blob: 4d8557e68b35696566e3efe19b293dbb9305767c [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_TYPES_H_
#define V8_TYPES_H_
#include "v8.h"
#include "objects.h"
namespace v8 {
namespace internal {
// A simple type system for compiler-internal use. It is based entirely on
// union types, and all subtyping hence amounts to set inclusion. Besides the
// obvious primitive types and some predefined unions, the type language also
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// The following equations and inequations hold:
//
// None <= T
// T <= Any
//
// Oddball = Boolean \/ Null \/ Undefined
// Number = Signed32 \/ Unsigned32 \/ Double
// Smi <= Signed32
// Name = String \/ Symbol
// UniqueName = InternalizedString \/ Symbol
// InternalizedString < String
//
// Allocated = Receiver \/ Number \/ Name
// Detectable = Allocated - Undetectable
// Undetectable < Object
// Receiver = Object \/ Proxy
// Array < Object
// Function < Object
// RegExp < Object
//
// Class(map) < T iff instance_type(map) < T
// Constant(x) < T iff instance_type(map(x)) < T
//
// Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
//
// There are two main functions for testing types:
//
// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
//
// Typically, the former is to be used to select representations (e.g., via
// T->Is(Integer31())), and the to check whether a specific case needs handling
// (e.g., via T->Maybe(Number())).
//
// There is no functionality to discover whether a type is a leaf in the
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
//
// Consequently, do not use pointer equality for type tests, always use Is!
//
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets via smis. Class is a heap pointer to the respective map. Only
// Constant's, or unions containing Class'es or Constant's, require allocation.
// Note that the bitset representation is closed under both Union and Intersect.
//
// The type representation is heap-allocated, so cannot (currently) be used in
// a concurrent compilation context.
#define BITSET_TYPE_LIST(V) \
V(None, 0) \
V(Null, 1 << 0) \
V(Undefined, 1 << 1) \
V(Boolean, 1 << 2) \
V(Smi, 1 << 3) \
V(OtherSigned32, 1 << 4) \
V(Unsigned32, 1 << 5) \
V(Double, 1 << 6) \
V(Symbol, 1 << 7) \
V(InternalizedString, 1 << 8) \
V(OtherString, 1 << 9) \
V(Undetectable, 1 << 10) \
V(Array, 1 << 11) \
V(Function, 1 << 12) \
V(RegExp, 1 << 13) \
V(OtherObject, 1 << 14) \
V(Proxy, 1 << 15) \
V(Internal, 1 << 16) \
\
V(Oddball, kBoolean | kNull | kUndefined) \
V(Signed32, kSmi | kOtherSigned32) \
V(Number, kSigned32 | kUnsigned32 | kDouble) \
V(String, kInternalizedString | kOtherString) \
V(UniqueName, kSymbol | kInternalizedString) \
V(Name, kSymbol | kString) \
V(NumberOrString, kNumber | kString) \
V(Object, kUndetectable | kArray | kFunction | \
kRegExp | kOtherObject) \
V(Receiver, kObject | kProxy) \
V(Allocated, kDouble | kName | kReceiver) \
V(Any, kOddball | kNumber | kAllocated | kInternal) \
V(NonNumber, kAny - kNumber) \
V(Detectable, kAllocated - kUndetectable)
// struct Config {
// typedef Base;
// typedef Unioned;
// typedef Region;
// template<class> struct Handle { typedef type; } // No template typedefs...
// static Handle<Type>::type handle(Type* type); // !is_bitset(type)
// static bool is_bitset(Type* type);
// static bool is_class(Type* type);
// static bool is_constant(Type* type);
// static bool is_union(Type* type);
// static int as_bitset(Type* type);
// static i::Handle<i::Map> as_class(Type* type);
// static i::Handle<i::Object> as_constant(Type* type);
// static Handle<Unioned>::type as_union(Type* type);
// static Type* from_bitset(int bitset);
// static Handle<Type>::type from_bitset(int bitset, Region* region);
// static Handle<Type>::type from_class(i::Handle<i::Map> map, Region* region)
// static Handle<Type>::type from_constant(
// i::Handle<i::Object> value, Region* region);
// static Handle<Type>::type from_union(Handle<Unioned>::T unioned);
// static Handle<Unioned>::type union_create(int size, Region* region);
// static Handle<Type>::type union_get(Handle<Unioned>::T unioned, int i);
// }
template<class Config>
class TypeImpl : public Config::Base {
public:
typedef typename Config::template Handle<TypeImpl>::type TypeHandle;
typedef typename Config::Region Region;
#define DEFINE_TYPE_CONSTRUCTOR(type, value) \
static TypeImpl* type() { return Config::from_bitset(k##type); } \
static TypeHandle type(Region* region) { \
return Config::from_bitset(k##type, region); \
}
BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
#undef DEFINE_TYPE_CONSTRUCTOR
static TypeHandle Class(i::Handle<i::Map> map, Region* region) {
return Config::from_class(map, region);
}
static TypeHandle Constant(i::Handle<i::Object> value, Region* region) {
return Config::from_constant(value, region);
}
static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg);
static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg);
static TypeHandle Of(i::Handle<i::Object> value, Region* region) {
return Config::from_bitset(LubBitset(*value), region);
}
bool Is(TypeImpl* that) { return this == that || this->SlowIs(that); }
bool Is(TypeHandle that) { return this->Is(*that); }
bool Maybe(TypeImpl* that);
bool Maybe(TypeHandle that) { return this->Maybe(*that); }
// State-dependent versions of Of and Is that consider subtyping between
// a constant and its map class.
static TypeHandle OfCurrently(i::Handle<i::Object> value, Region* region);
bool IsCurrently(TypeImpl* that);
bool IsCurrently(TypeHandle that) { return this->IsCurrently(*that); }
bool IsClass() { return Config::is_class(this); }
bool IsConstant() { return Config::is_constant(this); }
i::Handle<i::Map> AsClass() { return Config::as_class(this); }
i::Handle<i::Object> AsConstant() { return Config::as_constant(this); }
int NumClasses();
int NumConstants();
template<class T>
class Iterator {
public:
bool Done() const { return index_ < 0; }
i::Handle<T> Current();
void Advance();
private:
template<class> friend class TypeImpl;
Iterator() : index_(-1) {}
explicit Iterator(TypeHandle type) : type_(type), index_(-1) {
Advance();
}
inline bool matches(TypeHandle type);
inline TypeHandle get_type();
TypeHandle type_;
int index_;
};
Iterator<i::Map> Classes() {
if (this->IsBitset()) return Iterator<i::Map>();
return Iterator<i::Map>(Config::handle(this));
}
Iterator<i::Object> Constants() {
if (this->IsBitset()) return Iterator<i::Object>();
return Iterator<i::Object>(Config::handle(this));
}
static TypeImpl* cast(i::Object* object) {
TypeImpl* t = static_cast<TypeImpl*>(object);
ASSERT(t->IsBitset() || t->IsClass() || t->IsConstant() || t->IsUnion());
return t;
}
#ifdef OBJECT_PRINT
void TypePrint();
void TypePrint(FILE* out);
#endif
private:
template<class> friend class Iterator;
// A union is a fixed array containing types. Invariants:
// - its length is at least 2
// - at most one field is a bitset, and it must go into index 0
// - no field is a union
typedef typename Config::Unioned Unioned;
typedef typename Config::template Handle<Unioned>::type UnionedHandle;
enum {
#define DECLARE_TYPE(type, value) k##type = (value),
BITSET_TYPE_LIST(DECLARE_TYPE)
#undef DECLARE_TYPE
kUnusedEOL = 0
};
bool IsNone() { return this == None(); }
bool IsAny() { return this == Any(); }
bool IsBitset() { return Config::is_bitset(this); }
bool IsUnion() { return Config::is_union(this); }
int AsBitset() { return Config::as_bitset(this); }
UnionedHandle AsUnion() { return Config::as_union(this); }
bool SlowIs(TypeImpl* that);
int LubBitset(); // least upper bound that's a bitset
int GlbBitset(); // greatest lower bound that's a bitset
static int LubBitset(i::Object* value);
static int LubBitset(i::Map* map);
bool InUnion(UnionedHandle unioned, int current_size);
int ExtendUnion(UnionedHandle unioned, int current_size);
int ExtendIntersection(
UnionedHandle unioned, TypeHandle type, int current_size);
#ifdef OBJECT_PRINT
static const char* bitset_name(int bitset);
#endif
};
struct HeapTypeConfig {
typedef TypeImpl<HeapTypeConfig> Type;
typedef i::Object Base;
typedef i::FixedArray Unioned;
typedef i::Isolate Region;
template<class T> struct Handle { typedef i::Handle<T> type; };
static i::Handle<Type> handle(Type* type) {
return i::handle(type, i::HeapObject::cast(type)->GetIsolate());
}
static bool is_bitset(Type* type) { return type->IsSmi(); }
static bool is_class(Type* type) { return type->IsMap(); }
static bool is_constant(Type* type) { return type->IsBox(); }
static bool is_union(Type* type) { return type->IsFixedArray(); }
static int as_bitset(Type* type) {
return Smi::cast(type)->value();
}
static i::Handle<i::Map> as_class(Type* type) {
return i::handle(i::Map::cast(type));
}
static i::Handle<i::Object> as_constant(Type* type) {
i::Box* box = i::Box::cast(type);
return i::handle(box->value(), box->GetIsolate());
}
static i::Handle<Unioned> as_union(Type* type) {
return i::handle(i::FixedArray::cast(type));
}
static Type* from_bitset(int bitset) {
return Type::cast(i::Smi::FromInt(bitset));
}
static i::Handle<Type> from_bitset(int bitset, Isolate* isolate) {
return i::handle(from_bitset(bitset), isolate);
}
static i::Handle<Type> from_class(i::Handle<i::Map> map, Isolate* isolate) {
return i::Handle<Type>::cast(i::Handle<Object>::cast(map));
}
static i::Handle<Type> from_constant(
i::Handle<i::Object> value, Isolate* isolate) {
ASSERT(isolate || value->IsHeapObject());
if (!isolate) isolate = i::HeapObject::cast(*value)->GetIsolate();
i::Handle<Box> box = isolate->factory()->NewBox(value);
return i::Handle<Type>::cast(i::Handle<Object>::cast(box));
}
static i::Handle<Type> from_union(i::Handle<Unioned> unioned) {
return i::Handle<Type>::cast(i::Handle<Object>::cast(unioned));
}
static i::Handle<Unioned> union_create(int size, Isolate* isolate) {
return isolate->factory()->NewFixedArray(size);
}
static i::Handle<Type> union_get(i::Handle<Unioned> unioned, int i) {
Type* type = static_cast<Type*>(unioned->get(i));
ASSERT(!is_union(type));
return i::handle(type, unioned->GetIsolate());
}
};
typedef TypeImpl<HeapTypeConfig> Type;
// A simple struct to represent a pair of lower/upper type bounds.
template<class Config>
struct BoundsImpl {
typedef TypeImpl<Config> Type;
typedef typename Type::TypeHandle TypeHandle;
typedef typename Type::Region Region;
TypeHandle lower;
TypeHandle upper;
BoundsImpl() {}
explicit BoundsImpl(TypeHandle t) : lower(t), upper(t) {}
BoundsImpl(TypeHandle l, TypeHandle u) : lower(l), upper(u) {
ASSERT(lower->Is(upper));
}
// Unrestricted bounds.
static BoundsImpl Unbounded(Region* region) {
return BoundsImpl(Type::None(region), Type::Any(region));
}
// Meet: both b1 and b2 are known to hold.
static BoundsImpl Both(BoundsImpl b1, BoundsImpl b2, Region* region) {
TypeHandle lower = Type::Union(b1.lower, b2.lower, region);
TypeHandle upper = Type::Intersect(b1.upper, b2.upper, region);
// Lower bounds are considered approximate, correct as necessary.
lower = Type::Intersect(lower, upper, region);
return BoundsImpl(lower, upper);
}
// Join: either b1 or b2 is known to hold.
static BoundsImpl Either(BoundsImpl b1, BoundsImpl b2, Region* region) {
TypeHandle lower = Type::Intersect(b1.lower, b2.lower, region);
TypeHandle upper = Type::Union(b1.upper, b2.upper, region);
return BoundsImpl(lower, upper);
}
static BoundsImpl NarrowLower(BoundsImpl b, TypeHandle t, Region* region) {
// Lower bounds are considered approximate, correct as necessary.
t = Type::Intersect(t, b.upper, region);
TypeHandle lower = Type::Union(b.lower, t, region);
return BoundsImpl(lower, b.upper);
}
static BoundsImpl NarrowUpper(BoundsImpl b, TypeHandle t, Region* region) {
TypeHandle lower = Type::Intersect(b.lower, t, region);
TypeHandle upper = Type::Intersect(b.upper, t, region);
return BoundsImpl(lower, upper);
}
};
typedef BoundsImpl<HeapTypeConfig> Bounds;
} } // namespace v8::internal
#endif // V8_TYPES_H_