blob: 9541a58bfb58ed83d396e4efa889089378403def [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_X64_ASSEMBLER_X64_INL_H_
#define V8_X64_ASSEMBLER_X64_INL_H_
#include "cpu.h"
#include "debug.h"
#include "v8memory.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Implementation of Assembler
void Assembler::emitl(uint32_t x) {
Memory::uint32_at(pc_) = x;
pc_ += sizeof(uint32_t);
}
void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
Memory::uint64_at(pc_) = x;
if (rmode != RelocInfo::NONE) {
RecordRelocInfo(rmode, x);
}
pc_ += sizeof(uint64_t);
}
void Assembler::emitw(uint16_t x) {
Memory::uint16_at(pc_) = x;
pc_ += sizeof(uint16_t);
}
void Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode) {
ASSERT(RelocInfo::IsCodeTarget(rmode));
RecordRelocInfo(rmode);
int current = code_targets_.length();
if (current > 0 && code_targets_.last().is_identical_to(target)) {
// Optimization if we keep jumping to the same code target.
emitl(current - 1);
} else {
code_targets_.Add(target);
emitl(current);
}
}
void Assembler::emit_rex_64(Register reg, Register rm_reg) {
emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
}
void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}
void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
}
void Assembler::emit_rex_64(Register reg, const Operand& op) {
emit(0x48 | reg.high_bit() << 2 | op.rex_);
}
void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
}
void Assembler::emit_rex_64(Register rm_reg) {
ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
emit(0x48 | rm_reg.high_bit());
}
void Assembler::emit_rex_64(const Operand& op) {
emit(0x48 | op.rex_);
}
void Assembler::emit_rex_32(Register reg, Register rm_reg) {
emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
}
void Assembler::emit_rex_32(Register reg, const Operand& op) {
emit(0x40 | reg.high_bit() << 2 | op.rex_);
}
void Assembler::emit_rex_32(Register rm_reg) {
emit(0x40 | rm_reg.high_bit());
}
void Assembler::emit_rex_32(const Operand& op) {
emit(0x40 | op.rex_);
}
void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
byte rex_bits = reg.high_bit() << 2 | op.rex_;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
if (rex_bits != 0) emit(0x40 | rex_bits);
}
void Assembler::emit_optional_rex_32(Register rm_reg) {
if (rm_reg.high_bit()) emit(0x41);
}
void Assembler::emit_optional_rex_32(const Operand& op) {
if (op.rex_ != 0) emit(0x40 | op.rex_);
}
Address Assembler::target_address_at(Address pc) {
return Memory::int32_at(pc) + pc + 4;
}
void Assembler::set_target_address_at(Address pc, Address target) {
Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
CPU::FlushICache(pc, sizeof(int32_t));
}
Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
return code_targets_[Memory::int32_at(pc)];
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
// The modes possibly affected by apply must be in kApplyMask.
void RelocInfo::apply(intptr_t delta) {
if (IsInternalReference(rmode_)) {
// absolute code pointer inside code object moves with the code object.
Memory::Address_at(pc_) += static_cast<int32_t>(delta);
CPU::FlushICache(pc_, sizeof(Address));
} else if (IsCodeTarget(rmode_)) {
Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
CPU::FlushICache(pc_, sizeof(int32_t));
}
}
Address RelocInfo::target_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
if (IsCodeTarget(rmode_)) {
return Assembler::target_address_at(pc_);
} else {
return Memory::Address_at(pc_);
}
}
Address RelocInfo::target_address_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
return reinterpret_cast<Address>(pc_);
}
int RelocInfo::target_address_size() {
if (IsCodedSpecially()) {
return Assembler::kCallTargetSize;
} else {
return Assembler::kExternalTargetSize;
}
}
void RelocInfo::set_target_address(Address target) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
if (IsCodeTarget(rmode_)) {
Assembler::set_target_address_at(pc_, target);
} else {
Memory::Address_at(pc_) = target;
CPU::FlushICache(pc_, sizeof(Address));
}
}
Object* RelocInfo::target_object() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Memory::Object_at(pc_);
}
Handle<Object> RelocInfo::target_object_handle(Assembler *origin) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
if (rmode_ == EMBEDDED_OBJECT) {
return Memory::Object_Handle_at(pc_);
} else {
return origin->code_target_object_handle_at(pc_);
}
}
Object** RelocInfo::target_object_address() {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return reinterpret_cast<Object**>(pc_);
}
Address* RelocInfo::target_reference_address() {
ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
return reinterpret_cast<Address*>(pc_);
}
void RelocInfo::set_target_object(Object* target) {
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
*reinterpret_cast<Object**>(pc_) = target;
CPU::FlushICache(pc_, sizeof(Address));
}
Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
Address address = Memory::Address_at(pc_);
return Handle<JSGlobalPropertyCell>(
reinterpret_cast<JSGlobalPropertyCell**>(address));
}
JSGlobalPropertyCell* RelocInfo::target_cell() {
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
Address address = Memory::Address_at(pc_);
Object* object = HeapObject::FromAddress(
address - JSGlobalPropertyCell::kValueOffset);
return reinterpret_cast<JSGlobalPropertyCell*>(object);
}
void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell) {
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
Memory::Address_at(pc_) = address;
CPU::FlushICache(pc_, sizeof(Address));
}
bool RelocInfo::IsPatchedReturnSequence() {
// The recognized call sequence is:
// movq(kScratchRegister, immediate64); call(kScratchRegister);
// It only needs to be distinguished from a return sequence
// movq(rsp, rbp); pop(rbp); ret(n); int3 *6
// The 11th byte is int3 (0xCC) in the return sequence and
// REX.WB (0x48+register bit) for the call sequence.
#ifdef ENABLE_DEBUGGER_SUPPORT
return pc_[10] != 0xCC;
#else
return false;
#endif
}
bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
return !Assembler::IsNop(pc());
}
Address RelocInfo::call_address() {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
return Memory::Address_at(
pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
}
void RelocInfo::set_call_address(Address target) {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
target;
CPU::FlushICache(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset,
sizeof(Address));
}
Object* RelocInfo::call_object() {
return *call_object_address();
}
void RelocInfo::set_call_object(Object* target) {
*call_object_address() = target;
}
Object** RelocInfo::call_object_address() {
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
return reinterpret_cast<Object**>(
pc_ + Assembler::kPatchReturnSequenceAddressOffset);
}
void RelocInfo::Visit(ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
visitor->VisitPointer(target_object_address());
CPU::FlushICache(pc_, sizeof(Address));
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(this);
} else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
visitor->VisitGlobalPropertyCell(this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
visitor->VisitExternalReference(target_reference_address());
CPU::FlushICache(pc_, sizeof(Address));
#ifdef ENABLE_DEBUGGER_SUPPORT
// TODO(isolates): Get a cached isolate below.
} else if (((RelocInfo::IsJSReturn(mode) &&
IsPatchedReturnSequence()) ||
(RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence())) &&
Isolate::Current()->debug()->has_break_points()) {
visitor->VisitDebugTarget(this);
#endif
} else if (mode == RelocInfo::RUNTIME_ENTRY) {
visitor->VisitRuntimeEntry(this);
}
}
template<typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
StaticVisitor::VisitPointer(heap, target_object_address());
CPU::FlushICache(pc_, sizeof(Address));
} else if (RelocInfo::IsCodeTarget(mode)) {
StaticVisitor::VisitCodeTarget(heap, this);
} else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
StaticVisitor::VisitGlobalPropertyCell(heap, this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
StaticVisitor::VisitExternalReference(target_reference_address());
CPU::FlushICache(pc_, sizeof(Address));
#ifdef ENABLE_DEBUGGER_SUPPORT
} else if (heap->isolate()->debug()->has_break_points() &&
((RelocInfo::IsJSReturn(mode) &&
IsPatchedReturnSequence()) ||
(RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()))) {
StaticVisitor::VisitDebugTarget(heap, this);
#endif
} else if (mode == RelocInfo::RUNTIME_ENTRY) {
StaticVisitor::VisitRuntimeEntry(this);
}
}
// -----------------------------------------------------------------------------
// Implementation of Operand
void Operand::set_modrm(int mod, Register rm_reg) {
ASSERT(is_uint2(mod));
buf_[0] = mod << 6 | rm_reg.low_bits();
// Set REX.B to the high bit of rm.code().
rex_ |= rm_reg.high_bit();
}
void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
ASSERT(len_ == 1);
ASSERT(is_uint2(scale));
// Use SIB with no index register only for base rsp or r12. Otherwise we
// would skip the SIB byte entirely.
ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
rex_ |= index.high_bit() << 1 | base.high_bit();
len_ = 2;
}
void Operand::set_disp8(int disp) {
ASSERT(is_int8(disp));
ASSERT(len_ == 1 || len_ == 2);
int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
*p = disp;
len_ += sizeof(int8_t);
}
void Operand::set_disp32(int disp) {
ASSERT(len_ == 1 || len_ == 2);
int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
*p = disp;
len_ += sizeof(int32_t);
}
} } // namespace v8::internal
#endif // V8_X64_ASSEMBLER_X64_INL_H_