction(new(zone()) HWrapReceiver(receiver, function));
HInstruction* result =
new(zone()) HApplyArguments(function,
wrapped_receiver,
length,
elements);
result->set_position(expr->position());
ast_context()->ReturnInstruction(result, expr->id());
return true;
} else {
// We are inside inlined function and we know exactly what is inside
// arguments object. But we need to be able to materialize at deopt.
// TODO(mstarzinger): For now we just ensure arguments are pushed
// right after HEnterInlined, but we could be smarter about this.
EnsureArgumentsArePushedForAccess();
ASSERT_EQ(environment()->arguments_environment()->parameter_count(),
function_state()->entry()->arguments_values()->length());
HEnterInlined* entry = function_state()->entry();
ZoneList<HValue*>* arguments_values = entry->arguments_values();
int arguments_count = arguments_values->length();
PushAndAdd(new(zone()) HWrapReceiver(receiver, function));
for (int i = 1; i < arguments_count; i++) {
Push(arguments_values->at(i));
}
Handle<JSFunction> known_function;
if (function->IsConstant()) {
HConstant* constant_function = HConstant::cast(function);
known_function = Handle<JSFunction>::cast(constant_function->handle());
int args_count = arguments_count - 1; // Excluding receiver.
if (TryInlineApply(known_function, expr, args_count)) return true;
}
Drop(arguments_count - 1);
PushAndAdd(new(zone()) HPushArgument(Pop()));
for (int i = 1; i < arguments_count; i++) {
PushAndAdd(new(zone()) HPushArgument(arguments_values->at(i)));
}
HValue* context = environment()->LookupContext();
HInvokeFunction* call = new(zone()) HInvokeFunction(
context,
function,
known_function,
arguments_count);
Drop(arguments_count);
call->set_position(expr->position());
ast_context()->ReturnInstruction(call, expr->id());
return true;
}
}
// Checks if all maps in |types| are from the same family, i.e., are elements
// transitions of each other. Returns either NULL if they are not from the same
// family, or a Map* indicating the map with the first elements kind of the
// family that is in the list.
static Map* CheckSameElementsFamily(SmallMapList* types) {
if (types->length() <= 1) return NULL;
// Check if all maps belong to the same transition family.
Map* kinds[kFastElementsKindCount];
Map* first_map = *types->first();
ElementsKind first_kind = first_map->elements_kind();
if (!IsFastElementsKind(first_kind)) return NULL;
int first_index = GetSequenceIndexFromFastElementsKind(first_kind);
int last_index = first_index;
for (int i = 0; i < kFastElementsKindCount; i++) kinds[i] = NULL;
kinds[first_index] = first_map;
for (int i = 1; i < types->length(); ++i) {
Map* map = *types->at(i);
ElementsKind elements_kind = map->elements_kind();
if (!IsFastElementsKind(elements_kind)) return NULL;
int index = GetSequenceIndexFromFastElementsKind(elements_kind);
if (index < first_index) {
first_index = index;
} else if (index > last_index) {
last_index = index;
} else if (kinds[index] != map) {
return NULL;
}
kinds[index] = map;
}
Map* current = kinds[first_index];
for (int i = first_index + 1; i <= last_index; i++) {
Map* next = kinds[i];
if (next != NULL) {
ElementsKind current_kind = next->elements_kind();
if (next != current->LookupElementsTransitionMap(current_kind)) {
return NULL;
}
current = next;
}
}
return kinds[first_index];
}
void HOptimizedGraphBuilder::VisitCall(Call* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Expression* callee = expr->expression();
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
HInstruction* call = NULL;
Property* prop = callee->AsProperty();
if (prop != NULL) {
if (!prop->key()->IsPropertyName()) {
// Keyed function call.
CHECK_ALIVE(VisitArgument(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
// Push receiver and key like the non-optimized code generator expects it.
HValue* key = Pop();
HValue* receiver = Pop();
Push(key);
Push(receiver);
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
HValue* context = environment()->LookupContext();
call = new(zone()) HCallKeyed(context, key, argument_count);
call->set_position(expr->position());
Drop(argument_count + 1); // 1 is the key.
return ast_context()->ReturnInstruction(call, expr->id());
}
// Named function call.
expr->RecordTypeFeedback(oracle(), CALL_AS_METHOD);
if (TryCallApply(expr)) return;
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitExpressions(expr->arguments()));
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
SmallMapList* types = expr->GetReceiverTypes();
bool monomorphic = expr->IsMonomorphic();
Handle<Map> receiver_map;
if (monomorphic) {
receiver_map = (types == NULL || types->is_empty())
? Handle<Map>::null()
: types->first();
} else {
Map* family_map = CheckSameElementsFamily(types);
if (family_map != NULL) {
receiver_map = Handle<Map>(family_map);
monomorphic = expr->ComputeTarget(receiver_map, name);
}
}
HValue* receiver =
environment()->ExpressionStackAt(expr->arguments()->length());
if (monomorphic) {
if (TryInlineBuiltinMethodCall(expr,
receiver,
receiver_map,
expr->check_type())) {
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
expr->target()->ShortPrint();
PrintF("\n");
}
return;
}
if (CallStubCompiler::HasCustomCallGenerator(expr->target()) ||
expr->check_type() != RECEIVER_MAP_CHECK) {
// When the target has a custom call IC generator, use the IC,
// because it is likely to generate better code. Also use the IC
// when a primitive receiver check is required.
HValue* context = environment()->LookupContext();
call = PreProcessCall(
new(zone()) HCallNamed(context, name, argument_count));
} else {
AddCheckConstantFunction(expr->holder(), receiver, receiver_map);
if (TryInlineCall(expr)) return;
call = PreProcessCall(
new(zone()) HCallConstantFunction(expr->target(),
argument_count));
}
} else if (types != NULL && types->length() > 1) {
ASSERT(expr->check_type() == RECEIVER_MAP_CHECK);
HandlePolymorphicCallNamed(expr, receiver, types, name);
return;
} else {
HValue* context = environment()->LookupContext();
call = PreProcessCall(
new(zone()) HCallNamed(context, name, argument_count));
}
} else {
expr->RecordTypeFeedback(oracle(), CALL_AS_FUNCTION);
VariableProxy* proxy = expr->expression()->AsVariableProxy();
bool global_call = proxy != NULL && proxy->var()->IsUnallocated();
if (proxy != NULL && proxy->var()->is_possibly_eval(isolate())) {
return Bailout("possible direct call to eval");
}
if (global_call) {
Variable* var = proxy->var();
bool known_global_function = false;
// If there is a global property cell for the name at compile time and
// access check is not enabled we assume that the function will not change
// and generate optimized code for calling the function.
LookupResult lookup(isolate());
GlobalPropertyAccess type = LookupGlobalProperty(var, &lookup, false);
if (type == kUseCell &&
!info()->global_object()->IsAccessCheckNeeded()) {
Handle<GlobalObject> global(info()->global_object());
known_global_function = expr->ComputeGlobalTarget(global, &lookup);
}
if (known_global_function) {
// Push the global object instead of the global receiver because
// code generated by the full code generator expects it.
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
PushAndAdd(global_object);
CHECK_ALIVE(VisitExpressions(expr->arguments()));
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Pop();
AddInstruction(new(zone()) HCheckFunction(function, expr->target()));
// Replace the global object with the global receiver.
HGlobalReceiver* global_receiver =
new(zone()) HGlobalReceiver(global_object);
// Index of the receiver from the top of the expression stack.
const int receiver_index = argument_count - 1;
AddInstruction(global_receiver);
ASSERT(environment()->ExpressionStackAt(receiver_index)->
IsGlobalObject());
environment()->SetExpressionStackAt(receiver_index, global_receiver);
if (TryInlineBuiltinFunctionCall(expr, false)) { // Nothing to drop.
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
expr->target()->ShortPrint();
PrintF("\n");
}
return;
}
if (TryInlineCall(expr)) return;
if (expr->target().is_identical_to(info()->closure())) {
graph()->MarkRecursive();
}
call = PreProcessCall(new(zone()) HCallKnownGlobal(expr->target(),
argument_count));
} else {
HValue* context = environment()->LookupContext();
HGlobalObject* receiver = new(zone()) HGlobalObject(context);
AddInstruction(receiver);
PushAndAdd(new(zone()) HPushArgument(receiver));
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
call = new(zone()) HCallGlobal(context, var->name(), argument_count);
Drop(argument_count);
}
} else if (expr->IsMonomorphic()) {
// The function is on the stack in the unoptimized code during
// evaluation of the arguments.
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Top();
HValue* context = environment()->LookupContext();
HGlobalObject* global = new(zone()) HGlobalObject(context);
AddInstruction(global);
HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global);
PushAndAdd(receiver);
CHECK_ALIVE(VisitExpressions(expr->arguments()));
AddInstruction(new(zone()) HCheckFunction(function, expr->target()));
if (TryInlineBuiltinFunctionCall(expr, true)) { // Drop the function.
if (FLAG_trace_inlining) {
PrintF("Inlining builtin ");
expr->target()->ShortPrint();
PrintF("\n");
}
return;
}
if (TryInlineCall(expr, true)) { // Drop function from environment.
return;
} else {
call = PreProcessCall(
new(zone()) HInvokeFunction(context,
function,
expr->target(),
argument_count));
Drop(1); // The function.
}
} else {
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Top();
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HGlobalReceiver* receiver = new(zone()) HGlobalReceiver(global_object);
AddInstruction(receiver);
PushAndAdd(new(zone()) HPushArgument(receiver));
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
call = new(zone()) HCallFunction(context, function, argument_count);
Drop(argument_count + 1);
}
}
call->set_position(expr->position());
return ast_context()->ReturnInstruction(call, expr->id());
}
// Checks whether allocation using the given constructor can be inlined.
static bool IsAllocationInlineable(Handle<JSFunction> constructor) {
return constructor->has_initial_map() &&
constructor->initial_map()->instance_type() == JS_OBJECT_TYPE &&
constructor->initial_map()->instance_size() < HAllocateObject::kMaxSize;
}
void HOptimizedGraphBuilder::VisitCallNew(CallNew* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
expr->RecordTypeFeedback(oracle());
int argument_count = expr->arguments()->length() + 1; // Plus constructor.
HValue* context = environment()->LookupContext();
if (FLAG_inline_construct &&
expr->IsMonomorphic() &&
IsAllocationInlineable(expr->target())) {
// The constructor function is on the stack in the unoptimized code
// during evaluation of the arguments.
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* function = Top();
CHECK_ALIVE(VisitExpressions(expr->arguments()));
Handle<JSFunction> constructor = expr->target();
HValue* check = AddInstruction(
new(zone()) HCheckFunction(function, constructor));
// Force completion of inobject slack tracking before generating
// allocation code to finalize instance size.
if (constructor->shared()->IsInobjectSlackTrackingInProgress()) {
constructor->shared()->CompleteInobjectSlackTracking();
}
// Replace the constructor function with a newly allocated receiver.
HInstruction* receiver = new(zone()) HAllocateObject(context, constructor);
// Index of the receiver from the top of the expression stack.
const int receiver_index = argument_count - 1;
AddInstruction(receiver);
ASSERT(environment()->ExpressionStackAt(receiver_index) == function);
environment()->SetExpressionStackAt(receiver_index, receiver);
if (TryInlineConstruct(expr, receiver)) return;
// TODO(mstarzinger): For now we remove the previous HAllocateObject and
// add HPushArgument for the arguments in case inlining failed. What we
// actually should do is emit HInvokeFunction on the constructor instead
// of using HCallNew as a fallback.
receiver->DeleteAndReplaceWith(NULL);
check->DeleteAndReplaceWith(NULL);
environment()->SetExpressionStackAt(receiver_index, function);
HInstruction* call = PreProcessCall(
new(zone()) HCallNew(context, function, argument_count));
call->set_position(expr->position());
return ast_context()->ReturnInstruction(call, expr->id());
} else {
// The constructor function is both an operand to the instruction and an
// argument to the construct call.
CHECK_ALIVE(VisitArgument(expr->expression()));
HValue* constructor = HPushArgument::cast(Top())->argument();
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
HInstruction* call =
new(zone()) HCallNew(context, constructor, argument_count);
Drop(argument_count);
call->set_position(expr->position());
return ast_context()->ReturnInstruction(call, expr->id());
}
}
// Support for generating inlined runtime functions.
// Lookup table for generators for runtime calls that are generated inline.
// Elements of the table are member pointers to functions of
// HOptimizedGraphBuilder.
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
&HOptimizedGraphBuilder::Generate##Name,
const HOptimizedGraphBuilder::InlineFunctionGenerator
HOptimizedGraphBuilder::kInlineFunctionGenerators[] = {
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
};
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
void HOptimizedGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (expr->is_jsruntime()) {
return Bailout("call to a JavaScript runtime function");
}
const Runtime::Function* function = expr->function();
ASSERT(function != NULL);
if (function->intrinsic_type == Runtime::INLINE) {
ASSERT(expr->name()->length() > 0);
ASSERT(expr->name()->Get(0) == '_');
// Call to an inline function.
int lookup_index = static_cast<int>(function->function_id) -
static_cast<int>(Runtime::kFirstInlineFunction);
ASSERT(lookup_index >= 0);
ASSERT(static_cast<size_t>(lookup_index) <
ARRAY_SIZE(kInlineFunctionGenerators));
InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
// Call the inline code generator using the pointer-to-member.
(this->*generator)(expr);
} else {
ASSERT(function->intrinsic_type == Runtime::RUNTIME);
CHECK_ALIVE(VisitArgumentList(expr->arguments()));
HValue* context = environment()->LookupContext();
Handle<String> name = expr->name();
int argument_count = expr->arguments()->length();
HCallRuntime* call =
new(zone()) HCallRuntime(context, name, function, argument_count);
Drop(argument_count);
return ast_context()->ReturnInstruction(call, expr->id());
}
}
void HOptimizedGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
switch (expr->op()) {
case Token::DELETE: return VisitDelete(expr);
case Token::VOID: return VisitVoid(expr);
case Token::TYPEOF: return VisitTypeof(expr);
case Token::ADD: return VisitAdd(expr);
case Token::SUB: return VisitSub(expr);
case Token::BIT_NOT: return VisitBitNot(expr);
case Token::NOT: return VisitNot(expr);
default: UNREACHABLE();
}
}
void HOptimizedGraphBuilder::VisitDelete(UnaryOperation* expr) {
Property* prop = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (prop != NULL) {
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
HValue* key = Pop();
HValue* obj = Pop();
HValue* context = environment()->LookupContext();
HDeleteProperty* instr = new(zone()) HDeleteProperty(context, obj, key);
return ast_context()->ReturnInstruction(instr, expr->id());
} else if (proxy != NULL) {
Variable* var = proxy->var();
if (var->IsUnallocated()) {
Bailout("delete with global variable");
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global variables is false. 'this' is not
// really a variable, though we implement it as one. The
// subexpression does not have side effects.
HValue* value = var->is_this()
? graph()->GetConstantTrue()
: graph()->GetConstantFalse();
return ast_context()->ReturnValue(value);
} else {
Bailout("delete with non-global variable");
}
} else {
// Result of deleting non-property, non-variable reference is true.
// Evaluate the subexpression for side effects.
CHECK_ALIVE(VisitForEffect(expr->expression()));
return ast_context()->ReturnValue(graph()->GetConstantTrue());
}
}
void HOptimizedGraphBuilder::VisitVoid(UnaryOperation* expr) {
CHECK_ALIVE(VisitForEffect(expr->expression()));
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
}
void HOptimizedGraphBuilder::VisitTypeof(UnaryOperation* expr) {
CHECK_ALIVE(VisitForTypeOf(expr->expression()));
HValue* value = Pop();
HValue* context = environment()->LookupContext();
HInstruction* instr = new(zone()) HTypeof(context, value);
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitAdd(UnaryOperation* expr) {
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* value = Pop();
HValue* context = environment()->LookupContext();
HInstruction* instr =
HMul::New(zone(), context, value, graph()->GetConstant1());
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitSub(UnaryOperation* expr) {
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* value = Pop();
HValue* context = environment()->LookupContext();
HInstruction* instr =
HMul::New(zone(), context, value, graph()->GetConstantMinus1());
TypeInfo info = oracle()->UnaryType(expr);
Representation rep = ToRepresentation(info);
if (info.IsUninitialized()) {
AddSoftDeoptimize();
info = TypeInfo::Unknown();
}
if (instr->IsBinaryOperation()) {
HBinaryOperation::cast(instr)->set_observed_input_representation(rep, rep);
}
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitBitNot(UnaryOperation* expr) {
CHECK_ALIVE(VisitForValue(expr->expression()));
HValue* value = Pop();
TypeInfo info = oracle()->UnaryType(expr);
if (info.IsUninitialized()) {
AddSoftDeoptimize();
}
HInstruction* instr = new(zone()) HBitNot(value);
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitNot(UnaryOperation* expr) {
if (ast_context()->IsTest()) {
TestContext* context = TestContext::cast(ast_context());
VisitForControl(expr->expression(),
context->if_false(),
context->if_true());
return;
}
if (ast_context()->IsEffect()) {
VisitForEffect(expr->expression());
return;
}
ASSERT(ast_context()->IsValue());
HBasicBlock* materialize_false = graph()->CreateBasicBlock();
HBasicBlock* materialize_true = graph()->CreateBasicBlock();
CHECK_BAILOUT(VisitForControl(expr->expression(),
materialize_false,
materialize_true));
if (materialize_false->HasPredecessor()) {
materialize_false->SetJoinId(expr->MaterializeFalseId());
set_current_block(materialize_false);
Push(graph()->GetConstantFalse());
} else {
materialize_false = NULL;
}
if (materialize_true->HasPredecessor()) {
materialize_true->SetJoinId(expr->MaterializeTrueId());
set_current_block(materialize_true);
Push(graph()->GetConstantTrue());
} else {
materialize_true = NULL;
}
HBasicBlock* join =
CreateJoin(materialize_false, materialize_true, expr->id());
set_current_block(join);
if (join != NULL) return ast_context()->ReturnValue(Pop());
}
HInstruction* HOptimizedGraphBuilder::BuildIncrement(
bool returns_original_input,
CountOperation* expr) {
// The input to the count operation is on top of the expression stack.
TypeInfo info = oracle()->IncrementType(expr);
Representation rep = ToRepresentation(info);
if (rep.IsTagged()) {
rep = Representation::Integer32();
}
if (returns_original_input) {
// We need an explicit HValue representing ToNumber(input). The
// actual HChange instruction we need is (sometimes) added in a later
// phase, so it is not available now to be used as an input to HAdd and
// as the return value.
HInstruction* number_input = new(zone()) HForceRepresentation(Pop(), rep);
AddInstruction(number_input);
Push(number_input);
}
// The addition has no side effects, so we do not need
// to simulate the expression stack after this instruction.
// Any later failures deopt to the load of the input or earlier.
HConstant* delta = (expr->op() == Token::INC)
? graph()->GetConstant1()
: graph()->GetConstantMinus1();
HValue* context = environment()->LookupContext();
HInstruction* instr = HAdd::New(zone(), context, Top(), delta);
// We can't insert a simulate here, because it would break deoptimization,
// so the HAdd must not have side effects, so we must freeze its
// representation.
instr->AssumeRepresentation(rep);
instr->ClearAllSideEffects();
AddInstruction(instr);
return instr;
}
void HOptimizedGraphBuilder::VisitCountOperation(CountOperation* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
Expression* target = expr->expression();
VariableProxy* proxy = target->AsVariableProxy();
Property* prop = target->AsProperty();
if (proxy == NULL && prop == NULL) {
return Bailout("invalid lhs in count operation");
}
// Match the full code generator stack by simulating an extra stack
// element for postfix operations in a non-effect context. The return
// value is ToNumber(input).
bool returns_original_input =
expr->is_postfix() && !ast_context()->IsEffect();
HValue* input = NULL; // ToNumber(original_input).
HValue* after = NULL; // The result after incrementing or decrementing.
if (proxy != NULL) {
Variable* var = proxy->var();
if (var->mode() == CONST) {
return Bailout("unsupported count operation with const");
}
// Argument of the count operation is a variable, not a property.
ASSERT(prop == NULL);
CHECK_ALIVE(VisitForValue(target));
after = BuildIncrement(returns_original_input, expr);
input = returns_original_input ? Top() : Pop();
Push(after);
switch (var->location()) {
case Variable::UNALLOCATED:
HandleGlobalVariableAssignment(var,
after,
expr->position(),
expr->AssignmentId());
break;
case Variable::PARAMETER:
case Variable::LOCAL:
Bind(var, after);
break;
case Variable::CONTEXT: {
// Bail out if we try to mutate a parameter value in a function
// using the arguments object. We do not (yet) correctly handle the
// arguments property of the function.
if (info()->scope()->arguments() != NULL) {
// Parameters will rewrite to context slots. We have no direct
// way to detect that the variable is a parameter so we use a
// linear search of the parameter list.
int count = info()->scope()->num_parameters();
for (int i = 0; i < count; ++i) {
if (var == info()->scope()->parameter(i)) {
return Bailout("assignment to parameter in arguments object");
}
}
}
HValue* context = BuildContextChainWalk(var);
HStoreContextSlot::Mode mode = IsLexicalVariableMode(var->mode())
? HStoreContextSlot::kCheckDeoptimize : HStoreContextSlot::kNoCheck;
HStoreContextSlot* instr =
new(zone()) HStoreContextSlot(context, var->index(), mode, after);
AddInstruction(instr);
if (instr->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout("lookup variable in count operation");
}
} else {
// Argument of the count operation is a property.
ASSERT(prop != NULL);
prop->RecordTypeFeedback(oracle(), zone());
if (prop->key()->IsPropertyName()) {
// Named property.
if (returns_original_input) Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitForValue(prop->obj()));
HValue* object = Top();
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
Handle<Map> map;
HInstruction* load;
bool monomorphic = prop->IsMonomorphic();
if (monomorphic) {
map = prop->GetReceiverTypes()->first();
if (map->is_dictionary_map()) monomorphic = false;
}
if (monomorphic) {
Handle<JSFunction> getter;
Handle<JSObject> holder;
if (LookupGetter(map, name, &getter, &holder)) {
load = BuildCallGetter(object, map, getter, holder);
} else {
load = BuildLoadNamedMonomorphic(object, name, prop, map);
}
} else {
load = BuildLoadNamedGeneric(object, name, prop);
}
PushAndAdd(load);
if (load->HasObservableSideEffects()) {
AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
}
after = BuildIncrement(returns_original_input, expr);
input = Pop();
HInstruction* store;
if (!monomorphic || map->is_observed()) {
// If we don't know the monomorphic type, do a generic store.
CHECK_ALIVE(store = BuildStoreNamedGeneric(object, name, after));
} else {
Handle<JSFunction> setter;
Handle<JSObject> holder;
if (LookupSetter(map, name, &setter, &holder)) {
store = BuildCallSetter(object, after, map, setter, holder);
} else {
CHECK_ALIVE(store = BuildStoreNamedMonomorphic(object,
name,
after,
map));
}
}
AddInstruction(store);
// Overwrite the receiver in the bailout environment with the result
// of the operation, and the placeholder with the original value if
// necessary.
environment()->SetExpressionStackAt(0, after);
if (returns_original_input) environment()->SetExpressionStackAt(1, input);
if (store->HasObservableSideEffects()) {
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
} else {
// Keyed property.
if (returns_original_input) Push(graph()->GetConstantUndefined());
CHECK_ALIVE(VisitForValue(prop->obj()));
CHECK_ALIVE(VisitForValue(prop->key()));
HValue* obj = environment()->ExpressionStackAt(1);
HValue* key = environment()->ExpressionStackAt(0);
bool has_side_effects = false;
HValue* load = HandleKeyedElementAccess(
obj, key, NULL, prop, prop->LoadId(), RelocInfo::kNoPosition,
false, // is_store
&has_side_effects);
Push(load);
if (has_side_effects) AddSimulate(prop->LoadId(), REMOVABLE_SIMULATE);
after = BuildIncrement(returns_original_input, expr);
input = Pop();
expr->RecordTypeFeedback(oracle(), zone());
HandleKeyedElementAccess(obj, key, after, expr, expr->AssignmentId(),
RelocInfo::kNoPosition,
true, // is_store
&has_side_effects);
// Drop the key from the bailout environment. Overwrite the receiver
// with the result of the operation, and the placeholder with the
// original value if necessary.
Drop(1);
environment()->SetExpressionStackAt(0, after);
if (returns_original_input) environment()->SetExpressionStackAt(1, input);
ASSERT(has_side_effects); // Stores always have side effects.
AddSimulate(expr->AssignmentId(), REMOVABLE_SIMULATE);
}
}
Drop(returns_original_input ? 2 : 1);
return ast_context()->ReturnValue(expr->is_postfix() ? input : after);
}
HInstruction* HOptimizedGraphBuilder::BuildStringCharCodeAt(
HValue* context,
HValue* string,
HValue* index) {
if (string->IsConstant() && index->IsConstant()) {
HConstant* c_string = HConstant::cast(string);
HConstant* c_index = HConstant::cast(index);
if (c_string->HasStringValue() && c_index->HasNumberValue()) {
int32_t i = c_index->NumberValueAsInteger32();
Handle<String> s = c_string->StringValue();
if (i < 0 || i >= s->length()) {
return new(zone()) HConstant(OS::nan_value(), Representation::Double());
}
return new(zone()) HConstant(s->Get(i), Representation::Integer32());
}
}
AddInstruction(new(zone()) HCheckNonSmi(string));
AddInstruction(HCheckInstanceType::NewIsString(string, zone()));
HInstruction* length = HStringLength::New(zone(), string);
AddInstruction(length);
HInstruction* checked_index = AddBoundsCheck(index, length);
return new(zone()) HStringCharCodeAt(context, string, checked_index);
}
// Checks if the given shift amounts have form: (sa) and (32 - sa).
static bool ShiftAmountsAllowReplaceByRotate(HValue* sa,
HValue* const32_minus_sa) {
if (!const32_minus_sa->IsSub()) return false;
HSub* sub = HSub::cast(const32_minus_sa);
if (sa != sub->right()) return false;
HValue* const32 = sub->left();
if (!const32->IsConstant() ||
HConstant::cast(const32)->Integer32Value() != 32) {
return false;
}
return (sub->right() == sa);
}
// Checks if the left and the right are shift instructions with the oposite
// directions that can be replaced by one rotate right instruction or not.
// Returns the operand and the shift amount for the rotate instruction in the
// former case.
bool HOptimizedGraphBuilder::MatchRotateRight(HValue* left,
HValue* right,
HValue** operand,
HValue** shift_amount) {
HShl* shl;
HShr* shr;
if (left->IsShl() && right->IsShr()) {
shl = HShl::cast(left);
shr = HShr::cast(right);
} else if (left->IsShr() && right->IsShl()) {
shl = HShl::cast(right);
shr = HShr::cast(left);
} else {
return false;
}
if (shl->left() != shr->left()) return false;
if (!ShiftAmountsAllowReplaceByRotate(shl->right(), shr->right()) &&
!ShiftAmountsAllowReplaceByRotate(shr->right(), shl->right())) {
return false;
}
*operand= shr->left();
*shift_amount = shr->right();
return true;
}
bool CanBeZero(HValue *right) {
if (right->IsConstant()) {
HConstant* right_const = HConstant::cast(right);
if (right_const->HasInteger32Value() &&
(right_const->Integer32Value() & 0x1f) != 0) {
return false;
}
}
return true;
}
HInstruction* HOptimizedGraphBuilder::BuildBinaryOperation(
BinaryOperation* expr,
HValue* left,
HValue* right) {
HValue* context = environment()->LookupContext();
TypeInfo left_info, right_info, result_info, combined_info;
oracle()->BinaryType(expr, &left_info, &right_info, &result_info);
Representation left_rep = ToRepresentation(left_info);
Representation right_rep = ToRepresentation(right_info);
Representation result_rep = ToRepresentation(result_info);
if (left_info.IsUninitialized()) {
// Can't have initialized one but not the other.
ASSERT(right_info.IsUninitialized());
AddSoftDeoptimize();
left_info = right_info = TypeInfo::Unknown();
}
HInstruction* instr = NULL;
switch (expr->op()) {
case Token::ADD:
if (left_info.IsString() && right_info.IsString()) {
AddInstruction(new(zone()) HCheckNonSmi(left));
AddInstruction(HCheckInstanceType::NewIsString(left, zone()));
AddInstruction(new(zone()) HCheckNonSmi(right));
AddInstruction(HCheckInstanceType::NewIsString(right, zone()));
instr = HStringAdd::New(zone(), context, left, right);
} else {
instr = HAdd::New(zone(), context, left, right);
}
break;
case Token::SUB:
instr = HSub::New(zone(), context, left, right);
break;
case Token::MUL:
instr = HMul::New(zone(), context, left, right);
break;
case Token::MOD:
instr = HMod::New(zone(), context, left, right);
break;
case Token::DIV:
instr = HDiv::New(zone(), context, left, right);
break;
case Token::BIT_XOR:
case Token::BIT_AND:
instr = HBitwise::New(zone(), expr->op(), context, left, right);
break;
case Token::BIT_OR: {
HValue* operand, *shift_amount;
if (left_info.IsInteger32() && right_info.IsInteger32() &&
MatchRotateRight(left, right, &operand, &shift_amount)) {
instr = new(zone()) HRor(context, operand, shift_amount);
} else {
instr = HBitwise::New(zone(), expr->op(), context, left, right);
}
break;
}
case Token::SAR:
instr = HSar::New(zone(), context, left, right);
break;
case Token::SHR:
instr = HShr::New(zone(), context, left, right);
if (FLAG_opt_safe_uint32_operations && instr->IsShr() &&
CanBeZero(right)) {
graph()->RecordUint32Instruction(instr);
}
break;
case Token::SHL:
instr = HShl::New(zone(), context, left, right);
break;
default:
UNREACHABLE();
}
if (instr->IsBinaryOperation()) {
HBinaryOperation* binop = HBinaryOperation::cast(instr);
binop->set_observed_input_representation(left_rep, right_rep);
binop->initialize_output_representation(result_rep);
}
return instr;
}
// Check for the form (%_ClassOf(foo) === 'BarClass').
static bool IsClassOfTest(CompareOperation* expr) {
if (expr->op() != Token::EQ_STRICT) return false;
CallRuntime* call = expr->left()->AsCallRuntime();
if (call == NULL) return false;
Literal* literal = expr->right()->AsLiteral();
if (literal == NULL) return false;
if (!literal->handle()->IsString()) return false;
if (!call->name()->IsOneByteEqualTo(STATIC_ASCII_VECTOR("_ClassOf"))) {
return false;
}
ASSERT(call->arguments()->length() == 1);
return true;
}
void HOptimizedGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
switch (expr->op()) {
case Token::COMMA:
return VisitComma(expr);
case Token::OR:
case Token::AND:
return VisitLogicalExpression(expr);
default:
return VisitArithmeticExpression(expr);
}
}
void HOptimizedGraphBuilder::VisitComma(BinaryOperation* expr) {
CHECK_ALIVE(VisitForEffect(expr->left()));
// Visit the right subexpression in the same AST context as the entire
// expression.
Visit(expr->right());
}
void HOptimizedGraphBuilder::VisitLogicalExpression(BinaryOperation* expr) {
bool is_logical_and = expr->op() == Token::AND;
if (ast_context()->IsTest()) {
TestContext* context = TestContext::cast(ast_context());
// Translate left subexpression.
HBasicBlock* eval_right = graph()->CreateBasicBlock();
if (is_logical_and) {
CHECK_BAILOUT(VisitForControl(expr->left(),
eval_right,
context->if_false()));
} else {
CHECK_BAILOUT(VisitForControl(expr->left(),
context->if_true(),
eval_right));
}
// Translate right subexpression by visiting it in the same AST
// context as the entire expression.
if (eval_right->HasPredecessor()) {
eval_right->SetJoinId(expr->RightId());
set_current_block(eval_right);
Visit(expr->right());
}
} else if (ast_context()->IsValue()) {
CHECK_ALIVE(VisitForValue(expr->left()));
ASSERT(current_block() != NULL);
HValue* left_value = Top();
if (left_value->IsConstant()) {
HConstant* left_constant = HConstant::cast(left_value);
if ((is_logical_and && left_constant->ToBoolean()) ||
(!is_logical_and && !left_constant->ToBoolean())) {
Drop(1); // left_value.
CHECK_BAILOUT(VisitForValue(expr->right()));
}
return ast_context()->ReturnValue(Pop());
}
// We need an extra block to maintain edge-split form.
HBasicBlock* empty_block = graph()->CreateBasicBlock();
HBasicBlock* eval_right = graph()->CreateBasicBlock();
TypeFeedbackId test_id = expr->left()->test_id();
ToBooleanStub::Types expected(oracle()->ToBooleanTypes(test_id));
HBranch* test = is_logical_and
? new(zone()) HBranch(left_value, eval_right, empty_block, expected)
: new(zone()) HBranch(left_value, empty_block, eval_right, expected);
current_block()->Finish(test);
set_current_block(eval_right);
Drop(1); // Value of the left subexpression.
CHECK_BAILOUT(VisitForValue(expr->right()));
HBasicBlock* join_block =
CreateJoin(empty_block, current_block(), expr->id());
set_current_block(join_block);
return ast_context()->ReturnValue(Pop());
} else {
ASSERT(ast_context()->IsEffect());
// In an effect context, we don't need the value of the left subexpression,
// only its control flow and side effects. We need an extra block to
// maintain edge-split form.
HBasicBlock* empty_block = graph()->CreateBasicBlock();
HBasicBlock* right_block = graph()->CreateBasicBlock();
if (is_logical_and) {
CHECK_BAILOUT(VisitForControl(expr->left(), right_block, empty_block));
} else {
CHECK_BAILOUT(VisitForControl(expr->left(), empty_block, right_block));
}
// TODO(kmillikin): Find a way to fix this. It's ugly that there are
// actually two empty blocks (one here and one inserted by
// TestContext::BuildBranch, and that they both have an HSimulate though the
// second one is not a merge node, and that we really have no good AST ID to
// put on that first HSimulate.
if (empty_block->HasPredecessor()) {
empty_block->SetJoinId(expr->id());
} else {
empty_block = NULL;
}
if (right_block->HasPredecessor()) {
right_block->SetJoinId(expr->RightId());
set_current_block(right_block);
CHECK_BAILOUT(VisitForEffect(expr->right()));
right_block = current_block();
} else {
right_block = NULL;
}
HBasicBlock* join_block =
CreateJoin(empty_block, right_block, expr->id());
set_current_block(join_block);
// We did not materialize any value in the predecessor environments,
// so there is no need to handle it here.
}
}
void HOptimizedGraphBuilder::VisitArithmeticExpression(BinaryOperation* expr) {
CHECK_ALIVE(VisitForValue(expr->left()));
CHECK_ALIVE(VisitForValue(expr->right()));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(expr, left, right);
instr->set_position(expr->position());
return ast_context()->ReturnInstruction(instr, expr->id());
}
Representation HOptimizedGraphBuilder::ToRepresentation(TypeInfo info) {
if (info.IsUninitialized()) return Representation::None();
if (info.IsSmi()) return Representation::Integer32();
if (info.IsInteger32()) return Representation::Integer32();
if (info.IsDouble()) return Representation::Double();
if (info.IsNumber()) return Representation::Double();
return Representation::Tagged();
}
void HOptimizedGraphBuilder::HandleLiteralCompareTypeof(CompareOperation* expr,
HTypeof* typeof_expr,
Handle<String> check) {
// Note: The HTypeof itself is removed during canonicalization, if possible.
HValue* value = typeof_expr->value();
HTypeofIsAndBranch* instr = new(zone()) HTypeofIsAndBranch(value, check);
instr->set_position(expr->position());
return ast_context()->ReturnControl(instr, expr->id());
}
static bool MatchLiteralCompareNil(HValue* left,
Token::Value op,
HValue* right,
Handle<Object> nil,
HValue** expr) {
if (left->IsConstant() &&
HConstant::cast(left)->handle().is_identical_to(nil) &&
Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
static bool MatchLiteralCompareTypeof(HValue* left,
Token::Value op,
HValue* right,
HTypeof** typeof_expr,
Handle<String>* check) {
if (left->IsTypeof() &&
Token::IsEqualityOp(op) &&
right->IsConstant() &&
HConstant::cast(right)->handle()->IsString()) {
*typeof_expr = HTypeof::cast(left);
*check = Handle<String>::cast(HConstant::cast(right)->handle());
return true;
}
return false;
}
static bool IsLiteralCompareTypeof(HValue* left,
Token::Value op,
HValue* right,
HTypeof** typeof_expr,
Handle<String>* check) {
return MatchLiteralCompareTypeof(left, op, right, typeof_expr, check) ||
MatchLiteralCompareTypeof(right, op, left, typeof_expr, check);
}
static bool IsLiteralCompareNil(HValue* left,
Token::Value op,
HValue* right,
Handle<Object> nil,
HValue** expr) {
return MatchLiteralCompareNil(left, op, right, nil, expr) ||
MatchLiteralCompareNil(right, op, left, nil, expr);
}
static bool IsLiteralCompareBool(HValue* left,
Token::Value op,
HValue* right) {
return op == Token::EQ_STRICT &&
((left->IsConstant() && HConstant::cast(left)->handle()->IsBoolean()) ||
(right->IsConstant() && HConstant::cast(right)->handle()->IsBoolean()));
}
void HOptimizedGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
if (IsClassOfTest(expr)) {
CallRuntime* call = expr->left()->AsCallRuntime();
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
Literal* literal = expr->right()->AsLiteral();
Handle<String> rhs = Handle<String>::cast(literal->handle());
HClassOfTestAndBranch* instr =
new(zone()) HClassOfTestAndBranch(value, rhs);
instr->set_position(expr->position());
return ast_context()->ReturnControl(instr, expr->id());
}
TypeInfo left_type, right_type, overall_type_info;
oracle()->CompareType(expr, &left_type, &right_type, &overall_type_info);
Representation combined_rep = ToRepresentation(overall_type_info);
Representation left_rep = ToRepresentation(left_type);
Representation right_rep = ToRepresentation(right_type);
// Check if this expression was ever executed according to type feedback.
// Note that for the special typeof/null/undefined cases we get unknown here.
if (overall_type_info.IsUninitialized()) {
AddSoftDeoptimize();
overall_type_info = left_type = right_type = TypeInfo::Unknown();
}
CHECK_ALIVE(VisitForValue(expr->left()));
CHECK_ALIVE(VisitForValue(expr->right()));
HValue* context = environment()->LookupContext();
HValue* right = Pop();
HValue* left = Pop();
Token::Value op = expr->op();
HTypeof* typeof_expr = NULL;
Handle<String> check;
if (IsLiteralCompareTypeof(left, op, right, &typeof_expr, &check)) {
return HandleLiteralCompareTypeof(expr, typeof_expr, check);
}
HValue* sub_expr = NULL;
Factory* f = graph()->isolate()->factory();
if (IsLiteralCompareNil(left, op, right, f->undefined_value(), &sub_expr)) {
return HandleLiteralCompareNil(expr, sub_expr, kUndefinedValue);
}
if (IsLiteralCompareNil(left, op, right, f->null_value(), &sub_expr)) {
return HandleLiteralCompareNil(expr, sub_expr, kNullValue);
}
if (IsLiteralCompareBool(left, op, right)) {
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
}
if (op == Token::INSTANCEOF) {
// Check to see if the rhs of the instanceof is a global function not
// residing in new space. If it is we assume that the function will stay the
// same.
Handle<JSFunction> target = Handle<JSFunction>::null();
VariableProxy* proxy = expr->right()->AsVariableProxy();
bool global_function = (proxy != NULL) && proxy->var()->IsUnallocated();
if (global_function &&
info()->has_global_object() &&
!info()->global_object()->IsAccessCheckNeeded()) {
Handle<String> name = proxy->name();
Handle<GlobalObject> global(info()->global_object());
LookupResult lookup(isolate());
global->Lookup(*name, &lookup);
if (lookup.IsNormal() && lookup.GetValue()->IsJSFunction()) {
Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue()));
// If the function is in new space we assume it's more likely to
// change and thus prefer the general IC code.
if (!isolate()->heap()->InNewSpace(*candidate)) {
target = candidate;
}
}
}
// If the target is not null we have found a known global function that is
// assumed to stay the same for this instanceof.
if (target.is_null()) {
HInstanceOf* result = new(zone()) HInstanceOf(context, left, right);
result->set_position(expr->position());
return ast_context()->ReturnInstruction(result, expr->id());
} else {
AddInstruction(new(zone()) HCheckFunction(right, target));
HInstanceOfKnownGlobal* result =
new(zone()) HInstanceOfKnownGlobal(context, left, target);
result->set_position(expr->position());
return ast_context()->ReturnInstruction(result, expr->id());
}
} else if (op == Token::IN) {
HIn* result = new(zone()) HIn(context, left, right);
result->set_position(expr->position());
return ast_context()->ReturnInstruction(result, expr->id());
} else if (overall_type_info.IsNonPrimitive()) {
switch (op) {
case Token::EQ:
case Token::EQ_STRICT: {
// Can we get away with map check and not instance type check?
Handle<Map> map = oracle()->GetCompareMap(expr);
if (!map.is_null()) {
AddCheckMapsWithTransitions(left, map);
AddCheckMapsWithTransitions(right, map);
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
} else {
AddInstruction(new(zone()) HCheckNonSmi(left));
AddInstruction(HCheckInstanceType::NewIsSpecObject(left, zone()));
AddInstruction(new(zone()) HCheckNonSmi(right));
AddInstruction(HCheckInstanceType::NewIsSpecObject(right, zone()));
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
}
}
default:
return Bailout("Unsupported non-primitive compare");
}
} else if (overall_type_info.IsSymbol() && Token::IsEqualityOp(op)) {
AddInstruction(new(zone()) HCheckNonSmi(left));
AddInstruction(HCheckInstanceType::NewIsSymbol(left, zone()));
AddInstruction(new(zone()) HCheckNonSmi(right));
AddInstruction(HCheckInstanceType::NewIsSymbol(right, zone()));
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
} else {
if (combined_rep.IsTagged() || combined_rep.IsNone()) {
HCompareGeneric* result =
new(zone()) HCompareGeneric(context, left, right, op);
result->set_observed_input_representation(left_rep, right_rep);
result->set_position(expr->position());
return ast_context()->ReturnInstruction(result, expr->id());
} else {
HCompareIDAndBranch* result =
new(zone()) HCompareIDAndBranch(left, right, op);
result->set_observed_input_representation(left_rep, right_rep);
result->set_position(expr->position());
return ast_context()->ReturnControl(result, expr->id());
}
}
}
void HOptimizedGraphBuilder::HandleLiteralCompareNil(CompareOperation* expr,
HValue* value,
NilValue nil) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
EqualityKind kind =
expr->op() == Token::EQ_STRICT ? kStrictEquality : kNonStrictEquality;
HIsNilAndBranch* instr = new(zone()) HIsNilAndBranch(value, kind, nil);
instr->set_position(expr->position());
return ast_context()->ReturnControl(instr, expr->id());
}
HInstruction* HOptimizedGraphBuilder::BuildThisFunction() {
// If we share optimized code between different closures, the
// this-function is not a constant, except inside an inlined body.
if (function_state()->outer() != NULL) {
return new(zone()) HConstant(
function_state()->compilation_info()->closure(),
Representation::Tagged());
} else {
return new(zone()) HThisFunction;
}
}
void HOptimizedGraphBuilder::VisitThisFunction(ThisFunction* expr) {
ASSERT(!HasStackOverflow());
ASSERT(current_block() != NULL);
ASSERT(current_block()->HasPredecessor());
HInstruction* instr = BuildThisFunction();
return ast_context()->ReturnInstruction(instr, expr->id());
}
void HOptimizedGraphBuilder::VisitDeclarations(
ZoneList<Declaration*>* declarations) {
ASSERT(globals_.is_empty());
AstVisitor::VisitDeclarations(declarations);
if (!globals_.is_empty()) {
Handle<FixedArray> array =
isolate()->factory()->NewFixedArray(globals_.length(), TENURED);
for (int i = 0; i < globals_.length(); ++i) array->set(i, *globals_.at(i));
int flags = DeclareGlobalsEvalFlag::encode(info()->is_eval()) |
DeclareGlobalsNativeFlag::encode(info()->is_native()) |
DeclareGlobalsLanguageMode::encode(info()->language_mode());
HInstruction* result = new(zone()) HDeclareGlobals(
environment()->LookupContext(), array, flags);
AddInstruction(result);
globals_.Clear();
}
}
void HOptimizedGraphBuilder::VisitVariableDeclaration(
VariableDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
VariableMode mode = declaration->mode();
Variable* variable = proxy->var();
bool hole_init = mode == CONST || mode == CONST_HARMONY || mode == LET;
switch (variable->location()) {
case Variable::UNALLOCATED:
globals_.Add(variable->name(), zone());
globals_.Add(variable->binding_needs_init()
? isolate()->factory()->the_hole_value()
: isolate()->factory()->undefined_value(), zone());
return;
case Variable::PARAMETER:
case Variable::LOCAL:
if (hole_init) {
HValue* value = graph()->GetConstantHole();
environment()->Bind(variable, value);
}
break;
case Variable::CONTEXT:
if (hole_init) {
HValue* value = graph()->GetConstantHole();
HValue* context = environment()->LookupContext();
HStoreContextSlot* store = new(zone()) HStoreContextSlot(
context, variable->index(), HStoreContextSlot::kNoCheck, value);
AddInstruction(store);
if (store->HasObservableSideEffects()) {
AddSimulate(proxy->id(), REMOVABLE_SIMULATE);
}
}
break;
case Variable::LOOKUP:
return Bailout("unsupported lookup slot in declaration");
}
}
void HOptimizedGraphBuilder::VisitFunctionDeclaration(
FunctionDeclaration* declaration) {
VariableProxy* proxy = declaration->proxy();
Variable* variable = proxy->var();
switch (variable->location()) {
case Variable::UNALLOCATED: {
globals_.Add(variable->name(), zone());
Handle<SharedFunctionInfo> function =
Compiler::BuildFunctionInfo(declaration->fun(), info()->script());
// Check for stack-overflow exception.
if (function.is_null()) return SetStackOverflow();
globals_.Add(function, zone());
return;
}
case Variable::PARAMETER:
case Variable::LOCAL: {
CHECK_ALIVE(VisitForValue(declaration->fun()));
HValue* value = Pop();
environment()->Bind(variable, value);
break;
}
case Variable::CONTEXT: {
CHECK_ALIVE(VisitForValue(declaration->fun()));
HValue* value = Pop();
HValue* context = environment()->LookupContext();
HStoreContextSlot* store = new(zone()) HStoreContextSlot(
context, variable->index(), HStoreContextSlot::kNoCheck, value);
AddInstruction(store);
if (store->HasObservableSideEffects()) {
AddSimulate(proxy->id(), REMOVABLE_SIMULATE);
}
break;
}
case Variable::LOOKUP:
return Bailout("unsupported lookup slot in declaration");
}
}
void HOptimizedGraphBuilder::VisitModuleDeclaration(
ModuleDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitImportDeclaration(
ImportDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitExportDeclaration(
ExportDeclaration* declaration) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleLiteral(ModuleLiteral* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleVariable(ModuleVariable* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModulePath(ModulePath* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleUrl(ModuleUrl* module) {
UNREACHABLE();
}
void HOptimizedGraphBuilder::VisitModuleStatement(ModuleStatement* stmt) {
UNREACHABLE();
}
// Generators for inline runtime functions.
// Support for types.
void HOptimizedGraphBuilder::GenerateIsSmi(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsSmiAndBranch* result = new(zone()) HIsSmiAndBranch(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsSpecObject(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
new(zone()) HHasInstanceTypeAndBranch(value,
FIRST_SPEC_OBJECT_TYPE,
LAST_SPEC_OBJECT_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsFunction(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
new(zone()) HHasInstanceTypeAndBranch(value, JS_FUNCTION_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateHasCachedArrayIndex(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasCachedArrayIndexAndBranch* result =
new(zone()) HHasCachedArrayIndexAndBranch(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsArray(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
new(zone()) HHasInstanceTypeAndBranch(value, JS_ARRAY_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsRegExp(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HHasInstanceTypeAndBranch* result =
new(zone()) HHasInstanceTypeAndBranch(value, JS_REGEXP_TYPE);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsObject(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsObjectAndBranch* result = new(zone()) HIsObjectAndBranch(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsNonNegativeSmi(CallRuntime* call) {
return Bailout("inlined runtime function: IsNonNegativeSmi");
}
void HOptimizedGraphBuilder::GenerateIsUndetectableObject(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HIsUndetectableAndBranch* result =
new(zone()) HIsUndetectableAndBranch(value);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
CallRuntime* call) {
return Bailout(
"inlined runtime function: IsStringWrapperSafeForDefaultValueOf");
}
// Support for construct call checks.
void HOptimizedGraphBuilder::GenerateIsConstructCall(CallRuntime* call) {
ASSERT(call->arguments()->length() == 0);
if (function_state()->outer() != NULL) {
// We are generating graph for inlined function.
HValue* value = function_state()->inlining_kind() == CONSTRUCT_CALL_RETURN
? graph()->GetConstantTrue()
: graph()->GetConstantFalse();
return ast_context()->ReturnValue(value);
} else {
return ast_context()->ReturnControl(new(zone()) HIsConstructCallAndBranch,
call->id());
}
}
// Support for arguments.length and arguments[?].
void HOptimizedGraphBuilder::GenerateArgumentsLength(CallRuntime* call) {
// Our implementation of arguments (based on this stack frame or an
// adapter below it) does not work for inlined functions. This runtime
// function is blacklisted by AstNode::IsInlineable.
ASSERT(function_state()->outer() == NULL);
ASSERT(call->arguments()->length() == 0);
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
HArgumentsLength* result = new(zone()) HArgumentsLength(elements);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateArguments(CallRuntime* call) {
// Our implementation of arguments (based on this stack frame or an
// adapter below it) does not work for inlined functions. This runtime
// function is blacklisted by AstNode::IsInlineable.
ASSERT(function_state()->outer() == NULL);
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* index = Pop();
HInstruction* elements = AddInstruction(
new(zone()) HArgumentsElements(false));
HInstruction* length = AddInstruction(new(zone()) HArgumentsLength(elements));
HInstruction* checked_index = AddBoundsCheck(index, length);
HAccessArgumentsAt* result =
new(zone()) HAccessArgumentsAt(elements, length, checked_index);
return ast_context()->ReturnInstruction(result, call->id());
}
// Support for accessing the class and value fields of an object.
void HOptimizedGraphBuilder::GenerateClassOf(CallRuntime* call) {
// The special form detected by IsClassOfTest is detected before we get here
// and does not cause a bailout.
return Bailout("inlined runtime function: ClassOf");
}
void HOptimizedGraphBuilder::GenerateValueOf(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HValueOf* result = new(zone()) HValueOf(value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateDateField(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
ASSERT_NE(NULL, call->arguments()->at(1)->AsLiteral());
Smi* index = Smi::cast(*(call->arguments()->at(1)->AsLiteral()->handle()));
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* date = Pop();
HDateField* result = new(zone()) HDateField(date, index);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateOneByteSeqStringSetChar(
CallRuntime* call) {
ASSERT(call->arguments()->length() == 3);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
HValue* value = Pop();
HValue* index = Pop();
HValue* string = Pop();
HSeqStringSetChar* result = new(zone()) HSeqStringSetChar(
String::ONE_BYTE_ENCODING, string, index, value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateTwoByteSeqStringSetChar(
CallRuntime* call) {
ASSERT(call->arguments()->length() == 3);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(2)));
HValue* value = Pop();
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
HInstruction* char_code = BuildStringCharCodeAt(context, string, index);
AddInstruction(char_code);
HSeqStringSetChar* result = new(zone()) HSeqStringSetChar(
String::TWO_BYTE_ENCODING, string, index, value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateSetValueOf(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* value = Pop();
HValue* object = Pop();
// Check if object is a not a smi.
HIsSmiAndBranch* smicheck = new(zone()) HIsSmiAndBranch(object);
HBasicBlock* if_smi = graph()->CreateBasicBlock();
HBasicBlock* if_heap_object = graph()->CreateBasicBlock();
HBasicBlock* join = graph()->CreateBasicBlock();
smicheck->SetSuccessorAt(0, if_smi);
smicheck->SetSuccessorAt(1, if_heap_object);
current_block()->Finish(smicheck);
if_smi->Goto(join);
// Check if object is a JSValue.
set_current_block(if_heap_object);
HHasInstanceTypeAndBranch* typecheck =
new(zone()) HHasInstanceTypeAndBranch(object, JS_VALUE_TYPE);
HBasicBlock* if_js_value = graph()->CreateBasicBlock();
HBasicBlock* not_js_value = graph()->CreateBasicBlock();
typecheck->SetSuccessorAt(0, if_js_value);
typecheck->SetSuccessorAt(1, not_js_value);
current_block()->Finish(typecheck);
not_js_value->Goto(join);
// Create in-object property store to kValueOffset.
set_current_block(if_js_value);
Handle<String> name = isolate()->factory()->undefined_symbol();
AddInstruction(new(zone()) HStoreNamedField(object,
name,
value,
true, // in-object store.
JSValue::kValueOffset));
if_js_value->Goto(join);
join->SetJoinId(call->id());
set_current_block(join);
return ast_context()->ReturnValue(value);
}
// Fast support for charCodeAt(n).
void HOptimizedGraphBuilder::GenerateStringCharCodeAt(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
HInstruction* result = BuildStringCharCodeAt(context, string, index);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for string.charAt(n) and string[n].
void HOptimizedGraphBuilder::GenerateStringCharFromCode(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* char_code = Pop();
HValue* context = environment()->LookupContext();
HInstruction* result = HStringCharFromCode::New(zone(), context, char_code);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for string.charAt(n) and string[n].
void HOptimizedGraphBuilder::GenerateStringCharAt(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* index = Pop();
HValue* string = Pop();
HValue* context = environment()->LookupContext();
HInstruction* char_code = BuildStringCharCodeAt(context, string, index);
AddInstruction(char_code);
HInstruction* result = HStringCharFromCode::New(zone(), context, char_code);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for object equality testing.
void HOptimizedGraphBuilder::GenerateObjectEquals(CallRuntime* call) {
ASSERT(call->arguments()->length() == 2);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* right = Pop();
HValue* left = Pop();
HCompareObjectEqAndBranch* result =
new(zone()) HCompareObjectEqAndBranch(left, right);
return ast_context()->ReturnControl(result, call->id());
}
void HOptimizedGraphBuilder::GenerateLog(CallRuntime* call) {
// %_Log is ignored in optimized code.
return ast_context()->ReturnValue(graph()->GetConstantUndefined());
}
// Fast support for Math.random().
void HOptimizedGraphBuilder::GenerateRandomHeapNumber(CallRuntime* call) {
HValue* context = environment()->LookupContext();
HGlobalObject* global_object = new(zone()) HGlobalObject(context);
AddInstruction(global_object);
HRandom* result = new(zone()) HRandom(global_object);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for StringAdd.
void HOptimizedGraphBuilder::GenerateStringAdd(CallRuntime* call) {
ASSERT_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result = new(zone()) HCallStub(context, CodeStub::StringAdd, 2);
Drop(2);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for SubString.
void HOptimizedGraphBuilder::GenerateSubString(CallRuntime* call) {
ASSERT_EQ(3, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result = new(zone()) HCallStub(context, CodeStub::SubString, 3);
Drop(3);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast support for StringCompare.
void HOptimizedGraphBuilder::GenerateStringCompare(CallRuntime* call) {
ASSERT_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::StringCompare, 2);
Drop(2);
return ast_context()->ReturnInstruction(result, call->id());
}
// Support for direct calls from JavaScript to native RegExp code.
void HOptimizedGraphBuilder::GenerateRegExpExec(CallRuntime* call) {
ASSERT_EQ(4, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result = new(zone()) HCallStub(context, CodeStub::RegExpExec, 4);
Drop(4);
return ast_context()->ReturnInstruction(result, call->id());
}
// Construct a RegExp exec result with two in-object properties.
void HOptimizedGraphBuilder::GenerateRegExpConstructResult(CallRuntime* call) {
ASSERT_EQ(3, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::RegExpConstructResult, 3);
Drop(3);
return ast_context()->ReturnInstruction(result, call->id());
}
// Support for fast native caches.
void HOptimizedGraphBuilder::GenerateGetFromCache(CallRuntime* call) {
return Bailout("inlined runtime function: GetFromCache");
}
// Fast support for number to string.
void HOptimizedGraphBuilder::GenerateNumberToString(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::NumberToString, 1);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
// Fast call for custom callbacks.
void HOptimizedGraphBuilder::GenerateCallFunction(CallRuntime* call) {
// 1 ~ The function to call is not itself an argument to the call.
int arg_count = call->arguments()->length() - 1;
ASSERT(arg_count >= 1); // There's always at least a receiver.
for (int i = 0; i < arg_count; ++i) {
CHECK_ALIVE(VisitArgument(call->arguments()->at(i)));
}
CHECK_ALIVE(VisitForValue(call->arguments()->last()));
HValue* function = Pop();
HValue* context = environment()->LookupContext();
// Branch for function proxies, or other non-functions.
HHasInstanceTypeAndBranch* typecheck =
new(zone()) HHasInstanceTypeAndBranch(function, JS_FUNCTION_TYPE);
HBasicBlock* if_jsfunction = graph()->CreateBasicBlock();
HBasicBlock* if_nonfunction = graph()->CreateBasicBlock();
HBasicBlock* join = graph()->CreateBasicBlock();
typecheck->SetSuccessorAt(0, if_jsfunction);
typecheck->SetSuccessorAt(1, if_nonfunction);
current_block()->Finish(typecheck);
set_current_block(if_jsfunction);
HInstruction* invoke_result = AddInstruction(
new(zone()) HInvokeFunction(context, function, arg_count));
Drop(arg_count);
Push(invoke_result);
if_jsfunction->Goto(join);
set_current_block(if_nonfunction);
HInstruction* call_result = AddInstruction(
new(zone()) HCallFunction(context, function, arg_count));
Drop(arg_count);
Push(call_result);
if_nonfunction->Goto(join);
set_current_block(join);
join->SetJoinId(call->id());
return ast_context()->ReturnValue(Pop());
}
// Fast call to math functions.
void HOptimizedGraphBuilder::GenerateMathPow(CallRuntime* call) {
ASSERT_EQ(2, call->arguments()->length());
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
CHECK_ALIVE(VisitForValue(call->arguments()->at(1)));
HValue* right = Pop();
HValue* left = Pop();
HInstruction* result = HPower::New(zone(), left, right);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathSin(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
result->set_transcendental_type(TranscendentalCache::SIN);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathCos(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
result->set_transcendental_type(TranscendentalCache::COS);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathTan(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
result->set_transcendental_type(TranscendentalCache::TAN);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathLog(CallRuntime* call) {
ASSERT_EQ(1, call->arguments()->length());
CHECK_ALIVE(VisitArgumentList(call->arguments()));
HValue* context = environment()->LookupContext();
HCallStub* result =
new(zone()) HCallStub(context, CodeStub::TranscendentalCache, 1);
result->set_transcendental_type(TranscendentalCache::LOG);
Drop(1);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateMathSqrt(CallRuntime* call) {
return Bailout("inlined runtime function: MathSqrt");
}
// Check whether two RegExps are equivalent
void HOptimizedGraphBuilder::GenerateIsRegExpEquivalent(CallRuntime* call) {
return Bailout("inlined runtime function: IsRegExpEquivalent");
}
void HOptimizedGraphBuilder::GenerateGetCachedArrayIndex(CallRuntime* call) {
ASSERT(call->arguments()->length() == 1);
CHECK_ALIVE(VisitForValue(call->arguments()->at(0)));
HValue* value = Pop();
HGetCachedArrayIndex* result = new(zone()) HGetCachedArrayIndex(value);
return ast_context()->ReturnInstruction(result, call->id());
}
void HOptimizedGraphBuilder::GenerateFastAsciiArrayJoin(CallRuntime* call) {
return Bailout("inlined runtime function: FastAsciiArrayJoin");
}
#undef CHECK_BAILOUT
#undef CHECK_ALIVE
HEnvironment::HEnvironment(HEnvironment* outer,
Scope* scope,
Handle<JSFunction> closure,
Zone* zone)
: closure_(closure),
values_(0, zone),
frame_type_(JS_FUNCTION),
parameter_count_(0),
specials_count_(1),
local_count_(0),
outer_(outer),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0);
}
HEnvironment::HEnvironment(Zone* zone, int parameter_count)
: values_(0, zone),
frame_type_(STUB),
parameter_count_(parameter_count),
specials_count_(1),
local_count_(0),
outer_(NULL),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
Initialize(parameter_count, 0, 0);
}
HEnvironment::HEnvironment(const HEnvironment* other, Zone* zone)
: values_(0, zone),
frame_type_(JS_FUNCTION),
parameter_count_(0),
specials_count_(0),
local_count_(0),
outer_(NULL),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(other->ast_id()),
zone_(zone) {
Initialize(other);
}
HEnvironment::HEnvironment(HEnvironment* outer,
Handle<JSFunction> closure,
FrameType frame_type,
int arguments,
Zone* zone)
: closure_(closure),
values_(arguments, zone),
frame_type_(frame_type),
parameter_count_(arguments),
local_count_(0),
outer_(outer),
entry_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(BailoutId::None()),
zone_(zone) {
}
void HEnvironment::Initialize(int parameter_count,
int local_count,
int stack_height) {
parameter_count_ = parameter_count;
local_count_ = local_count;
// Avoid reallocating the temporaries' backing store on the first Push.
int total = parameter_count + specials_count_ + local_count + stack_height;
values_.Initialize(total + 4, zone());
for (int i = 0; i < total; ++i) values_.Add(NULL, zone());
}
void HEnvironment::Initialize(const HEnvironment* other) {
closure_ = other->closure();
values_.AddAll(other->values_, zone());
assigned_variables_.Union(other->assigned_variables_, zone());
frame_type_ = other->frame_type_;
parameter_count_ = other->parameter_count_;
local_count_ = other->local_count_;
if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
entry_ = other->entry_;
pop_count_ = other->pop_count_;
push_count_ = other->push_count_;
specials_count_ = other->specials_count_;
ast_id_ = other->ast_id_;
}
void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
ASSERT(!block->IsLoopHeader());
ASSERT(values_.length() == other->values_.length());
int length = values_.length();
for (int i = 0; i < length; ++i) {
HValue* value = values_[i];
if (value != NULL && value->IsPhi() && value->block() == block) {
// There is already a phi for the i'th value.
HPhi* phi = HPhi::cast(value);
// Assert index is correct and that we haven't missed an incoming edge.
ASSERT(phi->merged_index() == i);
ASSERT(phi->OperandCount() == block->predecessors()->length());
phi->AddInput(other->values_[i]);
} else if (values_[i] != other->values_[i]) {
// There is a fresh value on the incoming edge, a phi is needed.
ASSERT(values_[i] != NULL && other->values_[i] != NULL);
HPhi* phi = new(zone()) HPhi(i, zone());
HValue* old_value = values_[i];
for (int j = 0; j < block->predecessors()->length(); j++) {
phi->AddInput(old_value);
}
phi->AddInput(other->values_[i]);
this->values_[i] = phi;
block->AddPhi(phi);
}
}
}
void HEnvironment::Bind(int index, HValue* value) {
ASSERT(value != NULL);
assigned_variables_.Add(index, zone());
values_[index] = value;
}
bool HEnvironment::HasExpressionAt(int index) const {
return index >= parameter_count_ + specials_count_ + local_count_;
}
bool HEnvironment::ExpressionStackIsEmpty() const {
ASSERT(length() >= first_expression_index());
return length() == first_expression_index();
}
void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
int count = index_from_top + 1;
int index = values_.length() - count;
ASSERT(HasExpressionAt(index));
// The push count must include at least the element in question or else
// the new value will not be included in this environment's history.
if (push_count_ < count) {
// This is the same effect as popping then re-pushing 'count' elements.
pop_count_ += (count - push_count_);
push_count_ = count;
}
values_[index] = value;
}
void HEnvironment::Drop(int count) {
for (int i = 0; i < count; ++i) {
Pop();
}
}
HEnvironment* HEnvironment::Copy() const {
return new(zone()) HEnvironment(this, zone());
}
HEnvironment* HEnvironment::CopyWithoutHistory() const {
HEnvironment* result = Copy();
result->ClearHistory();
return result;
}
HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
HEnvironment* new_env = Copy();
for (int i = 0; i < values_.length(); ++i) {
HPhi* phi = new(zone()) HPhi(i, zone());
phi->AddInput(values_[i]);
new_env->values_[i] = phi;
loop_header->AddPhi(phi);
}
new_env->ClearHistory();
return new_env;
}
HEnvironment* HEnvironment::CreateStubEnvironment(HEnvironment* outer,
Handle<JSFunction> target,
FrameType frame_type,
int arguments) const {
HEnvironment* new_env =
new(zone()) HEnvironment(outer, target, frame_type,
arguments + 1, zone());
for (int i = 0; i <= arguments; ++i) { // Include receiver.
new_env->Push(ExpressionStackAt(arguments - i));
}
new_env->ClearHistory();
return new_env;
}
HEnvironment* HEnvironment::CopyForInlining(
Handle<JSFunction> target,
int arguments,
FunctionLiteral* function,
HConstant* undefined,
InliningKind inlining_kind,
bool undefined_receiver) const {
ASSERT(frame_type() == JS_FUNCTION);
// Outer environment is a copy of this one without the arguments.
int arity = function->scope()->num_parameters();
HEnvironment* outer = Copy();
outer->Drop(arguments + 1); // Including receiver.
outer->ClearHistory();
if (inlining_kind == CONSTRUCT_CALL_RETURN) {
// Create artificial constructor stub environment. The receiver should
// actually be the constructor function, but we pass the newly allocated
// object instead, DoComputeConstructStubFrame() relies on that.
outer = CreateStubEnvironment(outer, target, JS_CONSTRUCT, arguments);
} else if (inlining_kind == GETTER_CALL_RETURN) {
// We need an additional StackFrame::INTERNAL frame for restoring the
// correct context.
outer = CreateStubEnvironment(outer, target, JS_GETTER, arguments);
} else if (inlining_kind == SETTER_CALL_RETURN) {
// We need an additional StackFrame::INTERNAL frame for temporarily saving
// the argument of the setter, see StoreStubCompiler::CompileStoreViaSetter.
outer = CreateStubEnvironment(outer, target, JS_SETTER, arguments);
}
if (arity != arguments) {
// Create artificial arguments adaptation environment.
outer = CreateStubEnvironment(outer, target, ARGUMENTS_ADAPTOR, arguments);
}
HEnvironment* inner =
new(zone()) HEnvironment(outer, function->scope(), target, zone());
// Get the argument values from the original environment.
for (int i = 0; i <= arity; ++i) { // Include receiver.
HValue* push = (i <= arguments) ?
ExpressionStackAt(arguments - i) : undefined;
inner->SetValueAt(i, push);
}
// If the function we are inlining is a strict mode function or a
// builtin function, pass undefined as the receiver for function
// calls (instead of the global receiver).
if (undefined_receiver) {
inner->SetValueAt(0, undefined);
}
inner->SetValueAt(arity + 1, LookupContext());
for (int i = arity + 2; i < inner->length(); ++i) {
inner->SetValueAt(i, undefined);
}
inner->set_ast_id(BailoutId::FunctionEntry());
return inner;
}
void HEnvironment::PrintTo(StringStream* stream) {
for (int i = 0; i < length(); i++) {
if (i == 0) stream->Add("parameters\n");
if (i == parameter_count()) stream->Add("specials\n");
if (i == parameter_count() + specials_count()) stream->Add("locals\n");
if (i == parameter_count() + specials_count() + local_count()) {
stream->Add("expressions\n");
}
HValue* val = values_.at(i);
stream->Add("%d: ", i);
if (val != NULL) {
val->PrintNameTo(stream);
} else {
stream->Add("NULL");
}
stream->Add("\n");
}
PrintF("\n");
}
void HEnvironment::PrintToStd() {
HeapStringAllocator string_allocator;
StringStream trace(&string_allocator);
PrintTo(&trace);
PrintF("%s", *trace.ToCString());
}
void HTracer::TraceCompilation(CompilationInfo* info) {
Tag tag(this, "compilation");
if (info->IsOptimizing()) {
Handle<String> name = info->function()->debug_name();
PrintStringProperty("name", *name->ToCString());
PrintStringProperty("method", *name->ToCString());
} else {
CodeStub::Major major_key = info->code_stub()->MajorKey();
PrintStringProperty("name", CodeStub::MajorName(major_key, false));
PrintStringProperty("method", "stub");
}
PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
}
void HTracer::TraceLithium(const char* name, LChunk* chunk) {
Trace(name, chunk->graph(), chunk);
}
void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
Trace(name, graph, NULL);
}
void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
Tag tag(this, "cfg");
PrintStringProperty("name", name);
const ZoneList<HBasicBlock*>* blocks = graph->blocks();
for (int i = 0; i < blocks->length(); i++) {
HBasicBlock* current = blocks->at(i);
Tag block_tag(this, "block");
PrintBlockProperty("name", current->block_id());
PrintIntProperty("from_bci", -1);
PrintIntProperty("to_bci", -1);
if (!current->predecessors()->is_empty()) {
PrintIndent();
trace_.Add("predecessors");
for (int j = 0; j < current->predecessors()->length(); ++j) {
trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
}
trace_.Add("\n");
} else {
PrintEmptyProperty("predecessors");
}
if (current->end()->SuccessorCount() == 0) {
PrintEmptyProperty("successors");
} else {
PrintIndent();
trace_.Add("successors");
for (HSuccessorIterator it(current->end()); !it.Done(); it.Advance()) {
trace_.Add(" \"B%d\"", it.Current()->block_id());
}
trace_.Add("\n");
}
PrintEmptyProperty("xhandlers");
const char* flags = current->IsLoopSuccessorDominator()
? "dom-loop-succ"
: "";
PrintStringProperty("flags", flags);
if (current->dominator() != NULL) {
PrintBlockProperty("dominator", current->dominator()->block_id());
}
PrintIntProperty("loop_depth", current->LoopNestingDepth());
if (chunk != NULL) {
int first_index = current->first_instruction_index();
int last_index = current->last_instruction_index();
PrintIntProperty(
"first_lir_id",
LifetimePosition::FromInstructionIndex(first_index).Value());
PrintIntProperty(
"last_lir_id",
LifetimePosition::FromInstructionIndex(last_index).Value());
}
{
Tag states_tag(this, "states");
Tag locals_tag(this, "locals");
int total = current->phis()->length();
PrintIntProperty("size", current->phis()->length());
PrintStringProperty("method", "None");
for (int j = 0; j < total; ++j) {
HPhi* phi = current->phis()->at(j);
PrintIndent();
trace_.Add("%d ", phi->merged_index());
phi->PrintNameTo(&trace_);
trace_.Add(" ");
phi->PrintTo(&trace_);
trace_.Add("\n");
}
}
{
Tag HIR_tag(this, "HIR");
HInstruction* instruction = current->first();
while (instruction != NULL) {
int bci = 0;
int uses = instruction->UseCount();
PrintIndent();
trace_.Add("%d %d ", bci, uses);
instruction->PrintNameTo(&trace_);
trace_.Add(" ");
instruction->PrintTo(&trace_);
trace_.Add(" <|@\n");
instruction = instruction->next();
}
}
if (chunk != NULL) {
Tag LIR_tag(this, "LIR");
int first_index = current->first_instruction_index();
int last_index = current->last_instruction_index();
if (first_index != -1 && last_index != -1) {
const ZoneList<LInstruction*>* instructions = chunk->instructions();
for (int i = first_index; i <= last_index; ++i) {
LInstruction* linstr = instructions->at(i);
if (linstr != NULL) {
PrintIndent();
trace_.Add("%d ",
LifetimePosition::FromInstructionIndex(i).Value());
linstr->PrintTo(&trace_);
trace_.Add(" <|@\n");
}
}
}
}
}
}
void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
Tag tag(this, "intervals");
PrintStringProperty("name", name);
const Vector<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
for (int i = 0; i < fixed_d->length(); ++i) {
TraceLiveRange(fixed_d->at(i), "fixed", allocator->zone());
}
const Vector<LiveRange*>* fixed = allocator->fixed_live_ranges();
for (int i = 0; i < fixed->length(); ++i) {
TraceLiveRange(fixed->at(i), "fixed", allocator->zone());
}
const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
for (int i = 0; i < live_ranges->length(); ++i) {
TraceLiveRange(live_ranges->at(i), "object", allocator->zone());
}
}
void HTracer::TraceLiveRange(LiveRange* range, const char* type,
Zone* zone) {
if (range != NULL && !range->IsEmpty()) {
PrintIndent();
trace_.Add("%d %s", range->id(), type);
if (range->HasRegisterAssigned()) {
LOperand* op = range->CreateAssignedOperand(zone);
int assigned_reg = op->index();
if (op->IsDoubleRegister()) {
trace_.Add(" \"%s\"",
DoubleRegister::AllocationIndexToString(assigned_reg));
} else {
ASSERT(op->IsRegister());
trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
}
} else if (range->IsSpilled()) {
LOperand* op = range->TopLevel()->GetSpillOperand();
if (op->IsDoubleStackSlot()) {
trace_.Add(" \"double_stack:%d\"", op->index());
} else {
ASSERT(op->IsStackSlot());
trace_.Add(" \"stack:%d\"", op->index());
}
}
int parent_index = -1;
if (range->IsChild()) {
parent_index = range->parent()->id();
} else {
parent_index = range->id();
}
LOperand* op = range->FirstHint();
int hint_index = -1;
if (op != NULL && op->IsUnallocated()) {
hint_index = LUnallocated::cast(op)->virtual_register();
}
trace_.Add(" %d %d", parent_index, hint_index);
UseInterval* cur_interval = range->first_interval();
while (cur_interval != NULL && range->Covers(cur_interval->start())) {
trace_.Add(" [%d, %d[",
cur_interval->start().Value(),
cur_interval->end().Value());
cur_interval = cur_interval->next();
}
UsePosition* current_pos = range->first_pos();
while (current_pos != NULL) {
if (current_pos->RegisterIsBeneficial() || FLAG_trace_all_uses) {
trace_.Add(" %d M", current_pos->pos().Value());
}
current_pos = current_pos->next();
}
trace_.Add(" \"\"\n");
}
}
void HTracer::FlushToFile() {
AppendChars(filename_, *trace_.ToCString(), trace_.length(), false);
trace_.Reset();
}
void HStatistics::Initialize(CompilationInfo* info) {
if (info->shared_info().is_null()) return;
source_size_ += info->shared_info()->SourceSize();
}
void HStatistics::Print() {
PrintF("Timing results:\n");
int64_t sum = 0;
for (int i = 0; i < timing_.length(); ++i) {
sum += timing_[i];
}
for (int i = 0; i < names_.length(); ++i) {
PrintF("%30s", names_[i]);
double ms = static_cast<double>(timing_[i]) / 1000;
double percent = static_cast<double>(timing_[i]) * 100 / sum;
PrintF(" - %8.3f ms / %4.1f %% ", ms, percent);
unsigned size = sizes_[i];
double size_percent = static_cast<double>(size) * 100 / total_size_;
PrintF(" %9u bytes / %4.1f %%\n", size, size_percent);
}
PrintF("----------------------------------------"
"---------------------------------------\n");
int64_t total = create_graph_ + optimize_graph_ + generate_code_;
PrintF("%30s - %8.3f ms / %4.1f %% \n",
"Create graph",
static_cast<double>(create_graph_) / 1000,
static_cast<double>(create_graph_) * 100 / total);
PrintF("%30s - %8.3f ms / %4.1f %% \n",
"Optimize graph",
static_cast<double>(optimize_graph_) / 1000,
static_cast<double>(optimize_graph_) * 100 / total);
PrintF("%30s - %8.3f ms / %4.1f %% \n",
"Generate and install code",
static_cast<double>(generate_code_) / 1000,
static_cast<double>(generate_code_) * 100 / total);
PrintF("----------------------------------------"
"---------------------------------------\n");
PrintF("%30s - %8.3f ms (%.1f times slower than full code gen)\n",
"Total",
static_cast<double>(total) / 1000,
static_cast<double>(total) / full_code_gen_);
double source_size_in_kb = static_cast<double>(source_size_) / 1024;
double normalized_time = source_size_in_kb > 0
? (static_cast<double>(total) / 1000) / source_size_in_kb
: 0;
double normalized_size_in_kb = source_size_in_kb > 0
? total_size_ / 1024 / source_size_in_kb
: 0;
PrintF("%30s - %8.3f ms %7.3f kB allocated\n",
"Average per kB source",
normalized_time, normalized_size_in_kb);
}
void HStatistics::SaveTiming(const char* name, int64_t ticks, unsigned size) {
if (name == HPhase::kFullCodeGen) {
full_code_gen_ += ticks;
} else {
total_size_ += size;
for (int i = 0; i < names_.length(); ++i) {
if (strcmp(names_[i], name) == 0) {
timing_[i] += ticks;
sizes_[i] += size;
return;
}
}
names_.Add(name);
timing_.Add(ticks);
sizes_.Add(size);
}
}
const char* const HPhase::kFullCodeGen = "Full code generator";
void HPhase::Begin(const char* name,
HGraph* graph,
LChunk* chunk,
LAllocator* allocator) {
name_ = name;
graph_ = graph;
chunk_ = chunk;
allocator_ = allocator;
if (allocator != NULL && chunk_ == NULL) {
chunk_ = allocator->chunk();
}
if (FLAG_hydrogen_stats) start_ = OS::Ticks();
start_allocation_size_ = Zone::allocation_size_;
}
void HPhase::End() const {
if (FLAG_hydrogen_stats) {
int64_t end = OS::Ticks();
unsigned size = Zone::allocation_size_ - start_allocation_size_;
HStatistics::Instance()->SaveTiming(name_, end - start_, size);
}
// Produce trace output if flag is set so that the first letter of the
// phase name matches the command line parameter FLAG_trace_phase.
if (FLAG_trace_hydrogen &&
OS::StrChr(const_cast<char*>(FLAG_trace_phase), name_[0]) != NULL) {
if (graph_ != NULL) HTracer::Instance()->TraceHydrogen(name_, graph_);
if (chunk_ != NULL) HTracer::Instance()->TraceLithium(name_, chunk_);
if (allocator_ != NULL) {
HTracer::Instance()->TraceLiveRanges(name_, allocator_);
}
}
#ifdef DEBUG
if (graph_ != NULL) graph_->Verify(false); // No full verify.
if (allocator_ != NULL) allocator_->Verify();
#endif
}
} } // namespace v8::internal