| // Copyright 2011 the V8 project authors. All rights reserved. | 
 | // Redistribution and use in source and binary forms, with or without | 
 | // modification, are permitted provided that the following conditions are | 
 | // met: | 
 | // | 
 | //     * Redistributions of source code must retain the above copyright | 
 | //       notice, this list of conditions and the following disclaimer. | 
 | //     * Redistributions in binary form must reproduce the above | 
 | //       copyright notice, this list of conditions and the following | 
 | //       disclaimer in the documentation and/or other materials provided | 
 | //       with the distribution. | 
 | //     * Neither the name of Google Inc. nor the names of its | 
 | //       contributors may be used to endorse or promote products derived | 
 | //       from this software without specific prior written permission. | 
 | // | 
 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | #include "../include/v8stdint.h" | 
 | #include "utils.h" | 
 | #include "bignum.h" | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | Bignum::Bignum() | 
 |     : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { | 
 |   for (int i = 0; i < kBigitCapacity; ++i) { | 
 |     bigits_[i] = 0; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | template<typename S> | 
 | static int BitSize(S value) { | 
 |   return 8 * sizeof(value); | 
 | } | 
 |  | 
 |  | 
 | // Guaranteed to lie in one Bigit. | 
 | void Bignum::AssignUInt16(uint16_t value) { | 
 |   ASSERT(kBigitSize >= BitSize(value)); | 
 |   Zero(); | 
 |   if (value == 0) return; | 
 |  | 
 |   EnsureCapacity(1); | 
 |   bigits_[0] = value; | 
 |   used_digits_ = 1; | 
 | } | 
 |  | 
 |  | 
 | void Bignum::AssignUInt64(uint64_t value) { | 
 |   const int kUInt64Size = 64; | 
 |  | 
 |   Zero(); | 
 |   if (value == 0) return; | 
 |  | 
 |   int needed_bigits = kUInt64Size / kBigitSize + 1; | 
 |   EnsureCapacity(needed_bigits); | 
 |   for (int i = 0; i < needed_bigits; ++i) { | 
 |     bigits_[i] = static_cast<Chunk>(value & kBigitMask); | 
 |     value = value >> kBigitSize; | 
 |   } | 
 |   used_digits_ = needed_bigits; | 
 |   Clamp(); | 
 | } | 
 |  | 
 |  | 
 | void Bignum::AssignBignum(const Bignum& other) { | 
 |   exponent_ = other.exponent_; | 
 |   for (int i = 0; i < other.used_digits_; ++i) { | 
 |     bigits_[i] = other.bigits_[i]; | 
 |   } | 
 |   // Clear the excess digits (if there were any). | 
 |   for (int i = other.used_digits_; i < used_digits_; ++i) { | 
 |     bigits_[i] = 0; | 
 |   } | 
 |   used_digits_ = other.used_digits_; | 
 | } | 
 |  | 
 |  | 
 | static uint64_t ReadUInt64(Vector<const char> buffer, | 
 |                            int from, | 
 |                            int digits_to_read) { | 
 |   uint64_t result = 0; | 
 |   for (int i = from; i < from + digits_to_read; ++i) { | 
 |     int digit = buffer[i] - '0'; | 
 |     ASSERT(0 <= digit && digit <= 9); | 
 |     result = result * 10 + digit; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | void Bignum::AssignDecimalString(Vector<const char> value) { | 
 |   // 2^64 = 18446744073709551616 > 10^19 | 
 |   const int kMaxUint64DecimalDigits = 19; | 
 |   Zero(); | 
 |   int length = value.length(); | 
 |   int pos = 0; | 
 |   // Let's just say that each digit needs 4 bits. | 
 |   while (length >= kMaxUint64DecimalDigits) { | 
 |     uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); | 
 |     pos += kMaxUint64DecimalDigits; | 
 |     length -= kMaxUint64DecimalDigits; | 
 |     MultiplyByPowerOfTen(kMaxUint64DecimalDigits); | 
 |     AddUInt64(digits); | 
 |   } | 
 |   uint64_t digits = ReadUInt64(value, pos, length); | 
 |   MultiplyByPowerOfTen(length); | 
 |   AddUInt64(digits); | 
 |   Clamp(); | 
 | } | 
 |  | 
 |  | 
 | static int HexCharValue(char c) { | 
 |   if ('0' <= c && c <= '9') return c - '0'; | 
 |   if ('a' <= c && c <= 'f') return 10 + c - 'a'; | 
 |   if ('A' <= c && c <= 'F') return 10 + c - 'A'; | 
 |   UNREACHABLE(); | 
 |   return 0;  // To make compiler happy. | 
 | } | 
 |  | 
 |  | 
 | void Bignum::AssignHexString(Vector<const char> value) { | 
 |   Zero(); | 
 |   int length = value.length(); | 
 |  | 
 |   int needed_bigits = length * 4 / kBigitSize + 1; | 
 |   EnsureCapacity(needed_bigits); | 
 |   int string_index = length - 1; | 
 |   for (int i = 0; i < needed_bigits - 1; ++i) { | 
 |     // These bigits are guaranteed to be "full". | 
 |     Chunk current_bigit = 0; | 
 |     for (int j = 0; j < kBigitSize / 4; j++) { | 
 |       current_bigit += HexCharValue(value[string_index--]) << (j * 4); | 
 |     } | 
 |     bigits_[i] = current_bigit; | 
 |   } | 
 |   used_digits_ = needed_bigits - 1; | 
 |  | 
 |   Chunk most_significant_bigit = 0;  // Could be = 0; | 
 |   for (int j = 0; j <= string_index; ++j) { | 
 |     most_significant_bigit <<= 4; | 
 |     most_significant_bigit += HexCharValue(value[j]); | 
 |   } | 
 |   if (most_significant_bigit != 0) { | 
 |     bigits_[used_digits_] = most_significant_bigit; | 
 |     used_digits_++; | 
 |   } | 
 |   Clamp(); | 
 | } | 
 |  | 
 |  | 
 | void Bignum::AddUInt64(uint64_t operand) { | 
 |   if (operand == 0) return; | 
 |   Bignum other; | 
 |   other.AssignUInt64(operand); | 
 |   AddBignum(other); | 
 | } | 
 |  | 
 |  | 
 | void Bignum::AddBignum(const Bignum& other) { | 
 |   ASSERT(IsClamped()); | 
 |   ASSERT(other.IsClamped()); | 
 |  | 
 |   // If this has a greater exponent than other append zero-bigits to this. | 
 |   // After this call exponent_ <= other.exponent_. | 
 |   Align(other); | 
 |  | 
 |   // There are two possibilities: | 
 |   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent) | 
 |   //     bbbbb 00000000 | 
 |   //   ---------------- | 
 |   //   ccccccccccc 0000 | 
 |   // or | 
 |   //    aaaaaaaaaa 0000 | 
 |   //  bbbbbbbbb 0000000 | 
 |   //  ----------------- | 
 |   //  cccccccccccc 0000 | 
 |   // In both cases we might need a carry bigit. | 
 |  | 
 |   EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); | 
 |   Chunk carry = 0; | 
 |   int bigit_pos = other.exponent_ - exponent_; | 
 |   ASSERT(bigit_pos >= 0); | 
 |   for (int i = 0; i < other.used_digits_; ++i) { | 
 |     Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; | 
 |     bigits_[bigit_pos] = sum & kBigitMask; | 
 |     carry = sum >> kBigitSize; | 
 |     bigit_pos++; | 
 |   } | 
 |  | 
 |   while (carry != 0) { | 
 |     Chunk sum = bigits_[bigit_pos] + carry; | 
 |     bigits_[bigit_pos] = sum & kBigitMask; | 
 |     carry = sum >> kBigitSize; | 
 |     bigit_pos++; | 
 |   } | 
 |   used_digits_ = Max(bigit_pos, used_digits_); | 
 |   ASSERT(IsClamped()); | 
 | } | 
 |  | 
 |  | 
 | void Bignum::SubtractBignum(const Bignum& other) { | 
 |   ASSERT(IsClamped()); | 
 |   ASSERT(other.IsClamped()); | 
 |   // We require this to be bigger than other. | 
 |   ASSERT(LessEqual(other, *this)); | 
 |  | 
 |   Align(other); | 
 |  | 
 |   int offset = other.exponent_ - exponent_; | 
 |   Chunk borrow = 0; | 
 |   int i; | 
 |   for (i = 0; i < other.used_digits_; ++i) { | 
 |     ASSERT((borrow == 0) || (borrow == 1)); | 
 |     Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; | 
 |     bigits_[i + offset] = difference & kBigitMask; | 
 |     borrow = difference >> (kChunkSize - 1); | 
 |   } | 
 |   while (borrow != 0) { | 
 |     Chunk difference = bigits_[i + offset] - borrow; | 
 |     bigits_[i + offset] = difference & kBigitMask; | 
 |     borrow = difference >> (kChunkSize - 1); | 
 |     ++i; | 
 |   } | 
 |   Clamp(); | 
 | } | 
 |  | 
 |  | 
 | void Bignum::ShiftLeft(int shift_amount) { | 
 |   if (used_digits_ == 0) return; | 
 |   exponent_ += shift_amount / kBigitSize; | 
 |   int local_shift = shift_amount % kBigitSize; | 
 |   EnsureCapacity(used_digits_ + 1); | 
 |   BigitsShiftLeft(local_shift); | 
 | } | 
 |  | 
 |  | 
 | void Bignum::MultiplyByUInt32(uint32_t factor) { | 
 |   if (factor == 1) return; | 
 |   if (factor == 0) { | 
 |     Zero(); | 
 |     return; | 
 |   } | 
 |   if (used_digits_ == 0) return; | 
 |  | 
 |   // The product of a bigit with the factor is of size kBigitSize + 32. | 
 |   // Assert that this number + 1 (for the carry) fits into double chunk. | 
 |   ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); | 
 |   DoubleChunk carry = 0; | 
 |   for (int i = 0; i < used_digits_; ++i) { | 
 |     DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; | 
 |     bigits_[i] = static_cast<Chunk>(product & kBigitMask); | 
 |     carry = (product >> kBigitSize); | 
 |   } | 
 |   while (carry != 0) { | 
 |     EnsureCapacity(used_digits_ + 1); | 
 |     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask); | 
 |     used_digits_++; | 
 |     carry >>= kBigitSize; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Bignum::MultiplyByUInt64(uint64_t factor) { | 
 |   if (factor == 1) return; | 
 |   if (factor == 0) { | 
 |     Zero(); | 
 |     return; | 
 |   } | 
 |   ASSERT(kBigitSize < 32); | 
 |   uint64_t carry = 0; | 
 |   uint64_t low = factor & 0xFFFFFFFF; | 
 |   uint64_t high = factor >> 32; | 
 |   for (int i = 0; i < used_digits_; ++i) { | 
 |     uint64_t product_low = low * bigits_[i]; | 
 |     uint64_t product_high = high * bigits_[i]; | 
 |     uint64_t tmp = (carry & kBigitMask) + product_low; | 
 |     bigits_[i] = static_cast<Chunk>(tmp & kBigitMask); | 
 |     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + | 
 |         (product_high << (32 - kBigitSize)); | 
 |   } | 
 |   while (carry != 0) { | 
 |     EnsureCapacity(used_digits_ + 1); | 
 |     bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask); | 
 |     used_digits_++; | 
 |     carry >>= kBigitSize; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Bignum::MultiplyByPowerOfTen(int exponent) { | 
 |   const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d); | 
 |   const uint16_t kFive1 = 5; | 
 |   const uint16_t kFive2 = kFive1 * 5; | 
 |   const uint16_t kFive3 = kFive2 * 5; | 
 |   const uint16_t kFive4 = kFive3 * 5; | 
 |   const uint16_t kFive5 = kFive4 * 5; | 
 |   const uint16_t kFive6 = kFive5 * 5; | 
 |   const uint32_t kFive7 = kFive6 * 5; | 
 |   const uint32_t kFive8 = kFive7 * 5; | 
 |   const uint32_t kFive9 = kFive8 * 5; | 
 |   const uint32_t kFive10 = kFive9 * 5; | 
 |   const uint32_t kFive11 = kFive10 * 5; | 
 |   const uint32_t kFive12 = kFive11 * 5; | 
 |   const uint32_t kFive13 = kFive12 * 5; | 
 |   const uint32_t kFive1_to_12[] = | 
 |       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, | 
 |         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; | 
 |  | 
 |   ASSERT(exponent >= 0); | 
 |   if (exponent == 0) return; | 
 |   if (used_digits_ == 0) return; | 
 |  | 
 |   // We shift by exponent at the end just before returning. | 
 |   int remaining_exponent = exponent; | 
 |   while (remaining_exponent >= 27) { | 
 |     MultiplyByUInt64(kFive27); | 
 |     remaining_exponent -= 27; | 
 |   } | 
 |   while (remaining_exponent >= 13) { | 
 |     MultiplyByUInt32(kFive13); | 
 |     remaining_exponent -= 13; | 
 |   } | 
 |   if (remaining_exponent > 0) { | 
 |     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); | 
 |   } | 
 |   ShiftLeft(exponent); | 
 | } | 
 |  | 
 |  | 
 | void Bignum::Square() { | 
 |   ASSERT(IsClamped()); | 
 |   int product_length = 2 * used_digits_; | 
 |   EnsureCapacity(product_length); | 
 |  | 
 |   // Comba multiplication: compute each column separately. | 
 |   // Example: r = a2a1a0 * b2b1b0. | 
 |   //    r =  1    * a0b0 + | 
 |   //        10    * (a1b0 + a0b1) + | 
 |   //        100   * (a2b0 + a1b1 + a0b2) + | 
 |   //        1000  * (a2b1 + a1b2) + | 
 |   //        10000 * a2b2 | 
 |   // | 
 |   // In the worst case we have to accumulate nb-digits products of digit*digit. | 
 |   // | 
 |   // Assert that the additional number of bits in a DoubleChunk are enough to | 
 |   // sum up used_digits of Bigit*Bigit. | 
 |   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { | 
 |     UNIMPLEMENTED(); | 
 |   } | 
 |   DoubleChunk accumulator = 0; | 
 |   // First shift the digits so we don't overwrite them. | 
 |   int copy_offset = used_digits_; | 
 |   for (int i = 0; i < used_digits_; ++i) { | 
 |     bigits_[copy_offset + i] = bigits_[i]; | 
 |   } | 
 |   // We have two loops to avoid some 'if's in the loop. | 
 |   for (int i = 0; i < used_digits_; ++i) { | 
 |     // Process temporary digit i with power i. | 
 |     // The sum of the two indices must be equal to i. | 
 |     int bigit_index1 = i; | 
 |     int bigit_index2 = 0; | 
 |     // Sum all of the sub-products. | 
 |     while (bigit_index1 >= 0) { | 
 |       Chunk chunk1 = bigits_[copy_offset + bigit_index1]; | 
 |       Chunk chunk2 = bigits_[copy_offset + bigit_index2]; | 
 |       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; | 
 |       bigit_index1--; | 
 |       bigit_index2++; | 
 |     } | 
 |     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; | 
 |     accumulator >>= kBigitSize; | 
 |   } | 
 |   for (int i = used_digits_; i < product_length; ++i) { | 
 |     int bigit_index1 = used_digits_ - 1; | 
 |     int bigit_index2 = i - bigit_index1; | 
 |     // Invariant: sum of both indices is again equal to i. | 
 |     // Inner loop runs 0 times on last iteration, emptying accumulator. | 
 |     while (bigit_index2 < used_digits_) { | 
 |       Chunk chunk1 = bigits_[copy_offset + bigit_index1]; | 
 |       Chunk chunk2 = bigits_[copy_offset + bigit_index2]; | 
 |       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; | 
 |       bigit_index1--; | 
 |       bigit_index2++; | 
 |     } | 
 |     // The overwritten bigits_[i] will never be read in further loop iterations, | 
 |     // because bigit_index1 and bigit_index2 are always greater | 
 |     // than i - used_digits_. | 
 |     bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; | 
 |     accumulator >>= kBigitSize; | 
 |   } | 
 |   // Since the result was guaranteed to lie inside the number the | 
 |   // accumulator must be 0 now. | 
 |   ASSERT(accumulator == 0); | 
 |  | 
 |   // Don't forget to update the used_digits and the exponent. | 
 |   used_digits_ = product_length; | 
 |   exponent_ *= 2; | 
 |   Clamp(); | 
 | } | 
 |  | 
 |  | 
 | void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { | 
 |   ASSERT(base != 0); | 
 |   ASSERT(power_exponent >= 0); | 
 |   if (power_exponent == 0) { | 
 |     AssignUInt16(1); | 
 |     return; | 
 |   } | 
 |   Zero(); | 
 |   int shifts = 0; | 
 |   // We expect base to be in range 2-32, and most often to be 10. | 
 |   // It does not make much sense to implement different algorithms for counting | 
 |   // the bits. | 
 |   while ((base & 1) == 0) { | 
 |     base >>= 1; | 
 |     shifts++; | 
 |   } | 
 |   int bit_size = 0; | 
 |   int tmp_base = base; | 
 |   while (tmp_base != 0) { | 
 |     tmp_base >>= 1; | 
 |     bit_size++; | 
 |   } | 
 |   int final_size = bit_size * power_exponent; | 
 |   // 1 extra bigit for the shifting, and one for rounded final_size. | 
 |   EnsureCapacity(final_size / kBigitSize + 2); | 
 |  | 
 |   // Left to Right exponentiation. | 
 |   int mask = 1; | 
 |   while (power_exponent >= mask) mask <<= 1; | 
 |  | 
 |   // The mask is now pointing to the bit above the most significant 1-bit of | 
 |   // power_exponent. | 
 |   // Get rid of first 1-bit; | 
 |   mask >>= 2; | 
 |   uint64_t this_value = base; | 
 |  | 
 |   bool delayed_multipliciation = false; | 
 |   const uint64_t max_32bits = 0xFFFFFFFF; | 
 |   while (mask != 0 && this_value <= max_32bits) { | 
 |     this_value = this_value * this_value; | 
 |     // Verify that there is enough space in this_value to perform the | 
 |     // multiplication.  The first bit_size bits must be 0. | 
 |     if ((power_exponent & mask) != 0) { | 
 |       uint64_t base_bits_mask = | 
 |           ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); | 
 |       bool high_bits_zero = (this_value & base_bits_mask) == 0; | 
 |       if (high_bits_zero) { | 
 |         this_value *= base; | 
 |       } else { | 
 |         delayed_multipliciation = true; | 
 |       } | 
 |     } | 
 |     mask >>= 1; | 
 |   } | 
 |   AssignUInt64(this_value); | 
 |   if (delayed_multipliciation) { | 
 |     MultiplyByUInt32(base); | 
 |   } | 
 |  | 
 |   // Now do the same thing as a bignum. | 
 |   while (mask != 0) { | 
 |     Square(); | 
 |     if ((power_exponent & mask) != 0) { | 
 |       MultiplyByUInt32(base); | 
 |     } | 
 |     mask >>= 1; | 
 |   } | 
 |  | 
 |   // And finally add the saved shifts. | 
 |   ShiftLeft(shifts * power_exponent); | 
 | } | 
 |  | 
 |  | 
 | // Precondition: this/other < 16bit. | 
 | uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { | 
 |   ASSERT(IsClamped()); | 
 |   ASSERT(other.IsClamped()); | 
 |   ASSERT(other.used_digits_ > 0); | 
 |  | 
 |   // Easy case: if we have less digits than the divisor than the result is 0. | 
 |   // Note: this handles the case where this == 0, too. | 
 |   if (BigitLength() < other.BigitLength()) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   Align(other); | 
 |  | 
 |   uint16_t result = 0; | 
 |  | 
 |   // Start by removing multiples of 'other' until both numbers have the same | 
 |   // number of digits. | 
 |   while (BigitLength() > other.BigitLength()) { | 
 |     // This naive approach is extremely inefficient if the this divided other | 
 |     // might be big. This function is implemented for doubleToString where | 
 |     // the result should be small (less than 10). | 
 |     ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); | 
 |     // Remove the multiples of the first digit. | 
 |     // Example this = 23 and other equals 9. -> Remove 2 multiples. | 
 |     result += bigits_[used_digits_ - 1]; | 
 |     SubtractTimes(other, bigits_[used_digits_ - 1]); | 
 |   } | 
 |  | 
 |   ASSERT(BigitLength() == other.BigitLength()); | 
 |  | 
 |   // Both bignums are at the same length now. | 
 |   // Since other has more than 0 digits we know that the access to | 
 |   // bigits_[used_digits_ - 1] is safe. | 
 |   Chunk this_bigit = bigits_[used_digits_ - 1]; | 
 |   Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; | 
 |  | 
 |   if (other.used_digits_ == 1) { | 
 |     // Shortcut for easy (and common) case. | 
 |     int quotient = this_bigit / other_bigit; | 
 |     bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; | 
 |     result += quotient; | 
 |     Clamp(); | 
 |     return result; | 
 |   } | 
 |  | 
 |   int division_estimate = this_bigit / (other_bigit + 1); | 
 |   result += division_estimate; | 
 |   SubtractTimes(other, division_estimate); | 
 |  | 
 |   if (other_bigit * (division_estimate + 1) > this_bigit) { | 
 |     // No need to even try to subtract. Even if other's remaining digits were 0 | 
 |     // another subtraction would be too much. | 
 |     return result; | 
 |   } | 
 |  | 
 |   while (LessEqual(other, *this)) { | 
 |     SubtractBignum(other); | 
 |     result++; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | template<typename S> | 
 | static int SizeInHexChars(S number) { | 
 |   ASSERT(number > 0); | 
 |   int result = 0; | 
 |   while (number != 0) { | 
 |     number >>= 4; | 
 |     result++; | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | static char HexCharOfValue(int value) { | 
 |   ASSERT(0 <= value && value <= 16); | 
 |   if (value < 10) return value + '0'; | 
 |   return value - 10 + 'A'; | 
 | } | 
 |  | 
 |  | 
 | bool Bignum::ToHexString(char* buffer, int buffer_size) const { | 
 |   ASSERT(IsClamped()); | 
 |   // Each bigit must be printable as separate hex-character. | 
 |   ASSERT(kBigitSize % 4 == 0); | 
 |   const int kHexCharsPerBigit = kBigitSize / 4; | 
 |  | 
 |   if (used_digits_ == 0) { | 
 |     if (buffer_size < 2) return false; | 
 |     buffer[0] = '0'; | 
 |     buffer[1] = '\0'; | 
 |     return true; | 
 |   } | 
 |   // We add 1 for the terminating '\0' character. | 
 |   int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + | 
 |       SizeInHexChars(bigits_[used_digits_ - 1]) + 1; | 
 |   if (needed_chars > buffer_size) return false; | 
 |   int string_index = needed_chars - 1; | 
 |   buffer[string_index--] = '\0'; | 
 |   for (int i = 0; i < exponent_; ++i) { | 
 |     for (int j = 0; j < kHexCharsPerBigit; ++j) { | 
 |       buffer[string_index--] = '0'; | 
 |     } | 
 |   } | 
 |   for (int i = 0; i < used_digits_ - 1; ++i) { | 
 |     Chunk current_bigit = bigits_[i]; | 
 |     for (int j = 0; j < kHexCharsPerBigit; ++j) { | 
 |       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); | 
 |       current_bigit >>= 4; | 
 |     } | 
 |   } | 
 |   // And finally the last bigit. | 
 |   Chunk most_significant_bigit = bigits_[used_digits_ - 1]; | 
 |   while (most_significant_bigit != 0) { | 
 |     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); | 
 |     most_significant_bigit >>= 4; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | Bignum::Chunk Bignum::BigitAt(int index) const { | 
 |   if (index >= BigitLength()) return 0; | 
 |   if (index < exponent_) return 0; | 
 |   return bigits_[index - exponent_]; | 
 | } | 
 |  | 
 |  | 
 | int Bignum::Compare(const Bignum& a, const Bignum& b) { | 
 |   ASSERT(a.IsClamped()); | 
 |   ASSERT(b.IsClamped()); | 
 |   int bigit_length_a = a.BigitLength(); | 
 |   int bigit_length_b = b.BigitLength(); | 
 |   if (bigit_length_a < bigit_length_b) return -1; | 
 |   if (bigit_length_a > bigit_length_b) return +1; | 
 |   for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { | 
 |     Chunk bigit_a = a.BigitAt(i); | 
 |     Chunk bigit_b = b.BigitAt(i); | 
 |     if (bigit_a < bigit_b) return -1; | 
 |     if (bigit_a > bigit_b) return +1; | 
 |     // Otherwise they are equal up to this digit. Try the next digit. | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { | 
 |   ASSERT(a.IsClamped()); | 
 |   ASSERT(b.IsClamped()); | 
 |   ASSERT(c.IsClamped()); | 
 |   if (a.BigitLength() < b.BigitLength()) { | 
 |     return PlusCompare(b, a, c); | 
 |   } | 
 |   if (a.BigitLength() + 1 < c.BigitLength()) return -1; | 
 |   if (a.BigitLength() > c.BigitLength()) return +1; | 
 |   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than | 
 |   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one | 
 |   // of 'a'. | 
 |   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   Chunk borrow = 0; | 
 |   // Starting at min_exponent all digits are == 0. So no need to compare them. | 
 |   int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); | 
 |   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { | 
 |     Chunk chunk_a = a.BigitAt(i); | 
 |     Chunk chunk_b = b.BigitAt(i); | 
 |     Chunk chunk_c = c.BigitAt(i); | 
 |     Chunk sum = chunk_a + chunk_b; | 
 |     if (sum > chunk_c + borrow) { | 
 |       return +1; | 
 |     } else { | 
 |       borrow = chunk_c + borrow - sum; | 
 |       if (borrow > 1) return -1; | 
 |       borrow <<= kBigitSize; | 
 |     } | 
 |   } | 
 |   if (borrow == 0) return 0; | 
 |   return -1; | 
 | } | 
 |  | 
 |  | 
 | void Bignum::Clamp() { | 
 |   while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { | 
 |     used_digits_--; | 
 |   } | 
 |   if (used_digits_ == 0) { | 
 |     // Zero. | 
 |     exponent_ = 0; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | bool Bignum::IsClamped() const { | 
 |   return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; | 
 | } | 
 |  | 
 |  | 
 | void Bignum::Zero() { | 
 |   for (int i = 0; i < used_digits_; ++i) { | 
 |     bigits_[i] = 0; | 
 |   } | 
 |   used_digits_ = 0; | 
 |   exponent_ = 0; | 
 | } | 
 |  | 
 |  | 
 | void Bignum::Align(const Bignum& other) { | 
 |   if (exponent_ > other.exponent_) { | 
 |     // If "X" represents a "hidden" digit (by the exponent) then we are in the | 
 |     // following case (a == this, b == other): | 
 |     // a:  aaaaaaXXXX   or a:   aaaaaXXX | 
 |     // b:     bbbbbbX      b: bbbbbbbbXX | 
 |     // We replace some of the hidden digits (X) of a with 0 digits. | 
 |     // a:  aaaaaa000X   or a:   aaaaa0XX | 
 |     int zero_digits = exponent_ - other.exponent_; | 
 |     EnsureCapacity(used_digits_ + zero_digits); | 
 |     for (int i = used_digits_ - 1; i >= 0; --i) { | 
 |       bigits_[i + zero_digits] = bigits_[i]; | 
 |     } | 
 |     for (int i = 0; i < zero_digits; ++i) { | 
 |       bigits_[i] = 0; | 
 |     } | 
 |     used_digits_ += zero_digits; | 
 |     exponent_ -= zero_digits; | 
 |     ASSERT(used_digits_ >= 0); | 
 |     ASSERT(exponent_ >= 0); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Bignum::BigitsShiftLeft(int shift_amount) { | 
 |   ASSERT(shift_amount < kBigitSize); | 
 |   ASSERT(shift_amount >= 0); | 
 |   Chunk carry = 0; | 
 |   for (int i = 0; i < used_digits_; ++i) { | 
 |     Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); | 
 |     bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; | 
 |     carry = new_carry; | 
 |   } | 
 |   if (carry != 0) { | 
 |     bigits_[used_digits_] = carry; | 
 |     used_digits_++; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void Bignum::SubtractTimes(const Bignum& other, int factor) { | 
 | #ifdef DEBUG | 
 |   Bignum a, b; | 
 |   a.AssignBignum(*this); | 
 |   b.AssignBignum(other); | 
 |   b.MultiplyByUInt32(factor); | 
 |   a.SubtractBignum(b); | 
 | #endif | 
 |   ASSERT(exponent_ <= other.exponent_); | 
 |   if (factor < 3) { | 
 |     for (int i = 0; i < factor; ++i) { | 
 |       SubtractBignum(other); | 
 |     } | 
 |     return; | 
 |   } | 
 |   Chunk borrow = 0; | 
 |   int exponent_diff = other.exponent_ - exponent_; | 
 |   for (int i = 0; i < other.used_digits_; ++i) { | 
 |     DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; | 
 |     DoubleChunk remove = borrow + product; | 
 |     Chunk difference = | 
 |         bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask); | 
 |     bigits_[i + exponent_diff] = difference & kBigitMask; | 
 |     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + | 
 |                                 (remove >> kBigitSize)); | 
 |   } | 
 |   for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { | 
 |     if (borrow == 0) return; | 
 |     Chunk difference = bigits_[i] - borrow; | 
 |     bigits_[i] = difference & kBigitMask; | 
 |     borrow = difference >> (kChunkSize - 1); | 
 |   } | 
 |   Clamp(); | 
 |   ASSERT(Bignum::Equal(a, *this)); | 
 | } | 
 |  | 
 |  | 
 | } }  // namespace v8::internal |