| // Copyright 2012 the V8 project authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include <limits.h>  // For LONG_MIN, LONG_MAX. | 
 |  | 
 | #include "src/v8.h" | 
 |  | 
 | #if V8_TARGET_ARCH_MIPS | 
 |  | 
 | #include "src/base/bits.h" | 
 | #include "src/base/division-by-constant.h" | 
 | #include "src/bootstrapper.h" | 
 | #include "src/codegen.h" | 
 | #include "src/cpu-profiler.h" | 
 | #include "src/debug.h" | 
 | #include "src/isolate-inl.h" | 
 | #include "src/runtime/runtime.h" | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) | 
 |     : Assembler(arg_isolate, buffer, size), | 
 |       generating_stub_(false), | 
 |       has_frame_(false) { | 
 |   if (isolate() != NULL) { | 
 |     code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), | 
 |                                   isolate()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Load(Register dst, | 
 |                           const MemOperand& src, | 
 |                           Representation r) { | 
 |   DCHECK(!r.IsDouble()); | 
 |   if (r.IsInteger8()) { | 
 |     lb(dst, src); | 
 |   } else if (r.IsUInteger8()) { | 
 |     lbu(dst, src); | 
 |   } else if (r.IsInteger16()) { | 
 |     lh(dst, src); | 
 |   } else if (r.IsUInteger16()) { | 
 |     lhu(dst, src); | 
 |   } else { | 
 |     lw(dst, src); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Store(Register src, | 
 |                            const MemOperand& dst, | 
 |                            Representation r) { | 
 |   DCHECK(!r.IsDouble()); | 
 |   if (r.IsInteger8() || r.IsUInteger8()) { | 
 |     sb(src, dst); | 
 |   } else if (r.IsInteger16() || r.IsUInteger16()) { | 
 |     sh(src, dst); | 
 |   } else { | 
 |     if (r.IsHeapObject()) { | 
 |       AssertNotSmi(src); | 
 |     } else if (r.IsSmi()) { | 
 |       AssertSmi(src); | 
 |     } | 
 |     sw(src, dst); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadRoot(Register destination, | 
 |                               Heap::RootListIndex index) { | 
 |   lw(destination, MemOperand(s6, index << kPointerSizeLog2)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadRoot(Register destination, | 
 |                               Heap::RootListIndex index, | 
 |                               Condition cond, | 
 |                               Register src1, const Operand& src2) { | 
 |   Branch(2, NegateCondition(cond), src1, src2); | 
 |   lw(destination, MemOperand(s6, index << kPointerSizeLog2)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::StoreRoot(Register source, | 
 |                                Heap::RootListIndex index) { | 
 |   sw(source, MemOperand(s6, index << kPointerSizeLog2)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::StoreRoot(Register source, | 
 |                                Heap::RootListIndex index, | 
 |                                Condition cond, | 
 |                                Register src1, const Operand& src2) { | 
 |   Branch(2, NegateCondition(cond), src1, src2); | 
 |   sw(source, MemOperand(s6, index << kPointerSizeLog2)); | 
 | } | 
 |  | 
 |  | 
 | // Push and pop all registers that can hold pointers. | 
 | void MacroAssembler::PushSafepointRegisters() { | 
 |   // Safepoints expect a block of kNumSafepointRegisters values on the | 
 |   // stack, so adjust the stack for unsaved registers. | 
 |   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; | 
 |   DCHECK(num_unsaved >= 0); | 
 |   if (num_unsaved > 0) { | 
 |     Subu(sp, sp, Operand(num_unsaved * kPointerSize)); | 
 |   } | 
 |   MultiPush(kSafepointSavedRegisters); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::PopSafepointRegisters() { | 
 |   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; | 
 |   MultiPop(kSafepointSavedRegisters); | 
 |   if (num_unsaved > 0) { | 
 |     Addu(sp, sp, Operand(num_unsaved * kPointerSize)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { | 
 |   sw(src, SafepointRegisterSlot(dst)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { | 
 |   lw(dst, SafepointRegisterSlot(src)); | 
 | } | 
 |  | 
 |  | 
 | int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { | 
 |   // The registers are pushed starting with the highest encoding, | 
 |   // which means that lowest encodings are closest to the stack pointer. | 
 |   return kSafepointRegisterStackIndexMap[reg_code]; | 
 | } | 
 |  | 
 |  | 
 | MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { | 
 |   return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); | 
 | } | 
 |  | 
 |  | 
 | MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { | 
 |   UNIMPLEMENTED_MIPS(); | 
 |   // General purpose registers are pushed last on the stack. | 
 |   int doubles_size = FPURegister::NumAllocatableRegisters() * kDoubleSize; | 
 |   int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; | 
 |   return MemOperand(sp, doubles_size + register_offset); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::InNewSpace(Register object, | 
 |                                 Register scratch, | 
 |                                 Condition cc, | 
 |                                 Label* branch) { | 
 |   DCHECK(cc == eq || cc == ne); | 
 |   And(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); | 
 |   Branch(branch, cc, scratch, | 
 |          Operand(ExternalReference::new_space_start(isolate()))); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::RecordWriteField( | 
 |     Register object, | 
 |     int offset, | 
 |     Register value, | 
 |     Register dst, | 
 |     RAStatus ra_status, | 
 |     SaveFPRegsMode save_fp, | 
 |     RememberedSetAction remembered_set_action, | 
 |     SmiCheck smi_check, | 
 |     PointersToHereCheck pointers_to_here_check_for_value) { | 
 |   DCHECK(!AreAliased(value, dst, t8, object)); | 
 |   // First, check if a write barrier is even needed. The tests below | 
 |   // catch stores of Smis. | 
 |   Label done; | 
 |  | 
 |   // Skip barrier if writing a smi. | 
 |   if (smi_check == INLINE_SMI_CHECK) { | 
 |     JumpIfSmi(value, &done); | 
 |   } | 
 |  | 
 |   // Although the object register is tagged, the offset is relative to the start | 
 |   // of the object, so so offset must be a multiple of kPointerSize. | 
 |   DCHECK(IsAligned(offset, kPointerSize)); | 
 |  | 
 |   Addu(dst, object, Operand(offset - kHeapObjectTag)); | 
 |   if (emit_debug_code()) { | 
 |     Label ok; | 
 |     And(t8, dst, Operand((1 << kPointerSizeLog2) - 1)); | 
 |     Branch(&ok, eq, t8, Operand(zero_reg)); | 
 |     stop("Unaligned cell in write barrier"); | 
 |     bind(&ok); | 
 |   } | 
 |  | 
 |   RecordWrite(object, | 
 |               dst, | 
 |               value, | 
 |               ra_status, | 
 |               save_fp, | 
 |               remembered_set_action, | 
 |               OMIT_SMI_CHECK, | 
 |               pointers_to_here_check_for_value); | 
 |  | 
 |   bind(&done); | 
 |  | 
 |   // Clobber clobbered input registers when running with the debug-code flag | 
 |   // turned on to provoke errors. | 
 |   if (emit_debug_code()) { | 
 |     li(value, Operand(bit_cast<int32_t>(kZapValue + 4))); | 
 |     li(dst, Operand(bit_cast<int32_t>(kZapValue + 8))); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Will clobber 4 registers: object, map, dst, ip.  The | 
 | // register 'object' contains a heap object pointer. | 
 | void MacroAssembler::RecordWriteForMap(Register object, | 
 |                                        Register map, | 
 |                                        Register dst, | 
 |                                        RAStatus ra_status, | 
 |                                        SaveFPRegsMode fp_mode) { | 
 |   if (emit_debug_code()) { | 
 |     DCHECK(!dst.is(at)); | 
 |     lw(dst, FieldMemOperand(map, HeapObject::kMapOffset)); | 
 |     Check(eq, | 
 |           kWrongAddressOrValuePassedToRecordWrite, | 
 |           dst, | 
 |           Operand(isolate()->factory()->meta_map())); | 
 |   } | 
 |  | 
 |   if (!FLAG_incremental_marking) { | 
 |     return; | 
 |   } | 
 |  | 
 |   if (emit_debug_code()) { | 
 |     lw(at, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |     Check(eq, | 
 |           kWrongAddressOrValuePassedToRecordWrite, | 
 |           map, | 
 |           Operand(at)); | 
 |   } | 
 |  | 
 |   Label done; | 
 |  | 
 |   // A single check of the map's pages interesting flag suffices, since it is | 
 |   // only set during incremental collection, and then it's also guaranteed that | 
 |   // the from object's page's interesting flag is also set.  This optimization | 
 |   // relies on the fact that maps can never be in new space. | 
 |   CheckPageFlag(map, | 
 |                 map,  // Used as scratch. | 
 |                 MemoryChunk::kPointersToHereAreInterestingMask, | 
 |                 eq, | 
 |                 &done); | 
 |  | 
 |   Addu(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag)); | 
 |   if (emit_debug_code()) { | 
 |     Label ok; | 
 |     And(at, dst, Operand((1 << kPointerSizeLog2) - 1)); | 
 |     Branch(&ok, eq, at, Operand(zero_reg)); | 
 |     stop("Unaligned cell in write barrier"); | 
 |     bind(&ok); | 
 |   } | 
 |  | 
 |   // Record the actual write. | 
 |   if (ra_status == kRAHasNotBeenSaved) { | 
 |     push(ra); | 
 |   } | 
 |   RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET, | 
 |                        fp_mode); | 
 |   CallStub(&stub); | 
 |   if (ra_status == kRAHasNotBeenSaved) { | 
 |     pop(ra); | 
 |   } | 
 |  | 
 |   bind(&done); | 
 |  | 
 |   // Count number of write barriers in generated code. | 
 |   isolate()->counters()->write_barriers_static()->Increment(); | 
 |   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, dst); | 
 |  | 
 |   // Clobber clobbered registers when running with the debug-code flag | 
 |   // turned on to provoke errors. | 
 |   if (emit_debug_code()) { | 
 |     li(dst, Operand(bit_cast<int32_t>(kZapValue + 12))); | 
 |     li(map, Operand(bit_cast<int32_t>(kZapValue + 16))); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // Will clobber 4 registers: object, address, scratch, ip.  The | 
 | // register 'object' contains a heap object pointer.  The heap object | 
 | // tag is shifted away. | 
 | void MacroAssembler::RecordWrite( | 
 |     Register object, | 
 |     Register address, | 
 |     Register value, | 
 |     RAStatus ra_status, | 
 |     SaveFPRegsMode fp_mode, | 
 |     RememberedSetAction remembered_set_action, | 
 |     SmiCheck smi_check, | 
 |     PointersToHereCheck pointers_to_here_check_for_value) { | 
 |   DCHECK(!AreAliased(object, address, value, t8)); | 
 |   DCHECK(!AreAliased(object, address, value, t9)); | 
 |  | 
 |   if (emit_debug_code()) { | 
 |     lw(at, MemOperand(address)); | 
 |     Assert( | 
 |         eq, kWrongAddressOrValuePassedToRecordWrite, at, Operand(value)); | 
 |   } | 
 |  | 
 |   if (remembered_set_action == OMIT_REMEMBERED_SET && | 
 |       !FLAG_incremental_marking) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // First, check if a write barrier is even needed. The tests below | 
 |   // catch stores of smis and stores into the young generation. | 
 |   Label done; | 
 |  | 
 |   if (smi_check == INLINE_SMI_CHECK) { | 
 |     DCHECK_EQ(0, kSmiTag); | 
 |     JumpIfSmi(value, &done); | 
 |   } | 
 |  | 
 |   if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) { | 
 |     CheckPageFlag(value, | 
 |                   value,  // Used as scratch. | 
 |                   MemoryChunk::kPointersToHereAreInterestingMask, | 
 |                   eq, | 
 |                   &done); | 
 |   } | 
 |   CheckPageFlag(object, | 
 |                 value,  // Used as scratch. | 
 |                 MemoryChunk::kPointersFromHereAreInterestingMask, | 
 |                 eq, | 
 |                 &done); | 
 |  | 
 |   // Record the actual write. | 
 |   if (ra_status == kRAHasNotBeenSaved) { | 
 |     push(ra); | 
 |   } | 
 |   RecordWriteStub stub(isolate(), object, value, address, remembered_set_action, | 
 |                        fp_mode); | 
 |   CallStub(&stub); | 
 |   if (ra_status == kRAHasNotBeenSaved) { | 
 |     pop(ra); | 
 |   } | 
 |  | 
 |   bind(&done); | 
 |  | 
 |   // Count number of write barriers in generated code. | 
 |   isolate()->counters()->write_barriers_static()->Increment(); | 
 |   IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, at, | 
 |                    value); | 
 |  | 
 |   // Clobber clobbered registers when running with the debug-code flag | 
 |   // turned on to provoke errors. | 
 |   if (emit_debug_code()) { | 
 |     li(address, Operand(bit_cast<int32_t>(kZapValue + 12))); | 
 |     li(value, Operand(bit_cast<int32_t>(kZapValue + 16))); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests. | 
 |                                          Register address, | 
 |                                          Register scratch, | 
 |                                          SaveFPRegsMode fp_mode, | 
 |                                          RememberedSetFinalAction and_then) { | 
 |   Label done; | 
 |   if (emit_debug_code()) { | 
 |     Label ok; | 
 |     JumpIfNotInNewSpace(object, scratch, &ok); | 
 |     stop("Remembered set pointer is in new space"); | 
 |     bind(&ok); | 
 |   } | 
 |   // Load store buffer top. | 
 |   ExternalReference store_buffer = | 
 |       ExternalReference::store_buffer_top(isolate()); | 
 |   li(t8, Operand(store_buffer)); | 
 |   lw(scratch, MemOperand(t8)); | 
 |   // Store pointer to buffer and increment buffer top. | 
 |   sw(address, MemOperand(scratch)); | 
 |   Addu(scratch, scratch, kPointerSize); | 
 |   // Write back new top of buffer. | 
 |   sw(scratch, MemOperand(t8)); | 
 |   // Call stub on end of buffer. | 
 |   // Check for end of buffer. | 
 |   And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit)); | 
 |   if (and_then == kFallThroughAtEnd) { | 
 |     Branch(&done, eq, t8, Operand(zero_reg)); | 
 |   } else { | 
 |     DCHECK(and_then == kReturnAtEnd); | 
 |     Ret(eq, t8, Operand(zero_reg)); | 
 |   } | 
 |   push(ra); | 
 |   StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode); | 
 |   CallStub(&store_buffer_overflow); | 
 |   pop(ra); | 
 |   bind(&done); | 
 |   if (and_then == kReturnAtEnd) { | 
 |     Ret(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Allocation support. | 
 |  | 
 |  | 
 | void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, | 
 |                                             Register scratch, | 
 |                                             Label* miss) { | 
 |   Label same_contexts; | 
 |  | 
 |   DCHECK(!holder_reg.is(scratch)); | 
 |   DCHECK(!holder_reg.is(at)); | 
 |   DCHECK(!scratch.is(at)); | 
 |  | 
 |   // Load current lexical context from the stack frame. | 
 |   lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); | 
 |   // In debug mode, make sure the lexical context is set. | 
 | #ifdef DEBUG | 
 |   Check(ne, kWeShouldNotHaveAnEmptyLexicalContext, | 
 |       scratch, Operand(zero_reg)); | 
 | #endif | 
 |  | 
 |   // Load the native context of the current context. | 
 |   int offset = | 
 |       Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; | 
 |   lw(scratch, FieldMemOperand(scratch, offset)); | 
 |   lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); | 
 |  | 
 |   // Check the context is a native context. | 
 |   if (emit_debug_code()) { | 
 |     push(holder_reg);  // Temporarily save holder on the stack. | 
 |     // Read the first word and compare to the native_context_map. | 
 |     lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); | 
 |     LoadRoot(at, Heap::kNativeContextMapRootIndex); | 
 |     Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext, | 
 |           holder_reg, Operand(at)); | 
 |     pop(holder_reg);  // Restore holder. | 
 |   } | 
 |  | 
 |   // Check if both contexts are the same. | 
 |   lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); | 
 |   Branch(&same_contexts, eq, scratch, Operand(at)); | 
 |  | 
 |   // Check the context is a native context. | 
 |   if (emit_debug_code()) { | 
 |     push(holder_reg);  // Temporarily save holder on the stack. | 
 |     mov(holder_reg, at);  // Move at to its holding place. | 
 |     LoadRoot(at, Heap::kNullValueRootIndex); | 
 |     Check(ne, kJSGlobalProxyContextShouldNotBeNull, | 
 |           holder_reg, Operand(at)); | 
 |  | 
 |     lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); | 
 |     LoadRoot(at, Heap::kNativeContextMapRootIndex); | 
 |     Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext, | 
 |           holder_reg, Operand(at)); | 
 |     // Restore at is not needed. at is reloaded below. | 
 |     pop(holder_reg);  // Restore holder. | 
 |     // Restore at to holder's context. | 
 |     lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset)); | 
 |   } | 
 |  | 
 |   // Check that the security token in the calling global object is | 
 |   // compatible with the security token in the receiving global | 
 |   // object. | 
 |   int token_offset = Context::kHeaderSize + | 
 |                      Context::SECURITY_TOKEN_INDEX * kPointerSize; | 
 |  | 
 |   lw(scratch, FieldMemOperand(scratch, token_offset)); | 
 |   lw(at, FieldMemOperand(at, token_offset)); | 
 |   Branch(miss, ne, scratch, Operand(at)); | 
 |  | 
 |   bind(&same_contexts); | 
 | } | 
 |  | 
 |  | 
 | // Compute the hash code from the untagged key.  This must be kept in sync with | 
 | // ComputeIntegerHash in utils.h and KeyedLoadGenericStub in | 
 | // code-stub-hydrogen.cc | 
 | void MacroAssembler::GetNumberHash(Register reg0, Register scratch) { | 
 |   // First of all we assign the hash seed to scratch. | 
 |   LoadRoot(scratch, Heap::kHashSeedRootIndex); | 
 |   SmiUntag(scratch); | 
 |  | 
 |   // Xor original key with a seed. | 
 |   xor_(reg0, reg0, scratch); | 
 |  | 
 |   // Compute the hash code from the untagged key.  This must be kept in sync | 
 |   // with ComputeIntegerHash in utils.h. | 
 |   // | 
 |   // hash = ~hash + (hash << 15); | 
 |   nor(scratch, reg0, zero_reg); | 
 |   sll(at, reg0, 15); | 
 |   addu(reg0, scratch, at); | 
 |  | 
 |   // hash = hash ^ (hash >> 12); | 
 |   srl(at, reg0, 12); | 
 |   xor_(reg0, reg0, at); | 
 |  | 
 |   // hash = hash + (hash << 2); | 
 |   sll(at, reg0, 2); | 
 |   addu(reg0, reg0, at); | 
 |  | 
 |   // hash = hash ^ (hash >> 4); | 
 |   srl(at, reg0, 4); | 
 |   xor_(reg0, reg0, at); | 
 |  | 
 |   // hash = hash * 2057; | 
 |   sll(scratch, reg0, 11); | 
 |   sll(at, reg0, 3); | 
 |   addu(reg0, reg0, at); | 
 |   addu(reg0, reg0, scratch); | 
 |  | 
 |   // hash = hash ^ (hash >> 16); | 
 |   srl(at, reg0, 16); | 
 |   xor_(reg0, reg0, at); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadFromNumberDictionary(Label* miss, | 
 |                                               Register elements, | 
 |                                               Register key, | 
 |                                               Register result, | 
 |                                               Register reg0, | 
 |                                               Register reg1, | 
 |                                               Register reg2) { | 
 |   // Register use: | 
 |   // | 
 |   // elements - holds the slow-case elements of the receiver on entry. | 
 |   //            Unchanged unless 'result' is the same register. | 
 |   // | 
 |   // key      - holds the smi key on entry. | 
 |   //            Unchanged unless 'result' is the same register. | 
 |   // | 
 |   // | 
 |   // result   - holds the result on exit if the load succeeded. | 
 |   //            Allowed to be the same as 'key' or 'result'. | 
 |   //            Unchanged on bailout so 'key' or 'result' can be used | 
 |   //            in further computation. | 
 |   // | 
 |   // Scratch registers: | 
 |   // | 
 |   // reg0 - holds the untagged key on entry and holds the hash once computed. | 
 |   // | 
 |   // reg1 - Used to hold the capacity mask of the dictionary. | 
 |   // | 
 |   // reg2 - Used for the index into the dictionary. | 
 |   // at   - Temporary (avoid MacroAssembler instructions also using 'at'). | 
 |   Label done; | 
 |  | 
 |   GetNumberHash(reg0, reg1); | 
 |  | 
 |   // Compute the capacity mask. | 
 |   lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); | 
 |   sra(reg1, reg1, kSmiTagSize); | 
 |   Subu(reg1, reg1, Operand(1)); | 
 |  | 
 |   // Generate an unrolled loop that performs a few probes before giving up. | 
 |   for (int i = 0; i < kNumberDictionaryProbes; i++) { | 
 |     // Use reg2 for index calculations and keep the hash intact in reg0. | 
 |     mov(reg2, reg0); | 
 |     // Compute the masked index: (hash + i + i * i) & mask. | 
 |     if (i > 0) { | 
 |       Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i))); | 
 |     } | 
 |     and_(reg2, reg2, reg1); | 
 |  | 
 |     // Scale the index by multiplying by the element size. | 
 |     DCHECK(SeededNumberDictionary::kEntrySize == 3); | 
 |     sll(at, reg2, 1);  // 2x. | 
 |     addu(reg2, reg2, at);  // reg2 = reg2 * 3. | 
 |  | 
 |     // Check if the key is identical to the name. | 
 |     sll(at, reg2, kPointerSizeLog2); | 
 |     addu(reg2, elements, at); | 
 |  | 
 |     lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset)); | 
 |     if (i != kNumberDictionaryProbes - 1) { | 
 |       Branch(&done, eq, key, Operand(at)); | 
 |     } else { | 
 |       Branch(miss, ne, key, Operand(at)); | 
 |     } | 
 |   } | 
 |  | 
 |   bind(&done); | 
 |   // Check that the value is a normal property. | 
 |   // reg2: elements + (index * kPointerSize). | 
 |   const int kDetailsOffset = | 
 |       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; | 
 |   lw(reg1, FieldMemOperand(reg2, kDetailsOffset)); | 
 |   And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); | 
 |   Branch(miss, ne, at, Operand(zero_reg)); | 
 |  | 
 |   // Get the value at the masked, scaled index and return. | 
 |   const int kValueOffset = | 
 |       SeededNumberDictionary::kElementsStartOffset + kPointerSize; | 
 |   lw(result, FieldMemOperand(reg2, kValueOffset)); | 
 | } | 
 |  | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 | // Instruction macros. | 
 |  | 
 | void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     addu(rd, rs, rt.rm()); | 
 |   } else { | 
 |     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { | 
 |       addiu(rd, rs, rt.imm32_); | 
 |     } else { | 
 |       // li handles the relocation. | 
 |       DCHECK(!rs.is(at)); | 
 |       li(at, rt); | 
 |       addu(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     subu(rd, rs, rt.rm()); | 
 |   } else { | 
 |     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { | 
 |       addiu(rd, rs, -rt.imm32_);  // No subiu instr, use addiu(x, y, -imm). | 
 |     } else { | 
 |       // li handles the relocation. | 
 |       DCHECK(!rs.is(at)); | 
 |       li(at, rt); | 
 |       subu(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     if (IsMipsArchVariant(kLoongson)) { | 
 |       mult(rs, rt.rm()); | 
 |       mflo(rd); | 
 |     } else { | 
 |       mul(rd, rs, rt.rm()); | 
 |     } | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     if (IsMipsArchVariant(kLoongson)) { | 
 |       mult(rs, at); | 
 |       mflo(rd); | 
 |     } else { | 
 |       mul(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Mul(Register rd_hi, Register rd_lo, | 
 |     Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       mult(rs, rt.rm()); | 
 |       mflo(rd_lo); | 
 |       mfhi(rd_hi); | 
 |     } else { | 
 |       if (rd_lo.is(rs)) { | 
 |         DCHECK(!rd_hi.is(rs)); | 
 |         DCHECK(!rd_hi.is(rt.rm()) && !rd_lo.is(rt.rm())); | 
 |         muh(rd_hi, rs, rt.rm()); | 
 |         mul(rd_lo, rs, rt.rm()); | 
 |       } else { | 
 |         DCHECK(!rd_hi.is(rt.rm()) && !rd_lo.is(rt.rm())); | 
 |         mul(rd_lo, rs, rt.rm()); | 
 |         muh(rd_hi, rs, rt.rm()); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       mult(rs, at); | 
 |       mflo(rd_lo); | 
 |       mfhi(rd_hi); | 
 |     } else { | 
 |       if (rd_lo.is(rs)) { | 
 |         DCHECK(!rd_hi.is(rs)); | 
 |         DCHECK(!rd_hi.is(at) && !rd_lo.is(at)); | 
 |         muh(rd_hi, rs, at); | 
 |         mul(rd_lo, rs, at); | 
 |       } else { | 
 |         DCHECK(!rd_hi.is(at) && !rd_lo.is(at)); | 
 |         mul(rd_lo, rs, at); | 
 |         muh(rd_hi, rs, at); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Mulh(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       mult(rs, rt.rm()); | 
 |       mfhi(rd); | 
 |     } else { | 
 |       muh(rd, rs, rt.rm()); | 
 |     } | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       mult(rs, at); | 
 |       mfhi(rd); | 
 |     } else { | 
 |       muh(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Mult(Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     mult(rs, rt.rm()); | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     mult(rs, at); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Multu(Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     multu(rs, rt.rm()); | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     multu(rs, at); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Div(Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     div(rs, rt.rm()); | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     div(rs, at); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Div(Register rem, Register res, | 
 |     Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       div(rs, rt.rm()); | 
 |       mflo(res); | 
 |       mfhi(rem); | 
 |     } else { | 
 |       div(res, rs, rt.rm()); | 
 |       mod(rem, rs, rt.rm()); | 
 |     } | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       div(rs, at); | 
 |       mflo(res); | 
 |       mfhi(rem); | 
 |     } else { | 
 |       div(res, rs, at); | 
 |       mod(rem, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Div(Register res, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       div(rs, rt.rm()); | 
 |       mflo(res); | 
 |     } else { | 
 |       div(res, rs, rt.rm()); | 
 |     } | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       div(rs, at); | 
 |       mflo(res); | 
 |     } else { | 
 |       div(res, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Mod(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       div(rs, rt.rm()); | 
 |       mfhi(rd); | 
 |     } else { | 
 |       mod(rd, rs, rt.rm()); | 
 |     } | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       div(rs, at); | 
 |       mfhi(rd); | 
 |     } else { | 
 |       mod(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Modu(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       divu(rs, rt.rm()); | 
 |       mfhi(rd); | 
 |     } else { | 
 |       modu(rd, rs, rt.rm()); | 
 |     } | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       divu(rs, at); | 
 |       mfhi(rd); | 
 |     } else { | 
 |       modu(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Divu(Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     divu(rs, rt.rm()); | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     divu(rs, at); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Divu(Register res, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       divu(rs, rt.rm()); | 
 |       mflo(res); | 
 |     } else { | 
 |       divu(res, rs, rt.rm()); | 
 |     } | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       divu(rs, at); | 
 |       mflo(res); | 
 |     } else { | 
 |       divu(res, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     and_(rd, rs, rt.rm()); | 
 |   } else { | 
 |     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { | 
 |       andi(rd, rs, rt.imm32_); | 
 |     } else { | 
 |       // li handles the relocation. | 
 |       DCHECK(!rs.is(at)); | 
 |       li(at, rt); | 
 |       and_(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     or_(rd, rs, rt.rm()); | 
 |   } else { | 
 |     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { | 
 |       ori(rd, rs, rt.imm32_); | 
 |     } else { | 
 |       // li handles the relocation. | 
 |       DCHECK(!rs.is(at)); | 
 |       li(at, rt); | 
 |       or_(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     xor_(rd, rs, rt.rm()); | 
 |   } else { | 
 |     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { | 
 |       xori(rd, rs, rt.imm32_); | 
 |     } else { | 
 |       // li handles the relocation. | 
 |       DCHECK(!rs.is(at)); | 
 |       li(at, rt); | 
 |       xor_(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     nor(rd, rs, rt.rm()); | 
 |   } else { | 
 |     // li handles the relocation. | 
 |     DCHECK(!rs.is(at)); | 
 |     li(at, rt); | 
 |     nor(rd, rs, at); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Neg(Register rs, const Operand& rt) { | 
 |   DCHECK(rt.is_reg()); | 
 |   DCHECK(!at.is(rs)); | 
 |   DCHECK(!at.is(rt.rm())); | 
 |   li(at, -1); | 
 |   xor_(rs, rt.rm(), at); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     slt(rd, rs, rt.rm()); | 
 |   } else { | 
 |     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { | 
 |       slti(rd, rs, rt.imm32_); | 
 |     } else { | 
 |       // li handles the relocation. | 
 |       DCHECK(!rs.is(at)); | 
 |       li(at, rt); | 
 |       slt(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { | 
 |   if (rt.is_reg()) { | 
 |     sltu(rd, rs, rt.rm()); | 
 |   } else { | 
 |     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { | 
 |       sltiu(rd, rs, rt.imm32_); | 
 |     } else { | 
 |       // li handles the relocation. | 
 |       DCHECK(!rs.is(at)); | 
 |       li(at, rt); | 
 |       sltu(rd, rs, at); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) { | 
 |   if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { | 
 |     if (rt.is_reg()) { | 
 |       rotrv(rd, rs, rt.rm()); | 
 |     } else { | 
 |       rotr(rd, rs, rt.imm32_); | 
 |     } | 
 |   } else { | 
 |     if (rt.is_reg()) { | 
 |       subu(at, zero_reg, rt.rm()); | 
 |       sllv(at, rs, at); | 
 |       srlv(rd, rs, rt.rm()); | 
 |       or_(rd, rd, at); | 
 |     } else { | 
 |       if (rt.imm32_ == 0) { | 
 |         srl(rd, rs, 0); | 
 |       } else { | 
 |         srl(at, rs, rt.imm32_); | 
 |         sll(rd, rs, (0x20 - rt.imm32_) & 0x1f); | 
 |         or_(rd, rd, at); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Pref(int32_t hint, const MemOperand& rs) { | 
 |   if (IsMipsArchVariant(kLoongson)) { | 
 |     lw(zero_reg, rs); | 
 |   } else { | 
 |     pref(hint, rs); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // ------------Pseudo-instructions------------- | 
 |  | 
 | void MacroAssembler::Ulw(Register rd, const MemOperand& rs) { | 
 |   lwr(rd, rs); | 
 |   lwl(rd, MemOperand(rs.rm(), rs.offset() + 3)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Usw(Register rd, const MemOperand& rs) { | 
 |   swr(rd, rs); | 
 |   swl(rd, MemOperand(rs.rm(), rs.offset() + 3)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::li(Register dst, Handle<Object> value, LiFlags mode) { | 
 |   AllowDeferredHandleDereference smi_check; | 
 |   if (value->IsSmi()) { | 
 |     li(dst, Operand(value), mode); | 
 |   } else { | 
 |     DCHECK(value->IsHeapObject()); | 
 |     if (isolate()->heap()->InNewSpace(*value)) { | 
 |       Handle<Cell> cell = isolate()->factory()->NewCell(value); | 
 |       li(dst, Operand(cell)); | 
 |       lw(dst, FieldMemOperand(dst, Cell::kValueOffset)); | 
 |     } else { | 
 |       li(dst, Operand(value)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::li(Register rd, Operand j, LiFlags mode) { | 
 |   DCHECK(!j.is_reg()); | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |   if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) { | 
 |     // Normal load of an immediate value which does not need Relocation Info. | 
 |     if (is_int16(j.imm32_)) { | 
 |       addiu(rd, zero_reg, j.imm32_); | 
 |     } else if (!(j.imm32_ & kHiMask)) { | 
 |       ori(rd, zero_reg, j.imm32_); | 
 |     } else if (!(j.imm32_ & kImm16Mask)) { | 
 |       lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); | 
 |     } else { | 
 |       lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); | 
 |       ori(rd, rd, (j.imm32_ & kImm16Mask)); | 
 |     } | 
 |   } else { | 
 |     if (MustUseReg(j.rmode_)) { | 
 |       RecordRelocInfo(j.rmode_, j.imm32_); | 
 |     } | 
 |     // We always need the same number of instructions as we may need to patch | 
 |     // this code to load another value which may need 2 instructions to load. | 
 |     lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); | 
 |     ori(rd, rd, (j.imm32_ & kImm16Mask)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MultiPush(RegList regs) { | 
 |   int16_t num_to_push = NumberOfBitsSet(regs); | 
 |   int16_t stack_offset = num_to_push * kPointerSize; | 
 |  | 
 |   Subu(sp, sp, Operand(stack_offset)); | 
 |   for (int16_t i = kNumRegisters - 1; i >= 0; i--) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       stack_offset -= kPointerSize; | 
 |       sw(ToRegister(i), MemOperand(sp, stack_offset)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MultiPushReversed(RegList regs) { | 
 |   int16_t num_to_push = NumberOfBitsSet(regs); | 
 |   int16_t stack_offset = num_to_push * kPointerSize; | 
 |  | 
 |   Subu(sp, sp, Operand(stack_offset)); | 
 |   for (int16_t i = 0; i < kNumRegisters; i++) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       stack_offset -= kPointerSize; | 
 |       sw(ToRegister(i), MemOperand(sp, stack_offset)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MultiPop(RegList regs) { | 
 |   int16_t stack_offset = 0; | 
 |  | 
 |   for (int16_t i = 0; i < kNumRegisters; i++) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       lw(ToRegister(i), MemOperand(sp, stack_offset)); | 
 |       stack_offset += kPointerSize; | 
 |     } | 
 |   } | 
 |   addiu(sp, sp, stack_offset); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MultiPopReversed(RegList regs) { | 
 |   int16_t stack_offset = 0; | 
 |  | 
 |   for (int16_t i = kNumRegisters - 1; i >= 0; i--) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       lw(ToRegister(i), MemOperand(sp, stack_offset)); | 
 |       stack_offset += kPointerSize; | 
 |     } | 
 |   } | 
 |   addiu(sp, sp, stack_offset); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MultiPushFPU(RegList regs) { | 
 |   int16_t num_to_push = NumberOfBitsSet(regs); | 
 |   int16_t stack_offset = num_to_push * kDoubleSize; | 
 |  | 
 |   Subu(sp, sp, Operand(stack_offset)); | 
 |   for (int16_t i = kNumRegisters - 1; i >= 0; i--) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       stack_offset -= kDoubleSize; | 
 |       sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MultiPushReversedFPU(RegList regs) { | 
 |   int16_t num_to_push = NumberOfBitsSet(regs); | 
 |   int16_t stack_offset = num_to_push * kDoubleSize; | 
 |  | 
 |   Subu(sp, sp, Operand(stack_offset)); | 
 |   for (int16_t i = 0; i < kNumRegisters; i++) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       stack_offset -= kDoubleSize; | 
 |       sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MultiPopFPU(RegList regs) { | 
 |   int16_t stack_offset = 0; | 
 |  | 
 |   for (int16_t i = 0; i < kNumRegisters; i++) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); | 
 |       stack_offset += kDoubleSize; | 
 |     } | 
 |   } | 
 |   addiu(sp, sp, stack_offset); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MultiPopReversedFPU(RegList regs) { | 
 |   int16_t stack_offset = 0; | 
 |  | 
 |   for (int16_t i = kNumRegisters - 1; i >= 0; i--) { | 
 |     if ((regs & (1 << i)) != 0) { | 
 |       ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); | 
 |       stack_offset += kDoubleSize; | 
 |     } | 
 |   } | 
 |   addiu(sp, sp, stack_offset); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::FlushICache(Register address, unsigned instructions) { | 
 |   RegList saved_regs = kJSCallerSaved | ra.bit(); | 
 |   MultiPush(saved_regs); | 
 |   AllowExternalCallThatCantCauseGC scope(this); | 
 |  | 
 |   // Save to a0 in case address == t0. | 
 |   Move(a0, address); | 
 |   PrepareCallCFunction(2, t0); | 
 |  | 
 |   li(a1, instructions * kInstrSize); | 
 |   CallCFunction(ExternalReference::flush_icache_function(isolate()), 2); | 
 |   MultiPop(saved_regs); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Ext(Register rt, | 
 |                          Register rs, | 
 |                          uint16_t pos, | 
 |                          uint16_t size) { | 
 |   DCHECK(pos < 32); | 
 |   DCHECK(pos + size < 33); | 
 |  | 
 |   if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { | 
 |     ext_(rt, rs, pos, size); | 
 |   } else { | 
 |     // Move rs to rt and shift it left then right to get the | 
 |     // desired bitfield on the right side and zeroes on the left. | 
 |     int shift_left = 32 - (pos + size); | 
 |     sll(rt, rs, shift_left);  // Acts as a move if shift_left == 0. | 
 |  | 
 |     int shift_right = 32 - size; | 
 |     if (shift_right > 0) { | 
 |       srl(rt, rt, shift_right); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Ins(Register rt, | 
 |                          Register rs, | 
 |                          uint16_t pos, | 
 |                          uint16_t size) { | 
 |   DCHECK(pos < 32); | 
 |   DCHECK(pos + size <= 32); | 
 |   DCHECK(size != 0); | 
 |  | 
 |   if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { | 
 |     ins_(rt, rs, pos, size); | 
 |   } else { | 
 |     DCHECK(!rt.is(t8) && !rs.is(t8)); | 
 |     Subu(at, zero_reg, Operand(1)); | 
 |     srl(at, at, 32 - size); | 
 |     and_(t8, rs, at); | 
 |     sll(t8, t8, pos); | 
 |     sll(at, at, pos); | 
 |     nor(at, at, zero_reg); | 
 |     and_(at, rt, at); | 
 |     or_(rt, t8, at); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Cvt_d_uw(FPURegister fd, | 
 |                               FPURegister fs, | 
 |                               FPURegister scratch) { | 
 |   // Move the data from fs to t8. | 
 |   mfc1(t8, fs); | 
 |   Cvt_d_uw(fd, t8, scratch); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Cvt_d_uw(FPURegister fd, | 
 |                               Register rs, | 
 |                               FPURegister scratch) { | 
 |   // Convert rs to a FP value in fd (and fd + 1). | 
 |   // We do this by converting rs minus the MSB to avoid sign conversion, | 
 |   // then adding 2^31 to the result (if needed). | 
 |  | 
 |   DCHECK(!fd.is(scratch)); | 
 |   DCHECK(!rs.is(t9)); | 
 |   DCHECK(!rs.is(at)); | 
 |  | 
 |   // Save rs's MSB to t9. | 
 |   Ext(t9, rs, 31, 1); | 
 |   // Remove rs's MSB. | 
 |   Ext(at, rs, 0, 31); | 
 |   // Move the result to fd. | 
 |   mtc1(at, fd); | 
 |  | 
 |   // Convert fd to a real FP value. | 
 |   cvt_d_w(fd, fd); | 
 |  | 
 |   Label conversion_done; | 
 |  | 
 |   // If rs's MSB was 0, it's done. | 
 |   // Otherwise we need to add that to the FP register. | 
 |   Branch(&conversion_done, eq, t9, Operand(zero_reg)); | 
 |  | 
 |   // Load 2^31 into f20 as its float representation. | 
 |   li(at, 0x41E00000); | 
 |   mtc1(zero_reg, scratch); | 
 |   Mthc1(at, scratch); | 
 |   // Add it to fd. | 
 |   add_d(fd, fd, scratch); | 
 |  | 
 |   bind(&conversion_done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Trunc_uw_d(FPURegister fd, | 
 |                                 FPURegister fs, | 
 |                                 FPURegister scratch) { | 
 |   Trunc_uw_d(fs, t8, scratch); | 
 |   mtc1(t8, fd); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) { | 
 |   if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { | 
 |     Mfhc1(t8, fs); | 
 |     trunc_w_d(fd, fs); | 
 |     Mthc1(t8, fs); | 
 |   } else { | 
 |     trunc_w_d(fd, fs); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) { | 
 |   if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { | 
 |     Mfhc1(t8, fs); | 
 |     round_w_d(fd, fs); | 
 |     Mthc1(t8, fs); | 
 |   } else { | 
 |     round_w_d(fd, fs); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) { | 
 |   if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { | 
 |     Mfhc1(t8, fs); | 
 |     floor_w_d(fd, fs); | 
 |     Mthc1(t8, fs); | 
 |   } else { | 
 |     floor_w_d(fd, fs); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) { | 
 |   if (IsMipsArchVariant(kLoongson) && fd.is(fs)) { | 
 |     Mfhc1(t8, fs); | 
 |     ceil_w_d(fd, fs); | 
 |     Mthc1(t8, fs); | 
 |   } else { | 
 |     ceil_w_d(fd, fs); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Trunc_uw_d(FPURegister fd, | 
 |                                 Register rs, | 
 |                                 FPURegister scratch) { | 
 |   DCHECK(!fd.is(scratch)); | 
 |   DCHECK(!rs.is(at)); | 
 |  | 
 |   // Load 2^31 into scratch as its float representation. | 
 |   li(at, 0x41E00000); | 
 |   mtc1(zero_reg, scratch); | 
 |   Mthc1(at, scratch); | 
 |   // Test if scratch > fd. | 
 |   // If fd < 2^31 we can convert it normally. | 
 |   Label simple_convert; | 
 |   BranchF(&simple_convert, NULL, lt, fd, scratch); | 
 |  | 
 |   // First we subtract 2^31 from fd, then trunc it to rs | 
 |   // and add 2^31 to rs. | 
 |   sub_d(scratch, fd, scratch); | 
 |   trunc_w_d(scratch, scratch); | 
 |   mfc1(rs, scratch); | 
 |   Or(rs, rs, 1 << 31); | 
 |  | 
 |   Label done; | 
 |   Branch(&done); | 
 |   // Simple conversion. | 
 |   bind(&simple_convert); | 
 |   trunc_w_d(scratch, fd); | 
 |   mfc1(rs, scratch); | 
 |  | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Mthc1(Register rt, FPURegister fs) { | 
 |   if (IsFp64Mode()) { | 
 |     mthc1(rt, fs); | 
 |   } else { | 
 |     mtc1(rt, fs.high()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Mfhc1(Register rt, FPURegister fs) { | 
 |   if (IsFp64Mode()) { | 
 |     mfhc1(rt, fs); | 
 |   } else { | 
 |     mfc1(rt, fs.high()); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchF(Label* target, | 
 |                              Label* nan, | 
 |                              Condition cc, | 
 |                              FPURegister cmp1, | 
 |                              FPURegister cmp2, | 
 |                              BranchDelaySlot bd) { | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |   if (cc == al) { | 
 |     Branch(bd, target); | 
 |     return; | 
 |   } | 
 |  | 
 |   DCHECK(nan || target); | 
 |   // Check for unordered (NaN) cases. | 
 |   if (nan) { | 
 |     if (!IsMipsArchVariant(kMips32r6)) { | 
 |       c(UN, D, cmp1, cmp2); | 
 |       bc1t(nan); | 
 |     } else { | 
 |       // Use kDoubleCompareReg for comparison result. It has to be unavailable | 
 |       // to lithium register allocator. | 
 |       DCHECK(!cmp1.is(kDoubleCompareReg) && !cmp2.is(kDoubleCompareReg)); | 
 |       cmp(UN, L, kDoubleCompareReg, cmp1, cmp2); | 
 |       bc1nez(nan, kDoubleCompareReg); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!IsMipsArchVariant(kMips32r6)) { | 
 |     if (target) { | 
 |       // Here NaN cases were either handled by this function or are assumed to | 
 |       // have been handled by the caller. | 
 |       switch (cc) { | 
 |         case lt: | 
 |           c(OLT, D, cmp1, cmp2); | 
 |           bc1t(target); | 
 |           break; | 
 |         case gt: | 
 |           c(ULE, D, cmp1, cmp2); | 
 |           bc1f(target); | 
 |           break; | 
 |         case ge: | 
 |           c(ULT, D, cmp1, cmp2); | 
 |           bc1f(target); | 
 |           break; | 
 |         case le: | 
 |           c(OLE, D, cmp1, cmp2); | 
 |           bc1t(target); | 
 |           break; | 
 |         case eq: | 
 |           c(EQ, D, cmp1, cmp2); | 
 |           bc1t(target); | 
 |           break; | 
 |         case ueq: | 
 |           c(UEQ, D, cmp1, cmp2); | 
 |           bc1t(target); | 
 |           break; | 
 |         case ne: | 
 |           c(EQ, D, cmp1, cmp2); | 
 |           bc1f(target); | 
 |           break; | 
 |         case nue: | 
 |           c(UEQ, D, cmp1, cmp2); | 
 |           bc1f(target); | 
 |           break; | 
 |         default: | 
 |           CHECK(0); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (target) { | 
 |       // Here NaN cases were either handled by this function or are assumed to | 
 |       // have been handled by the caller. | 
 |       // Unsigned conditions are treated as their signed counterpart. | 
 |       // Use kDoubleCompareReg for comparison result, it is | 
 |       // valid in fp64 (FR = 1) mode which is implied for mips32r6. | 
 |       DCHECK(!cmp1.is(kDoubleCompareReg) && !cmp2.is(kDoubleCompareReg)); | 
 |       switch (cc) { | 
 |         case lt: | 
 |           cmp(OLT, L, kDoubleCompareReg, cmp1, cmp2); | 
 |           bc1nez(target, kDoubleCompareReg); | 
 |           break; | 
 |         case gt: | 
 |           cmp(ULE, L, kDoubleCompareReg, cmp1, cmp2); | 
 |           bc1eqz(target, kDoubleCompareReg); | 
 |           break; | 
 |         case ge: | 
 |           cmp(ULT, L, kDoubleCompareReg, cmp1, cmp2); | 
 |           bc1eqz(target, kDoubleCompareReg); | 
 |           break; | 
 |         case le: | 
 |           cmp(OLE, L, kDoubleCompareReg, cmp1, cmp2); | 
 |           bc1nez(target, kDoubleCompareReg); | 
 |           break; | 
 |         case eq: | 
 |           cmp(EQ, L, kDoubleCompareReg, cmp1, cmp2); | 
 |           bc1nez(target, kDoubleCompareReg); | 
 |           break; | 
 |         case ueq: | 
 |           cmp(UEQ, L, kDoubleCompareReg, cmp1, cmp2); | 
 |           bc1nez(target, kDoubleCompareReg); | 
 |           break; | 
 |         case ne: | 
 |           cmp(EQ, L, kDoubleCompareReg, cmp1, cmp2); | 
 |           bc1eqz(target, kDoubleCompareReg); | 
 |           break; | 
 |         case nue: | 
 |           cmp(UEQ, L, kDoubleCompareReg, cmp1, cmp2); | 
 |           bc1eqz(target, kDoubleCompareReg); | 
 |           break; | 
 |         default: | 
 |           CHECK(0); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (bd == PROTECT) { | 
 |     nop(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Move(FPURegister dst, double imm) { | 
 |   static const DoubleRepresentation minus_zero(-0.0); | 
 |   static const DoubleRepresentation zero(0.0); | 
 |   DoubleRepresentation value_rep(imm); | 
 |   // Handle special values first. | 
 |   bool force_load = dst.is(kDoubleRegZero); | 
 |   if (value_rep == zero && !force_load) { | 
 |     mov_d(dst, kDoubleRegZero); | 
 |   } else if (value_rep == minus_zero && !force_load) { | 
 |     neg_d(dst, kDoubleRegZero); | 
 |   } else { | 
 |     uint32_t lo, hi; | 
 |     DoubleAsTwoUInt32(imm, &lo, &hi); | 
 |     // Move the low part of the double into the lower of the corresponding FPU | 
 |     // register of FPU register pair. | 
 |     if (lo != 0) { | 
 |       li(at, Operand(lo)); | 
 |       mtc1(at, dst); | 
 |     } else { | 
 |       mtc1(zero_reg, dst); | 
 |     } | 
 |     // Move the high part of the double into the higher of the corresponding FPU | 
 |     // register of FPU register pair. | 
 |     if (hi != 0) { | 
 |       li(at, Operand(hi)); | 
 |       Mthc1(at, dst); | 
 |     } else { | 
 |       Mthc1(zero_reg, dst); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Movz(Register rd, Register rs, Register rt) { | 
 |   if (IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r6)) { | 
 |     Label done; | 
 |     Branch(&done, ne, rt, Operand(zero_reg)); | 
 |     mov(rd, rs); | 
 |     bind(&done); | 
 |   } else { | 
 |     movz(rd, rs, rt); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Movn(Register rd, Register rs, Register rt) { | 
 |   if (IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r6)) { | 
 |     Label done; | 
 |     Branch(&done, eq, rt, Operand(zero_reg)); | 
 |     mov(rd, rs); | 
 |     bind(&done); | 
 |   } else { | 
 |     movn(rd, rs, rt); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) { | 
 |   if (IsMipsArchVariant(kLoongson)) { | 
 |     // Tests an FP condition code and then conditionally move rs to rd. | 
 |     // We do not currently use any FPU cc bit other than bit 0. | 
 |     DCHECK(cc == 0); | 
 |     DCHECK(!(rs.is(t8) || rd.is(t8))); | 
 |     Label done; | 
 |     Register scratch = t8; | 
 |     // For testing purposes we need to fetch content of the FCSR register and | 
 |     // than test its cc (floating point condition code) bit (for cc = 0, it is | 
 |     // 24. bit of the FCSR). | 
 |     cfc1(scratch, FCSR); | 
 |     // For the MIPS I, II and III architectures, the contents of scratch is | 
 |     // UNPREDICTABLE for the instruction immediately following CFC1. | 
 |     nop(); | 
 |     srl(scratch, scratch, 16); | 
 |     andi(scratch, scratch, 0x0080); | 
 |     Branch(&done, eq, scratch, Operand(zero_reg)); | 
 |     mov(rd, rs); | 
 |     bind(&done); | 
 |   } else { | 
 |     movt(rd, rs, cc); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) { | 
 |   if (IsMipsArchVariant(kLoongson)) { | 
 |     // Tests an FP condition code and then conditionally move rs to rd. | 
 |     // We do not currently use any FPU cc bit other than bit 0. | 
 |     DCHECK(cc == 0); | 
 |     DCHECK(!(rs.is(t8) || rd.is(t8))); | 
 |     Label done; | 
 |     Register scratch = t8; | 
 |     // For testing purposes we need to fetch content of the FCSR register and | 
 |     // than test its cc (floating point condition code) bit (for cc = 0, it is | 
 |     // 24. bit of the FCSR). | 
 |     cfc1(scratch, FCSR); | 
 |     // For the MIPS I, II and III architectures, the contents of scratch is | 
 |     // UNPREDICTABLE for the instruction immediately following CFC1. | 
 |     nop(); | 
 |     srl(scratch, scratch, 16); | 
 |     andi(scratch, scratch, 0x0080); | 
 |     Branch(&done, ne, scratch, Operand(zero_reg)); | 
 |     mov(rd, rs); | 
 |     bind(&done); | 
 |   } else { | 
 |     movf(rd, rs, cc); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Clz(Register rd, Register rs) { | 
 |   if (IsMipsArchVariant(kLoongson)) { | 
 |     DCHECK(!(rd.is(t8) || rd.is(t9)) && !(rs.is(t8) || rs.is(t9))); | 
 |     Register mask = t8; | 
 |     Register scratch = t9; | 
 |     Label loop, end; | 
 |     mov(at, rs); | 
 |     mov(rd, zero_reg); | 
 |     lui(mask, 0x8000); | 
 |     bind(&loop); | 
 |     and_(scratch, at, mask); | 
 |     Branch(&end, ne, scratch, Operand(zero_reg)); | 
 |     addiu(rd, rd, 1); | 
 |     Branch(&loop, ne, mask, Operand(zero_reg), USE_DELAY_SLOT); | 
 |     srl(mask, mask, 1); | 
 |     bind(&end); | 
 |   } else { | 
 |     clz(rd, rs); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode, | 
 |                                      Register result, | 
 |                                      DoubleRegister double_input, | 
 |                                      Register scratch, | 
 |                                      DoubleRegister double_scratch, | 
 |                                      Register except_flag, | 
 |                                      CheckForInexactConversion check_inexact) { | 
 |   DCHECK(!result.is(scratch)); | 
 |   DCHECK(!double_input.is(double_scratch)); | 
 |   DCHECK(!except_flag.is(scratch)); | 
 |  | 
 |   Label done; | 
 |  | 
 |   // Clear the except flag (0 = no exception) | 
 |   mov(except_flag, zero_reg); | 
 |  | 
 |   // Test for values that can be exactly represented as a signed 32-bit integer. | 
 |   cvt_w_d(double_scratch, double_input); | 
 |   mfc1(result, double_scratch); | 
 |   cvt_d_w(double_scratch, double_scratch); | 
 |   BranchF(&done, NULL, eq, double_input, double_scratch); | 
 |  | 
 |   int32_t except_mask = kFCSRFlagMask;  // Assume interested in all exceptions. | 
 |  | 
 |   if (check_inexact == kDontCheckForInexactConversion) { | 
 |     // Ignore inexact exceptions. | 
 |     except_mask &= ~kFCSRInexactFlagMask; | 
 |   } | 
 |  | 
 |   // Save FCSR. | 
 |   cfc1(scratch, FCSR); | 
 |   // Disable FPU exceptions. | 
 |   ctc1(zero_reg, FCSR); | 
 |  | 
 |   // Do operation based on rounding mode. | 
 |   switch (rounding_mode) { | 
 |     case kRoundToNearest: | 
 |       Round_w_d(double_scratch, double_input); | 
 |       break; | 
 |     case kRoundToZero: | 
 |       Trunc_w_d(double_scratch, double_input); | 
 |       break; | 
 |     case kRoundToPlusInf: | 
 |       Ceil_w_d(double_scratch, double_input); | 
 |       break; | 
 |     case kRoundToMinusInf: | 
 |       Floor_w_d(double_scratch, double_input); | 
 |       break; | 
 |   }  // End of switch-statement. | 
 |  | 
 |   // Retrieve FCSR. | 
 |   cfc1(except_flag, FCSR); | 
 |   // Restore FCSR. | 
 |   ctc1(scratch, FCSR); | 
 |   // Move the converted value into the result register. | 
 |   mfc1(result, double_scratch); | 
 |  | 
 |   // Check for fpu exceptions. | 
 |   And(except_flag, except_flag, Operand(except_mask)); | 
 |  | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TryInlineTruncateDoubleToI(Register result, | 
 |                                                 DoubleRegister double_input, | 
 |                                                 Label* done) { | 
 |   DoubleRegister single_scratch = kLithiumScratchDouble.low(); | 
 |   Register scratch = at; | 
 |   Register scratch2 = t9; | 
 |  | 
 |   // Clear cumulative exception flags and save the FCSR. | 
 |   cfc1(scratch2, FCSR); | 
 |   ctc1(zero_reg, FCSR); | 
 |   // Try a conversion to a signed integer. | 
 |   trunc_w_d(single_scratch, double_input); | 
 |   mfc1(result, single_scratch); | 
 |   // Retrieve and restore the FCSR. | 
 |   cfc1(scratch, FCSR); | 
 |   ctc1(scratch2, FCSR); | 
 |   // Check for overflow and NaNs. | 
 |   And(scratch, | 
 |       scratch, | 
 |       kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); | 
 |   // If we had no exceptions we are done. | 
 |   Branch(done, eq, scratch, Operand(zero_reg)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TruncateDoubleToI(Register result, | 
 |                                        DoubleRegister double_input) { | 
 |   Label done; | 
 |  | 
 |   TryInlineTruncateDoubleToI(result, double_input, &done); | 
 |  | 
 |   // If we fell through then inline version didn't succeed - call stub instead. | 
 |   push(ra); | 
 |   Subu(sp, sp, Operand(kDoubleSize));  // Put input on stack. | 
 |   sdc1(double_input, MemOperand(sp, 0)); | 
 |  | 
 |   DoubleToIStub stub(isolate(), sp, result, 0, true, true); | 
 |   CallStub(&stub); | 
 |  | 
 |   Addu(sp, sp, Operand(kDoubleSize)); | 
 |   pop(ra); | 
 |  | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { | 
 |   Label done; | 
 |   DoubleRegister double_scratch = f12; | 
 |   DCHECK(!result.is(object)); | 
 |  | 
 |   ldc1(double_scratch, | 
 |        MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag)); | 
 |   TryInlineTruncateDoubleToI(result, double_scratch, &done); | 
 |  | 
 |   // If we fell through then inline version didn't succeed - call stub instead. | 
 |   push(ra); | 
 |   DoubleToIStub stub(isolate(), | 
 |                      object, | 
 |                      result, | 
 |                      HeapNumber::kValueOffset - kHeapObjectTag, | 
 |                      true, | 
 |                      true); | 
 |   CallStub(&stub); | 
 |   pop(ra); | 
 |  | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TruncateNumberToI(Register object, | 
 |                                        Register result, | 
 |                                        Register heap_number_map, | 
 |                                        Register scratch, | 
 |                                        Label* not_number) { | 
 |   Label done; | 
 |   DCHECK(!result.is(object)); | 
 |  | 
 |   UntagAndJumpIfSmi(result, object, &done); | 
 |   JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number); | 
 |   TruncateHeapNumberToI(result, object); | 
 |  | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::GetLeastBitsFromSmi(Register dst, | 
 |                                          Register src, | 
 |                                          int num_least_bits) { | 
 |   Ext(dst, src, kSmiTagSize, num_least_bits); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::GetLeastBitsFromInt32(Register dst, | 
 |                                            Register src, | 
 |                                            int num_least_bits) { | 
 |   And(dst, src, Operand((1 << num_least_bits) - 1)); | 
 | } | 
 |  | 
 |  | 
 | // Emulated condtional branches do not emit a nop in the branch delay slot. | 
 | // | 
 | // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. | 
 | #define BRANCH_ARGS_CHECK(cond, rs, rt) DCHECK(                                \ | 
 |     (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) ||          \ | 
 |     (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg)))) | 
 |  | 
 |  | 
 | void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { | 
 |   BranchShort(offset, bdslot); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, | 
 |                             const Operand& rt, | 
 |                             BranchDelaySlot bdslot) { | 
 |   BranchShort(offset, cond, rs, rt, bdslot); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { | 
 |   if (L->is_bound()) { | 
 |     if (is_near(L)) { | 
 |       BranchShort(L, bdslot); | 
 |     } else { | 
 |       Jr(L, bdslot); | 
 |     } | 
 |   } else { | 
 |     if (is_trampoline_emitted()) { | 
 |       Jr(L, bdslot); | 
 |     } else { | 
 |       BranchShort(L, bdslot); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Branch(Label* L, Condition cond, Register rs, | 
 |                             const Operand& rt, | 
 |                             BranchDelaySlot bdslot) { | 
 |   if (L->is_bound()) { | 
 |     if (is_near(L)) { | 
 |       BranchShort(L, cond, rs, rt, bdslot); | 
 |     } else { | 
 |       if (cond != cc_always) { | 
 |         Label skip; | 
 |         Condition neg_cond = NegateCondition(cond); | 
 |         BranchShort(&skip, neg_cond, rs, rt); | 
 |         Jr(L, bdslot); | 
 |         bind(&skip); | 
 |       } else { | 
 |         Jr(L, bdslot); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     if (is_trampoline_emitted()) { | 
 |       if (cond != cc_always) { | 
 |         Label skip; | 
 |         Condition neg_cond = NegateCondition(cond); | 
 |         BranchShort(&skip, neg_cond, rs, rt); | 
 |         Jr(L, bdslot); | 
 |         bind(&skip); | 
 |       } else { | 
 |         Jr(L, bdslot); | 
 |       } | 
 |     } else { | 
 |       BranchShort(L, cond, rs, rt, bdslot); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Branch(Label* L, | 
 |                             Condition cond, | 
 |                             Register rs, | 
 |                             Heap::RootListIndex index, | 
 |                             BranchDelaySlot bdslot) { | 
 |   LoadRoot(at, index); | 
 |   Branch(L, cond, rs, Operand(at), bdslot); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) { | 
 |   b(offset); | 
 |  | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs, | 
 |                                  const Operand& rt, | 
 |                                  BranchDelaySlot bdslot) { | 
 |   BRANCH_ARGS_CHECK(cond, rs, rt); | 
 |   DCHECK(!rs.is(zero_reg)); | 
 |   Register r2 = no_reg; | 
 |   Register scratch = at; | 
 |  | 
 |   if (rt.is_reg()) { | 
 |     // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or | 
 |     // rt. | 
 |     BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |     r2 = rt.rm_; | 
 |     switch (cond) { | 
 |       case cc_always: | 
 |         b(offset); | 
 |         break; | 
 |       case eq: | 
 |         beq(rs, r2, offset); | 
 |         break; | 
 |       case ne: | 
 |         bne(rs, r2, offset); | 
 |         break; | 
 |       // Signed comparison. | 
 |       case greater: | 
 |         if (r2.is(zero_reg)) { | 
 |           bgtz(rs, offset); | 
 |         } else { | 
 |           slt(scratch, r2, rs); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case greater_equal: | 
 |         if (r2.is(zero_reg)) { | 
 |           bgez(rs, offset); | 
 |         } else { | 
 |           slt(scratch, rs, r2); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case less: | 
 |         if (r2.is(zero_reg)) { | 
 |           bltz(rs, offset); | 
 |         } else { | 
 |           slt(scratch, rs, r2); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case less_equal: | 
 |         if (r2.is(zero_reg)) { | 
 |           blez(rs, offset); | 
 |         } else { | 
 |           slt(scratch, r2, rs); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       // Unsigned comparison. | 
 |       case Ugreater: | 
 |         if (r2.is(zero_reg)) { | 
 |           bne(rs, zero_reg, offset); | 
 |         } else { | 
 |           sltu(scratch, r2, rs); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Ugreater_equal: | 
 |         if (r2.is(zero_reg)) { | 
 |           b(offset); | 
 |         } else { | 
 |           sltu(scratch, rs, r2); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Uless: | 
 |         if (r2.is(zero_reg)) { | 
 |           // No code needs to be emitted. | 
 |           return; | 
 |         } else { | 
 |           sltu(scratch, rs, r2); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Uless_equal: | 
 |         if (r2.is(zero_reg)) { | 
 |           beq(rs, zero_reg, offset); | 
 |         } else { | 
 |           sltu(scratch, r2, rs); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } else { | 
 |     // Be careful to always use shifted_branch_offset only just before the | 
 |     // branch instruction, as the location will be remember for patching the | 
 |     // target. | 
 |     BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |     switch (cond) { | 
 |       case cc_always: | 
 |         b(offset); | 
 |         break; | 
 |       case eq: | 
 |         // We don't want any other register but scratch clobbered. | 
 |         DCHECK(!scratch.is(rs)); | 
 |         r2 = scratch; | 
 |         li(r2, rt); | 
 |         beq(rs, r2, offset); | 
 |         break; | 
 |       case ne: | 
 |         // We don't want any other register but scratch clobbered. | 
 |         DCHECK(!scratch.is(rs)); | 
 |         r2 = scratch; | 
 |         li(r2, rt); | 
 |         bne(rs, r2, offset); | 
 |         break; | 
 |       // Signed comparison. | 
 |       case greater: | 
 |         if (rt.imm32_ == 0) { | 
 |           bgtz(rs, offset); | 
 |         } else { | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           slt(scratch, r2, rs); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case greater_equal: | 
 |         if (rt.imm32_ == 0) { | 
 |           bgez(rs, offset); | 
 |         } else if (is_int16(rt.imm32_)) { | 
 |           slti(scratch, rs, rt.imm32_); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } else { | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           slt(scratch, rs, r2); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case less: | 
 |         if (rt.imm32_ == 0) { | 
 |           bltz(rs, offset); | 
 |         } else if (is_int16(rt.imm32_)) { | 
 |           slti(scratch, rs, rt.imm32_); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } else { | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           slt(scratch, rs, r2); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case less_equal: | 
 |         if (rt.imm32_ == 0) { | 
 |           blez(rs, offset); | 
 |         } else { | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           slt(scratch, r2, rs); | 
 |           beq(scratch, zero_reg, offset); | 
 |        } | 
 |        break; | 
 |       // Unsigned comparison. | 
 |       case Ugreater: | 
 |         if (rt.imm32_ == 0) { | 
 |           bne(rs, zero_reg, offset); | 
 |         } else { | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           sltu(scratch, r2, rs); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Ugreater_equal: | 
 |         if (rt.imm32_ == 0) { | 
 |           b(offset); | 
 |         } else if (is_int16(rt.imm32_)) { | 
 |           sltiu(scratch, rs, rt.imm32_); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } else { | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           sltu(scratch, rs, r2); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Uless: | 
 |         if (rt.imm32_ == 0) { | 
 |           // No code needs to be emitted. | 
 |           return; | 
 |         } else if (is_int16(rt.imm32_)) { | 
 |           sltiu(scratch, rs, rt.imm32_); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } else { | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           sltu(scratch, rs, r2); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Uless_equal: | 
 |         if (rt.imm32_ == 0) { | 
 |           beq(rs, zero_reg, offset); | 
 |         } else { | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           sltu(scratch, r2, rs); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) { | 
 |   // We use branch_offset as an argument for the branch instructions to be sure | 
 |   // it is called just before generating the branch instruction, as needed. | 
 |  | 
 |   b(shifted_branch_offset(L, false)); | 
 |  | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs, | 
 |                                  const Operand& rt, | 
 |                                  BranchDelaySlot bdslot) { | 
 |   BRANCH_ARGS_CHECK(cond, rs, rt); | 
 |  | 
 |   int32_t offset = 0; | 
 |   Register r2 = no_reg; | 
 |   Register scratch = at; | 
 |   if (rt.is_reg()) { | 
 |     BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |     r2 = rt.rm_; | 
 |     // Be careful to always use shifted_branch_offset only just before the | 
 |     // branch instruction, as the location will be remember for patching the | 
 |     // target. | 
 |     switch (cond) { | 
 |       case cc_always: | 
 |         offset = shifted_branch_offset(L, false); | 
 |         b(offset); | 
 |         break; | 
 |       case eq: | 
 |         offset = shifted_branch_offset(L, false); | 
 |         beq(rs, r2, offset); | 
 |         break; | 
 |       case ne: | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bne(rs, r2, offset); | 
 |         break; | 
 |       // Signed comparison. | 
 |       case greater: | 
 |         if (r2.is(zero_reg)) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bgtz(rs, offset); | 
 |         } else { | 
 |           slt(scratch, r2, rs); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case greater_equal: | 
 |         if (r2.is(zero_reg)) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bgez(rs, offset); | 
 |         } else { | 
 |           slt(scratch, rs, r2); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case less: | 
 |         if (r2.is(zero_reg)) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bltz(rs, offset); | 
 |         } else { | 
 |           slt(scratch, rs, r2); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case less_equal: | 
 |         if (r2.is(zero_reg)) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           blez(rs, offset); | 
 |         } else { | 
 |           slt(scratch, r2, rs); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       // Unsigned comparison. | 
 |       case Ugreater: | 
 |         if (r2.is(zero_reg)) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(rs, zero_reg, offset); | 
 |         } else { | 
 |           sltu(scratch, r2, rs); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Ugreater_equal: | 
 |         if (r2.is(zero_reg)) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           b(offset); | 
 |         } else { | 
 |           sltu(scratch, rs, r2); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Uless: | 
 |         if (r2.is(zero_reg)) { | 
 |           // No code needs to be emitted. | 
 |           return; | 
 |         } else { | 
 |           sltu(scratch, rs, r2); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Uless_equal: | 
 |         if (r2.is(zero_reg)) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(rs, zero_reg, offset); | 
 |         } else { | 
 |           sltu(scratch, r2, rs); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } else { | 
 |     // Be careful to always use shifted_branch_offset only just before the | 
 |     // branch instruction, as the location will be remember for patching the | 
 |     // target. | 
 |     BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |     switch (cond) { | 
 |       case cc_always: | 
 |         offset = shifted_branch_offset(L, false); | 
 |         b(offset); | 
 |         break; | 
 |       case eq: | 
 |         DCHECK(!scratch.is(rs)); | 
 |         r2 = scratch; | 
 |         li(r2, rt); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         beq(rs, r2, offset); | 
 |         break; | 
 |       case ne: | 
 |         DCHECK(!scratch.is(rs)); | 
 |         r2 = scratch; | 
 |         li(r2, rt); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bne(rs, r2, offset); | 
 |         break; | 
 |       // Signed comparison. | 
 |       case greater: | 
 |         if (rt.imm32_ == 0) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bgtz(rs, offset); | 
 |         } else { | 
 |           DCHECK(!scratch.is(rs)); | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           slt(scratch, r2, rs); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case greater_equal: | 
 |         if (rt.imm32_ == 0) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bgez(rs, offset); | 
 |         } else if (is_int16(rt.imm32_)) { | 
 |           slti(scratch, rs, rt.imm32_); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } else { | 
 |           DCHECK(!scratch.is(rs)); | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           slt(scratch, rs, r2); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case less: | 
 |         if (rt.imm32_ == 0) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bltz(rs, offset); | 
 |         } else if (is_int16(rt.imm32_)) { | 
 |           slti(scratch, rs, rt.imm32_); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } else { | 
 |           DCHECK(!scratch.is(rs)); | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           slt(scratch, rs, r2); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case less_equal: | 
 |         if (rt.imm32_ == 0) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           blez(rs, offset); | 
 |         } else { | 
 |           DCHECK(!scratch.is(rs)); | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           slt(scratch, r2, rs); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       // Unsigned comparison. | 
 |       case Ugreater: | 
 |         if (rt.imm32_ == 0) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(rs, zero_reg, offset); | 
 |         } else { | 
 |           DCHECK(!scratch.is(rs)); | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           sltu(scratch, r2, rs); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Ugreater_equal: | 
 |         if (rt.imm32_ == 0) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           b(offset); | 
 |         } else if (is_int16(rt.imm32_)) { | 
 |           sltiu(scratch, rs, rt.imm32_); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } else { | 
 |           DCHECK(!scratch.is(rs)); | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           sltu(scratch, rs, r2); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |      case Uless: | 
 |         if (rt.imm32_ == 0) { | 
 |           // No code needs to be emitted. | 
 |           return; | 
 |         } else if (is_int16(rt.imm32_)) { | 
 |           sltiu(scratch, rs, rt.imm32_); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } else { | 
 |           DCHECK(!scratch.is(rs)); | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           sltu(scratch, rs, r2); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           bne(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       case Uless_equal: | 
 |         if (rt.imm32_ == 0) { | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(rs, zero_reg, offset); | 
 |         } else { | 
 |           DCHECK(!scratch.is(rs)); | 
 |           r2 = scratch; | 
 |           li(r2, rt); | 
 |           sltu(scratch, r2, rs); | 
 |           offset = shifted_branch_offset(L, false); | 
 |           beq(scratch, zero_reg, offset); | 
 |         } | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |   // Check that offset could actually hold on an int16_t. | 
 |   DCHECK(is_int16(offset)); | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) { | 
 |   BranchAndLinkShort(offset, bdslot); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, | 
 |                                    const Operand& rt, | 
 |                                    BranchDelaySlot bdslot) { | 
 |   BranchAndLinkShort(offset, cond, rs, rt, bdslot); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { | 
 |   if (L->is_bound()) { | 
 |     if (is_near(L)) { | 
 |       BranchAndLinkShort(L, bdslot); | 
 |     } else { | 
 |       Jalr(L, bdslot); | 
 |     } | 
 |   } else { | 
 |     if (is_trampoline_emitted()) { | 
 |       Jalr(L, bdslot); | 
 |     } else { | 
 |       BranchAndLinkShort(L, bdslot); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, | 
 |                                    const Operand& rt, | 
 |                                    BranchDelaySlot bdslot) { | 
 |   if (L->is_bound()) { | 
 |     if (is_near(L)) { | 
 |       BranchAndLinkShort(L, cond, rs, rt, bdslot); | 
 |     } else { | 
 |       Label skip; | 
 |       Condition neg_cond = NegateCondition(cond); | 
 |       BranchShort(&skip, neg_cond, rs, rt); | 
 |       Jalr(L, bdslot); | 
 |       bind(&skip); | 
 |     } | 
 |   } else { | 
 |     if (is_trampoline_emitted()) { | 
 |       Label skip; | 
 |       Condition neg_cond = NegateCondition(cond); | 
 |       BranchShort(&skip, neg_cond, rs, rt); | 
 |       Jalr(L, bdslot); | 
 |       bind(&skip); | 
 |     } else { | 
 |       BranchAndLinkShort(L, cond, rs, rt, bdslot); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // We need to use a bgezal or bltzal, but they can't be used directly with the | 
 | // slt instructions. We could use sub or add instead but we would miss overflow | 
 | // cases, so we keep slt and add an intermediate third instruction. | 
 | void MacroAssembler::BranchAndLinkShort(int16_t offset, | 
 |                                         BranchDelaySlot bdslot) { | 
 |   bal(offset); | 
 |  | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond, | 
 |                                         Register rs, const Operand& rt, | 
 |                                         BranchDelaySlot bdslot) { | 
 |   BRANCH_ARGS_CHECK(cond, rs, rt); | 
 |   Register r2 = no_reg; | 
 |   Register scratch = at; | 
 |  | 
 |   if (rt.is_reg()) { | 
 |     r2 = rt.rm_; | 
 |   } else if (cond != cc_always) { | 
 |     r2 = scratch; | 
 |     li(r2, rt); | 
 |   } | 
 |  | 
 |   if (!IsMipsArchVariant(kMips32r6)) { | 
 |     BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |     switch (cond) { | 
 |       case cc_always: | 
 |         bal(offset); | 
 |         break; | 
 |       case eq: | 
 |         bne(rs, r2, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       case ne: | 
 |         beq(rs, r2, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |  | 
 |       // Signed comparison. | 
 |       case greater: | 
 |         slt(scratch, r2, rs); | 
 |         addiu(scratch, scratch, -1); | 
 |         bgezal(scratch, offset); | 
 |         break; | 
 |       case greater_equal: | 
 |         slt(scratch, rs, r2); | 
 |         addiu(scratch, scratch, -1); | 
 |         bltzal(scratch, offset); | 
 |         break; | 
 |       case less: | 
 |         slt(scratch, rs, r2); | 
 |         addiu(scratch, scratch, -1); | 
 |         bgezal(scratch, offset); | 
 |         break; | 
 |       case less_equal: | 
 |         slt(scratch, r2, rs); | 
 |         addiu(scratch, scratch, -1); | 
 |         bltzal(scratch, offset); | 
 |         break; | 
 |  | 
 |       // Unsigned comparison. | 
 |       case Ugreater: | 
 |         sltu(scratch, r2, rs); | 
 |         addiu(scratch, scratch, -1); | 
 |         bgezal(scratch, offset); | 
 |         break; | 
 |       case Ugreater_equal: | 
 |         sltu(scratch, rs, r2); | 
 |         addiu(scratch, scratch, -1); | 
 |         bltzal(scratch, offset); | 
 |         break; | 
 |       case Uless: | 
 |         sltu(scratch, rs, r2); | 
 |         addiu(scratch, scratch, -1); | 
 |         bgezal(scratch, offset); | 
 |         break; | 
 |       case Uless_equal: | 
 |         sltu(scratch, r2, rs); | 
 |         addiu(scratch, scratch, -1); | 
 |         bltzal(scratch, offset); | 
 |         break; | 
 |  | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } else { | 
 |     BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |     switch (cond) { | 
 |       case cc_always: | 
 |         bal(offset); | 
 |         break; | 
 |       case eq: | 
 |         bne(rs, r2, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       case ne: | 
 |         beq(rs, r2, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |  | 
 |       // Signed comparison. | 
 |       case greater: | 
 |         // rs > rt | 
 |         slt(scratch, r2, rs); | 
 |         beq(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       case greater_equal: | 
 |         // rs >= rt | 
 |         slt(scratch, rs, r2); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       case less: | 
 |         // rs < r2 | 
 |         slt(scratch, rs, r2); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       case less_equal: | 
 |         // rs <= r2 | 
 |         slt(scratch, r2, rs); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |  | 
 |  | 
 |       // Unsigned comparison. | 
 |       case Ugreater: | 
 |         // rs > rt | 
 |         sltu(scratch, r2, rs); | 
 |         beq(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       case Ugreater_equal: | 
 |         // rs >= rt | 
 |         sltu(scratch, rs, r2); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       case Uless: | 
 |         // rs < r2 | 
 |         sltu(scratch, rs, r2); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       case Uless_equal: | 
 |         // rs <= r2 | 
 |         sltu(scratch, r2, rs); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         bal(offset); | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) { | 
 |   bal(shifted_branch_offset(L, false)); | 
 |  | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs, | 
 |                                         const Operand& rt, | 
 |                                         BranchDelaySlot bdslot) { | 
 |   BRANCH_ARGS_CHECK(cond, rs, rt); | 
 |  | 
 |   int32_t offset = 0; | 
 |   Register r2 = no_reg; | 
 |   Register scratch = at; | 
 |   if (rt.is_reg()) { | 
 |     r2 = rt.rm_; | 
 |   } else if (cond != cc_always) { | 
 |     r2 = scratch; | 
 |     li(r2, rt); | 
 |   } | 
 |  | 
 |   if (!IsMipsArchVariant(kMips32r6)) { | 
 |     BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |     switch (cond) { | 
 |       case cc_always: | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case eq: | 
 |         bne(rs, r2, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case ne: | 
 |         beq(rs, r2, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |  | 
 |       // Signed comparison. | 
 |       case greater: | 
 |         slt(scratch, r2, rs); | 
 |         addiu(scratch, scratch, -1); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bgezal(scratch, offset); | 
 |         break; | 
 |       case greater_equal: | 
 |         slt(scratch, rs, r2); | 
 |         addiu(scratch, scratch, -1); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bltzal(scratch, offset); | 
 |         break; | 
 |       case less: | 
 |         slt(scratch, rs, r2); | 
 |         addiu(scratch, scratch, -1); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bgezal(scratch, offset); | 
 |         break; | 
 |       case less_equal: | 
 |         slt(scratch, r2, rs); | 
 |         addiu(scratch, scratch, -1); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bltzal(scratch, offset); | 
 |         break; | 
 |  | 
 |       // Unsigned comparison. | 
 |       case Ugreater: | 
 |         sltu(scratch, r2, rs); | 
 |         addiu(scratch, scratch, -1); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bgezal(scratch, offset); | 
 |         break; | 
 |       case Ugreater_equal: | 
 |         sltu(scratch, rs, r2); | 
 |         addiu(scratch, scratch, -1); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bltzal(scratch, offset); | 
 |         break; | 
 |       case Uless: | 
 |         sltu(scratch, rs, r2); | 
 |         addiu(scratch, scratch, -1); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bgezal(scratch, offset); | 
 |         break; | 
 |       case Uless_equal: | 
 |         sltu(scratch, r2, rs); | 
 |         addiu(scratch, scratch, -1); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bltzal(scratch, offset); | 
 |         break; | 
 |  | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } else { | 
 |     BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |     switch (cond) { | 
 |       case cc_always: | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case eq: | 
 |         bne(rs, r2, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case ne: | 
 |         beq(rs, r2, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |  | 
 |       // Signed comparison. | 
 |       case greater: | 
 |         // rs > rt | 
 |         slt(scratch, r2, rs); | 
 |         beq(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case greater_equal: | 
 |         // rs >= rt | 
 |         slt(scratch, rs, r2); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case less: | 
 |         // rs < r2 | 
 |         slt(scratch, rs, r2); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case less_equal: | 
 |         // rs <= r2 | 
 |         slt(scratch, r2, rs); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |  | 
 |  | 
 |       // Unsigned comparison. | 
 |       case Ugreater: | 
 |         // rs > rt | 
 |         sltu(scratch, r2, rs); | 
 |         beq(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case Ugreater_equal: | 
 |         // rs >= rt | 
 |         sltu(scratch, rs, r2); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case Uless: | 
 |         // rs < r2 | 
 |         sltu(scratch, rs, r2); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |       case Uless_equal: | 
 |         // rs <= r2 | 
 |         sltu(scratch, r2, rs); | 
 |         bne(scratch, zero_reg, 2); | 
 |         nop(); | 
 |         offset = shifted_branch_offset(L, false); | 
 |         bal(offset); | 
 |         break; | 
 |  | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Check that offset could actually hold on an int16_t. | 
 |   DCHECK(is_int16(offset)); | 
 |  | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Jump(Register target, | 
 |                           Condition cond, | 
 |                           Register rs, | 
 |                           const Operand& rt, | 
 |                           BranchDelaySlot bd) { | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |   if (cond == cc_always) { | 
 |     jr(target); | 
 |   } else { | 
 |     BRANCH_ARGS_CHECK(cond, rs, rt); | 
 |     Branch(2, NegateCondition(cond), rs, rt); | 
 |     jr(target); | 
 |   } | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bd == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Jump(intptr_t target, | 
 |                           RelocInfo::Mode rmode, | 
 |                           Condition cond, | 
 |                           Register rs, | 
 |                           const Operand& rt, | 
 |                           BranchDelaySlot bd) { | 
 |   Label skip; | 
 |   if (cond != cc_always) { | 
 |     Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt); | 
 |   } | 
 |   // The first instruction of 'li' may be placed in the delay slot. | 
 |   // This is not an issue, t9 is expected to be clobbered anyway. | 
 |   li(t9, Operand(target, rmode)); | 
 |   Jump(t9, al, zero_reg, Operand(zero_reg), bd); | 
 |   bind(&skip); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Jump(Address target, | 
 |                           RelocInfo::Mode rmode, | 
 |                           Condition cond, | 
 |                           Register rs, | 
 |                           const Operand& rt, | 
 |                           BranchDelaySlot bd) { | 
 |   DCHECK(!RelocInfo::IsCodeTarget(rmode)); | 
 |   Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Jump(Handle<Code> code, | 
 |                           RelocInfo::Mode rmode, | 
 |                           Condition cond, | 
 |                           Register rs, | 
 |                           const Operand& rt, | 
 |                           BranchDelaySlot bd) { | 
 |   DCHECK(RelocInfo::IsCodeTarget(rmode)); | 
 |   AllowDeferredHandleDereference embedding_raw_address; | 
 |   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd); | 
 | } | 
 |  | 
 |  | 
 | int MacroAssembler::CallSize(Register target, | 
 |                              Condition cond, | 
 |                              Register rs, | 
 |                              const Operand& rt, | 
 |                              BranchDelaySlot bd) { | 
 |   int size = 0; | 
 |  | 
 |   if (cond == cc_always) { | 
 |     size += 1; | 
 |   } else { | 
 |     size += 3; | 
 |   } | 
 |  | 
 |   if (bd == PROTECT) | 
 |     size += 1; | 
 |  | 
 |   return size * kInstrSize; | 
 | } | 
 |  | 
 |  | 
 | // Note: To call gcc-compiled C code on mips, you must call thru t9. | 
 | void MacroAssembler::Call(Register target, | 
 |                           Condition cond, | 
 |                           Register rs, | 
 |                           const Operand& rt, | 
 |                           BranchDelaySlot bd) { | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |   Label start; | 
 |   bind(&start); | 
 |   if (cond == cc_always) { | 
 |     jalr(target); | 
 |   } else { | 
 |     BRANCH_ARGS_CHECK(cond, rs, rt); | 
 |     Branch(2, NegateCondition(cond), rs, rt); | 
 |     jalr(target); | 
 |   } | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bd == PROTECT) | 
 |     nop(); | 
 |  | 
 |   DCHECK_EQ(CallSize(target, cond, rs, rt, bd), | 
 |             SizeOfCodeGeneratedSince(&start)); | 
 | } | 
 |  | 
 |  | 
 | int MacroAssembler::CallSize(Address target, | 
 |                              RelocInfo::Mode rmode, | 
 |                              Condition cond, | 
 |                              Register rs, | 
 |                              const Operand& rt, | 
 |                              BranchDelaySlot bd) { | 
 |   int size = CallSize(t9, cond, rs, rt, bd); | 
 |   return size + 2 * kInstrSize; | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Call(Address target, | 
 |                           RelocInfo::Mode rmode, | 
 |                           Condition cond, | 
 |                           Register rs, | 
 |                           const Operand& rt, | 
 |                           BranchDelaySlot bd) { | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |   Label start; | 
 |   bind(&start); | 
 |   int32_t target_int = reinterpret_cast<int32_t>(target); | 
 |   // Must record previous source positions before the | 
 |   // li() generates a new code target. | 
 |   positions_recorder()->WriteRecordedPositions(); | 
 |   li(t9, Operand(target_int, rmode), CONSTANT_SIZE); | 
 |   Call(t9, cond, rs, rt, bd); | 
 |   DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd), | 
 |             SizeOfCodeGeneratedSince(&start)); | 
 | } | 
 |  | 
 |  | 
 | int MacroAssembler::CallSize(Handle<Code> code, | 
 |                              RelocInfo::Mode rmode, | 
 |                              TypeFeedbackId ast_id, | 
 |                              Condition cond, | 
 |                              Register rs, | 
 |                              const Operand& rt, | 
 |                              BranchDelaySlot bd) { | 
 |   AllowDeferredHandleDereference using_raw_address; | 
 |   return CallSize(reinterpret_cast<Address>(code.location()), | 
 |       rmode, cond, rs, rt, bd); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Call(Handle<Code> code, | 
 |                           RelocInfo::Mode rmode, | 
 |                           TypeFeedbackId ast_id, | 
 |                           Condition cond, | 
 |                           Register rs, | 
 |                           const Operand& rt, | 
 |                           BranchDelaySlot bd) { | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |   Label start; | 
 |   bind(&start); | 
 |   DCHECK(RelocInfo::IsCodeTarget(rmode)); | 
 |   if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { | 
 |     SetRecordedAstId(ast_id); | 
 |     rmode = RelocInfo::CODE_TARGET_WITH_ID; | 
 |   } | 
 |   AllowDeferredHandleDereference embedding_raw_address; | 
 |   Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd); | 
 |   DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd), | 
 |             SizeOfCodeGeneratedSince(&start)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Ret(Condition cond, | 
 |                          Register rs, | 
 |                          const Operand& rt, | 
 |                          BranchDelaySlot bd) { | 
 |   Jump(ra, cond, rs, rt, bd); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) { | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |  | 
 |   uint32_t imm28; | 
 |   imm28 = jump_address(L); | 
 |   imm28 &= kImm28Mask; | 
 |   { BlockGrowBufferScope block_buf_growth(this); | 
 |     // Buffer growth (and relocation) must be blocked for internal references | 
 |     // until associated instructions are emitted and available to be patched. | 
 |     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); | 
 |     j(imm28); | 
 |   } | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) { | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |  | 
 |   uint32_t imm32; | 
 |   imm32 = jump_address(L); | 
 |   { BlockGrowBufferScope block_buf_growth(this); | 
 |     // Buffer growth (and relocation) must be blocked for internal references | 
 |     // until associated instructions are emitted and available to be patched. | 
 |     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); | 
 |     lui(at, (imm32 & kHiMask) >> kLuiShift); | 
 |     ori(at, at, (imm32 & kImm16Mask)); | 
 |   } | 
 |   jr(at); | 
 |  | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) { | 
 |   BlockTrampolinePoolScope block_trampoline_pool(this); | 
 |  | 
 |   uint32_t imm32; | 
 |   imm32 = jump_address(L); | 
 |   { BlockGrowBufferScope block_buf_growth(this); | 
 |     // Buffer growth (and relocation) must be blocked for internal references | 
 |     // until associated instructions are emitted and available to be patched. | 
 |     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); | 
 |     lui(at, (imm32 & kHiMask) >> kLuiShift); | 
 |     ori(at, at, (imm32 & kImm16Mask)); | 
 |   } | 
 |   jalr(at); | 
 |  | 
 |   // Emit a nop in the branch delay slot if required. | 
 |   if (bdslot == PROTECT) | 
 |     nop(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::DropAndRet(int drop) { | 
 |   Ret(USE_DELAY_SLOT); | 
 |   addiu(sp, sp, drop * kPointerSize); | 
 | } | 
 |  | 
 | void MacroAssembler::DropAndRet(int drop, | 
 |                                 Condition cond, | 
 |                                 Register r1, | 
 |                                 const Operand& r2) { | 
 |   // Both Drop and Ret need to be conditional. | 
 |   Label skip; | 
 |   if (cond != cc_always) { | 
 |     Branch(&skip, NegateCondition(cond), r1, r2); | 
 |   } | 
 |  | 
 |   Drop(drop); | 
 |   Ret(); | 
 |  | 
 |   if (cond != cc_always) { | 
 |     bind(&skip); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Drop(int count, | 
 |                           Condition cond, | 
 |                           Register reg, | 
 |                           const Operand& op) { | 
 |   if (count <= 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   Label skip; | 
 |  | 
 |   if (cond != al) { | 
 |      Branch(&skip, NegateCondition(cond), reg, op); | 
 |   } | 
 |  | 
 |   addiu(sp, sp, count * kPointerSize); | 
 |  | 
 |   if (cond != al) { | 
 |     bind(&skip); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 |  | 
 | void MacroAssembler::Swap(Register reg1, | 
 |                           Register reg2, | 
 |                           Register scratch) { | 
 |   if (scratch.is(no_reg)) { | 
 |     Xor(reg1, reg1, Operand(reg2)); | 
 |     Xor(reg2, reg2, Operand(reg1)); | 
 |     Xor(reg1, reg1, Operand(reg2)); | 
 |   } else { | 
 |     mov(scratch, reg1); | 
 |     mov(reg1, reg2); | 
 |     mov(reg2, scratch); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Call(Label* target) { | 
 |   BranchAndLink(target); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Push(Handle<Object> handle) { | 
 |   li(at, Operand(handle)); | 
 |   push(at); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::DebugBreak() { | 
 |   PrepareCEntryArgs(0); | 
 |   PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate())); | 
 |   CEntryStub ces(isolate(), 1); | 
 |   DCHECK(AllowThisStubCall(&ces)); | 
 |   Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); | 
 | } | 
 |  | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 | // Exception handling. | 
 |  | 
 | void MacroAssembler::PushTryHandler(StackHandler::Kind kind, | 
 |                                     int handler_index) { | 
 |   // Adjust this code if not the case. | 
 |   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); | 
 |  | 
 |   // For the JSEntry handler, we must preserve a0-a3 and s0. | 
 |   // t1-t3 are available. We will build up the handler from the bottom by | 
 |   // pushing on the stack. | 
 |   // Set up the code object (t1) and the state (t2) for pushing. | 
 |   unsigned state = | 
 |       StackHandler::IndexField::encode(handler_index) | | 
 |       StackHandler::KindField::encode(kind); | 
 |   li(t1, Operand(CodeObject()), CONSTANT_SIZE); | 
 |   li(t2, Operand(state)); | 
 |  | 
 |   // Push the frame pointer, context, state, and code object. | 
 |   if (kind == StackHandler::JS_ENTRY) { | 
 |     DCHECK_EQ(Smi::FromInt(0), 0); | 
 |     // The second zero_reg indicates no context. | 
 |     // The first zero_reg is the NULL frame pointer. | 
 |     // The operands are reversed to match the order of MultiPush/Pop. | 
 |     Push(zero_reg, zero_reg, t2, t1); | 
 |   } else { | 
 |     MultiPush(t1.bit() | t2.bit() | cp.bit() | fp.bit()); | 
 |   } | 
 |  | 
 |   // Link the current handler as the next handler. | 
 |   li(t2, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); | 
 |   lw(t1, MemOperand(t2)); | 
 |   push(t1); | 
 |   // Set this new handler as the current one. | 
 |   sw(sp, MemOperand(t2)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::PopTryHandler() { | 
 |   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | 
 |   pop(a1); | 
 |   Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); | 
 |   li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); | 
 |   sw(a1, MemOperand(at)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpToHandlerEntry() { | 
 |   // Compute the handler entry address and jump to it.  The handler table is | 
 |   // a fixed array of (smi-tagged) code offsets. | 
 |   // v0 = exception, a1 = code object, a2 = state. | 
 |   lw(a3, FieldMemOperand(a1, Code::kHandlerTableOffset));  // Handler table. | 
 |   Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 
 |   srl(a2, a2, StackHandler::kKindWidth);  // Handler index. | 
 |   sll(a2, a2, kPointerSizeLog2); | 
 |   Addu(a2, a3, a2); | 
 |   lw(a2, MemOperand(a2));  // Smi-tagged offset. | 
 |   Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start. | 
 |   sra(t9, a2, kSmiTagSize); | 
 |   Addu(t9, t9, a1); | 
 |   Jump(t9);  // Jump. | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Throw(Register value) { | 
 |   // Adjust this code if not the case. | 
 |   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); | 
 |   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); | 
 |  | 
 |   // The exception is expected in v0. | 
 |   Move(v0, value); | 
 |  | 
 |   // Drop the stack pointer to the top of the top handler. | 
 |   li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, | 
 |                                    isolate()))); | 
 |   lw(sp, MemOperand(a3)); | 
 |  | 
 |   // Restore the next handler. | 
 |   pop(a2); | 
 |   sw(a2, MemOperand(a3)); | 
 |  | 
 |   // Get the code object (a1) and state (a2).  Restore the context and frame | 
 |   // pointer. | 
 |   MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); | 
 |  | 
 |   // If the handler is a JS frame, restore the context to the frame. | 
 |   // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp | 
 |   // or cp. | 
 |   Label done; | 
 |   Branch(&done, eq, cp, Operand(zero_reg)); | 
 |   sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); | 
 |   bind(&done); | 
 |  | 
 |   JumpToHandlerEntry(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::ThrowUncatchable(Register value) { | 
 |   // Adjust this code if not the case. | 
 |   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); | 
 |   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); | 
 |  | 
 |   // The exception is expected in v0. | 
 |   if (!value.is(v0)) { | 
 |     mov(v0, value); | 
 |   } | 
 |   // Drop the stack pointer to the top of the top stack handler. | 
 |   li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); | 
 |   lw(sp, MemOperand(a3)); | 
 |  | 
 |   // Unwind the handlers until the ENTRY handler is found. | 
 |   Label fetch_next, check_kind; | 
 |   jmp(&check_kind); | 
 |   bind(&fetch_next); | 
 |   lw(sp, MemOperand(sp, StackHandlerConstants::kNextOffset)); | 
 |  | 
 |   bind(&check_kind); | 
 |   STATIC_ASSERT(StackHandler::JS_ENTRY == 0); | 
 |   lw(a2, MemOperand(sp, StackHandlerConstants::kStateOffset)); | 
 |   And(a2, a2, Operand(StackHandler::KindField::kMask)); | 
 |   Branch(&fetch_next, ne, a2, Operand(zero_reg)); | 
 |  | 
 |   // Set the top handler address to next handler past the top ENTRY handler. | 
 |   pop(a2); | 
 |   sw(a2, MemOperand(a3)); | 
 |  | 
 |   // Get the code object (a1) and state (a2).  Clear the context and frame | 
 |   // pointer (0 was saved in the handler). | 
 |   MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); | 
 |  | 
 |   JumpToHandlerEntry(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Allocate(int object_size, | 
 |                               Register result, | 
 |                               Register scratch1, | 
 |                               Register scratch2, | 
 |                               Label* gc_required, | 
 |                               AllocationFlags flags) { | 
 |   DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); | 
 |   if (!FLAG_inline_new) { | 
 |     if (emit_debug_code()) { | 
 |       // Trash the registers to simulate an allocation failure. | 
 |       li(result, 0x7091); | 
 |       li(scratch1, 0x7191); | 
 |       li(scratch2, 0x7291); | 
 |     } | 
 |     jmp(gc_required); | 
 |     return; | 
 |   } | 
 |  | 
 |   DCHECK(!result.is(scratch1)); | 
 |   DCHECK(!result.is(scratch2)); | 
 |   DCHECK(!scratch1.is(scratch2)); | 
 |   DCHECK(!scratch1.is(t9)); | 
 |   DCHECK(!scratch2.is(t9)); | 
 |   DCHECK(!result.is(t9)); | 
 |  | 
 |   // Make object size into bytes. | 
 |   if ((flags & SIZE_IN_WORDS) != 0) { | 
 |     object_size *= kPointerSize; | 
 |   } | 
 |   DCHECK_EQ(0, object_size & kObjectAlignmentMask); | 
 |  | 
 |   // Check relative positions of allocation top and limit addresses. | 
 |   // ARM adds additional checks to make sure the ldm instruction can be | 
 |   // used. On MIPS we don't have ldm so we don't need additional checks either. | 
 |   ExternalReference allocation_top = | 
 |       AllocationUtils::GetAllocationTopReference(isolate(), flags); | 
 |   ExternalReference allocation_limit = | 
 |       AllocationUtils::GetAllocationLimitReference(isolate(), flags); | 
 |  | 
 |   intptr_t top   = | 
 |       reinterpret_cast<intptr_t>(allocation_top.address()); | 
 |   intptr_t limit = | 
 |       reinterpret_cast<intptr_t>(allocation_limit.address()); | 
 |   DCHECK((limit - top) == kPointerSize); | 
 |  | 
 |   // Set up allocation top address and object size registers. | 
 |   Register topaddr = scratch1; | 
 |   li(topaddr, Operand(allocation_top)); | 
 |  | 
 |   // This code stores a temporary value in t9. | 
 |   if ((flags & RESULT_CONTAINS_TOP) == 0) { | 
 |     // Load allocation top into result and allocation limit into t9. | 
 |     lw(result, MemOperand(topaddr)); | 
 |     lw(t9, MemOperand(topaddr, kPointerSize)); | 
 |   } else { | 
 |     if (emit_debug_code()) { | 
 |       // Assert that result actually contains top on entry. t9 is used | 
 |       // immediately below so this use of t9 does not cause difference with | 
 |       // respect to register content between debug and release mode. | 
 |       lw(t9, MemOperand(topaddr)); | 
 |       Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); | 
 |     } | 
 |     // Load allocation limit into t9. Result already contains allocation top. | 
 |     lw(t9, MemOperand(topaddr, limit - top)); | 
 |   } | 
 |  | 
 |   if ((flags & DOUBLE_ALIGNMENT) != 0) { | 
 |     // Align the next allocation. Storing the filler map without checking top is | 
 |     // safe in new-space because the limit of the heap is aligned there. | 
 |     DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); | 
 |     DCHECK(kPointerAlignment * 2 == kDoubleAlignment); | 
 |     And(scratch2, result, Operand(kDoubleAlignmentMask)); | 
 |     Label aligned; | 
 |     Branch(&aligned, eq, scratch2, Operand(zero_reg)); | 
 |     if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { | 
 |       Branch(gc_required, Ugreater_equal, result, Operand(t9)); | 
 |     } | 
 |     li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); | 
 |     sw(scratch2, MemOperand(result)); | 
 |     Addu(result, result, Operand(kDoubleSize / 2)); | 
 |     bind(&aligned); | 
 |   } | 
 |  | 
 |   // Calculate new top and bail out if new space is exhausted. Use result | 
 |   // to calculate the new top. | 
 |   Addu(scratch2, result, Operand(object_size)); | 
 |   Branch(gc_required, Ugreater, scratch2, Operand(t9)); | 
 |   sw(scratch2, MemOperand(topaddr)); | 
 |  | 
 |   // Tag object if requested. | 
 |   if ((flags & TAG_OBJECT) != 0) { | 
 |     Addu(result, result, Operand(kHeapObjectTag)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Allocate(Register object_size, | 
 |                               Register result, | 
 |                               Register scratch1, | 
 |                               Register scratch2, | 
 |                               Label* gc_required, | 
 |                               AllocationFlags flags) { | 
 |   if (!FLAG_inline_new) { | 
 |     if (emit_debug_code()) { | 
 |       // Trash the registers to simulate an allocation failure. | 
 |       li(result, 0x7091); | 
 |       li(scratch1, 0x7191); | 
 |       li(scratch2, 0x7291); | 
 |     } | 
 |     jmp(gc_required); | 
 |     return; | 
 |   } | 
 |  | 
 |   DCHECK(!result.is(scratch1)); | 
 |   DCHECK(!result.is(scratch2)); | 
 |   DCHECK(!scratch1.is(scratch2)); | 
 |   DCHECK(!object_size.is(t9)); | 
 |   DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); | 
 |  | 
 |   // Check relative positions of allocation top and limit addresses. | 
 |   // ARM adds additional checks to make sure the ldm instruction can be | 
 |   // used. On MIPS we don't have ldm so we don't need additional checks either. | 
 |   ExternalReference allocation_top = | 
 |       AllocationUtils::GetAllocationTopReference(isolate(), flags); | 
 |   ExternalReference allocation_limit = | 
 |       AllocationUtils::GetAllocationLimitReference(isolate(), flags); | 
 |   intptr_t top   = | 
 |       reinterpret_cast<intptr_t>(allocation_top.address()); | 
 |   intptr_t limit = | 
 |       reinterpret_cast<intptr_t>(allocation_limit.address()); | 
 |   DCHECK((limit - top) == kPointerSize); | 
 |  | 
 |   // Set up allocation top address and object size registers. | 
 |   Register topaddr = scratch1; | 
 |   li(topaddr, Operand(allocation_top)); | 
 |  | 
 |   // This code stores a temporary value in t9. | 
 |   if ((flags & RESULT_CONTAINS_TOP) == 0) { | 
 |     // Load allocation top into result and allocation limit into t9. | 
 |     lw(result, MemOperand(topaddr)); | 
 |     lw(t9, MemOperand(topaddr, kPointerSize)); | 
 |   } else { | 
 |     if (emit_debug_code()) { | 
 |       // Assert that result actually contains top on entry. t9 is used | 
 |       // immediately below so this use of t9 does not cause difference with | 
 |       // respect to register content between debug and release mode. | 
 |       lw(t9, MemOperand(topaddr)); | 
 |       Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); | 
 |     } | 
 |     // Load allocation limit into t9. Result already contains allocation top. | 
 |     lw(t9, MemOperand(topaddr, limit - top)); | 
 |   } | 
 |  | 
 |   if ((flags & DOUBLE_ALIGNMENT) != 0) { | 
 |     // Align the next allocation. Storing the filler map without checking top is | 
 |     // safe in new-space because the limit of the heap is aligned there. | 
 |     DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0); | 
 |     DCHECK(kPointerAlignment * 2 == kDoubleAlignment); | 
 |     And(scratch2, result, Operand(kDoubleAlignmentMask)); | 
 |     Label aligned; | 
 |     Branch(&aligned, eq, scratch2, Operand(zero_reg)); | 
 |     if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) { | 
 |       Branch(gc_required, Ugreater_equal, result, Operand(t9)); | 
 |     } | 
 |     li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); | 
 |     sw(scratch2, MemOperand(result)); | 
 |     Addu(result, result, Operand(kDoubleSize / 2)); | 
 |     bind(&aligned); | 
 |   } | 
 |  | 
 |   // Calculate new top and bail out if new space is exhausted. Use result | 
 |   // to calculate the new top. Object size may be in words so a shift is | 
 |   // required to get the number of bytes. | 
 |   if ((flags & SIZE_IN_WORDS) != 0) { | 
 |     sll(scratch2, object_size, kPointerSizeLog2); | 
 |     Addu(scratch2, result, scratch2); | 
 |   } else { | 
 |     Addu(scratch2, result, Operand(object_size)); | 
 |   } | 
 |   Branch(gc_required, Ugreater, scratch2, Operand(t9)); | 
 |  | 
 |   // Update allocation top. result temporarily holds the new top. | 
 |   if (emit_debug_code()) { | 
 |     And(t9, scratch2, Operand(kObjectAlignmentMask)); | 
 |     Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg)); | 
 |   } | 
 |   sw(scratch2, MemOperand(topaddr)); | 
 |  | 
 |   // Tag object if requested. | 
 |   if ((flags & TAG_OBJECT) != 0) { | 
 |     Addu(result, result, Operand(kHeapObjectTag)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::UndoAllocationInNewSpace(Register object, | 
 |                                               Register scratch) { | 
 |   ExternalReference new_space_allocation_top = | 
 |       ExternalReference::new_space_allocation_top_address(isolate()); | 
 |  | 
 |   // Make sure the object has no tag before resetting top. | 
 |   And(object, object, Operand(~kHeapObjectTagMask)); | 
 | #ifdef DEBUG | 
 |   // Check that the object un-allocated is below the current top. | 
 |   li(scratch, Operand(new_space_allocation_top)); | 
 |   lw(scratch, MemOperand(scratch)); | 
 |   Check(less, kUndoAllocationOfNonAllocatedMemory, | 
 |       object, Operand(scratch)); | 
 | #endif | 
 |   // Write the address of the object to un-allocate as the current top. | 
 |   li(scratch, Operand(new_space_allocation_top)); | 
 |   sw(object, MemOperand(scratch)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AllocateTwoByteString(Register result, | 
 |                                            Register length, | 
 |                                            Register scratch1, | 
 |                                            Register scratch2, | 
 |                                            Register scratch3, | 
 |                                            Label* gc_required) { | 
 |   // Calculate the number of bytes needed for the characters in the string while | 
 |   // observing object alignment. | 
 |   DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); | 
 |   sll(scratch1, length, 1);  // Length in bytes, not chars. | 
 |   addiu(scratch1, scratch1, | 
 |        kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); | 
 |   And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); | 
 |  | 
 |   // Allocate two-byte string in new space. | 
 |   Allocate(scratch1, | 
 |            result, | 
 |            scratch2, | 
 |            scratch3, | 
 |            gc_required, | 
 |            TAG_OBJECT); | 
 |  | 
 |   // Set the map, length and hash field. | 
 |   InitializeNewString(result, | 
 |                       length, | 
 |                       Heap::kStringMapRootIndex, | 
 |                       scratch1, | 
 |                       scratch2); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AllocateOneByteString(Register result, Register length, | 
 |                                            Register scratch1, Register scratch2, | 
 |                                            Register scratch3, | 
 |                                            Label* gc_required) { | 
 |   // Calculate the number of bytes needed for the characters in the string | 
 |   // while observing object alignment. | 
 |   DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); | 
 |   DCHECK(kCharSize == 1); | 
 |   addiu(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize); | 
 |   And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); | 
 |  | 
 |   // Allocate one-byte string in new space. | 
 |   Allocate(scratch1, | 
 |            result, | 
 |            scratch2, | 
 |            scratch3, | 
 |            gc_required, | 
 |            TAG_OBJECT); | 
 |  | 
 |   // Set the map, length and hash field. | 
 |   InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, | 
 |                       scratch1, scratch2); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AllocateTwoByteConsString(Register result, | 
 |                                                Register length, | 
 |                                                Register scratch1, | 
 |                                                Register scratch2, | 
 |                                                Label* gc_required) { | 
 |   Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, | 
 |            TAG_OBJECT); | 
 |   InitializeNewString(result, | 
 |                       length, | 
 |                       Heap::kConsStringMapRootIndex, | 
 |                       scratch1, | 
 |                       scratch2); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AllocateOneByteConsString(Register result, Register length, | 
 |                                                Register scratch1, | 
 |                                                Register scratch2, | 
 |                                                Label* gc_required) { | 
 |   Allocate(ConsString::kSize, | 
 |            result, | 
 |            scratch1, | 
 |            scratch2, | 
 |            gc_required, | 
 |            TAG_OBJECT); | 
 |  | 
 |   InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, | 
 |                       scratch1, scratch2); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AllocateTwoByteSlicedString(Register result, | 
 |                                                  Register length, | 
 |                                                  Register scratch1, | 
 |                                                  Register scratch2, | 
 |                                                  Label* gc_required) { | 
 |   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, | 
 |            TAG_OBJECT); | 
 |  | 
 |   InitializeNewString(result, | 
 |                       length, | 
 |                       Heap::kSlicedStringMapRootIndex, | 
 |                       scratch1, | 
 |                       scratch2); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AllocateOneByteSlicedString(Register result, | 
 |                                                  Register length, | 
 |                                                  Register scratch1, | 
 |                                                  Register scratch2, | 
 |                                                  Label* gc_required) { | 
 |   Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, | 
 |            TAG_OBJECT); | 
 |  | 
 |   InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, | 
 |                       scratch1, scratch2); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg, | 
 |                                                      Label* not_unique_name) { | 
 |   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); | 
 |   Label succeed; | 
 |   And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); | 
 |   Branch(&succeed, eq, at, Operand(zero_reg)); | 
 |   Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE)); | 
 |  | 
 |   bind(&succeed); | 
 | } | 
 |  | 
 |  | 
 | // Allocates a heap number or jumps to the label if the young space is full and | 
 | // a scavenge is needed. | 
 | void MacroAssembler::AllocateHeapNumber(Register result, | 
 |                                         Register scratch1, | 
 |                                         Register scratch2, | 
 |                                         Register heap_number_map, | 
 |                                         Label* need_gc, | 
 |                                         TaggingMode tagging_mode, | 
 |                                         MutableMode mode) { | 
 |   // Allocate an object in the heap for the heap number and tag it as a heap | 
 |   // object. | 
 |   Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc, | 
 |            tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS); | 
 |  | 
 |   Heap::RootListIndex map_index = mode == MUTABLE | 
 |       ? Heap::kMutableHeapNumberMapRootIndex | 
 |       : Heap::kHeapNumberMapRootIndex; | 
 |   AssertIsRoot(heap_number_map, map_index); | 
 |  | 
 |   // Store heap number map in the allocated object. | 
 |   if (tagging_mode == TAG_RESULT) { | 
 |     sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); | 
 |   } else { | 
 |     sw(heap_number_map, MemOperand(result, HeapObject::kMapOffset)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AllocateHeapNumberWithValue(Register result, | 
 |                                                  FPURegister value, | 
 |                                                  Register scratch1, | 
 |                                                  Register scratch2, | 
 |                                                  Label* gc_required) { | 
 |   LoadRoot(t8, Heap::kHeapNumberMapRootIndex); | 
 |   AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required); | 
 |   sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); | 
 | } | 
 |  | 
 |  | 
 | // Copies a fixed number of fields of heap objects from src to dst. | 
 | void MacroAssembler::CopyFields(Register dst, | 
 |                                 Register src, | 
 |                                 RegList temps, | 
 |                                 int field_count) { | 
 |   DCHECK((temps & dst.bit()) == 0); | 
 |   DCHECK((temps & src.bit()) == 0); | 
 |   // Primitive implementation using only one temporary register. | 
 |  | 
 |   Register tmp = no_reg; | 
 |   // Find a temp register in temps list. | 
 |   for (int i = 0; i < kNumRegisters; i++) { | 
 |     if ((temps & (1 << i)) != 0) { | 
 |       tmp.code_ = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |   DCHECK(!tmp.is(no_reg)); | 
 |  | 
 |   for (int i = 0; i < field_count; i++) { | 
 |     lw(tmp, FieldMemOperand(src, i * kPointerSize)); | 
 |     sw(tmp, FieldMemOperand(dst, i * kPointerSize)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CopyBytes(Register src, | 
 |                                Register dst, | 
 |                                Register length, | 
 |                                Register scratch) { | 
 |   Label align_loop_1, word_loop, byte_loop, byte_loop_1, done; | 
 |  | 
 |   // Align src before copying in word size chunks. | 
 |   Branch(&byte_loop, le, length, Operand(kPointerSize)); | 
 |   bind(&align_loop_1); | 
 |   And(scratch, src, kPointerSize - 1); | 
 |   Branch(&word_loop, eq, scratch, Operand(zero_reg)); | 
 |   lbu(scratch, MemOperand(src)); | 
 |   Addu(src, src, 1); | 
 |   sb(scratch, MemOperand(dst)); | 
 |   Addu(dst, dst, 1); | 
 |   Subu(length, length, Operand(1)); | 
 |   Branch(&align_loop_1, ne, length, Operand(zero_reg)); | 
 |  | 
 |   // Copy bytes in word size chunks. | 
 |   bind(&word_loop); | 
 |   if (emit_debug_code()) { | 
 |     And(scratch, src, kPointerSize - 1); | 
 |     Assert(eq, kExpectingAlignmentForCopyBytes, | 
 |         scratch, Operand(zero_reg)); | 
 |   } | 
 |   Branch(&byte_loop, lt, length, Operand(kPointerSize)); | 
 |   lw(scratch, MemOperand(src)); | 
 |   Addu(src, src, kPointerSize); | 
 |  | 
 |   // TODO(kalmard) check if this can be optimized to use sw in most cases. | 
 |   // Can't use unaligned access - copy byte by byte. | 
 |   if (kArchEndian == kLittle) { | 
 |     sb(scratch, MemOperand(dst, 0)); | 
 |     srl(scratch, scratch, 8); | 
 |     sb(scratch, MemOperand(dst, 1)); | 
 |     srl(scratch, scratch, 8); | 
 |     sb(scratch, MemOperand(dst, 2)); | 
 |     srl(scratch, scratch, 8); | 
 |     sb(scratch, MemOperand(dst, 3)); | 
 |   } else { | 
 |     sb(scratch, MemOperand(dst, 3)); | 
 |     srl(scratch, scratch, 8); | 
 |     sb(scratch, MemOperand(dst, 2)); | 
 |     srl(scratch, scratch, 8); | 
 |     sb(scratch, MemOperand(dst, 1)); | 
 |     srl(scratch, scratch, 8); | 
 |     sb(scratch, MemOperand(dst, 0)); | 
 |   } | 
 |  | 
 |   Addu(dst, dst, 4); | 
 |  | 
 |   Subu(length, length, Operand(kPointerSize)); | 
 |   Branch(&word_loop); | 
 |  | 
 |   // Copy the last bytes if any left. | 
 |   bind(&byte_loop); | 
 |   Branch(&done, eq, length, Operand(zero_reg)); | 
 |   bind(&byte_loop_1); | 
 |   lbu(scratch, MemOperand(src)); | 
 |   Addu(src, src, 1); | 
 |   sb(scratch, MemOperand(dst)); | 
 |   Addu(dst, dst, 1); | 
 |   Subu(length, length, Operand(1)); | 
 |   Branch(&byte_loop_1, ne, length, Operand(zero_reg)); | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, | 
 |                                                 Register end_offset, | 
 |                                                 Register filler) { | 
 |   Label loop, entry; | 
 |   Branch(&entry); | 
 |   bind(&loop); | 
 |   sw(filler, MemOperand(start_offset)); | 
 |   Addu(start_offset, start_offset, kPointerSize); | 
 |   bind(&entry); | 
 |   Branch(&loop, lt, start_offset, Operand(end_offset)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CheckFastElements(Register map, | 
 |                                        Register scratch, | 
 |                                        Label* fail) { | 
 |   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); | 
 |   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); | 
 |   STATIC_ASSERT(FAST_ELEMENTS == 2); | 
 |   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); | 
 |   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); | 
 |   Branch(fail, hi, scratch, | 
 |          Operand(Map::kMaximumBitField2FastHoleyElementValue)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CheckFastObjectElements(Register map, | 
 |                                              Register scratch, | 
 |                                              Label* fail) { | 
 |   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); | 
 |   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); | 
 |   STATIC_ASSERT(FAST_ELEMENTS == 2); | 
 |   STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); | 
 |   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); | 
 |   Branch(fail, ls, scratch, | 
 |          Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); | 
 |   Branch(fail, hi, scratch, | 
 |          Operand(Map::kMaximumBitField2FastHoleyElementValue)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CheckFastSmiElements(Register map, | 
 |                                           Register scratch, | 
 |                                           Label* fail) { | 
 |   STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); | 
 |   STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); | 
 |   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); | 
 |   Branch(fail, hi, scratch, | 
 |          Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, | 
 |                                                  Register key_reg, | 
 |                                                  Register elements_reg, | 
 |                                                  Register scratch1, | 
 |                                                  Register scratch2, | 
 |                                                  Register scratch3, | 
 |                                                  Label* fail, | 
 |                                                  int elements_offset) { | 
 |   Label smi_value, maybe_nan, have_double_value, is_nan, done; | 
 |   Register mantissa_reg = scratch2; | 
 |   Register exponent_reg = scratch3; | 
 |  | 
 |   // Handle smi values specially. | 
 |   JumpIfSmi(value_reg, &smi_value); | 
 |  | 
 |   // Ensure that the object is a heap number | 
 |   CheckMap(value_reg, | 
 |            scratch1, | 
 |            Heap::kHeapNumberMapRootIndex, | 
 |            fail, | 
 |            DONT_DO_SMI_CHECK); | 
 |  | 
 |   // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000 | 
 |   // in the exponent. | 
 |   li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32)); | 
 |   lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); | 
 |   Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1)); | 
 |  | 
 |   lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); | 
 |  | 
 |   bind(&have_double_value); | 
 |   sll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize); | 
 |   Addu(scratch1, scratch1, elements_reg); | 
 |   sw(mantissa_reg, | 
 |       FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset | 
 |           + kHoleNanLower32Offset)); | 
 |   sw(exponent_reg, | 
 |       FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize - elements_offset | 
 |           + kHoleNanUpper32Offset)); | 
 |   jmp(&done); | 
 |  | 
 |   bind(&maybe_nan); | 
 |   // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise | 
 |   // it's an Infinity, and the non-NaN code path applies. | 
 |   Branch(&is_nan, gt, exponent_reg, Operand(scratch1)); | 
 |   lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); | 
 |   Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg)); | 
 |   bind(&is_nan); | 
 |   // Load canonical NaN for storing into the double array. | 
 |   LoadRoot(at, Heap::kNanValueRootIndex); | 
 |   lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset)); | 
 |   lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset)); | 
 |   jmp(&have_double_value); | 
 |  | 
 |   bind(&smi_value); | 
 |   Addu(scratch1, elements_reg, | 
 |       Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag - | 
 |               elements_offset)); | 
 |   sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize); | 
 |   Addu(scratch1, scratch1, scratch2); | 
 |   // scratch1 is now effective address of the double element | 
 |  | 
 |   Register untagged_value = elements_reg; | 
 |   SmiUntag(untagged_value, value_reg); | 
 |   mtc1(untagged_value, f2); | 
 |   cvt_d_w(f0, f2); | 
 |   sdc1(f0, MemOperand(scratch1, 0)); | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CompareMapAndBranch(Register obj, | 
 |                                          Register scratch, | 
 |                                          Handle<Map> map, | 
 |                                          Label* early_success, | 
 |                                          Condition cond, | 
 |                                          Label* branch_to) { | 
 |   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); | 
 |   CompareMapAndBranch(scratch, map, early_success, cond, branch_to); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CompareMapAndBranch(Register obj_map, | 
 |                                          Handle<Map> map, | 
 |                                          Label* early_success, | 
 |                                          Condition cond, | 
 |                                          Label* branch_to) { | 
 |   Branch(branch_to, cond, obj_map, Operand(map)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CheckMap(Register obj, | 
 |                               Register scratch, | 
 |                               Handle<Map> map, | 
 |                               Label* fail, | 
 |                               SmiCheckType smi_check_type) { | 
 |   if (smi_check_type == DO_SMI_CHECK) { | 
 |     JumpIfSmi(obj, fail); | 
 |   } | 
 |   Label success; | 
 |   CompareMapAndBranch(obj, scratch, map, &success, ne, fail); | 
 |   bind(&success); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::DispatchMap(Register obj, | 
 |                                  Register scratch, | 
 |                                  Handle<Map> map, | 
 |                                  Handle<Code> success, | 
 |                                  SmiCheckType smi_check_type) { | 
 |   Label fail; | 
 |   if (smi_check_type == DO_SMI_CHECK) { | 
 |     JumpIfSmi(obj, &fail); | 
 |   } | 
 |   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); | 
 |   Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map)); | 
 |   bind(&fail); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CheckMap(Register obj, | 
 |                               Register scratch, | 
 |                               Heap::RootListIndex index, | 
 |                               Label* fail, | 
 |                               SmiCheckType smi_check_type) { | 
 |   if (smi_check_type == DO_SMI_CHECK) { | 
 |     JumpIfSmi(obj, fail); | 
 |   } | 
 |   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); | 
 |   LoadRoot(at, index); | 
 |   Branch(fail, ne, scratch, Operand(at)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MovFromFloatResult(DoubleRegister dst) { | 
 |   if (IsMipsSoftFloatABI) { | 
 |     if (kArchEndian == kLittle) { | 
 |       Move(dst, v0, v1); | 
 |     } else { | 
 |       Move(dst, v1, v0); | 
 |     } | 
 |   } else { | 
 |     Move(dst, f0);  // Reg f0 is o32 ABI FP return value. | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MovFromFloatParameter(DoubleRegister dst) { | 
 |   if (IsMipsSoftFloatABI) { | 
 |     if (kArchEndian == kLittle) { | 
 |       Move(dst, a0, a1); | 
 |     } else { | 
 |       Move(dst, a1, a0); | 
 |     } | 
 |   } else { | 
 |     Move(dst, f12);  // Reg f12 is o32 ABI FP first argument value. | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MovToFloatParameter(DoubleRegister src) { | 
 |   if (!IsMipsSoftFloatABI) { | 
 |     Move(f12, src); | 
 |   } else { | 
 |     if (kArchEndian == kLittle) { | 
 |       Move(a0, a1, src); | 
 |     } else { | 
 |       Move(a1, a0, src); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MovToFloatResult(DoubleRegister src) { | 
 |   if (!IsMipsSoftFloatABI) { | 
 |     Move(f0, src); | 
 |   } else { | 
 |     if (kArchEndian == kLittle) { | 
 |       Move(v0, v1, src); | 
 |     } else { | 
 |       Move(v1, v0, src); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::MovToFloatParameters(DoubleRegister src1, | 
 |                                           DoubleRegister src2) { | 
 |   if (!IsMipsSoftFloatABI) { | 
 |     if (src2.is(f12)) { | 
 |       DCHECK(!src1.is(f14)); | 
 |       Move(f14, src2); | 
 |       Move(f12, src1); | 
 |     } else { | 
 |       Move(f12, src1); | 
 |       Move(f14, src2); | 
 |     } | 
 |   } else { | 
 |     if (kArchEndian == kLittle) { | 
 |       Move(a0, a1, src1); | 
 |       Move(a2, a3, src2); | 
 |     } else { | 
 |       Move(a1, a0, src1); | 
 |       Move(a3, a2, src2); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // JavaScript invokes. | 
 |  | 
 | void MacroAssembler::InvokePrologue(const ParameterCount& expected, | 
 |                                     const ParameterCount& actual, | 
 |                                     Handle<Code> code_constant, | 
 |                                     Register code_reg, | 
 |                                     Label* done, | 
 |                                     bool* definitely_mismatches, | 
 |                                     InvokeFlag flag, | 
 |                                     const CallWrapper& call_wrapper) { | 
 |   bool definitely_matches = false; | 
 |   *definitely_mismatches = false; | 
 |   Label regular_invoke; | 
 |  | 
 |   // Check whether the expected and actual arguments count match. If not, | 
 |   // setup registers according to contract with ArgumentsAdaptorTrampoline: | 
 |   //  a0: actual arguments count | 
 |   //  a1: function (passed through to callee) | 
 |   //  a2: expected arguments count | 
 |  | 
 |   // The code below is made a lot easier because the calling code already sets | 
 |   // up actual and expected registers according to the contract if values are | 
 |   // passed in registers. | 
 |   DCHECK(actual.is_immediate() || actual.reg().is(a0)); | 
 |   DCHECK(expected.is_immediate() || expected.reg().is(a2)); | 
 |   DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3)); | 
 |  | 
 |   if (expected.is_immediate()) { | 
 |     DCHECK(actual.is_immediate()); | 
 |     if (expected.immediate() == actual.immediate()) { | 
 |       definitely_matches = true; | 
 |     } else { | 
 |       li(a0, Operand(actual.immediate())); | 
 |       const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; | 
 |       if (expected.immediate() == sentinel) { | 
 |         // Don't worry about adapting arguments for builtins that | 
 |         // don't want that done. Skip adaption code by making it look | 
 |         // like we have a match between expected and actual number of | 
 |         // arguments. | 
 |         definitely_matches = true; | 
 |       } else { | 
 |         *definitely_mismatches = true; | 
 |         li(a2, Operand(expected.immediate())); | 
 |       } | 
 |     } | 
 |   } else if (actual.is_immediate()) { | 
 |     Branch(®ular_invoke, eq, expected.reg(), Operand(actual.immediate())); | 
 |     li(a0, Operand(actual.immediate())); | 
 |   } else { | 
 |     Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); | 
 |   } | 
 |  | 
 |   if (!definitely_matches) { | 
 |     if (!code_constant.is_null()) { | 
 |       li(a3, Operand(code_constant)); | 
 |       addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); | 
 |     } | 
 |  | 
 |     Handle<Code> adaptor = | 
 |         isolate()->builtins()->ArgumentsAdaptorTrampoline(); | 
 |     if (flag == CALL_FUNCTION) { | 
 |       call_wrapper.BeforeCall(CallSize(adaptor)); | 
 |       Call(adaptor); | 
 |       call_wrapper.AfterCall(); | 
 |       if (!*definitely_mismatches) { | 
 |         Branch(done); | 
 |       } | 
 |     } else { | 
 |       Jump(adaptor, RelocInfo::CODE_TARGET); | 
 |     } | 
 |     bind(®ular_invoke); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::InvokeCode(Register code, | 
 |                                 const ParameterCount& expected, | 
 |                                 const ParameterCount& actual, | 
 |                                 InvokeFlag flag, | 
 |                                 const CallWrapper& call_wrapper) { | 
 |   // You can't call a function without a valid frame. | 
 |   DCHECK(flag == JUMP_FUNCTION || has_frame()); | 
 |  | 
 |   Label done; | 
 |  | 
 |   bool definitely_mismatches = false; | 
 |   InvokePrologue(expected, actual, Handle<Code>::null(), code, | 
 |                  &done, &definitely_mismatches, flag, | 
 |                  call_wrapper); | 
 |   if (!definitely_mismatches) { | 
 |     if (flag == CALL_FUNCTION) { | 
 |       call_wrapper.BeforeCall(CallSize(code)); | 
 |       Call(code); | 
 |       call_wrapper.AfterCall(); | 
 |     } else { | 
 |       DCHECK(flag == JUMP_FUNCTION); | 
 |       Jump(code); | 
 |     } | 
 |     // Continue here if InvokePrologue does handle the invocation due to | 
 |     // mismatched parameter counts. | 
 |     bind(&done); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::InvokeFunction(Register function, | 
 |                                     const ParameterCount& actual, | 
 |                                     InvokeFlag flag, | 
 |                                     const CallWrapper& call_wrapper) { | 
 |   // You can't call a function without a valid frame. | 
 |   DCHECK(flag == JUMP_FUNCTION || has_frame()); | 
 |  | 
 |   // Contract with called JS functions requires that function is passed in a1. | 
 |   DCHECK(function.is(a1)); | 
 |   Register expected_reg = a2; | 
 |   Register code_reg = a3; | 
 |  | 
 |   lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); | 
 |   lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); | 
 |   lw(expected_reg, | 
 |       FieldMemOperand(code_reg, | 
 |                       SharedFunctionInfo::kFormalParameterCountOffset)); | 
 |   sra(expected_reg, expected_reg, kSmiTagSize); | 
 |   lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); | 
 |  | 
 |   ParameterCount expected(expected_reg); | 
 |   InvokeCode(code_reg, expected, actual, flag, call_wrapper); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::InvokeFunction(Register function, | 
 |                                     const ParameterCount& expected, | 
 |                                     const ParameterCount& actual, | 
 |                                     InvokeFlag flag, | 
 |                                     const CallWrapper& call_wrapper) { | 
 |   // You can't call a function without a valid frame. | 
 |   DCHECK(flag == JUMP_FUNCTION || has_frame()); | 
 |  | 
 |   // Contract with called JS functions requires that function is passed in a1. | 
 |   DCHECK(function.is(a1)); | 
 |  | 
 |   // Get the function and setup the context. | 
 |   lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); | 
 |  | 
 |   // We call indirectly through the code field in the function to | 
 |   // allow recompilation to take effect without changing any of the | 
 |   // call sites. | 
 |   lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); | 
 |   InvokeCode(a3, expected, actual, flag, call_wrapper); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::InvokeFunction(Handle<JSFunction> function, | 
 |                                     const ParameterCount& expected, | 
 |                                     const ParameterCount& actual, | 
 |                                     InvokeFlag flag, | 
 |                                     const CallWrapper& call_wrapper) { | 
 |   li(a1, function); | 
 |   InvokeFunction(a1, expected, actual, flag, call_wrapper); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::IsObjectJSObjectType(Register heap_object, | 
 |                                           Register map, | 
 |                                           Register scratch, | 
 |                                           Label* fail) { | 
 |   lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); | 
 |   IsInstanceJSObjectType(map, scratch, fail); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::IsInstanceJSObjectType(Register map, | 
 |                                             Register scratch, | 
 |                                             Label* fail) { | 
 |   lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); | 
 |   Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); | 
 |   Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::IsObjectJSStringType(Register object, | 
 |                                           Register scratch, | 
 |                                           Label* fail) { | 
 |   DCHECK(kNotStringTag != 0); | 
 |  | 
 |   lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); | 
 |   And(scratch, scratch, Operand(kIsNotStringMask)); | 
 |   Branch(fail, ne, scratch, Operand(zero_reg)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::IsObjectNameType(Register object, | 
 |                                       Register scratch, | 
 |                                       Label* fail) { | 
 |   lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); | 
 |   Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE)); | 
 | } | 
 |  | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 | // Support functions. | 
 |  | 
 |  | 
 | void MacroAssembler::TryGetFunctionPrototype(Register function, | 
 |                                              Register result, | 
 |                                              Register scratch, | 
 |                                              Label* miss, | 
 |                                              bool miss_on_bound_function) { | 
 |   Label non_instance; | 
 |   if (miss_on_bound_function) { | 
 |     // Check that the receiver isn't a smi. | 
 |     JumpIfSmi(function, miss); | 
 |  | 
 |     // Check that the function really is a function.  Load map into result reg. | 
 |     GetObjectType(function, result, scratch); | 
 |     Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); | 
 |  | 
 |     lw(scratch, | 
 |        FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); | 
 |     lw(scratch, | 
 |        FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); | 
 |     And(scratch, scratch, | 
 |         Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction))); | 
 |     Branch(miss, ne, scratch, Operand(zero_reg)); | 
 |  | 
 |     // Make sure that the function has an instance prototype. | 
 |     lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); | 
 |     And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); | 
 |     Branch(&non_instance, ne, scratch, Operand(zero_reg)); | 
 |   } | 
 |  | 
 |   // Get the prototype or initial map from the function. | 
 |   lw(result, | 
 |      FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); | 
 |  | 
 |   // If the prototype or initial map is the hole, don't return it and | 
 |   // simply miss the cache instead. This will allow us to allocate a | 
 |   // prototype object on-demand in the runtime system. | 
 |   LoadRoot(t8, Heap::kTheHoleValueRootIndex); | 
 |   Branch(miss, eq, result, Operand(t8)); | 
 |  | 
 |   // If the function does not have an initial map, we're done. | 
 |   Label done; | 
 |   GetObjectType(result, scratch, scratch); | 
 |   Branch(&done, ne, scratch, Operand(MAP_TYPE)); | 
 |  | 
 |   // Get the prototype from the initial map. | 
 |   lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); | 
 |  | 
 |   if (miss_on_bound_function) { | 
 |     jmp(&done); | 
 |  | 
 |     // Non-instance prototype: Fetch prototype from constructor field | 
 |     // in initial map. | 
 |     bind(&non_instance); | 
 |     lw(result, FieldMemOperand(result, Map::kConstructorOffset)); | 
 |   } | 
 |  | 
 |   // All done. | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::GetObjectType(Register object, | 
 |                                    Register map, | 
 |                                    Register type_reg) { | 
 |   lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |   lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Runtime calls. | 
 |  | 
 | void MacroAssembler::CallStub(CodeStub* stub, | 
 |                               TypeFeedbackId ast_id, | 
 |                               Condition cond, | 
 |                               Register r1, | 
 |                               const Operand& r2, | 
 |                               BranchDelaySlot bd) { | 
 |   DCHECK(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs. | 
 |   Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, | 
 |        cond, r1, r2, bd); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TailCallStub(CodeStub* stub, | 
 |                                   Condition cond, | 
 |                                   Register r1, | 
 |                                   const Operand& r2, | 
 |                                   BranchDelaySlot bd) { | 
 |   Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd); | 
 | } | 
 |  | 
 |  | 
 | static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { | 
 |   return ref0.address() - ref1.address(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CallApiFunctionAndReturn( | 
 |     Register function_address, | 
 |     ExternalReference thunk_ref, | 
 |     int stack_space, | 
 |     MemOperand return_value_operand, | 
 |     MemOperand* context_restore_operand) { | 
 |   ExternalReference next_address = | 
 |       ExternalReference::handle_scope_next_address(isolate()); | 
 |   const int kNextOffset = 0; | 
 |   const int kLimitOffset = AddressOffset( | 
 |       ExternalReference::handle_scope_limit_address(isolate()), | 
 |       next_address); | 
 |   const int kLevelOffset = AddressOffset( | 
 |       ExternalReference::handle_scope_level_address(isolate()), | 
 |       next_address); | 
 |  | 
 |   DCHECK(function_address.is(a1) || function_address.is(a2)); | 
 |  | 
 |   Label profiler_disabled; | 
 |   Label end_profiler_check; | 
 |   li(t9, Operand(ExternalReference::is_profiling_address(isolate()))); | 
 |   lb(t9, MemOperand(t9, 0)); | 
 |   Branch(&profiler_disabled, eq, t9, Operand(zero_reg)); | 
 |  | 
 |   // Additional parameter is the address of the actual callback. | 
 |   li(t9, Operand(thunk_ref)); | 
 |   jmp(&end_profiler_check); | 
 |  | 
 |   bind(&profiler_disabled); | 
 |   mov(t9, function_address); | 
 |   bind(&end_profiler_check); | 
 |  | 
 |   // Allocate HandleScope in callee-save registers. | 
 |   li(s3, Operand(next_address)); | 
 |   lw(s0, MemOperand(s3, kNextOffset)); | 
 |   lw(s1, MemOperand(s3, kLimitOffset)); | 
 |   lw(s2, MemOperand(s3, kLevelOffset)); | 
 |   Addu(s2, s2, Operand(1)); | 
 |   sw(s2, MemOperand(s3, kLevelOffset)); | 
 |  | 
 |   if (FLAG_log_timer_events) { | 
 |     FrameScope frame(this, StackFrame::MANUAL); | 
 |     PushSafepointRegisters(); | 
 |     PrepareCallCFunction(1, a0); | 
 |     li(a0, Operand(ExternalReference::isolate_address(isolate()))); | 
 |     CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); | 
 |     PopSafepointRegisters(); | 
 |   } | 
 |  | 
 |   // Native call returns to the DirectCEntry stub which redirects to the | 
 |   // return address pushed on stack (could have moved after GC). | 
 |   // DirectCEntry stub itself is generated early and never moves. | 
 |   DirectCEntryStub stub(isolate()); | 
 |   stub.GenerateCall(this, t9); | 
 |  | 
 |   if (FLAG_log_timer_events) { | 
 |     FrameScope frame(this, StackFrame::MANUAL); | 
 |     PushSafepointRegisters(); | 
 |     PrepareCallCFunction(1, a0); | 
 |     li(a0, Operand(ExternalReference::isolate_address(isolate()))); | 
 |     CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); | 
 |     PopSafepointRegisters(); | 
 |   } | 
 |  | 
 |   Label promote_scheduled_exception; | 
 |   Label exception_handled; | 
 |   Label delete_allocated_handles; | 
 |   Label leave_exit_frame; | 
 |   Label return_value_loaded; | 
 |  | 
 |   // Load value from ReturnValue. | 
 |   lw(v0, return_value_operand); | 
 |   bind(&return_value_loaded); | 
 |  | 
 |   // No more valid handles (the result handle was the last one). Restore | 
 |   // previous handle scope. | 
 |   sw(s0, MemOperand(s3, kNextOffset)); | 
 |   if (emit_debug_code()) { | 
 |     lw(a1, MemOperand(s3, kLevelOffset)); | 
 |     Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2)); | 
 |   } | 
 |   Subu(s2, s2, Operand(1)); | 
 |   sw(s2, MemOperand(s3, kLevelOffset)); | 
 |   lw(at, MemOperand(s3, kLimitOffset)); | 
 |   Branch(&delete_allocated_handles, ne, s1, Operand(at)); | 
 |  | 
 |   // Check if the function scheduled an exception. | 
 |   bind(&leave_exit_frame); | 
 |   LoadRoot(t0, Heap::kTheHoleValueRootIndex); | 
 |   li(at, Operand(ExternalReference::scheduled_exception_address(isolate()))); | 
 |   lw(t1, MemOperand(at)); | 
 |   Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); | 
 |   bind(&exception_handled); | 
 |  | 
 |   bool restore_context = context_restore_operand != NULL; | 
 |   if (restore_context) { | 
 |     lw(cp, *context_restore_operand); | 
 |   } | 
 |   li(s0, Operand(stack_space)); | 
 |   LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN); | 
 |  | 
 |   bind(&promote_scheduled_exception); | 
 |   { | 
 |     FrameScope frame(this, StackFrame::INTERNAL); | 
 |     CallExternalReference( | 
 |         ExternalReference(Runtime::kPromoteScheduledException, isolate()), | 
 |         0); | 
 |   } | 
 |   jmp(&exception_handled); | 
 |  | 
 |   // HandleScope limit has changed. Delete allocated extensions. | 
 |   bind(&delete_allocated_handles); | 
 |   sw(s1, MemOperand(s3, kLimitOffset)); | 
 |   mov(s0, v0); | 
 |   mov(a0, v0); | 
 |   PrepareCallCFunction(1, s1); | 
 |   li(a0, Operand(ExternalReference::isolate_address(isolate()))); | 
 |   CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()), | 
 |       1); | 
 |   mov(v0, s0); | 
 |   jmp(&leave_exit_frame); | 
 | } | 
 |  | 
 |  | 
 | bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { | 
 |   return has_frame_ || !stub->SometimesSetsUpAFrame(); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::IndexFromHash(Register hash, Register index) { | 
 |   // If the hash field contains an array index pick it out. The assert checks | 
 |   // that the constants for the maximum number of digits for an array index | 
 |   // cached in the hash field and the number of bits reserved for it does not | 
 |   // conflict. | 
 |   DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < | 
 |          (1 << String::kArrayIndexValueBits)); | 
 |   DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::ObjectToDoubleFPURegister(Register object, | 
 |                                                FPURegister result, | 
 |                                                Register scratch1, | 
 |                                                Register scratch2, | 
 |                                                Register heap_number_map, | 
 |                                                Label* not_number, | 
 |                                                ObjectToDoubleFlags flags) { | 
 |   Label done; | 
 |   if ((flags & OBJECT_NOT_SMI) == 0) { | 
 |     Label not_smi; | 
 |     JumpIfNotSmi(object, ¬_smi); | 
 |     // Remove smi tag and convert to double. | 
 |     sra(scratch1, object, kSmiTagSize); | 
 |     mtc1(scratch1, result); | 
 |     cvt_d_w(result, result); | 
 |     Branch(&done); | 
 |     bind(¬_smi); | 
 |   } | 
 |   // Check for heap number and load double value from it. | 
 |   lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |   Branch(not_number, ne, scratch1, Operand(heap_number_map)); | 
 |  | 
 |   if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { | 
 |     // If exponent is all ones the number is either a NaN or +/-Infinity. | 
 |     Register exponent = scratch1; | 
 |     Register mask_reg = scratch2; | 
 |     lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); | 
 |     li(mask_reg, HeapNumber::kExponentMask); | 
 |  | 
 |     And(exponent, exponent, mask_reg); | 
 |     Branch(not_number, eq, exponent, Operand(mask_reg)); | 
 |   } | 
 |   ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::SmiToDoubleFPURegister(Register smi, | 
 |                                             FPURegister value, | 
 |                                             Register scratch1) { | 
 |   sra(scratch1, smi, kSmiTagSize); | 
 |   mtc1(scratch1, value); | 
 |   cvt_d_w(value, value); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AdduAndCheckForOverflow(Register dst, Register left, | 
 |                                              const Operand& right, | 
 |                                              Register overflow_dst, | 
 |                                              Register scratch) { | 
 |   if (right.is_reg()) { | 
 |     AdduAndCheckForOverflow(dst, left, right.rm(), overflow_dst, scratch); | 
 |   } else { | 
 |     if (dst.is(left)) { | 
 |       mov(scratch, left);                   // Preserve left. | 
 |       addiu(dst, left, right.immediate());  // Left is overwritten. | 
 |       xor_(scratch, dst, scratch);          // Original left. | 
 |       // Load right since xori takes uint16 as immediate. | 
 |       addiu(t9, zero_reg, right.immediate()); | 
 |       xor_(overflow_dst, dst, t9); | 
 |       and_(overflow_dst, overflow_dst, scratch); | 
 |     } else { | 
 |       addiu(dst, left, right.immediate()); | 
 |       xor_(overflow_dst, dst, left); | 
 |       // Load right since xori takes uint16 as immediate. | 
 |       addiu(t9, zero_reg, right.immediate()); | 
 |       xor_(scratch, dst, t9); | 
 |       and_(overflow_dst, scratch, overflow_dst); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AdduAndCheckForOverflow(Register dst, Register left, | 
 |                                              Register right, | 
 |                                              Register overflow_dst, | 
 |                                              Register scratch) { | 
 |   DCHECK(!dst.is(overflow_dst)); | 
 |   DCHECK(!dst.is(scratch)); | 
 |   DCHECK(!overflow_dst.is(scratch)); | 
 |   DCHECK(!overflow_dst.is(left)); | 
 |   DCHECK(!overflow_dst.is(right)); | 
 |  | 
 |   if (left.is(right) && dst.is(left)) { | 
 |     DCHECK(!dst.is(t9)); | 
 |     DCHECK(!scratch.is(t9)); | 
 |     DCHECK(!left.is(t9)); | 
 |     DCHECK(!right.is(t9)); | 
 |     DCHECK(!overflow_dst.is(t9)); | 
 |     mov(t9, right); | 
 |     right = t9; | 
 |   } | 
 |  | 
 |   if (dst.is(left)) { | 
 |     mov(scratch, left);  // Preserve left. | 
 |     addu(dst, left, right);  // Left is overwritten. | 
 |     xor_(scratch, dst, scratch);  // Original left. | 
 |     xor_(overflow_dst, dst, right); | 
 |     and_(overflow_dst, overflow_dst, scratch); | 
 |   } else if (dst.is(right)) { | 
 |     mov(scratch, right);  // Preserve right. | 
 |     addu(dst, left, right);  // Right is overwritten. | 
 |     xor_(scratch, dst, scratch);  // Original right. | 
 |     xor_(overflow_dst, dst, left); | 
 |     and_(overflow_dst, overflow_dst, scratch); | 
 |   } else { | 
 |     addu(dst, left, right); | 
 |     xor_(overflow_dst, dst, left); | 
 |     xor_(scratch, dst, right); | 
 |     and_(overflow_dst, scratch, overflow_dst); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::SubuAndCheckForOverflow(Register dst, Register left, | 
 |                                              const Operand& right, | 
 |                                              Register overflow_dst, | 
 |                                              Register scratch) { | 
 |   if (right.is_reg()) { | 
 |     SubuAndCheckForOverflow(dst, left, right.rm(), overflow_dst, scratch); | 
 |   } else { | 
 |     if (dst.is(left)) { | 
 |       mov(scratch, left);                      // Preserve left. | 
 |       addiu(dst, left, -(right.immediate()));  // Left is overwritten. | 
 |       xor_(overflow_dst, dst, scratch);        // scratch is original left. | 
 |       // Load right since xori takes uint16 as immediate. | 
 |       addiu(t9, zero_reg, right.immediate()); | 
 |       xor_(scratch, scratch, t9);  // scratch is original left. | 
 |       and_(overflow_dst, scratch, overflow_dst); | 
 |     } else { | 
 |       addiu(dst, left, -(right.immediate())); | 
 |       xor_(overflow_dst, dst, left); | 
 |       // Load right since xori takes uint16 as immediate. | 
 |       addiu(t9, zero_reg, right.immediate()); | 
 |       xor_(scratch, left, t9); | 
 |       and_(overflow_dst, scratch, overflow_dst); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::SubuAndCheckForOverflow(Register dst, Register left, | 
 |                                              Register right, | 
 |                                              Register overflow_dst, | 
 |                                              Register scratch) { | 
 |   DCHECK(!dst.is(overflow_dst)); | 
 |   DCHECK(!dst.is(scratch)); | 
 |   DCHECK(!overflow_dst.is(scratch)); | 
 |   DCHECK(!overflow_dst.is(left)); | 
 |   DCHECK(!overflow_dst.is(right)); | 
 |   DCHECK(!scratch.is(left)); | 
 |   DCHECK(!scratch.is(right)); | 
 |  | 
 |   // This happens with some crankshaft code. Since Subu works fine if | 
 |   // left == right, let's not make that restriction here. | 
 |   if (left.is(right)) { | 
 |     mov(dst, zero_reg); | 
 |     mov(overflow_dst, zero_reg); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (dst.is(left)) { | 
 |     mov(scratch, left);  // Preserve left. | 
 |     subu(dst, left, right);  // Left is overwritten. | 
 |     xor_(overflow_dst, dst, scratch);  // scratch is original left. | 
 |     xor_(scratch, scratch, right);  // scratch is original left. | 
 |     and_(overflow_dst, scratch, overflow_dst); | 
 |   } else if (dst.is(right)) { | 
 |     mov(scratch, right);  // Preserve right. | 
 |     subu(dst, left, right);  // Right is overwritten. | 
 |     xor_(overflow_dst, dst, left); | 
 |     xor_(scratch, left, scratch);  // Original right. | 
 |     and_(overflow_dst, scratch, overflow_dst); | 
 |   } else { | 
 |     subu(dst, left, right); | 
 |     xor_(overflow_dst, dst, left); | 
 |     xor_(scratch, left, right); | 
 |     and_(overflow_dst, scratch, overflow_dst); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CallRuntime(const Runtime::Function* f, | 
 |                                  int num_arguments, | 
 |                                  SaveFPRegsMode save_doubles) { | 
 |   // All parameters are on the stack. v0 has the return value after call. | 
 |  | 
 |   // If the expected number of arguments of the runtime function is | 
 |   // constant, we check that the actual number of arguments match the | 
 |   // expectation. | 
 |   CHECK(f->nargs < 0 || f->nargs == num_arguments); | 
 |  | 
 |   // TODO(1236192): Most runtime routines don't need the number of | 
 |   // arguments passed in because it is constant. At some point we | 
 |   // should remove this need and make the runtime routine entry code | 
 |   // smarter. | 
 |   PrepareCEntryArgs(num_arguments); | 
 |   PrepareCEntryFunction(ExternalReference(f, isolate())); | 
 |   CEntryStub stub(isolate(), 1, save_doubles); | 
 |   CallStub(&stub); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CallExternalReference(const ExternalReference& ext, | 
 |                                            int num_arguments, | 
 |                                            BranchDelaySlot bd) { | 
 |   PrepareCEntryArgs(num_arguments); | 
 |   PrepareCEntryFunction(ext); | 
 |  | 
 |   CEntryStub stub(isolate(), 1); | 
 |   CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, | 
 |                                                int num_arguments, | 
 |                                                int result_size) { | 
 |   // TODO(1236192): Most runtime routines don't need the number of | 
 |   // arguments passed in because it is constant. At some point we | 
 |   // should remove this need and make the runtime routine entry code | 
 |   // smarter. | 
 |   PrepareCEntryArgs(num_arguments); | 
 |   JumpToExternalReference(ext); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, | 
 |                                      int num_arguments, | 
 |                                      int result_size) { | 
 |   TailCallExternalReference(ExternalReference(fid, isolate()), | 
 |                             num_arguments, | 
 |                             result_size); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, | 
 |                                              BranchDelaySlot bd) { | 
 |   PrepareCEntryFunction(builtin); | 
 |   CEntryStub stub(isolate(), 1); | 
 |   Jump(stub.GetCode(), | 
 |        RelocInfo::CODE_TARGET, | 
 |        al, | 
 |        zero_reg, | 
 |        Operand(zero_reg), | 
 |        bd); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, | 
 |                                    InvokeFlag flag, | 
 |                                    const CallWrapper& call_wrapper) { | 
 |   // You can't call a builtin without a valid frame. | 
 |   DCHECK(flag == JUMP_FUNCTION || has_frame()); | 
 |  | 
 |   GetBuiltinEntry(t9, id); | 
 |   if (flag == CALL_FUNCTION) { | 
 |     call_wrapper.BeforeCall(CallSize(t9)); | 
 |     Call(t9); | 
 |     call_wrapper.AfterCall(); | 
 |   } else { | 
 |     DCHECK(flag == JUMP_FUNCTION); | 
 |     Jump(t9); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::GetBuiltinFunction(Register target, | 
 |                                         Builtins::JavaScript id) { | 
 |   // Load the builtins object into target register. | 
 |   lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); | 
 |   lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); | 
 |   // Load the JavaScript builtin function from the builtins object. | 
 |   lw(target, FieldMemOperand(target, | 
 |                           JSBuiltinsObject::OffsetOfFunctionWithId(id))); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { | 
 |   DCHECK(!target.is(a1)); | 
 |   GetBuiltinFunction(a1, id); | 
 |   // Load the code entry point from the builtins object. | 
 |   lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::SetCounter(StatsCounter* counter, int value, | 
 |                                 Register scratch1, Register scratch2) { | 
 |   if (FLAG_native_code_counters && counter->Enabled()) { | 
 |     li(scratch1, Operand(value)); | 
 |     li(scratch2, Operand(ExternalReference(counter))); | 
 |     sw(scratch1, MemOperand(scratch2)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, | 
 |                                       Register scratch1, Register scratch2) { | 
 |   DCHECK(value > 0); | 
 |   if (FLAG_native_code_counters && counter->Enabled()) { | 
 |     li(scratch2, Operand(ExternalReference(counter))); | 
 |     lw(scratch1, MemOperand(scratch2)); | 
 |     Addu(scratch1, scratch1, Operand(value)); | 
 |     sw(scratch1, MemOperand(scratch2)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, | 
 |                                       Register scratch1, Register scratch2) { | 
 |   DCHECK(value > 0); | 
 |   if (FLAG_native_code_counters && counter->Enabled()) { | 
 |     li(scratch2, Operand(ExternalReference(counter))); | 
 |     lw(scratch1, MemOperand(scratch2)); | 
 |     Subu(scratch1, scratch1, Operand(value)); | 
 |     sw(scratch1, MemOperand(scratch2)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Debugging. | 
 |  | 
 | void MacroAssembler::Assert(Condition cc, BailoutReason reason, | 
 |                             Register rs, Operand rt) { | 
 |   if (emit_debug_code()) | 
 |     Check(cc, reason, rs, rt); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AssertFastElements(Register elements) { | 
 |   if (emit_debug_code()) { | 
 |     DCHECK(!elements.is(at)); | 
 |     Label ok; | 
 |     push(elements); | 
 |     lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); | 
 |     LoadRoot(at, Heap::kFixedArrayMapRootIndex); | 
 |     Branch(&ok, eq, elements, Operand(at)); | 
 |     LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); | 
 |     Branch(&ok, eq, elements, Operand(at)); | 
 |     LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); | 
 |     Branch(&ok, eq, elements, Operand(at)); | 
 |     Abort(kJSObjectWithFastElementsMapHasSlowElements); | 
 |     bind(&ok); | 
 |     pop(elements); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Check(Condition cc, BailoutReason reason, | 
 |                            Register rs, Operand rt) { | 
 |   Label L; | 
 |   Branch(&L, cc, rs, rt); | 
 |   Abort(reason); | 
 |   // Will not return here. | 
 |   bind(&L); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Abort(BailoutReason reason) { | 
 |   Label abort_start; | 
 |   bind(&abort_start); | 
 | #ifdef DEBUG | 
 |   const char* msg = GetBailoutReason(reason); | 
 |   if (msg != NULL) { | 
 |     RecordComment("Abort message: "); | 
 |     RecordComment(msg); | 
 |   } | 
 |  | 
 |   if (FLAG_trap_on_abort) { | 
 |     stop(msg); | 
 |     return; | 
 |   } | 
 | #endif | 
 |  | 
 |   li(a0, Operand(Smi::FromInt(reason))); | 
 |   push(a0); | 
 |   // Disable stub call restrictions to always allow calls to abort. | 
 |   if (!has_frame_) { | 
 |     // We don't actually want to generate a pile of code for this, so just | 
 |     // claim there is a stack frame, without generating one. | 
 |     FrameScope scope(this, StackFrame::NONE); | 
 |     CallRuntime(Runtime::kAbort, 1); | 
 |   } else { | 
 |     CallRuntime(Runtime::kAbort, 1); | 
 |   } | 
 |   // Will not return here. | 
 |   if (is_trampoline_pool_blocked()) { | 
 |     // If the calling code cares about the exact number of | 
 |     // instructions generated, we insert padding here to keep the size | 
 |     // of the Abort macro constant. | 
 |     // Currently in debug mode with debug_code enabled the number of | 
 |     // generated instructions is 10, so we use this as a maximum value. | 
 |     static const int kExpectedAbortInstructions = 10; | 
 |     int abort_instructions = InstructionsGeneratedSince(&abort_start); | 
 |     DCHECK(abort_instructions <= kExpectedAbortInstructions); | 
 |     while (abort_instructions++ < kExpectedAbortInstructions) { | 
 |       nop(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadContext(Register dst, int context_chain_length) { | 
 |   if (context_chain_length > 0) { | 
 |     // Move up the chain of contexts to the context containing the slot. | 
 |     lw(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); | 
 |     for (int i = 1; i < context_chain_length; i++) { | 
 |       lw(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); | 
 |     } | 
 |   } else { | 
 |     // Slot is in the current function context.  Move it into the | 
 |     // destination register in case we store into it (the write barrier | 
 |     // cannot be allowed to destroy the context in esi). | 
 |     Move(dst, cp); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadTransitionedArrayMapConditional( | 
 |     ElementsKind expected_kind, | 
 |     ElementsKind transitioned_kind, | 
 |     Register map_in_out, | 
 |     Register scratch, | 
 |     Label* no_map_match) { | 
 |   // Load the global or builtins object from the current context. | 
 |   lw(scratch, | 
 |      MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); | 
 |   lw(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); | 
 |  | 
 |   // Check that the function's map is the same as the expected cached map. | 
 |   lw(scratch, | 
 |      MemOperand(scratch, | 
 |                 Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX))); | 
 |   size_t offset = expected_kind * kPointerSize + | 
 |       FixedArrayBase::kHeaderSize; | 
 |   lw(at, FieldMemOperand(scratch, offset)); | 
 |   Branch(no_map_match, ne, map_in_out, Operand(at)); | 
 |  | 
 |   // Use the transitioned cached map. | 
 |   offset = transitioned_kind * kPointerSize + | 
 |       FixedArrayBase::kHeaderSize; | 
 |   lw(map_in_out, FieldMemOperand(scratch, offset)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadGlobalFunction(int index, Register function) { | 
 |   // Load the global or builtins object from the current context. | 
 |   lw(function, | 
 |      MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); | 
 |   // Load the native context from the global or builtins object. | 
 |   lw(function, FieldMemOperand(function, | 
 |                                GlobalObject::kNativeContextOffset)); | 
 |   // Load the function from the native context. | 
 |   lw(function, MemOperand(function, Context::SlotOffset(index))); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, | 
 |                                                   Register map, | 
 |                                                   Register scratch) { | 
 |   // Load the initial map. The global functions all have initial maps. | 
 |   lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); | 
 |   if (emit_debug_code()) { | 
 |     Label ok, fail; | 
 |     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); | 
 |     Branch(&ok); | 
 |     bind(&fail); | 
 |     Abort(kGlobalFunctionsMustHaveInitialMap); | 
 |     bind(&ok); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::StubPrologue() { | 
 |     Push(ra, fp, cp); | 
 |     Push(Smi::FromInt(StackFrame::STUB)); | 
 |     // Adjust FP to point to saved FP. | 
 |     Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::Prologue(bool code_pre_aging) { | 
 |   PredictableCodeSizeScope predictible_code_size_scope( | 
 |       this, kNoCodeAgeSequenceLength); | 
 |   // The following three instructions must remain together and unmodified | 
 |   // for code aging to work properly. | 
 |   if (code_pre_aging) { | 
 |     // Pre-age the code. | 
 |     Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); | 
 |     nop(Assembler::CODE_AGE_MARKER_NOP); | 
 |     // Load the stub address to t9 and call it, | 
 |     // GetCodeAgeAndParity() extracts the stub address from this instruction. | 
 |     li(t9, | 
 |        Operand(reinterpret_cast<uint32_t>(stub->instruction_start())), | 
 |        CONSTANT_SIZE); | 
 |     nop();  // Prevent jalr to jal optimization. | 
 |     jalr(t9, a0); | 
 |     nop();  // Branch delay slot nop. | 
 |     nop();  // Pad the empty space. | 
 |   } else { | 
 |     Push(ra, fp, cp, a1); | 
 |     nop(Assembler::CODE_AGE_SEQUENCE_NOP); | 
 |     // Adjust fp to point to caller's fp. | 
 |     Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::EnterFrame(StackFrame::Type type) { | 
 |   addiu(sp, sp, -5 * kPointerSize); | 
 |   li(t8, Operand(Smi::FromInt(type))); | 
 |   li(t9, Operand(CodeObject()), CONSTANT_SIZE); | 
 |   sw(ra, MemOperand(sp, 4 * kPointerSize)); | 
 |   sw(fp, MemOperand(sp, 3 * kPointerSize)); | 
 |   sw(cp, MemOperand(sp, 2 * kPointerSize)); | 
 |   sw(t8, MemOperand(sp, 1 * kPointerSize)); | 
 |   sw(t9, MemOperand(sp, 0 * kPointerSize)); | 
 |   // Adjust FP to point to saved FP. | 
 |   Addu(fp, sp, | 
 |        Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LeaveFrame(StackFrame::Type type) { | 
 |   mov(sp, fp); | 
 |   lw(fp, MemOperand(sp, 0 * kPointerSize)); | 
 |   lw(ra, MemOperand(sp, 1 * kPointerSize)); | 
 |   addiu(sp, sp, 2 * kPointerSize); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::EnterExitFrame(bool save_doubles, | 
 |                                     int stack_space) { | 
 |   // Set up the frame structure on the stack. | 
 |   STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); | 
 |   STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); | 
 |   STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); | 
 |  | 
 |   // This is how the stack will look: | 
 |   // fp + 2 (==kCallerSPDisplacement) - old stack's end | 
 |   // [fp + 1 (==kCallerPCOffset)] - saved old ra | 
 |   // [fp + 0 (==kCallerFPOffset)] - saved old fp | 
 |   // [fp - 1 (==kSPOffset)] - sp of the called function | 
 |   // [fp - 2 (==kCodeOffset)] - CodeObject | 
 |   // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the | 
 |   //   new stack (will contain saved ra) | 
 |  | 
 |   // Save registers. | 
 |   addiu(sp, sp, -4 * kPointerSize); | 
 |   sw(ra, MemOperand(sp, 3 * kPointerSize)); | 
 |   sw(fp, MemOperand(sp, 2 * kPointerSize)); | 
 |   addiu(fp, sp, 2 * kPointerSize);  // Set up new frame pointer. | 
 |  | 
 |   if (emit_debug_code()) { | 
 |     sw(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); | 
 |   } | 
 |  | 
 |   // Accessed from ExitFrame::code_slot. | 
 |   li(t8, Operand(CodeObject()), CONSTANT_SIZE); | 
 |   sw(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); | 
 |  | 
 |   // Save the frame pointer and the context in top. | 
 |   li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); | 
 |   sw(fp, MemOperand(t8)); | 
 |   li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); | 
 |   sw(cp, MemOperand(t8)); | 
 |  | 
 |   const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); | 
 |   if (save_doubles) { | 
 |     // The stack  must be allign to 0 modulo 8 for stores with sdc1. | 
 |     DCHECK(kDoubleSize == frame_alignment); | 
 |     if (frame_alignment > 0) { | 
 |       DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); | 
 |       And(sp, sp, Operand(-frame_alignment));  // Align stack. | 
 |     } | 
 |     int space = FPURegister::kMaxNumRegisters * kDoubleSize; | 
 |     Subu(sp, sp, Operand(space)); | 
 |     // Remember: we only need to save every 2nd double FPU value. | 
 |     for (int i = 0; i < FPURegister::kMaxNumRegisters; i+=2) { | 
 |       FPURegister reg = FPURegister::from_code(i); | 
 |       sdc1(reg, MemOperand(sp, i * kDoubleSize)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Reserve place for the return address, stack space and an optional slot | 
 |   // (used by the DirectCEntryStub to hold the return value if a struct is | 
 |   // returned) and align the frame preparing for calling the runtime function. | 
 |   DCHECK(stack_space >= 0); | 
 |   Subu(sp, sp, Operand((stack_space + 2) * kPointerSize)); | 
 |   if (frame_alignment > 0) { | 
 |     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); | 
 |     And(sp, sp, Operand(-frame_alignment));  // Align stack. | 
 |   } | 
 |  | 
 |   // Set the exit frame sp value to point just before the return address | 
 |   // location. | 
 |   addiu(at, sp, kPointerSize); | 
 |   sw(at, MemOperand(fp, ExitFrameConstants::kSPOffset)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LeaveExitFrame(bool save_doubles, | 
 |                                     Register argument_count, | 
 |                                     bool restore_context, | 
 |                                     bool do_return) { | 
 |   // Optionally restore all double registers. | 
 |   if (save_doubles) { | 
 |     // Remember: we only need to restore every 2nd double FPU value. | 
 |     lw(t8, MemOperand(fp, ExitFrameConstants::kSPOffset)); | 
 |     for (int i = 0; i < FPURegister::kMaxNumRegisters; i+=2) { | 
 |       FPURegister reg = FPURegister::from_code(i); | 
 |       ldc1(reg, MemOperand(t8, i  * kDoubleSize + kPointerSize)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Clear top frame. | 
 |   li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); | 
 |   sw(zero_reg, MemOperand(t8)); | 
 |  | 
 |   // Restore current context from top and clear it in debug mode. | 
 |   if (restore_context) { | 
 |     li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); | 
 |     lw(cp, MemOperand(t8)); | 
 |   } | 
 | #ifdef DEBUG | 
 |   li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); | 
 |   sw(a3, MemOperand(t8)); | 
 | #endif | 
 |  | 
 |   // Pop the arguments, restore registers, and return. | 
 |   mov(sp, fp);  // Respect ABI stack constraint. | 
 |   lw(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); | 
 |   lw(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); | 
 |  | 
 |   if (argument_count.is_valid()) { | 
 |     sll(t8, argument_count, kPointerSizeLog2); | 
 |     addu(sp, sp, t8); | 
 |   } | 
 |  | 
 |   if (do_return) { | 
 |     Ret(USE_DELAY_SLOT); | 
 |     // If returning, the instruction in the delay slot will be the addiu below. | 
 |   } | 
 |   addiu(sp, sp, 8); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::InitializeNewString(Register string, | 
 |                                          Register length, | 
 |                                          Heap::RootListIndex map_index, | 
 |                                          Register scratch1, | 
 |                                          Register scratch2) { | 
 |   sll(scratch1, length, kSmiTagSize); | 
 |   LoadRoot(scratch2, map_index); | 
 |   sw(scratch1, FieldMemOperand(string, String::kLengthOffset)); | 
 |   li(scratch1, Operand(String::kEmptyHashField)); | 
 |   sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); | 
 |   sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); | 
 | } | 
 |  | 
 |  | 
 | int MacroAssembler::ActivationFrameAlignment() { | 
 | #if V8_HOST_ARCH_MIPS | 
 |   // Running on the real platform. Use the alignment as mandated by the local | 
 |   // environment. | 
 |   // Note: This will break if we ever start generating snapshots on one Mips | 
 |   // platform for another Mips platform with a different alignment. | 
 |   return base::OS::ActivationFrameAlignment(); | 
 | #else  // V8_HOST_ARCH_MIPS | 
 |   // If we are using the simulator then we should always align to the expected | 
 |   // alignment. As the simulator is used to generate snapshots we do not know | 
 |   // if the target platform will need alignment, so this is controlled from a | 
 |   // flag. | 
 |   return FLAG_sim_stack_alignment; | 
 | #endif  // V8_HOST_ARCH_MIPS | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AssertStackIsAligned() { | 
 |   if (emit_debug_code()) { | 
 |       const int frame_alignment = ActivationFrameAlignment(); | 
 |       const int frame_alignment_mask = frame_alignment - 1; | 
 |  | 
 |       if (frame_alignment > kPointerSize) { | 
 |         Label alignment_as_expected; | 
 |         DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); | 
 |         andi(at, sp, frame_alignment_mask); | 
 |         Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); | 
 |         // Don't use Check here, as it will call Runtime_Abort re-entering here. | 
 |         stop("Unexpected stack alignment"); | 
 |         bind(&alignment_as_expected); | 
 |       } | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfNotPowerOfTwoOrZero( | 
 |     Register reg, | 
 |     Register scratch, | 
 |     Label* not_power_of_two_or_zero) { | 
 |   Subu(scratch, reg, Operand(1)); | 
 |   Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, | 
 |          scratch, Operand(zero_reg)); | 
 |   and_(at, scratch, reg);  // In the delay slot. | 
 |   Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { | 
 |   DCHECK(!reg.is(overflow)); | 
 |   mov(overflow, reg);  // Save original value. | 
 |   SmiTag(reg); | 
 |   xor_(overflow, overflow, reg);  // Overflow if (value ^ 2 * value) < 0. | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::SmiTagCheckOverflow(Register dst, | 
 |                                          Register src, | 
 |                                          Register overflow) { | 
 |   if (dst.is(src)) { | 
 |     // Fall back to slower case. | 
 |     SmiTagCheckOverflow(dst, overflow); | 
 |   } else { | 
 |     DCHECK(!dst.is(src)); | 
 |     DCHECK(!dst.is(overflow)); | 
 |     DCHECK(!src.is(overflow)); | 
 |     SmiTag(dst, src); | 
 |     xor_(overflow, dst, src);  // Overflow if (value ^ 2 * value) < 0. | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::UntagAndJumpIfSmi(Register dst, | 
 |                                        Register src, | 
 |                                        Label* smi_case) { | 
 |   JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT); | 
 |   SmiUntag(dst, src); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, | 
 |                                           Register src, | 
 |                                           Label* non_smi_case) { | 
 |   JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT); | 
 |   SmiUntag(dst, src); | 
 | } | 
 |  | 
 | void MacroAssembler::JumpIfSmi(Register value, | 
 |                                Label* smi_label, | 
 |                                Register scratch, | 
 |                                BranchDelaySlot bd) { | 
 |   DCHECK_EQ(0, kSmiTag); | 
 |   andi(scratch, value, kSmiTagMask); | 
 |   Branch(bd, smi_label, eq, scratch, Operand(zero_reg)); | 
 | } | 
 |  | 
 | void MacroAssembler::JumpIfNotSmi(Register value, | 
 |                                   Label* not_smi_label, | 
 |                                   Register scratch, | 
 |                                   BranchDelaySlot bd) { | 
 |   DCHECK_EQ(0, kSmiTag); | 
 |   andi(scratch, value, kSmiTagMask); | 
 |   Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfNotBothSmi(Register reg1, | 
 |                                       Register reg2, | 
 |                                       Label* on_not_both_smi) { | 
 |   STATIC_ASSERT(kSmiTag == 0); | 
 |   DCHECK_EQ(1, kSmiTagMask); | 
 |   or_(at, reg1, reg2); | 
 |   JumpIfNotSmi(at, on_not_both_smi); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfEitherSmi(Register reg1, | 
 |                                      Register reg2, | 
 |                                      Label* on_either_smi) { | 
 |   STATIC_ASSERT(kSmiTag == 0); | 
 |   DCHECK_EQ(1, kSmiTagMask); | 
 |   // Both Smi tags must be 1 (not Smi). | 
 |   and_(at, reg1, reg2); | 
 |   JumpIfSmi(at, on_either_smi); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AssertNotSmi(Register object) { | 
 |   if (emit_debug_code()) { | 
 |     STATIC_ASSERT(kSmiTag == 0); | 
 |     andi(at, object, kSmiTagMask); | 
 |     Check(ne, kOperandIsASmi, at, Operand(zero_reg)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AssertSmi(Register object) { | 
 |   if (emit_debug_code()) { | 
 |     STATIC_ASSERT(kSmiTag == 0); | 
 |     andi(at, object, kSmiTagMask); | 
 |     Check(eq, kOperandIsASmi, at, Operand(zero_reg)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AssertString(Register object) { | 
 |   if (emit_debug_code()) { | 
 |     STATIC_ASSERT(kSmiTag == 0); | 
 |     SmiTst(object, t0); | 
 |     Check(ne, kOperandIsASmiAndNotAString, t0, Operand(zero_reg)); | 
 |     push(object); | 
 |     lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |     lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); | 
 |     Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE)); | 
 |     pop(object); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AssertName(Register object) { | 
 |   if (emit_debug_code()) { | 
 |     STATIC_ASSERT(kSmiTag == 0); | 
 |     SmiTst(object, t0); | 
 |     Check(ne, kOperandIsASmiAndNotAName, t0, Operand(zero_reg)); | 
 |     push(object); | 
 |     lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |     lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); | 
 |     Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE)); | 
 |     pop(object); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, | 
 |                                                      Register scratch) { | 
 |   if (emit_debug_code()) { | 
 |     Label done_checking; | 
 |     AssertNotSmi(object); | 
 |     LoadRoot(scratch, Heap::kUndefinedValueRootIndex); | 
 |     Branch(&done_checking, eq, object, Operand(scratch)); | 
 |     push(object); | 
 |     lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |     LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex); | 
 |     Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch)); | 
 |     pop(object); | 
 |     bind(&done_checking); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { | 
 |   if (emit_debug_code()) { | 
 |     DCHECK(!reg.is(at)); | 
 |     LoadRoot(at, index); | 
 |     Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfNotHeapNumber(Register object, | 
 |                                          Register heap_number_map, | 
 |                                          Register scratch, | 
 |                                          Label* on_not_heap_number) { | 
 |   lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); | 
 |   AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); | 
 |   Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LookupNumberStringCache(Register object, | 
 |                                              Register result, | 
 |                                              Register scratch1, | 
 |                                              Register scratch2, | 
 |                                              Register scratch3, | 
 |                                              Label* not_found) { | 
 |   // Use of registers. Register result is used as a temporary. | 
 |   Register number_string_cache = result; | 
 |   Register mask = scratch3; | 
 |  | 
 |   // Load the number string cache. | 
 |   LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); | 
 |  | 
 |   // Make the hash mask from the length of the number string cache. It | 
 |   // contains two elements (number and string) for each cache entry. | 
 |   lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); | 
 |   // Divide length by two (length is a smi). | 
 |   sra(mask, mask, kSmiTagSize + 1); | 
 |   Addu(mask, mask, -1);  // Make mask. | 
 |  | 
 |   // Calculate the entry in the number string cache. The hash value in the | 
 |   // number string cache for smis is just the smi value, and the hash for | 
 |   // doubles is the xor of the upper and lower words. See | 
 |   // Heap::GetNumberStringCache. | 
 |   Label is_smi; | 
 |   Label load_result_from_cache; | 
 |   JumpIfSmi(object, &is_smi); | 
 |   CheckMap(object, | 
 |            scratch1, | 
 |            Heap::kHeapNumberMapRootIndex, | 
 |            not_found, | 
 |            DONT_DO_SMI_CHECK); | 
 |  | 
 |   STATIC_ASSERT(8 == kDoubleSize); | 
 |   Addu(scratch1, | 
 |        object, | 
 |        Operand(HeapNumber::kValueOffset - kHeapObjectTag)); | 
 |   lw(scratch2, MemOperand(scratch1, kPointerSize)); | 
 |   lw(scratch1, MemOperand(scratch1, 0)); | 
 |   Xor(scratch1, scratch1, Operand(scratch2)); | 
 |   And(scratch1, scratch1, Operand(mask)); | 
 |  | 
 |   // Calculate address of entry in string cache: each entry consists | 
 |   // of two pointer sized fields. | 
 |   sll(scratch1, scratch1, kPointerSizeLog2 + 1); | 
 |   Addu(scratch1, number_string_cache, scratch1); | 
 |  | 
 |   Register probe = mask; | 
 |   lw(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); | 
 |   JumpIfSmi(probe, not_found); | 
 |   ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset)); | 
 |   ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset)); | 
 |   BranchF(&load_result_from_cache, NULL, eq, f12, f14); | 
 |   Branch(not_found); | 
 |  | 
 |   bind(&is_smi); | 
 |   Register scratch = scratch1; | 
 |   sra(scratch, object, 1);   // Shift away the tag. | 
 |   And(scratch, mask, Operand(scratch)); | 
 |  | 
 |   // Calculate address of entry in string cache: each entry consists | 
 |   // of two pointer sized fields. | 
 |   sll(scratch, scratch, kPointerSizeLog2 + 1); | 
 |   Addu(scratch, number_string_cache, scratch); | 
 |  | 
 |   // Check if the entry is the smi we are looking for. | 
 |   lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); | 
 |   Branch(not_found, ne, object, Operand(probe)); | 
 |  | 
 |   // Get the result from the cache. | 
 |   bind(&load_result_from_cache); | 
 |   lw(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); | 
 |  | 
 |   IncrementCounter(isolate()->counters()->number_to_string_native(), | 
 |                    1, | 
 |                    scratch1, | 
 |                    scratch2); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings( | 
 |     Register first, Register second, Register scratch1, Register scratch2, | 
 |     Label* failure) { | 
 |   // Test that both first and second are sequential one-byte strings. | 
 |   // Assume that they are non-smis. | 
 |   lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); | 
 |   lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); | 
 |   lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); | 
 |   lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); | 
 |  | 
 |   JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1, | 
 |                                                  scratch2, failure); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first, | 
 |                                                            Register second, | 
 |                                                            Register scratch1, | 
 |                                                            Register scratch2, | 
 |                                                            Label* failure) { | 
 |   // Check that neither is a smi. | 
 |   STATIC_ASSERT(kSmiTag == 0); | 
 |   And(scratch1, first, Operand(second)); | 
 |   JumpIfSmi(scratch1, failure); | 
 |   JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1, | 
 |                                                scratch2, failure); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( | 
 |     Register first, Register second, Register scratch1, Register scratch2, | 
 |     Label* failure) { | 
 |   const int kFlatOneByteStringMask = | 
 |       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; | 
 |   const int kFlatOneByteStringTag = | 
 |       kStringTag | kOneByteStringTag | kSeqStringTag; | 
 |   DCHECK(kFlatOneByteStringTag <= 0xffff);  // Ensure this fits 16-bit immed. | 
 |   andi(scratch1, first, kFlatOneByteStringMask); | 
 |   Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag)); | 
 |   andi(scratch2, second, kFlatOneByteStringMask); | 
 |   Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, | 
 |                                                               Register scratch, | 
 |                                                               Label* failure) { | 
 |   const int kFlatOneByteStringMask = | 
 |       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; | 
 |   const int kFlatOneByteStringTag = | 
 |       kStringTag | kOneByteStringTag | kSeqStringTag; | 
 |   And(scratch, type, Operand(kFlatOneByteStringMask)); | 
 |   Branch(failure, ne, scratch, Operand(kFlatOneByteStringTag)); | 
 | } | 
 |  | 
 |  | 
 | static const int kRegisterPassedArguments = 4; | 
 |  | 
 | int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, | 
 |                                               int num_double_arguments) { | 
 |   int stack_passed_words = 0; | 
 |   num_reg_arguments += 2 * num_double_arguments; | 
 |  | 
 |   // Up to four simple arguments are passed in registers a0..a3. | 
 |   if (num_reg_arguments > kRegisterPassedArguments) { | 
 |     stack_passed_words += num_reg_arguments - kRegisterPassedArguments; | 
 |   } | 
 |   stack_passed_words += kCArgSlotCount; | 
 |   return stack_passed_words; | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::EmitSeqStringSetCharCheck(Register string, | 
 |                                                Register index, | 
 |                                                Register value, | 
 |                                                Register scratch, | 
 |                                                uint32_t encoding_mask) { | 
 |   Label is_object; | 
 |   SmiTst(string, at); | 
 |   Check(ne, kNonObject, at, Operand(zero_reg)); | 
 |  | 
 |   lw(at, FieldMemOperand(string, HeapObject::kMapOffset)); | 
 |   lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset)); | 
 |  | 
 |   andi(at, at, kStringRepresentationMask | kStringEncodingMask); | 
 |   li(scratch, Operand(encoding_mask)); | 
 |   Check(eq, kUnexpectedStringType, at, Operand(scratch)); | 
 |  | 
 |   // The index is assumed to be untagged coming in, tag it to compare with the | 
 |   // string length without using a temp register, it is restored at the end of | 
 |   // this function. | 
 |   Label index_tag_ok, index_tag_bad; | 
 |   TrySmiTag(index, scratch, &index_tag_bad); | 
 |   Branch(&index_tag_ok); | 
 |   bind(&index_tag_bad); | 
 |   Abort(kIndexIsTooLarge); | 
 |   bind(&index_tag_ok); | 
 |  | 
 |   lw(at, FieldMemOperand(string, String::kLengthOffset)); | 
 |   Check(lt, kIndexIsTooLarge, index, Operand(at)); | 
 |  | 
 |   DCHECK(Smi::FromInt(0) == 0); | 
 |   Check(ge, kIndexIsNegative, index, Operand(zero_reg)); | 
 |  | 
 |   SmiUntag(index, index); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, | 
 |                                           int num_double_arguments, | 
 |                                           Register scratch) { | 
 |   int frame_alignment = ActivationFrameAlignment(); | 
 |  | 
 |   // Up to four simple arguments are passed in registers a0..a3. | 
 |   // Those four arguments must have reserved argument slots on the stack for | 
 |   // mips, even though those argument slots are not normally used. | 
 |   // Remaining arguments are pushed on the stack, above (higher address than) | 
 |   // the argument slots. | 
 |   int stack_passed_arguments = CalculateStackPassedWords( | 
 |       num_reg_arguments, num_double_arguments); | 
 |   if (frame_alignment > kPointerSize) { | 
 |     // Make stack end at alignment and make room for num_arguments - 4 words | 
 |     // and the original value of sp. | 
 |     mov(scratch, sp); | 
 |     Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); | 
 |     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); | 
 |     And(sp, sp, Operand(-frame_alignment)); | 
 |     sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); | 
 |   } else { | 
 |     Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, | 
 |                                           Register scratch) { | 
 |   PrepareCallCFunction(num_reg_arguments, 0, scratch); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CallCFunction(ExternalReference function, | 
 |                                    int num_reg_arguments, | 
 |                                    int num_double_arguments) { | 
 |   li(t8, Operand(function)); | 
 |   CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CallCFunction(Register function, | 
 |                                    int num_reg_arguments, | 
 |                                    int num_double_arguments) { | 
 |   CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CallCFunction(ExternalReference function, | 
 |                                    int num_arguments) { | 
 |   CallCFunction(function, num_arguments, 0); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CallCFunction(Register function, | 
 |                                    int num_arguments) { | 
 |   CallCFunction(function, num_arguments, 0); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CallCFunctionHelper(Register function, | 
 |                                          int num_reg_arguments, | 
 |                                          int num_double_arguments) { | 
 |   DCHECK(has_frame()); | 
 |   // Make sure that the stack is aligned before calling a C function unless | 
 |   // running in the simulator. The simulator has its own alignment check which | 
 |   // provides more information. | 
 |   // The argument stots are presumed to have been set up by | 
 |   // PrepareCallCFunction. The C function must be called via t9, for mips ABI. | 
 |  | 
 | #if V8_HOST_ARCH_MIPS | 
 |   if (emit_debug_code()) { | 
 |     int frame_alignment = base::OS::ActivationFrameAlignment(); | 
 |     int frame_alignment_mask = frame_alignment - 1; | 
 |     if (frame_alignment > kPointerSize) { | 
 |       DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); | 
 |       Label alignment_as_expected; | 
 |       And(at, sp, Operand(frame_alignment_mask)); | 
 |       Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); | 
 |       // Don't use Check here, as it will call Runtime_Abort possibly | 
 |       // re-entering here. | 
 |       stop("Unexpected alignment in CallCFunction"); | 
 |       bind(&alignment_as_expected); | 
 |     } | 
 |   } | 
 | #endif  // V8_HOST_ARCH_MIPS | 
 |  | 
 |   // Just call directly. The function called cannot cause a GC, or | 
 |   // allow preemption, so the return address in the link register | 
 |   // stays correct. | 
 |  | 
 |   if (!function.is(t9)) { | 
 |     mov(t9, function); | 
 |     function = t9; | 
 |   } | 
 |  | 
 |   Call(function); | 
 |  | 
 |   int stack_passed_arguments = CalculateStackPassedWords( | 
 |       num_reg_arguments, num_double_arguments); | 
 |  | 
 |   if (base::OS::ActivationFrameAlignment() > kPointerSize) { | 
 |     lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); | 
 |   } else { | 
 |     Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | #undef BRANCH_ARGS_CHECK | 
 |  | 
 |  | 
 | void MacroAssembler::PatchRelocatedValue(Register li_location, | 
 |                                          Register scratch, | 
 |                                          Register new_value) { | 
 |   lw(scratch, MemOperand(li_location)); | 
 |   // At this point scratch is a lui(at, ...) instruction. | 
 |   if (emit_debug_code()) { | 
 |     And(scratch, scratch, kOpcodeMask); | 
 |     Check(eq, kTheInstructionToPatchShouldBeALui, | 
 |         scratch, Operand(LUI)); | 
 |     lw(scratch, MemOperand(li_location)); | 
 |   } | 
 |   srl(t9, new_value, kImm16Bits); | 
 |   Ins(scratch, t9, 0, kImm16Bits); | 
 |   sw(scratch, MemOperand(li_location)); | 
 |  | 
 |   lw(scratch, MemOperand(li_location, kInstrSize)); | 
 |   // scratch is now ori(at, ...). | 
 |   if (emit_debug_code()) { | 
 |     And(scratch, scratch, kOpcodeMask); | 
 |     Check(eq, kTheInstructionToPatchShouldBeAnOri, | 
 |         scratch, Operand(ORI)); | 
 |     lw(scratch, MemOperand(li_location, kInstrSize)); | 
 |   } | 
 |   Ins(scratch, new_value, 0, kImm16Bits); | 
 |   sw(scratch, MemOperand(li_location, kInstrSize)); | 
 |  | 
 |   // Update the I-cache so the new lui and ori can be executed. | 
 |   FlushICache(li_location, 2); | 
 | } | 
 |  | 
 | void MacroAssembler::GetRelocatedValue(Register li_location, | 
 |                                        Register value, | 
 |                                        Register scratch) { | 
 |   lw(value, MemOperand(li_location)); | 
 |   if (emit_debug_code()) { | 
 |     And(value, value, kOpcodeMask); | 
 |     Check(eq, kTheInstructionShouldBeALui, | 
 |         value, Operand(LUI)); | 
 |     lw(value, MemOperand(li_location)); | 
 |   } | 
 |  | 
 |   // value now holds a lui instruction. Extract the immediate. | 
 |   sll(value, value, kImm16Bits); | 
 |  | 
 |   lw(scratch, MemOperand(li_location, kInstrSize)); | 
 |   if (emit_debug_code()) { | 
 |     And(scratch, scratch, kOpcodeMask); | 
 |     Check(eq, kTheInstructionShouldBeAnOri, | 
 |         scratch, Operand(ORI)); | 
 |     lw(scratch, MemOperand(li_location, kInstrSize)); | 
 |   } | 
 |   // "scratch" now holds an ori instruction. Extract the immediate. | 
 |   andi(scratch, scratch, kImm16Mask); | 
 |  | 
 |   // Merge the results. | 
 |   or_(value, value, scratch); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CheckPageFlag( | 
 |     Register object, | 
 |     Register scratch, | 
 |     int mask, | 
 |     Condition cc, | 
 |     Label* condition_met) { | 
 |   And(scratch, object, Operand(~Page::kPageAlignmentMask)); | 
 |   lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); | 
 |   And(scratch, scratch, Operand(mask)); | 
 |   Branch(condition_met, cc, scratch, Operand(zero_reg)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CheckMapDeprecated(Handle<Map> map, | 
 |                                         Register scratch, | 
 |                                         Label* if_deprecated) { | 
 |   if (map->CanBeDeprecated()) { | 
 |     li(scratch, Operand(map)); | 
 |     lw(scratch, FieldMemOperand(scratch, Map::kBitField3Offset)); | 
 |     And(scratch, scratch, Operand(Map::Deprecated::kMask)); | 
 |     Branch(if_deprecated, ne, scratch, Operand(zero_reg)); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfBlack(Register object, | 
 |                                  Register scratch0, | 
 |                                  Register scratch1, | 
 |                                  Label* on_black) { | 
 |   HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern. | 
 |   DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::HasColor(Register object, | 
 |                               Register bitmap_scratch, | 
 |                               Register mask_scratch, | 
 |                               Label* has_color, | 
 |                               int first_bit, | 
 |                               int second_bit) { | 
 |   DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t8)); | 
 |   DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, t9)); | 
 |  | 
 |   GetMarkBits(object, bitmap_scratch, mask_scratch); | 
 |  | 
 |   Label other_color, word_boundary; | 
 |   lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); | 
 |   And(t8, t9, Operand(mask_scratch)); | 
 |   Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg)); | 
 |   // Shift left 1 by adding. | 
 |   Addu(mask_scratch, mask_scratch, Operand(mask_scratch)); | 
 |   Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg)); | 
 |   And(t8, t9, Operand(mask_scratch)); | 
 |   Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg)); | 
 |   jmp(&other_color); | 
 |  | 
 |   bind(&word_boundary); | 
 |   lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize)); | 
 |   And(t9, t9, Operand(1)); | 
 |   Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg)); | 
 |   bind(&other_color); | 
 | } | 
 |  | 
 |  | 
 | // Detect some, but not all, common pointer-free objects.  This is used by the | 
 | // incremental write barrier which doesn't care about oddballs (they are always | 
 | // marked black immediately so this code is not hit). | 
 | void MacroAssembler::JumpIfDataObject(Register value, | 
 |                                       Register scratch, | 
 |                                       Label* not_data_object) { | 
 |   DCHECK(!AreAliased(value, scratch, t8, no_reg)); | 
 |   Label is_data_object; | 
 |   lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); | 
 |   LoadRoot(t8, Heap::kHeapNumberMapRootIndex); | 
 |   Branch(&is_data_object, eq, t8, Operand(scratch)); | 
 |   DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); | 
 |   DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); | 
 |   // If it's a string and it's not a cons string then it's an object containing | 
 |   // no GC pointers. | 
 |   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); | 
 |   And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask)); | 
 |   Branch(not_data_object, ne, t8, Operand(zero_reg)); | 
 |   bind(&is_data_object); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::GetMarkBits(Register addr_reg, | 
 |                                  Register bitmap_reg, | 
 |                                  Register mask_reg) { | 
 |   DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); | 
 |   And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask)); | 
 |   Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); | 
 |   const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; | 
 |   Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits); | 
 |   sll(t8, t8, kPointerSizeLog2); | 
 |   Addu(bitmap_reg, bitmap_reg, t8); | 
 |   li(t8, Operand(1)); | 
 |   sllv(mask_reg, t8, mask_reg); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::EnsureNotWhite( | 
 |     Register value, | 
 |     Register bitmap_scratch, | 
 |     Register mask_scratch, | 
 |     Register load_scratch, | 
 |     Label* value_is_white_and_not_data) { | 
 |   DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, t8)); | 
 |   GetMarkBits(value, bitmap_scratch, mask_scratch); | 
 |  | 
 |   // If the value is black or grey we don't need to do anything. | 
 |   DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); | 
 |   DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0); | 
 |   DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0); | 
 |   DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); | 
 |  | 
 |   Label done; | 
 |  | 
 |   // Since both black and grey have a 1 in the first position and white does | 
 |   // not have a 1 there we only need to check one bit. | 
 |   lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); | 
 |   And(t8, mask_scratch, load_scratch); | 
 |   Branch(&done, ne, t8, Operand(zero_reg)); | 
 |  | 
 |   if (emit_debug_code()) { | 
 |     // Check for impossible bit pattern. | 
 |     Label ok; | 
 |     // sll may overflow, making the check conservative. | 
 |     sll(t8, mask_scratch, 1); | 
 |     And(t8, load_scratch, t8); | 
 |     Branch(&ok, eq, t8, Operand(zero_reg)); | 
 |     stop("Impossible marking bit pattern"); | 
 |     bind(&ok); | 
 |   } | 
 |  | 
 |   // Value is white.  We check whether it is data that doesn't need scanning. | 
 |   // Currently only checks for HeapNumber and non-cons strings. | 
 |   Register map = load_scratch;  // Holds map while checking type. | 
 |   Register length = load_scratch;  // Holds length of object after testing type. | 
 |   Label is_data_object; | 
 |  | 
 |   // Check for heap-number | 
 |   lw(map, FieldMemOperand(value, HeapObject::kMapOffset)); | 
 |   LoadRoot(t8, Heap::kHeapNumberMapRootIndex); | 
 |   { | 
 |     Label skip; | 
 |     Branch(&skip, ne, t8, Operand(map)); | 
 |     li(length, HeapNumber::kSize); | 
 |     Branch(&is_data_object); | 
 |     bind(&skip); | 
 |   } | 
 |  | 
 |   // Check for strings. | 
 |   DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); | 
 |   DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); | 
 |   // If it's a string and it's not a cons string then it's an object containing | 
 |   // no GC pointers. | 
 |   Register instance_type = load_scratch; | 
 |   lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); | 
 |   And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask)); | 
 |   Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg)); | 
 |   // It's a non-indirect (non-cons and non-slice) string. | 
 |   // If it's external, the length is just ExternalString::kSize. | 
 |   // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). | 
 |   // External strings are the only ones with the kExternalStringTag bit | 
 |   // set. | 
 |   DCHECK_EQ(0, kSeqStringTag & kExternalStringTag); | 
 |   DCHECK_EQ(0, kConsStringTag & kExternalStringTag); | 
 |   And(t8, instance_type, Operand(kExternalStringTag)); | 
 |   { | 
 |     Label skip; | 
 |     Branch(&skip, eq, t8, Operand(zero_reg)); | 
 |     li(length, ExternalString::kSize); | 
 |     Branch(&is_data_object); | 
 |     bind(&skip); | 
 |   } | 
 |  | 
 |   // Sequential string, either Latin1 or UC16. | 
 |   // For Latin1 (char-size of 1) we shift the smi tag away to get the length. | 
 |   // For UC16 (char-size of 2) we just leave the smi tag in place, thereby | 
 |   // getting the length multiplied by 2. | 
 |   DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4); | 
 |   DCHECK(kSmiTag == 0 && kSmiTagSize == 1); | 
 |   lw(t9, FieldMemOperand(value, String::kLengthOffset)); | 
 |   And(t8, instance_type, Operand(kStringEncodingMask)); | 
 |   { | 
 |     Label skip; | 
 |     Branch(&skip, eq, t8, Operand(zero_reg)); | 
 |     srl(t9, t9, 1); | 
 |     bind(&skip); | 
 |   } | 
 |   Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask)); | 
 |   And(length, length, Operand(~kObjectAlignmentMask)); | 
 |  | 
 |   bind(&is_data_object); | 
 |   // Value is a data object, and it is white.  Mark it black.  Since we know | 
 |   // that the object is white we can make it black by flipping one bit. | 
 |   lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); | 
 |   Or(t8, t8, Operand(mask_scratch)); | 
 |   sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); | 
 |  | 
 |   And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask)); | 
 |   lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); | 
 |   Addu(t8, t8, Operand(length)); | 
 |   sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); | 
 |  | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::LoadInstanceDescriptors(Register map, | 
 |                                              Register descriptors) { | 
 |   lw(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) { | 
 |   lw(dst, FieldMemOperand(map, Map::kBitField3Offset)); | 
 |   DecodeField<Map::NumberOfOwnDescriptorsBits>(dst); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::EnumLength(Register dst, Register map) { | 
 |   STATIC_ASSERT(Map::EnumLengthBits::kShift == 0); | 
 |   lw(dst, FieldMemOperand(map, Map::kBitField3Offset)); | 
 |   And(dst, dst, Operand(Map::EnumLengthBits::kMask)); | 
 |   SmiTag(dst); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { | 
 |   Register  empty_fixed_array_value = t2; | 
 |   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); | 
 |   Label next, start; | 
 |   mov(a2, a0); | 
 |  | 
 |   // Check if the enum length field is properly initialized, indicating that | 
 |   // there is an enum cache. | 
 |   lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); | 
 |  | 
 |   EnumLength(a3, a1); | 
 |   Branch( | 
 |       call_runtime, eq, a3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel))); | 
 |  | 
 |   jmp(&start); | 
 |  | 
 |   bind(&next); | 
 |   lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); | 
 |  | 
 |   // For all objects but the receiver, check that the cache is empty. | 
 |   EnumLength(a3, a1); | 
 |   Branch(call_runtime, ne, a3, Operand(Smi::FromInt(0))); | 
 |  | 
 |   bind(&start); | 
 |  | 
 |   // Check that there are no elements. Register a2 contains the current JS | 
 |   // object we've reached through the prototype chain. | 
 |   Label no_elements; | 
 |   lw(a2, FieldMemOperand(a2, JSObject::kElementsOffset)); | 
 |   Branch(&no_elements, eq, a2, Operand(empty_fixed_array_value)); | 
 |  | 
 |   // Second chance, the object may be using the empty slow element dictionary. | 
 |   LoadRoot(at, Heap::kEmptySlowElementDictionaryRootIndex); | 
 |   Branch(call_runtime, ne, a2, Operand(at)); | 
 |  | 
 |   bind(&no_elements); | 
 |   lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset)); | 
 |   Branch(&next, ne, a2, Operand(null_value)); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { | 
 |   DCHECK(!output_reg.is(input_reg)); | 
 |   Label done; | 
 |   li(output_reg, Operand(255)); | 
 |   // Normal branch: nop in delay slot. | 
 |   Branch(&done, gt, input_reg, Operand(output_reg)); | 
 |   // Use delay slot in this branch. | 
 |   Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg)); | 
 |   mov(output_reg, zero_reg);  // In delay slot. | 
 |   mov(output_reg, input_reg);  // Value is in range 0..255. | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::ClampDoubleToUint8(Register result_reg, | 
 |                                         DoubleRegister input_reg, | 
 |                                         DoubleRegister temp_double_reg) { | 
 |   Label above_zero; | 
 |   Label done; | 
 |   Label in_bounds; | 
 |  | 
 |   Move(temp_double_reg, 0.0); | 
 |   BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg); | 
 |  | 
 |   // Double value is less than zero, NaN or Inf, return 0. | 
 |   mov(result_reg, zero_reg); | 
 |   Branch(&done); | 
 |  | 
 |   // Double value is >= 255, return 255. | 
 |   bind(&above_zero); | 
 |   Move(temp_double_reg, 255.0); | 
 |   BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg); | 
 |   li(result_reg, Operand(255)); | 
 |   Branch(&done); | 
 |  | 
 |   // In 0-255 range, round and truncate. | 
 |   bind(&in_bounds); | 
 |   cvt_w_d(temp_double_reg, input_reg); | 
 |   mfc1(result_reg, temp_double_reg); | 
 |   bind(&done); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TestJSArrayForAllocationMemento( | 
 |     Register receiver_reg, | 
 |     Register scratch_reg, | 
 |     Label* no_memento_found, | 
 |     Condition cond, | 
 |     Label* allocation_memento_present) { | 
 |   ExternalReference new_space_start = | 
 |       ExternalReference::new_space_start(isolate()); | 
 |   ExternalReference new_space_allocation_top = | 
 |       ExternalReference::new_space_allocation_top_address(isolate()); | 
 |   Addu(scratch_reg, receiver_reg, | 
 |        Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag)); | 
 |   Branch(no_memento_found, lt, scratch_reg, Operand(new_space_start)); | 
 |   li(at, Operand(new_space_allocation_top)); | 
 |   lw(at, MemOperand(at)); | 
 |   Branch(no_memento_found, gt, scratch_reg, Operand(at)); | 
 |   lw(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize)); | 
 |   if (allocation_memento_present) { | 
 |     Branch(allocation_memento_present, cond, scratch_reg, | 
 |            Operand(isolate()->factory()->allocation_memento_map())); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | Register GetRegisterThatIsNotOneOf(Register reg1, | 
 |                                    Register reg2, | 
 |                                    Register reg3, | 
 |                                    Register reg4, | 
 |                                    Register reg5, | 
 |                                    Register reg6) { | 
 |   RegList regs = 0; | 
 |   if (reg1.is_valid()) regs |= reg1.bit(); | 
 |   if (reg2.is_valid()) regs |= reg2.bit(); | 
 |   if (reg3.is_valid()) regs |= reg3.bit(); | 
 |   if (reg4.is_valid()) regs |= reg4.bit(); | 
 |   if (reg5.is_valid()) regs |= reg5.bit(); | 
 |   if (reg6.is_valid()) regs |= reg6.bit(); | 
 |  | 
 |   for (int i = 0; i < Register::NumAllocatableRegisters(); i++) { | 
 |     Register candidate = Register::FromAllocationIndex(i); | 
 |     if (regs & candidate.bit()) continue; | 
 |     return candidate; | 
 |   } | 
 |   UNREACHABLE(); | 
 |   return no_reg; | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::JumpIfDictionaryInPrototypeChain( | 
 |     Register object, | 
 |     Register scratch0, | 
 |     Register scratch1, | 
 |     Label* found) { | 
 |   DCHECK(!scratch1.is(scratch0)); | 
 |   Factory* factory = isolate()->factory(); | 
 |   Register current = scratch0; | 
 |   Label loop_again; | 
 |  | 
 |   // Scratch contained elements pointer. | 
 |   Move(current, object); | 
 |  | 
 |   // Loop based on the map going up the prototype chain. | 
 |   bind(&loop_again); | 
 |   lw(current, FieldMemOperand(current, HeapObject::kMapOffset)); | 
 |   lb(scratch1, FieldMemOperand(current, Map::kBitField2Offset)); | 
 |   DecodeField<Map::ElementsKindBits>(scratch1); | 
 |   Branch(found, eq, scratch1, Operand(DICTIONARY_ELEMENTS)); | 
 |   lw(current, FieldMemOperand(current, Map::kPrototypeOffset)); | 
 |   Branch(&loop_again, ne, current, Operand(factory->null_value())); | 
 | } | 
 |  | 
 |  | 
 | bool AreAliased(Register reg1, | 
 |                 Register reg2, | 
 |                 Register reg3, | 
 |                 Register reg4, | 
 |                 Register reg5, | 
 |                 Register reg6, | 
 |                 Register reg7, | 
 |                 Register reg8) { | 
 |   int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + | 
 |       reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + | 
 |       reg7.is_valid() + reg8.is_valid(); | 
 |  | 
 |   RegList regs = 0; | 
 |   if (reg1.is_valid()) regs |= reg1.bit(); | 
 |   if (reg2.is_valid()) regs |= reg2.bit(); | 
 |   if (reg3.is_valid()) regs |= reg3.bit(); | 
 |   if (reg4.is_valid()) regs |= reg4.bit(); | 
 |   if (reg5.is_valid()) regs |= reg5.bit(); | 
 |   if (reg6.is_valid()) regs |= reg6.bit(); | 
 |   if (reg7.is_valid()) regs |= reg7.bit(); | 
 |   if (reg8.is_valid()) regs |= reg8.bit(); | 
 |   int n_of_non_aliasing_regs = NumRegs(regs); | 
 |  | 
 |   return n_of_valid_regs != n_of_non_aliasing_regs; | 
 | } | 
 |  | 
 |  | 
 | CodePatcher::CodePatcher(byte* address, | 
 |                          int instructions, | 
 |                          FlushICache flush_cache) | 
 |     : address_(address), | 
 |       size_(instructions * Assembler::kInstrSize), | 
 |       masm_(NULL, address, size_ + Assembler::kGap), | 
 |       flush_cache_(flush_cache) { | 
 |   // Create a new macro assembler pointing to the address of the code to patch. | 
 |   // The size is adjusted with kGap on order for the assembler to generate size | 
 |   // bytes of instructions without failing with buffer size constraints. | 
 |   DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); | 
 | } | 
 |  | 
 |  | 
 | CodePatcher::~CodePatcher() { | 
 |   // Indicate that code has changed. | 
 |   if (flush_cache_ == FLUSH) { | 
 |     CpuFeatures::FlushICache(address_, size_); | 
 |   } | 
 |  | 
 |   // Check that the code was patched as expected. | 
 |   DCHECK(masm_.pc_ == address_ + size_); | 
 |   DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); | 
 | } | 
 |  | 
 |  | 
 | void CodePatcher::Emit(Instr instr) { | 
 |   masm()->emit(instr); | 
 | } | 
 |  | 
 |  | 
 | void CodePatcher::Emit(Address addr) { | 
 |   masm()->emit(reinterpret_cast<Instr>(addr)); | 
 | } | 
 |  | 
 |  | 
 | void CodePatcher::ChangeBranchCondition(Condition cond) { | 
 |   Instr instr = Assembler::instr_at(masm_.pc_); | 
 |   DCHECK(Assembler::IsBranch(instr)); | 
 |   uint32_t opcode = Assembler::GetOpcodeField(instr); | 
 |   // Currently only the 'eq' and 'ne' cond values are supported and the simple | 
 |   // branch instructions (with opcode being the branch type). | 
 |   // There are some special cases (see Assembler::IsBranch()) so extending this | 
 |   // would be tricky. | 
 |   DCHECK(opcode == BEQ || | 
 |          opcode == BNE || | 
 |         opcode == BLEZ || | 
 |         opcode == BGTZ || | 
 |         opcode == BEQL || | 
 |         opcode == BNEL || | 
 |        opcode == BLEZL || | 
 |        opcode == BGTZL); | 
 |   opcode = (cond == eq) ? BEQ : BNE; | 
 |   instr = (instr & ~kOpcodeMask) | opcode; | 
 |   masm_.emit(instr); | 
 | } | 
 |  | 
 |  | 
 | void MacroAssembler::TruncatingDiv(Register result, | 
 |                                    Register dividend, | 
 |                                    int32_t divisor) { | 
 |   DCHECK(!dividend.is(result)); | 
 |   DCHECK(!dividend.is(at)); | 
 |   DCHECK(!result.is(at)); | 
 |   base::MagicNumbersForDivision<uint32_t> mag = | 
 |       base::SignedDivisionByConstant(static_cast<uint32_t>(divisor)); | 
 |   li(at, Operand(mag.multiplier)); | 
 |   Mulh(result, dividend, Operand(at)); | 
 |   bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0; | 
 |   if (divisor > 0 && neg) { | 
 |     Addu(result, result, Operand(dividend)); | 
 |   } | 
 |   if (divisor < 0 && !neg && mag.multiplier > 0) { | 
 |     Subu(result, result, Operand(dividend)); | 
 |   } | 
 |   if (mag.shift > 0) sra(result, result, mag.shift); | 
 |   srl(at, dividend, 31); | 
 |   Addu(result, result, Operand(at)); | 
 | } | 
 |  | 
 |  | 
 | } }  // namespace v8::internal | 
 |  | 
 | #endif  // V8_TARGET_ARCH_MIPS |