blob: fee086ca536ca524839b0cf59f9205e6c7901bd1 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
namespace v8 {
namespace internal {
namespace compiler {
enum ImmediateMode {
kArithimeticImm, // 12 bit unsigned immediate shifted left 0 or 12 bits
kShift32Imm, // 0 - 31
kShift64Imm, // 0 -63
kLogical32Imm,
kLogical64Imm,
kLoadStoreImm, // unsigned 9 bit or signed 7 bit
kNoImmediate
};
// Adds Arm64-specific methods for generating operands.
class Arm64OperandGenerator V8_FINAL : public OperandGenerator {
public:
explicit Arm64OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand* UseOperand(Node* node, ImmediateMode mode) {
if (CanBeImmediate(node, mode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
bool CanBeImmediate(Node* node, ImmediateMode mode) {
int64_t value;
switch (node->opcode()) {
// TODO(turbofan): SMI number constants as immediates.
case IrOpcode::kInt32Constant:
value = ValueOf<int32_t>(node->op());
break;
default:
return false;
}
unsigned ignored;
switch (mode) {
case kLogical32Imm:
// TODO(dcarney): some unencodable values can be handled by
// switching instructions.
return Assembler::IsImmLogical(static_cast<uint64_t>(value), 32,
&ignored, &ignored, &ignored);
case kLogical64Imm:
return Assembler::IsImmLogical(static_cast<uint64_t>(value), 64,
&ignored, &ignored, &ignored);
case kArithimeticImm:
// TODO(dcarney): -values can be handled by instruction swapping
return Assembler::IsImmAddSub(value);
case kShift32Imm:
return 0 <= value && value < 31;
case kShift64Imm:
return 0 <= value && value < 63;
case kLoadStoreImm:
return (0 <= value && value < (1 << 9)) ||
(-(1 << 6) <= value && value < (1 << 6));
case kNoImmediate:
return false;
}
return false;
}
};
static void VisitRR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
static void VisitRRRFloat64(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsDoubleRegister(node),
g.UseDoubleRegister(node->InputAt(0)),
g.UseDoubleRegister(node->InputAt(1)));
}
static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode,
Node* node, ImmediateMode operand_mode) {
Arm64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseOperand(node->InputAt(1), operand_mode));
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
ArchOpcode opcode, ImmediateMode operand_mode,
bool commutative) {
VisitRRO(selector, opcode, node, operand_mode);
}
void InstructionSelector::VisitLoad(Node* node) {
MachineRepresentation rep = OpParameter<MachineRepresentation>(node);
Arm64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
InstructionOperand* result = rep == kMachineFloat64
? g.DefineAsDoubleRegister(node)
: g.DefineAsRegister(node);
ArchOpcode opcode;
switch (rep) {
case kMachineFloat64:
opcode = kArm64Float64Load;
break;
case kMachineWord8:
opcode = kArm64LoadWord8;
break;
case kMachineWord16:
opcode = kArm64LoadWord16;
break;
case kMachineWord32:
opcode = kArm64LoadWord32;
break;
case kMachineTagged: // Fall through.
case kMachineWord64:
opcode = kArm64LoadWord64;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, kLoadStoreImm)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), result,
g.UseRegister(base), g.UseImmediate(index));
} else if (g.CanBeImmediate(index, kLoadStoreImm)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), result,
g.UseRegister(index), g.UseImmediate(base));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR), result,
g.UseRegister(base), g.UseRegister(index));
}
}
void InstructionSelector::VisitStore(Node* node) {
Arm64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node);
MachineRepresentation rep = store_rep.rep;
if (store_rep.write_barrier_kind == kFullWriteBarrier) {
ASSERT(rep == kMachineTagged);
// TODO(dcarney): refactor RecordWrite function to take temp registers
// and pass them here instead of using fixed regs
// TODO(dcarney): handle immediate indices.
InstructionOperand* temps[] = {g.TempRegister(x11), g.TempRegister(x12)};
Emit(kArm64StoreWriteBarrier, NULL, g.UseFixed(base, x10),
g.UseFixed(index, x11), g.UseFixed(value, x12), ARRAY_SIZE(temps),
temps);
return;
}
ASSERT_EQ(kNoWriteBarrier, store_rep.write_barrier_kind);
InstructionOperand* val;
if (rep == kMachineFloat64) {
val = g.UseDoubleRegister(value);
} else {
val = g.UseRegister(value);
}
ArchOpcode opcode;
switch (rep) {
case kMachineFloat64:
opcode = kArm64Float64Store;
break;
case kMachineWord8:
opcode = kArm64StoreWord8;
break;
case kMachineWord16:
opcode = kArm64StoreWord16;
break;
case kMachineWord32:
opcode = kArm64StoreWord32;
break;
case kMachineTagged: // Fall through.
case kMachineWord64:
opcode = kArm64StoreWord64;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, kLoadStoreImm)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL,
g.UseRegister(base), g.UseImmediate(index), val);
} else if (g.CanBeImmediate(index, kLoadStoreImm)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), NULL,
g.UseRegister(index), g.UseImmediate(base), val);
} else {
Emit(opcode | AddressingModeField::encode(kMode_MRR), NULL,
g.UseRegister(base), g.UseRegister(index), val);
}
}
void InstructionSelector::VisitWord32And(Node* node) {
VisitBinop(this, node, kArm64And32, kLogical32Imm, true);
}
void InstructionSelector::VisitWord64And(Node* node) {
VisitBinop(this, node, kArm64And, kLogical64Imm, true);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kArm64Or32, kLogical32Imm, true);
}
void InstructionSelector::VisitWord64Or(Node* node) {
VisitBinop(this, node, kArm64Or, kLogical64Imm, true);
}
template <typename T>
static void VisitXor(InstructionSelector* selector, Node* node,
ArchOpcode xor_opcode, ArchOpcode not_opcode) {
Arm64OperandGenerator g(selector);
BinopMatcher<IntMatcher<T>, IntMatcher<T> > m(node);
if (m.right().Is(-1)) {
selector->Emit(not_opcode, g.DefineAsRegister(node),
g.UseRegister(m.left().node()));
} else {
VisitBinop(selector, node, xor_opcode, kLogical32Imm, true);
}
}
void InstructionSelector::VisitWord32Xor(Node* node) {
VisitXor<int32_t>(this, node, kArm64Xor32, kArm64Not32);
}
void InstructionSelector::VisitWord64Xor(Node* node) {
VisitXor<int64_t>(this, node, kArm64Xor, kArm64Not);
}
void InstructionSelector::VisitWord32Shl(Node* node) {
VisitRRO(this, kArm64Shl32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Shl(Node* node) {
VisitRRO(this, kArm64Shl, node, kShift64Imm);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitRRO(this, kArm64Shr32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Shr(Node* node) {
VisitRRO(this, kArm64Shr, node, kShift64Imm);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
VisitRRO(this, kArm64Sar32, node, kShift32Imm);
}
void InstructionSelector::VisitWord64Sar(Node* node) {
VisitRRO(this, kArm64Sar, node, kShift64Imm);
}
void InstructionSelector::VisitInt32Add(Node* node) {
VisitBinop(this, node, kArm64Add32, kArithimeticImm, true);
}
void InstructionSelector::VisitInt64Add(Node* node) {
VisitBinop(this, node, kArm64Add, kArithimeticImm, true);
}
template <typename T>
static void VisitSub(InstructionSelector* selector, Node* node,
ArchOpcode sub_opcode, ArchOpcode neg_opcode) {
Arm64OperandGenerator g(selector);
BinopMatcher<IntMatcher<T>, IntMatcher<T> > m(node);
if (m.left().Is(0)) {
selector->Emit(neg_opcode, g.DefineAsRegister(node),
g.UseRegister(m.right().node()));
} else {
VisitBinop(selector, node, sub_opcode, kArithimeticImm, false);
}
}
void InstructionSelector::VisitInt32Sub(Node* node) {
VisitSub<int32_t>(this, node, kArm64Sub32, kArm64Neg32);
}
void InstructionSelector::VisitInt64Sub(Node* node) {
VisitSub<int64_t>(this, node, kArm64Sub, kArm64Neg);
}
void InstructionSelector::VisitInt32Mul(Node* node) {
VisitRRR(this, kArm64Mul32, node);
}
void InstructionSelector::VisitInt64Mul(Node* node) {
VisitRRR(this, kArm64Mul, node);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitRRR(this, kArm64Idiv32, node);
}
void InstructionSelector::VisitInt64Div(Node* node) {
VisitRRR(this, kArm64Idiv, node);
}
void InstructionSelector::VisitInt32UDiv(Node* node) {
VisitRRR(this, kArm64Udiv32, node);
}
void InstructionSelector::VisitInt64UDiv(Node* node) {
VisitRRR(this, kArm64Udiv, node);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitRRR(this, kArm64Imod32, node);
}
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitRRR(this, kArm64Imod, node);
}
void InstructionSelector::VisitInt32UMod(Node* node) {
VisitRRR(this, kArm64Umod32, node);
}
void InstructionSelector::VisitInt64UMod(Node* node) {
VisitRRR(this, kArm64Umod, node);
}
void InstructionSelector::VisitConvertInt32ToInt64(Node* node) {
VisitRR(this, kArm64Int32ToInt64, node);
}
void InstructionSelector::VisitConvertInt64ToInt32(Node* node) {
VisitRR(this, kArm64Int64ToInt32, node);
}
void InstructionSelector::VisitConvertInt32ToFloat64(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Int32ToFloat64, g.DefineAsDoubleRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitConvertUint32ToFloat64(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Uint32ToFloat64, g.DefineAsDoubleRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitConvertFloat64ToInt32(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64ToInt32, g.DefineAsRegister(node),
g.UseDoubleRegister(node->InputAt(0)));
}
void InstructionSelector::VisitConvertFloat64ToUint32(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64ToUint32, g.DefineAsRegister(node),
g.UseDoubleRegister(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64Add(Node* node) {
VisitRRRFloat64(this, kArm64Float64Add, node);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
VisitRRRFloat64(this, kArm64Float64Sub, node);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitRRRFloat64(this, kArm64Float64Mul, node);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRRRFloat64(this, kArm64Float64Div, node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
Arm64OperandGenerator g(this);
Emit(kArm64Float64Mod, g.DefineAsFixedDouble(node, d0),
g.UseFixedDouble(node->InputAt(0), d0),
g.UseFixedDouble(node->InputAt(1), d1))->MarkAsCall();
}
// Shared routine for multiple compare operations.
static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand* left, InstructionOperand* right,
FlagsContinuation* cont) {
Arm64OperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, NULL, left, right, g.Label(cont->true_block()),
g.Label(cont->false_block()))->MarkAsControl();
} else {
ASSERT(cont->IsSet());
selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
}
}
// Shared routine for multiple word compare operations.
static void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
bool commutative) {
Arm64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right, kArithimeticImm)) {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
cont);
} else if (g.CanBeImmediate(left, kArithimeticImm)) {
if (!commutative) cont->Commute();
VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
cont);
}
}
void InstructionSelector::VisitWord32Test(Node* node, FlagsContinuation* cont) {
switch (node->opcode()) {
case IrOpcode::kWord32And:
return VisitWordCompare(this, node, kArm64Tst32, cont, true);
default:
break;
}
Arm64OperandGenerator g(this);
VisitCompare(this, kArm64Tst32, g.UseRegister(node), g.UseRegister(node),
cont);
}
void InstructionSelector::VisitWord64Test(Node* node, FlagsContinuation* cont) {
switch (node->opcode()) {
case IrOpcode::kWord64And:
return VisitWordCompare(this, node, kArm64Tst, cont, true);
default:
break;
}
Arm64OperandGenerator g(this);
VisitCompare(this, kArm64Tst, g.UseRegister(node), g.UseRegister(node), cont);
}
void InstructionSelector::VisitWord32Compare(Node* node,
FlagsContinuation* cont) {
VisitWordCompare(this, node, kArm64Cmp32, cont, false);
}
void InstructionSelector::VisitWord64Compare(Node* node,
FlagsContinuation* cont) {
VisitWordCompare(this, node, kArm64Cmp, cont, false);
}
void InstructionSelector::VisitFloat64Compare(Node* node,
FlagsContinuation* cont) {
Arm64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
VisitCompare(this, kArm64Float64Cmp, g.UseDoubleRegister(left),
g.UseDoubleRegister(right), cont);
}
void InstructionSelector::VisitCall(Node* call, BasicBlock* continuation,
BasicBlock* deoptimization) {
Arm64OperandGenerator g(this);
CallDescriptor* descriptor = OpParameter<CallDescriptor*>(call);
CallBuffer buffer(zone(), descriptor); // TODO(turbofan): temp zone here?
// Compute InstructionOperands for inputs and outputs.
// TODO(turbofan): on ARM64 it's probably better to use the code object in a
// register if there are multiple uses of it. Improve constant pool and the
// heuristics in the register allocator for where to emit constants.
InitializeCallBuffer(call, &buffer, true, false, continuation,
deoptimization);
// Push the arguments to the stack.
bool is_c_frame = descriptor->kind() == CallDescriptor::kCallAddress;
bool pushed_count_uneven = buffer.pushed_count & 1;
int aligned_push_count = buffer.pushed_count;
if (is_c_frame && pushed_count_uneven) {
aligned_push_count++;
}
// TODO(dcarney): claim and poke probably take small immediates,
// loop here or whatever.
// Bump the stack pointer(s).
if (aligned_push_count > 0) {
// TODO(dcarney): it would be better to bump the csp here only
// and emit paired stores with increment for non c frames.
Emit(kArm64Claim | MiscField::encode(aligned_push_count), NULL);
}
// Move arguments to the stack.
{
int slot = buffer.pushed_count - 1;
// Emit the uneven pushes.
if (pushed_count_uneven) {
Node* input = buffer.pushed_nodes[slot];
ArchOpcode opcode = is_c_frame ? kArm64PokePairZero : kArm64Poke;
Emit(opcode | MiscField::encode(slot), NULL, g.UseRegister(input));
slot--;
}
// Now all pushes can be done in pairs.
for (; slot >= 0; slot -= 2) {
Emit(kArm64PokePair | MiscField::encode(slot), NULL,
g.UseRegister(buffer.pushed_nodes[slot]),
g.UseRegister(buffer.pushed_nodes[slot - 1]));
}
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject: {
bool lazy_deopt = descriptor->CanLazilyDeoptimize();
opcode = kArm64CallCodeObject | MiscField::encode(lazy_deopt ? 1 : 0);
break;
}
case CallDescriptor::kCallAddress:
opcode = kArm64CallAddress;
break;
case CallDescriptor::kCallJSFunction:
opcode = kArm64CallJSFunction;
break;
default:
UNREACHABLE();
return;
}
// Emit the call instruction.
Instruction* call_instr =
Emit(opcode, buffer.output_count, buffer.outputs,
buffer.fixed_and_control_count(), buffer.fixed_and_control_args);
call_instr->MarkAsCall();
if (deoptimization != NULL) {
ASSERT(continuation != NULL);
call_instr->MarkAsControl();
}
// Caller clean up of stack for C-style calls.
if (is_c_frame && aligned_push_count > 0) {
ASSERT(deoptimization == NULL && continuation == NULL);
Emit(kArm64Drop | MiscField::encode(aligned_push_count), NULL);
}
}
} // namespace compiler
} // namespace internal
} // namespace v8