| // Copyright 2012 the V8 project authors. All rights reserved. | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | //       notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | //       copyright notice, this list of conditions and the following | 
 | //       disclaimer in the documentation and/or other materials provided | 
 | //       with the distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | //       contributors may be used to endorse or promote products derived | 
 | //       from this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | #include "v8.h" | 
 |  | 
 | #include "arm/lithium-codegen-arm.h" | 
 | #include "arm/lithium-gap-resolver-arm.h" | 
 | #include "code-stubs.h" | 
 | #include "stub-cache.h" | 
 | #include "hydrogen-osr.h" | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 |  | 
 | class SafepointGenerator V8_FINAL : public CallWrapper { | 
 |  public: | 
 |   SafepointGenerator(LCodeGen* codegen, | 
 |                      LPointerMap* pointers, | 
 |                      Safepoint::DeoptMode mode) | 
 |       : codegen_(codegen), | 
 |         pointers_(pointers), | 
 |         deopt_mode_(mode) { } | 
 |   virtual ~SafepointGenerator() {} | 
 |  | 
 |   virtual void BeforeCall(int call_size) const V8_OVERRIDE {} | 
 |  | 
 |   virtual void AfterCall() const V8_OVERRIDE { | 
 |     codegen_->RecordSafepoint(pointers_, deopt_mode_); | 
 |   } | 
 |  | 
 |  private: | 
 |   LCodeGen* codegen_; | 
 |   LPointerMap* pointers_; | 
 |   Safepoint::DeoptMode deopt_mode_; | 
 | }; | 
 |  | 
 |  | 
 | #define __ masm()-> | 
 |  | 
 | bool LCodeGen::GenerateCode() { | 
 |   LPhase phase("Z_Code generation", chunk()); | 
 |   ASSERT(is_unused()); | 
 |   status_ = GENERATING; | 
 |  | 
 |   // Open a frame scope to indicate that there is a frame on the stack.  The | 
 |   // NONE indicates that the scope shouldn't actually generate code to set up | 
 |   // the frame (that is done in GeneratePrologue). | 
 |   FrameScope frame_scope(masm_, StackFrame::NONE); | 
 |  | 
 |   return GeneratePrologue() && | 
 |       GenerateBody() && | 
 |       GenerateDeferredCode() && | 
 |       GenerateDeoptJumpTable() && | 
 |       GenerateSafepointTable(); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::FinishCode(Handle<Code> code) { | 
 |   ASSERT(is_done()); | 
 |   code->set_stack_slots(GetStackSlotCount()); | 
 |   code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); | 
 |   if (FLAG_weak_embedded_maps_in_optimized_code) { | 
 |     RegisterDependentCodeForEmbeddedMaps(code); | 
 |   } | 
 |   PopulateDeoptimizationData(code); | 
 |   info()->CommitDependencies(code); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::Abort(BailoutReason reason) { | 
 |   info()->set_bailout_reason(reason); | 
 |   status_ = ABORTED; | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::Comment(const char* format, ...) { | 
 |   if (!FLAG_code_comments) return; | 
 |   char buffer[4 * KB]; | 
 |   StringBuilder builder(buffer, ARRAY_SIZE(buffer)); | 
 |   va_list arguments; | 
 |   va_start(arguments, format); | 
 |   builder.AddFormattedList(format, arguments); | 
 |   va_end(arguments); | 
 |  | 
 |   // Copy the string before recording it in the assembler to avoid | 
 |   // issues when the stack allocated buffer goes out of scope. | 
 |   size_t length = builder.position(); | 
 |   Vector<char> copy = Vector<char>::New(length + 1); | 
 |   OS::MemCopy(copy.start(), builder.Finalize(), copy.length()); | 
 |   masm()->RecordComment(copy.start()); | 
 | } | 
 |  | 
 |  | 
 | bool LCodeGen::GeneratePrologue() { | 
 |   ASSERT(is_generating()); | 
 |  | 
 |   if (info()->IsOptimizing()) { | 
 |     ProfileEntryHookStub::MaybeCallEntryHook(masm_); | 
 |  | 
 | #ifdef DEBUG | 
 |     if (strlen(FLAG_stop_at) > 0 && | 
 |         info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { | 
 |       __ stop("stop_at"); | 
 |     } | 
 | #endif | 
 |  | 
 |     // r1: Callee's JS function. | 
 |     // cp: Callee's context. | 
 |     // fp: Caller's frame pointer. | 
 |     // lr: Caller's pc. | 
 |  | 
 |     // Strict mode functions and builtins need to replace the receiver | 
 |     // with undefined when called as functions (without an explicit | 
 |     // receiver object). r5 is zero for method calls and non-zero for | 
 |     // function calls. | 
 |     if (!info_->is_classic_mode() || info_->is_native()) { | 
 |       Label ok; | 
 |       __ cmp(r5, Operand::Zero()); | 
 |       __ b(eq, &ok); | 
 |       int receiver_offset = scope()->num_parameters() * kPointerSize; | 
 |       __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); | 
 |       __ str(r2, MemOperand(sp, receiver_offset)); | 
 |       __ bind(&ok); | 
 |     } | 
 |   } | 
 |  | 
 |   info()->set_prologue_offset(masm_->pc_offset()); | 
 |   if (NeedsEagerFrame()) { | 
 |     if (info()->IsStub()) { | 
 |       __ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); | 
 |       __ Push(Smi::FromInt(StackFrame::STUB)); | 
 |       // Adjust FP to point to saved FP. | 
 |       __ add(fp, sp, Operand(2 * kPointerSize)); | 
 |     } else { | 
 |       PredictableCodeSizeScope predictible_code_size_scope( | 
 |           masm_, kNoCodeAgeSequenceLength * Assembler::kInstrSize); | 
 |       // The following three instructions must remain together and unmodified | 
 |       // for code aging to work properly. | 
 |       __ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit()); | 
 |       __ nop(ip.code()); | 
 |       // Adjust FP to point to saved FP. | 
 |       __ add(fp, sp, Operand(2 * kPointerSize)); | 
 |     } | 
 |     frame_is_built_ = true; | 
 |     info_->AddNoFrameRange(0, masm_->pc_offset()); | 
 |   } | 
 |  | 
 |   // Reserve space for the stack slots needed by the code. | 
 |   int slots = GetStackSlotCount(); | 
 |   if (slots > 0) { | 
 |     if (FLAG_debug_code) { | 
 |       __ sub(sp,  sp, Operand(slots * kPointerSize)); | 
 |       __ push(r0); | 
 |       __ push(r1); | 
 |       __ add(r0, sp, Operand(slots *  kPointerSize)); | 
 |       __ mov(r1, Operand(kSlotsZapValue)); | 
 |       Label loop; | 
 |       __ bind(&loop); | 
 |       __ sub(r0, r0, Operand(kPointerSize)); | 
 |       __ str(r1, MemOperand(r0, 2 * kPointerSize)); | 
 |       __ cmp(r0, sp); | 
 |       __ b(ne, &loop); | 
 |       __ pop(r1); | 
 |       __ pop(r0); | 
 |     } else { | 
 |       __ sub(sp,  sp, Operand(slots * kPointerSize)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (info()->saves_caller_doubles()) { | 
 |     Comment(";;; Save clobbered callee double registers"); | 
 |     int count = 0; | 
 |     BitVector* doubles = chunk()->allocated_double_registers(); | 
 |     BitVector::Iterator save_iterator(doubles); | 
 |     while (!save_iterator.Done()) { | 
 |       __ vstr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()), | 
 |               MemOperand(sp, count * kDoubleSize)); | 
 |       save_iterator.Advance(); | 
 |       count++; | 
 |     } | 
 |   } | 
 |  | 
 |   // Possibly allocate a local context. | 
 |   int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; | 
 |   if (heap_slots > 0) { | 
 |     Comment(";;; Allocate local context"); | 
 |     // Argument to NewContext is the function, which is in r1. | 
 |     __ push(r1); | 
 |     if (heap_slots <= FastNewContextStub::kMaximumSlots) { | 
 |       FastNewContextStub stub(heap_slots); | 
 |       __ CallStub(&stub); | 
 |     } else { | 
 |       __ CallRuntime(Runtime::kNewFunctionContext, 1); | 
 |     } | 
 |     RecordSafepoint(Safepoint::kNoLazyDeopt); | 
 |     // Context is returned in both r0 and cp.  It replaces the context | 
 |     // passed to us.  It's saved in the stack and kept live in cp. | 
 |     __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | 
 |     // Copy any necessary parameters into the context. | 
 |     int num_parameters = scope()->num_parameters(); | 
 |     for (int i = 0; i < num_parameters; i++) { | 
 |       Variable* var = scope()->parameter(i); | 
 |       if (var->IsContextSlot()) { | 
 |         int parameter_offset = StandardFrameConstants::kCallerSPOffset + | 
 |             (num_parameters - 1 - i) * kPointerSize; | 
 |         // Load parameter from stack. | 
 |         __ ldr(r0, MemOperand(fp, parameter_offset)); | 
 |         // Store it in the context. | 
 |         MemOperand target = ContextOperand(cp, var->index()); | 
 |         __ str(r0, target); | 
 |         // Update the write barrier. This clobbers r3 and r0. | 
 |         __ RecordWriteContextSlot( | 
 |             cp, | 
 |             target.offset(), | 
 |             r0, | 
 |             r3, | 
 |             GetLinkRegisterState(), | 
 |             kSaveFPRegs); | 
 |       } | 
 |     } | 
 |     Comment(";;; End allocate local context"); | 
 |   } | 
 |  | 
 |   // Trace the call. | 
 |   if (FLAG_trace && info()->IsOptimizing()) { | 
 |     // We have not executed any compiled code yet, so cp still holds the | 
 |     // incoming context. | 
 |     __ CallRuntime(Runtime::kTraceEnter, 0); | 
 |   } | 
 |   return !is_aborted(); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::GenerateOsrPrologue() { | 
 |   // Generate the OSR entry prologue at the first unknown OSR value, or if there | 
 |   // are none, at the OSR entrypoint instruction. | 
 |   if (osr_pc_offset_ >= 0) return; | 
 |  | 
 |   osr_pc_offset_ = masm()->pc_offset(); | 
 |  | 
 |   // Adjust the frame size, subsuming the unoptimized frame into the | 
 |   // optimized frame. | 
 |   int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); | 
 |   ASSERT(slots >= 0); | 
 |   __ sub(sp, sp, Operand(slots * kPointerSize)); | 
 | } | 
 |  | 
 |  | 
 | bool LCodeGen::GenerateBody() { | 
 |   ASSERT(is_generating()); | 
 |   bool emit_instructions = true; | 
 |   for (current_instruction_ = 0; | 
 |        !is_aborted() && current_instruction_ < instructions_->length(); | 
 |        current_instruction_++) { | 
 |     LInstruction* instr = instructions_->at(current_instruction_); | 
 |  | 
 |     // Don't emit code for basic blocks with a replacement. | 
 |     if (instr->IsLabel()) { | 
 |       emit_instructions = !LLabel::cast(instr)->HasReplacement(); | 
 |     } | 
 |     if (!emit_instructions) continue; | 
 |  | 
 |     if (FLAG_code_comments && instr->HasInterestingComment(this)) { | 
 |       Comment(";;; <@%d,#%d> %s", | 
 |               current_instruction_, | 
 |               instr->hydrogen_value()->id(), | 
 |               instr->Mnemonic()); | 
 |     } | 
 |  | 
 |     RecordAndUpdatePosition(instr->position()); | 
 |  | 
 |     instr->CompileToNative(this); | 
 |   } | 
 |   EnsureSpaceForLazyDeopt(); | 
 |   last_lazy_deopt_pc_ = masm()->pc_offset(); | 
 |   return !is_aborted(); | 
 | } | 
 |  | 
 |  | 
 | bool LCodeGen::GenerateDeferredCode() { | 
 |   ASSERT(is_generating()); | 
 |   if (deferred_.length() > 0) { | 
 |     for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { | 
 |       LDeferredCode* code = deferred_[i]; | 
 |  | 
 |       int pos = instructions_->at(code->instruction_index())->position(); | 
 |       RecordAndUpdatePosition(pos); | 
 |  | 
 |       Comment(";;; <@%d,#%d> " | 
 |               "-------------------- Deferred %s --------------------", | 
 |               code->instruction_index(), | 
 |               code->instr()->hydrogen_value()->id(), | 
 |               code->instr()->Mnemonic()); | 
 |       __ bind(code->entry()); | 
 |       if (NeedsDeferredFrame()) { | 
 |         Comment(";;; Build frame"); | 
 |         ASSERT(!frame_is_built_); | 
 |         ASSERT(info()->IsStub()); | 
 |         frame_is_built_ = true; | 
 |         __ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); | 
 |         __ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB))); | 
 |         __ push(scratch0()); | 
 |         __ add(fp, sp, Operand(2 * kPointerSize)); | 
 |         Comment(";;; Deferred code"); | 
 |       } | 
 |       code->Generate(); | 
 |       if (NeedsDeferredFrame()) { | 
 |         Comment(";;; Destroy frame"); | 
 |         ASSERT(frame_is_built_); | 
 |         __ pop(ip); | 
 |         __ ldm(ia_w, sp, cp.bit() | fp.bit() | lr.bit()); | 
 |         frame_is_built_ = false; | 
 |       } | 
 |       __ jmp(code->exit()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Force constant pool emission at the end of the deferred code to make | 
 |   // sure that no constant pools are emitted after. | 
 |   masm()->CheckConstPool(true, false); | 
 |  | 
 |   return !is_aborted(); | 
 | } | 
 |  | 
 |  | 
 | bool LCodeGen::GenerateDeoptJumpTable() { | 
 |   // Check that the jump table is accessible from everywhere in the function | 
 |   // code, i.e. that offsets to the table can be encoded in the 24bit signed | 
 |   // immediate of a branch instruction. | 
 |   // To simplify we consider the code size from the first instruction to the | 
 |   // end of the jump table. We also don't consider the pc load delta. | 
 |   // Each entry in the jump table generates one instruction and inlines one | 
 |   // 32bit data after it. | 
 |   if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) + | 
 |       deopt_jump_table_.length() * 7)) { | 
 |     Abort(kGeneratedCodeIsTooLarge); | 
 |   } | 
 |  | 
 |   if (deopt_jump_table_.length() > 0) { | 
 |     Comment(";;; -------------------- Jump table --------------------"); | 
 |   } | 
 |   Label table_start; | 
 |   __ bind(&table_start); | 
 |   Label needs_frame; | 
 |   for (int i = 0; i < deopt_jump_table_.length(); i++) { | 
 |     __ bind(&deopt_jump_table_[i].label); | 
 |     Address entry = deopt_jump_table_[i].address; | 
 |     Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type; | 
 |     int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type); | 
 |     if (id == Deoptimizer::kNotDeoptimizationEntry) { | 
 |       Comment(";;; jump table entry %d.", i); | 
 |     } else { | 
 |       Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id); | 
 |     } | 
 |     if (deopt_jump_table_[i].needs_frame) { | 
 |       __ mov(ip, Operand(ExternalReference::ForDeoptEntry(entry))); | 
 |       if (needs_frame.is_bound()) { | 
 |         __ b(&needs_frame); | 
 |       } else { | 
 |         __ bind(&needs_frame); | 
 |         __ stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); | 
 |         // This variant of deopt can only be used with stubs. Since we don't | 
 |         // have a function pointer to install in the stack frame that we're | 
 |         // building, install a special marker there instead. | 
 |         ASSERT(info()->IsStub()); | 
 |         __ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB))); | 
 |         __ push(scratch0()); | 
 |         __ add(fp, sp, Operand(2 * kPointerSize)); | 
 |         __ mov(lr, Operand(pc), LeaveCC, al); | 
 |         __ mov(pc, ip); | 
 |       } | 
 |     } else { | 
 |       __ mov(lr, Operand(pc), LeaveCC, al); | 
 |       __ mov(pc, Operand(ExternalReference::ForDeoptEntry(entry))); | 
 |     } | 
 |     masm()->CheckConstPool(false, false); | 
 |   } | 
 |  | 
 |   // Force constant pool emission at the end of the deopt jump table to make | 
 |   // sure that no constant pools are emitted after. | 
 |   masm()->CheckConstPool(true, false); | 
 |  | 
 |   // The deoptimization jump table is the last part of the instruction | 
 |   // sequence. Mark the generated code as done unless we bailed out. | 
 |   if (!is_aborted()) status_ = DONE; | 
 |   return !is_aborted(); | 
 | } | 
 |  | 
 |  | 
 | bool LCodeGen::GenerateSafepointTable() { | 
 |   ASSERT(is_done()); | 
 |   safepoints_.Emit(masm(), GetStackSlotCount()); | 
 |   return !is_aborted(); | 
 | } | 
 |  | 
 |  | 
 | Register LCodeGen::ToRegister(int index) const { | 
 |   return Register::FromAllocationIndex(index); | 
 | } | 
 |  | 
 |  | 
 | DwVfpRegister LCodeGen::ToDoubleRegister(int index) const { | 
 |   return DwVfpRegister::FromAllocationIndex(index); | 
 | } | 
 |  | 
 |  | 
 | Register LCodeGen::ToRegister(LOperand* op) const { | 
 |   ASSERT(op->IsRegister()); | 
 |   return ToRegister(op->index()); | 
 | } | 
 |  | 
 |  | 
 | Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { | 
 |   if (op->IsRegister()) { | 
 |     return ToRegister(op->index()); | 
 |   } else if (op->IsConstantOperand()) { | 
 |     LConstantOperand* const_op = LConstantOperand::cast(op); | 
 |     HConstant* constant = chunk_->LookupConstant(const_op); | 
 |     Handle<Object> literal = constant->handle(isolate()); | 
 |     Representation r = chunk_->LookupLiteralRepresentation(const_op); | 
 |     if (r.IsInteger32()) { | 
 |       ASSERT(literal->IsNumber()); | 
 |       __ mov(scratch, Operand(static_cast<int32_t>(literal->Number()))); | 
 |     } else if (r.IsDouble()) { | 
 |       Abort(kEmitLoadRegisterUnsupportedDoubleImmediate); | 
 |     } else { | 
 |       ASSERT(r.IsSmiOrTagged()); | 
 |       __ LoadObject(scratch, literal); | 
 |     } | 
 |     return scratch; | 
 |   } else if (op->IsStackSlot() || op->IsArgument()) { | 
 |     __ ldr(scratch, ToMemOperand(op)); | 
 |     return scratch; | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return scratch; | 
 | } | 
 |  | 
 |  | 
 | DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const { | 
 |   ASSERT(op->IsDoubleRegister()); | 
 |   return ToDoubleRegister(op->index()); | 
 | } | 
 |  | 
 |  | 
 | DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op, | 
 |                                                SwVfpRegister flt_scratch, | 
 |                                                DwVfpRegister dbl_scratch) { | 
 |   if (op->IsDoubleRegister()) { | 
 |     return ToDoubleRegister(op->index()); | 
 |   } else if (op->IsConstantOperand()) { | 
 |     LConstantOperand* const_op = LConstantOperand::cast(op); | 
 |     HConstant* constant = chunk_->LookupConstant(const_op); | 
 |     Handle<Object> literal = constant->handle(isolate()); | 
 |     Representation r = chunk_->LookupLiteralRepresentation(const_op); | 
 |     if (r.IsInteger32()) { | 
 |       ASSERT(literal->IsNumber()); | 
 |       __ mov(ip, Operand(static_cast<int32_t>(literal->Number()))); | 
 |       __ vmov(flt_scratch, ip); | 
 |       __ vcvt_f64_s32(dbl_scratch, flt_scratch); | 
 |       return dbl_scratch; | 
 |     } else if (r.IsDouble()) { | 
 |       Abort(kUnsupportedDoubleImmediate); | 
 |     } else if (r.IsTagged()) { | 
 |       Abort(kUnsupportedTaggedImmediate); | 
 |     } | 
 |   } else if (op->IsStackSlot() || op->IsArgument()) { | 
 |     // TODO(regis): Why is vldr not taking a MemOperand? | 
 |     // __ vldr(dbl_scratch, ToMemOperand(op)); | 
 |     MemOperand mem_op = ToMemOperand(op); | 
 |     __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset()); | 
 |     return dbl_scratch; | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return dbl_scratch; | 
 | } | 
 |  | 
 |  | 
 | Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { | 
 |   HConstant* constant = chunk_->LookupConstant(op); | 
 |   ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); | 
 |   return constant->handle(isolate()); | 
 | } | 
 |  | 
 |  | 
 | bool LCodeGen::IsInteger32(LConstantOperand* op) const { | 
 |   return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); | 
 | } | 
 |  | 
 |  | 
 | bool LCodeGen::IsSmi(LConstantOperand* op) const { | 
 |   return chunk_->LookupLiteralRepresentation(op).IsSmi(); | 
 | } | 
 |  | 
 |  | 
 | int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { | 
 |   return ToRepresentation(op, Representation::Integer32()); | 
 | } | 
 |  | 
 |  | 
 | int32_t LCodeGen::ToRepresentation(LConstantOperand* op, | 
 |                                    const Representation& r) const { | 
 |   HConstant* constant = chunk_->LookupConstant(op); | 
 |   int32_t value = constant->Integer32Value(); | 
 |   if (r.IsInteger32()) return value; | 
 |   ASSERT(r.IsSmiOrTagged()); | 
 |   return reinterpret_cast<int32_t>(Smi::FromInt(value)); | 
 | } | 
 |  | 
 |  | 
 | Smi* LCodeGen::ToSmi(LConstantOperand* op) const { | 
 |   HConstant* constant = chunk_->LookupConstant(op); | 
 |   return Smi::FromInt(constant->Integer32Value()); | 
 | } | 
 |  | 
 |  | 
 | double LCodeGen::ToDouble(LConstantOperand* op) const { | 
 |   HConstant* constant = chunk_->LookupConstant(op); | 
 |   ASSERT(constant->HasDoubleValue()); | 
 |   return constant->DoubleValue(); | 
 | } | 
 |  | 
 |  | 
 | Operand LCodeGen::ToOperand(LOperand* op) { | 
 |   if (op->IsConstantOperand()) { | 
 |     LConstantOperand* const_op = LConstantOperand::cast(op); | 
 |     HConstant* constant = chunk()->LookupConstant(const_op); | 
 |     Representation r = chunk_->LookupLiteralRepresentation(const_op); | 
 |     if (r.IsSmi()) { | 
 |       ASSERT(constant->HasSmiValue()); | 
 |       return Operand(Smi::FromInt(constant->Integer32Value())); | 
 |     } else if (r.IsInteger32()) { | 
 |       ASSERT(constant->HasInteger32Value()); | 
 |       return Operand(constant->Integer32Value()); | 
 |     } else if (r.IsDouble()) { | 
 |       Abort(kToOperandUnsupportedDoubleImmediate); | 
 |     } | 
 |     ASSERT(r.IsTagged()); | 
 |     return Operand(constant->handle(isolate())); | 
 |   } else if (op->IsRegister()) { | 
 |     return Operand(ToRegister(op)); | 
 |   } else if (op->IsDoubleRegister()) { | 
 |     Abort(kToOperandIsDoubleRegisterUnimplemented); | 
 |     return Operand::Zero(); | 
 |   } | 
 |   // Stack slots not implemented, use ToMemOperand instead. | 
 |   UNREACHABLE(); | 
 |   return Operand::Zero(); | 
 | } | 
 |  | 
 |  | 
 | MemOperand LCodeGen::ToMemOperand(LOperand* op) const { | 
 |   ASSERT(!op->IsRegister()); | 
 |   ASSERT(!op->IsDoubleRegister()); | 
 |   ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot()); | 
 |   return MemOperand(fp, StackSlotOffset(op->index())); | 
 | } | 
 |  | 
 |  | 
 | MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { | 
 |   ASSERT(op->IsDoubleStackSlot()); | 
 |   return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::WriteTranslation(LEnvironment* environment, | 
 |                                 Translation* translation) { | 
 |   if (environment == NULL) return; | 
 |  | 
 |   // The translation includes one command per value in the environment. | 
 |   int translation_size = environment->translation_size(); | 
 |   // The output frame height does not include the parameters. | 
 |   int height = translation_size - environment->parameter_count(); | 
 |  | 
 |   WriteTranslation(environment->outer(), translation); | 
 |   bool has_closure_id = !info()->closure().is_null() && | 
 |       !info()->closure().is_identical_to(environment->closure()); | 
 |   int closure_id = has_closure_id | 
 |       ? DefineDeoptimizationLiteral(environment->closure()) | 
 |       : Translation::kSelfLiteralId; | 
 |  | 
 |   switch (environment->frame_type()) { | 
 |     case JS_FUNCTION: | 
 |       translation->BeginJSFrame(environment->ast_id(), closure_id, height); | 
 |       break; | 
 |     case JS_CONSTRUCT: | 
 |       translation->BeginConstructStubFrame(closure_id, translation_size); | 
 |       break; | 
 |     case JS_GETTER: | 
 |       ASSERT(translation_size == 1); | 
 |       ASSERT(height == 0); | 
 |       translation->BeginGetterStubFrame(closure_id); | 
 |       break; | 
 |     case JS_SETTER: | 
 |       ASSERT(translation_size == 2); | 
 |       ASSERT(height == 0); | 
 |       translation->BeginSetterStubFrame(closure_id); | 
 |       break; | 
 |     case STUB: | 
 |       translation->BeginCompiledStubFrame(); | 
 |       break; | 
 |     case ARGUMENTS_ADAPTOR: | 
 |       translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); | 
 |       break; | 
 |   } | 
 |  | 
 |   int object_index = 0; | 
 |   int dematerialized_index = 0; | 
 |   for (int i = 0; i < translation_size; ++i) { | 
 |     LOperand* value = environment->values()->at(i); | 
 |     AddToTranslation(environment, | 
 |                      translation, | 
 |                      value, | 
 |                      environment->HasTaggedValueAt(i), | 
 |                      environment->HasUint32ValueAt(i), | 
 |                      &object_index, | 
 |                      &dematerialized_index); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::AddToTranslation(LEnvironment* environment, | 
 |                                 Translation* translation, | 
 |                                 LOperand* op, | 
 |                                 bool is_tagged, | 
 |                                 bool is_uint32, | 
 |                                 int* object_index_pointer, | 
 |                                 int* dematerialized_index_pointer) { | 
 |   if (op == LEnvironment::materialization_marker()) { | 
 |     int object_index = (*object_index_pointer)++; | 
 |     if (environment->ObjectIsDuplicateAt(object_index)) { | 
 |       int dupe_of = environment->ObjectDuplicateOfAt(object_index); | 
 |       translation->DuplicateObject(dupe_of); | 
 |       return; | 
 |     } | 
 |     int object_length = environment->ObjectLengthAt(object_index); | 
 |     if (environment->ObjectIsArgumentsAt(object_index)) { | 
 |       translation->BeginArgumentsObject(object_length); | 
 |     } else { | 
 |       translation->BeginCapturedObject(object_length); | 
 |     } | 
 |     int dematerialized_index = *dematerialized_index_pointer; | 
 |     int env_offset = environment->translation_size() + dematerialized_index; | 
 |     *dematerialized_index_pointer += object_length; | 
 |     for (int i = 0; i < object_length; ++i) { | 
 |       LOperand* value = environment->values()->at(env_offset + i); | 
 |       AddToTranslation(environment, | 
 |                        translation, | 
 |                        value, | 
 |                        environment->HasTaggedValueAt(env_offset + i), | 
 |                        environment->HasUint32ValueAt(env_offset + i), | 
 |                        object_index_pointer, | 
 |                        dematerialized_index_pointer); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   if (op->IsStackSlot()) { | 
 |     if (is_tagged) { | 
 |       translation->StoreStackSlot(op->index()); | 
 |     } else if (is_uint32) { | 
 |       translation->StoreUint32StackSlot(op->index()); | 
 |     } else { | 
 |       translation->StoreInt32StackSlot(op->index()); | 
 |     } | 
 |   } else if (op->IsDoubleStackSlot()) { | 
 |     translation->StoreDoubleStackSlot(op->index()); | 
 |   } else if (op->IsArgument()) { | 
 |     ASSERT(is_tagged); | 
 |     int src_index = GetStackSlotCount() + op->index(); | 
 |     translation->StoreStackSlot(src_index); | 
 |   } else if (op->IsRegister()) { | 
 |     Register reg = ToRegister(op); | 
 |     if (is_tagged) { | 
 |       translation->StoreRegister(reg); | 
 |     } else if (is_uint32) { | 
 |       translation->StoreUint32Register(reg); | 
 |     } else { | 
 |       translation->StoreInt32Register(reg); | 
 |     } | 
 |   } else if (op->IsDoubleRegister()) { | 
 |     DoubleRegister reg = ToDoubleRegister(op); | 
 |     translation->StoreDoubleRegister(reg); | 
 |   } else if (op->IsConstantOperand()) { | 
 |     HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); | 
 |     int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); | 
 |     translation->StoreLiteral(src_index); | 
 |   } else { | 
 |     UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::CallCode(Handle<Code> code, | 
 |                         RelocInfo::Mode mode, | 
 |                         LInstruction* instr, | 
 |                         TargetAddressStorageMode storage_mode) { | 
 |   CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::CallCodeGeneric(Handle<Code> code, | 
 |                                RelocInfo::Mode mode, | 
 |                                LInstruction* instr, | 
 |                                SafepointMode safepoint_mode, | 
 |                                TargetAddressStorageMode storage_mode) { | 
 |   EnsureSpaceForLazyDeopt(); | 
 |   ASSERT(instr != NULL); | 
 |   // Block literal pool emission to ensure nop indicating no inlined smi code | 
 |   // is in the correct position. | 
 |   Assembler::BlockConstPoolScope block_const_pool(masm()); | 
 |   LPointerMap* pointers = instr->pointer_map(); | 
 |   RecordPosition(pointers->position()); | 
 |   __ Call(code, mode, TypeFeedbackId::None(), al, storage_mode); | 
 |   RecordSafepointWithLazyDeopt(instr, safepoint_mode); | 
 |  | 
 |   // Signal that we don't inline smi code before these stubs in the | 
 |   // optimizing code generator. | 
 |   if (code->kind() == Code::BINARY_OP_IC || | 
 |       code->kind() == Code::COMPARE_IC) { | 
 |     __ nop(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::CallRuntime(const Runtime::Function* function, | 
 |                            int num_arguments, | 
 |                            LInstruction* instr) { | 
 |   ASSERT(instr != NULL); | 
 |   LPointerMap* pointers = instr->pointer_map(); | 
 |   ASSERT(pointers != NULL); | 
 |   RecordPosition(pointers->position()); | 
 |  | 
 |   __ CallRuntime(function, num_arguments); | 
 |   RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::LoadContextFromDeferred(LOperand* context) { | 
 |   if (context->IsRegister()) { | 
 |     __ Move(cp, ToRegister(context)); | 
 |   } else if (context->IsStackSlot()) { | 
 |     __ ldr(cp, ToMemOperand(context)); | 
 |   } else { | 
 |     UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, | 
 |                                        int argc, | 
 |                                        LInstruction* instr, | 
 |                                        LOperand* context) { | 
 |   LoadContextFromDeferred(context); | 
 |   __ CallRuntimeSaveDoubles(id); | 
 |   RecordSafepointWithRegisters( | 
 |       instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, | 
 |                                                     Safepoint::DeoptMode mode) { | 
 |   if (!environment->HasBeenRegistered()) { | 
 |     // Physical stack frame layout: | 
 |     // -x ............. -4  0 ..................................... y | 
 |     // [incoming arguments] [spill slots] [pushed outgoing arguments] | 
 |  | 
 |     // Layout of the environment: | 
 |     // 0 ..................................................... size-1 | 
 |     // [parameters] [locals] [expression stack including arguments] | 
 |  | 
 |     // Layout of the translation: | 
 |     // 0 ........................................................ size - 1 + 4 | 
 |     // [expression stack including arguments] [locals] [4 words] [parameters] | 
 |     // |>------------  translation_size ------------<| | 
 |  | 
 |     int frame_count = 0; | 
 |     int jsframe_count = 0; | 
 |     for (LEnvironment* e = environment; e != NULL; e = e->outer()) { | 
 |       ++frame_count; | 
 |       if (e->frame_type() == JS_FUNCTION) { | 
 |         ++jsframe_count; | 
 |       } | 
 |     } | 
 |     Translation translation(&translations_, frame_count, jsframe_count, zone()); | 
 |     WriteTranslation(environment, &translation); | 
 |     int deoptimization_index = deoptimizations_.length(); | 
 |     int pc_offset = masm()->pc_offset(); | 
 |     environment->Register(deoptimization_index, | 
 |                           translation.index(), | 
 |                           (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); | 
 |     deoptimizations_.Add(environment, zone()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DeoptimizeIf(Condition condition, | 
 |                             LEnvironment* environment, | 
 |                             Deoptimizer::BailoutType bailout_type) { | 
 |   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | 
 |   ASSERT(environment->HasBeenRegistered()); | 
 |   int id = environment->deoptimization_index(); | 
 |   ASSERT(info()->IsOptimizing() || info()->IsStub()); | 
 |   Address entry = | 
 |       Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); | 
 |   if (entry == NULL) { | 
 |     Abort(kBailoutWasNotPrepared); | 
 |     return; | 
 |   } | 
 |  | 
 |   ASSERT(FLAG_deopt_every_n_times < 2);  // Other values not supported on ARM. | 
 |   if (FLAG_deopt_every_n_times == 1 && | 
 |       !info()->IsStub() && | 
 |       info()->opt_count() == id) { | 
 |     ASSERT(frame_is_built_); | 
 |     __ Call(entry, RelocInfo::RUNTIME_ENTRY); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (info()->ShouldTrapOnDeopt()) { | 
 |     __ stop("trap_on_deopt", condition); | 
 |   } | 
 |  | 
 |   ASSERT(info()->IsStub() || frame_is_built_); | 
 |   if (condition == al && frame_is_built_) { | 
 |     __ Call(entry, RelocInfo::RUNTIME_ENTRY); | 
 |   } else { | 
 |     // We often have several deopts to the same entry, reuse the last | 
 |     // jump entry if this is the case. | 
 |     if (deopt_jump_table_.is_empty() || | 
 |         (deopt_jump_table_.last().address != entry) || | 
 |         (deopt_jump_table_.last().bailout_type != bailout_type) || | 
 |         (deopt_jump_table_.last().needs_frame != !frame_is_built_)) { | 
 |       Deoptimizer::JumpTableEntry table_entry(entry, | 
 |                                               bailout_type, | 
 |                                               !frame_is_built_); | 
 |       deopt_jump_table_.Add(table_entry, zone()); | 
 |     } | 
 |     __ b(condition, &deopt_jump_table_.last().label); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DeoptimizeIf(Condition condition, | 
 |                             LEnvironment* environment) { | 
 |   Deoptimizer::BailoutType bailout_type = info()->IsStub() | 
 |       ? Deoptimizer::LAZY | 
 |       : Deoptimizer::EAGER; | 
 |   DeoptimizeIf(condition, environment, bailout_type); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RegisterDependentCodeForEmbeddedMaps(Handle<Code> code) { | 
 |   ZoneList<Handle<Map> > maps(1, zone()); | 
 |   int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); | 
 |   for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) { | 
 |     RelocInfo::Mode mode = it.rinfo()->rmode(); | 
 |     if (mode == RelocInfo::EMBEDDED_OBJECT && | 
 |         it.rinfo()->target_object()->IsMap()) { | 
 |       Handle<Map> map(Map::cast(it.rinfo()->target_object())); | 
 |       if (map->CanTransition()) { | 
 |         maps.Add(map, zone()); | 
 |       } | 
 |     } | 
 |   } | 
 | #ifdef VERIFY_HEAP | 
 |   // This disables verification of weak embedded maps after full GC. | 
 |   // AddDependentCode can cause a GC, which would observe the state where | 
 |   // this code is not yet in the depended code lists of the embedded maps. | 
 |   NoWeakEmbeddedMapsVerificationScope disable_verification_of_embedded_maps; | 
 | #endif | 
 |   for (int i = 0; i < maps.length(); i++) { | 
 |     maps.at(i)->AddDependentCode(DependentCode::kWeaklyEmbeddedGroup, code); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { | 
 |   int length = deoptimizations_.length(); | 
 |   if (length == 0) return; | 
 |   Handle<DeoptimizationInputData> data = | 
 |       factory()->NewDeoptimizationInputData(length, TENURED); | 
 |  | 
 |   Handle<ByteArray> translations = | 
 |       translations_.CreateByteArray(isolate()->factory()); | 
 |   data->SetTranslationByteArray(*translations); | 
 |   data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); | 
 |  | 
 |   Handle<FixedArray> literals = | 
 |       factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); | 
 |   { AllowDeferredHandleDereference copy_handles; | 
 |     for (int i = 0; i < deoptimization_literals_.length(); i++) { | 
 |       literals->set(i, *deoptimization_literals_[i]); | 
 |     } | 
 |     data->SetLiteralArray(*literals); | 
 |   } | 
 |  | 
 |   data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); | 
 |   data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); | 
 |  | 
 |   // Populate the deoptimization entries. | 
 |   for (int i = 0; i < length; i++) { | 
 |     LEnvironment* env = deoptimizations_[i]; | 
 |     data->SetAstId(i, env->ast_id()); | 
 |     data->SetTranslationIndex(i, Smi::FromInt(env->translation_index())); | 
 |     data->SetArgumentsStackHeight(i, | 
 |                                   Smi::FromInt(env->arguments_stack_height())); | 
 |     data->SetPc(i, Smi::FromInt(env->pc_offset())); | 
 |   } | 
 |   code->set_deoptimization_data(*data); | 
 | } | 
 |  | 
 |  | 
 | int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) { | 
 |   int result = deoptimization_literals_.length(); | 
 |   for (int i = 0; i < deoptimization_literals_.length(); ++i) { | 
 |     if (deoptimization_literals_[i].is_identical_to(literal)) return i; | 
 |   } | 
 |   deoptimization_literals_.Add(literal, zone()); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { | 
 |   ASSERT(deoptimization_literals_.length() == 0); | 
 |  | 
 |   const ZoneList<Handle<JSFunction> >* inlined_closures = | 
 |       chunk()->inlined_closures(); | 
 |  | 
 |   for (int i = 0, length = inlined_closures->length(); | 
 |        i < length; | 
 |        i++) { | 
 |     DefineDeoptimizationLiteral(inlined_closures->at(i)); | 
 |   } | 
 |  | 
 |   inlined_function_count_ = deoptimization_literals_.length(); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RecordSafepointWithLazyDeopt( | 
 |     LInstruction* instr, SafepointMode safepoint_mode) { | 
 |   if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { | 
 |     RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); | 
 |   } else { | 
 |     ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | 
 |     RecordSafepointWithRegisters( | 
 |         instr->pointer_map(), 0, Safepoint::kLazyDeopt); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RecordSafepoint( | 
 |     LPointerMap* pointers, | 
 |     Safepoint::Kind kind, | 
 |     int arguments, | 
 |     Safepoint::DeoptMode deopt_mode) { | 
 |   ASSERT(expected_safepoint_kind_ == kind); | 
 |  | 
 |   const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); | 
 |   Safepoint safepoint = safepoints_.DefineSafepoint(masm(), | 
 |       kind, arguments, deopt_mode); | 
 |   for (int i = 0; i < operands->length(); i++) { | 
 |     LOperand* pointer = operands->at(i); | 
 |     if (pointer->IsStackSlot()) { | 
 |       safepoint.DefinePointerSlot(pointer->index(), zone()); | 
 |     } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { | 
 |       safepoint.DefinePointerRegister(ToRegister(pointer), zone()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RecordSafepoint(LPointerMap* pointers, | 
 |                                Safepoint::DeoptMode deopt_mode) { | 
 |   RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { | 
 |   LPointerMap empty_pointers(RelocInfo::kNoPosition, zone()); | 
 |   RecordSafepoint(&empty_pointers, deopt_mode); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, | 
 |                                             int arguments, | 
 |                                             Safepoint::DeoptMode deopt_mode) { | 
 |   RecordSafepoint( | 
 |       pointers, Safepoint::kWithRegisters, arguments, deopt_mode); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RecordSafepointWithRegistersAndDoubles( | 
 |     LPointerMap* pointers, | 
 |     int arguments, | 
 |     Safepoint::DeoptMode deopt_mode) { | 
 |   RecordSafepoint( | 
 |       pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RecordPosition(int position) { | 
 |   if (position == RelocInfo::kNoPosition) return; | 
 |   masm()->positions_recorder()->RecordPosition(position); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::RecordAndUpdatePosition(int position) { | 
 |   if (position >= 0 && position != old_position_) { | 
 |     masm()->positions_recorder()->RecordPosition(position); | 
 |     old_position_ = position; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | static const char* LabelType(LLabel* label) { | 
 |   if (label->is_loop_header()) return " (loop header)"; | 
 |   if (label->is_osr_entry()) return " (OSR entry)"; | 
 |   return ""; | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLabel(LLabel* label) { | 
 |   Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", | 
 |           current_instruction_, | 
 |           label->hydrogen_value()->id(), | 
 |           label->block_id(), | 
 |           LabelType(label)); | 
 |   __ bind(label->label()); | 
 |   current_block_ = label->block_id(); | 
 |   DoGap(label); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoParallelMove(LParallelMove* move) { | 
 |   resolver_.Resolve(move); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoGap(LGap* gap) { | 
 |   for (int i = LGap::FIRST_INNER_POSITION; | 
 |        i <= LGap::LAST_INNER_POSITION; | 
 |        i++) { | 
 |     LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); | 
 |     LParallelMove* move = gap->GetParallelMove(inner_pos); | 
 |     if (move != NULL) DoParallelMove(move); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoInstructionGap(LInstructionGap* instr) { | 
 |   DoGap(instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoParameter(LParameter* instr) { | 
 |   // Nothing to do. | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallStub(LCallStub* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |   switch (instr->hydrogen()->major_key()) { | 
 |     case CodeStub::RegExpConstructResult: { | 
 |       RegExpConstructResultStub stub; | 
 |       CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 |       break; | 
 |     } | 
 |     case CodeStub::RegExpExec: { | 
 |       RegExpExecStub stub; | 
 |       CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 |       break; | 
 |     } | 
 |     case CodeStub::SubString: { | 
 |       SubStringStub stub; | 
 |       CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 |       break; | 
 |     } | 
 |     case CodeStub::StringCompare: { | 
 |       StringCompareStub stub; | 
 |       CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 |       break; | 
 |     } | 
 |     case CodeStub::TranscendentalCache: { | 
 |       __ ldr(r0, MemOperand(sp, 0)); | 
 |       TranscendentalCacheStub stub(instr->transcendental_type(), | 
 |                                    TranscendentalCacheStub::TAGGED); | 
 |       CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { | 
 |   GenerateOsrPrologue(); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoModI(LModI* instr) { | 
 |   HMod* hmod = instr->hydrogen(); | 
 |   HValue* left = hmod->left(); | 
 |   HValue* right = hmod->right(); | 
 |   if (hmod->HasPowerOf2Divisor()) { | 
 |     // TODO(svenpanne) We should really do the strength reduction on the | 
 |     // Hydrogen level. | 
 |     Register left_reg = ToRegister(instr->left()); | 
 |     Register result_reg = ToRegister(instr->result()); | 
 |  | 
 |     // Note: The code below even works when right contains kMinInt. | 
 |     int32_t divisor = Abs(right->GetInteger32Constant()); | 
 |  | 
 |     Label left_is_not_negative, done; | 
 |     if (left->CanBeNegative()) { | 
 |       __ cmp(left_reg, Operand::Zero()); | 
 |       __ b(pl, &left_is_not_negative); | 
 |       __ rsb(result_reg, left_reg, Operand::Zero()); | 
 |       __ and_(result_reg, result_reg, Operand(divisor - 1)); | 
 |       __ rsb(result_reg, result_reg, Operand::Zero(), SetCC); | 
 |       if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |         DeoptimizeIf(eq, instr->environment()); | 
 |       } | 
 |       __ b(&done); | 
 |     } | 
 |  | 
 |     __ bind(&left_is_not_negative); | 
 |     __ and_(result_reg, left_reg, Operand(divisor - 1)); | 
 |     __ bind(&done); | 
 |  | 
 |   } else if (hmod->fixed_right_arg().has_value) { | 
 |     Register left_reg = ToRegister(instr->left()); | 
 |     Register right_reg = ToRegister(instr->right()); | 
 |     Register result_reg = ToRegister(instr->result()); | 
 |  | 
 |     int32_t divisor = hmod->fixed_right_arg().value; | 
 |     ASSERT(IsPowerOf2(divisor)); | 
 |  | 
 |     // Check if our assumption of a fixed right operand still holds. | 
 |     __ cmp(right_reg, Operand(divisor)); | 
 |     DeoptimizeIf(ne, instr->environment()); | 
 |  | 
 |     Label left_is_not_negative, done; | 
 |     if (left->CanBeNegative()) { | 
 |       __ cmp(left_reg, Operand::Zero()); | 
 |       __ b(pl, &left_is_not_negative); | 
 |       __ rsb(result_reg, left_reg, Operand::Zero()); | 
 |       __ and_(result_reg, result_reg, Operand(divisor - 1)); | 
 |       __ rsb(result_reg, result_reg, Operand::Zero(), SetCC); | 
 |       if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |         DeoptimizeIf(eq, instr->environment()); | 
 |       } | 
 |       __ b(&done); | 
 |     } | 
 |  | 
 |     __ bind(&left_is_not_negative); | 
 |     __ and_(result_reg, left_reg, Operand(divisor - 1)); | 
 |     __ bind(&done); | 
 |  | 
 |   } else if (CpuFeatures::IsSupported(SUDIV)) { | 
 |     CpuFeatureScope scope(masm(), SUDIV); | 
 |  | 
 |     Register left_reg = ToRegister(instr->left()); | 
 |     Register right_reg = ToRegister(instr->right()); | 
 |     Register result_reg = ToRegister(instr->result()); | 
 |  | 
 |     Label done; | 
 |     // Check for x % 0, sdiv might signal an exception. We have to deopt in this | 
 |     // case because we can't return a NaN. | 
 |     if (right->CanBeZero()) { | 
 |       __ cmp(right_reg, Operand::Zero()); | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } | 
 |  | 
 |     // Check for kMinInt % -1, sdiv will return kMinInt, which is not what we | 
 |     // want. We have to deopt if we care about -0, because we can't return that. | 
 |     if (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1)) { | 
 |       Label no_overflow_possible; | 
 |       __ cmp(left_reg, Operand(kMinInt)); | 
 |       __ b(ne, &no_overflow_possible); | 
 |       __ cmp(right_reg, Operand(-1)); | 
 |       if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |         DeoptimizeIf(eq, instr->environment()); | 
 |       } else { | 
 |         __ b(ne, &no_overflow_possible); | 
 |         __ mov(result_reg, Operand::Zero()); | 
 |         __ jmp(&done); | 
 |       } | 
 |       __ bind(&no_overflow_possible); | 
 |     } | 
 |  | 
 |     // For 'r3 = r1 % r2' we can have the following ARM code: | 
 |     //   sdiv r3, r1, r2 | 
 |     //   mls r3, r3, r2, r1 | 
 |  | 
 |     __ sdiv(result_reg, left_reg, right_reg); | 
 |     __ mls(result_reg, result_reg, right_reg, left_reg); | 
 |  | 
 |     // If we care about -0, test if the dividend is <0 and the result is 0. | 
 |     if (left->CanBeNegative() && | 
 |         hmod->CanBeZero() && | 
 |         hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |       __ cmp(result_reg, Operand::Zero()); | 
 |       __ b(ne, &done); | 
 |       __ cmp(left_reg, Operand::Zero()); | 
 |       DeoptimizeIf(lt, instr->environment()); | 
 |     } | 
 |     __ bind(&done); | 
 |  | 
 |   } else { | 
 |     // General case, without any SDIV support. | 
 |     Register left_reg = ToRegister(instr->left()); | 
 |     Register right_reg = ToRegister(instr->right()); | 
 |     Register result_reg = ToRegister(instr->result()); | 
 |     Register scratch = scratch0(); | 
 |     ASSERT(!scratch.is(left_reg)); | 
 |     ASSERT(!scratch.is(right_reg)); | 
 |     ASSERT(!scratch.is(result_reg)); | 
 |     DwVfpRegister dividend = ToDoubleRegister(instr->temp()); | 
 |     DwVfpRegister divisor = ToDoubleRegister(instr->temp2()); | 
 |     ASSERT(!divisor.is(dividend)); | 
 |     LowDwVfpRegister quotient = double_scratch0(); | 
 |     ASSERT(!quotient.is(dividend)); | 
 |     ASSERT(!quotient.is(divisor)); | 
 |  | 
 |     Label done; | 
 |     // Check for x % 0, we have to deopt in this case because we can't return a | 
 |     // NaN. | 
 |     if (right->CanBeZero()) { | 
 |       __ cmp(right_reg, Operand::Zero()); | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } | 
 |  | 
 |     __ Move(result_reg, left_reg); | 
 |     // Load the arguments in VFP registers. The divisor value is preloaded | 
 |     // before. Be careful that 'right_reg' is only live on entry. | 
 |     // TODO(svenpanne) The last comments seems to be wrong nowadays. | 
 |     __ vmov(double_scratch0().low(), left_reg); | 
 |     __ vcvt_f64_s32(dividend, double_scratch0().low()); | 
 |     __ vmov(double_scratch0().low(), right_reg); | 
 |     __ vcvt_f64_s32(divisor, double_scratch0().low()); | 
 |  | 
 |     // We do not care about the sign of the divisor. Note that we still handle | 
 |     // the kMinInt % -1 case correctly, though. | 
 |     __ vabs(divisor, divisor); | 
 |     // Compute the quotient and round it to a 32bit integer. | 
 |     __ vdiv(quotient, dividend, divisor); | 
 |     __ vcvt_s32_f64(quotient.low(), quotient); | 
 |     __ vcvt_f64_s32(quotient, quotient.low()); | 
 |  | 
 |     // Compute the remainder in result. | 
 |     __ vmul(double_scratch0(), divisor, quotient); | 
 |     __ vcvt_s32_f64(double_scratch0().low(), double_scratch0()); | 
 |     __ vmov(scratch, double_scratch0().low()); | 
 |     __ sub(result_reg, left_reg, scratch, SetCC); | 
 |  | 
 |     // If we care about -0, test if the dividend is <0 and the result is 0. | 
 |     if (left->CanBeNegative() && | 
 |         hmod->CanBeZero() && | 
 |         hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |       __ b(ne, &done); | 
 |       __ cmp(left_reg, Operand::Zero()); | 
 |       DeoptimizeIf(mi, instr->environment()); | 
 |     } | 
 |     __ bind(&done); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::EmitSignedIntegerDivisionByConstant( | 
 |     Register result, | 
 |     Register dividend, | 
 |     int32_t divisor, | 
 |     Register remainder, | 
 |     Register scratch, | 
 |     LEnvironment* environment) { | 
 |   ASSERT(!AreAliased(dividend, scratch, ip)); | 
 |   ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor)); | 
 |  | 
 |   uint32_t divisor_abs = abs(divisor); | 
 |  | 
 |   int32_t power_of_2_factor = | 
 |     CompilerIntrinsics::CountTrailingZeros(divisor_abs); | 
 |  | 
 |   switch (divisor_abs) { | 
 |     case 0: | 
 |       DeoptimizeIf(al, environment); | 
 |       return; | 
 |  | 
 |     case 1: | 
 |       if (divisor > 0) { | 
 |         __ Move(result, dividend); | 
 |       } else { | 
 |         __ rsb(result, dividend, Operand::Zero(), SetCC); | 
 |         DeoptimizeIf(vs, environment); | 
 |       } | 
 |       // Compute the remainder. | 
 |       __ mov(remainder, Operand::Zero()); | 
 |       return; | 
 |  | 
 |     default: | 
 |       if (IsPowerOf2(divisor_abs)) { | 
 |         // Branch and condition free code for integer division by a power | 
 |         // of two. | 
 |         int32_t power = WhichPowerOf2(divisor_abs); | 
 |         if (power > 1) { | 
 |           __ mov(scratch, Operand(dividend, ASR, power - 1)); | 
 |         } | 
 |         __ add(scratch, dividend, Operand(scratch, LSR, 32 - power)); | 
 |         __ mov(result, Operand(scratch, ASR, power)); | 
 |         // Negate if necessary. | 
 |         // We don't need to check for overflow because the case '-1' is | 
 |         // handled separately. | 
 |         if (divisor < 0) { | 
 |           ASSERT(divisor != -1); | 
 |           __ rsb(result, result, Operand::Zero()); | 
 |         } | 
 |         // Compute the remainder. | 
 |         if (divisor > 0) { | 
 |           __ sub(remainder, dividend, Operand(result, LSL, power)); | 
 |         } else { | 
 |           __ add(remainder, dividend, Operand(result, LSL, power)); | 
 |         } | 
 |         return; | 
 |       } else { | 
 |         // Use magic numbers for a few specific divisors. | 
 |         // Details and proofs can be found in: | 
 |         // - Hacker's Delight, Henry S. Warren, Jr. | 
 |         // - The PowerPC Compiler Writer’s Guide | 
 |         // and probably many others. | 
 |         // | 
 |         // We handle | 
 |         //   <divisor with magic numbers> * <power of 2> | 
 |         // but not | 
 |         //   <divisor with magic numbers> * <other divisor with magic numbers> | 
 |         DivMagicNumbers magic_numbers = | 
 |           DivMagicNumberFor(divisor_abs >> power_of_2_factor); | 
 |         // Branch and condition free code for integer division by a power | 
 |         // of two. | 
 |         const int32_t M = magic_numbers.M; | 
 |         const int32_t s = magic_numbers.s + power_of_2_factor; | 
 |  | 
 |         __ mov(ip, Operand(M)); | 
 |         __ smull(ip, scratch, dividend, ip); | 
 |         if (M < 0) { | 
 |           __ add(scratch, scratch, Operand(dividend)); | 
 |         } | 
 |         if (s > 0) { | 
 |           __ mov(scratch, Operand(scratch, ASR, s)); | 
 |         } | 
 |         __ add(result, scratch, Operand(dividend, LSR, 31)); | 
 |         if (divisor < 0) __ rsb(result, result, Operand::Zero()); | 
 |         // Compute the remainder. | 
 |         __ mov(ip, Operand(divisor)); | 
 |         // This sequence could be replaced with 'mls' when | 
 |         // it gets implemented. | 
 |         __ mul(scratch, result, ip); | 
 |         __ sub(remainder, dividend, scratch); | 
 |       } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDivI(LDivI* instr) { | 
 |   if (instr->hydrogen()->HasPowerOf2Divisor()) { | 
 |     const Register dividend = ToRegister(instr->left()); | 
 |     const Register result = ToRegister(instr->result()); | 
 |     int32_t divisor = instr->hydrogen()->right()->GetInteger32Constant(); | 
 |     int32_t test_value = 0; | 
 |     int32_t power = 0; | 
 |  | 
 |     if (divisor > 0) { | 
 |       test_value = divisor - 1; | 
 |       power = WhichPowerOf2(divisor); | 
 |     } else { | 
 |       // Check for (0 / -x) that will produce negative zero. | 
 |       if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |         __ cmp(dividend, Operand::Zero()); | 
 |         DeoptimizeIf(eq, instr->environment()); | 
 |       } | 
 |       // Check for (kMinInt / -1). | 
 |       if (divisor == -1 && instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | 
 |         __ cmp(dividend, Operand(kMinInt)); | 
 |         DeoptimizeIf(eq, instr->environment()); | 
 |       } | 
 |       test_value = - divisor - 1; | 
 |       power = WhichPowerOf2(-divisor); | 
 |     } | 
 |  | 
 |     if (test_value != 0) { | 
 |       if (instr->hydrogen()->CheckFlag( | 
 |           HInstruction::kAllUsesTruncatingToInt32)) { | 
 |         __ sub(result, dividend, Operand::Zero(), SetCC); | 
 |         __ rsb(result, result, Operand::Zero(), LeaveCC, lt); | 
 |         __ mov(result, Operand(result, ASR, power)); | 
 |         if (divisor > 0) __ rsb(result, result, Operand::Zero(), LeaveCC, lt); | 
 |         if (divisor < 0) __ rsb(result, result, Operand::Zero(), LeaveCC, gt); | 
 |         return;  // Don't fall through to "__ rsb" below. | 
 |       } else { | 
 |         // Deoptimize if remainder is not 0. | 
 |         __ tst(dividend, Operand(test_value)); | 
 |         DeoptimizeIf(ne, instr->environment()); | 
 |         __ mov(result, Operand(dividend, ASR, power)); | 
 |         if (divisor < 0) __ rsb(result, result, Operand(0)); | 
 |       } | 
 |     } else { | 
 |       if (divisor < 0) { | 
 |         __ rsb(result, dividend, Operand(0)); | 
 |       } else { | 
 |         __ Move(result, dividend); | 
 |       } | 
 |     } | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   const Register left = ToRegister(instr->left()); | 
 |   const Register right = ToRegister(instr->right()); | 
 |   const Register result = ToRegister(instr->result()); | 
 |  | 
 |   // Check for x / 0. | 
 |   if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { | 
 |     __ cmp(right, Operand::Zero()); | 
 |     DeoptimizeIf(eq, instr->environment()); | 
 |   } | 
 |  | 
 |   // Check for (0 / -x) that will produce negative zero. | 
 |   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |     Label positive; | 
 |     if (!instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) { | 
 |       // Do the test only if it hadn't be done above. | 
 |       __ cmp(right, Operand::Zero()); | 
 |     } | 
 |     __ b(pl, &positive); | 
 |     __ cmp(left, Operand::Zero()); | 
 |     DeoptimizeIf(eq, instr->environment()); | 
 |     __ bind(&positive); | 
 |   } | 
 |  | 
 |   // Check for (kMinInt / -1). | 
 |   if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | 
 |     Label left_not_min_int; | 
 |     __ cmp(left, Operand(kMinInt)); | 
 |     __ b(ne, &left_not_min_int); | 
 |     __ cmp(right, Operand(-1)); | 
 |     DeoptimizeIf(eq, instr->environment()); | 
 |     __ bind(&left_not_min_int); | 
 |   } | 
 |  | 
 |   if (CpuFeatures::IsSupported(SUDIV)) { | 
 |     CpuFeatureScope scope(masm(), SUDIV); | 
 |     __ sdiv(result, left, right); | 
 |  | 
 |     if (!instr->hydrogen()->CheckFlag( | 
 |         HInstruction::kAllUsesTruncatingToInt32)) { | 
 |       // Compute remainder and deopt if it's not zero. | 
 |       const Register remainder = scratch0(); | 
 |       __ mls(remainder, result, right, left); | 
 |       __ cmp(remainder, Operand::Zero()); | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |     } | 
 |   } else { | 
 |     const DoubleRegister vleft = ToDoubleRegister(instr->temp()); | 
 |     const DoubleRegister vright = double_scratch0(); | 
 |     __ vmov(double_scratch0().low(), left); | 
 |     __ vcvt_f64_s32(vleft, double_scratch0().low()); | 
 |     __ vmov(double_scratch0().low(), right); | 
 |     __ vcvt_f64_s32(vright, double_scratch0().low()); | 
 |     __ vdiv(vleft, vleft, vright);  // vleft now contains the result. | 
 |     __ vcvt_s32_f64(double_scratch0().low(), vleft); | 
 |     __ vmov(result, double_scratch0().low()); | 
 |  | 
 |     if (!instr->hydrogen()->CheckFlag( | 
 |         HInstruction::kAllUsesTruncatingToInt32)) { | 
 |       // Deopt if exact conversion to integer was not possible. | 
 |       // Use vright as scratch register. | 
 |       __ vcvt_f64_s32(double_scratch0(), double_scratch0().low()); | 
 |       __ VFPCompareAndSetFlags(vleft, double_scratch0()); | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) { | 
 |   DwVfpRegister addend = ToDoubleRegister(instr->addend()); | 
 |   DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier()); | 
 |   DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand()); | 
 |  | 
 |   // This is computed in-place. | 
 |   ASSERT(addend.is(ToDoubleRegister(instr->result()))); | 
 |  | 
 |   __ vmla(addend, multiplier, multiplicand); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) { | 
 |   DwVfpRegister minuend = ToDoubleRegister(instr->minuend()); | 
 |   DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier()); | 
 |   DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand()); | 
 |  | 
 |   // This is computed in-place. | 
 |   ASSERT(minuend.is(ToDoubleRegister(instr->result()))); | 
 |  | 
 |   __ vmls(minuend, multiplier, multiplicand); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathFloorOfDiv(LMathFloorOfDiv* instr) { | 
 |   const Register result = ToRegister(instr->result()); | 
 |   const Register left = ToRegister(instr->left()); | 
 |   const Register remainder = ToRegister(instr->temp()); | 
 |   const Register scratch = scratch0(); | 
 |  | 
 |   if (!CpuFeatures::IsSupported(SUDIV)) { | 
 |     // If the CPU doesn't support sdiv instruction, we only optimize when we | 
 |     // have magic numbers for the divisor. The standard integer division routine | 
 |     // is usually slower than transitionning to VFP. | 
 |     ASSERT(instr->right()->IsConstantOperand()); | 
 |     int32_t divisor = ToInteger32(LConstantOperand::cast(instr->right())); | 
 |     ASSERT(LChunkBuilder::HasMagicNumberForDivisor(divisor)); | 
 |     if (divisor < 0) { | 
 |       __ cmp(left, Operand::Zero()); | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } | 
 |     EmitSignedIntegerDivisionByConstant(result, | 
 |                                         left, | 
 |                                         divisor, | 
 |                                         remainder, | 
 |                                         scratch, | 
 |                                         instr->environment()); | 
 |     // We performed a truncating division. Correct the result if necessary. | 
 |     __ cmp(remainder, Operand::Zero()); | 
 |     __ teq(remainder, Operand(divisor), ne); | 
 |     __ sub(result, result, Operand(1), LeaveCC, mi); | 
 |   } else { | 
 |     CpuFeatureScope scope(masm(), SUDIV); | 
 |     const Register right = ToRegister(instr->right()); | 
 |  | 
 |     // Check for x / 0. | 
 |     __ cmp(right, Operand::Zero()); | 
 |     DeoptimizeIf(eq, instr->environment()); | 
 |  | 
 |     // Check for (kMinInt / -1). | 
 |     if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { | 
 |       Label left_not_min_int; | 
 |       __ cmp(left, Operand(kMinInt)); | 
 |       __ b(ne, &left_not_min_int); | 
 |       __ cmp(right, Operand(-1)); | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |       __ bind(&left_not_min_int); | 
 |     } | 
 |  | 
 |     // Check for (0 / -x) that will produce negative zero. | 
 |     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |       __ cmp(right, Operand::Zero()); | 
 |       __ cmp(left, Operand::Zero(), mi); | 
 |       // "right" can't be null because the code would have already been | 
 |       // deoptimized. The Z flag is set only if (right < 0) and (left == 0). | 
 |       // In this case we need to deoptimize to produce a -0. | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } | 
 |  | 
 |     Label done; | 
 |     __ sdiv(result, left, right); | 
 |     // If both operands have the same sign then we are done. | 
 |     __ eor(remainder, left, Operand(right), SetCC); | 
 |     __ b(pl, &done); | 
 |  | 
 |     // Check if the result needs to be corrected. | 
 |     __ mls(remainder, result, right, left); | 
 |     __ cmp(remainder, Operand::Zero()); | 
 |     __ sub(result, result, Operand(1), LeaveCC, ne); | 
 |  | 
 |     __ bind(&done); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMulI(LMulI* instr) { | 
 |   Register result = ToRegister(instr->result()); | 
 |   // Note that result may alias left. | 
 |   Register left = ToRegister(instr->left()); | 
 |   LOperand* right_op = instr->right(); | 
 |  | 
 |   bool bailout_on_minus_zero = | 
 |     instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); | 
 |   bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | 
 |  | 
 |   if (right_op->IsConstantOperand()) { | 
 |     int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); | 
 |  | 
 |     if (bailout_on_minus_zero && (constant < 0)) { | 
 |       // The case of a null constant will be handled separately. | 
 |       // If constant is negative and left is null, the result should be -0. | 
 |       __ cmp(left, Operand::Zero()); | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } | 
 |  | 
 |     switch (constant) { | 
 |       case -1: | 
 |         if (overflow) { | 
 |           __ rsb(result, left, Operand::Zero(), SetCC); | 
 |           DeoptimizeIf(vs, instr->environment()); | 
 |         } else { | 
 |           __ rsb(result, left, Operand::Zero()); | 
 |         } | 
 |         break; | 
 |       case 0: | 
 |         if (bailout_on_minus_zero) { | 
 |           // If left is strictly negative and the constant is null, the | 
 |           // result is -0. Deoptimize if required, otherwise return 0. | 
 |           __ cmp(left, Operand::Zero()); | 
 |           DeoptimizeIf(mi, instr->environment()); | 
 |         } | 
 |         __ mov(result, Operand::Zero()); | 
 |         break; | 
 |       case 1: | 
 |         __ Move(result, left); | 
 |         break; | 
 |       default: | 
 |         // Multiplying by powers of two and powers of two plus or minus | 
 |         // one can be done faster with shifted operands. | 
 |         // For other constants we emit standard code. | 
 |         int32_t mask = constant >> 31; | 
 |         uint32_t constant_abs = (constant + mask) ^ mask; | 
 |  | 
 |         if (IsPowerOf2(constant_abs)) { | 
 |           int32_t shift = WhichPowerOf2(constant_abs); | 
 |           __ mov(result, Operand(left, LSL, shift)); | 
 |           // Correct the sign of the result is the constant is negative. | 
 |           if (constant < 0)  __ rsb(result, result, Operand::Zero()); | 
 |         } else if (IsPowerOf2(constant_abs - 1)) { | 
 |           int32_t shift = WhichPowerOf2(constant_abs - 1); | 
 |           __ add(result, left, Operand(left, LSL, shift)); | 
 |           // Correct the sign of the result is the constant is negative. | 
 |           if (constant < 0)  __ rsb(result, result, Operand::Zero()); | 
 |         } else if (IsPowerOf2(constant_abs + 1)) { | 
 |           int32_t shift = WhichPowerOf2(constant_abs + 1); | 
 |           __ rsb(result, left, Operand(left, LSL, shift)); | 
 |           // Correct the sign of the result is the constant is negative. | 
 |           if (constant < 0)  __ rsb(result, result, Operand::Zero()); | 
 |         } else { | 
 |           // Generate standard code. | 
 |           __ mov(ip, Operand(constant)); | 
 |           __ mul(result, left, ip); | 
 |         } | 
 |     } | 
 |  | 
 |   } else { | 
 |     ASSERT(right_op->IsRegister()); | 
 |     Register right = ToRegister(right_op); | 
 |  | 
 |     if (overflow) { | 
 |       Register scratch = scratch0(); | 
 |       // scratch:result = left * right. | 
 |       if (instr->hydrogen()->representation().IsSmi()) { | 
 |         __ SmiUntag(result, left); | 
 |         __ smull(result, scratch, result, right); | 
 |       } else { | 
 |         __ smull(result, scratch, left, right); | 
 |       } | 
 |       __ cmp(scratch, Operand(result, ASR, 31)); | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |     } else { | 
 |       if (instr->hydrogen()->representation().IsSmi()) { | 
 |         __ SmiUntag(result, left); | 
 |         __ mul(result, result, right); | 
 |       } else { | 
 |         __ mul(result, left, right); | 
 |       } | 
 |     } | 
 |  | 
 |     if (bailout_on_minus_zero) { | 
 |       Label done; | 
 |       __ teq(left, Operand(right)); | 
 |       __ b(pl, &done); | 
 |       // Bail out if the result is minus zero. | 
 |       __ cmp(result, Operand::Zero()); | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |       __ bind(&done); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoBitI(LBitI* instr) { | 
 |   LOperand* left_op = instr->left(); | 
 |   LOperand* right_op = instr->right(); | 
 |   ASSERT(left_op->IsRegister()); | 
 |   Register left = ToRegister(left_op); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Operand right(no_reg); | 
 |  | 
 |   if (right_op->IsStackSlot() || right_op->IsArgument()) { | 
 |     right = Operand(EmitLoadRegister(right_op, ip)); | 
 |   } else { | 
 |     ASSERT(right_op->IsRegister() || right_op->IsConstantOperand()); | 
 |     right = ToOperand(right_op); | 
 |   } | 
 |  | 
 |   switch (instr->op()) { | 
 |     case Token::BIT_AND: | 
 |       __ and_(result, left, right); | 
 |       break; | 
 |     case Token::BIT_OR: | 
 |       __ orr(result, left, right); | 
 |       break; | 
 |     case Token::BIT_XOR: | 
 |       if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) { | 
 |         __ mvn(result, Operand(left)); | 
 |       } else { | 
 |         __ eor(result, left, right); | 
 |       } | 
 |       break; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoShiftI(LShiftI* instr) { | 
 |   // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so | 
 |   // result may alias either of them. | 
 |   LOperand* right_op = instr->right(); | 
 |   Register left = ToRegister(instr->left()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register scratch = scratch0(); | 
 |   if (right_op->IsRegister()) { | 
 |     // Mask the right_op operand. | 
 |     __ and_(scratch, ToRegister(right_op), Operand(0x1F)); | 
 |     switch (instr->op()) { | 
 |       case Token::ROR: | 
 |         __ mov(result, Operand(left, ROR, scratch)); | 
 |         break; | 
 |       case Token::SAR: | 
 |         __ mov(result, Operand(left, ASR, scratch)); | 
 |         break; | 
 |       case Token::SHR: | 
 |         if (instr->can_deopt()) { | 
 |           __ mov(result, Operand(left, LSR, scratch), SetCC); | 
 |           DeoptimizeIf(mi, instr->environment()); | 
 |         } else { | 
 |           __ mov(result, Operand(left, LSR, scratch)); | 
 |         } | 
 |         break; | 
 |       case Token::SHL: | 
 |         __ mov(result, Operand(left, LSL, scratch)); | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |         break; | 
 |     } | 
 |   } else { | 
 |     // Mask the right_op operand. | 
 |     int value = ToInteger32(LConstantOperand::cast(right_op)); | 
 |     uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); | 
 |     switch (instr->op()) { | 
 |       case Token::ROR: | 
 |           if (shift_count != 0) { | 
 |           __ mov(result, Operand(left, ROR, shift_count)); | 
 |         } else { | 
 |           __ Move(result, left); | 
 |         } | 
 |         break; | 
 |       case Token::SAR: | 
 |         if (shift_count != 0) { | 
 |           __ mov(result, Operand(left, ASR, shift_count)); | 
 |         } else { | 
 |           __ Move(result, left); | 
 |         } | 
 |         break; | 
 |       case Token::SHR: | 
 |         if (shift_count != 0) { | 
 |           __ mov(result, Operand(left, LSR, shift_count)); | 
 |         } else { | 
 |           if (instr->can_deopt()) { | 
 |             __ tst(left, Operand(0x80000000)); | 
 |             DeoptimizeIf(ne, instr->environment()); | 
 |           } | 
 |           __ Move(result, left); | 
 |         } | 
 |         break; | 
 |       case Token::SHL: | 
 |         if (shift_count != 0) { | 
 |           if (instr->hydrogen_value()->representation().IsSmi() && | 
 |               instr->can_deopt()) { | 
 |             if (shift_count != 1) { | 
 |               __ mov(result, Operand(left, LSL, shift_count - 1)); | 
 |               __ SmiTag(result, result, SetCC); | 
 |             } else { | 
 |               __ SmiTag(result, left, SetCC); | 
 |             } | 
 |             DeoptimizeIf(vs, instr->environment()); | 
 |           } else { | 
 |             __ mov(result, Operand(left, LSL, shift_count)); | 
 |           } | 
 |         } else { | 
 |           __ Move(result, left); | 
 |         } | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |         break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoSubI(LSubI* instr) { | 
 |   LOperand* left = instr->left(); | 
 |   LOperand* right = instr->right(); | 
 |   LOperand* result = instr->result(); | 
 |   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | 
 |   SBit set_cond = can_overflow ? SetCC : LeaveCC; | 
 |  | 
 |   if (right->IsStackSlot() || right->IsArgument()) { | 
 |     Register right_reg = EmitLoadRegister(right, ip); | 
 |     __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); | 
 |   } else { | 
 |     ASSERT(right->IsRegister() || right->IsConstantOperand()); | 
 |     __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); | 
 |   } | 
 |  | 
 |   if (can_overflow) { | 
 |     DeoptimizeIf(vs, instr->environment()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoRSubI(LRSubI* instr) { | 
 |   LOperand* left = instr->left(); | 
 |   LOperand* right = instr->right(); | 
 |   LOperand* result = instr->result(); | 
 |   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | 
 |   SBit set_cond = can_overflow ? SetCC : LeaveCC; | 
 |  | 
 |   if (right->IsStackSlot() || right->IsArgument()) { | 
 |     Register right_reg = EmitLoadRegister(right, ip); | 
 |     __ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); | 
 |   } else { | 
 |     ASSERT(right->IsRegister() || right->IsConstantOperand()); | 
 |     __ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); | 
 |   } | 
 |  | 
 |   if (can_overflow) { | 
 |     DeoptimizeIf(vs, instr->environment()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoConstantI(LConstantI* instr) { | 
 |   __ mov(ToRegister(instr->result()), Operand(instr->value())); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoConstantS(LConstantS* instr) { | 
 |   __ mov(ToRegister(instr->result()), Operand(instr->value())); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoConstantD(LConstantD* instr) { | 
 |   ASSERT(instr->result()->IsDoubleRegister()); | 
 |   DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |   double v = instr->value(); | 
 |   __ Vmov(result, v, scratch0()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoConstantE(LConstantE* instr) { | 
 |   __ mov(ToRegister(instr->result()), Operand(instr->value())); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoConstantT(LConstantT* instr) { | 
 |   Handle<Object> value = instr->value(isolate()); | 
 |   AllowDeferredHandleDereference smi_check; | 
 |   __ LoadObject(ToRegister(instr->result()), value); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register map = ToRegister(instr->value()); | 
 |   __ EnumLength(result, map); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoElementsKind(LElementsKind* instr) { | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register input = ToRegister(instr->value()); | 
 |  | 
 |   // Load map into |result|. | 
 |   __ ldr(result, FieldMemOperand(input, HeapObject::kMapOffset)); | 
 |   // Load the map's "bit field 2" into |result|. We only need the first byte, | 
 |   // but the following bit field extraction takes care of that anyway. | 
 |   __ ldr(result, FieldMemOperand(result, Map::kBitField2Offset)); | 
 |   // Retrieve elements_kind from bit field 2. | 
 |   __ ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoValueOf(LValueOf* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register map = ToRegister(instr->temp()); | 
 |   Label done; | 
 |  | 
 |   if (!instr->hydrogen()->value()->IsHeapObject()) { | 
 |     // If the object is a smi return the object. | 
 |     __ SmiTst(input); | 
 |     __ Move(result, input, eq); | 
 |     __ b(eq, &done); | 
 |   } | 
 |  | 
 |   // If the object is not a value type, return the object. | 
 |   __ CompareObjectType(input, map, map, JS_VALUE_TYPE); | 
 |   __ Move(result, input, ne); | 
 |   __ b(ne, &done); | 
 |   __ ldr(result, FieldMemOperand(input, JSValue::kValueOffset)); | 
 |  | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDateField(LDateField* instr) { | 
 |   Register object = ToRegister(instr->date()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register scratch = ToRegister(instr->temp()); | 
 |   Smi* index = instr->index(); | 
 |   Label runtime, done; | 
 |   ASSERT(object.is(result)); | 
 |   ASSERT(object.is(r0)); | 
 |   ASSERT(!scratch.is(scratch0())); | 
 |   ASSERT(!scratch.is(object)); | 
 |  | 
 |   __ SmiTst(object); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 |   __ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE); | 
 |   DeoptimizeIf(ne, instr->environment()); | 
 |  | 
 |   if (index->value() == 0) { | 
 |     __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); | 
 |   } else { | 
 |     if (index->value() < JSDate::kFirstUncachedField) { | 
 |       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); | 
 |       __ mov(scratch, Operand(stamp)); | 
 |       __ ldr(scratch, MemOperand(scratch)); | 
 |       __ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset)); | 
 |       __ cmp(scratch, scratch0()); | 
 |       __ b(ne, &runtime); | 
 |       __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset + | 
 |                                              kPointerSize * index->value())); | 
 |       __ jmp(&done); | 
 |     } | 
 |     __ bind(&runtime); | 
 |     __ PrepareCallCFunction(2, scratch); | 
 |     __ mov(r1, Operand(index)); | 
 |     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); | 
 |     __ bind(&done); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { | 
 |   Register string = ToRegister(instr->string()); | 
 |   LOperand* index_op = instr->index(); | 
 |   Register value = ToRegister(instr->value()); | 
 |   Register scratch = scratch0(); | 
 |   String::Encoding encoding = instr->encoding(); | 
 |  | 
 |   if (FLAG_debug_code) { | 
 |     __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); | 
 |     __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); | 
 |  | 
 |     __ and_(scratch, scratch, | 
 |             Operand(kStringRepresentationMask | kStringEncodingMask)); | 
 |     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; | 
 |     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; | 
 |     __ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING | 
 |                             ? one_byte_seq_type : two_byte_seq_type)); | 
 |     __ Check(eq, kUnexpectedStringType); | 
 |   } | 
 |  | 
 |   if (index_op->IsConstantOperand()) { | 
 |     int constant_index = ToInteger32(LConstantOperand::cast(index_op)); | 
 |     if (encoding == String::ONE_BYTE_ENCODING) { | 
 |       __ strb(value, | 
 |               FieldMemOperand(string, SeqString::kHeaderSize + constant_index)); | 
 |     } else { | 
 |       __ strh(value, | 
 |           FieldMemOperand(string, SeqString::kHeaderSize + constant_index * 2)); | 
 |     } | 
 |   } else { | 
 |     Register index = ToRegister(index_op); | 
 |     if (encoding == String::ONE_BYTE_ENCODING) { | 
 |       __ add(scratch, string, Operand(index)); | 
 |       __ strb(value, FieldMemOperand(scratch, SeqString::kHeaderSize)); | 
 |     } else { | 
 |       __ add(scratch, string, Operand(index, LSL, 1)); | 
 |       __ strh(value, FieldMemOperand(scratch, SeqString::kHeaderSize)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoThrow(LThrow* instr) { | 
 |   Register input_reg = EmitLoadRegister(instr->value(), ip); | 
 |   __ push(input_reg); | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   CallRuntime(Runtime::kThrow, 1, instr); | 
 |  | 
 |   if (FLAG_debug_code) { | 
 |     __ stop("Unreachable code."); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoAddI(LAddI* instr) { | 
 |   LOperand* left = instr->left(); | 
 |   LOperand* right = instr->right(); | 
 |   LOperand* result = instr->result(); | 
 |   bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); | 
 |   SBit set_cond = can_overflow ? SetCC : LeaveCC; | 
 |  | 
 |   if (right->IsStackSlot() || right->IsArgument()) { | 
 |     Register right_reg = EmitLoadRegister(right, ip); | 
 |     __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); | 
 |   } else { | 
 |     ASSERT(right->IsRegister() || right->IsConstantOperand()); | 
 |     __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); | 
 |   } | 
 |  | 
 |   if (can_overflow) { | 
 |     DeoptimizeIf(vs, instr->environment()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathMinMax(LMathMinMax* instr) { | 
 |   LOperand* left = instr->left(); | 
 |   LOperand* right = instr->right(); | 
 |   HMathMinMax::Operation operation = instr->hydrogen()->operation(); | 
 |   if (instr->hydrogen()->representation().IsSmiOrInteger32()) { | 
 |     Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge; | 
 |     Register left_reg = ToRegister(left); | 
 |     Operand right_op = (right->IsRegister() || right->IsConstantOperand()) | 
 |         ? ToOperand(right) | 
 |         : Operand(EmitLoadRegister(right, ip)); | 
 |     Register result_reg = ToRegister(instr->result()); | 
 |     __ cmp(left_reg, right_op); | 
 |     __ Move(result_reg, left_reg, condition); | 
 |     __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition)); | 
 |   } else { | 
 |     ASSERT(instr->hydrogen()->representation().IsDouble()); | 
 |     DwVfpRegister left_reg = ToDoubleRegister(left); | 
 |     DwVfpRegister right_reg = ToDoubleRegister(right); | 
 |     DwVfpRegister result_reg = ToDoubleRegister(instr->result()); | 
 |     Label result_is_nan, return_left, return_right, check_zero, done; | 
 |     __ VFPCompareAndSetFlags(left_reg, right_reg); | 
 |     if (operation == HMathMinMax::kMathMin) { | 
 |       __ b(mi, &return_left); | 
 |       __ b(gt, &return_right); | 
 |     } else { | 
 |       __ b(mi, &return_right); | 
 |       __ b(gt, &return_left); | 
 |     } | 
 |     __ b(vs, &result_is_nan); | 
 |     // Left equals right => check for -0. | 
 |     __ VFPCompareAndSetFlags(left_reg, 0.0); | 
 |     if (left_reg.is(result_reg) || right_reg.is(result_reg)) { | 
 |       __ b(ne, &done);  // left == right != 0. | 
 |     } else { | 
 |       __ b(ne, &return_left);  // left == right != 0. | 
 |     } | 
 |     // At this point, both left and right are either 0 or -0. | 
 |     if (operation == HMathMinMax::kMathMin) { | 
 |       // We could use a single 'vorr' instruction here if we had NEON support. | 
 |       __ vneg(left_reg, left_reg); | 
 |       __ vsub(result_reg, left_reg, right_reg); | 
 |       __ vneg(result_reg, result_reg); | 
 |     } else { | 
 |       // Since we operate on +0 and/or -0, vadd and vand have the same effect; | 
 |       // the decision for vadd is easy because vand is a NEON instruction. | 
 |       __ vadd(result_reg, left_reg, right_reg); | 
 |     } | 
 |     __ b(&done); | 
 |  | 
 |     __ bind(&result_is_nan); | 
 |     __ vadd(result_reg, left_reg, right_reg); | 
 |     __ b(&done); | 
 |  | 
 |     __ bind(&return_right); | 
 |     __ Move(result_reg, right_reg); | 
 |     if (!left_reg.is(result_reg)) { | 
 |       __ b(&done); | 
 |     } | 
 |  | 
 |     __ bind(&return_left); | 
 |     __ Move(result_reg, left_reg); | 
 |  | 
 |     __ bind(&done); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoArithmeticD(LArithmeticD* instr) { | 
 |   DwVfpRegister left = ToDoubleRegister(instr->left()); | 
 |   DwVfpRegister right = ToDoubleRegister(instr->right()); | 
 |   DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |   switch (instr->op()) { | 
 |     case Token::ADD: | 
 |       __ vadd(result, left, right); | 
 |       break; | 
 |     case Token::SUB: | 
 |       __ vsub(result, left, right); | 
 |       break; | 
 |     case Token::MUL: | 
 |       __ vmul(result, left, right); | 
 |       break; | 
 |     case Token::DIV: | 
 |       __ vdiv(result, left, right); | 
 |       break; | 
 |     case Token::MOD: { | 
 |       // Save r0-r3 on the stack. | 
 |       __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit()); | 
 |  | 
 |       __ PrepareCallCFunction(0, 2, scratch0()); | 
 |       __ SetCallCDoubleArguments(left, right); | 
 |       __ CallCFunction( | 
 |           ExternalReference::double_fp_operation(Token::MOD, isolate()), | 
 |           0, 2); | 
 |       // Move the result in the double result register. | 
 |       __ GetCFunctionDoubleResult(result); | 
 |  | 
 |       // Restore r0-r3. | 
 |       __ ldm(ia_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit()); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       break; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoArithmeticT(LArithmeticT* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->left()).is(r1)); | 
 |   ASSERT(ToRegister(instr->right()).is(r0)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   BinaryOpStub stub(instr->op(), NO_OVERWRITE); | 
 |   // Block literal pool emission to ensure nop indicating no inlined smi code | 
 |   // is in the correct position. | 
 |   Assembler::BlockConstPoolScope block_const_pool(masm()); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 |   __ nop();  // Signals no inlined code. | 
 | } | 
 |  | 
 |  | 
 | int LCodeGen::GetNextEmittedBlock() const { | 
 |   for (int i = current_block_ + 1; i < graph()->blocks()->length(); ++i) { | 
 |     if (!chunk_->GetLabel(i)->HasReplacement()) return i; | 
 |   } | 
 |   return -1; | 
 | } | 
 |  | 
 | template<class InstrType> | 
 | void LCodeGen::EmitBranch(InstrType instr, Condition condition) { | 
 |   int left_block = instr->TrueDestination(chunk_); | 
 |   int right_block = instr->FalseDestination(chunk_); | 
 |  | 
 |   int next_block = GetNextEmittedBlock(); | 
 |  | 
 |   if (right_block == left_block || condition == al) { | 
 |     EmitGoto(left_block); | 
 |   } else if (left_block == next_block) { | 
 |     __ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block)); | 
 |   } else if (right_block == next_block) { | 
 |     __ b(condition, chunk_->GetAssemblyLabel(left_block)); | 
 |   } else { | 
 |     __ b(condition, chunk_->GetAssemblyLabel(left_block)); | 
 |     __ b(chunk_->GetAssemblyLabel(right_block)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | template<class InstrType> | 
 | void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) { | 
 |   int false_block = instr->FalseDestination(chunk_); | 
 |   __ b(condition, chunk_->GetAssemblyLabel(false_block)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDebugBreak(LDebugBreak* instr) { | 
 |   __ stop("LBreak"); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoBranch(LBranch* instr) { | 
 |   Representation r = instr->hydrogen()->value()->representation(); | 
 |   if (r.IsInteger32() || r.IsSmi()) { | 
 |     ASSERT(!info()->IsStub()); | 
 |     Register reg = ToRegister(instr->value()); | 
 |     __ cmp(reg, Operand::Zero()); | 
 |     EmitBranch(instr, ne); | 
 |   } else if (r.IsDouble()) { | 
 |     ASSERT(!info()->IsStub()); | 
 |     DwVfpRegister reg = ToDoubleRegister(instr->value()); | 
 |     // Test the double value. Zero and NaN are false. | 
 |     __ VFPCompareAndSetFlags(reg, 0.0); | 
 |     __ cmp(r0, r0, vs);  // If NaN, set the Z flag. (NaN -> false) | 
 |     EmitBranch(instr, ne); | 
 |   } else { | 
 |     ASSERT(r.IsTagged()); | 
 |     Register reg = ToRegister(instr->value()); | 
 |     HType type = instr->hydrogen()->value()->type(); | 
 |     if (type.IsBoolean()) { | 
 |       ASSERT(!info()->IsStub()); | 
 |       __ CompareRoot(reg, Heap::kTrueValueRootIndex); | 
 |       EmitBranch(instr, eq); | 
 |     } else if (type.IsSmi()) { | 
 |       ASSERT(!info()->IsStub()); | 
 |       __ cmp(reg, Operand::Zero()); | 
 |       EmitBranch(instr, ne); | 
 |     } else if (type.IsJSArray()) { | 
 |       ASSERT(!info()->IsStub()); | 
 |       EmitBranch(instr, al); | 
 |     } else if (type.IsHeapNumber()) { | 
 |       ASSERT(!info()->IsStub()); | 
 |       DwVfpRegister dbl_scratch = double_scratch0(); | 
 |       __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); | 
 |       // Test the double value. Zero and NaN are false. | 
 |       __ VFPCompareAndSetFlags(dbl_scratch, 0.0); | 
 |       __ cmp(r0, r0, vs);  // If NaN, set the Z flag. (NaN) | 
 |       EmitBranch(instr, ne); | 
 |     } else if (type.IsString()) { | 
 |       ASSERT(!info()->IsStub()); | 
 |       __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset)); | 
 |       __ cmp(ip, Operand::Zero()); | 
 |       EmitBranch(instr, ne); | 
 |     } else { | 
 |       ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); | 
 |       // Avoid deopts in the case where we've never executed this path before. | 
 |       if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); | 
 |  | 
 |       if (expected.Contains(ToBooleanStub::UNDEFINED)) { | 
 |         // undefined -> false. | 
 |         __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); | 
 |         __ b(eq, instr->FalseLabel(chunk_)); | 
 |       } | 
 |       if (expected.Contains(ToBooleanStub::BOOLEAN)) { | 
 |         // Boolean -> its value. | 
 |         __ CompareRoot(reg, Heap::kTrueValueRootIndex); | 
 |         __ b(eq, instr->TrueLabel(chunk_)); | 
 |         __ CompareRoot(reg, Heap::kFalseValueRootIndex); | 
 |         __ b(eq, instr->FalseLabel(chunk_)); | 
 |       } | 
 |       if (expected.Contains(ToBooleanStub::NULL_TYPE)) { | 
 |         // 'null' -> false. | 
 |         __ CompareRoot(reg, Heap::kNullValueRootIndex); | 
 |         __ b(eq, instr->FalseLabel(chunk_)); | 
 |       } | 
 |  | 
 |       if (expected.Contains(ToBooleanStub::SMI)) { | 
 |         // Smis: 0 -> false, all other -> true. | 
 |         __ cmp(reg, Operand::Zero()); | 
 |         __ b(eq, instr->FalseLabel(chunk_)); | 
 |         __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); | 
 |       } else if (expected.NeedsMap()) { | 
 |         // If we need a map later and have a Smi -> deopt. | 
 |         __ SmiTst(reg); | 
 |         DeoptimizeIf(eq, instr->environment()); | 
 |       } | 
 |  | 
 |       const Register map = scratch0(); | 
 |       if (expected.NeedsMap()) { | 
 |         __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset)); | 
 |  | 
 |         if (expected.CanBeUndetectable()) { | 
 |           // Undetectable -> false. | 
 |           __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset)); | 
 |           __ tst(ip, Operand(1 << Map::kIsUndetectable)); | 
 |           __ b(ne, instr->FalseLabel(chunk_)); | 
 |         } | 
 |       } | 
 |  | 
 |       if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { | 
 |         // spec object -> true. | 
 |         __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE); | 
 |         __ b(ge, instr->TrueLabel(chunk_)); | 
 |       } | 
 |  | 
 |       if (expected.Contains(ToBooleanStub::STRING)) { | 
 |         // String value -> false iff empty. | 
 |         Label not_string; | 
 |         __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE); | 
 |         __ b(ge, ¬_string); | 
 |         __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset)); | 
 |         __ cmp(ip, Operand::Zero()); | 
 |         __ b(ne, instr->TrueLabel(chunk_)); | 
 |         __ b(instr->FalseLabel(chunk_)); | 
 |         __ bind(¬_string); | 
 |       } | 
 |  | 
 |       if (expected.Contains(ToBooleanStub::SYMBOL)) { | 
 |         // Symbol value -> true. | 
 |         __ CompareInstanceType(map, ip, SYMBOL_TYPE); | 
 |         __ b(eq, instr->TrueLabel(chunk_)); | 
 |       } | 
 |  | 
 |       if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { | 
 |         // heap number -> false iff +0, -0, or NaN. | 
 |         DwVfpRegister dbl_scratch = double_scratch0(); | 
 |         Label not_heap_number; | 
 |         __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); | 
 |         __ b(ne, ¬_heap_number); | 
 |         __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); | 
 |         __ VFPCompareAndSetFlags(dbl_scratch, 0.0); | 
 |         __ cmp(r0, r0, vs);  // NaN -> false. | 
 |         __ b(eq, instr->FalseLabel(chunk_));  // +0, -0 -> false. | 
 |         __ b(instr->TrueLabel(chunk_)); | 
 |         __ bind(¬_heap_number); | 
 |       } | 
 |  | 
 |       if (!expected.IsGeneric()) { | 
 |         // We've seen something for the first time -> deopt. | 
 |         // This can only happen if we are not generic already. | 
 |         DeoptimizeIf(al, instr->environment()); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::EmitGoto(int block) { | 
 |   if (!IsNextEmittedBlock(block)) { | 
 |     __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block))); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoGoto(LGoto* instr) { | 
 |   EmitGoto(instr->block_id()); | 
 | } | 
 |  | 
 |  | 
 | Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { | 
 |   Condition cond = kNoCondition; | 
 |   switch (op) { | 
 |     case Token::EQ: | 
 |     case Token::EQ_STRICT: | 
 |       cond = eq; | 
 |       break; | 
 |     case Token::LT: | 
 |       cond = is_unsigned ? lo : lt; | 
 |       break; | 
 |     case Token::GT: | 
 |       cond = is_unsigned ? hi : gt; | 
 |       break; | 
 |     case Token::LTE: | 
 |       cond = is_unsigned ? ls : le; | 
 |       break; | 
 |     case Token::GTE: | 
 |       cond = is_unsigned ? hs : ge; | 
 |       break; | 
 |     case Token::IN: | 
 |     case Token::INSTANCEOF: | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 |   return cond; | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { | 
 |   LOperand* left = instr->left(); | 
 |   LOperand* right = instr->right(); | 
 |   Condition cond = TokenToCondition(instr->op(), false); | 
 |  | 
 |   if (left->IsConstantOperand() && right->IsConstantOperand()) { | 
 |     // We can statically evaluate the comparison. | 
 |     double left_val = ToDouble(LConstantOperand::cast(left)); | 
 |     double right_val = ToDouble(LConstantOperand::cast(right)); | 
 |     int next_block = EvalComparison(instr->op(), left_val, right_val) ? | 
 |         instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); | 
 |     EmitGoto(next_block); | 
 |   } else { | 
 |     if (instr->is_double()) { | 
 |       // Compare left and right operands as doubles and load the | 
 |       // resulting flags into the normal status register. | 
 |       __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right)); | 
 |       // If a NaN is involved, i.e. the result is unordered (V set), | 
 |       // jump to false block label. | 
 |       __ b(vs, instr->FalseLabel(chunk_)); | 
 |     } else { | 
 |       if (right->IsConstantOperand()) { | 
 |         int32_t value = ToInteger32(LConstantOperand::cast(right)); | 
 |         if (instr->hydrogen_value()->representation().IsSmi()) { | 
 |           __ cmp(ToRegister(left), Operand(Smi::FromInt(value))); | 
 |         } else { | 
 |           __ cmp(ToRegister(left), Operand(value)); | 
 |         } | 
 |       } else if (left->IsConstantOperand()) { | 
 |         int32_t value = ToInteger32(LConstantOperand::cast(left)); | 
 |         if (instr->hydrogen_value()->representation().IsSmi()) { | 
 |           __ cmp(ToRegister(right), Operand(Smi::FromInt(value))); | 
 |         } else { | 
 |           __ cmp(ToRegister(right), Operand(value)); | 
 |         } | 
 |         // We transposed the operands. Reverse the condition. | 
 |         cond = ReverseCondition(cond); | 
 |       } else { | 
 |         __ cmp(ToRegister(left), ToRegister(right)); | 
 |       } | 
 |     } | 
 |     EmitBranch(instr, cond); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { | 
 |   Register left = ToRegister(instr->left()); | 
 |   Register right = ToRegister(instr->right()); | 
 |  | 
 |   __ cmp(left, Operand(right)); | 
 |   EmitBranch(instr, eq); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { | 
 |   if (instr->hydrogen()->representation().IsTagged()) { | 
 |     Register input_reg = ToRegister(instr->object()); | 
 |     __ mov(ip, Operand(factory()->the_hole_value())); | 
 |     __ cmp(input_reg, ip); | 
 |     EmitBranch(instr, eq); | 
 |     return; | 
 |   } | 
 |  | 
 |   DwVfpRegister input_reg = ToDoubleRegister(instr->object()); | 
 |   __ VFPCompareAndSetFlags(input_reg, input_reg); | 
 |   EmitFalseBranch(instr, vc); | 
 |  | 
 |   Register scratch = scratch0(); | 
 |   __ VmovHigh(scratch, input_reg); | 
 |   __ cmp(scratch, Operand(kHoleNanUpper32)); | 
 |   EmitBranch(instr, eq); | 
 | } | 
 |  | 
 |  | 
 | Condition LCodeGen::EmitIsObject(Register input, | 
 |                                  Register temp1, | 
 |                                  Label* is_not_object, | 
 |                                  Label* is_object) { | 
 |   Register temp2 = scratch0(); | 
 |   __ JumpIfSmi(input, is_not_object); | 
 |  | 
 |   __ LoadRoot(temp2, Heap::kNullValueRootIndex); | 
 |   __ cmp(input, temp2); | 
 |   __ b(eq, is_object); | 
 |  | 
 |   // Load map. | 
 |   __ ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); | 
 |   // Undetectable objects behave like undefined. | 
 |   __ ldrb(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); | 
 |   __ tst(temp2, Operand(1 << Map::kIsUndetectable)); | 
 |   __ b(ne, is_not_object); | 
 |  | 
 |   // Load instance type and check that it is in object type range. | 
 |   __ ldrb(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); | 
 |   __ cmp(temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | 
 |   __ b(lt, is_not_object); | 
 |   __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); | 
 |   return le; | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { | 
 |   Register reg = ToRegister(instr->value()); | 
 |   Register temp1 = ToRegister(instr->temp()); | 
 |  | 
 |   Condition true_cond = | 
 |       EmitIsObject(reg, temp1, | 
 |           instr->FalseLabel(chunk_), instr->TrueLabel(chunk_)); | 
 |  | 
 |   EmitBranch(instr, true_cond); | 
 | } | 
 |  | 
 |  | 
 | Condition LCodeGen::EmitIsString(Register input, | 
 |                                  Register temp1, | 
 |                                  Label* is_not_string, | 
 |                                  SmiCheck check_needed = INLINE_SMI_CHECK) { | 
 |   if (check_needed == INLINE_SMI_CHECK) { | 
 |     __ JumpIfSmi(input, is_not_string); | 
 |   } | 
 |   __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); | 
 |  | 
 |   return lt; | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { | 
 |   Register reg = ToRegister(instr->value()); | 
 |   Register temp1 = ToRegister(instr->temp()); | 
 |  | 
 |   SmiCheck check_needed = | 
 |       instr->hydrogen()->value()->IsHeapObject() | 
 |           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | 
 |   Condition true_cond = | 
 |       EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed); | 
 |  | 
 |   EmitBranch(instr, true_cond); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { | 
 |   Register input_reg = EmitLoadRegister(instr->value(), ip); | 
 |   __ SmiTst(input_reg); | 
 |   EmitBranch(instr, eq); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register temp = ToRegister(instr->temp()); | 
 |  | 
 |   if (!instr->hydrogen()->value()->IsHeapObject()) { | 
 |     __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | 
 |   } | 
 |   __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); | 
 |   __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); | 
 |   __ tst(temp, Operand(1 << Map::kIsUndetectable)); | 
 |   EmitBranch(instr, ne); | 
 | } | 
 |  | 
 |  | 
 | static Condition ComputeCompareCondition(Token::Value op) { | 
 |   switch (op) { | 
 |     case Token::EQ_STRICT: | 
 |     case Token::EQ: | 
 |       return eq; | 
 |     case Token::LT: | 
 |       return lt; | 
 |     case Token::GT: | 
 |       return gt; | 
 |     case Token::LTE: | 
 |       return le; | 
 |     case Token::GTE: | 
 |       return ge; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       return kNoCondition; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   Token::Value op = instr->op(); | 
 |  | 
 |   Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op); | 
 |   CallCode(ic, RelocInfo::CODE_TARGET, instr); | 
 |   // This instruction also signals no smi code inlined. | 
 |   __ cmp(r0, Operand::Zero()); | 
 |  | 
 |   Condition condition = ComputeCompareCondition(op); | 
 |  | 
 |   EmitBranch(instr, condition); | 
 | } | 
 |  | 
 |  | 
 | static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { | 
 |   InstanceType from = instr->from(); | 
 |   InstanceType to = instr->to(); | 
 |   if (from == FIRST_TYPE) return to; | 
 |   ASSERT(from == to || to == LAST_TYPE); | 
 |   return from; | 
 | } | 
 |  | 
 |  | 
 | static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { | 
 |   InstanceType from = instr->from(); | 
 |   InstanceType to = instr->to(); | 
 |   if (from == to) return eq; | 
 |   if (to == LAST_TYPE) return hs; | 
 |   if (from == FIRST_TYPE) return ls; | 
 |   UNREACHABLE(); | 
 |   return eq; | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { | 
 |   Register scratch = scratch0(); | 
 |   Register input = ToRegister(instr->value()); | 
 |  | 
 |   if (!instr->hydrogen()->value()->IsHeapObject()) { | 
 |     __ JumpIfSmi(input, instr->FalseLabel(chunk_)); | 
 |   } | 
 |  | 
 |   __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); | 
 |   EmitBranch(instr, BranchCondition(instr->hydrogen())); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register result = ToRegister(instr->result()); | 
 |  | 
 |   __ AssertString(input); | 
 |  | 
 |   __ ldr(result, FieldMemOperand(input, String::kHashFieldOffset)); | 
 |   __ IndexFromHash(result, result); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoHasCachedArrayIndexAndBranch( | 
 |     LHasCachedArrayIndexAndBranch* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register scratch = scratch0(); | 
 |  | 
 |   __ ldr(scratch, | 
 |          FieldMemOperand(input, String::kHashFieldOffset)); | 
 |   __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask)); | 
 |   EmitBranch(instr, eq); | 
 | } | 
 |  | 
 |  | 
 | // Branches to a label or falls through with the answer in flags.  Trashes | 
 | // the temp registers, but not the input. | 
 | void LCodeGen::EmitClassOfTest(Label* is_true, | 
 |                                Label* is_false, | 
 |                                Handle<String>class_name, | 
 |                                Register input, | 
 |                                Register temp, | 
 |                                Register temp2) { | 
 |   ASSERT(!input.is(temp)); | 
 |   ASSERT(!input.is(temp2)); | 
 |   ASSERT(!temp.is(temp2)); | 
 |  | 
 |   __ JumpIfSmi(input, is_false); | 
 |  | 
 |   if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Function"))) { | 
 |     // Assuming the following assertions, we can use the same compares to test | 
 |     // for both being a function type and being in the object type range. | 
 |     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); | 
 |     STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == | 
 |                   FIRST_SPEC_OBJECT_TYPE + 1); | 
 |     STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == | 
 |                   LAST_SPEC_OBJECT_TYPE - 1); | 
 |     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); | 
 |     __ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE); | 
 |     __ b(lt, is_false); | 
 |     __ b(eq, is_true); | 
 |     __ cmp(temp2, Operand(LAST_SPEC_OBJECT_TYPE)); | 
 |     __ b(eq, is_true); | 
 |   } else { | 
 |     // Faster code path to avoid two compares: subtract lower bound from the | 
 |     // actual type and do a signed compare with the width of the type range. | 
 |     __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); | 
 |     __ ldrb(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset)); | 
 |     __ sub(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | 
 |     __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - | 
 |                           FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | 
 |     __ b(gt, is_false); | 
 |   } | 
 |  | 
 |   // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. | 
 |   // Check if the constructor in the map is a function. | 
 |   __ ldr(temp, FieldMemOperand(temp, Map::kConstructorOffset)); | 
 |  | 
 |   // Objects with a non-function constructor have class 'Object'. | 
 |   __ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE); | 
 |   if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) { | 
 |     __ b(ne, is_true); | 
 |   } else { | 
 |     __ b(ne, is_false); | 
 |   } | 
 |  | 
 |   // temp now contains the constructor function. Grab the | 
 |   // instance class name from there. | 
 |   __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); | 
 |   __ ldr(temp, FieldMemOperand(temp, | 
 |                                SharedFunctionInfo::kInstanceClassNameOffset)); | 
 |   // The class name we are testing against is internalized since it's a literal. | 
 |   // The name in the constructor is internalized because of the way the context | 
 |   // is booted.  This routine isn't expected to work for random API-created | 
 |   // classes and it doesn't have to because you can't access it with natives | 
 |   // syntax.  Since both sides are internalized it is sufficient to use an | 
 |   // identity comparison. | 
 |   __ cmp(temp, Operand(class_name)); | 
 |   // End with the answer in flags. | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register temp = scratch0(); | 
 |   Register temp2 = ToRegister(instr->temp()); | 
 |   Handle<String> class_name = instr->hydrogen()->class_name(); | 
 |  | 
 |   EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), | 
 |       class_name, input, temp, temp2); | 
 |  | 
 |   EmitBranch(instr, eq); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { | 
 |   Register reg = ToRegister(instr->value()); | 
 |   Register temp = ToRegister(instr->temp()); | 
 |  | 
 |   __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); | 
 |   __ cmp(temp, Operand(instr->map())); | 
 |   EmitBranch(instr, eq); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoInstanceOf(LInstanceOf* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->left()).is(r0));  // Object is in r0. | 
 |   ASSERT(ToRegister(instr->right()).is(r1));  // Function is in r1. | 
 |  | 
 |   InstanceofStub stub(InstanceofStub::kArgsInRegisters); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 |  | 
 |   __ cmp(r0, Operand::Zero()); | 
 |   __ mov(r0, Operand(factory()->false_value()), LeaveCC, ne); | 
 |   __ mov(r0, Operand(factory()->true_value()), LeaveCC, eq); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { | 
 |   class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredInstanceOfKnownGlobal(LCodeGen* codegen, | 
 |                                   LInstanceOfKnownGlobal* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |     Label* map_check() { return &map_check_; } | 
 |    private: | 
 |     LInstanceOfKnownGlobal* instr_; | 
 |     Label map_check_; | 
 |   }; | 
 |  | 
 |   DeferredInstanceOfKnownGlobal* deferred; | 
 |   deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr); | 
 |  | 
 |   Label done, false_result; | 
 |   Register object = ToRegister(instr->value()); | 
 |   Register temp = ToRegister(instr->temp()); | 
 |   Register result = ToRegister(instr->result()); | 
 |  | 
 |   ASSERT(object.is(r0)); | 
 |   ASSERT(result.is(r0)); | 
 |  | 
 |   // A Smi is not instance of anything. | 
 |   __ JumpIfSmi(object, &false_result); | 
 |  | 
 |   // This is the inlined call site instanceof cache. The two occurences of the | 
 |   // hole value will be patched to the last map/result pair generated by the | 
 |   // instanceof stub. | 
 |   Label cache_miss; | 
 |   Register map = temp; | 
 |   __ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |   { | 
 |     // Block constant pool emission to ensure the positions of instructions are | 
 |     // as expected by the patcher. See InstanceofStub::Generate(). | 
 |     Assembler::BlockConstPoolScope block_const_pool(masm()); | 
 |     __ bind(deferred->map_check());  // Label for calculating code patching. | 
 |     // We use Factory::the_hole_value() on purpose instead of loading from the | 
 |     // root array to force relocation to be able to later patch with | 
 |     // the cached map. | 
 |     PredictableCodeSizeScope predictable(masm_, 5 * Assembler::kInstrSize); | 
 |     Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value()); | 
 |     __ mov(ip, Operand(Handle<Object>(cell))); | 
 |     __ ldr(ip, FieldMemOperand(ip, PropertyCell::kValueOffset)); | 
 |     __ cmp(map, Operand(ip)); | 
 |     __ b(ne, &cache_miss); | 
 |     // We use Factory::the_hole_value() on purpose instead of loading from the | 
 |     // root array to force relocation to be able to later patch | 
 |     // with true or false. | 
 |     __ mov(result, Operand(factory()->the_hole_value())); | 
 |   } | 
 |   __ b(&done); | 
 |  | 
 |   // The inlined call site cache did not match. Check null and string before | 
 |   // calling the deferred code. | 
 |   __ bind(&cache_miss); | 
 |   // Null is not instance of anything. | 
 |   __ LoadRoot(ip, Heap::kNullValueRootIndex); | 
 |   __ cmp(object, Operand(ip)); | 
 |   __ b(eq, &false_result); | 
 |  | 
 |   // String values is not instance of anything. | 
 |   Condition is_string = masm_->IsObjectStringType(object, temp); | 
 |   __ b(is_string, &false_result); | 
 |  | 
 |   // Go to the deferred code. | 
 |   __ b(deferred->entry()); | 
 |  | 
 |   __ bind(&false_result); | 
 |   __ LoadRoot(result, Heap::kFalseValueRootIndex); | 
 |  | 
 |   // Here result has either true or false. Deferred code also produces true or | 
 |   // false object. | 
 |   __ bind(deferred->exit()); | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, | 
 |                                                Label* map_check) { | 
 |   Register result = ToRegister(instr->result()); | 
 |   ASSERT(result.is(r0)); | 
 |  | 
 |   InstanceofStub::Flags flags = InstanceofStub::kNoFlags; | 
 |   flags = static_cast<InstanceofStub::Flags>( | 
 |       flags | InstanceofStub::kArgsInRegisters); | 
 |   flags = static_cast<InstanceofStub::Flags>( | 
 |       flags | InstanceofStub::kCallSiteInlineCheck); | 
 |   flags = static_cast<InstanceofStub::Flags>( | 
 |       flags | InstanceofStub::kReturnTrueFalseObject); | 
 |   InstanceofStub stub(flags); | 
 |  | 
 |   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |   LoadContextFromDeferred(instr->context()); | 
 |  | 
 |   // Get the temp register reserved by the instruction. This needs to be r4 as | 
 |   // its slot of the pushing of safepoint registers is used to communicate the | 
 |   // offset to the location of the map check. | 
 |   Register temp = ToRegister(instr->temp()); | 
 |   ASSERT(temp.is(r4)); | 
 |   __ LoadHeapObject(InstanceofStub::right(), instr->function()); | 
 |   static const int kAdditionalDelta = 5; | 
 |   // Make sure that code size is predicable, since we use specific constants | 
 |   // offsets in the code to find embedded values.. | 
 |   PredictableCodeSizeScope predictable(masm_, 6 * Assembler::kInstrSize); | 
 |   int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta; | 
 |   Label before_push_delta; | 
 |   __ bind(&before_push_delta); | 
 |   __ BlockConstPoolFor(kAdditionalDelta); | 
 |   __ mov(temp, Operand(delta * kPointerSize)); | 
 |   // The mov above can generate one or two instructions. The delta was computed | 
 |   // for two instructions, so we need to pad here in case of one instruction. | 
 |   if (masm_->InstructionsGeneratedSince(&before_push_delta) != 2) { | 
 |     ASSERT_EQ(1, masm_->InstructionsGeneratedSince(&before_push_delta)); | 
 |     __ nop(); | 
 |   } | 
 |   __ StoreToSafepointRegisterSlot(temp, temp); | 
 |   CallCodeGeneric(stub.GetCode(isolate()), | 
 |                   RelocInfo::CODE_TARGET, | 
 |                   instr, | 
 |                   RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | 
 |   LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment(); | 
 |   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | 
 |   // Put the result value into the result register slot and | 
 |   // restore all registers. | 
 |   __ StoreToSafepointRegisterSlot(result, result); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoInstanceSize(LInstanceSize* instr) { | 
 |   Register object = ToRegister(instr->object()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ ldr(result, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |   __ ldrb(result, FieldMemOperand(result, Map::kInstanceSizeOffset)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCmpT(LCmpT* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   Token::Value op = instr->op(); | 
 |  | 
 |   Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op); | 
 |   CallCode(ic, RelocInfo::CODE_TARGET, instr); | 
 |   // This instruction also signals no smi code inlined. | 
 |   __ cmp(r0, Operand::Zero()); | 
 |  | 
 |   Condition condition = ComputeCompareCondition(op); | 
 |   __ LoadRoot(ToRegister(instr->result()), | 
 |               Heap::kTrueValueRootIndex, | 
 |               condition); | 
 |   __ LoadRoot(ToRegister(instr->result()), | 
 |               Heap::kFalseValueRootIndex, | 
 |               NegateCondition(condition)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoReturn(LReturn* instr) { | 
 |   if (FLAG_trace && info()->IsOptimizing()) { | 
 |     // Push the return value on the stack as the parameter. | 
 |     // Runtime::TraceExit returns its parameter in r0.  We're leaving the code | 
 |     // managed by the register allocator and tearing down the frame, it's | 
 |     // safe to write to the context register. | 
 |     __ push(r0); | 
 |     __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | 
 |     __ CallRuntime(Runtime::kTraceExit, 1); | 
 |   } | 
 |   if (info()->saves_caller_doubles()) { | 
 |     ASSERT(NeedsEagerFrame()); | 
 |     BitVector* doubles = chunk()->allocated_double_registers(); | 
 |     BitVector::Iterator save_iterator(doubles); | 
 |     int count = 0; | 
 |     while (!save_iterator.Done()) { | 
 |       __ vldr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()), | 
 |                MemOperand(sp, count * kDoubleSize)); | 
 |       save_iterator.Advance(); | 
 |       count++; | 
 |     } | 
 |   } | 
 |   int no_frame_start = -1; | 
 |   if (NeedsEagerFrame()) { | 
 |     __ mov(sp, fp); | 
 |     no_frame_start = masm_->pc_offset(); | 
 |     __ ldm(ia_w, sp, fp.bit() | lr.bit()); | 
 |   } | 
 |   if (instr->has_constant_parameter_count()) { | 
 |     int parameter_count = ToInteger32(instr->constant_parameter_count()); | 
 |     int32_t sp_delta = (parameter_count + 1) * kPointerSize; | 
 |     if (sp_delta != 0) { | 
 |       __ add(sp, sp, Operand(sp_delta)); | 
 |     } | 
 |   } else { | 
 |     Register reg = ToRegister(instr->parameter_count()); | 
 |     // The argument count parameter is a smi | 
 |     __ SmiUntag(reg); | 
 |     __ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2)); | 
 |   } | 
 |  | 
 |   __ Jump(lr); | 
 |  | 
 |   if (no_frame_start != -1) { | 
 |     info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell().handle()))); | 
 |   __ ldr(result, FieldMemOperand(ip, Cell::kValueOffset)); | 
 |   if (instr->hydrogen()->RequiresHoleCheck()) { | 
 |     __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | 
 |     __ cmp(result, ip); | 
 |     DeoptimizeIf(eq, instr->environment()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->global_object()).is(r0)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   __ mov(r2, Operand(instr->name())); | 
 |   RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET | 
 |                                              : RelocInfo::CODE_TARGET_CONTEXT; | 
 |   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); | 
 |   CallCode(ic, mode, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) { | 
 |   Register value = ToRegister(instr->value()); | 
 |   Register cell = scratch0(); | 
 |  | 
 |   // Load the cell. | 
 |   __ mov(cell, Operand(instr->hydrogen()->cell().handle())); | 
 |  | 
 |   // If the cell we are storing to contains the hole it could have | 
 |   // been deleted from the property dictionary. In that case, we need | 
 |   // to update the property details in the property dictionary to mark | 
 |   // it as no longer deleted. | 
 |   if (instr->hydrogen()->RequiresHoleCheck()) { | 
 |     // We use a temp to check the payload (CompareRoot might clobber ip). | 
 |     Register payload = ToRegister(instr->temp()); | 
 |     __ ldr(payload, FieldMemOperand(cell, Cell::kValueOffset)); | 
 |     __ CompareRoot(payload, Heap::kTheHoleValueRootIndex); | 
 |     DeoptimizeIf(eq, instr->environment()); | 
 |   } | 
 |  | 
 |   // Store the value. | 
 |   __ str(value, FieldMemOperand(cell, Cell::kValueOffset)); | 
 |   // Cells are always rescanned, so no write barrier here. | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->global_object()).is(r1)); | 
 |   ASSERT(ToRegister(instr->value()).is(r0)); | 
 |  | 
 |   __ mov(r2, Operand(instr->name())); | 
 |   Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) | 
 |       ? isolate()->builtins()->StoreIC_Initialize_Strict() | 
 |       : isolate()->builtins()->StoreIC_Initialize(); | 
 |   CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { | 
 |   Register context = ToRegister(instr->context()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ ldr(result, ContextOperand(context, instr->slot_index())); | 
 |   if (instr->hydrogen()->RequiresHoleCheck()) { | 
 |     __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | 
 |     __ cmp(result, ip); | 
 |     if (instr->hydrogen()->DeoptimizesOnHole()) { | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } else { | 
 |       __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { | 
 |   Register context = ToRegister(instr->context()); | 
 |   Register value = ToRegister(instr->value()); | 
 |   Register scratch = scratch0(); | 
 |   MemOperand target = ContextOperand(context, instr->slot_index()); | 
 |  | 
 |   Label skip_assignment; | 
 |  | 
 |   if (instr->hydrogen()->RequiresHoleCheck()) { | 
 |     __ ldr(scratch, target); | 
 |     __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | 
 |     __ cmp(scratch, ip); | 
 |     if (instr->hydrogen()->DeoptimizesOnHole()) { | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } else { | 
 |       __ b(ne, &skip_assignment); | 
 |     } | 
 |   } | 
 |  | 
 |   __ str(value, target); | 
 |   if (instr->hydrogen()->NeedsWriteBarrier()) { | 
 |     SmiCheck check_needed = | 
 |         instr->hydrogen()->value()->IsHeapObject() | 
 |             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | 
 |     __ RecordWriteContextSlot(context, | 
 |                               target.offset(), | 
 |                               value, | 
 |                               scratch, | 
 |                               GetLinkRegisterState(), | 
 |                               kSaveFPRegs, | 
 |                               EMIT_REMEMBERED_SET, | 
 |                               check_needed); | 
 |   } | 
 |  | 
 |   __ bind(&skip_assignment); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { | 
 |   HObjectAccess access = instr->hydrogen()->access(); | 
 |   int offset = access.offset(); | 
 |   Register object = ToRegister(instr->object()); | 
 |  | 
 |   if (access.IsExternalMemory()) { | 
 |     Register result = ToRegister(instr->result()); | 
 |     __ ldr(result, MemOperand(object, offset)); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (instr->hydrogen()->representation().IsDouble()) { | 
 |     DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |     __ vldr(result, FieldMemOperand(object, offset)); | 
 |     return; | 
 |   } | 
 |  | 
 |   Register result = ToRegister(instr->result()); | 
 |   if (access.IsInobject()) { | 
 |     __ ldr(result, FieldMemOperand(object, offset)); | 
 |   } else { | 
 |     __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); | 
 |     __ ldr(result, FieldMemOperand(result, offset)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->object()).is(r0)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   // Name is always in r2. | 
 |   __ mov(r2, Operand(instr->name())); | 
 |   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); | 
 |   CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { | 
 |   Register scratch = scratch0(); | 
 |   Register function = ToRegister(instr->function()); | 
 |   Register result = ToRegister(instr->result()); | 
 |  | 
 |   // Check that the function really is a function. Load map into the | 
 |   // result register. | 
 |   __ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE); | 
 |   DeoptimizeIf(ne, instr->environment()); | 
 |  | 
 |   // Make sure that the function has an instance prototype. | 
 |   Label non_instance; | 
 |   __ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); | 
 |   __ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype)); | 
 |   __ b(ne, &non_instance); | 
 |  | 
 |   // Get the prototype or initial map from the function. | 
 |   __ ldr(result, | 
 |          FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); | 
 |  | 
 |   // Check that the function has a prototype or an initial map. | 
 |   __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); | 
 |   __ cmp(result, ip); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 |  | 
 |   // If the function does not have an initial map, we're done. | 
 |   Label done; | 
 |   __ CompareObjectType(result, scratch, scratch, MAP_TYPE); | 
 |   __ b(ne, &done); | 
 |  | 
 |   // Get the prototype from the initial map. | 
 |   __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); | 
 |   __ jmp(&done); | 
 |  | 
 |   // Non-instance prototype: Fetch prototype from constructor field | 
 |   // in initial map. | 
 |   __ bind(&non_instance); | 
 |   __ ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); | 
 |  | 
 |   // All done. | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadRoot(LLoadRoot* instr) { | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ LoadRoot(result, instr->index()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadExternalArrayPointer( | 
 |     LLoadExternalArrayPointer* instr) { | 
 |   Register to_reg = ToRegister(instr->result()); | 
 |   Register from_reg  = ToRegister(instr->object()); | 
 |   __ ldr(to_reg, FieldMemOperand(from_reg, | 
 |                                  ExternalArray::kExternalPointerOffset)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { | 
 |   Register arguments = ToRegister(instr->arguments()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   if (instr->length()->IsConstantOperand() && | 
 |       instr->index()->IsConstantOperand()) { | 
 |     int const_index = ToInteger32(LConstantOperand::cast(instr->index())); | 
 |     int const_length = ToInteger32(LConstantOperand::cast(instr->length())); | 
 |     int index = (const_length - const_index) + 1; | 
 |     __ ldr(result, MemOperand(arguments, index * kPointerSize)); | 
 |   } else { | 
 |     Register length = ToRegister(instr->length()); | 
 |     Register index = ToRegister(instr->index()); | 
 |     // There are two words between the frame pointer and the last argument. | 
 |     // Subtracting from length accounts for one of them add one more. | 
 |     __ sub(length, length, index); | 
 |     __ add(length, length, Operand(1)); | 
 |     __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { | 
 |   Register external_pointer = ToRegister(instr->elements()); | 
 |   Register key = no_reg; | 
 |   ElementsKind elements_kind = instr->elements_kind(); | 
 |   bool key_is_constant = instr->key()->IsConstantOperand(); | 
 |   int constant_key = 0; | 
 |   if (key_is_constant) { | 
 |     constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | 
 |     if (constant_key & 0xF0000000) { | 
 |       Abort(kArrayIndexConstantValueTooBig); | 
 |     } | 
 |   } else { | 
 |     key = ToRegister(instr->key()); | 
 |   } | 
 |   int element_size_shift = ElementsKindToShiftSize(elements_kind); | 
 |   int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) | 
 |       ? (element_size_shift - kSmiTagSize) : element_size_shift; | 
 |   int additional_offset = instr->additional_index() << element_size_shift; | 
 |  | 
 |   if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || | 
 |       elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { | 
 |     DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |     Operand operand = key_is_constant | 
 |         ? Operand(constant_key << element_size_shift) | 
 |         : Operand(key, LSL, shift_size); | 
 |     __ add(scratch0(), external_pointer, operand); | 
 |     if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { | 
 |       __ vldr(double_scratch0().low(), scratch0(), additional_offset); | 
 |       __ vcvt_f64_f32(result, double_scratch0().low()); | 
 |     } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS | 
 |       __ vldr(result, scratch0(), additional_offset); | 
 |     } | 
 |   } else { | 
 |     Register result = ToRegister(instr->result()); | 
 |     MemOperand mem_operand = PrepareKeyedOperand( | 
 |         key, external_pointer, key_is_constant, constant_key, | 
 |         element_size_shift, shift_size, | 
 |         instr->additional_index(), additional_offset); | 
 |     switch (elements_kind) { | 
 |       case EXTERNAL_BYTE_ELEMENTS: | 
 |         __ ldrsb(result, mem_operand); | 
 |         break; | 
 |       case EXTERNAL_PIXEL_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |         __ ldrb(result, mem_operand); | 
 |         break; | 
 |       case EXTERNAL_SHORT_ELEMENTS: | 
 |         __ ldrsh(result, mem_operand); | 
 |         break; | 
 |       case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |         __ ldrh(result, mem_operand); | 
 |         break; | 
 |       case EXTERNAL_INT_ELEMENTS: | 
 |         __ ldr(result, mem_operand); | 
 |         break; | 
 |       case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |         __ ldr(result, mem_operand); | 
 |         if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { | 
 |           __ cmp(result, Operand(0x80000000)); | 
 |           DeoptimizeIf(cs, instr->environment()); | 
 |         } | 
 |         break; | 
 |       case EXTERNAL_FLOAT_ELEMENTS: | 
 |       case EXTERNAL_DOUBLE_ELEMENTS: | 
 |       case FAST_HOLEY_DOUBLE_ELEMENTS: | 
 |       case FAST_HOLEY_ELEMENTS: | 
 |       case FAST_HOLEY_SMI_ELEMENTS: | 
 |       case FAST_DOUBLE_ELEMENTS: | 
 |       case FAST_ELEMENTS: | 
 |       case FAST_SMI_ELEMENTS: | 
 |       case DICTIONARY_ELEMENTS: | 
 |       case NON_STRICT_ARGUMENTS_ELEMENTS: | 
 |         UNREACHABLE(); | 
 |         break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { | 
 |   Register elements = ToRegister(instr->elements()); | 
 |   bool key_is_constant = instr->key()->IsConstantOperand(); | 
 |   Register key = no_reg; | 
 |   DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |   Register scratch = scratch0(); | 
 |  | 
 |   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); | 
 |   int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) | 
 |       ? (element_size_shift - kSmiTagSize) : element_size_shift; | 
 |   int constant_key = 0; | 
 |   if (key_is_constant) { | 
 |     constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | 
 |     if (constant_key & 0xF0000000) { | 
 |       Abort(kArrayIndexConstantValueTooBig); | 
 |     } | 
 |   } else { | 
 |     key = ToRegister(instr->key()); | 
 |   } | 
 |  | 
 |   int base_offset = (FixedDoubleArray::kHeaderSize - kHeapObjectTag) + | 
 |       ((constant_key + instr->additional_index()) << element_size_shift); | 
 |   if (!key_is_constant) { | 
 |     __ add(elements, elements, Operand(key, LSL, shift_size)); | 
 |   } | 
 |   __ add(elements, elements, Operand(base_offset)); | 
 |   __ vldr(result, elements, 0); | 
 |   if (instr->hydrogen()->RequiresHoleCheck()) { | 
 |     __ ldr(scratch, MemOperand(elements, sizeof(kHoleNanLower32))); | 
 |     __ cmp(scratch, Operand(kHoleNanUpper32)); | 
 |     DeoptimizeIf(eq, instr->environment()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { | 
 |   Register elements = ToRegister(instr->elements()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register scratch = scratch0(); | 
 |   Register store_base = scratch; | 
 |   int offset = 0; | 
 |  | 
 |   if (instr->key()->IsConstantOperand()) { | 
 |     LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); | 
 |     offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) + | 
 |                                            instr->additional_index()); | 
 |     store_base = elements; | 
 |   } else { | 
 |     Register key = EmitLoadRegister(instr->key(), scratch0()); | 
 |     // Even though the HLoadKeyed instruction forces the input | 
 |     // representation for the key to be an integer, the input gets replaced | 
 |     // during bound check elimination with the index argument to the bounds | 
 |     // check, which can be tagged, so that case must be handled here, too. | 
 |     if (instr->hydrogen()->key()->representation().IsSmi()) { | 
 |       __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key)); | 
 |     } else { | 
 |       __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); | 
 |     } | 
 |     offset = FixedArray::OffsetOfElementAt(instr->additional_index()); | 
 |   } | 
 |   __ ldr(result, FieldMemOperand(store_base, offset)); | 
 |  | 
 |   // Check for the hole value. | 
 |   if (instr->hydrogen()->RequiresHoleCheck()) { | 
 |     if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { | 
 |       __ SmiTst(result); | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |     } else { | 
 |       __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); | 
 |       __ cmp(result, scratch); | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { | 
 |   if (instr->is_external()) { | 
 |     DoLoadKeyedExternalArray(instr); | 
 |   } else if (instr->hydrogen()->representation().IsDouble()) { | 
 |     DoLoadKeyedFixedDoubleArray(instr); | 
 |   } else { | 
 |     DoLoadKeyedFixedArray(instr); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | MemOperand LCodeGen::PrepareKeyedOperand(Register key, | 
 |                                          Register base, | 
 |                                          bool key_is_constant, | 
 |                                          int constant_key, | 
 |                                          int element_size, | 
 |                                          int shift_size, | 
 |                                          int additional_index, | 
 |                                          int additional_offset) { | 
 |   if (additional_index != 0 && !key_is_constant) { | 
 |     additional_index *= 1 << (element_size - shift_size); | 
 |     __ add(scratch0(), key, Operand(additional_index)); | 
 |   } | 
 |  | 
 |   if (key_is_constant) { | 
 |     return MemOperand(base, | 
 |                       (constant_key << element_size) + additional_offset); | 
 |   } | 
 |  | 
 |   if (additional_index == 0) { | 
 |     if (shift_size >= 0) { | 
 |       return MemOperand(base, key, LSL, shift_size); | 
 |     } else { | 
 |       ASSERT_EQ(-1, shift_size); | 
 |       return MemOperand(base, key, LSR, 1); | 
 |     } | 
 |   } | 
 |  | 
 |   if (shift_size >= 0) { | 
 |     return MemOperand(base, scratch0(), LSL, shift_size); | 
 |   } else { | 
 |     ASSERT_EQ(-1, shift_size); | 
 |     return MemOperand(base, scratch0(), LSR, 1); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->object()).is(r1)); | 
 |   ASSERT(ToRegister(instr->key()).is(r0)); | 
 |  | 
 |   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); | 
 |   CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { | 
 |   Register scratch = scratch0(); | 
 |   Register result = ToRegister(instr->result()); | 
 |  | 
 |   if (instr->hydrogen()->from_inlined()) { | 
 |     __ sub(result, sp, Operand(2 * kPointerSize)); | 
 |   } else { | 
 |     // Check if the calling frame is an arguments adaptor frame. | 
 |     Label done, adapted; | 
 |     __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
 |     __ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); | 
 |     __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 
 |  | 
 |     // Result is the frame pointer for the frame if not adapted and for the real | 
 |     // frame below the adaptor frame if adapted. | 
 |     __ mov(result, fp, LeaveCC, ne); | 
 |     __ mov(result, scratch, LeaveCC, eq); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { | 
 |   Register elem = ToRegister(instr->elements()); | 
 |   Register result = ToRegister(instr->result()); | 
 |  | 
 |   Label done; | 
 |  | 
 |   // If no arguments adaptor frame the number of arguments is fixed. | 
 |   __ cmp(fp, elem); | 
 |   __ mov(result, Operand(scope()->num_parameters())); | 
 |   __ b(eq, &done); | 
 |  | 
 |   // Arguments adaptor frame present. Get argument length from there. | 
 |   __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
 |   __ ldr(result, | 
 |          MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 
 |   __ SmiUntag(result); | 
 |  | 
 |   // Argument length is in result register. | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { | 
 |   Register receiver = ToRegister(instr->receiver()); | 
 |   Register function = ToRegister(instr->function()); | 
 |   Register scratch = scratch0(); | 
 |  | 
 |   // If the receiver is null or undefined, we have to pass the global | 
 |   // object as a receiver to normal functions. Values have to be | 
 |   // passed unchanged to builtins and strict-mode functions. | 
 |   Label global_object, receiver_ok; | 
 |  | 
 |   // Do not transform the receiver to object for strict mode | 
 |   // functions. | 
 |   __ ldr(scratch, | 
 |          FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); | 
 |   __ ldr(scratch, | 
 |          FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); | 
 |   __ tst(scratch, | 
 |          Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); | 
 |   __ b(ne, &receiver_ok); | 
 |  | 
 |   // Do not transform the receiver to object for builtins. | 
 |   __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); | 
 |   __ b(ne, &receiver_ok); | 
 |  | 
 |   // Normal function. Replace undefined or null with global receiver. | 
 |   __ LoadRoot(scratch, Heap::kNullValueRootIndex); | 
 |   __ cmp(receiver, scratch); | 
 |   __ b(eq, &global_object); | 
 |   __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); | 
 |   __ cmp(receiver, scratch); | 
 |   __ b(eq, &global_object); | 
 |  | 
 |   // Deoptimize if the receiver is not a JS object. | 
 |   __ SmiTst(receiver); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 |   __ CompareObjectType(receiver, scratch, scratch, FIRST_SPEC_OBJECT_TYPE); | 
 |   DeoptimizeIf(lt, instr->environment()); | 
 |   __ jmp(&receiver_ok); | 
 |  | 
 |   __ bind(&global_object); | 
 |   __ ldr(receiver, GlobalObjectOperand()); | 
 |   __ ldr(receiver, | 
 |          FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); | 
 |   __ bind(&receiver_ok); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoApplyArguments(LApplyArguments* instr) { | 
 |   Register receiver = ToRegister(instr->receiver()); | 
 |   Register function = ToRegister(instr->function()); | 
 |   Register length = ToRegister(instr->length()); | 
 |   Register elements = ToRegister(instr->elements()); | 
 |   Register scratch = scratch0(); | 
 |   ASSERT(receiver.is(r0));  // Used for parameter count. | 
 |   ASSERT(function.is(r1));  // Required by InvokeFunction. | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   // Copy the arguments to this function possibly from the | 
 |   // adaptor frame below it. | 
 |   const uint32_t kArgumentsLimit = 1 * KB; | 
 |   __ cmp(length, Operand(kArgumentsLimit)); | 
 |   DeoptimizeIf(hi, instr->environment()); | 
 |  | 
 |   // Push the receiver and use the register to keep the original | 
 |   // number of arguments. | 
 |   __ push(receiver); | 
 |   __ mov(receiver, length); | 
 |   // The arguments are at a one pointer size offset from elements. | 
 |   __ add(elements, elements, Operand(1 * kPointerSize)); | 
 |  | 
 |   // Loop through the arguments pushing them onto the execution | 
 |   // stack. | 
 |   Label invoke, loop; | 
 |   // length is a small non-negative integer, due to the test above. | 
 |   __ cmp(length, Operand::Zero()); | 
 |   __ b(eq, &invoke); | 
 |   __ bind(&loop); | 
 |   __ ldr(scratch, MemOperand(elements, length, LSL, 2)); | 
 |   __ push(scratch); | 
 |   __ sub(length, length, Operand(1), SetCC); | 
 |   __ b(ne, &loop); | 
 |  | 
 |   __ bind(&invoke); | 
 |   ASSERT(instr->HasPointerMap()); | 
 |   LPointerMap* pointers = instr->pointer_map(); | 
 |   RecordPosition(pointers->position()); | 
 |   SafepointGenerator safepoint_generator( | 
 |       this, pointers, Safepoint::kLazyDeopt); | 
 |   // The number of arguments is stored in receiver which is r0, as expected | 
 |   // by InvokeFunction. | 
 |   ParameterCount actual(receiver); | 
 |   __ InvokeFunction(function, actual, CALL_FUNCTION, | 
 |                     safepoint_generator, CALL_AS_METHOD); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoPushArgument(LPushArgument* instr) { | 
 |   LOperand* argument = instr->value(); | 
 |   if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { | 
 |     Abort(kDoPushArgumentNotImplementedForDoubleType); | 
 |   } else { | 
 |     Register argument_reg = EmitLoadRegister(argument, ip); | 
 |     __ push(argument_reg); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDrop(LDrop* instr) { | 
 |   __ Drop(instr->count()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoThisFunction(LThisFunction* instr) { | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoContext(LContext* instr) { | 
 |   // If there is a non-return use, the context must be moved to a register. | 
 |   Register result = ToRegister(instr->result()); | 
 |   if (info()->IsOptimizing()) { | 
 |     __ ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); | 
 |   } else { | 
 |     // If there is no frame, the context must be in cp. | 
 |     ASSERT(result.is(cp)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoOuterContext(LOuterContext* instr) { | 
 |   Register context = ToRegister(instr->context()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ ldr(result, | 
 |          MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX))); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   __ push(cp);  // The context is the first argument. | 
 |   __ LoadHeapObject(scratch0(), instr->hydrogen()->pairs()); | 
 |   __ push(scratch0()); | 
 |   __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); | 
 |   __ push(scratch0()); | 
 |   CallRuntime(Runtime::kDeclareGlobals, 3, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoGlobalObject(LGlobalObject* instr) { | 
 |   Register context = ToRegister(instr->context()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ ldr(result, ContextOperand(context, Context::GLOBAL_OBJECT_INDEX)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) { | 
 |   Register global = ToRegister(instr->global_object()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ ldr(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::CallKnownFunction(Handle<JSFunction> function, | 
 |                                  int formal_parameter_count, | 
 |                                  int arity, | 
 |                                  LInstruction* instr, | 
 |                                  CallKind call_kind, | 
 |                                  R1State r1_state) { | 
 |   bool dont_adapt_arguments = | 
 |       formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; | 
 |   bool can_invoke_directly = | 
 |       dont_adapt_arguments || formal_parameter_count == arity; | 
 |  | 
 |   LPointerMap* pointers = instr->pointer_map(); | 
 |   RecordPosition(pointers->position()); | 
 |  | 
 |   if (can_invoke_directly) { | 
 |     if (r1_state == R1_UNINITIALIZED) { | 
 |       __ LoadHeapObject(r1, function); | 
 |     } | 
 |  | 
 |     // Change context. | 
 |     __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); | 
 |  | 
 |     // Set r0 to arguments count if adaption is not needed. Assumes that r0 | 
 |     // is available to write to at this point. | 
 |     if (dont_adapt_arguments) { | 
 |       __ mov(r0, Operand(arity)); | 
 |     } | 
 |  | 
 |     // Invoke function. | 
 |     __ SetCallKind(r5, call_kind); | 
 |     __ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); | 
 |     __ Call(ip); | 
 |  | 
 |     // Set up deoptimization. | 
 |     RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); | 
 |   } else { | 
 |     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | 
 |     ParameterCount count(arity); | 
 |     ParameterCount expected(formal_parameter_count); | 
 |     __ InvokeFunction( | 
 |         function, expected, count, CALL_FUNCTION, generator, call_kind); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) { | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |   CallKnownFunction(instr->hydrogen()->function(), | 
 |                     instr->hydrogen()->formal_parameter_count(), | 
 |                     instr->arity(), | 
 |                     instr, | 
 |                     CALL_AS_METHOD, | 
 |                     R1_UNINITIALIZED); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { | 
 |   ASSERT(instr->context() != NULL); | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register scratch = scratch0(); | 
 |  | 
 |   // Deoptimize if not a heap number. | 
 |   __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); | 
 |   __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | 
 |   __ cmp(scratch, Operand(ip)); | 
 |   DeoptimizeIf(ne, instr->environment()); | 
 |  | 
 |   Label done; | 
 |   Register exponent = scratch0(); | 
 |   scratch = no_reg; | 
 |   __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); | 
 |   // Check the sign of the argument. If the argument is positive, just | 
 |   // return it. | 
 |   __ tst(exponent, Operand(HeapNumber::kSignMask)); | 
 |   // Move the input to the result if necessary. | 
 |   __ Move(result, input); | 
 |   __ b(eq, &done); | 
 |  | 
 |   // Input is negative. Reverse its sign. | 
 |   // Preserve the value of all registers. | 
 |   { | 
 |     PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |  | 
 |     // Registers were saved at the safepoint, so we can use | 
 |     // many scratch registers. | 
 |     Register tmp1 = input.is(r1) ? r0 : r1; | 
 |     Register tmp2 = input.is(r2) ? r0 : r2; | 
 |     Register tmp3 = input.is(r3) ? r0 : r3; | 
 |     Register tmp4 = input.is(r4) ? r0 : r4; | 
 |  | 
 |     // exponent: floating point exponent value. | 
 |  | 
 |     Label allocated, slow; | 
 |     __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); | 
 |     __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); | 
 |     __ b(&allocated); | 
 |  | 
 |     // Slow case: Call the runtime system to do the number allocation. | 
 |     __ bind(&slow); | 
 |  | 
 |     CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, | 
 |                             instr->context()); | 
 |     // Set the pointer to the new heap number in tmp. | 
 |     if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0)); | 
 |     // Restore input_reg after call to runtime. | 
 |     __ LoadFromSafepointRegisterSlot(input, input); | 
 |     __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); | 
 |  | 
 |     __ bind(&allocated); | 
 |     // exponent: floating point exponent value. | 
 |     // tmp1: allocated heap number. | 
 |     __ bic(exponent, exponent, Operand(HeapNumber::kSignMask)); | 
 |     __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); | 
 |     __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); | 
 |     __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); | 
 |  | 
 |     __ StoreToSafepointRegisterSlot(tmp1, result); | 
 |   } | 
 |  | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   __ cmp(input, Operand::Zero()); | 
 |   __ Move(result, input, pl); | 
 |   // We can make rsb conditional because the previous cmp instruction | 
 |   // will clear the V (overflow) flag and rsb won't set this flag | 
 |   // if input is positive. | 
 |   __ rsb(result, input, Operand::Zero(), SetCC, mi); | 
 |   // Deoptimize on overflow. | 
 |   DeoptimizeIf(vs, instr->environment()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathAbs(LMathAbs* instr) { | 
 |   // Class for deferred case. | 
 |   class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LMathAbs* instr_; | 
 |   }; | 
 |  | 
 |   Representation r = instr->hydrogen()->value()->representation(); | 
 |   if (r.IsDouble()) { | 
 |     DwVfpRegister input = ToDoubleRegister(instr->value()); | 
 |     DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |     __ vabs(result, input); | 
 |   } else if (r.IsSmiOrInteger32()) { | 
 |     EmitIntegerMathAbs(instr); | 
 |   } else { | 
 |     // Representation is tagged. | 
 |     DeferredMathAbsTaggedHeapNumber* deferred = | 
 |         new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); | 
 |     Register input = ToRegister(instr->value()); | 
 |     // Smi check. | 
 |     __ JumpIfNotSmi(input, deferred->entry()); | 
 |     // If smi, handle it directly. | 
 |     EmitIntegerMathAbs(instr); | 
 |     __ bind(deferred->exit()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathFloor(LMathFloor* instr) { | 
 |   DwVfpRegister input = ToDoubleRegister(instr->value()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register input_high = scratch0(); | 
 |   Label done, exact; | 
 |  | 
 |   __ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact); | 
 |   DeoptimizeIf(al, instr->environment()); | 
 |  | 
 |   __ bind(&exact); | 
 |   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |     // Test for -0. | 
 |     __ cmp(result, Operand::Zero()); | 
 |     __ b(ne, &done); | 
 |     __ cmp(input_high, Operand::Zero()); | 
 |     DeoptimizeIf(mi, instr->environment()); | 
 |   } | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathRound(LMathRound* instr) { | 
 |   DwVfpRegister input = ToDoubleRegister(instr->value()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp()); | 
 |   DwVfpRegister input_plus_dot_five = double_scratch1; | 
 |   Register input_high = scratch0(); | 
 |   DwVfpRegister dot_five = double_scratch0(); | 
 |   Label convert, done; | 
 |  | 
 |   __ Vmov(dot_five, 0.5, scratch0()); | 
 |   __ vabs(double_scratch1, input); | 
 |   __ VFPCompareAndSetFlags(double_scratch1, dot_five); | 
 |   // If input is in [-0.5, -0], the result is -0. | 
 |   // If input is in [+0, +0.5[, the result is +0. | 
 |   // If the input is +0.5, the result is 1. | 
 |   __ b(hi, &convert);  // Out of [-0.5, +0.5]. | 
 |   if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |     __ VmovHigh(input_high, input); | 
 |     __ cmp(input_high, Operand::Zero()); | 
 |     DeoptimizeIf(mi, instr->environment());  // [-0.5, -0]. | 
 |   } | 
 |   __ VFPCompareAndSetFlags(input, dot_five); | 
 |   __ mov(result, Operand(1), LeaveCC, eq);  // +0.5. | 
 |   // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on | 
 |   // flag kBailoutOnMinusZero. | 
 |   __ mov(result, Operand::Zero(), LeaveCC, ne); | 
 |   __ b(&done); | 
 |  | 
 |   __ bind(&convert); | 
 |   __ vadd(input_plus_dot_five, input, dot_five); | 
 |   // Reuse dot_five (double_scratch0) as we no longer need this value. | 
 |   __ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(), | 
 |                    &done, &done); | 
 |   DeoptimizeIf(al, instr->environment()); | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathSqrt(LMathSqrt* instr) { | 
 |   DwVfpRegister input = ToDoubleRegister(instr->value()); | 
 |   DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |   __ vsqrt(result, input); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { | 
 |   DwVfpRegister input = ToDoubleRegister(instr->value()); | 
 |   DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |   DwVfpRegister temp = ToDoubleRegister(instr->temp()); | 
 |  | 
 |   // Note that according to ECMA-262 15.8.2.13: | 
 |   // Math.pow(-Infinity, 0.5) == Infinity | 
 |   // Math.sqrt(-Infinity) == NaN | 
 |   Label done; | 
 |   __ vmov(temp, -V8_INFINITY, scratch0()); | 
 |   __ VFPCompareAndSetFlags(input, temp); | 
 |   __ vneg(result, temp, eq); | 
 |   __ b(&done, eq); | 
 |  | 
 |   // Add +0 to convert -0 to +0. | 
 |   __ vadd(result, input, kDoubleRegZero); | 
 |   __ vsqrt(result, result); | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoPower(LPower* instr) { | 
 |   Representation exponent_type = instr->hydrogen()->right()->representation(); | 
 |   // Having marked this as a call, we can use any registers. | 
 |   // Just make sure that the input/output registers are the expected ones. | 
 |   ASSERT(!instr->right()->IsDoubleRegister() || | 
 |          ToDoubleRegister(instr->right()).is(d2)); | 
 |   ASSERT(!instr->right()->IsRegister() || | 
 |          ToRegister(instr->right()).is(r2)); | 
 |   ASSERT(ToDoubleRegister(instr->left()).is(d1)); | 
 |   ASSERT(ToDoubleRegister(instr->result()).is(d3)); | 
 |  | 
 |   if (exponent_type.IsSmi()) { | 
 |     MathPowStub stub(MathPowStub::TAGGED); | 
 |     __ CallStub(&stub); | 
 |   } else if (exponent_type.IsTagged()) { | 
 |     Label no_deopt; | 
 |     __ JumpIfSmi(r2, &no_deopt); | 
 |     __ ldr(r6, FieldMemOperand(r2, HeapObject::kMapOffset)); | 
 |     __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | 
 |     __ cmp(r6, Operand(ip)); | 
 |     DeoptimizeIf(ne, instr->environment()); | 
 |     __ bind(&no_deopt); | 
 |     MathPowStub stub(MathPowStub::TAGGED); | 
 |     __ CallStub(&stub); | 
 |   } else if (exponent_type.IsInteger32()) { | 
 |     MathPowStub stub(MathPowStub::INTEGER); | 
 |     __ CallStub(&stub); | 
 |   } else { | 
 |     ASSERT(exponent_type.IsDouble()); | 
 |     MathPowStub stub(MathPowStub::DOUBLE); | 
 |     __ CallStub(&stub); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoRandom(LRandom* instr) { | 
 |   // Assert that the register size is indeed the size of each seed. | 
 |   static const int kSeedSize = sizeof(uint32_t); | 
 |   STATIC_ASSERT(kPointerSize == kSeedSize); | 
 |  | 
 |   // Load native context | 
 |   Register global_object = ToRegister(instr->global_object()); | 
 |   Register native_context = global_object; | 
 |   __ ldr(native_context, FieldMemOperand( | 
 |           global_object, GlobalObject::kNativeContextOffset)); | 
 |  | 
 |   // Load state (FixedArray of the native context's random seeds) | 
 |   static const int kRandomSeedOffset = | 
 |       FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize; | 
 |   Register state = native_context; | 
 |   __ ldr(state, FieldMemOperand(native_context, kRandomSeedOffset)); | 
 |  | 
 |   // Load state[0]. | 
 |   Register state0 = ToRegister(instr->scratch()); | 
 |   __ ldr(state0, FieldMemOperand(state, ByteArray::kHeaderSize)); | 
 |   // Load state[1]. | 
 |   Register state1 = ToRegister(instr->scratch2()); | 
 |   __ ldr(state1, FieldMemOperand(state, ByteArray::kHeaderSize + kSeedSize)); | 
 |  | 
 |   // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16) | 
 |   Register scratch3 = ToRegister(instr->scratch3()); | 
 |   Register scratch4 = scratch0(); | 
 |   __ and_(scratch3, state0, Operand(0xFFFF)); | 
 |   __ mov(scratch4, Operand(18273)); | 
 |   __ mul(scratch3, scratch3, scratch4); | 
 |   __ add(state0, scratch3, Operand(state0, LSR, 16)); | 
 |   // Save state[0]. | 
 |   __ str(state0, FieldMemOperand(state, ByteArray::kHeaderSize)); | 
 |  | 
 |   // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16) | 
 |   __ and_(scratch3, state1, Operand(0xFFFF)); | 
 |   __ mov(scratch4, Operand(36969)); | 
 |   __ mul(scratch3, scratch3, scratch4); | 
 |   __ add(state1, scratch3, Operand(state1, LSR, 16)); | 
 |   // Save state[1]. | 
 |   __ str(state1, FieldMemOperand(state, ByteArray::kHeaderSize + kSeedSize)); | 
 |  | 
 |   // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF) | 
 |   Register random = scratch4; | 
 |   __ and_(random, state1, Operand(0x3FFFF)); | 
 |   __ add(random, random, Operand(state0, LSL, 14)); | 
 |  | 
 |   // 0x41300000 is the top half of 1.0 x 2^20 as a double. | 
 |   // Create this constant using mov/orr to avoid PC relative load. | 
 |   __ mov(scratch3, Operand(0x41000000)); | 
 |   __ orr(scratch3, scratch3, Operand(0x300000)); | 
 |   // Move 0x41300000xxxxxxxx (x = random bits) to VFP. | 
 |   DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |   __ vmov(result, random, scratch3); | 
 |   // Move 0x4130000000000000 to VFP. | 
 |   __ mov(scratch4, Operand::Zero()); | 
 |   DwVfpRegister scratch5 = double_scratch0(); | 
 |   __ vmov(scratch5, scratch4, scratch3); | 
 |   __ vsub(result, result, scratch5); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathExp(LMathExp* instr) { | 
 |   DwVfpRegister input = ToDoubleRegister(instr->value()); | 
 |   DwVfpRegister result = ToDoubleRegister(instr->result()); | 
 |   DwVfpRegister double_scratch1 = ToDoubleRegister(instr->double_temp()); | 
 |   DwVfpRegister double_scratch2 = double_scratch0(); | 
 |   Register temp1 = ToRegister(instr->temp1()); | 
 |   Register temp2 = ToRegister(instr->temp2()); | 
 |  | 
 |   MathExpGenerator::EmitMathExp( | 
 |       masm(), input, result, double_scratch1, double_scratch2, | 
 |       temp1, temp2, scratch0()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathLog(LMathLog* instr) { | 
 |   ASSERT(ToDoubleRegister(instr->result()).is(d2)); | 
 |   // Set the context register to a GC-safe fake value. Clobbering it is | 
 |   // OK because this instruction is marked as a call. | 
 |   __ mov(cp, Operand::Zero()); | 
 |   TranscendentalCacheStub stub(TranscendentalCache::LOG, | 
 |                                TranscendentalCacheStub::UNTAGGED); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathTan(LMathTan* instr) { | 
 |   ASSERT(ToDoubleRegister(instr->result()).is(d2)); | 
 |   // Set the context register to a GC-safe fake value. Clobbering it is | 
 |   // OK because this instruction is marked as a call. | 
 |   __ mov(cp, Operand::Zero()); | 
 |   TranscendentalCacheStub stub(TranscendentalCache::TAN, | 
 |                                TranscendentalCacheStub::UNTAGGED); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathCos(LMathCos* instr) { | 
 |   ASSERT(ToDoubleRegister(instr->result()).is(d2)); | 
 |   // Set the context register to a GC-safe fake value. Clobbering it is | 
 |   // OK because this instruction is marked as a call. | 
 |   __ mov(cp, Operand::Zero()); | 
 |   TranscendentalCacheStub stub(TranscendentalCache::COS, | 
 |                                TranscendentalCacheStub::UNTAGGED); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoMathSin(LMathSin* instr) { | 
 |   ASSERT(ToDoubleRegister(instr->result()).is(d2)); | 
 |   // Set the context register to a GC-safe fake value. Clobbering it is | 
 |   // OK because this instruction is marked as a call. | 
 |   __ mov(cp, Operand::Zero()); | 
 |   TranscendentalCacheStub stub(TranscendentalCache::SIN, | 
 |                                TranscendentalCacheStub::UNTAGGED); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->function()).is(r1)); | 
 |   ASSERT(instr->HasPointerMap()); | 
 |  | 
 |   Handle<JSFunction> known_function = instr->hydrogen()->known_function(); | 
 |   if (known_function.is_null()) { | 
 |     LPointerMap* pointers = instr->pointer_map(); | 
 |     RecordPosition(pointers->position()); | 
 |     SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); | 
 |     ParameterCount count(instr->arity()); | 
 |     __ InvokeFunction(r1, count, CALL_FUNCTION, generator, CALL_AS_METHOD); | 
 |   } else { | 
 |     CallKnownFunction(known_function, | 
 |                       instr->hydrogen()->formal_parameter_count(), | 
 |                       instr->arity(), | 
 |                       instr, | 
 |                       CALL_AS_METHOD, | 
 |                       R1_CONTAINS_TARGET); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallKeyed(LCallKeyed* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   int arity = instr->arity(); | 
 |   Handle<Code> ic = | 
 |       isolate()->stub_cache()->ComputeKeyedCallInitialize(arity); | 
 |   CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallNamed(LCallNamed* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   int arity = instr->arity(); | 
 |   RelocInfo::Mode mode = RelocInfo::CODE_TARGET; | 
 |   Handle<Code> ic = | 
 |       isolate()->stub_cache()->ComputeCallInitialize(arity, mode); | 
 |   __ mov(r2, Operand(instr->name())); | 
 |   CallCode(ic, mode, instr, NEVER_INLINE_TARGET_ADDRESS); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallFunction(LCallFunction* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->function()).is(r1)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   int arity = instr->arity(); | 
 |   CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallGlobal(LCallGlobal* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   int arity = instr->arity(); | 
 |   RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT; | 
 |   Handle<Code> ic = | 
 |       isolate()->stub_cache()->ComputeCallInitialize(arity, mode); | 
 |   __ mov(r2, Operand(instr->name())); | 
 |   CallCode(ic, mode, instr, NEVER_INLINE_TARGET_ADDRESS); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) { | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |   CallKnownFunction(instr->hydrogen()->target(), | 
 |                     instr->hydrogen()->formal_parameter_count(), | 
 |                     instr->arity(), | 
 |                     instr, | 
 |                     CALL_AS_FUNCTION, | 
 |                     R1_UNINITIALIZED); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallNew(LCallNew* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->constructor()).is(r1)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   __ mov(r0, Operand(instr->arity())); | 
 |   // No cell in r2 for construct type feedback in optimized code | 
 |   Handle<Object> undefined_value(isolate()->factory()->undefined_value()); | 
 |   __ mov(r2, Operand(undefined_value)); | 
 |   CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallNewArray(LCallNewArray* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->constructor()).is(r1)); | 
 |   ASSERT(ToRegister(instr->result()).is(r0)); | 
 |  | 
 |   __ mov(r0, Operand(instr->arity())); | 
 |   __ mov(r2, Operand(instr->hydrogen()->property_cell())); | 
 |   ElementsKind kind = instr->hydrogen()->elements_kind(); | 
 |   AllocationSiteOverrideMode override_mode = | 
 |       (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) | 
 |           ? DISABLE_ALLOCATION_SITES | 
 |           : DONT_OVERRIDE; | 
 |   ContextCheckMode context_mode = CONTEXT_CHECK_NOT_REQUIRED; | 
 |  | 
 |   if (instr->arity() == 0) { | 
 |     ArrayNoArgumentConstructorStub stub(kind, context_mode, override_mode); | 
 |     CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); | 
 |   } else if (instr->arity() == 1) { | 
 |     Label done; | 
 |     if (IsFastPackedElementsKind(kind)) { | 
 |       Label packed_case; | 
 |       // We might need a change here | 
 |       // look at the first argument | 
 |       __ ldr(r5, MemOperand(sp, 0)); | 
 |       __ cmp(r5, Operand::Zero()); | 
 |       __ b(eq, &packed_case); | 
 |  | 
 |       ElementsKind holey_kind = GetHoleyElementsKind(kind); | 
 |       ArraySingleArgumentConstructorStub stub(holey_kind, context_mode, | 
 |                                               override_mode); | 
 |       CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); | 
 |       __ jmp(&done); | 
 |       __ bind(&packed_case); | 
 |     } | 
 |  | 
 |     ArraySingleArgumentConstructorStub stub(kind, context_mode, override_mode); | 
 |     CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); | 
 |     __ bind(&done); | 
 |   } else { | 
 |     ArrayNArgumentsConstructorStub stub(kind, context_mode, override_mode); | 
 |     CallCode(stub.GetCode(isolate()), RelocInfo::CONSTRUCT_CALL, instr); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCallRuntime(LCallRuntime* instr) { | 
 |   CallRuntime(instr->function(), instr->arity(), instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { | 
 |   Register function = ToRegister(instr->function()); | 
 |   Register code_object = ToRegister(instr->code_object()); | 
 |   __ add(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); | 
 |   __ str(code_object, | 
 |          FieldMemOperand(function, JSFunction::kCodeEntryOffset)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register base = ToRegister(instr->base_object()); | 
 |   __ add(result, base, Operand(instr->offset())); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { | 
 |   Representation representation = instr->representation(); | 
 |  | 
 |   Register object = ToRegister(instr->object()); | 
 |   Register scratch = scratch0(); | 
 |   HObjectAccess access = instr->hydrogen()->access(); | 
 |   int offset = access.offset(); | 
 |  | 
 |   if (access.IsExternalMemory()) { | 
 |     Register value = ToRegister(instr->value()); | 
 |     __ str(value, MemOperand(object, offset)); | 
 |     return; | 
 |   } | 
 |  | 
 |   Handle<Map> transition = instr->transition(); | 
 |  | 
 |   if (FLAG_track_heap_object_fields && representation.IsHeapObject()) { | 
 |     Register value = ToRegister(instr->value()); | 
 |     if (!instr->hydrogen()->value()->type().IsHeapObject()) { | 
 |       __ SmiTst(value); | 
 |       DeoptimizeIf(eq, instr->environment()); | 
 |     } | 
 |   } else if (FLAG_track_double_fields && representation.IsDouble()) { | 
 |     ASSERT(transition.is_null()); | 
 |     ASSERT(access.IsInobject()); | 
 |     ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); | 
 |     DwVfpRegister value = ToDoubleRegister(instr->value()); | 
 |     __ vstr(value, FieldMemOperand(object, offset)); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!transition.is_null()) { | 
 |     __ mov(scratch, Operand(transition)); | 
 |     __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |     if (instr->hydrogen()->NeedsWriteBarrierForMap()) { | 
 |       Register temp = ToRegister(instr->temp()); | 
 |       // Update the write barrier for the map field. | 
 |       __ RecordWriteField(object, | 
 |                           HeapObject::kMapOffset, | 
 |                           scratch, | 
 |                           temp, | 
 |                           GetLinkRegisterState(), | 
 |                           kSaveFPRegs, | 
 |                           OMIT_REMEMBERED_SET, | 
 |                           OMIT_SMI_CHECK); | 
 |     } | 
 |   } | 
 |  | 
 |   // Do the store. | 
 |   Register value = ToRegister(instr->value()); | 
 |   ASSERT(!object.is(value)); | 
 |   SmiCheck check_needed = | 
 |       instr->hydrogen()->value()->IsHeapObject() | 
 |           ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | 
 |   if (access.IsInobject()) { | 
 |     __ str(value, FieldMemOperand(object, offset)); | 
 |     if (instr->hydrogen()->NeedsWriteBarrier()) { | 
 |       // Update the write barrier for the object for in-object properties. | 
 |       __ RecordWriteField(object, | 
 |                           offset, | 
 |                           value, | 
 |                           scratch, | 
 |                           GetLinkRegisterState(), | 
 |                           kSaveFPRegs, | 
 |                           EMIT_REMEMBERED_SET, | 
 |                           check_needed); | 
 |     } | 
 |   } else { | 
 |     __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); | 
 |     __ str(value, FieldMemOperand(scratch, offset)); | 
 |     if (instr->hydrogen()->NeedsWriteBarrier()) { | 
 |       // Update the write barrier for the properties array. | 
 |       // object is used as a scratch register. | 
 |       __ RecordWriteField(scratch, | 
 |                           offset, | 
 |                           value, | 
 |                           object, | 
 |                           GetLinkRegisterState(), | 
 |                           kSaveFPRegs, | 
 |                           EMIT_REMEMBERED_SET, | 
 |                           check_needed); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->object()).is(r1)); | 
 |   ASSERT(ToRegister(instr->value()).is(r0)); | 
 |  | 
 |   // Name is always in r2. | 
 |   __ mov(r2, Operand(instr->name())); | 
 |   Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) | 
 |       ? isolate()->builtins()->StoreIC_Initialize_Strict() | 
 |       : isolate()->builtins()->StoreIC_Initialize(); | 
 |   CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::ApplyCheckIf(Condition condition, LBoundsCheck* check) { | 
 |   if (FLAG_debug_code && check->hydrogen()->skip_check()) { | 
 |     Label done; | 
 |     __ b(NegateCondition(condition), &done); | 
 |     __ stop("eliminated bounds check failed"); | 
 |     __ bind(&done); | 
 |   } else { | 
 |     DeoptimizeIf(condition, check->environment()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { | 
 |   if (instr->hydrogen()->skip_check()) return; | 
 |  | 
 |   if (instr->index()->IsConstantOperand()) { | 
 |     int constant_index = | 
 |         ToInteger32(LConstantOperand::cast(instr->index())); | 
 |     if (instr->hydrogen()->length()->representation().IsSmi()) { | 
 |       __ mov(ip, Operand(Smi::FromInt(constant_index))); | 
 |     } else { | 
 |       __ mov(ip, Operand(constant_index)); | 
 |     } | 
 |     __ cmp(ip, ToRegister(instr->length())); | 
 |   } else { | 
 |     __ cmp(ToRegister(instr->index()), ToRegister(instr->length())); | 
 |   } | 
 |   Condition condition = instr->hydrogen()->allow_equality() ? hi : hs; | 
 |   ApplyCheckIf(condition, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { | 
 |   Register external_pointer = ToRegister(instr->elements()); | 
 |   Register key = no_reg; | 
 |   ElementsKind elements_kind = instr->elements_kind(); | 
 |   bool key_is_constant = instr->key()->IsConstantOperand(); | 
 |   int constant_key = 0; | 
 |   if (key_is_constant) { | 
 |     constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | 
 |     if (constant_key & 0xF0000000) { | 
 |       Abort(kArrayIndexConstantValueTooBig); | 
 |     } | 
 |   } else { | 
 |     key = ToRegister(instr->key()); | 
 |   } | 
 |   int element_size_shift = ElementsKindToShiftSize(elements_kind); | 
 |   int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) | 
 |       ? (element_size_shift - kSmiTagSize) : element_size_shift; | 
 |   int additional_offset = instr->additional_index() << element_size_shift; | 
 |  | 
 |   if (elements_kind == EXTERNAL_FLOAT_ELEMENTS || | 
 |       elements_kind == EXTERNAL_DOUBLE_ELEMENTS) { | 
 |     Register address = scratch0(); | 
 |     DwVfpRegister value(ToDoubleRegister(instr->value())); | 
 |     if (key_is_constant) { | 
 |       if (constant_key != 0) { | 
 |         __ add(address, external_pointer, | 
 |                Operand(constant_key << element_size_shift)); | 
 |       } else { | 
 |         address = external_pointer; | 
 |       } | 
 |     } else { | 
 |       __ add(address, external_pointer, Operand(key, LSL, shift_size)); | 
 |     } | 
 |     if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) { | 
 |       __ vcvt_f32_f64(double_scratch0().low(), value); | 
 |       __ vstr(double_scratch0().low(), address, additional_offset); | 
 |     } else {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS | 
 |       __ vstr(value, address, additional_offset); | 
 |     } | 
 |   } else { | 
 |     Register value(ToRegister(instr->value())); | 
 |     MemOperand mem_operand = PrepareKeyedOperand( | 
 |         key, external_pointer, key_is_constant, constant_key, | 
 |         element_size_shift, shift_size, | 
 |         instr->additional_index(), additional_offset); | 
 |     switch (elements_kind) { | 
 |       case EXTERNAL_PIXEL_ELEMENTS: | 
 |       case EXTERNAL_BYTE_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_BYTE_ELEMENTS: | 
 |         __ strb(value, mem_operand); | 
 |         break; | 
 |       case EXTERNAL_SHORT_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_SHORT_ELEMENTS: | 
 |         __ strh(value, mem_operand); | 
 |         break; | 
 |       case EXTERNAL_INT_ELEMENTS: | 
 |       case EXTERNAL_UNSIGNED_INT_ELEMENTS: | 
 |         __ str(value, mem_operand); | 
 |         break; | 
 |       case EXTERNAL_FLOAT_ELEMENTS: | 
 |       case EXTERNAL_DOUBLE_ELEMENTS: | 
 |       case FAST_DOUBLE_ELEMENTS: | 
 |       case FAST_ELEMENTS: | 
 |       case FAST_SMI_ELEMENTS: | 
 |       case FAST_HOLEY_DOUBLE_ELEMENTS: | 
 |       case FAST_HOLEY_ELEMENTS: | 
 |       case FAST_HOLEY_SMI_ELEMENTS: | 
 |       case DICTIONARY_ELEMENTS: | 
 |       case NON_STRICT_ARGUMENTS_ELEMENTS: | 
 |         UNREACHABLE(); | 
 |         break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { | 
 |   DwVfpRegister value = ToDoubleRegister(instr->value()); | 
 |   Register elements = ToRegister(instr->elements()); | 
 |   Register scratch = scratch0(); | 
 |   DwVfpRegister double_scratch = double_scratch0(); | 
 |   bool key_is_constant = instr->key()->IsConstantOperand(); | 
 |  | 
 |   // Calculate the effective address of the slot in the array to store the | 
 |   // double value. | 
 |   int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); | 
 |   if (key_is_constant) { | 
 |     int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); | 
 |     if (constant_key & 0xF0000000) { | 
 |       Abort(kArrayIndexConstantValueTooBig); | 
 |     } | 
 |     __ add(scratch, elements, | 
 |            Operand((constant_key << element_size_shift) + | 
 |                    FixedDoubleArray::kHeaderSize - kHeapObjectTag)); | 
 |   } else { | 
 |     int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) | 
 |         ? (element_size_shift - kSmiTagSize) : element_size_shift; | 
 |     __ add(scratch, elements, | 
 |            Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); | 
 |     __ add(scratch, scratch, | 
 |            Operand(ToRegister(instr->key()), LSL, shift_size)); | 
 |   } | 
 |  | 
 |   if (instr->NeedsCanonicalization()) { | 
 |     // Force a canonical NaN. | 
 |     if (masm()->emit_debug_code()) { | 
 |       __ vmrs(ip); | 
 |       __ tst(ip, Operand(kVFPDefaultNaNModeControlBit)); | 
 |       __ Assert(ne, kDefaultNaNModeNotSet); | 
 |     } | 
 |     __ VFPCanonicalizeNaN(double_scratch, value); | 
 |     __ vstr(double_scratch, scratch, | 
 |             instr->additional_index() << element_size_shift); | 
 |   } else { | 
 |     __ vstr(value, scratch, instr->additional_index() << element_size_shift); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { | 
 |   Register value = ToRegister(instr->value()); | 
 |   Register elements = ToRegister(instr->elements()); | 
 |   Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) | 
 |       : no_reg; | 
 |   Register scratch = scratch0(); | 
 |   Register store_base = scratch; | 
 |   int offset = 0; | 
 |  | 
 |   // Do the store. | 
 |   if (instr->key()->IsConstantOperand()) { | 
 |     ASSERT(!instr->hydrogen()->NeedsWriteBarrier()); | 
 |     LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); | 
 |     offset = FixedArray::OffsetOfElementAt(ToInteger32(const_operand) + | 
 |                                            instr->additional_index()); | 
 |     store_base = elements; | 
 |   } else { | 
 |     // Even though the HLoadKeyed instruction forces the input | 
 |     // representation for the key to be an integer, the input gets replaced | 
 |     // during bound check elimination with the index argument to the bounds | 
 |     // check, which can be tagged, so that case must be handled here, too. | 
 |     if (instr->hydrogen()->key()->representation().IsSmi()) { | 
 |       __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key)); | 
 |     } else { | 
 |       __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); | 
 |     } | 
 |     offset = FixedArray::OffsetOfElementAt(instr->additional_index()); | 
 |   } | 
 |   __ str(value, FieldMemOperand(store_base, offset)); | 
 |  | 
 |   if (instr->hydrogen()->NeedsWriteBarrier()) { | 
 |     SmiCheck check_needed = | 
 |         instr->hydrogen()->value()->IsHeapObject() | 
 |             ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; | 
 |     // Compute address of modified element and store it into key register. | 
 |     __ add(key, store_base, Operand(offset - kHeapObjectTag)); | 
 |     __ RecordWrite(elements, | 
 |                    key, | 
 |                    value, | 
 |                    GetLinkRegisterState(), | 
 |                    kSaveFPRegs, | 
 |                    EMIT_REMEMBERED_SET, | 
 |                    check_needed); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { | 
 |   // By cases: external, fast double | 
 |   if (instr->is_external()) { | 
 |     DoStoreKeyedExternalArray(instr); | 
 |   } else if (instr->hydrogen()->value()->representation().IsDouble()) { | 
 |     DoStoreKeyedFixedDoubleArray(instr); | 
 |   } else { | 
 |     DoStoreKeyedFixedArray(instr); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   ASSERT(ToRegister(instr->object()).is(r2)); | 
 |   ASSERT(ToRegister(instr->key()).is(r1)); | 
 |   ASSERT(ToRegister(instr->value()).is(r0)); | 
 |  | 
 |   Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode) | 
 |       ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() | 
 |       : isolate()->builtins()->KeyedStoreIC_Initialize(); | 
 |   CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { | 
 |   Register object_reg = ToRegister(instr->object()); | 
 |   Register scratch = scratch0(); | 
 |  | 
 |   Handle<Map> from_map = instr->original_map(); | 
 |   Handle<Map> to_map = instr->transitioned_map(); | 
 |   ElementsKind from_kind = instr->from_kind(); | 
 |   ElementsKind to_kind = instr->to_kind(); | 
 |  | 
 |   Label not_applicable; | 
 |   __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); | 
 |   __ cmp(scratch, Operand(from_map)); | 
 |   __ b(ne, ¬_applicable); | 
 |  | 
 |   if (IsSimpleMapChangeTransition(from_kind, to_kind)) { | 
 |     Register new_map_reg = ToRegister(instr->new_map_temp()); | 
 |     __ mov(new_map_reg, Operand(to_map)); | 
 |     __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); | 
 |     // Write barrier. | 
 |     __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg, | 
 |                         scratch, GetLinkRegisterState(), kDontSaveFPRegs); | 
 |   } else { | 
 |     ASSERT(ToRegister(instr->context()).is(cp)); | 
 |     PushSafepointRegistersScope scope( | 
 |         this, Safepoint::kWithRegistersAndDoubles); | 
 |     __ Move(r0, object_reg); | 
 |     __ Move(r1, to_map); | 
 |     TransitionElementsKindStub stub(from_kind, to_kind); | 
 |     __ CallStub(&stub); | 
 |     RecordSafepointWithRegistersAndDoubles( | 
 |         instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | 
 |   } | 
 |   __ bind(¬_applicable); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { | 
 |   Register object = ToRegister(instr->object()); | 
 |   Register temp = ToRegister(instr->temp()); | 
 |   __ TestJSArrayForAllocationMemento(object, temp); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStringAdd(LStringAdd* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   __ push(ToRegister(instr->left())); | 
 |   __ push(ToRegister(instr->right())); | 
 |   StringAddStub stub(instr->hydrogen()->flags()); | 
 |   CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { | 
 |   class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredStringCharCodeAt(instr_); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LStringCharCodeAt* instr_; | 
 |   }; | 
 |  | 
 |   DeferredStringCharCodeAt* deferred = | 
 |       new(zone()) DeferredStringCharCodeAt(this, instr); | 
 |  | 
 |   StringCharLoadGenerator::Generate(masm(), | 
 |                                     ToRegister(instr->string()), | 
 |                                     ToRegister(instr->index()), | 
 |                                     ToRegister(instr->result()), | 
 |                                     deferred->entry()); | 
 |   __ bind(deferred->exit()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { | 
 |   Register string = ToRegister(instr->string()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register scratch = scratch0(); | 
 |  | 
 |   // TODO(3095996): Get rid of this. For now, we need to make the | 
 |   // result register contain a valid pointer because it is already | 
 |   // contained in the register pointer map. | 
 |   __ mov(result, Operand::Zero()); | 
 |  | 
 |   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |   __ push(string); | 
 |   // Push the index as a smi. This is safe because of the checks in | 
 |   // DoStringCharCodeAt above. | 
 |   if (instr->index()->IsConstantOperand()) { | 
 |     int const_index = ToInteger32(LConstantOperand::cast(instr->index())); | 
 |     __ mov(scratch, Operand(Smi::FromInt(const_index))); | 
 |     __ push(scratch); | 
 |   } else { | 
 |     Register index = ToRegister(instr->index()); | 
 |     __ SmiTag(index); | 
 |     __ push(index); | 
 |   } | 
 |   CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr, | 
 |                           instr->context()); | 
 |   __ AssertSmi(r0); | 
 |   __ SmiUntag(r0); | 
 |   __ StoreToSafepointRegisterSlot(r0, result); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { | 
 |   class DeferredStringCharFromCode V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredStringCharFromCode(instr_); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LStringCharFromCode* instr_; | 
 |   }; | 
 |  | 
 |   DeferredStringCharFromCode* deferred = | 
 |       new(zone()) DeferredStringCharFromCode(this, instr); | 
 |  | 
 |   ASSERT(instr->hydrogen()->value()->representation().IsInteger32()); | 
 |   Register char_code = ToRegister(instr->char_code()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   ASSERT(!char_code.is(result)); | 
 |  | 
 |   __ cmp(char_code, Operand(String::kMaxOneByteCharCode)); | 
 |   __ b(hi, deferred->entry()); | 
 |   __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); | 
 |   __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2)); | 
 |   __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize)); | 
 |   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | 
 |   __ cmp(result, ip); | 
 |   __ b(eq, deferred->entry()); | 
 |   __ bind(deferred->exit()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { | 
 |   Register char_code = ToRegister(instr->char_code()); | 
 |   Register result = ToRegister(instr->result()); | 
 |  | 
 |   // TODO(3095996): Get rid of this. For now, we need to make the | 
 |   // result register contain a valid pointer because it is already | 
 |   // contained in the register pointer map. | 
 |   __ mov(result, Operand::Zero()); | 
 |  | 
 |   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |   __ SmiTag(char_code); | 
 |   __ push(char_code); | 
 |   CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); | 
 |   __ StoreToSafepointRegisterSlot(r0, result); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { | 
 |   LOperand* input = instr->value(); | 
 |   ASSERT(input->IsRegister() || input->IsStackSlot()); | 
 |   LOperand* output = instr->result(); | 
 |   ASSERT(output->IsDoubleRegister()); | 
 |   SwVfpRegister single_scratch = double_scratch0().low(); | 
 |   if (input->IsStackSlot()) { | 
 |     Register scratch = scratch0(); | 
 |     __ ldr(scratch, ToMemOperand(input)); | 
 |     __ vmov(single_scratch, scratch); | 
 |   } else { | 
 |     __ vmov(single_scratch, ToRegister(input)); | 
 |   } | 
 |   __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoInteger32ToSmi(LInteger32ToSmi* instr) { | 
 |   LOperand* input = instr->value(); | 
 |   ASSERT(input->IsRegister()); | 
 |   LOperand* output = instr->result(); | 
 |   ASSERT(output->IsRegister()); | 
 |   __ SmiTag(ToRegister(output), ToRegister(input), SetCC); | 
 |   if (!instr->hydrogen()->value()->HasRange() || | 
 |       !instr->hydrogen()->value()->range()->IsInSmiRange()) { | 
 |     DeoptimizeIf(vs, instr->environment()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { | 
 |   LOperand* input = instr->value(); | 
 |   LOperand* output = instr->result(); | 
 |  | 
 |   SwVfpRegister flt_scratch = double_scratch0().low(); | 
 |   __ vmov(flt_scratch, ToRegister(input)); | 
 |   __ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoNumberTagI(LNumberTagI* instr) { | 
 |   class DeferredNumberTagI V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredNumberTagI(instr_, | 
 |                                       instr_->value(), | 
 |                                       SIGNED_INT32); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LNumberTagI* instr_; | 
 |   }; | 
 |  | 
 |   Register src = ToRegister(instr->value()); | 
 |   Register dst = ToRegister(instr->result()); | 
 |  | 
 |   DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr); | 
 |   __ SmiTag(dst, src, SetCC); | 
 |   __ b(vs, deferred->entry()); | 
 |   __ bind(deferred->exit()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoNumberTagU(LNumberTagU* instr) { | 
 |   class DeferredNumberTagU V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredNumberTagI(instr_, | 
 |                                       instr_->value(), | 
 |                                       UNSIGNED_INT32); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LNumberTagU* instr_; | 
 |   }; | 
 |  | 
 |   LOperand* input = instr->value(); | 
 |   ASSERT(input->IsRegister() && input->Equals(instr->result())); | 
 |   Register reg = ToRegister(input); | 
 |  | 
 |   DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); | 
 |   __ cmp(reg, Operand(Smi::kMaxValue)); | 
 |   __ b(hi, deferred->entry()); | 
 |   __ SmiTag(reg, reg); | 
 |   __ bind(deferred->exit()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredNumberTagI(LInstruction* instr, | 
 |                                     LOperand* value, | 
 |                                     IntegerSignedness signedness) { | 
 |   Label slow; | 
 |   Register src = ToRegister(value); | 
 |   Register dst = ToRegister(instr->result()); | 
 |   LowDwVfpRegister dbl_scratch = double_scratch0(); | 
 |  | 
 |   // Preserve the value of all registers. | 
 |   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |  | 
 |   Label done; | 
 |   if (signedness == SIGNED_INT32) { | 
 |     // There was overflow, so bits 30 and 31 of the original integer | 
 |     // disagree. Try to allocate a heap number in new space and store | 
 |     // the value in there. If that fails, call the runtime system. | 
 |     if (dst.is(src)) { | 
 |       __ SmiUntag(src, dst); | 
 |       __ eor(src, src, Operand(0x80000000)); | 
 |     } | 
 |     __ vmov(dbl_scratch.low(), src); | 
 |     __ vcvt_f64_s32(dbl_scratch, dbl_scratch.low()); | 
 |   } else { | 
 |     __ vmov(dbl_scratch.low(), src); | 
 |     __ vcvt_f64_u32(dbl_scratch, dbl_scratch.low()); | 
 |   } | 
 |  | 
 |   if (FLAG_inline_new) { | 
 |     __ LoadRoot(scratch0(), Heap::kHeapNumberMapRootIndex); | 
 |     __ AllocateHeapNumber(r5, r3, r4, scratch0(), &slow, DONT_TAG_RESULT); | 
 |     __ Move(dst, r5); | 
 |     __ b(&done); | 
 |   } | 
 |  | 
 |   // Slow case: Call the runtime system to do the number allocation. | 
 |   __ bind(&slow); | 
 |  | 
 |   // TODO(3095996): Put a valid pointer value in the stack slot where the result | 
 |   // register is stored, as this register is in the pointer map, but contains an | 
 |   // integer value. | 
 |   __ mov(ip, Operand::Zero()); | 
 |   __ StoreToSafepointRegisterSlot(ip, dst); | 
 |   // NumberTagI and NumberTagD use the context from the frame, rather than | 
 |   // the environment's HContext or HInlinedContext value. | 
 |   // They only call Runtime::kAllocateHeapNumber. | 
 |   // The corresponding HChange instructions are added in a phase that does | 
 |   // not have easy access to the local context. | 
 |   __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | 
 |   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | 
 |   RecordSafepointWithRegisters( | 
 |       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | 
 |   __ Move(dst, r0); | 
 |   __ sub(dst, dst, Operand(kHeapObjectTag)); | 
 |  | 
 |   // Done. Put the value in dbl_scratch into the value of the allocated heap | 
 |   // number. | 
 |   __ bind(&done); | 
 |   __ vstr(dbl_scratch, dst, HeapNumber::kValueOffset); | 
 |   __ add(dst, dst, Operand(kHeapObjectTag)); | 
 |   __ StoreToSafepointRegisterSlot(dst, dst); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoNumberTagD(LNumberTagD* instr) { | 
 |   class DeferredNumberTagD V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredNumberTagD(instr_); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LNumberTagD* instr_; | 
 |   }; | 
 |  | 
 |   DwVfpRegister input_reg = ToDoubleRegister(instr->value()); | 
 |   Register scratch = scratch0(); | 
 |   Register reg = ToRegister(instr->result()); | 
 |   Register temp1 = ToRegister(instr->temp()); | 
 |   Register temp2 = ToRegister(instr->temp2()); | 
 |  | 
 |   DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); | 
 |   if (FLAG_inline_new) { | 
 |     __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); | 
 |     // We want the untagged address first for performance | 
 |     __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(), | 
 |                           DONT_TAG_RESULT); | 
 |   } else { | 
 |     __ jmp(deferred->entry()); | 
 |   } | 
 |   __ bind(deferred->exit()); | 
 |   __ vstr(input_reg, reg, HeapNumber::kValueOffset); | 
 |   // Now that we have finished with the object's real address tag it | 
 |   __ add(reg, reg, Operand(kHeapObjectTag)); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { | 
 |   // TODO(3095996): Get rid of this. For now, we need to make the | 
 |   // result register contain a valid pointer because it is already | 
 |   // contained in the register pointer map. | 
 |   Register reg = ToRegister(instr->result()); | 
 |   __ mov(reg, Operand::Zero()); | 
 |  | 
 |   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |   // NumberTagI and NumberTagD use the context from the frame, rather than | 
 |   // the environment's HContext or HInlinedContext value. | 
 |   // They only call Runtime::kAllocateHeapNumber. | 
 |   // The corresponding HChange instructions are added in a phase that does | 
 |   // not have easy access to the local context. | 
 |   __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | 
 |   __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); | 
 |   RecordSafepointWithRegisters( | 
 |       instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); | 
 |   __ sub(r0, r0, Operand(kHeapObjectTag)); | 
 |   __ StoreToSafepointRegisterSlot(r0, reg); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoSmiTag(LSmiTag* instr) { | 
 |   ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow)); | 
 |   __ SmiTag(ToRegister(instr->result()), ToRegister(instr->value())); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoSmiUntag(LSmiUntag* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   if (instr->needs_check()) { | 
 |     STATIC_ASSERT(kHeapObjectTag == 1); | 
 |     // If the input is a HeapObject, SmiUntag will set the carry flag. | 
 |     __ SmiUntag(result, input, SetCC); | 
 |     DeoptimizeIf(cs, instr->environment()); | 
 |   } else { | 
 |     __ SmiUntag(result, input); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::EmitNumberUntagD(Register input_reg, | 
 |                                 DwVfpRegister result_reg, | 
 |                                 bool can_convert_undefined_to_nan, | 
 |                                 bool deoptimize_on_minus_zero, | 
 |                                 LEnvironment* env, | 
 |                                 NumberUntagDMode mode) { | 
 |   Register scratch = scratch0(); | 
 |   SwVfpRegister flt_scratch = double_scratch0().low(); | 
 |   ASSERT(!result_reg.is(double_scratch0())); | 
 |   Label convert, load_smi, done; | 
 |   if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { | 
 |     // Smi check. | 
 |     __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); | 
 |     // Heap number map check. | 
 |     __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); | 
 |     __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | 
 |     __ cmp(scratch, Operand(ip)); | 
 |     if (can_convert_undefined_to_nan) { | 
 |       __ b(ne, &convert); | 
 |     } else { | 
 |       DeoptimizeIf(ne, env); | 
 |     } | 
 |     // load heap number | 
 |     __ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag); | 
 |     if (deoptimize_on_minus_zero) { | 
 |       __ VmovLow(scratch, result_reg); | 
 |       __ cmp(scratch, Operand::Zero()); | 
 |       __ b(ne, &done); | 
 |       __ VmovHigh(scratch, result_reg); | 
 |       __ cmp(scratch, Operand(HeapNumber::kSignMask)); | 
 |       DeoptimizeIf(eq, env); | 
 |     } | 
 |     __ jmp(&done); | 
 |     if (can_convert_undefined_to_nan) { | 
 |       __ bind(&convert); | 
 |       // Convert undefined (and hole) to NaN. | 
 |       __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | 
 |       __ cmp(input_reg, Operand(ip)); | 
 |       DeoptimizeIf(ne, env); | 
 |       __ LoadRoot(scratch, Heap::kNanValueRootIndex); | 
 |       __ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag); | 
 |       __ jmp(&done); | 
 |     } | 
 |   } else { | 
 |     __ SmiUntag(scratch, input_reg); | 
 |     ASSERT(mode == NUMBER_CANDIDATE_IS_SMI); | 
 |   } | 
 |   // Smi to double register conversion | 
 |   __ bind(&load_smi); | 
 |   // scratch: untagged value of input_reg | 
 |   __ vmov(flt_scratch, scratch); | 
 |   __ vcvt_f64_s32(result_reg, flt_scratch); | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { | 
 |   Register input_reg = ToRegister(instr->value()); | 
 |   Register scratch1 = scratch0(); | 
 |   Register scratch2 = ToRegister(instr->temp()); | 
 |   LowDwVfpRegister double_scratch = double_scratch0(); | 
 |   DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp2()); | 
 |  | 
 |   ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2)); | 
 |   ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1)); | 
 |  | 
 |   Label done; | 
 |  | 
 |   // The input was optimistically untagged; revert it. | 
 |   // The carry flag is set when we reach this deferred code as we just executed | 
 |   // SmiUntag(heap_object, SetCC) | 
 |   STATIC_ASSERT(kHeapObjectTag == 1); | 
 |   __ adc(scratch2, input_reg, Operand(input_reg)); | 
 |  | 
 |   // Heap number map check. | 
 |   __ ldr(scratch1, FieldMemOperand(scratch2, HeapObject::kMapOffset)); | 
 |   __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | 
 |   __ cmp(scratch1, Operand(ip)); | 
 |  | 
 |   if (instr->truncating()) { | 
 |     // Performs a truncating conversion of a floating point number as used by | 
 |     // the JS bitwise operations. | 
 |     Label heap_number; | 
 |     __ b(eq, &heap_number); | 
 |     // Check for undefined. Undefined is converted to zero for truncating | 
 |     // conversions. | 
 |     __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | 
 |     __ cmp(scratch2, Operand(ip)); | 
 |     DeoptimizeIf(ne, instr->environment()); | 
 |     __ mov(input_reg, Operand::Zero()); | 
 |     __ b(&done); | 
 |  | 
 |     __ bind(&heap_number); | 
 |     __ TruncateHeapNumberToI(input_reg, scratch2); | 
 |   } else { | 
 |     // Deoptimize if we don't have a heap number. | 
 |     DeoptimizeIf(ne, instr->environment()); | 
 |  | 
 |     __ sub(ip, scratch2, Operand(kHeapObjectTag)); | 
 |     __ vldr(double_scratch2, ip, HeapNumber::kValueOffset); | 
 |     __ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch); | 
 |     DeoptimizeIf(ne, instr->environment()); | 
 |  | 
 |     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |       __ cmp(input_reg, Operand::Zero()); | 
 |       __ b(ne, &done); | 
 |       __ VmovHigh(scratch1, double_scratch2); | 
 |       __ tst(scratch1, Operand(HeapNumber::kSignMask)); | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |     } | 
 |   } | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoTaggedToI(LTaggedToI* instr) { | 
 |   class DeferredTaggedToI V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredTaggedToI(instr_); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LTaggedToI* instr_; | 
 |   }; | 
 |  | 
 |   LOperand* input = instr->value(); | 
 |   ASSERT(input->IsRegister()); | 
 |   ASSERT(input->Equals(instr->result())); | 
 |  | 
 |   Register input_reg = ToRegister(input); | 
 |  | 
 |   if (instr->hydrogen()->value()->representation().IsSmi()) { | 
 |     __ SmiUntag(input_reg); | 
 |   } else { | 
 |     DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); | 
 |  | 
 |     // Optimistically untag the input. | 
 |     // If the input is a HeapObject, SmiUntag will set the carry flag. | 
 |     __ SmiUntag(input_reg, SetCC); | 
 |     // Branch to deferred code if the input was tagged. | 
 |     // The deferred code will take care of restoring the tag. | 
 |     __ b(cs, deferred->entry()); | 
 |     __ bind(deferred->exit()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { | 
 |   LOperand* input = instr->value(); | 
 |   ASSERT(input->IsRegister()); | 
 |   LOperand* result = instr->result(); | 
 |   ASSERT(result->IsDoubleRegister()); | 
 |  | 
 |   Register input_reg = ToRegister(input); | 
 |   DwVfpRegister result_reg = ToDoubleRegister(result); | 
 |  | 
 |   HValue* value = instr->hydrogen()->value(); | 
 |   NumberUntagDMode mode = value->representation().IsSmi() | 
 |       ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; | 
 |  | 
 |   EmitNumberUntagD(input_reg, result_reg, | 
 |                    instr->hydrogen()->can_convert_undefined_to_nan(), | 
 |                    instr->hydrogen()->deoptimize_on_minus_zero(), | 
 |                    instr->environment(), | 
 |                    mode); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDoubleToI(LDoubleToI* instr) { | 
 |   Register result_reg = ToRegister(instr->result()); | 
 |   Register scratch1 = scratch0(); | 
 |   DwVfpRegister double_input = ToDoubleRegister(instr->value()); | 
 |   LowDwVfpRegister double_scratch = double_scratch0(); | 
 |  | 
 |   if (instr->truncating()) { | 
 |     __ TruncateDoubleToI(result_reg, double_input); | 
 |   } else { | 
 |     __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch); | 
 |     // Deoptimize if the input wasn't a int32 (inside a double). | 
 |     DeoptimizeIf(ne, instr->environment()); | 
 |     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |       Label done; | 
 |       __ cmp(result_reg, Operand::Zero()); | 
 |       __ b(ne, &done); | 
 |       __ VmovHigh(scratch1, double_input); | 
 |       __ tst(scratch1, Operand(HeapNumber::kSignMask)); | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |       __ bind(&done); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { | 
 |   Register result_reg = ToRegister(instr->result()); | 
 |   Register scratch1 = scratch0(); | 
 |   DwVfpRegister double_input = ToDoubleRegister(instr->value()); | 
 |   LowDwVfpRegister double_scratch = double_scratch0(); | 
 |  | 
 |   if (instr->truncating()) { | 
 |     __ TruncateDoubleToI(result_reg, double_input); | 
 |   } else { | 
 |     __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch); | 
 |     // Deoptimize if the input wasn't a int32 (inside a double). | 
 |     DeoptimizeIf(ne, instr->environment()); | 
 |     if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { | 
 |       Label done; | 
 |       __ cmp(result_reg, Operand::Zero()); | 
 |       __ b(ne, &done); | 
 |       __ VmovHigh(scratch1, double_input); | 
 |       __ tst(scratch1, Operand(HeapNumber::kSignMask)); | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |       __ bind(&done); | 
 |     } | 
 |   } | 
 |   __ SmiTag(result_reg, SetCC); | 
 |   DeoptimizeIf(vs, instr->environment()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCheckSmi(LCheckSmi* instr) { | 
 |   LOperand* input = instr->value(); | 
 |   __ SmiTst(ToRegister(input)); | 
 |   DeoptimizeIf(ne, instr->environment()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { | 
 |   if (!instr->hydrogen()->value()->IsHeapObject()) { | 
 |     LOperand* input = instr->value(); | 
 |     __ SmiTst(ToRegister(input)); | 
 |     DeoptimizeIf(eq, instr->environment()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   Register scratch = scratch0(); | 
 |  | 
 |   __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); | 
 |   __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); | 
 |  | 
 |   if (instr->hydrogen()->is_interval_check()) { | 
 |     InstanceType first; | 
 |     InstanceType last; | 
 |     instr->hydrogen()->GetCheckInterval(&first, &last); | 
 |  | 
 |     __ cmp(scratch, Operand(first)); | 
 |  | 
 |     // If there is only one type in the interval check for equality. | 
 |     if (first == last) { | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |     } else { | 
 |       DeoptimizeIf(lo, instr->environment()); | 
 |       // Omit check for the last type. | 
 |       if (last != LAST_TYPE) { | 
 |         __ cmp(scratch, Operand(last)); | 
 |         DeoptimizeIf(hi, instr->environment()); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     uint8_t mask; | 
 |     uint8_t tag; | 
 |     instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); | 
 |  | 
 |     if (IsPowerOf2(mask)) { | 
 |       ASSERT(tag == 0 || IsPowerOf2(tag)); | 
 |       __ tst(scratch, Operand(mask)); | 
 |       DeoptimizeIf(tag == 0 ? ne : eq, instr->environment()); | 
 |     } else { | 
 |       __ and_(scratch, scratch, Operand(mask)); | 
 |       __ cmp(scratch, Operand(tag)); | 
 |       DeoptimizeIf(ne, instr->environment()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCheckValue(LCheckValue* instr) { | 
 |   Register reg = ToRegister(instr->value()); | 
 |   Handle<HeapObject> object = instr->hydrogen()->object().handle(); | 
 |   AllowDeferredHandleDereference smi_check; | 
 |   if (isolate()->heap()->InNewSpace(*object)) { | 
 |     Register reg = ToRegister(instr->value()); | 
 |     Handle<Cell> cell = isolate()->factory()->NewCell(object); | 
 |     __ mov(ip, Operand(Handle<Object>(cell))); | 
 |     __ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset)); | 
 |     __ cmp(reg, ip); | 
 |   } else { | 
 |     __ cmp(reg, Operand(object)); | 
 |   } | 
 |   DeoptimizeIf(ne, instr->environment()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { | 
 |   { | 
 |     PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |     __ push(object); | 
 |     __ mov(cp, Operand::Zero()); | 
 |     __ CallRuntimeSaveDoubles(Runtime::kMigrateInstance); | 
 |     RecordSafepointWithRegisters( | 
 |         instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); | 
 |     __ StoreToSafepointRegisterSlot(r0, scratch0()); | 
 |   } | 
 |   __ tst(scratch0(), Operand(kSmiTagMask)); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCheckMaps(LCheckMaps* instr) { | 
 |   class DeferredCheckMaps V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) | 
 |         : LDeferredCode(codegen), instr_(instr), object_(object) { | 
 |       SetExit(check_maps()); | 
 |     } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredInstanceMigration(instr_, object_); | 
 |     } | 
 |     Label* check_maps() { return &check_maps_; } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LCheckMaps* instr_; | 
 |     Label check_maps_; | 
 |     Register object_; | 
 |   }; | 
 |  | 
 |   if (instr->hydrogen()->CanOmitMapChecks()) return; | 
 |   Register map_reg = scratch0(); | 
 |  | 
 |   LOperand* input = instr->value(); | 
 |   ASSERT(input->IsRegister()); | 
 |   Register reg = ToRegister(input); | 
 |  | 
 |   __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset)); | 
 |  | 
 |   DeferredCheckMaps* deferred = NULL; | 
 |   if (instr->hydrogen()->has_migration_target()) { | 
 |     deferred = new(zone()) DeferredCheckMaps(this, instr, reg); | 
 |     __ bind(deferred->check_maps()); | 
 |   } | 
 |  | 
 |   UniqueSet<Map> map_set = instr->hydrogen()->map_set(); | 
 |   Label success; | 
 |   for (int i = 0; i < map_set.size() - 1; i++) { | 
 |     Handle<Map> map = map_set.at(i).handle(); | 
 |     __ CompareMap(map_reg, map, &success); | 
 |     __ b(eq, &success); | 
 |   } | 
 |  | 
 |   Handle<Map> map = map_set.at(map_set.size() - 1).handle(); | 
 |   __ CompareMap(map_reg, map, &success); | 
 |   if (instr->hydrogen()->has_migration_target()) { | 
 |     __ b(ne, deferred->entry()); | 
 |   } else { | 
 |     DeoptimizeIf(ne, instr->environment()); | 
 |   } | 
 |  | 
 |   __ bind(&success); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { | 
 |   DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped()); | 
 |   Register result_reg = ToRegister(instr->result()); | 
 |   __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { | 
 |   Register unclamped_reg = ToRegister(instr->unclamped()); | 
 |   Register result_reg = ToRegister(instr->result()); | 
 |   __ ClampUint8(result_reg, unclamped_reg); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { | 
 |   Register scratch = scratch0(); | 
 |   Register input_reg = ToRegister(instr->unclamped()); | 
 |   Register result_reg = ToRegister(instr->result()); | 
 |   DwVfpRegister temp_reg = ToDoubleRegister(instr->temp()); | 
 |   Label is_smi, done, heap_number; | 
 |  | 
 |   // Both smi and heap number cases are handled. | 
 |   __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi); | 
 |  | 
 |   // Check for heap number | 
 |   __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); | 
 |   __ cmp(scratch, Operand(factory()->heap_number_map())); | 
 |   __ b(eq, &heap_number); | 
 |  | 
 |   // Check for undefined. Undefined is converted to zero for clamping | 
 |   // conversions. | 
 |   __ cmp(input_reg, Operand(factory()->undefined_value())); | 
 |   DeoptimizeIf(ne, instr->environment()); | 
 |   __ mov(result_reg, Operand::Zero()); | 
 |   __ jmp(&done); | 
 |  | 
 |   // Heap number | 
 |   __ bind(&heap_number); | 
 |   __ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); | 
 |   __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0()); | 
 |   __ jmp(&done); | 
 |  | 
 |   // smi | 
 |   __ bind(&is_smi); | 
 |   __ ClampUint8(result_reg, result_reg); | 
 |  | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoAllocate(LAllocate* instr) { | 
 |   class DeferredAllocate V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredAllocate(LCodeGen* codegen, LAllocate* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredAllocate(instr_); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LAllocate* instr_; | 
 |   }; | 
 |  | 
 |   DeferredAllocate* deferred = | 
 |       new(zone()) DeferredAllocate(this, instr); | 
 |  | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register scratch = ToRegister(instr->temp1()); | 
 |   Register scratch2 = ToRegister(instr->temp2()); | 
 |  | 
 |   // Allocate memory for the object. | 
 |   AllocationFlags flags = TAG_OBJECT; | 
 |   if (instr->hydrogen()->MustAllocateDoubleAligned()) { | 
 |     flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); | 
 |   } | 
 |   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { | 
 |     ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation()); | 
 |     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); | 
 |     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE); | 
 |   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { | 
 |     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); | 
 |     flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE); | 
 |   } | 
 |  | 
 |   if (instr->size()->IsConstantOperand()) { | 
 |     int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | 
 |     __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); | 
 |   } else { | 
 |     Register size = ToRegister(instr->size()); | 
 |     __ Allocate(size, | 
 |                 result, | 
 |                 scratch, | 
 |                 scratch2, | 
 |                 deferred->entry(), | 
 |                 flags); | 
 |   } | 
 |  | 
 |   __ bind(deferred->exit()); | 
 |  | 
 |   if (instr->hydrogen()->MustPrefillWithFiller()) { | 
 |     if (instr->size()->IsConstantOperand()) { | 
 |       int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | 
 |       __ mov(scratch, Operand(size)); | 
 |     } else { | 
 |       scratch = ToRegister(instr->size()); | 
 |     } | 
 |     __ sub(scratch, scratch, Operand(kPointerSize)); | 
 |     __ sub(result, result, Operand(kHeapObjectTag)); | 
 |     Label loop; | 
 |     __ bind(&loop); | 
 |     __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); | 
 |     __ str(scratch2, MemOperand(result, scratch)); | 
 |     __ sub(scratch, scratch, Operand(kPointerSize)); | 
 |     __ cmp(scratch, Operand(0)); | 
 |     __ b(ge, &loop); | 
 |     __ add(result, result, Operand(kHeapObjectTag)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredAllocate(LAllocate* instr) { | 
 |   Register result = ToRegister(instr->result()); | 
 |  | 
 |   // TODO(3095996): Get rid of this. For now, we need to make the | 
 |   // result register contain a valid pointer because it is already | 
 |   // contained in the register pointer map. | 
 |   __ mov(result, Operand(Smi::FromInt(0))); | 
 |  | 
 |   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |   if (instr->size()->IsRegister()) { | 
 |     Register size = ToRegister(instr->size()); | 
 |     ASSERT(!size.is(result)); | 
 |     __ SmiTag(size); | 
 |     __ push(size); | 
 |   } else { | 
 |     int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); | 
 |     __ Push(Smi::FromInt(size)); | 
 |   } | 
 |  | 
 |   if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { | 
 |     ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation()); | 
 |     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); | 
 |     CallRuntimeFromDeferred(Runtime::kAllocateInOldPointerSpace, 1, instr, | 
 |                             instr->context()); | 
 |   } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { | 
 |     ASSERT(!instr->hydrogen()->IsNewSpaceAllocation()); | 
 |     CallRuntimeFromDeferred(Runtime::kAllocateInOldDataSpace, 1, instr, | 
 |                             instr->context()); | 
 |   } else { | 
 |     CallRuntimeFromDeferred(Runtime::kAllocateInNewSpace, 1, instr, | 
 |                             instr->context()); | 
 |   } | 
 |   __ StoreToSafepointRegisterSlot(r0, result); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoToFastProperties(LToFastProperties* instr) { | 
 |   ASSERT(ToRegister(instr->value()).is(r0)); | 
 |   __ push(r0); | 
 |   CallRuntime(Runtime::kToFastProperties, 1, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   Label materialized; | 
 |   // Registers will be used as follows: | 
 |   // r6 = literals array. | 
 |   // r1 = regexp literal. | 
 |   // r0 = regexp literal clone. | 
 |   // r2-5 are used as temporaries. | 
 |   int literal_offset = | 
 |       FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index()); | 
 |   __ LoadHeapObject(r6, instr->hydrogen()->literals()); | 
 |   __ ldr(r1, FieldMemOperand(r6, literal_offset)); | 
 |   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | 
 |   __ cmp(r1, ip); | 
 |   __ b(ne, &materialized); | 
 |  | 
 |   // Create regexp literal using runtime function | 
 |   // Result will be in r0. | 
 |   __ mov(r5, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); | 
 |   __ mov(r4, Operand(instr->hydrogen()->pattern())); | 
 |   __ mov(r3, Operand(instr->hydrogen()->flags())); | 
 |   __ Push(r6, r5, r4, r3); | 
 |   CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); | 
 |   __ mov(r1, r0); | 
 |  | 
 |   __ bind(&materialized); | 
 |   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; | 
 |   Label allocated, runtime_allocate; | 
 |  | 
 |   __ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT); | 
 |   __ jmp(&allocated); | 
 |  | 
 |   __ bind(&runtime_allocate); | 
 |   __ mov(r0, Operand(Smi::FromInt(size))); | 
 |   __ Push(r1, r0); | 
 |   CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); | 
 |   __ pop(r1); | 
 |  | 
 |   __ bind(&allocated); | 
 |   // Copy the content into the newly allocated memory. | 
 |   __ CopyFields(r0, r1, double_scratch0(), size / kPointerSize); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { | 
 |   ASSERT(ToRegister(instr->context()).is(cp)); | 
 |   // Use the fast case closure allocation code that allocates in new | 
 |   // space for nested functions that don't need literals cloning. | 
 |   bool pretenure = instr->hydrogen()->pretenure(); | 
 |   if (!pretenure && instr->hydrogen()->has_no_literals()) { | 
 |     FastNewClosureStub stub(instr->hydrogen()->language_mode(), | 
 |                             instr->hydrogen()->is_generator()); | 
 |     __ mov(r2, Operand(instr->hydrogen()->shared_info())); | 
 |     CallCode(stub.GetCode(isolate()), RelocInfo::CODE_TARGET, instr); | 
 |   } else { | 
 |     __ mov(r2, Operand(instr->hydrogen()->shared_info())); | 
 |     __ mov(r1, Operand(pretenure ? factory()->true_value() | 
 |                                  : factory()->false_value())); | 
 |     __ Push(cp, r2, r1); | 
 |     CallRuntime(Runtime::kNewClosure, 3, instr); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoTypeof(LTypeof* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |   __ push(input); | 
 |   CallRuntime(Runtime::kTypeof, 1, instr); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { | 
 |   Register input = ToRegister(instr->value()); | 
 |  | 
 |   Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_), | 
 |                                                   instr->FalseLabel(chunk_), | 
 |                                                   input, | 
 |                                                   instr->type_literal()); | 
 |   if (final_branch_condition != kNoCondition) { | 
 |     EmitBranch(instr, final_branch_condition); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | Condition LCodeGen::EmitTypeofIs(Label* true_label, | 
 |                                  Label* false_label, | 
 |                                  Register input, | 
 |                                  Handle<String> type_name) { | 
 |   Condition final_branch_condition = kNoCondition; | 
 |   Register scratch = scratch0(); | 
 |   if (type_name->Equals(heap()->number_string())) { | 
 |     __ JumpIfSmi(input, true_label); | 
 |     __ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset)); | 
 |     __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); | 
 |     __ cmp(input, Operand(ip)); | 
 |     final_branch_condition = eq; | 
 |  | 
 |   } else if (type_name->Equals(heap()->string_string())) { | 
 |     __ JumpIfSmi(input, false_label); | 
 |     __ CompareObjectType(input, input, scratch, FIRST_NONSTRING_TYPE); | 
 |     __ b(ge, false_label); | 
 |     __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); | 
 |     __ tst(ip, Operand(1 << Map::kIsUndetectable)); | 
 |     final_branch_condition = eq; | 
 |  | 
 |   } else if (type_name->Equals(heap()->symbol_string())) { | 
 |     __ JumpIfSmi(input, false_label); | 
 |     __ CompareObjectType(input, input, scratch, SYMBOL_TYPE); | 
 |     final_branch_condition = eq; | 
 |  | 
 |   } else if (type_name->Equals(heap()->boolean_string())) { | 
 |     __ CompareRoot(input, Heap::kTrueValueRootIndex); | 
 |     __ b(eq, true_label); | 
 |     __ CompareRoot(input, Heap::kFalseValueRootIndex); | 
 |     final_branch_condition = eq; | 
 |  | 
 |   } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_string())) { | 
 |     __ CompareRoot(input, Heap::kNullValueRootIndex); | 
 |     final_branch_condition = eq; | 
 |  | 
 |   } else if (type_name->Equals(heap()->undefined_string())) { | 
 |     __ CompareRoot(input, Heap::kUndefinedValueRootIndex); | 
 |     __ b(eq, true_label); | 
 |     __ JumpIfSmi(input, false_label); | 
 |     // Check for undetectable objects => true. | 
 |     __ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset)); | 
 |     __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); | 
 |     __ tst(ip, Operand(1 << Map::kIsUndetectable)); | 
 |     final_branch_condition = ne; | 
 |  | 
 |   } else if (type_name->Equals(heap()->function_string())) { | 
 |     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); | 
 |     __ JumpIfSmi(input, false_label); | 
 |     __ CompareObjectType(input, scratch, input, JS_FUNCTION_TYPE); | 
 |     __ b(eq, true_label); | 
 |     __ cmp(input, Operand(JS_FUNCTION_PROXY_TYPE)); | 
 |     final_branch_condition = eq; | 
 |  | 
 |   } else if (type_name->Equals(heap()->object_string())) { | 
 |     __ JumpIfSmi(input, false_label); | 
 |     if (!FLAG_harmony_typeof) { | 
 |       __ CompareRoot(input, Heap::kNullValueRootIndex); | 
 |       __ b(eq, true_label); | 
 |     } | 
 |     __ CompareObjectType(input, input, scratch, | 
 |                          FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); | 
 |     __ b(lt, false_label); | 
 |     __ CompareInstanceType(input, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); | 
 |     __ b(gt, false_label); | 
 |     // Check for undetectable objects => false. | 
 |     __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset)); | 
 |     __ tst(ip, Operand(1 << Map::kIsUndetectable)); | 
 |     final_branch_condition = eq; | 
 |  | 
 |   } else { | 
 |     __ b(false_label); | 
 |   } | 
 |  | 
 |   return final_branch_condition; | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { | 
 |   Register temp1 = ToRegister(instr->temp()); | 
 |  | 
 |   EmitIsConstructCall(temp1, scratch0()); | 
 |   EmitBranch(instr, eq); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { | 
 |   ASSERT(!temp1.is(temp2)); | 
 |   // Get the frame pointer for the calling frame. | 
 |   __ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 
 |  | 
 |   // Skip the arguments adaptor frame if it exists. | 
 |   Label check_frame_marker; | 
 |   __ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); | 
 |   __ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 
 |   __ b(ne, &check_frame_marker); | 
 |   __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset)); | 
 |  | 
 |   // Check the marker in the calling frame. | 
 |   __ bind(&check_frame_marker); | 
 |   __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); | 
 |   __ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::EnsureSpaceForLazyDeopt() { | 
 |   if (info()->IsStub()) return; | 
 |   // Ensure that we have enough space after the previous lazy-bailout | 
 |   // instruction for patching the code here. | 
 |   int current_pc = masm()->pc_offset(); | 
 |   int patch_size = Deoptimizer::patch_size(); | 
 |   if (current_pc < last_lazy_deopt_pc_ + patch_size) { | 
 |     // Block literal pool emission for duration of padding. | 
 |     Assembler::BlockConstPoolScope block_const_pool(masm()); | 
 |     int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc; | 
 |     ASSERT_EQ(0, padding_size % Assembler::kInstrSize); | 
 |     while (padding_size > 0) { | 
 |       __ nop(); | 
 |       padding_size -= Assembler::kInstrSize; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLazyBailout(LLazyBailout* instr) { | 
 |   EnsureSpaceForLazyDeopt(); | 
 |   last_lazy_deopt_pc_ = masm()->pc_offset(); | 
 |   ASSERT(instr->HasEnvironment()); | 
 |   LEnvironment* env = instr->environment(); | 
 |   RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | 
 |   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeoptimize(LDeoptimize* instr) { | 
 |   Deoptimizer::BailoutType type = instr->hydrogen()->type(); | 
 |   // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the | 
 |   // needed return address), even though the implementation of LAZY and EAGER is | 
 |   // now identical. When LAZY is eventually completely folded into EAGER, remove | 
 |   // the special case below. | 
 |   if (info()->IsStub() && type == Deoptimizer::EAGER) { | 
 |     type = Deoptimizer::LAZY; | 
 |   } | 
 |  | 
 |   Comment(";;; deoptimize: %s", instr->hydrogen()->reason()); | 
 |   DeoptimizeIf(al, instr->environment(), type); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDummyUse(LDummyUse* instr) { | 
 |   // Nothing to see here, move on! | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { | 
 |   PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters); | 
 |   LoadContextFromDeferred(instr->context()); | 
 |   __ CallRuntimeSaveDoubles(Runtime::kStackGuard); | 
 |   RecordSafepointWithLazyDeopt( | 
 |       instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); | 
 |   ASSERT(instr->HasEnvironment()); | 
 |   LEnvironment* env = instr->environment(); | 
 |   safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoStackCheck(LStackCheck* instr) { | 
 |   class DeferredStackCheck V8_FINAL : public LDeferredCode { | 
 |    public: | 
 |     DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) | 
 |         : LDeferredCode(codegen), instr_(instr) { } | 
 |     virtual void Generate() V8_OVERRIDE { | 
 |       codegen()->DoDeferredStackCheck(instr_); | 
 |     } | 
 |     virtual LInstruction* instr() V8_OVERRIDE { return instr_; } | 
 |    private: | 
 |     LStackCheck* instr_; | 
 |   }; | 
 |  | 
 |   ASSERT(instr->HasEnvironment()); | 
 |   LEnvironment* env = instr->environment(); | 
 |   // There is no LLazyBailout instruction for stack-checks. We have to | 
 |   // prepare for lazy deoptimization explicitly here. | 
 |   if (instr->hydrogen()->is_function_entry()) { | 
 |     // Perform stack overflow check. | 
 |     Label done; | 
 |     __ LoadRoot(ip, Heap::kStackLimitRootIndex); | 
 |     __ cmp(sp, Operand(ip)); | 
 |     __ b(hs, &done); | 
 |     PredictableCodeSizeScope predictable(masm_, 2 * Assembler::kInstrSize); | 
 |     ASSERT(instr->context()->IsRegister()); | 
 |     ASSERT(ToRegister(instr->context()).is(cp)); | 
 |     CallCode(isolate()->builtins()->StackCheck(), | 
 |               RelocInfo::CODE_TARGET, | 
 |               instr); | 
 |     EnsureSpaceForLazyDeopt(); | 
 |     last_lazy_deopt_pc_ = masm()->pc_offset(); | 
 |     __ bind(&done); | 
 |     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | 
 |     safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); | 
 |   } else { | 
 |     ASSERT(instr->hydrogen()->is_backwards_branch()); | 
 |     // Perform stack overflow check if this goto needs it before jumping. | 
 |     DeferredStackCheck* deferred_stack_check = | 
 |         new(zone()) DeferredStackCheck(this, instr); | 
 |     __ LoadRoot(ip, Heap::kStackLimitRootIndex); | 
 |     __ cmp(sp, Operand(ip)); | 
 |     __ b(lo, deferred_stack_check->entry()); | 
 |     EnsureSpaceForLazyDeopt(); | 
 |     last_lazy_deopt_pc_ = masm()->pc_offset(); | 
 |     __ bind(instr->done_label()); | 
 |     deferred_stack_check->SetExit(instr->done_label()); | 
 |     RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); | 
 |     // Don't record a deoptimization index for the safepoint here. | 
 |     // This will be done explicitly when emitting call and the safepoint in | 
 |     // the deferred code. | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoOsrEntry(LOsrEntry* instr) { | 
 |   // This is a pseudo-instruction that ensures that the environment here is | 
 |   // properly registered for deoptimization and records the assembler's PC | 
 |   // offset. | 
 |   LEnvironment* environment = instr->environment(); | 
 |  | 
 |   // If the environment were already registered, we would have no way of | 
 |   // backpatching it with the spill slot operands. | 
 |   ASSERT(!environment->HasBeenRegistered()); | 
 |   RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); | 
 |  | 
 |   GenerateOsrPrologue(); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { | 
 |   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); | 
 |   __ cmp(r0, ip); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 |  | 
 |   Register null_value = r5; | 
 |   __ LoadRoot(null_value, Heap::kNullValueRootIndex); | 
 |   __ cmp(r0, null_value); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 |  | 
 |   __ SmiTst(r0); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 |  | 
 |   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); | 
 |   __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE); | 
 |   DeoptimizeIf(le, instr->environment()); | 
 |  | 
 |   Label use_cache, call_runtime; | 
 |   __ CheckEnumCache(null_value, &call_runtime); | 
 |  | 
 |   __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); | 
 |   __ b(&use_cache); | 
 |  | 
 |   // Get the set of properties to enumerate. | 
 |   __ bind(&call_runtime); | 
 |   __ push(r0); | 
 |   CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); | 
 |  | 
 |   __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); | 
 |   __ LoadRoot(ip, Heap::kMetaMapRootIndex); | 
 |   __ cmp(r1, ip); | 
 |   DeoptimizeIf(ne, instr->environment()); | 
 |   __ bind(&use_cache); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { | 
 |   Register map = ToRegister(instr->map()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Label load_cache, done; | 
 |   __ EnumLength(result, map); | 
 |   __ cmp(result, Operand(Smi::FromInt(0))); | 
 |   __ b(ne, &load_cache); | 
 |   __ mov(result, Operand(isolate()->factory()->empty_fixed_array())); | 
 |   __ jmp(&done); | 
 |  | 
 |   __ bind(&load_cache); | 
 |   __ LoadInstanceDescriptors(map, result); | 
 |   __ ldr(result, | 
 |          FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); | 
 |   __ ldr(result, | 
 |          FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); | 
 |   __ cmp(result, Operand::Zero()); | 
 |   DeoptimizeIf(eq, instr->environment()); | 
 |  | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { | 
 |   Register object = ToRegister(instr->value()); | 
 |   Register map = ToRegister(instr->map()); | 
 |   __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |   __ cmp(map, scratch0()); | 
 |   DeoptimizeIf(ne, instr->environment()); | 
 | } | 
 |  | 
 |  | 
 | void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { | 
 |   Register object = ToRegister(instr->object()); | 
 |   Register index = ToRegister(instr->index()); | 
 |   Register result = ToRegister(instr->result()); | 
 |   Register scratch = scratch0(); | 
 |  | 
 |   Label out_of_object, done; | 
 |   __ cmp(index, Operand::Zero()); | 
 |   __ b(lt, &out_of_object); | 
 |  | 
 |   __ add(scratch, object, Operand::PointerOffsetFromSmiKey(index)); | 
 |   __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); | 
 |  | 
 |   __ b(&done); | 
 |  | 
 |   __ bind(&out_of_object); | 
 |   __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); | 
 |   // Index is equal to negated out of object property index plus 1. | 
 |   STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); | 
 |   __ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index)); | 
 |   __ ldr(result, FieldMemOperand(scratch, | 
 |                                  FixedArray::kHeaderSize - kPointerSize)); | 
 |   __ bind(&done); | 
 | } | 
 |  | 
 |  | 
 | #undef __ | 
 |  | 
 | } }  // namespace v8::internal |