| // Copyright 2012 the V8 project authors. All rights reserved. | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | //       notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | //       copyright notice, this list of conditions and the following | 
 | //       disclaimer in the documentation and/or other materials provided | 
 | //       with the distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | //       contributors may be used to endorse or promote products derived | 
 | //       from this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | #include "v8.h" | 
 | #include "lithium-allocator-inl.h" | 
 |  | 
 | #include "hydrogen.h" | 
 | #include "string-stream.h" | 
 |  | 
 | #if V8_TARGET_ARCH_IA32 | 
 | #include "ia32/lithium-ia32.h" | 
 | #elif V8_TARGET_ARCH_X64 | 
 | #include "x64/lithium-x64.h" | 
 | #elif V8_TARGET_ARCH_ARM | 
 | #include "arm/lithium-arm.h" | 
 | #elif V8_TARGET_ARCH_MIPS | 
 | #include "mips/lithium-mips.h" | 
 | #else | 
 | #error "Unknown architecture." | 
 | #endif | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) { | 
 |   return a.Value() < b.Value() ? a : b; | 
 | } | 
 |  | 
 |  | 
 | static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) { | 
 |   return a.Value() > b.Value() ? a : b; | 
 | } | 
 |  | 
 |  | 
 | UsePosition::UsePosition(LifetimePosition pos, | 
 |                          LOperand* operand, | 
 |                          LOperand* hint) | 
 |     : operand_(operand), | 
 |       hint_(hint), | 
 |       pos_(pos), | 
 |       next_(NULL), | 
 |       requires_reg_(false), | 
 |       register_beneficial_(true) { | 
 |   if (operand_ != NULL && operand_->IsUnallocated()) { | 
 |     LUnallocated* unalloc = LUnallocated::cast(operand_); | 
 |     requires_reg_ = unalloc->HasRegisterPolicy(); | 
 |     register_beneficial_ = !unalloc->HasAnyPolicy(); | 
 |   } | 
 |   ASSERT(pos_.IsValid()); | 
 | } | 
 |  | 
 |  | 
 | bool UsePosition::HasHint() const { | 
 |   return hint_ != NULL && !hint_->IsUnallocated(); | 
 | } | 
 |  | 
 |  | 
 | bool UsePosition::RequiresRegister() const { | 
 |   return requires_reg_; | 
 | } | 
 |  | 
 |  | 
 | bool UsePosition::RegisterIsBeneficial() const { | 
 |   return register_beneficial_; | 
 | } | 
 |  | 
 |  | 
 | void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) { | 
 |   ASSERT(Contains(pos) && pos.Value() != start().Value()); | 
 |   UseInterval* after = new(zone) UseInterval(pos, end_); | 
 |   after->next_ = next_; | 
 |   next_ = after; | 
 |   end_ = pos; | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 |  | 
 |  | 
 | void LiveRange::Verify() const { | 
 |   UsePosition* cur = first_pos_; | 
 |   while (cur != NULL) { | 
 |     ASSERT(Start().Value() <= cur->pos().Value() && | 
 |            cur->pos().Value() <= End().Value()); | 
 |     cur = cur->next(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool LiveRange::HasOverlap(UseInterval* target) const { | 
 |   UseInterval* current_interval = first_interval_; | 
 |   while (current_interval != NULL) { | 
 |     // Intervals overlap if the start of one is contained in the other. | 
 |     if (current_interval->Contains(target->start()) || | 
 |         target->Contains(current_interval->start())) { | 
 |       return true; | 
 |     } | 
 |     current_interval = current_interval->next(); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | #endif | 
 |  | 
 |  | 
 | LiveRange::LiveRange(int id, Zone* zone) | 
 |     : id_(id), | 
 |       spilled_(false), | 
 |       kind_(UNALLOCATED_REGISTERS), | 
 |       assigned_register_(kInvalidAssignment), | 
 |       last_interval_(NULL), | 
 |       first_interval_(NULL), | 
 |       first_pos_(NULL), | 
 |       parent_(NULL), | 
 |       next_(NULL), | 
 |       current_interval_(NULL), | 
 |       last_processed_use_(NULL), | 
 |       current_hint_operand_(NULL), | 
 |       spill_operand_(new(zone) LOperand()), | 
 |       spill_start_index_(kMaxInt) { } | 
 |  | 
 |  | 
 | void LiveRange::set_assigned_register(int reg, Zone* zone) { | 
 |   ASSERT(!HasRegisterAssigned() && !IsSpilled()); | 
 |   assigned_register_ = reg; | 
 |   ConvertOperands(zone); | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::MakeSpilled(Zone* zone) { | 
 |   ASSERT(!IsSpilled()); | 
 |   ASSERT(TopLevel()->HasAllocatedSpillOperand()); | 
 |   spilled_ = true; | 
 |   assigned_register_ = kInvalidAssignment; | 
 |   ConvertOperands(zone); | 
 | } | 
 |  | 
 |  | 
 | bool LiveRange::HasAllocatedSpillOperand() const { | 
 |   ASSERT(spill_operand_ != NULL); | 
 |   return !spill_operand_->IsIgnored(); | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::SetSpillOperand(LOperand* operand) { | 
 |   ASSERT(!operand->IsUnallocated()); | 
 |   ASSERT(spill_operand_ != NULL); | 
 |   ASSERT(spill_operand_->IsIgnored()); | 
 |   spill_operand_->ConvertTo(operand->kind(), operand->index()); | 
 | } | 
 |  | 
 |  | 
 | UsePosition* LiveRange::NextUsePosition(LifetimePosition start) { | 
 |   UsePosition* use_pos = last_processed_use_; | 
 |   if (use_pos == NULL) use_pos = first_pos(); | 
 |   while (use_pos != NULL && use_pos->pos().Value() < start.Value()) { | 
 |     use_pos = use_pos->next(); | 
 |   } | 
 |   last_processed_use_ = use_pos; | 
 |   return use_pos; | 
 | } | 
 |  | 
 |  | 
 | UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial( | 
 |     LifetimePosition start) { | 
 |   UsePosition* pos = NextUsePosition(start); | 
 |   while (pos != NULL && !pos->RegisterIsBeneficial()) { | 
 |     pos = pos->next(); | 
 |   } | 
 |   return pos; | 
 | } | 
 |  | 
 |  | 
 | UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial( | 
 |     LifetimePosition start) { | 
 |   UsePosition* pos = first_pos(); | 
 |   UsePosition* prev = NULL; | 
 |   while (pos != NULL && pos->pos().Value() < start.Value()) { | 
 |     if (pos->RegisterIsBeneficial()) prev = pos; | 
 |     pos = pos->next(); | 
 |   } | 
 |   return prev; | 
 | } | 
 |  | 
 |  | 
 | UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) { | 
 |   UsePosition* pos = NextUsePosition(start); | 
 |   while (pos != NULL && !pos->RequiresRegister()) { | 
 |     pos = pos->next(); | 
 |   } | 
 |   return pos; | 
 | } | 
 |  | 
 |  | 
 | bool LiveRange::CanBeSpilled(LifetimePosition pos) { | 
 |   // We cannot spill a live range that has a use requiring a register | 
 |   // at the current or the immediate next position. | 
 |   UsePosition* use_pos = NextRegisterPosition(pos); | 
 |   if (use_pos == NULL) return true; | 
 |   return | 
 |       use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value(); | 
 | } | 
 |  | 
 |  | 
 | LOperand* LiveRange::CreateAssignedOperand(Zone* zone) { | 
 |   LOperand* op = NULL; | 
 |   if (HasRegisterAssigned()) { | 
 |     ASSERT(!IsSpilled()); | 
 |     switch (Kind()) { | 
 |       case GENERAL_REGISTERS: | 
 |         op = LRegister::Create(assigned_register(), zone); | 
 |         break; | 
 |       case DOUBLE_REGISTERS: | 
 |         op = LDoubleRegister::Create(assigned_register(), zone); | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } else if (IsSpilled()) { | 
 |     ASSERT(!HasRegisterAssigned()); | 
 |     op = TopLevel()->GetSpillOperand(); | 
 |     ASSERT(!op->IsUnallocated()); | 
 |   } else { | 
 |     LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE); | 
 |     unalloc->set_virtual_register(id_); | 
 |     op = unalloc; | 
 |   } | 
 |   return op; | 
 | } | 
 |  | 
 |  | 
 | UseInterval* LiveRange::FirstSearchIntervalForPosition( | 
 |     LifetimePosition position) const { | 
 |   if (current_interval_ == NULL) return first_interval_; | 
 |   if (current_interval_->start().Value() > position.Value()) { | 
 |     current_interval_ = NULL; | 
 |     return first_interval_; | 
 |   } | 
 |   return current_interval_; | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::AdvanceLastProcessedMarker( | 
 |     UseInterval* to_start_of, LifetimePosition but_not_past) const { | 
 |   if (to_start_of == NULL) return; | 
 |   if (to_start_of->start().Value() > but_not_past.Value()) return; | 
 |   LifetimePosition start = | 
 |       current_interval_ == NULL ? LifetimePosition::Invalid() | 
 |                                 : current_interval_->start(); | 
 |   if (to_start_of->start().Value() > start.Value()) { | 
 |     current_interval_ = to_start_of; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::SplitAt(LifetimePosition position, | 
 |                         LiveRange* result, | 
 |                         Zone* zone) { | 
 |   ASSERT(Start().Value() < position.Value()); | 
 |   ASSERT(result->IsEmpty()); | 
 |   // Find the last interval that ends before the position. If the | 
 |   // position is contained in one of the intervals in the chain, we | 
 |   // split that interval and use the first part. | 
 |   UseInterval* current = FirstSearchIntervalForPosition(position); | 
 |  | 
 |   // If the split position coincides with the beginning of a use interval | 
 |   // we need to split use positons in a special way. | 
 |   bool split_at_start = false; | 
 |  | 
 |   if (current->start().Value() == position.Value()) { | 
 |     // When splitting at start we need to locate the previous use interval. | 
 |     current = first_interval_; | 
 |   } | 
 |  | 
 |   while (current != NULL) { | 
 |     if (current->Contains(position)) { | 
 |       current->SplitAt(position, zone); | 
 |       break; | 
 |     } | 
 |     UseInterval* next = current->next(); | 
 |     if (next->start().Value() >= position.Value()) { | 
 |       split_at_start = (next->start().Value() == position.Value()); | 
 |       break; | 
 |     } | 
 |     current = next; | 
 |   } | 
 |  | 
 |   // Partition original use intervals to the two live ranges. | 
 |   UseInterval* before = current; | 
 |   UseInterval* after = before->next(); | 
 |   result->last_interval_ = (last_interval_ == before) | 
 |       ? after            // Only interval in the range after split. | 
 |       : last_interval_;  // Last interval of the original range. | 
 |   result->first_interval_ = after; | 
 |   last_interval_ = before; | 
 |  | 
 |   // Find the last use position before the split and the first use | 
 |   // position after it. | 
 |   UsePosition* use_after = first_pos_; | 
 |   UsePosition* use_before = NULL; | 
 |   if (split_at_start) { | 
 |     // The split position coincides with the beginning of a use interval (the | 
 |     // end of a lifetime hole). Use at this position should be attributed to | 
 |     // the split child because split child owns use interval covering it. | 
 |     while (use_after != NULL && use_after->pos().Value() < position.Value()) { | 
 |       use_before = use_after; | 
 |       use_after = use_after->next(); | 
 |     } | 
 |   } else { | 
 |     while (use_after != NULL && use_after->pos().Value() <= position.Value()) { | 
 |       use_before = use_after; | 
 |       use_after = use_after->next(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Partition original use positions to the two live ranges. | 
 |   if (use_before != NULL) { | 
 |     use_before->next_ = NULL; | 
 |   } else { | 
 |     first_pos_ = NULL; | 
 |   } | 
 |   result->first_pos_ = use_after; | 
 |  | 
 |   // Discard cached iteration state. It might be pointing | 
 |   // to the use that no longer belongs to this live range. | 
 |   last_processed_use_ = NULL; | 
 |   current_interval_ = NULL; | 
 |  | 
 |   // Link the new live range in the chain before any of the other | 
 |   // ranges linked from the range before the split. | 
 |   result->parent_ = (parent_ == NULL) ? this : parent_; | 
 |   result->kind_ = result->parent_->kind_; | 
 |   result->next_ = next_; | 
 |   next_ = result; | 
 |  | 
 | #ifdef DEBUG | 
 |   Verify(); | 
 |   result->Verify(); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | // This implements an ordering on live ranges so that they are ordered by their | 
 | // start positions.  This is needed for the correctness of the register | 
 | // allocation algorithm.  If two live ranges start at the same offset then there | 
 | // is a tie breaker based on where the value is first used.  This part of the | 
 | // ordering is merely a heuristic. | 
 | bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const { | 
 |   LifetimePosition start = Start(); | 
 |   LifetimePosition other_start = other->Start(); | 
 |   if (start.Value() == other_start.Value()) { | 
 |     UsePosition* pos = first_pos(); | 
 |     if (pos == NULL) return false; | 
 |     UsePosition* other_pos = other->first_pos(); | 
 |     if (other_pos == NULL) return true; | 
 |     return pos->pos().Value() < other_pos->pos().Value(); | 
 |   } | 
 |   return start.Value() < other_start.Value(); | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::ShortenTo(LifetimePosition start) { | 
 |   LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value()); | 
 |   ASSERT(first_interval_ != NULL); | 
 |   ASSERT(first_interval_->start().Value() <= start.Value()); | 
 |   ASSERT(start.Value() < first_interval_->end().Value()); | 
 |   first_interval_->set_start(start); | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::EnsureInterval(LifetimePosition start, | 
 |                                LifetimePosition end, | 
 |                                Zone* zone) { | 
 |   LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n", | 
 |                          id_, | 
 |                          start.Value(), | 
 |                          end.Value()); | 
 |   LifetimePosition new_end = end; | 
 |   while (first_interval_ != NULL && | 
 |          first_interval_->start().Value() <= end.Value()) { | 
 |     if (first_interval_->end().Value() > end.Value()) { | 
 |       new_end = first_interval_->end(); | 
 |     } | 
 |     first_interval_ = first_interval_->next(); | 
 |   } | 
 |  | 
 |   UseInterval* new_interval = new(zone) UseInterval(start, new_end); | 
 |   new_interval->next_ = first_interval_; | 
 |   first_interval_ = new_interval; | 
 |   if (new_interval->next() == NULL) { | 
 |     last_interval_ = new_interval; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::AddUseInterval(LifetimePosition start, | 
 |                                LifetimePosition end, | 
 |                                Zone* zone) { | 
 |   LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n", | 
 |                          id_, | 
 |                          start.Value(), | 
 |                          end.Value()); | 
 |   if (first_interval_ == NULL) { | 
 |     UseInterval* interval = new(zone) UseInterval(start, end); | 
 |     first_interval_ = interval; | 
 |     last_interval_ = interval; | 
 |   } else { | 
 |     if (end.Value() == first_interval_->start().Value()) { | 
 |       first_interval_->set_start(start); | 
 |     } else if (end.Value() < first_interval_->start().Value()) { | 
 |       UseInterval* interval = new(zone) UseInterval(start, end); | 
 |       interval->set_next(first_interval_); | 
 |       first_interval_ = interval; | 
 |     } else { | 
 |       // Order of instruction's processing (see ProcessInstructions) guarantees | 
 |       // that each new use interval either precedes or intersects with | 
 |       // last added interval. | 
 |       ASSERT(start.Value() < first_interval_->end().Value()); | 
 |       first_interval_->start_ = Min(start, first_interval_->start_); | 
 |       first_interval_->end_ = Max(end, first_interval_->end_); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::AddUsePosition(LifetimePosition pos, | 
 |                                LOperand* operand, | 
 |                                LOperand* hint, | 
 |                                Zone* zone) { | 
 |   LAllocator::TraceAlloc("Add to live range %d use position %d\n", | 
 |                          id_, | 
 |                          pos.Value()); | 
 |   UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint); | 
 |   UsePosition* prev_hint = NULL; | 
 |   UsePosition* prev = NULL; | 
 |   UsePosition* current = first_pos_; | 
 |   while (current != NULL && current->pos().Value() < pos.Value()) { | 
 |     prev_hint = current->HasHint() ? current : prev_hint; | 
 |     prev = current; | 
 |     current = current->next(); | 
 |   } | 
 |  | 
 |   if (prev == NULL) { | 
 |     use_pos->set_next(first_pos_); | 
 |     first_pos_ = use_pos; | 
 |   } else { | 
 |     use_pos->next_ = prev->next_; | 
 |     prev->next_ = use_pos; | 
 |   } | 
 |  | 
 |   if (prev_hint == NULL && use_pos->HasHint()) { | 
 |     current_hint_operand_ = hint; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LiveRange::ConvertOperands(Zone* zone) { | 
 |   LOperand* op = CreateAssignedOperand(zone); | 
 |   UsePosition* use_pos = first_pos(); | 
 |   while (use_pos != NULL) { | 
 |     ASSERT(Start().Value() <= use_pos->pos().Value() && | 
 |            use_pos->pos().Value() <= End().Value()); | 
 |  | 
 |     if (use_pos->HasOperand()) { | 
 |       ASSERT(op->IsRegister() || op->IsDoubleRegister() || | 
 |              !use_pos->RequiresRegister()); | 
 |       use_pos->operand()->ConvertTo(op->kind(), op->index()); | 
 |     } | 
 |     use_pos = use_pos->next(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool LiveRange::CanCover(LifetimePosition position) const { | 
 |   if (IsEmpty()) return false; | 
 |   return Start().Value() <= position.Value() && | 
 |          position.Value() < End().Value(); | 
 | } | 
 |  | 
 |  | 
 | bool LiveRange::Covers(LifetimePosition position) { | 
 |   if (!CanCover(position)) return false; | 
 |   UseInterval* start_search = FirstSearchIntervalForPosition(position); | 
 |   for (UseInterval* interval = start_search; | 
 |        interval != NULL; | 
 |        interval = interval->next()) { | 
 |     ASSERT(interval->next() == NULL || | 
 |            interval->next()->start().Value() >= interval->start().Value()); | 
 |     AdvanceLastProcessedMarker(interval, position); | 
 |     if (interval->Contains(position)) return true; | 
 |     if (interval->start().Value() > position.Value()) return false; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | LifetimePosition LiveRange::FirstIntersection(LiveRange* other) { | 
 |   UseInterval* b = other->first_interval(); | 
 |   if (b == NULL) return LifetimePosition::Invalid(); | 
 |   LifetimePosition advance_last_processed_up_to = b->start(); | 
 |   UseInterval* a = FirstSearchIntervalForPosition(b->start()); | 
 |   while (a != NULL && b != NULL) { | 
 |     if (a->start().Value() > other->End().Value()) break; | 
 |     if (b->start().Value() > End().Value()) break; | 
 |     LifetimePosition cur_intersection = a->Intersect(b); | 
 |     if (cur_intersection.IsValid()) { | 
 |       return cur_intersection; | 
 |     } | 
 |     if (a->start().Value() < b->start().Value()) { | 
 |       a = a->next(); | 
 |       if (a == NULL || a->start().Value() > other->End().Value()) break; | 
 |       AdvanceLastProcessedMarker(a, advance_last_processed_up_to); | 
 |     } else { | 
 |       b = b->next(); | 
 |     } | 
 |   } | 
 |   return LifetimePosition::Invalid(); | 
 | } | 
 |  | 
 |  | 
 | LAllocator::LAllocator(int num_values, HGraph* graph) | 
 |     : zone_(graph->isolate()), | 
 |       chunk_(NULL), | 
 |       live_in_sets_(graph->blocks()->length(), zone()), | 
 |       live_ranges_(num_values * 2, zone()), | 
 |       fixed_live_ranges_(NULL), | 
 |       fixed_double_live_ranges_(NULL), | 
 |       unhandled_live_ranges_(num_values * 2, zone()), | 
 |       active_live_ranges_(8, zone()), | 
 |       inactive_live_ranges_(8, zone()), | 
 |       reusable_slots_(8, zone()), | 
 |       next_virtual_register_(num_values), | 
 |       first_artificial_register_(num_values), | 
 |       mode_(UNALLOCATED_REGISTERS), | 
 |       num_registers_(-1), | 
 |       graph_(graph), | 
 |       has_osr_entry_(false), | 
 |       allocation_ok_(true) { } | 
 |  | 
 |  | 
 | void LAllocator::InitializeLivenessAnalysis() { | 
 |   // Initialize the live_in sets for each block to NULL. | 
 |   int block_count = graph_->blocks()->length(); | 
 |   live_in_sets_.Initialize(block_count, zone()); | 
 |   live_in_sets_.AddBlock(NULL, block_count, zone()); | 
 | } | 
 |  | 
 |  | 
 | BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) { | 
 |   // Compute live out for the given block, except not including backward | 
 |   // successor edges. | 
 |   BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone()); | 
 |  | 
 |   // Process all successor blocks. | 
 |   for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) { | 
 |     // Add values live on entry to the successor. Note the successor's | 
 |     // live_in will not be computed yet for backwards edges. | 
 |     HBasicBlock* successor = it.Current(); | 
 |     BitVector* live_in = live_in_sets_[successor->block_id()]; | 
 |     if (live_in != NULL) live_out->Union(*live_in); | 
 |  | 
 |     // All phi input operands corresponding to this successor edge are live | 
 |     // out from this block. | 
 |     int index = successor->PredecessorIndexOf(block); | 
 |     const ZoneList<HPhi*>* phis = successor->phis(); | 
 |     for (int i = 0; i < phis->length(); ++i) { | 
 |       HPhi* phi = phis->at(i); | 
 |       if (!phi->OperandAt(index)->IsConstant()) { | 
 |         live_out->Add(phi->OperandAt(index)->id()); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return live_out; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AddInitialIntervals(HBasicBlock* block, | 
 |                                      BitVector* live_out) { | 
 |   // Add an interval that includes the entire block to the live range for | 
 |   // each live_out value. | 
 |   LifetimePosition start = LifetimePosition::FromInstructionIndex( | 
 |       block->first_instruction_index()); | 
 |   LifetimePosition end = LifetimePosition::FromInstructionIndex( | 
 |       block->last_instruction_index()).NextInstruction(); | 
 |   BitVector::Iterator iterator(live_out); | 
 |   while (!iterator.Done()) { | 
 |     int operand_index = iterator.Current(); | 
 |     LiveRange* range = LiveRangeFor(operand_index); | 
 |     range->AddUseInterval(start, end, zone()); | 
 |     iterator.Advance(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | int LAllocator::FixedDoubleLiveRangeID(int index) { | 
 |   return -index - 1 - Register::kMaxNumAllocatableRegisters; | 
 | } | 
 |  | 
 |  | 
 | LOperand* LAllocator::AllocateFixed(LUnallocated* operand, | 
 |                                     int pos, | 
 |                                     bool is_tagged) { | 
 |   TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register()); | 
 |   ASSERT(operand->HasFixedPolicy()); | 
 |   if (operand->HasFixedSlotPolicy()) { | 
 |     operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index()); | 
 |   } else if (operand->HasFixedRegisterPolicy()) { | 
 |     int reg_index = operand->fixed_register_index(); | 
 |     operand->ConvertTo(LOperand::REGISTER, reg_index); | 
 |   } else if (operand->HasFixedDoubleRegisterPolicy()) { | 
 |     int reg_index = operand->fixed_register_index(); | 
 |     operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index); | 
 |   } else { | 
 |     UNREACHABLE(); | 
 |   } | 
 |   if (is_tagged) { | 
 |     TraceAlloc("Fixed reg is tagged at %d\n", pos); | 
 |     LInstruction* instr = InstructionAt(pos); | 
 |     if (instr->HasPointerMap()) { | 
 |       instr->pointer_map()->RecordPointer(operand, chunk()->zone()); | 
 |     } | 
 |   } | 
 |   return operand; | 
 | } | 
 |  | 
 |  | 
 | LiveRange* LAllocator::FixedLiveRangeFor(int index) { | 
 |   ASSERT(index < Register::kMaxNumAllocatableRegisters); | 
 |   LiveRange* result = fixed_live_ranges_[index]; | 
 |   if (result == NULL) { | 
 |     result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone()); | 
 |     ASSERT(result->IsFixed()); | 
 |     result->kind_ = GENERAL_REGISTERS; | 
 |     SetLiveRangeAssignedRegister(result, index); | 
 |     fixed_live_ranges_[index] = result; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) { | 
 |   ASSERT(index < DoubleRegister::NumAllocatableRegisters()); | 
 |   LiveRange* result = fixed_double_live_ranges_[index]; | 
 |   if (result == NULL) { | 
 |     result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index), | 
 |                                    chunk()->zone()); | 
 |     ASSERT(result->IsFixed()); | 
 |     result->kind_ = DOUBLE_REGISTERS; | 
 |     SetLiveRangeAssignedRegister(result, index); | 
 |     fixed_double_live_ranges_[index] = result; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | LiveRange* LAllocator::LiveRangeFor(int index) { | 
 |   if (index >= live_ranges_.length()) { | 
 |     live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone()); | 
 |   } | 
 |   LiveRange* result = live_ranges_[index]; | 
 |   if (result == NULL) { | 
 |     result = new(zone()) LiveRange(index, chunk()->zone()); | 
 |     live_ranges_[index] = result; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | LGap* LAllocator::GetLastGap(HBasicBlock* block) { | 
 |   int last_instruction = block->last_instruction_index(); | 
 |   int index = chunk_->NearestGapPos(last_instruction); | 
 |   return GapAt(index); | 
 | } | 
 |  | 
 |  | 
 | HPhi* LAllocator::LookupPhi(LOperand* operand) const { | 
 |   if (!operand->IsUnallocated()) return NULL; | 
 |   int index = LUnallocated::cast(operand)->virtual_register(); | 
 |   HValue* instr = graph_->LookupValue(index); | 
 |   if (instr != NULL && instr->IsPhi()) { | 
 |     return HPhi::cast(instr); | 
 |   } | 
 |   return NULL; | 
 | } | 
 |  | 
 |  | 
 | LiveRange* LAllocator::LiveRangeFor(LOperand* operand) { | 
 |   if (operand->IsUnallocated()) { | 
 |     return LiveRangeFor(LUnallocated::cast(operand)->virtual_register()); | 
 |   } else if (operand->IsRegister()) { | 
 |     return FixedLiveRangeFor(operand->index()); | 
 |   } else if (operand->IsDoubleRegister()) { | 
 |     return FixedDoubleLiveRangeFor(operand->index()); | 
 |   } else { | 
 |     return NULL; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::Define(LifetimePosition position, | 
 |                         LOperand* operand, | 
 |                         LOperand* hint) { | 
 |   LiveRange* range = LiveRangeFor(operand); | 
 |   if (range == NULL) return; | 
 |  | 
 |   if (range->IsEmpty() || range->Start().Value() > position.Value()) { | 
 |     // Can happen if there is a definition without use. | 
 |     range->AddUseInterval(position, position.NextInstruction(), zone()); | 
 |     range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone()); | 
 |   } else { | 
 |     range->ShortenTo(position); | 
 |   } | 
 |  | 
 |   if (operand->IsUnallocated()) { | 
 |     LUnallocated* unalloc_operand = LUnallocated::cast(operand); | 
 |     range->AddUsePosition(position, unalloc_operand, hint, zone()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::Use(LifetimePosition block_start, | 
 |                      LifetimePosition position, | 
 |                      LOperand* operand, | 
 |                      LOperand* hint) { | 
 |   LiveRange* range = LiveRangeFor(operand); | 
 |   if (range == NULL) return; | 
 |   if (operand->IsUnallocated()) { | 
 |     LUnallocated* unalloc_operand = LUnallocated::cast(operand); | 
 |     range->AddUsePosition(position, unalloc_operand, hint, zone()); | 
 |   } | 
 |   range->AddUseInterval(block_start, position, zone()); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AddConstraintsGapMove(int index, | 
 |                                        LOperand* from, | 
 |                                        LOperand* to) { | 
 |   LGap* gap = GapAt(index); | 
 |   LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START, | 
 |                                                      chunk()->zone()); | 
 |   if (from->IsUnallocated()) { | 
 |     const ZoneList<LMoveOperands>* move_operands = move->move_operands(); | 
 |     for (int i = 0; i < move_operands->length(); ++i) { | 
 |       LMoveOperands cur = move_operands->at(i); | 
 |       LOperand* cur_to = cur.destination(); | 
 |       if (cur_to->IsUnallocated()) { | 
 |         if (LUnallocated::cast(cur_to)->virtual_register() == | 
 |             LUnallocated::cast(from)->virtual_register()) { | 
 |           move->AddMove(cur.source(), to, chunk()->zone()); | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   move->AddMove(from, to, chunk()->zone()); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::MeetRegisterConstraints(HBasicBlock* block) { | 
 |   int start = block->first_instruction_index(); | 
 |   int end = block->last_instruction_index(); | 
 |   if (start == -1) return; | 
 |   for (int i = start; i <= end; ++i) { | 
 |     if (IsGapAt(i)) { | 
 |       LInstruction* instr = NULL; | 
 |       LInstruction* prev_instr = NULL; | 
 |       if (i < end) instr = InstructionAt(i + 1); | 
 |       if (i > start) prev_instr = InstructionAt(i - 1); | 
 |       MeetConstraintsBetween(prev_instr, instr, i); | 
 |       if (!AllocationOk()) return; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::MeetConstraintsBetween(LInstruction* first, | 
 |                                         LInstruction* second, | 
 |                                         int gap_index) { | 
 |   // Handle fixed temporaries. | 
 |   if (first != NULL) { | 
 |     for (TempIterator it(first); !it.Done(); it.Advance()) { | 
 |       LUnallocated* temp = LUnallocated::cast(it.Current()); | 
 |       if (temp->HasFixedPolicy()) { | 
 |         AllocateFixed(temp, gap_index - 1, false); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle fixed output operand. | 
 |   if (first != NULL && first->Output() != NULL) { | 
 |     LUnallocated* first_output = LUnallocated::cast(first->Output()); | 
 |     LiveRange* range = LiveRangeFor(first_output->virtual_register()); | 
 |     bool assigned = false; | 
 |     if (first_output->HasFixedPolicy()) { | 
 |       LUnallocated* output_copy = first_output->CopyUnconstrained( | 
 |           chunk()->zone()); | 
 |       bool is_tagged = HasTaggedValue(first_output->virtual_register()); | 
 |       AllocateFixed(first_output, gap_index, is_tagged); | 
 |  | 
 |       // This value is produced on the stack, we never need to spill it. | 
 |       if (first_output->IsStackSlot()) { | 
 |         range->SetSpillOperand(first_output); | 
 |         range->SetSpillStartIndex(gap_index - 1); | 
 |         assigned = true; | 
 |       } | 
 |       chunk_->AddGapMove(gap_index, first_output, output_copy); | 
 |     } | 
 |  | 
 |     if (!assigned) { | 
 |       range->SetSpillStartIndex(gap_index); | 
 |  | 
 |       // This move to spill operand is not a real use. Liveness analysis | 
 |       // and splitting of live ranges do not account for it. | 
 |       // Thus it should be inserted to a lifetime position corresponding to | 
 |       // the instruction end. | 
 |       LGap* gap = GapAt(gap_index); | 
 |       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE, | 
 |                                                          chunk()->zone()); | 
 |       move->AddMove(first_output, range->GetSpillOperand(), | 
 |                     chunk()->zone()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle fixed input operands of second instruction. | 
 |   if (second != NULL) { | 
 |     for (UseIterator it(second); !it.Done(); it.Advance()) { | 
 |       LUnallocated* cur_input = LUnallocated::cast(it.Current()); | 
 |       if (cur_input->HasFixedPolicy()) { | 
 |         LUnallocated* input_copy = cur_input->CopyUnconstrained( | 
 |             chunk()->zone()); | 
 |         bool is_tagged = HasTaggedValue(cur_input->virtual_register()); | 
 |         AllocateFixed(cur_input, gap_index + 1, is_tagged); | 
 |         AddConstraintsGapMove(gap_index, input_copy, cur_input); | 
 |       } else if (cur_input->HasWritableRegisterPolicy()) { | 
 |         // The live range of writable input registers always goes until the end | 
 |         // of the instruction. | 
 |         ASSERT(!cur_input->IsUsedAtStart()); | 
 |  | 
 |         LUnallocated* input_copy = cur_input->CopyUnconstrained( | 
 |             chunk()->zone()); | 
 |         int vreg = GetVirtualRegister(); | 
 |         if (!AllocationOk()) return; | 
 |         cur_input->set_virtual_register(vreg); | 
 |  | 
 |         if (RequiredRegisterKind(input_copy->virtual_register()) == | 
 |             DOUBLE_REGISTERS) { | 
 |           double_artificial_registers_.Add( | 
 |               cur_input->virtual_register() - first_artificial_register_, | 
 |               zone()); | 
 |         } | 
 |  | 
 |         AddConstraintsGapMove(gap_index, input_copy, cur_input); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle "output same as input" for second instruction. | 
 |   if (second != NULL && second->Output() != NULL) { | 
 |     LUnallocated* second_output = LUnallocated::cast(second->Output()); | 
 |     if (second_output->HasSameAsInputPolicy()) { | 
 |       LUnallocated* cur_input = LUnallocated::cast(second->FirstInput()); | 
 |       int output_vreg = second_output->virtual_register(); | 
 |       int input_vreg = cur_input->virtual_register(); | 
 |  | 
 |       LUnallocated* input_copy = cur_input->CopyUnconstrained( | 
 |           chunk()->zone()); | 
 |       cur_input->set_virtual_register(second_output->virtual_register()); | 
 |       AddConstraintsGapMove(gap_index, input_copy, cur_input); | 
 |  | 
 |       if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) { | 
 |         int index = gap_index + 1; | 
 |         LInstruction* instr = InstructionAt(index); | 
 |         if (instr->HasPointerMap()) { | 
 |           instr->pointer_map()->RecordPointer(input_copy, chunk()->zone()); | 
 |         } | 
 |       } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) { | 
 |         // The input is assumed to immediately have a tagged representation, | 
 |         // before the pointer map can be used. I.e. the pointer map at the | 
 |         // instruction will include the output operand (whose value at the | 
 |         // beginning of the instruction is equal to the input operand). If | 
 |         // this is not desired, then the pointer map at this instruction needs | 
 |         // to be adjusted manually. | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) { | 
 |   int block_start = block->first_instruction_index(); | 
 |   int index = block->last_instruction_index(); | 
 |  | 
 |   LifetimePosition block_start_position = | 
 |       LifetimePosition::FromInstructionIndex(block_start); | 
 |  | 
 |   while (index >= block_start) { | 
 |     LifetimePosition curr_position = | 
 |         LifetimePosition::FromInstructionIndex(index); | 
 |  | 
 |     if (IsGapAt(index)) { | 
 |       // We have a gap at this position. | 
 |       LGap* gap = GapAt(index); | 
 |       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START, | 
 |                                                          chunk()->zone()); | 
 |       const ZoneList<LMoveOperands>* move_operands = move->move_operands(); | 
 |       for (int i = 0; i < move_operands->length(); ++i) { | 
 |         LMoveOperands* cur = &move_operands->at(i); | 
 |         if (cur->IsIgnored()) continue; | 
 |         LOperand* from = cur->source(); | 
 |         LOperand* to = cur->destination(); | 
 |         HPhi* phi = LookupPhi(to); | 
 |         LOperand* hint = to; | 
 |         if (phi != NULL) { | 
 |           // This is a phi resolving move. | 
 |           if (!phi->block()->IsLoopHeader()) { | 
 |             hint = LiveRangeFor(phi->id())->current_hint_operand(); | 
 |           } | 
 |         } else { | 
 |           if (to->IsUnallocated()) { | 
 |             if (live->Contains(LUnallocated::cast(to)->virtual_register())) { | 
 |               Define(curr_position, to, from); | 
 |               live->Remove(LUnallocated::cast(to)->virtual_register()); | 
 |             } else { | 
 |               cur->Eliminate(); | 
 |               continue; | 
 |             } | 
 |           } else { | 
 |             Define(curr_position, to, from); | 
 |           } | 
 |         } | 
 |         Use(block_start_position, curr_position, from, hint); | 
 |         if (from->IsUnallocated()) { | 
 |           live->Add(LUnallocated::cast(from)->virtual_register()); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       ASSERT(!IsGapAt(index)); | 
 |       LInstruction* instr = InstructionAt(index); | 
 |  | 
 |       if (instr != NULL) { | 
 |         LOperand* output = instr->Output(); | 
 |         if (output != NULL) { | 
 |           if (output->IsUnallocated()) { | 
 |             live->Remove(LUnallocated::cast(output)->virtual_register()); | 
 |           } | 
 |           Define(curr_position, output, NULL); | 
 |         } | 
 |  | 
 |         if (instr->ClobbersRegisters()) { | 
 |           for (int i = 0; i < Register::kMaxNumAllocatableRegisters; ++i) { | 
 |             if (output == NULL || !output->IsRegister() || | 
 |                 output->index() != i) { | 
 |               LiveRange* range = FixedLiveRangeFor(i); | 
 |               range->AddUseInterval(curr_position, | 
 |                                     curr_position.InstructionEnd(), | 
 |                                     zone()); | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         if (instr->ClobbersDoubleRegisters()) { | 
 |           for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) { | 
 |             if (output == NULL || !output->IsDoubleRegister() || | 
 |                 output->index() != i) { | 
 |               LiveRange* range = FixedDoubleLiveRangeFor(i); | 
 |               range->AddUseInterval(curr_position, | 
 |                                     curr_position.InstructionEnd(), | 
 |                                     zone()); | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         for (UseIterator it(instr); !it.Done(); it.Advance()) { | 
 |           LOperand* input = it.Current(); | 
 |  | 
 |           LifetimePosition use_pos; | 
 |           if (input->IsUnallocated() && | 
 |               LUnallocated::cast(input)->IsUsedAtStart()) { | 
 |             use_pos = curr_position; | 
 |           } else { | 
 |             use_pos = curr_position.InstructionEnd(); | 
 |           } | 
 |  | 
 |           Use(block_start_position, use_pos, input, NULL); | 
 |           if (input->IsUnallocated()) { | 
 |             live->Add(LUnallocated::cast(input)->virtual_register()); | 
 |           } | 
 |         } | 
 |  | 
 |         for (TempIterator it(instr); !it.Done(); it.Advance()) { | 
 |           LOperand* temp = it.Current(); | 
 |           if (instr->ClobbersTemps()) { | 
 |             if (temp->IsRegister()) continue; | 
 |             if (temp->IsUnallocated()) { | 
 |               LUnallocated* temp_unalloc = LUnallocated::cast(temp); | 
 |               if (temp_unalloc->HasFixedPolicy()) { | 
 |                 continue; | 
 |               } | 
 |             } | 
 |           } | 
 |           Use(block_start_position, curr_position.InstructionEnd(), temp, NULL); | 
 |           Define(curr_position, temp, NULL); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     index = index - 1; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::ResolvePhis(HBasicBlock* block) { | 
 |   const ZoneList<HPhi*>* phis = block->phis(); | 
 |   for (int i = 0; i < phis->length(); ++i) { | 
 |     HPhi* phi = phis->at(i); | 
 |     LUnallocated* phi_operand = | 
 |         new(chunk()->zone()) LUnallocated(LUnallocated::NONE); | 
 |     phi_operand->set_virtual_register(phi->id()); | 
 |     for (int j = 0; j < phi->OperandCount(); ++j) { | 
 |       HValue* op = phi->OperandAt(j); | 
 |       LOperand* operand = NULL; | 
 |       if (op->IsConstant() && op->EmitAtUses()) { | 
 |         HConstant* constant = HConstant::cast(op); | 
 |         operand = chunk_->DefineConstantOperand(constant); | 
 |       } else { | 
 |         ASSERT(!op->EmitAtUses()); | 
 |         LUnallocated* unalloc = | 
 |             new(chunk()->zone()) LUnallocated(LUnallocated::ANY); | 
 |         unalloc->set_virtual_register(op->id()); | 
 |         operand = unalloc; | 
 |       } | 
 |       HBasicBlock* cur_block = block->predecessors()->at(j); | 
 |       // The gap move must be added without any special processing as in | 
 |       // the AddConstraintsGapMove. | 
 |       chunk_->AddGapMove(cur_block->last_instruction_index() - 1, | 
 |                          operand, | 
 |                          phi_operand); | 
 |  | 
 |       // We are going to insert a move before the branch instruction. | 
 |       // Some branch instructions (e.g. loops' back edges) | 
 |       // can potentially cause a GC so they have a pointer map. | 
 |       // By inserting a move we essentially create a copy of a | 
 |       // value which is invisible to PopulatePointerMaps(), because we store | 
 |       // it into a location different from the operand of a live range | 
 |       // covering a branch instruction. | 
 |       // Thus we need to manually record a pointer. | 
 |       LInstruction* branch = | 
 |           InstructionAt(cur_block->last_instruction_index()); | 
 |       if (branch->HasPointerMap()) { | 
 |         if (phi->representation().IsTagged() && !phi->type().IsSmi()) { | 
 |           branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone()); | 
 |         } else if (!phi->representation().IsDouble()) { | 
 |           branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone()); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     LiveRange* live_range = LiveRangeFor(phi->id()); | 
 |     LLabel* label = chunk_->GetLabel(phi->block()->block_id()); | 
 |     label->GetOrCreateParallelMove(LGap::START, chunk()->zone())-> | 
 |         AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone()); | 
 |     live_range->SetSpillStartIndex(phi->block()->first_instruction_index()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool LAllocator::Allocate(LChunk* chunk) { | 
 |   ASSERT(chunk_ == NULL); | 
 |   chunk_ = static_cast<LPlatformChunk*>(chunk); | 
 |   assigned_registers_ = | 
 |       new(chunk->zone()) BitVector(Register::NumAllocatableRegisters(), | 
 |                                    chunk->zone()); | 
 |   assigned_double_registers_ = | 
 |       new(chunk->zone()) BitVector(DoubleRegister::NumAllocatableRegisters(), | 
 |                                    chunk->zone()); | 
 |   MeetRegisterConstraints(); | 
 |   if (!AllocationOk()) return false; | 
 |   ResolvePhis(); | 
 |   BuildLiveRanges(); | 
 |   AllocateGeneralRegisters(); | 
 |   if (!AllocationOk()) return false; | 
 |   AllocateDoubleRegisters(); | 
 |   if (!AllocationOk()) return false; | 
 |   PopulatePointerMaps(); | 
 |   ConnectRanges(); | 
 |   ResolveControlFlow(); | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::MeetRegisterConstraints() { | 
 |   LAllocatorPhase phase("L_Register constraints", this); | 
 |   first_artificial_register_ = next_virtual_register_; | 
 |   const ZoneList<HBasicBlock*>* blocks = graph_->blocks(); | 
 |   for (int i = 0; i < blocks->length(); ++i) { | 
 |     HBasicBlock* block = blocks->at(i); | 
 |     MeetRegisterConstraints(block); | 
 |     if (!AllocationOk()) return; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::ResolvePhis() { | 
 |   LAllocatorPhase phase("L_Resolve phis", this); | 
 |  | 
 |   // Process the blocks in reverse order. | 
 |   const ZoneList<HBasicBlock*>* blocks = graph_->blocks(); | 
 |   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) { | 
 |     HBasicBlock* block = blocks->at(block_id); | 
 |     ResolvePhis(block); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::ResolveControlFlow(LiveRange* range, | 
 |                                     HBasicBlock* block, | 
 |                                     HBasicBlock* pred) { | 
 |   LifetimePosition pred_end = | 
 |       LifetimePosition::FromInstructionIndex(pred->last_instruction_index()); | 
 |   LifetimePosition cur_start = | 
 |       LifetimePosition::FromInstructionIndex(block->first_instruction_index()); | 
 |   LiveRange* pred_cover = NULL; | 
 |   LiveRange* cur_cover = NULL; | 
 |   LiveRange* cur_range = range; | 
 |   while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) { | 
 |     if (cur_range->CanCover(cur_start)) { | 
 |       ASSERT(cur_cover == NULL); | 
 |       cur_cover = cur_range; | 
 |     } | 
 |     if (cur_range->CanCover(pred_end)) { | 
 |       ASSERT(pred_cover == NULL); | 
 |       pred_cover = cur_range; | 
 |     } | 
 |     cur_range = cur_range->next(); | 
 |   } | 
 |  | 
 |   if (cur_cover->IsSpilled()) return; | 
 |   ASSERT(pred_cover != NULL && cur_cover != NULL); | 
 |   if (pred_cover != cur_cover) { | 
 |     LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone()); | 
 |     LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone()); | 
 |     if (!pred_op->Equals(cur_op)) { | 
 |       LGap* gap = NULL; | 
 |       if (block->predecessors()->length() == 1) { | 
 |         gap = GapAt(block->first_instruction_index()); | 
 |       } else { | 
 |         ASSERT(pred->end()->SecondSuccessor() == NULL); | 
 |         gap = GetLastGap(pred); | 
 |  | 
 |         // We are going to insert a move before the branch instruction. | 
 |         // Some branch instructions (e.g. loops' back edges) | 
 |         // can potentially cause a GC so they have a pointer map. | 
 |         // By inserting a move we essentially create a copy of a | 
 |         // value which is invisible to PopulatePointerMaps(), because we store | 
 |         // it into a location different from the operand of a live range | 
 |         // covering a branch instruction. | 
 |         // Thus we need to manually record a pointer. | 
 |         LInstruction* branch = InstructionAt(pred->last_instruction_index()); | 
 |         if (branch->HasPointerMap()) { | 
 |           if (HasTaggedValue(range->id())) { | 
 |             branch->pointer_map()->RecordPointer(cur_op, chunk()->zone()); | 
 |           } else if (!cur_op->IsDoubleStackSlot() && | 
 |                      !cur_op->IsDoubleRegister()) { | 
 |             branch->pointer_map()->RemovePointer(cur_op); | 
 |           } | 
 |         } | 
 |       } | 
 |       gap->GetOrCreateParallelMove( | 
 |           LGap::START, chunk()->zone())->AddMove(pred_op, cur_op, | 
 |                                                  chunk()->zone()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) { | 
 |   int index = pos.InstructionIndex(); | 
 |   if (IsGapAt(index)) { | 
 |     LGap* gap = GapAt(index); | 
 |     return gap->GetOrCreateParallelMove( | 
 |         pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone()); | 
 |   } | 
 |   int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1); | 
 |   return GapAt(gap_pos)->GetOrCreateParallelMove( | 
 |       (gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone()); | 
 | } | 
 |  | 
 |  | 
 | HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) { | 
 |   LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex())); | 
 |   return gap->block(); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::ConnectRanges() { | 
 |   LAllocatorPhase phase("L_Connect ranges", this); | 
 |   for (int i = 0; i < live_ranges()->length(); ++i) { | 
 |     LiveRange* first_range = live_ranges()->at(i); | 
 |     if (first_range == NULL || first_range->parent() != NULL) continue; | 
 |  | 
 |     LiveRange* second_range = first_range->next(); | 
 |     while (second_range != NULL) { | 
 |       LifetimePosition pos = second_range->Start(); | 
 |  | 
 |       if (!second_range->IsSpilled()) { | 
 |         // Add gap move if the two live ranges touch and there is no block | 
 |         // boundary. | 
 |         if (first_range->End().Value() == pos.Value()) { | 
 |           bool should_insert = true; | 
 |           if (IsBlockBoundary(pos)) { | 
 |             should_insert = CanEagerlyResolveControlFlow(GetBlock(pos)); | 
 |           } | 
 |           if (should_insert) { | 
 |             LParallelMove* move = GetConnectingParallelMove(pos); | 
 |             LOperand* prev_operand = first_range->CreateAssignedOperand( | 
 |                 chunk()->zone()); | 
 |             LOperand* cur_operand = second_range->CreateAssignedOperand( | 
 |                 chunk()->zone()); | 
 |             move->AddMove(prev_operand, cur_operand, | 
 |                           chunk()->zone()); | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       first_range = second_range; | 
 |       second_range = second_range->next(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const { | 
 |   if (block->predecessors()->length() != 1) return false; | 
 |   return block->predecessors()->first()->block_id() == block->block_id() - 1; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::ResolveControlFlow() { | 
 |   LAllocatorPhase phase("L_Resolve control flow", this); | 
 |   const ZoneList<HBasicBlock*>* blocks = graph_->blocks(); | 
 |   for (int block_id = 1; block_id < blocks->length(); ++block_id) { | 
 |     HBasicBlock* block = blocks->at(block_id); | 
 |     if (CanEagerlyResolveControlFlow(block)) continue; | 
 |     BitVector* live = live_in_sets_[block->block_id()]; | 
 |     BitVector::Iterator iterator(live); | 
 |     while (!iterator.Done()) { | 
 |       int operand_index = iterator.Current(); | 
 |       for (int i = 0; i < block->predecessors()->length(); ++i) { | 
 |         HBasicBlock* cur = block->predecessors()->at(i); | 
 |         LiveRange* cur_range = LiveRangeFor(operand_index); | 
 |         ResolveControlFlow(cur_range, block, cur); | 
 |       } | 
 |       iterator.Advance(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::BuildLiveRanges() { | 
 |   LAllocatorPhase phase("L_Build live ranges", this); | 
 |   InitializeLivenessAnalysis(); | 
 |   // Process the blocks in reverse order. | 
 |   const ZoneList<HBasicBlock*>* blocks = graph_->blocks(); | 
 |   for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) { | 
 |     HBasicBlock* block = blocks->at(block_id); | 
 |     BitVector* live = ComputeLiveOut(block); | 
 |     // Initially consider all live_out values live for the entire block. We | 
 |     // will shorten these intervals if necessary. | 
 |     AddInitialIntervals(block, live); | 
 |  | 
 |     // Process the instructions in reverse order, generating and killing | 
 |     // live values. | 
 |     ProcessInstructions(block, live); | 
 |     // All phi output operands are killed by this block. | 
 |     const ZoneList<HPhi*>* phis = block->phis(); | 
 |     for (int i = 0; i < phis->length(); ++i) { | 
 |       // The live range interval already ends at the first instruction of the | 
 |       // block. | 
 |       HPhi* phi = phis->at(i); | 
 |       live->Remove(phi->id()); | 
 |  | 
 |       LOperand* hint = NULL; | 
 |       LOperand* phi_operand = NULL; | 
 |       LGap* gap = GetLastGap(phi->block()->predecessors()->at(0)); | 
 |       LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START, | 
 |                                                          chunk()->zone()); | 
 |       for (int j = 0; j < move->move_operands()->length(); ++j) { | 
 |         LOperand* to = move->move_operands()->at(j).destination(); | 
 |         if (to->IsUnallocated() && | 
 |             LUnallocated::cast(to)->virtual_register() == phi->id()) { | 
 |           hint = move->move_operands()->at(j).source(); | 
 |           phi_operand = to; | 
 |           break; | 
 |         } | 
 |       } | 
 |       ASSERT(hint != NULL); | 
 |  | 
 |       LifetimePosition block_start = LifetimePosition::FromInstructionIndex( | 
 |               block->first_instruction_index()); | 
 |       Define(block_start, phi_operand, hint); | 
 |     } | 
 |  | 
 |     // Now live is live_in for this block except not including values live | 
 |     // out on backward successor edges. | 
 |     live_in_sets_[block_id] = live; | 
 |  | 
 |     // If this block is a loop header go back and patch up the necessary | 
 |     // predecessor blocks. | 
 |     if (block->IsLoopHeader()) { | 
 |       // TODO(kmillikin): Need to be able to get the last block of the loop | 
 |       // in the loop information. Add a live range stretching from the first | 
 |       // loop instruction to the last for each value live on entry to the | 
 |       // header. | 
 |       HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge(); | 
 |       BitVector::Iterator iterator(live); | 
 |       LifetimePosition start = LifetimePosition::FromInstructionIndex( | 
 |           block->first_instruction_index()); | 
 |       LifetimePosition end = LifetimePosition::FromInstructionIndex( | 
 |           back_edge->last_instruction_index()).NextInstruction(); | 
 |       while (!iterator.Done()) { | 
 |         int operand_index = iterator.Current(); | 
 |         LiveRange* range = LiveRangeFor(operand_index); | 
 |         range->EnsureInterval(start, end, zone()); | 
 |         iterator.Advance(); | 
 |       } | 
 |  | 
 |       for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) { | 
 |         live_in_sets_[i]->Union(*live); | 
 |       } | 
 |     } | 
 |  | 
 | #ifdef DEBUG | 
 |     if (block_id == 0) { | 
 |       BitVector::Iterator iterator(live); | 
 |       bool found = false; | 
 |       while (!iterator.Done()) { | 
 |         found = true; | 
 |         int operand_index = iterator.Current(); | 
 |         if (chunk_->info()->IsStub()) { | 
 |           CodeStub::Major major_key = chunk_->info()->code_stub()->MajorKey(); | 
 |           PrintF("Function: %s\n", CodeStub::MajorName(major_key, false)); | 
 |         } else { | 
 |           ASSERT(chunk_->info()->IsOptimizing()); | 
 |           AllowHandleDereference allow_deref; | 
 |           PrintF("Function: %s\n", | 
 |                  chunk_->info()->function()->debug_name()->ToCString().get()); | 
 |         } | 
 |         PrintF("Value %d used before first definition!\n", operand_index); | 
 |         LiveRange* range = LiveRangeFor(operand_index); | 
 |         PrintF("First use is at %d\n", range->first_pos()->pos().Value()); | 
 |         iterator.Advance(); | 
 |       } | 
 |       ASSERT(!found); | 
 |     } | 
 | #endif | 
 |   } | 
 |  | 
 |   for (int i = 0; i < live_ranges_.length(); ++i) { | 
 |     if (live_ranges_[i] != NULL) { | 
 |       live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool LAllocator::SafePointsAreInOrder() const { | 
 |   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps(); | 
 |   int safe_point = 0; | 
 |   for (int i = 0; i < pointer_maps->length(); ++i) { | 
 |     LPointerMap* map = pointer_maps->at(i); | 
 |     if (safe_point > map->lithium_position()) return false; | 
 |     safe_point = map->lithium_position(); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::PopulatePointerMaps() { | 
 |   LAllocatorPhase phase("L_Populate pointer maps", this); | 
 |   const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps(); | 
 |  | 
 |   ASSERT(SafePointsAreInOrder()); | 
 |  | 
 |   // Iterate over all safe point positions and record a pointer | 
 |   // for all spilled live ranges at this point. | 
 |   int first_safe_point_index = 0; | 
 |   int last_range_start = 0; | 
 |   for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) { | 
 |     LiveRange* range = live_ranges()->at(range_idx); | 
 |     if (range == NULL) continue; | 
 |     // Iterate over the first parts of multi-part live ranges. | 
 |     if (range->parent() != NULL) continue; | 
 |     // Skip non-pointer values. | 
 |     if (!HasTaggedValue(range->id())) continue; | 
 |     // Skip empty live ranges. | 
 |     if (range->IsEmpty()) continue; | 
 |  | 
 |     // Find the extent of the range and its children. | 
 |     int start = range->Start().InstructionIndex(); | 
 |     int end = 0; | 
 |     for (LiveRange* cur = range; cur != NULL; cur = cur->next()) { | 
 |       LifetimePosition this_end = cur->End(); | 
 |       if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex(); | 
 |       ASSERT(cur->Start().InstructionIndex() >= start); | 
 |     } | 
 |  | 
 |     // Most of the ranges are in order, but not all.  Keep an eye on when | 
 |     // they step backwards and reset the first_safe_point_index so we don't | 
 |     // miss any safe points. | 
 |     if (start < last_range_start) { | 
 |       first_safe_point_index = 0; | 
 |     } | 
 |     last_range_start = start; | 
 |  | 
 |     // Step across all the safe points that are before the start of this range, | 
 |     // recording how far we step in order to save doing this for the next range. | 
 |     while (first_safe_point_index < pointer_maps->length()) { | 
 |       LPointerMap* map = pointer_maps->at(first_safe_point_index); | 
 |       int safe_point = map->lithium_position(); | 
 |       if (safe_point >= start) break; | 
 |       first_safe_point_index++; | 
 |     } | 
 |  | 
 |     // Step through the safe points to see whether they are in the range. | 
 |     for (int safe_point_index = first_safe_point_index; | 
 |          safe_point_index < pointer_maps->length(); | 
 |          ++safe_point_index) { | 
 |       LPointerMap* map = pointer_maps->at(safe_point_index); | 
 |       int safe_point = map->lithium_position(); | 
 |  | 
 |       // The safe points are sorted so we can stop searching here. | 
 |       if (safe_point - 1 > end) break; | 
 |  | 
 |       // Advance to the next active range that covers the current | 
 |       // safe point position. | 
 |       LifetimePosition safe_point_pos = | 
 |           LifetimePosition::FromInstructionIndex(safe_point); | 
 |       LiveRange* cur = range; | 
 |       while (cur != NULL && !cur->Covers(safe_point_pos)) { | 
 |         cur = cur->next(); | 
 |       } | 
 |       if (cur == NULL) continue; | 
 |  | 
 |       // Check if the live range is spilled and the safe point is after | 
 |       // the spill position. | 
 |       if (range->HasAllocatedSpillOperand() && | 
 |           safe_point >= range->spill_start_index()) { | 
 |         TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n", | 
 |                    range->id(), range->spill_start_index(), safe_point); | 
 |         map->RecordPointer(range->GetSpillOperand(), chunk()->zone()); | 
 |       } | 
 |  | 
 |       if (!cur->IsSpilled()) { | 
 |         TraceAlloc("Pointer in register for range %d (start at %d) " | 
 |                    "at safe point %d\n", | 
 |                    cur->id(), cur->Start().Value(), safe_point); | 
 |         LOperand* operand = cur->CreateAssignedOperand(chunk()->zone()); | 
 |         ASSERT(!operand->IsStackSlot()); | 
 |         map->RecordPointer(operand, chunk()->zone()); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AllocateGeneralRegisters() { | 
 |   LAllocatorPhase phase("L_Allocate general registers", this); | 
 |   num_registers_ = Register::NumAllocatableRegisters(); | 
 |   mode_ = GENERAL_REGISTERS; | 
 |   AllocateRegisters(); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AllocateDoubleRegisters() { | 
 |   LAllocatorPhase phase("L_Allocate double registers", this); | 
 |   num_registers_ = DoubleRegister::NumAllocatableRegisters(); | 
 |   mode_ = DOUBLE_REGISTERS; | 
 |   AllocateRegisters(); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AllocateRegisters() { | 
 |   ASSERT(unhandled_live_ranges_.is_empty()); | 
 |  | 
 |   for (int i = 0; i < live_ranges_.length(); ++i) { | 
 |     if (live_ranges_[i] != NULL) { | 
 |       if (live_ranges_[i]->Kind() == mode_) { | 
 |         AddToUnhandledUnsorted(live_ranges_[i]); | 
 |       } | 
 |     } | 
 |   } | 
 |   SortUnhandled(); | 
 |   ASSERT(UnhandledIsSorted()); | 
 |  | 
 |   ASSERT(reusable_slots_.is_empty()); | 
 |   ASSERT(active_live_ranges_.is_empty()); | 
 |   ASSERT(inactive_live_ranges_.is_empty()); | 
 |  | 
 |   if (mode_ == DOUBLE_REGISTERS) { | 
 |     for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) { | 
 |       LiveRange* current = fixed_double_live_ranges_.at(i); | 
 |       if (current != NULL) { | 
 |         AddToInactive(current); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     ASSERT(mode_ == GENERAL_REGISTERS); | 
 |     for (int i = 0; i < fixed_live_ranges_.length(); ++i) { | 
 |       LiveRange* current = fixed_live_ranges_.at(i); | 
 |       if (current != NULL) { | 
 |         AddToInactive(current); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   while (!unhandled_live_ranges_.is_empty()) { | 
 |     ASSERT(UnhandledIsSorted()); | 
 |     LiveRange* current = unhandled_live_ranges_.RemoveLast(); | 
 |     ASSERT(UnhandledIsSorted()); | 
 |     LifetimePosition position = current->Start(); | 
 | #ifdef DEBUG | 
 |     allocation_finger_ = position; | 
 | #endif | 
 |     TraceAlloc("Processing interval %d start=%d\n", | 
 |                current->id(), | 
 |                position.Value()); | 
 |  | 
 |     if (current->HasAllocatedSpillOperand()) { | 
 |       TraceAlloc("Live range %d already has a spill operand\n", current->id()); | 
 |       LifetimePosition next_pos = position; | 
 |       if (IsGapAt(next_pos.InstructionIndex())) { | 
 |         next_pos = next_pos.NextInstruction(); | 
 |       } | 
 |       UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos); | 
 |       // If the range already has a spill operand and it doesn't need a | 
 |       // register immediately, split it and spill the first part of the range. | 
 |       if (pos == NULL) { | 
 |         Spill(current); | 
 |         continue; | 
 |       } else if (pos->pos().Value() > | 
 |                  current->Start().NextInstruction().Value()) { | 
 |         // Do not spill live range eagerly if use position that can benefit from | 
 |         // the register is too close to the start of live range. | 
 |         SpillBetween(current, current->Start(), pos->pos()); | 
 |         if (!AllocationOk()) return; | 
 |         ASSERT(UnhandledIsSorted()); | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     for (int i = 0; i < active_live_ranges_.length(); ++i) { | 
 |       LiveRange* cur_active = active_live_ranges_.at(i); | 
 |       if (cur_active->End().Value() <= position.Value()) { | 
 |         ActiveToHandled(cur_active); | 
 |         --i;  // The live range was removed from the list of active live ranges. | 
 |       } else if (!cur_active->Covers(position)) { | 
 |         ActiveToInactive(cur_active); | 
 |         --i;  // The live range was removed from the list of active live ranges. | 
 |       } | 
 |     } | 
 |  | 
 |     for (int i = 0; i < inactive_live_ranges_.length(); ++i) { | 
 |       LiveRange* cur_inactive = inactive_live_ranges_.at(i); | 
 |       if (cur_inactive->End().Value() <= position.Value()) { | 
 |         InactiveToHandled(cur_inactive); | 
 |         --i;  // Live range was removed from the list of inactive live ranges. | 
 |       } else if (cur_inactive->Covers(position)) { | 
 |         InactiveToActive(cur_inactive); | 
 |         --i;  // Live range was removed from the list of inactive live ranges. | 
 |       } | 
 |     } | 
 |  | 
 |     ASSERT(!current->HasRegisterAssigned() && !current->IsSpilled()); | 
 |  | 
 |     bool result = TryAllocateFreeReg(current); | 
 |     if (!AllocationOk()) return; | 
 |  | 
 |     if (!result) AllocateBlockedReg(current); | 
 |     if (!AllocationOk()) return; | 
 |  | 
 |     if (current->HasRegisterAssigned()) { | 
 |       AddToActive(current); | 
 |     } | 
 |   } | 
 |  | 
 |   reusable_slots_.Rewind(0); | 
 |   active_live_ranges_.Rewind(0); | 
 |   inactive_live_ranges_.Rewind(0); | 
 | } | 
 |  | 
 |  | 
 | const char* LAllocator::RegisterName(int allocation_index) { | 
 |   if (mode_ == GENERAL_REGISTERS) { | 
 |     return Register::AllocationIndexToString(allocation_index); | 
 |   } else { | 
 |     return DoubleRegister::AllocationIndexToString(allocation_index); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::TraceAlloc(const char* msg, ...) { | 
 |   if (FLAG_trace_alloc) { | 
 |     va_list arguments; | 
 |     va_start(arguments, msg); | 
 |     OS::VPrint(msg, arguments); | 
 |     va_end(arguments); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool LAllocator::HasTaggedValue(int virtual_register) const { | 
 |   HValue* value = graph_->LookupValue(virtual_register); | 
 |   if (value == NULL) return false; | 
 |   return value->representation().IsTagged() && !value->type().IsSmi(); | 
 | } | 
 |  | 
 |  | 
 | RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const { | 
 |   if (virtual_register < first_artificial_register_) { | 
 |     HValue* value = graph_->LookupValue(virtual_register); | 
 |     if (value != NULL && value->representation().IsDouble()) { | 
 |       return DOUBLE_REGISTERS; | 
 |     } | 
 |   } else if (double_artificial_registers_.Contains( | 
 |       virtual_register - first_artificial_register_)) { | 
 |     return DOUBLE_REGISTERS; | 
 |   } | 
 |  | 
 |   return GENERAL_REGISTERS; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AddToActive(LiveRange* range) { | 
 |   TraceAlloc("Add live range %d to active\n", range->id()); | 
 |   active_live_ranges_.Add(range, zone()); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AddToInactive(LiveRange* range) { | 
 |   TraceAlloc("Add live range %d to inactive\n", range->id()); | 
 |   inactive_live_ranges_.Add(range, zone()); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AddToUnhandledSorted(LiveRange* range) { | 
 |   if (range == NULL || range->IsEmpty()) return; | 
 |   ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled()); | 
 |   ASSERT(allocation_finger_.Value() <= range->Start().Value()); | 
 |   for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) { | 
 |     LiveRange* cur_range = unhandled_live_ranges_.at(i); | 
 |     if (range->ShouldBeAllocatedBefore(cur_range)) { | 
 |       TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1); | 
 |       unhandled_live_ranges_.InsertAt(i + 1, range, zone()); | 
 |       ASSERT(UnhandledIsSorted()); | 
 |       return; | 
 |     } | 
 |   } | 
 |   TraceAlloc("Add live range %d to unhandled at start\n", range->id()); | 
 |   unhandled_live_ranges_.InsertAt(0, range, zone()); | 
 |   ASSERT(UnhandledIsSorted()); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AddToUnhandledUnsorted(LiveRange* range) { | 
 |   if (range == NULL || range->IsEmpty()) return; | 
 |   ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled()); | 
 |   TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id()); | 
 |   unhandled_live_ranges_.Add(range, zone()); | 
 | } | 
 |  | 
 |  | 
 | static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) { | 
 |   ASSERT(!(*a)->ShouldBeAllocatedBefore(*b) || | 
 |          !(*b)->ShouldBeAllocatedBefore(*a)); | 
 |   if ((*a)->ShouldBeAllocatedBefore(*b)) return 1; | 
 |   if ((*b)->ShouldBeAllocatedBefore(*a)) return -1; | 
 |   return (*a)->id() - (*b)->id(); | 
 | } | 
 |  | 
 |  | 
 | // Sort the unhandled live ranges so that the ranges to be processed first are | 
 | // at the end of the array list.  This is convenient for the register allocation | 
 | // algorithm because it is efficient to remove elements from the end. | 
 | void LAllocator::SortUnhandled() { | 
 |   TraceAlloc("Sort unhandled\n"); | 
 |   unhandled_live_ranges_.Sort(&UnhandledSortHelper); | 
 | } | 
 |  | 
 |  | 
 | bool LAllocator::UnhandledIsSorted() { | 
 |   int len = unhandled_live_ranges_.length(); | 
 |   for (int i = 1; i < len; i++) { | 
 |     LiveRange* a = unhandled_live_ranges_.at(i - 1); | 
 |     LiveRange* b = unhandled_live_ranges_.at(i); | 
 |     if (a->Start().Value() < b->Start().Value()) return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::FreeSpillSlot(LiveRange* range) { | 
 |   // Check that we are the last range. | 
 |   if (range->next() != NULL) return; | 
 |  | 
 |   if (!range->TopLevel()->HasAllocatedSpillOperand()) return; | 
 |  | 
 |   int index = range->TopLevel()->GetSpillOperand()->index(); | 
 |   if (index >= 0) { | 
 |     reusable_slots_.Add(range, zone()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) { | 
 |   if (reusable_slots_.is_empty()) return NULL; | 
 |   if (reusable_slots_.first()->End().Value() > | 
 |       range->TopLevel()->Start().Value()) { | 
 |     return NULL; | 
 |   } | 
 |   LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand(); | 
 |   reusable_slots_.Remove(0); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::ActiveToHandled(LiveRange* range) { | 
 |   ASSERT(active_live_ranges_.Contains(range)); | 
 |   active_live_ranges_.RemoveElement(range); | 
 |   TraceAlloc("Moving live range %d from active to handled\n", range->id()); | 
 |   FreeSpillSlot(range); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::ActiveToInactive(LiveRange* range) { | 
 |   ASSERT(active_live_ranges_.Contains(range)); | 
 |   active_live_ranges_.RemoveElement(range); | 
 |   inactive_live_ranges_.Add(range, zone()); | 
 |   TraceAlloc("Moving live range %d from active to inactive\n", range->id()); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::InactiveToHandled(LiveRange* range) { | 
 |   ASSERT(inactive_live_ranges_.Contains(range)); | 
 |   inactive_live_ranges_.RemoveElement(range); | 
 |   TraceAlloc("Moving live range %d from inactive to handled\n", range->id()); | 
 |   FreeSpillSlot(range); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::InactiveToActive(LiveRange* range) { | 
 |   ASSERT(inactive_live_ranges_.Contains(range)); | 
 |   inactive_live_ranges_.RemoveElement(range); | 
 |   active_live_ranges_.Add(range, zone()); | 
 |   TraceAlloc("Moving live range %d from inactive to active\n", range->id()); | 
 | } | 
 |  | 
 |  | 
 | // TryAllocateFreeReg and AllocateBlockedReg assume this | 
 | // when allocating local arrays. | 
 | STATIC_ASSERT(DoubleRegister::kMaxNumAllocatableRegisters >= | 
 |               Register::kMaxNumAllocatableRegisters); | 
 |  | 
 |  | 
 | bool LAllocator::TryAllocateFreeReg(LiveRange* current) { | 
 |   LifetimePosition free_until_pos[DoubleRegister::kMaxNumAllocatableRegisters]; | 
 |  | 
 |   for (int i = 0; i < num_registers_; i++) { | 
 |     free_until_pos[i] = LifetimePosition::MaxPosition(); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < active_live_ranges_.length(); ++i) { | 
 |     LiveRange* cur_active = active_live_ranges_.at(i); | 
 |     free_until_pos[cur_active->assigned_register()] = | 
 |         LifetimePosition::FromInstructionIndex(0); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < inactive_live_ranges_.length(); ++i) { | 
 |     LiveRange* cur_inactive = inactive_live_ranges_.at(i); | 
 |     ASSERT(cur_inactive->End().Value() > current->Start().Value()); | 
 |     LifetimePosition next_intersection = | 
 |         cur_inactive->FirstIntersection(current); | 
 |     if (!next_intersection.IsValid()) continue; | 
 |     int cur_reg = cur_inactive->assigned_register(); | 
 |     free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection); | 
 |   } | 
 |  | 
 |   LOperand* hint = current->FirstHint(); | 
 |   if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) { | 
 |     int register_index = hint->index(); | 
 |     TraceAlloc( | 
 |         "Found reg hint %s (free until [%d) for live range %d (end %d[).\n", | 
 |         RegisterName(register_index), | 
 |         free_until_pos[register_index].Value(), | 
 |         current->id(), | 
 |         current->End().Value()); | 
 |  | 
 |     // The desired register is free until the end of the current live range. | 
 |     if (free_until_pos[register_index].Value() >= current->End().Value()) { | 
 |       TraceAlloc("Assigning preferred reg %s to live range %d\n", | 
 |                  RegisterName(register_index), | 
 |                  current->id()); | 
 |       SetLiveRangeAssignedRegister(current, register_index); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // Find the register which stays free for the longest time. | 
 |   int reg = 0; | 
 |   for (int i = 1; i < RegisterCount(); ++i) { | 
 |     if (free_until_pos[i].Value() > free_until_pos[reg].Value()) { | 
 |       reg = i; | 
 |     } | 
 |   } | 
 |  | 
 |   LifetimePosition pos = free_until_pos[reg]; | 
 |  | 
 |   if (pos.Value() <= current->Start().Value()) { | 
 |     // All registers are blocked. | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (pos.Value() < current->End().Value()) { | 
 |     // Register reg is available at the range start but becomes blocked before | 
 |     // the range end. Split current at position where it becomes blocked. | 
 |     LiveRange* tail = SplitRangeAt(current, pos); | 
 |     if (!AllocationOk()) return false; | 
 |     AddToUnhandledSorted(tail); | 
 |   } | 
 |  | 
 |  | 
 |   // Register reg is available at the range start and is free until | 
 |   // the range end. | 
 |   ASSERT(pos.Value() >= current->End().Value()); | 
 |   TraceAlloc("Assigning free reg %s to live range %d\n", | 
 |              RegisterName(reg), | 
 |              current->id()); | 
 |   SetLiveRangeAssignedRegister(current, reg); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::AllocateBlockedReg(LiveRange* current) { | 
 |   UsePosition* register_use = current->NextRegisterPosition(current->Start()); | 
 |   if (register_use == NULL) { | 
 |     // There is no use in the current live range that requires a register. | 
 |     // We can just spill it. | 
 |     Spill(current); | 
 |     return; | 
 |   } | 
 |  | 
 |  | 
 |   LifetimePosition use_pos[DoubleRegister::kMaxNumAllocatableRegisters]; | 
 |   LifetimePosition block_pos[DoubleRegister::kMaxNumAllocatableRegisters]; | 
 |  | 
 |   for (int i = 0; i < num_registers_; i++) { | 
 |     use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition(); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < active_live_ranges_.length(); ++i) { | 
 |     LiveRange* range = active_live_ranges_[i]; | 
 |     int cur_reg = range->assigned_register(); | 
 |     if (range->IsFixed() || !range->CanBeSpilled(current->Start())) { | 
 |       block_pos[cur_reg] = use_pos[cur_reg] = | 
 |           LifetimePosition::FromInstructionIndex(0); | 
 |     } else { | 
 |       UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial( | 
 |           current->Start()); | 
 |       if (next_use == NULL) { | 
 |         use_pos[cur_reg] = range->End(); | 
 |       } else { | 
 |         use_pos[cur_reg] = next_use->pos(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   for (int i = 0; i < inactive_live_ranges_.length(); ++i) { | 
 |     LiveRange* range = inactive_live_ranges_.at(i); | 
 |     ASSERT(range->End().Value() > current->Start().Value()); | 
 |     LifetimePosition next_intersection = range->FirstIntersection(current); | 
 |     if (!next_intersection.IsValid()) continue; | 
 |     int cur_reg = range->assigned_register(); | 
 |     if (range->IsFixed()) { | 
 |       block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection); | 
 |       use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]); | 
 |     } else { | 
 |       use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection); | 
 |     } | 
 |   } | 
 |  | 
 |   int reg = 0; | 
 |   for (int i = 1; i < RegisterCount(); ++i) { | 
 |     if (use_pos[i].Value() > use_pos[reg].Value()) { | 
 |       reg = i; | 
 |     } | 
 |   } | 
 |  | 
 |   LifetimePosition pos = use_pos[reg]; | 
 |  | 
 |   if (pos.Value() < register_use->pos().Value()) { | 
 |     // All registers are blocked before the first use that requires a register. | 
 |     // Spill starting part of live range up to that use. | 
 |     SpillBetween(current, current->Start(), register_use->pos()); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (block_pos[reg].Value() < current->End().Value()) { | 
 |     // Register becomes blocked before the current range end. Split before that | 
 |     // position. | 
 |     LiveRange* tail = SplitBetween(current, | 
 |                                    current->Start(), | 
 |                                    block_pos[reg].InstructionStart()); | 
 |     if (!AllocationOk()) return; | 
 |     AddToUnhandledSorted(tail); | 
 |   } | 
 |  | 
 |   // Register reg is not blocked for the whole range. | 
 |   ASSERT(block_pos[reg].Value() >= current->End().Value()); | 
 |   TraceAlloc("Assigning blocked reg %s to live range %d\n", | 
 |              RegisterName(reg), | 
 |              current->id()); | 
 |   SetLiveRangeAssignedRegister(current, reg); | 
 |  | 
 |   // This register was not free. Thus we need to find and spill | 
 |   // parts of active and inactive live regions that use the same register | 
 |   // at the same lifetime positions as current. | 
 |   SplitAndSpillIntersecting(current); | 
 | } | 
 |  | 
 |  | 
 | LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range, | 
 |                                                     LifetimePosition pos) { | 
 |   HBasicBlock* block = GetBlock(pos.InstructionStart()); | 
 |   HBasicBlock* loop_header = | 
 |       block->IsLoopHeader() ? block : block->parent_loop_header(); | 
 |  | 
 |   if (loop_header == NULL) return pos; | 
 |  | 
 |   UsePosition* prev_use = | 
 |     range->PreviousUsePositionRegisterIsBeneficial(pos); | 
 |  | 
 |   while (loop_header != NULL) { | 
 |     // We are going to spill live range inside the loop. | 
 |     // If possible try to move spilling position backwards to loop header. | 
 |     // This will reduce number of memory moves on the back edge. | 
 |     LifetimePosition loop_start = LifetimePosition::FromInstructionIndex( | 
 |         loop_header->first_instruction_index()); | 
 |  | 
 |     if (range->Covers(loop_start)) { | 
 |       if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) { | 
 |         // No register beneficial use inside the loop before the pos. | 
 |         pos = loop_start; | 
 |       } | 
 |     } | 
 |  | 
 |     // Try hoisting out to an outer loop. | 
 |     loop_header = loop_header->parent_loop_header(); | 
 |   } | 
 |  | 
 |   return pos; | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::SplitAndSpillIntersecting(LiveRange* current) { | 
 |   ASSERT(current->HasRegisterAssigned()); | 
 |   int reg = current->assigned_register(); | 
 |   LifetimePosition split_pos = current->Start(); | 
 |   for (int i = 0; i < active_live_ranges_.length(); ++i) { | 
 |     LiveRange* range = active_live_ranges_[i]; | 
 |     if (range->assigned_register() == reg) { | 
 |       UsePosition* next_pos = range->NextRegisterPosition(current->Start()); | 
 |       LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos); | 
 |       if (next_pos == NULL) { | 
 |         SpillAfter(range, spill_pos); | 
 |       } else { | 
 |         // When spilling between spill_pos and next_pos ensure that the range | 
 |         // remains spilled at least until the start of the current live range. | 
 |         // This guarantees that we will not introduce new unhandled ranges that | 
 |         // start before the current range as this violates allocation invariant | 
 |         // and will lead to an inconsistent state of active and inactive | 
 |         // live-ranges: ranges are allocated in order of their start positions, | 
 |         // ranges are retired from active/inactive when the start of the | 
 |         // current live-range is larger than their end. | 
 |         SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos()); | 
 |       } | 
 |       if (!AllocationOk()) return; | 
 |       ActiveToHandled(range); | 
 |       --i; | 
 |     } | 
 |   } | 
 |  | 
 |   for (int i = 0; i < inactive_live_ranges_.length(); ++i) { | 
 |     LiveRange* range = inactive_live_ranges_[i]; | 
 |     ASSERT(range->End().Value() > current->Start().Value()); | 
 |     if (range->assigned_register() == reg && !range->IsFixed()) { | 
 |       LifetimePosition next_intersection = range->FirstIntersection(current); | 
 |       if (next_intersection.IsValid()) { | 
 |         UsePosition* next_pos = range->NextRegisterPosition(current->Start()); | 
 |         if (next_pos == NULL) { | 
 |           SpillAfter(range, split_pos); | 
 |         } else { | 
 |           next_intersection = Min(next_intersection, next_pos->pos()); | 
 |           SpillBetween(range, split_pos, next_intersection); | 
 |         } | 
 |         if (!AllocationOk()) return; | 
 |         InactiveToHandled(range); | 
 |         --i; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool LAllocator::IsBlockBoundary(LifetimePosition pos) { | 
 |   return pos.IsInstructionStart() && | 
 |       InstructionAt(pos.InstructionIndex())->IsLabel(); | 
 | } | 
 |  | 
 |  | 
 | LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) { | 
 |   ASSERT(!range->IsFixed()); | 
 |   TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value()); | 
 |  | 
 |   if (pos.Value() <= range->Start().Value()) return range; | 
 |  | 
 |   // We can't properly connect liveranges if split occured at the end | 
 |   // of control instruction. | 
 |   ASSERT(pos.IsInstructionStart() || | 
 |          !chunk_->instructions()->at(pos.InstructionIndex())->IsControl()); | 
 |  | 
 |   int vreg = GetVirtualRegister(); | 
 |   if (!AllocationOk()) return NULL; | 
 |   LiveRange* result = LiveRangeFor(vreg); | 
 |   range->SplitAt(pos, result, zone()); | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | LiveRange* LAllocator::SplitBetween(LiveRange* range, | 
 |                                     LifetimePosition start, | 
 |                                     LifetimePosition end) { | 
 |   ASSERT(!range->IsFixed()); | 
 |   TraceAlloc("Splitting live range %d in position between [%d, %d]\n", | 
 |              range->id(), | 
 |              start.Value(), | 
 |              end.Value()); | 
 |  | 
 |   LifetimePosition split_pos = FindOptimalSplitPos(start, end); | 
 |   ASSERT(split_pos.Value() >= start.Value()); | 
 |   return SplitRangeAt(range, split_pos); | 
 | } | 
 |  | 
 |  | 
 | LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start, | 
 |                                                  LifetimePosition end) { | 
 |   int start_instr = start.InstructionIndex(); | 
 |   int end_instr = end.InstructionIndex(); | 
 |   ASSERT(start_instr <= end_instr); | 
 |  | 
 |   // We have no choice | 
 |   if (start_instr == end_instr) return end; | 
 |  | 
 |   HBasicBlock* start_block = GetBlock(start); | 
 |   HBasicBlock* end_block = GetBlock(end); | 
 |  | 
 |   if (end_block == start_block) { | 
 |     // The interval is split in the same basic block. Split at the latest | 
 |     // possible position. | 
 |     return end; | 
 |   } | 
 |  | 
 |   HBasicBlock* block = end_block; | 
 |   // Find header of outermost loop. | 
 |   while (block->parent_loop_header() != NULL && | 
 |       block->parent_loop_header()->block_id() > start_block->block_id()) { | 
 |     block = block->parent_loop_header(); | 
 |   } | 
 |  | 
 |   // We did not find any suitable outer loop. Split at the latest possible | 
 |   // position unless end_block is a loop header itself. | 
 |   if (block == end_block && !end_block->IsLoopHeader()) return end; | 
 |  | 
 |   return LifetimePosition::FromInstructionIndex( | 
 |       block->first_instruction_index()); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) { | 
 |   LiveRange* second_part = SplitRangeAt(range, pos); | 
 |   if (!AllocationOk()) return; | 
 |   Spill(second_part); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::SpillBetween(LiveRange* range, | 
 |                               LifetimePosition start, | 
 |                               LifetimePosition end) { | 
 |   SpillBetweenUntil(range, start, start, end); | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::SpillBetweenUntil(LiveRange* range, | 
 |                                    LifetimePosition start, | 
 |                                    LifetimePosition until, | 
 |                                    LifetimePosition end) { | 
 |   CHECK(start.Value() < end.Value()); | 
 |   LiveRange* second_part = SplitRangeAt(range, start); | 
 |   if (!AllocationOk()) return; | 
 |  | 
 |   if (second_part->Start().Value() < end.Value()) { | 
 |     // The split result intersects with [start, end[. | 
 |     // Split it at position between ]start+1, end[, spill the middle part | 
 |     // and put the rest to unhandled. | 
 |     LiveRange* third_part = SplitBetween( | 
 |         second_part, | 
 |         Max(second_part->Start().InstructionEnd(), until), | 
 |         end.PrevInstruction().InstructionEnd()); | 
 |     if (!AllocationOk()) return; | 
 |  | 
 |     ASSERT(third_part != second_part); | 
 |  | 
 |     Spill(second_part); | 
 |     AddToUnhandledSorted(third_part); | 
 |   } else { | 
 |     // The split result does not intersect with [start, end[. | 
 |     // Nothing to spill. Just put it to unhandled as whole. | 
 |     AddToUnhandledSorted(second_part); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void LAllocator::Spill(LiveRange* range) { | 
 |   ASSERT(!range->IsSpilled()); | 
 |   TraceAlloc("Spilling live range %d\n", range->id()); | 
 |   LiveRange* first = range->TopLevel(); | 
 |  | 
 |   if (!first->HasAllocatedSpillOperand()) { | 
 |     LOperand* op = TryReuseSpillSlot(range); | 
 |     if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind()); | 
 |     first->SetSpillOperand(op); | 
 |   } | 
 |   range->MakeSpilled(chunk()->zone()); | 
 | } | 
 |  | 
 |  | 
 | int LAllocator::RegisterCount() const { | 
 |   return num_registers_; | 
 | } | 
 |  | 
 |  | 
 | #ifdef DEBUG | 
 |  | 
 |  | 
 | void LAllocator::Verify() const { | 
 |   for (int i = 0; i < live_ranges()->length(); ++i) { | 
 |     LiveRange* current = live_ranges()->at(i); | 
 |     if (current != NULL) current->Verify(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | #endif | 
 |  | 
 |  | 
 | LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator) | 
 |     : CompilationPhase(name, allocator->graph()->info()), | 
 |       allocator_(allocator) { | 
 |   if (FLAG_hydrogen_stats) { | 
 |     allocator_zone_start_allocation_size_ = | 
 |         allocator->zone()->allocation_size(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | LAllocatorPhase::~LAllocatorPhase() { | 
 |   if (FLAG_hydrogen_stats) { | 
 |     unsigned size = allocator_->zone()->allocation_size() - | 
 |                     allocator_zone_start_allocation_size_; | 
 |     isolate()->GetHStatistics()->SaveTiming(name(), TimeDelta(), size); | 
 |   } | 
 |  | 
 |   if (ShouldProduceTraceOutput()) { | 
 |     isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk()); | 
 |     isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_); | 
 |   } | 
 |  | 
 | #ifdef DEBUG | 
 |   if (allocator_ != NULL) allocator_->Verify(); | 
 | #endif | 
 | } | 
 |  | 
 |  | 
 | } }  // namespace v8::internal |