blob: 8a73561468663d5747799af92e044770d1e578fd [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Review notes:
//
// - The use of macros in these inline functions may seem superfluous
// but it is absolutely needed to make sure gcc generates optimal
// code. gcc is not happy when attempting to inline too deep.
//
#ifndef V8_OBJECTS_INL_H_
#define V8_OBJECTS_INL_H_
#include "elements.h"
#include "objects.h"
#include "contexts.h"
#include "conversions-inl.h"
#include "heap.h"
#include "isolate.h"
#include "property.h"
#include "spaces.h"
#include "v8memory.h"
namespace v8 {
namespace internal {
PropertyDetails::PropertyDetails(Smi* smi) {
value_ = smi->value();
}
Smi* PropertyDetails::AsSmi() {
return Smi::FromInt(value_);
}
PropertyDetails PropertyDetails::AsDeleted() {
Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1));
return PropertyDetails(smi);
}
#define CAST_ACCESSOR(type) \
type* type::cast(Object* object) { \
ASSERT(object->Is##type()); \
return reinterpret_cast<type*>(object); \
}
#define INT_ACCESSORS(holder, name, offset) \
int holder::name() { return READ_INT_FIELD(this, offset); } \
void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
#define ACCESSORS(holder, name, type, offset) \
type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
void holder::set_##name(type* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode); \
}
// GC-safe accessors do not use HeapObject::GetHeap(), but access TLS instead.
#define ACCESSORS_GCSAFE(holder, name, type, offset) \
type* holder::name() { return type::cast(READ_FIELD(this, offset)); } \
void holder::set_##name(type* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
CONDITIONAL_WRITE_BARRIER(HEAP, this, offset, mode); \
}
#define SMI_ACCESSORS(holder, name, offset) \
int holder::name() { \
Object* value = READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::set_##name(int value) { \
WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define BOOL_GETTER(holder, field, name, offset) \
bool holder::name() { \
return BooleanBit::get(field(), offset); \
} \
#define BOOL_ACCESSORS(holder, field, name, offset) \
bool holder::name() { \
return BooleanBit::get(field(), offset); \
} \
void holder::set_##name(bool value) { \
set_##field(BooleanBit::set(field(), offset, value)); \
}
bool Object::IsInstanceOf(FunctionTemplateInfo* expected) {
// There is a constraint on the object; check.
if (!this->IsJSObject()) return false;
// Fetch the constructor function of the object.
Object* cons_obj = JSObject::cast(this)->map()->constructor();
if (!cons_obj->IsJSFunction()) return false;
JSFunction* fun = JSFunction::cast(cons_obj);
// Iterate through the chain of inheriting function templates to
// see if the required one occurs.
for (Object* type = fun->shared()->function_data();
type->IsFunctionTemplateInfo();
type = FunctionTemplateInfo::cast(type)->parent_template()) {
if (type == expected) return true;
}
// Didn't find the required type in the inheritance chain.
return false;
}
bool Object::IsSmi() {
return HAS_SMI_TAG(this);
}
bool Object::IsHeapObject() {
return Internals::HasHeapObjectTag(this);
}
bool Object::IsHeapNumber() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == HEAP_NUMBER_TYPE;
}
bool Object::IsString() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
}
bool Object::IsSpecObject() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE;
}
bool Object::IsSymbol() {
if (!this->IsHeapObject()) return false;
uint32_t type = HeapObject::cast(this)->map()->instance_type();
// Because the symbol tag is non-zero and no non-string types have the
// symbol bit set we can test for symbols with a very simple test
// operation.
STATIC_ASSERT(kSymbolTag != 0);
ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
return (type & kIsSymbolMask) != 0;
}
bool Object::IsConsString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsCons();
}
bool Object::IsSlicedString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSliced();
}
bool Object::IsSeqString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential();
}
bool Object::IsSeqAsciiString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsAsciiRepresentation();
}
bool Object::IsSeqTwoByteString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::IsExternalString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal();
}
bool Object::IsExternalAsciiString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsAsciiRepresentation();
}
bool Object::IsExternalTwoByteString() {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::HasValidElements() {
// Dictionary is covered under FixedArray.
return IsFixedArray() || IsFixedDoubleArray() || IsExternalArray();
}
StringShape::StringShape(String* str)
: type_(str->map()->instance_type()) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(Map* map)
: type_(map->instance_type()) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(InstanceType t)
: type_(static_cast<uint32_t>(t)) {
set_valid();
ASSERT((type_ & kIsNotStringMask) == kStringTag);
}
bool StringShape::IsSymbol() {
ASSERT(valid());
STATIC_ASSERT(kSymbolTag != 0);
return (type_ & kIsSymbolMask) != 0;
}
bool String::IsAsciiRepresentation() {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kAsciiStringTag;
}
bool String::IsTwoByteRepresentation() {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kTwoByteStringTag;
}
bool String::IsAsciiRepresentationUnderneath() {
uint32_t type = map()->instance_type();
STATIC_ASSERT(kIsIndirectStringTag != 0);
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
ASSERT(IsFlat());
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
case kAsciiStringTag:
return true;
case kTwoByteStringTag:
return false;
default: // Cons or sliced string. Need to go deeper.
return GetUnderlying()->IsAsciiRepresentation();
}
}
bool String::IsTwoByteRepresentationUnderneath() {
uint32_t type = map()->instance_type();
STATIC_ASSERT(kIsIndirectStringTag != 0);
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
ASSERT(IsFlat());
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
case kAsciiStringTag:
return false;
case kTwoByteStringTag:
return true;
default: // Cons or sliced string. Need to go deeper.
return GetUnderlying()->IsTwoByteRepresentation();
}
}
bool String::HasOnlyAsciiChars() {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kAsciiStringTag ||
(type & kAsciiDataHintMask) == kAsciiDataHintTag;
}
bool StringShape::IsCons() {
return (type_ & kStringRepresentationMask) == kConsStringTag;
}
bool StringShape::IsSliced() {
return (type_ & kStringRepresentationMask) == kSlicedStringTag;
}
bool StringShape::IsIndirect() {
return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
}
bool StringShape::IsExternal() {
return (type_ & kStringRepresentationMask) == kExternalStringTag;
}
bool StringShape::IsSequential() {
return (type_ & kStringRepresentationMask) == kSeqStringTag;
}
StringRepresentationTag StringShape::representation_tag() {
uint32_t tag = (type_ & kStringRepresentationMask);
return static_cast<StringRepresentationTag>(tag);
}
uint32_t StringShape::encoding_tag() {
return type_ & kStringEncodingMask;
}
uint32_t StringShape::full_representation_tag() {
return (type_ & (kStringRepresentationMask | kStringEncodingMask));
}
STATIC_CHECK((kStringRepresentationMask | kStringEncodingMask) ==
Internals::kFullStringRepresentationMask);
bool StringShape::IsSequentialAscii() {
return full_representation_tag() == (kSeqStringTag | kAsciiStringTag);
}
bool StringShape::IsSequentialTwoByte() {
return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
}
bool StringShape::IsExternalAscii() {
return full_representation_tag() == (kExternalStringTag | kAsciiStringTag);
}
bool StringShape::IsExternalTwoByte() {
return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
}
STATIC_CHECK((kExternalStringTag | kTwoByteStringTag) ==
Internals::kExternalTwoByteRepresentationTag);
uc32 FlatStringReader::Get(int index) {
ASSERT(0 <= index && index <= length_);
if (is_ascii_) {
return static_cast<const byte*>(start_)[index];
} else {
return static_cast<const uc16*>(start_)[index];
}
}
bool Object::IsNumber() {
return IsSmi() || IsHeapNumber();
}
bool Object::IsByteArray() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == BYTE_ARRAY_TYPE;
}
bool Object::IsExternalPixelArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_PIXEL_ARRAY_TYPE;
}
bool Object::IsExternalArray() {
if (!Object::IsHeapObject())
return false;
InstanceType instance_type =
HeapObject::cast(this)->map()->instance_type();
return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE &&
instance_type <= LAST_EXTERNAL_ARRAY_TYPE);
}
bool Object::IsExternalByteArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_BYTE_ARRAY_TYPE;
}
bool Object::IsExternalUnsignedByteArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE;
}
bool Object::IsExternalShortArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_SHORT_ARRAY_TYPE;
}
bool Object::IsExternalUnsignedShortArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE;
}
bool Object::IsExternalIntArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_INT_ARRAY_TYPE;
}
bool Object::IsExternalUnsignedIntArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_UNSIGNED_INT_ARRAY_TYPE;
}
bool Object::IsExternalFloatArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_FLOAT_ARRAY_TYPE;
}
bool Object::IsExternalDoubleArray() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() ==
EXTERNAL_DOUBLE_ARRAY_TYPE;
}
bool MaybeObject::IsFailure() {
return HAS_FAILURE_TAG(this);
}
bool MaybeObject::IsRetryAfterGC() {
return HAS_FAILURE_TAG(this)
&& Failure::cast(this)->type() == Failure::RETRY_AFTER_GC;
}
bool MaybeObject::IsOutOfMemory() {
return HAS_FAILURE_TAG(this)
&& Failure::cast(this)->IsOutOfMemoryException();
}
bool MaybeObject::IsException() {
return this == Failure::Exception();
}
bool MaybeObject::IsTheHole() {
return !IsFailure() && ToObjectUnchecked()->IsTheHole();
}
Failure* Failure::cast(MaybeObject* obj) {
ASSERT(HAS_FAILURE_TAG(obj));
return reinterpret_cast<Failure*>(obj);
}
bool Object::IsJSReceiver() {
return IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE;
}
bool Object::IsJSObject() {
return IsJSReceiver() && !IsJSProxy();
}
bool Object::IsJSProxy() {
return Object::IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() == JS_PROXY_TYPE ||
HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_PROXY_TYPE);
}
bool Object::IsJSFunctionProxy() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_PROXY_TYPE;
}
bool Object::IsJSWeakMap() {
return Object::IsJSObject() &&
HeapObject::cast(this)->map()->instance_type() == JS_WEAK_MAP_TYPE;
}
bool Object::IsJSContextExtensionObject() {
return IsHeapObject()
&& (HeapObject::cast(this)->map()->instance_type() ==
JS_CONTEXT_EXTENSION_OBJECT_TYPE);
}
bool Object::IsMap() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == MAP_TYPE;
}
bool Object::IsFixedArray() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == FIXED_ARRAY_TYPE;
}
bool Object::IsFixedDoubleArray() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() ==
FIXED_DOUBLE_ARRAY_TYPE;
}
bool Object::IsDescriptorArray() {
return IsFixedArray();
}
bool Object::IsDeoptimizationInputData() {
// Must be a fixed array.
if (!IsFixedArray()) return false;
// There's no sure way to detect the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can
// check that the length is zero or else the fixed size plus a multiple of
// the entry size.
int length = FixedArray::cast(this)->length();
if (length == 0) return true;
length -= DeoptimizationInputData::kFirstDeoptEntryIndex;
return length >= 0 &&
length % DeoptimizationInputData::kDeoptEntrySize == 0;
}
bool Object::IsDeoptimizationOutputData() {
if (!IsFixedArray()) return false;
// There's actually no way to see the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can check
// that the length is plausible though.
if (FixedArray::cast(this)->length() % 2 != 0) return false;
return true;
}
bool Object::IsContext() {
if (Object::IsHeapObject()) {
Map* map = HeapObject::cast(this)->map();
Heap* heap = map->GetHeap();
return (map == heap->function_context_map() ||
map == heap->catch_context_map() ||
map == heap->with_context_map() ||
map == heap->global_context_map() ||
map == heap->block_context_map());
}
return false;
}
bool Object::IsGlobalContext() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->global_context_map();
}
bool Object::IsSerializedScopeInfo() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->serialized_scope_info_map();
}
bool Object::IsJSFunction() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == JS_FUNCTION_TYPE;
}
template <> inline bool Is<JSFunction>(Object* obj) {
return obj->IsJSFunction();
}
bool Object::IsCode() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == CODE_TYPE;
}
bool Object::IsOddball() {
ASSERT(HEAP->is_safe_to_read_maps());
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == ODDBALL_TYPE;
}
bool Object::IsJSGlobalPropertyCell() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type()
== JS_GLOBAL_PROPERTY_CELL_TYPE;
}
bool Object::IsSharedFunctionInfo() {
return Object::IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
SHARED_FUNCTION_INFO_TYPE);
}
bool Object::IsJSValue() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == JS_VALUE_TYPE;
}
bool Object::IsJSMessageObject() {
return Object::IsHeapObject()
&& (HeapObject::cast(this)->map()->instance_type() ==
JS_MESSAGE_OBJECT_TYPE);
}
bool Object::IsStringWrapper() {
return IsJSValue() && JSValue::cast(this)->value()->IsString();
}
bool Object::IsForeign() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == FOREIGN_TYPE;
}
bool Object::IsBoolean() {
return IsOddball() &&
((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
}
bool Object::IsJSArray() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == JS_ARRAY_TYPE;
}
bool Object::IsJSRegExp() {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() == JS_REGEXP_TYPE;
}
template <> inline bool Is<JSArray>(Object* obj) {
return obj->IsJSArray();
}
bool Object::IsHashTable() {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->hash_table_map();
}
bool Object::IsDictionary() {
return IsHashTable() &&
this != HeapObject::cast(this)->GetHeap()->symbol_table();
}
bool Object::IsSymbolTable() {
return IsHashTable() && this ==
HeapObject::cast(this)->GetHeap()->raw_unchecked_symbol_table();
}
bool Object::IsJSFunctionResultCache() {
if (!IsFixedArray()) return false;
FixedArray* self = FixedArray::cast(this);
int length = self->length();
if (length < JSFunctionResultCache::kEntriesIndex) return false;
if ((length - JSFunctionResultCache::kEntriesIndex)
% JSFunctionResultCache::kEntrySize != 0) {
return false;
}
#ifdef DEBUG
reinterpret_cast<JSFunctionResultCache*>(this)->JSFunctionResultCacheVerify();
#endif
return true;
}
bool Object::IsNormalizedMapCache() {
if (!IsFixedArray()) return false;
if (FixedArray::cast(this)->length() != NormalizedMapCache::kEntries) {
return false;
}
#ifdef DEBUG
reinterpret_cast<NormalizedMapCache*>(this)->NormalizedMapCacheVerify();
#endif
return true;
}
bool Object::IsCompilationCacheTable() {
return IsHashTable();
}
bool Object::IsCodeCacheHashTable() {
return IsHashTable();
}
bool Object::IsPolymorphicCodeCacheHashTable() {
return IsHashTable();
}
bool Object::IsMapCache() {
return IsHashTable();
}
bool Object::IsPrimitive() {
return IsOddball() || IsNumber() || IsString();
}
bool Object::IsJSGlobalProxy() {
bool result = IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_GLOBAL_PROXY_TYPE);
ASSERT(!result || IsAccessCheckNeeded());
return result;
}
bool Object::IsGlobalObject() {
if (!IsHeapObject()) return false;
InstanceType type = HeapObject::cast(this)->map()->instance_type();
return type == JS_GLOBAL_OBJECT_TYPE ||
type == JS_BUILTINS_OBJECT_TYPE;
}
bool Object::IsJSGlobalObject() {
return IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_GLOBAL_OBJECT_TYPE);
}
bool Object::IsJSBuiltinsObject() {
return IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_BUILTINS_OBJECT_TYPE);
}
bool Object::IsUndetectableObject() {
return IsHeapObject()
&& HeapObject::cast(this)->map()->is_undetectable();
}
bool Object::IsAccessCheckNeeded() {
return IsHeapObject()
&& HeapObject::cast(this)->map()->is_access_check_needed();
}
bool Object::IsStruct() {
if (!IsHeapObject()) return false;
switch (HeapObject::cast(this)->map()->instance_type()) {
#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default: return false;
}
}
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
bool Object::Is##Name() { \
return Object::IsHeapObject() \
&& HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
}
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
#undef MAKE_STRUCT_PREDICATE
bool Object::IsUndefined() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined;
}
bool Object::IsNull() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull;
}
bool Object::IsTheHole() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole;
}
bool Object::IsTrue() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue;
}
bool Object::IsFalse() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse;
}
bool Object::IsArgumentsMarker() {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker;
}
double Object::Number() {
ASSERT(IsNumber());
return IsSmi()
? static_cast<double>(reinterpret_cast<Smi*>(this)->value())
: reinterpret_cast<HeapNumber*>(this)->value();
}
MaybeObject* Object::ToSmi() {
if (IsSmi()) return this;
if (IsHeapNumber()) {
double value = HeapNumber::cast(this)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
}
return Failure::Exception();
}
bool Object::HasSpecificClassOf(String* name) {
return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
}
MaybeObject* Object::GetElement(uint32_t index) {
// GetElement can trigger a getter which can cause allocation.
// This was not always the case. This ASSERT is here to catch
// leftover incorrect uses.
ASSERT(HEAP->IsAllocationAllowed());
return GetElementWithReceiver(this, index);
}
Object* Object::GetElementNoExceptionThrown(uint32_t index) {
MaybeObject* maybe = GetElementWithReceiver(this, index);
ASSERT(!maybe->IsFailure());
Object* result = NULL; // Initialization to please compiler.
maybe->ToObject(&result);
return result;
}
MaybeObject* Object::GetProperty(String* key) {
PropertyAttributes attributes;
return GetPropertyWithReceiver(this, key, &attributes);
}
MaybeObject* Object::GetProperty(String* key, PropertyAttributes* attributes) {
return GetPropertyWithReceiver(this, key, attributes);
}
#define FIELD_ADDR(p, offset) \
(reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
#define READ_FIELD(p, offset) \
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)))
#define WRITE_FIELD(p, offset, value) \
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
// TODO(isolates): Pass heap in to these macros.
#define WRITE_BARRIER(object, offset) \
object->GetHeap()->RecordWrite(object->address(), offset);
// CONDITIONAL_WRITE_BARRIER must be issued after the actual
// write due to the assert validating the written value.
#define CONDITIONAL_WRITE_BARRIER(heap, object, offset, mode) \
if (mode == UPDATE_WRITE_BARRIER) { \
heap->RecordWrite(object->address(), offset); \
} else { \
ASSERT(mode == SKIP_WRITE_BARRIER); \
ASSERT(heap->InNewSpace(object) || \
!heap->InNewSpace(READ_FIELD(object, offset)) || \
Page::FromAddress(object->address())-> \
IsRegionDirty(object->address() + offset)); \
}
#ifndef V8_TARGET_ARCH_MIPS
#define READ_DOUBLE_FIELD(p, offset) \
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)))
#else // V8_TARGET_ARCH_MIPS
// Prevent gcc from using load-double (mips ldc1) on (possibly)
// non-64-bit aligned HeapNumber::value.
static inline double read_double_field(void* p, int offset) {
union conversion {
double d;
uint32_t u[2];
} c;
c.u[0] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)));
c.u[1] = (*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4)));
return c.d;
}
#define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset)
#endif // V8_TARGET_ARCH_MIPS
#ifndef V8_TARGET_ARCH_MIPS
#define WRITE_DOUBLE_FIELD(p, offset, value) \
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value)
#else // V8_TARGET_ARCH_MIPS
// Prevent gcc from using store-double (mips sdc1) on (possibly)
// non-64-bit aligned HeapNumber::value.
static inline void write_double_field(void* p, int offset,
double value) {
union conversion {
double d;
uint32_t u[2];
} c;
c.d = value;
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) = c.u[0];
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))) = c.u[1];
}
#define WRITE_DOUBLE_FIELD(p, offset, value) \
write_double_field(p, offset, value)
#endif // V8_TARGET_ARCH_MIPS
#define READ_INT_FIELD(p, offset) \
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)))
#define WRITE_INT_FIELD(p, offset, value) \
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
#define READ_INTPTR_FIELD(p, offset) \
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)))
#define WRITE_INTPTR_FIELD(p, offset, value) \
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_UINT32_FIELD(p, offset) \
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)))
#define WRITE_UINT32_FIELD(p, offset, value) \
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_SHORT_FIELD(p, offset) \
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)))
#define WRITE_SHORT_FIELD(p, offset, value) \
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_BYTE_FIELD(p, offset) \
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)))
#define WRITE_BYTE_FIELD(p, offset, value) \
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
return &READ_FIELD(obj, byte_offset);
}
int Smi::value() {
return Internals::SmiValue(this);
}
Smi* Smi::FromInt(int value) {
ASSERT(Smi::IsValid(value));
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
intptr_t tagged_value =
(static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
return reinterpret_cast<Smi*>(tagged_value);
}
Smi* Smi::FromIntptr(intptr_t value) {
ASSERT(Smi::IsValid(value));
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
}
Failure::Type Failure::type() const {
return static_cast<Type>(value() & kFailureTypeTagMask);
}
bool Failure::IsInternalError() const {
return type() == INTERNAL_ERROR;
}
bool Failure::IsOutOfMemoryException() const {
return type() == OUT_OF_MEMORY_EXCEPTION;
}
AllocationSpace Failure::allocation_space() const {
ASSERT_EQ(RETRY_AFTER_GC, type());
return static_cast<AllocationSpace>((value() >> kFailureTypeTagSize)
& kSpaceTagMask);
}
Failure* Failure::InternalError() {
return Construct(INTERNAL_ERROR);
}
Failure* Failure::Exception() {
return Construct(EXCEPTION);
}
Failure* Failure::OutOfMemoryException() {
return Construct(OUT_OF_MEMORY_EXCEPTION);
}
intptr_t Failure::value() const {
return static_cast<intptr_t>(
reinterpret_cast<uintptr_t>(this) >> kFailureTagSize);
}
Failure* Failure::RetryAfterGC() {
return RetryAfterGC(NEW_SPACE);
}
Failure* Failure::RetryAfterGC(AllocationSpace space) {
ASSERT((space & ~kSpaceTagMask) == 0);
return Construct(RETRY_AFTER_GC, space);
}
Failure* Failure::Construct(Type type, intptr_t value) {
uintptr_t info =
(static_cast<uintptr_t>(value) << kFailureTypeTagSize) | type;
ASSERT(((info << kFailureTagSize) >> kFailureTagSize) == info);
return reinterpret_cast<Failure*>((info << kFailureTagSize) | kFailureTag);
}
bool Smi::IsValid(intptr_t value) {
#ifdef DEBUG
bool in_range = (value >= kMinValue) && (value <= kMaxValue);
#endif
#ifdef V8_TARGET_ARCH_X64
// To be representable as a long smi, the value must be a 32-bit integer.
bool result = (value == static_cast<int32_t>(value));
#else
// To be representable as an tagged small integer, the two
// most-significant bits of 'value' must be either 00 or 11 due to
// sign-extension. To check this we add 01 to the two
// most-significant bits, and check if the most-significant bit is 0
//
// CAUTION: The original code below:
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
// may lead to incorrect results according to the C language spec, and
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
// compiler may produce undefined results in case of signed integer
// overflow. The computation must be done w/ unsigned ints.
bool result = (static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U);
#endif
ASSERT(result == in_range);
return result;
}
MapWord MapWord::FromMap(Map* map) {
return MapWord(reinterpret_cast<uintptr_t>(map));
}
Map* MapWord::ToMap() {
return reinterpret_cast<Map*>(value_);
}
bool MapWord::IsForwardingAddress() {
return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
}
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
return MapWord(reinterpret_cast<uintptr_t>(raw));
}
HeapObject* MapWord::ToForwardingAddress() {
ASSERT(IsForwardingAddress());
return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
}
bool MapWord::IsMarked() {
return (value_ & kMarkingMask) == 0;
}
void MapWord::SetMark() {
value_ &= ~kMarkingMask;
}
void MapWord::ClearMark() {
value_ |= kMarkingMask;
}
bool MapWord::IsOverflowed() {
return (value_ & kOverflowMask) != 0;
}
void MapWord::SetOverflow() {
value_ |= kOverflowMask;
}
void MapWord::ClearOverflow() {
value_ &= ~kOverflowMask;
}
MapWord MapWord::EncodeAddress(Address map_address, int offset) {
// Offset is the distance in live bytes from the first live object in the
// same page. The offset between two objects in the same page should not
// exceed the object area size of a page.
ASSERT(0 <= offset && offset < Page::kObjectAreaSize);
uintptr_t compact_offset = offset >> kObjectAlignmentBits;
ASSERT(compact_offset < (1 << kForwardingOffsetBits));
Page* map_page = Page::FromAddress(map_address);
ASSERT_MAP_PAGE_INDEX(map_page->mc_page_index);
uintptr_t map_page_offset =
map_page->Offset(map_address) >> kMapAlignmentBits;
uintptr_t encoding =
(compact_offset << kForwardingOffsetShift) |
(map_page_offset << kMapPageOffsetShift) |
(map_page->mc_page_index << kMapPageIndexShift);
return MapWord(encoding);
}
Address MapWord::DecodeMapAddress(MapSpace* map_space) {
int map_page_index =
static_cast<int>((value_ & kMapPageIndexMask) >> kMapPageIndexShift);
ASSERT_MAP_PAGE_INDEX(map_page_index);
int map_page_offset = static_cast<int>(
((value_ & kMapPageOffsetMask) >> kMapPageOffsetShift) <<
kMapAlignmentBits);
return (map_space->PageAddress(map_page_index) + map_page_offset);
}
int MapWord::DecodeOffset() {
// The offset field is represented in the kForwardingOffsetBits
// most-significant bits.
uintptr_t offset = (value_ >> kForwardingOffsetShift) << kObjectAlignmentBits;
ASSERT(offset < static_cast<uintptr_t>(Page::kObjectAreaSize));
return static_cast<int>(offset);
}
MapWord MapWord::FromEncodedAddress(Address address) {
return MapWord(reinterpret_cast<uintptr_t>(address));
}
Address MapWord::ToEncodedAddress() {
return reinterpret_cast<Address>(value_);
}
#ifdef DEBUG
void HeapObject::VerifyObjectField(int offset) {
VerifyPointer(READ_FIELD(this, offset));
}
void HeapObject::VerifySmiField(int offset) {
ASSERT(READ_FIELD(this, offset)->IsSmi());
}
#endif
Heap* HeapObject::GetHeap() {
// During GC, the map pointer in HeapObject is used in various ways that
// prevent us from retrieving Heap from the map.
// Assert that we are not in GC, implement GC code in a way that it doesn't
// pull heap from the map.
ASSERT(HEAP->is_safe_to_read_maps());
return map()->heap();
}
Isolate* HeapObject::GetIsolate() {
return GetHeap()->isolate();
}
Map* HeapObject::map() {
return map_word().ToMap();
}
void HeapObject::set_map(Map* value) {
set_map_word(MapWord::FromMap(value));
}
MapWord HeapObject::map_word() {
return MapWord(reinterpret_cast<uintptr_t>(READ_FIELD(this, kMapOffset)));
}
void HeapObject::set_map_word(MapWord map_word) {
// WRITE_FIELD does not invoke write barrier, but there is no need
// here.
WRITE_FIELD(this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
}
HeapObject* HeapObject::FromAddress(Address address) {
ASSERT_TAG_ALIGNED(address);
return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
}
Address HeapObject::address() {
return reinterpret_cast<Address>(this) - kHeapObjectTag;
}
int HeapObject::Size() {
return SizeFromMap(map());
}
void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
}
void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
}
bool HeapObject::IsMarked() {
return map_word().IsMarked();
}
void HeapObject::SetMark() {
ASSERT(!IsMarked());
MapWord first_word = map_word();
first_word.SetMark();
set_map_word(first_word);
}
void HeapObject::ClearMark() {
ASSERT(IsMarked());
MapWord first_word = map_word();
first_word.ClearMark();
set_map_word(first_word);
}
bool HeapObject::IsOverflowed() {
return map_word().IsOverflowed();
}
void HeapObject::SetOverflow() {
MapWord first_word = map_word();
first_word.SetOverflow();
set_map_word(first_word);
}
void HeapObject::ClearOverflow() {
ASSERT(IsOverflowed());
MapWord first_word = map_word();
first_word.ClearOverflow();
set_map_word(first_word);
}
double HeapNumber::value() {
return READ_DOUBLE_FIELD(this, kValueOffset);
}
void HeapNumber::set_value(double value) {
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
}
int HeapNumber::get_exponent() {
return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
kExponentShift) - kExponentBias;
}
int HeapNumber::get_sign() {
return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
}
ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
FixedArrayBase* JSObject::elements() {
Object* array = READ_FIELD(this, kElementsOffset);
ASSERT(array->HasValidElements());
return static_cast<FixedArrayBase*>(array);
}
void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) {
ASSERT(map()->has_fast_elements() ==
(value->map() == GetHeap()->fixed_array_map() ||
value->map() == GetHeap()->fixed_cow_array_map()));
ASSERT(map()->has_fast_double_elements() ==
value->IsFixedDoubleArray());
ASSERT(value->HasValidElements());
WRITE_FIELD(this, kElementsOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, mode);
}
void JSObject::initialize_properties() {
ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array());
}
void JSObject::initialize_elements() {
ASSERT(map()->has_fast_elements());
ASSERT(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
WRITE_FIELD(this, kElementsOffset, GetHeap()->empty_fixed_array());
}
MaybeObject* JSObject::ResetElements() {
Object* obj;
{ MaybeObject* maybe_obj = map()->GetFastElementsMap();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
set_map(Map::cast(obj));
initialize_elements();
return this;
}
ACCESSORS(Oddball, to_string, String, kToStringOffset)
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
byte Oddball::kind() {
return READ_BYTE_FIELD(this, kKindOffset);
}
void Oddball::set_kind(byte value) {
WRITE_BYTE_FIELD(this, kKindOffset, value);
}
Object* JSGlobalPropertyCell::value() {
return READ_FIELD(this, kValueOffset);
}
void JSGlobalPropertyCell::set_value(Object* val, WriteBarrierMode ignored) {
// The write barrier is not used for global property cells.
ASSERT(!val->IsJSGlobalPropertyCell());
WRITE_FIELD(this, kValueOffset, val);
}
int JSObject::GetHeaderSize() {
InstanceType type = map()->instance_type();
// Check for the most common kind of JavaScript object before
// falling into the generic switch. This speeds up the internal
// field operations considerably on average.
if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize;
switch (type) {
case JS_GLOBAL_PROXY_TYPE:
return JSGlobalProxy::kSize;
case JS_GLOBAL_OBJECT_TYPE:
return JSGlobalObject::kSize;
case JS_BUILTINS_OBJECT_TYPE:
return JSBuiltinsObject::kSize;
case JS_FUNCTION_TYPE:
return JSFunction::kSize;
case JS_VALUE_TYPE:
return JSValue::kSize;
case JS_ARRAY_TYPE:
return JSValue::kSize;
case JS_WEAK_MAP_TYPE:
return JSWeakMap::kSize;
case JS_REGEXP_TYPE:
return JSValue::kSize;
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
return JSObject::kHeaderSize;
case JS_MESSAGE_OBJECT_TYPE:
return JSMessageObject::kSize;
default:
UNREACHABLE();
return 0;
}
}
int JSObject::GetInternalFieldCount() {
ASSERT(1 << kPointerSizeLog2 == kPointerSize);
// Make sure to adjust for the number of in-object properties. These
// properties do contribute to the size, but are not internal fields.
return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) -
map()->inobject_properties();
}
int JSObject::GetInternalFieldOffset(int index) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
return GetHeaderSize() + (kPointerSize * index);
}
Object* JSObject::GetInternalField(int index) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
}
void JSObject::SetInternalField(int index, Object* value) {
ASSERT(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
int offset = GetHeaderSize() + (kPointerSize * index);
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(this, offset);
}
// Access fast-case object properties at index. The use of these routines
// is needed to correctly distinguish between properties stored in-object and
// properties stored in the properties array.
Object* JSObject::FastPropertyAt(int index) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
if (index < 0) {
int offset = map()->instance_size() + (index * kPointerSize);
return READ_FIELD(this, offset);
} else {
ASSERT(index < properties()->length());
return properties()->get(index);
}
}
Object* JSObject::FastPropertyAtPut(int index, Object* value) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
if (index < 0) {
int offset = map()->instance_size() + (index * kPointerSize);
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(this, offset);
} else {
ASSERT(index < properties()->length());
properties()->set(index, value);
}
return value;
}
int JSObject::GetInObjectPropertyOffset(int index) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
ASSERT(index < 0);
return map()->instance_size() + (index * kPointerSize);
}
Object* JSObject::InObjectPropertyAt(int index) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
ASSERT(index < 0);
int offset = map()->instance_size() + (index * kPointerSize);
return READ_FIELD(this, offset);
}
Object* JSObject::InObjectPropertyAtPut(int index,
Object* value,
WriteBarrierMode mode) {
// Adjust for the number of properties stored in the object.
index -= map()->inobject_properties();
ASSERT(index < 0);
int offset = map()->instance_size() + (index * kPointerSize);
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode);
return value;
}
void JSObject::InitializeBody(int object_size, Object* value) {
ASSERT(!value->IsHeapObject() || !GetHeap()->InNewSpace(value));
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
bool JSObject::HasFastProperties() {
return !properties()->IsDictionary();
}
int JSObject::MaxFastProperties() {
// Allow extra fast properties if the object has more than
// kMaxFastProperties in-object properties. When this is the case,
// it is very unlikely that the object is being used as a dictionary
// and there is a good chance that allowing more map transitions
// will be worth it.
return Max(map()->inobject_properties(), kMaxFastProperties);
}
void Struct::InitializeBody(int object_size) {
Object* value = GetHeap()->undefined_value();
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
bool Object::ToArrayIndex(uint32_t* index) {
if (IsSmi()) {
int value = Smi::cast(this)->value();
if (value < 0) return false;
*index = value;
return true;
}
if (IsHeapNumber()) {
double value = HeapNumber::cast(this)->value();
uint32_t uint_value = static_cast<uint32_t>(value);
if (value == static_cast<double>(uint_value)) {
*index = uint_value;
return true;
}
}
return false;
}
bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
if (!this->IsJSValue()) return false;
JSValue* js_value = JSValue::cast(this);
if (!js_value->value()->IsString()) return false;
String* str = String::cast(js_value->value());
if (index >= (uint32_t)str->length()) return false;
return true;
}
FixedArrayBase* FixedArrayBase::cast(Object* object) {
ASSERT(object->IsFixedArray() || object->IsFixedDoubleArray());
return reinterpret_cast<FixedArrayBase*>(object);
}
Object* FixedArray::get(int index) {
ASSERT(index >= 0 && index < this->length());
return READ_FIELD(this, kHeaderSize + index * kPointerSize);
}
void FixedArray::set(int index, Smi* value) {
ASSERT(map() != HEAP->fixed_cow_array_map());
ASSERT(index >= 0 && index < this->length());
ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
}
void FixedArray::set(int index, Object* value) {
ASSERT(map() != HEAP->fixed_cow_array_map());
ASSERT(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(this, offset);
}
inline bool FixedDoubleArray::is_the_hole_nan(double value) {
return BitCast<uint64_t, double>(value) == kHoleNanInt64;
}
inline double FixedDoubleArray::hole_nan_as_double() {
return BitCast<double, uint64_t>(kHoleNanInt64);
}
inline double FixedDoubleArray::canonical_not_the_hole_nan_as_double() {
ASSERT(BitCast<uint64_t>(OS::nan_value()) != kHoleNanInt64);
ASSERT((BitCast<uint64_t>(OS::nan_value()) >> 32) != kHoleNanUpper32);
return OS::nan_value();
}
double FixedDoubleArray::get_scalar(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map() &&
map() != HEAP->fixed_array_map());
ASSERT(index >= 0 && index < this->length());
double result = READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize);
ASSERT(!is_the_hole_nan(result));
return result;
}
MaybeObject* FixedDoubleArray::get(int index) {
if (is_the_hole(index)) {
return GetHeap()->the_hole_value();
} else {
return GetHeap()->NumberFromDouble(get_scalar(index));
}
}
void FixedDoubleArray::set(int index, double value) {
ASSERT(map() != HEAP->fixed_cow_array_map() &&
map() != HEAP->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
if (isnan(value)) value = canonical_not_the_hole_nan_as_double();
WRITE_DOUBLE_FIELD(this, offset, value);
}
void FixedDoubleArray::set_the_hole(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map() &&
map() != HEAP->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
}
bool FixedDoubleArray::is_the_hole(int index) {
int offset = kHeaderSize + index * kDoubleSize;
return is_the_hole_nan(READ_DOUBLE_FIELD(this, offset));
}
void FixedDoubleArray::Initialize(FixedDoubleArray* from) {
int old_length = from->length();
ASSERT(old_length < length());
if (old_length * kDoubleSize >= OS::kMinComplexMemCopy) {
OS::MemCopy(FIELD_ADDR(this, kHeaderSize),
FIELD_ADDR(from, kHeaderSize),
old_length * kDoubleSize);
} else {
for (int i = 0; i < old_length; ++i) {
set(i, from->get_scalar(i));
}
}
int offset = kHeaderSize + old_length * kDoubleSize;
for (int current = from->length(); current < length(); ++current) {
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
offset += kDoubleSize;
}
}
void FixedDoubleArray::Initialize(FixedArray* from) {
int old_length = from->length();
ASSERT(old_length < length());
for (int i = 0; i < old_length; i++) {
Object* hole_or_object = from->get(i);
if (hole_or_object->IsTheHole()) {
set_the_hole(i);
} else {
set(i, hole_or_object->Number());
}
}
int offset = kHeaderSize + old_length * kDoubleSize;
for (int current = from->length(); current < length(); ++current) {
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
offset += kDoubleSize;
}
}
void FixedDoubleArray::Initialize(NumberDictionary* from) {
int offset = kHeaderSize;
for (int current = 0; current < length(); ++current) {
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
offset += kDoubleSize;
}
for (int i = 0; i < from->Capacity(); i++) {
Object* key = from->KeyAt(i);
if (key->IsNumber()) {
uint32_t entry = static_cast<uint32_t>(key->Number());
set(entry, from->ValueAt(i)->Number());
}
}
}
WriteBarrierMode HeapObject::GetWriteBarrierMode(const AssertNoAllocation&) {
if (GetHeap()->InNewSpace(this)) return SKIP_WRITE_BARRIER;
return UPDATE_WRITE_BARRIER;
}
void FixedArray::set(int index,
Object* value,
WriteBarrierMode mode) {
ASSERT(map() != HEAP->fixed_cow_array_map());
ASSERT(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, mode);
}
void FixedArray::fast_set(FixedArray* array, int index, Object* value) {
ASSERT(array->map() != HEAP->raw_unchecked_fixed_cow_array_map());
ASSERT(index >= 0 && index < array->length());
ASSERT(!HEAP->InNewSpace(value));
WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
}
void FixedArray::set_undefined(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map());
set_undefined(GetHeap(), index);
}
void FixedArray::set_undefined(Heap* heap, int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!heap->InNewSpace(heap->undefined_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize,
heap->undefined_value());
}
void FixedArray::set_null(int index) {
set_null(GetHeap(), index);
}
void FixedArray::set_null(Heap* heap, int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!heap->InNewSpace(heap->null_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
}
void FixedArray::set_the_hole(int index) {
ASSERT(map() != HEAP->fixed_cow_array_map());
ASSERT(index >= 0 && index < this->length());
ASSERT(!HEAP->InNewSpace(HEAP->the_hole_value()));
WRITE_FIELD(this,
kHeaderSize + index * kPointerSize,
GetHeap()->the_hole_value());
}
void FixedArray::set_unchecked(int index, Smi* value) {
ASSERT(reinterpret_cast<Object*>(value)->IsSmi());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
}
void FixedArray::set_unchecked(Heap* heap,
int index,
Object* value,
WriteBarrierMode mode) {
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(heap, this, offset, mode);
}
void FixedArray::set_null_unchecked(Heap* heap, int index) {
ASSERT(index >= 0 && index < this->length());
ASSERT(!HEAP->InNewSpace(heap->null_value()));
WRITE_FIELD(this, kHeaderSize + index * kPointerSize, heap->null_value());
}
Object** FixedArray::data_start() {
return HeapObject::RawField(this, kHeaderSize);
}
bool DescriptorArray::IsEmpty() {
ASSERT(this->IsSmi() ||
this->length() > kFirstIndex ||
this == HEAP->empty_descriptor_array());
return this->IsSmi() || length() <= kFirstIndex;
}
int DescriptorArray::bit_field3_storage() {
Object* storage = READ_FIELD(this, kBitField3StorageOffset);
return Smi::cast(storage)->value();
}
void DescriptorArray::set_bit_field3_storage(int value) {
ASSERT(!IsEmpty());
WRITE_FIELD(this, kBitField3StorageOffset, Smi::FromInt(value));
}
void DescriptorArray::fast_swap(FixedArray* array, int first, int second) {
Object* tmp = array->get(first);
fast_set(array, first, array->get(second));
fast_set(array, second, tmp);
}
int DescriptorArray::Search(String* name) {
SLOW_ASSERT(IsSortedNoDuplicates());
// Check for empty descriptor array.
int nof = number_of_descriptors();
if (nof == 0) return kNotFound;
// Fast case: do linear search for small arrays.
const int kMaxElementsForLinearSearch = 8;
if (StringShape(name).IsSymbol() && nof < kMaxElementsForLinearSearch) {
return LinearSearch(name, nof);
}
// Slow case: perform binary search.
return BinarySearch(name, 0, nof - 1);
}
int DescriptorArray::SearchWithCache(String* name) {
int number = GetIsolate()->descriptor_lookup_cache()->Lookup(this, name);
if (number == DescriptorLookupCache::kAbsent) {
number = Search(name);
GetIsolate()->descriptor_lookup_cache()->Update(this, name, number);
}
return number;
}
String* DescriptorArray::GetKey(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return String::cast(get(ToKeyIndex(descriptor_number)));
}
Object* DescriptorArray::GetValue(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return GetContentArray()->get(ToValueIndex(descriptor_number));
}
Smi* DescriptorArray::GetDetails(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return Smi::cast(GetContentArray()->get(ToDetailsIndex(descriptor_number)));
}
PropertyType DescriptorArray::GetType(int descriptor_number) {
ASSERT(descriptor_number < number_of_descriptors());
return PropertyDetails(GetDetails(descriptor_number)).type();
}
int DescriptorArray::GetFieldIndex(int descriptor_number) {
return Descriptor::IndexFromValue(GetValue(descriptor_number));
}
JSFunction* DescriptorArray::GetConstantFunction(int descriptor_number) {
return JSFunction::cast(GetValue(descriptor_number));
}
Object* DescriptorArray::GetCallbacksObject(int descriptor_number) {
ASSERT(GetType(descriptor_number) == CALLBACKS);
return GetValue(descriptor_number);
}
AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) {
ASSERT(GetType(descriptor_number) == CALLBACKS);
Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number));
return reinterpret_cast<AccessorDescriptor*>(p->address());
}
bool DescriptorArray::IsProperty(int descriptor_number) {
return GetType(descriptor_number) < FIRST_PHANTOM_PROPERTY_TYPE;
}
bool DescriptorArray::IsTransition(int descriptor_number) {
PropertyType t = GetType(descriptor_number);
return t == MAP_TRANSITION || t == CONSTANT_TRANSITION ||
t == ELEMENTS_TRANSITION;
}
bool DescriptorArray::IsNullDescriptor(int descriptor_number) {
return GetType(descriptor_number) == NULL_DESCRIPTOR;
}
bool DescriptorArray::IsDontEnum(int descriptor_number) {
return PropertyDetails(GetDetails(descriptor_number)).IsDontEnum();
}
void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
desc->Init(GetKey(descriptor_number),
GetValue(descriptor_number),
PropertyDetails(GetDetails(descriptor_number)));
}
void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
// Range check.
ASSERT(descriptor_number < number_of_descriptors());
// Make sure none of the elements in desc are in new space.
ASSERT(!HEAP->InNewSpace(desc->GetKey()));
ASSERT(!HEAP->InNewSpace(desc->GetValue()));
fast_set(this, ToKeyIndex(descriptor_number), desc->GetKey());
FixedArray* content_array = GetContentArray();
fast_set(content_array, ToValueIndex(descriptor_number), desc->GetValue());
fast_set(content_array, ToDetailsIndex(descriptor_number),
desc->GetDetails().AsSmi());
}
void DescriptorArray::CopyFrom(int index, DescriptorArray* src, int src_index) {
Descriptor desc;
src->Get(src_index, &desc);
Set(index, &desc);
}
void DescriptorArray::Swap(int first, int second) {
fast_swap(this, ToKeyIndex(first), ToKeyIndex(second));
FixedArray* content_array = GetContentArray();
fast_swap(content_array, ToValueIndex(first), ToValueIndex(second));
fast_swap(content_array, ToDetailsIndex(first), ToDetailsIndex(second));
}
template<typename Shape, typename Key>
int HashTable<Shape, Key>::ComputeCapacity(int at_least_space_for) {
const int kMinCapacity = 32;
int capacity = RoundUpToPowerOf2(at_least_space_for * 2);
if (capacity < kMinCapacity) {
capacity = kMinCapacity; // Guarantee min capacity.
}
return capacity;
}
template<typename Shape, typename Key>
int HashTable<Shape, Key>::FindEntry(Key key) {
return FindEntry(GetIsolate(), key);
}
// Find entry for key otherwise return kNotFound.
template<typename Shape, typename Key>
int HashTable<Shape, Key>::FindEntry(Isolate* isolate, Key key) {
uint32_t capacity = Capacity();
uint32_t entry = FirstProbe(Shape::Hash(key), capacity);
uint32_t count = 1;
// EnsureCapacity will guarantee the hash table is never full.
while (true) {
Object* element = KeyAt(entry);
if (element == isolate->heap()->undefined_value()) break; // Empty entry.
if (element != isolate->heap()->null_value() &&
Shape::IsMatch(key, element)) return entry;
entry = NextProbe(entry, count++, capacity);
}
return kNotFound;
}
bool NumberDictionary::requires_slow_elements() {
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return false;
return 0 !=
(Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
}
uint32_t NumberDictionary::max_number_key() {
ASSERT(!requires_slow_elements());
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return 0;
uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
return value >> kRequiresSlowElementsTagSize;
}
void NumberDictionary::set_requires_slow_elements() {
set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
}
// ------------------------------------
// Cast operations
CAST_ACCESSOR(FixedArray)
CAST_ACCESSOR(FixedDoubleArray)
CAST_ACCESSOR(DescriptorArray)
CAST_ACCESSOR(DeoptimizationInputData)
CAST_ACCESSOR(DeoptimizationOutputData)
CAST_ACCESSOR(SymbolTable)
CAST_ACCESSOR(JSFunctionResultCache)
CAST_ACCESSOR(NormalizedMapCache)
CAST_ACCESSOR(CompilationCacheTable)
CAST_ACCESSOR(CodeCacheHashTable)
CAST_ACCESSOR(PolymorphicCodeCacheHashTable)
CAST_ACCESSOR(MapCache)
CAST_ACCESSOR(String)
CAST_ACCESSOR(SeqString)
CAST_ACCESSOR(SeqAsciiString)
CAST_ACCESSOR(SeqTwoByteString)
CAST_ACCESSOR(SlicedString)
CAST_ACCESSOR(ConsString)
CAST_ACCESSOR(ExternalString)
CAST_ACCESSOR(ExternalAsciiString)
CAST_ACCESSOR(ExternalTwoByteString)
CAST_ACCESSOR(JSReceiver)
CAST_ACCESSOR(JSObject)
CAST_ACCESSOR(Smi)
CAST_ACCESSOR(HeapObject)
CAST_ACCESSOR(HeapNumber)
CAST_ACCESSOR(Oddball)
CAST_ACCESSOR(JSGlobalPropertyCell)
CAST_ACCESSOR(SharedFunctionInfo)
CAST_ACCESSOR(Map)
CAST_ACCESSOR(JSFunction)
CAST_ACCESSOR(GlobalObject)
CAST_ACCESSOR(JSGlobalProxy)
CAST_ACCESSOR(JSGlobalObject)
CAST_ACCESSOR(JSBuiltinsObject)
CAST_ACCESSOR(Code)
CAST_ACCESSOR(JSArray)
CAST_ACCESSOR(JSRegExp)
CAST_ACCESSOR(JSProxy)
CAST_ACCESSOR(JSFunctionProxy)
CAST_ACCESSOR(JSWeakMap)
CAST_ACCESSOR(Foreign)
CAST_ACCESSOR(ByteArray)
CAST_ACCESSOR(ExternalArray)
CAST_ACCESSOR(ExternalByteArray)
CAST_ACCESSOR(ExternalUnsignedByteArray)
CAST_ACCESSOR(ExternalShortArray)
CAST_ACCESSOR(ExternalUnsignedShortArray)
CAST_ACCESSOR(ExternalIntArray)
CAST_ACCESSOR(ExternalUnsignedIntArray)
CAST_ACCESSOR(ExternalFloatArray)
CAST_ACCESSOR(ExternalDoubleArray)
CAST_ACCESSOR(ExternalPixelArray)
CAST_ACCESSOR(Struct)
#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
STRUCT_LIST(MAKE_STRUCT_CAST)
#undef MAKE_STRUCT_CAST
template <typename Shape, typename Key>
HashTable<Shape, Key>* HashTable<Shape, Key>::cast(Object* obj) {
ASSERT(obj->IsHashTable());
return reinterpret_cast<HashTable*>(obj);
}
SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SMI_ACCESSORS(String, length, kLengthOffset)
uint32_t String::hash_field() {
return READ_UINT32_FIELD(this, kHashFieldOffset);
}
void String::set_hash_field(uint32_t value) {
WRITE_UINT32_FIELD(this, kHashFieldOffset, value);
#if V8_HOST_ARCH_64_BIT
WRITE_UINT32_FIELD(this, kHashFieldOffset + kIntSize, 0);
#endif
}
bool String::Equals(String* other) {
if (other == this) return true;
if (StringShape(this).IsSymbol() && StringShape(other).IsSymbol()) {
return false;
}
return SlowEquals(other);
}
MaybeObject* String::TryFlatten(PretenureFlag pretenure) {
if (!StringShape(this).IsCons()) return this;
ConsString* cons = ConsString::cast(this);
if (cons->IsFlat()) return cons->first();
return SlowTryFlatten(pretenure);
}
String* String::TryFlattenGetString(PretenureFlag pretenure) {
MaybeObject* flat = TryFlatten(pretenure);
Object* successfully_flattened;
if (!flat->ToObject(&successfully_flattened)) return this;
return String::cast(successfully_flattened);
}
uint16_t String::Get(int index) {
ASSERT(index >= 0 && index < length());
switch (StringShape(this).full_representation_tag()) {
case kSeqStringTag | kAsciiStringTag:
return SeqAsciiString::cast(this)->SeqAsciiStringGet(index);
case kSeqStringTag | kTwoByteStringTag:
return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
case kConsStringTag | kAsciiStringTag:
case kConsStringTag | kTwoByteStringTag:
return ConsString::cast(this)->ConsStringGet(index);
case kExternalStringTag | kAsciiStringTag:
return ExternalAsciiString::cast(this)->ExternalAsciiStringGet(index);
case kExternalStringTag | kTwoByteStringTag:
return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
case kSlicedStringTag | kAsciiStringTag:
case kSlicedStringTag | kTwoByteStringTag:
return SlicedString::cast(this)->SlicedStringGet(index);
default:
break;
}
UNREACHABLE();
return 0;
}
void String::Set(int index, uint16_t value) {
ASSERT(index >= 0 && index < length());
ASSERT(StringShape(this).IsSequential());
return this->IsAsciiRepresentation()
? SeqAsciiString::cast(this)->SeqAsciiStringSet(index, value)
: SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
}
bool String::IsFlat() {
if (!StringShape(this).IsCons()) return true;
return ConsString::cast(this)->second()->length() == 0;
}
String* String::GetUnderlying() {
// Giving direct access to underlying string only makes sense if the
// wrapping string is already flattened.
ASSERT(this->IsFlat());
ASSERT(StringShape(this).IsIndirect());
STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset);
const int kUnderlyingOffset = SlicedString::kParentOffset;
return String::cast(READ_FIELD(this, kUnderlyingOffset));
}
uint16_t SeqAsciiString::SeqAsciiStringGet(int index) {
ASSERT(index >= 0 && index < length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void SeqAsciiString::SeqAsciiStringSet(int index, uint16_t value) {
ASSERT(index >= 0 && index < length() && value <= kMaxAsciiCharCode);
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
static_cast<byte>(value));
}
Address SeqAsciiString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
char* SeqAsciiString::GetChars() {
return reinterpret_cast<char*>(GetCharsAddress());
}
Address SeqTwoByteString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
uc16* SeqTwoByteString::GetChars() {
return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
}
uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
ASSERT(index >= 0 && index < length());
return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize);
}
void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
ASSERT(index >= 0 && index < length());
WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value);
}
int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
return SizeFor(length());
}
int SeqAsciiString::SeqAsciiStringSize(InstanceType instance_type) {
return SizeFor(length());
}
String* SlicedString::parent() {
return String::cast(READ_FIELD(this, kParentOffset));
}
void SlicedString::set_parent(String* parent) {
ASSERT(parent->IsSeqString());
WRITE_FIELD(this, kParentOffset, parent);
}
SMI_ACCESSORS(SlicedString, offset, kOffsetOffset)
String* ConsString::first() {
return String::cast(READ_FIELD(this, kFirstOffset));
}
Object* ConsString::unchecked_first() {
return READ_FIELD(this, kFirstOffset);
}
void ConsString::set_first(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kFirstOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, mode);
}
String* ConsString::second() {
return String::cast(READ_FIELD(this, kSecondOffset));
}
Object* ConsString::unchecked_second() {
return READ_FIELD(this, kSecondOffset);
}
void ConsString::set_second(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kSecondOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, mode);
}
ExternalAsciiString::Resource* ExternalAsciiString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalAsciiString::set_resource(
ExternalAsciiString::Resource* resource) {
*reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource;
}
ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalTwoByteString::set_resource(
ExternalTwoByteString::Resource* resource) {
*reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)) = resource;
}
void JSFunctionResultCache::MakeZeroSize() {
set_finger_index(kEntriesIndex);
set_size(kEntriesIndex);
}
void JSFunctionResultCache::Clear() {
int cache_size = size();
Object** entries_start = RawField(this, OffsetOfElementAt(kEntriesIndex));
MemsetPointer(entries_start,
GetHeap()->the_hole_value(),
cache_size - kEntriesIndex);
MakeZeroSize();
}
int JSFunctionResultCache::size() {
return Smi::cast(get(kCacheSizeIndex))->value();
}
void JSFunctionResultCache::set_size(int size) {
set(kCacheSizeIndex, Smi::FromInt(size));
}
int JSFunctionResultCache::finger_index() {
return Smi::cast(get(kFingerIndex))->value();
}
void JSFunctionResultCache::set_finger_index(int finger_index) {
set(kFingerIndex, Smi::FromInt(finger_index));
}
byte ByteArray::get(int index) {
ASSERT(index >= 0 && index < this->length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void ByteArray::set(int index, byte value) {
ASSERT(index >= 0 && index < this->length());
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}
int ByteArray::get_int(int index) {
ASSERT(index >= 0 && (index * kIntSize) < this->length());
return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
}
ByteArray* ByteArray::FromDataStartAddress(Address address) {
ASSERT_TAG_ALIGNED(address);
return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
}
Address ByteArray::GetDataStartAddress() {
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}
uint8_t* ExternalPixelArray::external_pixel_pointer() {
return reinterpret_cast<uint8_t*>(external_pointer());
}
uint8_t ExternalPixelArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
uint8_t* ptr = external_pixel_pointer();
return ptr[index];
}
MaybeObject* ExternalPixelArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalPixelArray::set(int index, uint8_t value) {
ASSERT((index >= 0) && (index < this->length()));
uint8_t* ptr = external_pixel_pointer();
ptr[index] = value;
}
void* ExternalArray::external_pointer() {
intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
return reinterpret_cast<void*>(ptr);
}
void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) {
intptr_t ptr = reinterpret_cast<intptr_t>(value);
WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
}
int8_t ExternalByteArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
int8_t* ptr = static_cast<int8_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalByteArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalByteArray::set(int index, int8_t value) {
ASSERT((index >= 0) && (index < this->length()));
int8_t* ptr = static_cast<int8_t*>(external_pointer());
ptr[index] = value;
}
uint8_t ExternalUnsignedByteArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalUnsignedByteArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalUnsignedByteArray::set(int index, uint8_t value) {
ASSERT((index >= 0) && (index < this->length()));
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
ptr[index] = value;
}
int16_t ExternalShortArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
int16_t* ptr = static_cast<int16_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalShortArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalShortArray::set(int index, int16_t value) {
ASSERT((index >= 0) && (index < this->length()));
int16_t* ptr = static_cast<int16_t*>(external_pointer());
ptr[index] = value;
}
uint16_t ExternalUnsignedShortArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalUnsignedShortArray::get(int index) {
return Smi::FromInt(static_cast<int>(get_scalar(index)));
}
void ExternalUnsignedShortArray::set(int index, uint16_t value) {
ASSERT((index >= 0) && (index < this->length()));
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
ptr[index] = value;
}
int32_t ExternalIntArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
int32_t* ptr = static_cast<int32_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalIntArray::get(int index) {
return GetHeap()->NumberFromInt32(get_scalar(index));
}
void ExternalIntArray::set(int index, int32_t value) {
ASSERT((index >= 0) && (index < this->length()));
int32_t* ptr = static_cast<int32_t*>(external_pointer());
ptr[index] = value;
}
uint32_t ExternalUnsignedIntArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalUnsignedIntArray::get(int index) {
return GetHeap()->NumberFromUint32(get_scalar(index));
}
void ExternalUnsignedIntArray::set(int index, uint32_t value) {
ASSERT((index >= 0) && (index < this->length()));
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
ptr[index] = value;
}
float ExternalFloatArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
float* ptr = static_cast<float*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalFloatArray::get(int index) {
return GetHeap()->NumberFromDouble(get_scalar(index));
}
void ExternalFloatArray::set(int index, float value) {
ASSERT((index >= 0) && (index < this->length()));
float* ptr = static_cast<float*>(external_pointer());
ptr[index] = value;
}
double ExternalDoubleArray::get_scalar(int index) {
ASSERT((index >= 0) && (index < this->length()));
double* ptr = static_cast<double*>(external_pointer());
return ptr[index];
}
MaybeObject* ExternalDoubleArray::get(int index) {
return GetHeap()->NumberFromDouble(get_scalar(index));
}
void ExternalDoubleArray::set(int index, double value) {
ASSERT((index >= 0) && (index < this->length()));
double* ptr = static_cast<double*>(external_pointer());
ptr[index] = value;
}
int Map::visitor_id() {
return READ_BYTE_FIELD(this, kVisitorIdOffset);
}
void Map::set_visitor_id(int id) {
ASSERT(0 <= id && id < 256);
WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id));
}
int Map::instance_size() {
return READ_BYTE_FIELD(this, kInstanceSizeOffset) << kPointerSizeLog2;
}
int Map::inobject_properties() {
return READ_BYTE_FIELD(this, kInObjectPropertiesOffset);
}
int Map::pre_allocated_property_fields() {
return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset);
}
int HeapObject::SizeFromMap(Map* map) {
int instance_size = map->instance_size();
if (instance_size != kVariableSizeSentinel) return instance_size;
// We can ignore the "symbol" bit becase it is only set for symbols
// and implies a string type.
int instance_type = static_cast<int>(map->instance_type()) & ~kIsSymbolMask;
// Only inline the most frequent cases.
if (instance_type == FIXED_ARRAY_TYPE) {
return FixedArray::BodyDescriptor::SizeOf(map, this);
}
if (instance_type == ASCII_STRING_TYPE) {
return SeqAsciiString::SizeFor(
reinterpret_cast<SeqAsciiString*>(this)->length());
}
if (instance_type == BYTE_ARRAY_TYPE) {
return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
}
if (instance_type == STRING_TYPE) {
return SeqTwoByteString::SizeFor(
reinterpret_cast<SeqTwoByteString*>(this)->length());
}
if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
return FixedDoubleArray::SizeFor(
reinterpret_cast<FixedDoubleArray*>(this)->length());
}
ASSERT(instance_type == CODE_TYPE);
return reinterpret_cast<Code*>(this)->CodeSize();
}
void Map::set_instance_size(int value) {
ASSERT_EQ(0, value & (kPointerSize - 1));
value >>= kPointerSizeLog2;
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInstanceSizeOffset, static_cast<byte>(value));
}
void Map::set_inobject_properties(int value) {
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value));
}
void Map::set_pre_allocated_property_fields(int value) {
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this,
kPreAllocatedPropertyFieldsOffset,
static_cast<byte>(value));
}
InstanceType Map::instance_type() {
return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
}
void Map::set_instance_type(InstanceType value) {
WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
}
int Map::unused_property_fields() {
return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
}
void Map::set_unused_property_fields(int value) {
WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
}
byte Map::bit_field() {
return READ_BYTE_FIELD(this, kBitFieldOffset);
}
void Map::set_bit_field(byte value) {
WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
}
byte Map::bit_field2() {
return READ_BYTE_FIELD(this, kBitField2Offset);
}
void Map::set_bit_field2(byte value) {
WRITE_BYTE_FIELD(this, kBitField2Offset, value);
}
void Map::set_non_instance_prototype(bool value) {
if (value) {
set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
} else {
set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
}
}
bool Map::has_non_instance_prototype() {
return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
}
void Map::set_function_with_prototype(bool value) {
if (value) {
set_bit_field2(bit_field2() | (1 << kFunctionWithPrototype));
} else {
set_bit_field2(bit_field2() & ~(1 << kFunctionWithPrototype));
}
}
bool Map::function_with_prototype() {
return ((1 << kFunctionWithPrototype) & bit_field2()) != 0;
}
void Map::set_is_access_check_needed(bool access_check_needed) {
if (access_check_needed) {
set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
} else {
set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
}
}
bool Map::is_access_check_needed() {
return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
}
void Map::set_is_extensible(bool value) {
if (value) {
set_bit_field2(bit_field2() | (1 << kIsExtensible));
} else {
set_bit_field2(bit_field2() & ~(1 << kIsExtensible));
}
}
bool Map::is_extensible() {
return ((1 << kIsExtensible) & bit_field2()) != 0;
}
void Map::set_attached_to_shared_function_info(bool value) {
if (value) {
set_bit_field2(bit_field2() | (1 << kAttachedToSharedFunctionInfo));
} else {
set_bit_field2(bit_field2() & ~(1 << kAttachedToSharedFunctionInfo));
}
}
bool Map::attached_to_shared_function_info() {
return ((1 << kAttachedToSharedFunctionInfo) & bit_field2()) != 0;
}
void Map::set_is_shared(bool value) {
if (value) {
set_bit_field3(bit_field3() | (1 << kIsShared));
} else {
set_bit_field3(bit_field3() & ~(1 << kIsShared));
}
}
bool Map::is_shared() {
return ((1 << kIsShared) & bit_field3()) != 0;
}
JSFunction* Map::unchecked_constructor() {
return reinterpret_cast<JSFunction*>(READ_FIELD(this, kConstructorOffset));
}
FixedArray* Map::unchecked_prototype_transitions() {
return reinterpret_cast<FixedArray*>(
READ_FIELD(this, kPrototypeTransitionsOffset));
}
Code::Flags Code::flags() {
return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
}
void Code::set_flags(Code::Flags flags) {
STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1);
// Make sure that all call stubs have an arguments count.
ASSERT((ExtractKindFromFlags(flags) != CALL_IC &&
ExtractKindFromFlags(flags) != KEYED_CALL_IC) ||
ExtractArgumentsCountFromFlags(flags) >= 0);
WRITE_INT_FIELD(this, kFlagsOffset, flags);
}
Code::Kind Code::kind() {
return ExtractKindFromFlags(flags());
}
InLoopFlag Code::ic_in_loop() {
return ExtractICInLoopFromFlags(flags());
}
InlineCacheState Code::ic_state() {
InlineCacheState result = ExtractICStateFromFlags(flags());
// Only allow uninitialized or debugger states for non-IC code
// objects. This is used in the debugger to determine whether or not
// a call to code object has been replaced with a debug break call.
ASSERT(is_inline_cache_stub() ||
result == UNINITIALIZED ||
result == DEBUG_BREAK ||
result == DEBUG_PREPARE_STEP_IN);
return result;
}
Code::ExtraICState Code::extra_ic_state() {
ASSERT(is_inline_cache_stub());
return ExtractExtraICStateFromFlags(flags());
}
PropertyType Code::type() {
return ExtractTypeFromFlags(flags());
}
int Code::arguments_count() {
ASSERT(is_call_stub() || is_keyed_call_stub() || kind() == STUB);
return ExtractArgumentsCountFromFlags(flags());
}
int Code::major_key() {
ASSERT(kind() == STUB ||
kind() == UNARY_OP_IC ||
kind() == BINARY_OP_IC ||
kind() == COMPARE_IC ||
kind() == TO_BOOLEAN_IC);
return READ_BYTE_FIELD(this, kStubMajorKeyOffset);
}
void Code::set_major_key(int major) {
ASSERT(kind() == STUB ||
kind() == UNARY_OP_IC ||
kind() == BINARY_OP_IC ||
kind() == COMPARE_IC ||
kind() == TO_BOOLEAN_IC);
ASSERT(0 <= major && major < 256);
WRITE_BYTE_FIELD(this, kStubMajorKeyOffset, major);
}
bool Code::optimizable() {
ASSERT(kind() == FUNCTION);
return READ_BYTE_FIELD(this, kOptimizableOffset) == 1;
}
void Code::set_optimizable(bool value) {
ASSERT(kind() == FUNCTION);
WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0);
}
bool Code::has_deoptimization_support() {
ASSERT(kind() == FUNCTION);
return READ_BYTE_FIELD(this, kHasDeoptimizationSupportOffset) == 1;
}
void Code::set_has_deoptimization_support(bool value) {
ASSERT(kind() == FUNCTION);
WRITE_BYTE_FIELD(this, kHasDeoptimizationSupportOffset, value ? 1 : 0);
}
int Code::allow_osr_at_loop_nesting_level() {
ASSERT(kind() == FUNCTION);
return READ_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset);
}
void Code::set_allow_osr_at_loop_nesting_level(int level) {
ASSERT(kind() == FUNCTION);
ASSERT(level >= 0 && level <= kMaxLoopNestingMarker);
WRITE_BYTE_FIELD(this, kAllowOSRAtLoopNestingLevelOffset, level);
}
unsigned Code::stack_slots() {
ASSERT(kind() == OPTIMIZED_FUNCTION);
return READ_UINT32_FIELD(this, kStackSlotsOffset);
}
void Code::set_stack_slots(unsigned slots) {
ASSERT(kind() == OPTIMIZED_FUNCTION);
WRITE_UINT32_FIELD(this, kStackSlotsOffset, slots);
}
unsigned Code::safepoint_table_offset() {
ASSERT(kind() == OPTIMIZED_FUNCTION);
return READ_UINT32_FIELD(this, kSafepointTableOffsetOffset);
}
void Code::set_safepoint_table_offset(unsigned offset) {
ASSERT(kind() == OPTIMIZED_FUNCTION);
ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
WRITE_UINT32_FIELD(this, kSafepointTableOffsetOffset, offset);
}
unsigned Code::stack_check_table_offset() {
ASSERT(kind() == FUNCTION);
return READ_UINT32_FIELD(this, kStackCheckTableOffsetOffset);
}
void Code::set_stack_check_table_offset(unsigned offset) {
ASSERT(kind() == FUNCTION);
ASSERT(IsAligned(offset, static_cast<unsigned>(kIntSize)));
WRITE_UINT32_FIELD(this, kStackCheckTableOffsetOffset, offset);
}
CheckType Code::check_type() {
ASSERT(is_call_stub() || is_keyed_call_stub());
byte type = READ_BYTE_FIELD(this, kCheckTypeOffset);
return static_cast<CheckType>(type);
}
void Code::set_check_type(CheckType value) {
ASSERT(is_call_stub() || is_keyed_call_stub());
WRITE_BYTE_FIELD(this, kCheckTypeOffset, value);
}
byte Code::unary_op_type() {
ASSERT(is_unary_op_stub());
return READ_BYTE_FIELD(this, kUnaryOpTypeOffset);
}
void Code::set_unary_op_type(byte value) {
ASSERT(is_unary_op_stub());
WRITE_BYTE_FIELD(this, kUnaryOpTypeOffset, value);
}
byte Code::binary_op_type() {
ASSERT(is_binary_op_stub());
return READ_BYTE_FIELD(this, kBinaryOpTypeOffset);
}
void Code::set_binary_op_type(byte value) {
ASSERT(is_binary_op_stub());
WRITE_BYTE_FIELD(this, kBinaryOpTypeOffset, value);
}
byte Code::binary_op_result_type() {
ASSERT(is_binary_op_stub());
return READ_BYTE_FIELD(this, kBinaryOpReturnTypeOffset);
}
void Code::set_binary_op_result_type(byte value) {
ASSERT(is_binary_op_stub());
WRITE_BYTE_FIELD(this, kBinaryOpReturnTypeOffset, value);
}
byte Code::compare_state() {
ASSERT(is_compare_ic_stub());
return READ_BYTE_FIELD(this, kCompareStateOffset);
}
void Code::set_compare_state(byte value) {
ASSERT(is_compare_ic_stub());
WRITE_BYTE_FIELD(this, kCompareStateOffset, value);
}
byte Code::to_boolean_state() {
ASSERT(is_to_boolean_ic_stub());
return READ_BYTE_FIELD(this, kToBooleanTypeOffset);
}
void Code::set_to_boolean_state(byte value) {
ASSERT(is_to_boolean_ic_stub());
WRITE_BYTE_FIELD(this, kToBooleanTypeOffset, value);
}
bool Code::is_inline_cache_stub() {
Kind kind = this->kind();
return kind >= FIRST_IC_KIND && kind <= LAST_IC_KIND;
}
Code::Flags Code::ComputeFlags(Kind kind,
InLoopFlag in_loop,
InlineCacheState ic_state,
ExtraICState extra_ic_state,
PropertyType type,
int argc,
InlineCacheHolderFlag holder) {
// Extra IC state is only allowed for call IC stubs or for store IC
// stubs.
ASSERT(extra_ic_state == kNoExtraICState ||
(kind == CALL_IC) ||
(kind == STORE_IC) ||
(kind == KEYED_STORE_IC));
// Compute the bit mask.
int bits = KindField::encode(kind)
| ICInLoopField::encode(in_loop)
| ICStateField::encode(ic_state)
| TypeField::encode(type)
| ExtraICStateField::encode(extra_ic_state)
| (argc << kFlagsArgumentsCountShift)
| CacheHolderField::encode(holder);
return static_cast<Flags>(bits);
}
Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
PropertyType type,
ExtraICState extra_ic_state,
InlineCacheHolderFlag holder,
InLoopFlag in_loop,
int argc) {
return ComputeFlags(
kind, in_loop, MONOMORPHIC, extra_ic_state, type, argc, holder);
}
Code::Kind Code::ExtractKindFromFlags(Flags flags) {
return KindField::decode(flags);
}
InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
return ICStateField::decode(flags);
}
Code::ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) {
return ExtraICStateField::decode(flags);
}
InLoopFlag Code::ExtractICInLoopFromFlags(Flags flags) {
return ICInLoopField::decode(flags);
}
PropertyType Code::ExtractTypeFromFlags(Flags flags) {
return TypeField::decode(flags);
}
int Code::ExtractArgumentsCountFromFlags(Flags flags) {
return (flags & kFlagsArgumentsCountMask) >> kFlagsArgumentsCountShift;
}
InlineCacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) {
return CacheHolderField::decode(flags);
}
Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
int bits = flags & ~TypeField::kMask;
return static_cast<Flags>(bits);
}
Code* Code::GetCodeFromTargetAddress(Address address) {
HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
// GetCodeFromTargetAddress might be called when marking objects during mark
// sweep. reinterpret_cast is therefore used instead of the more appropriate
// Code::cast. Code::cast does not work when the object's map is
// marked.
Code* result = reinterpret_cast<Code*>(code);
return result;
}
Isolate* Map::isolate() {
return heap()->isolate();
}
Heap* Map::heap() {
// NOTE: address() helper is not used to save one instruction.
Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_;
ASSERT(heap != NULL);
ASSERT(heap->isolate() == Isolate::Current());
return heap;
}
Heap* Code::heap() {
// NOTE: address() helper is not used to save one instruction.
Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_;
ASSERT(heap != NULL);
ASSERT(heap->isolate() == Isolate::Current());
return heap;
}
Isolate* Code::isolate() {
return heap()->isolate();
}
Heap* JSGlobalPropertyCell::heap() {
// NOTE: address() helper is not used to save one instruction.
Heap* heap = Page::FromAddress(reinterpret_cast<Address>(this))->heap_;
ASSERT(heap != NULL);
ASSERT(heap->isolate() == Isolate::Current());
return heap;
}
Isolate* JSGlobalPropertyCell::isolate() {
return heap()->isolate();
}
Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
return HeapObject::
FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize);
}
Object* Map::prototype() {
return READ_FIELD(this, kPrototypeOffset);
}
void Map::set_prototype(Object* value, WriteBarrierMode mode) {
ASSERT(value->IsNull() || value->IsJSReceiver());
WRITE_FIELD(this, kPrototypeOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, mode);
}
MaybeObject* Map::GetFastElementsMap() {
if (has_fast_elements()) return this;
Object* obj;
{ MaybeObject* maybe_obj = CopyDropTransitions();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
Map* new_map = Map::cast(obj);
new_map->set_elements_kind(FAST_ELEMENTS);
isolate()->counters()->map_to_fast_elements()->Increment();
return new_map;
}
MaybeObject* Map::GetFastDoubleElementsMap() {
if (has_fast_double_elements()) return this;
Object* obj;
{ MaybeObject* maybe_obj = CopyDropTransitions();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
Map* new_map = Map::cast(obj);
new_map->set_elements_kind(FAST_DOUBLE_ELEMENTS);
isolate()->counters()->map_to_fast_double_elements()->Increment();
return new_map;
}
MaybeObject* Map::GetSlowElementsMap() {
if (!has_fast_elements() && !has_fast_double_elements()) return this;
Object* obj;
{ MaybeObject* maybe_obj = CopyDropTransitions();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
Map* new_map = Map::cast(obj);
new_map->set_elements_kind(DICTIONARY_ELEMENTS);
isolate()->counters()->map_to_slow_elements()->Increment();
return new_map;
}
DescriptorArray* Map::instance_descriptors() {
Object* object = READ_FIELD(this, kInstanceDescriptorsOrBitField3Offset);
if (object->IsSmi()) {
return HEAP->empty_descriptor_array();
} else {
return DescriptorArray::cast(object);
}
}
void Map::init_instance_descriptors() {
WRITE_FIELD(this, kInstanceDescriptorsOrBitField3Offset, Smi::FromInt(0));
}
void Map::clear_instance_descriptors() {
Object* object = READ_FIELD(this,
kInstanceDescriptorsOrBitField3Offset);
if (!object->IsSmi()) {
WRITE_FIELD(
this,
kInstanceDescriptorsOrBitField3Offset,
Smi::FromInt(DescriptorArray::cast(object)->bit_field3_storage()));
}
}
void Map::set_instance_descriptors(DescriptorArray* value,
WriteBarrierMode mode) {
Object* object = READ_FIELD(this,
kInstanceDescriptorsOrBitField3Offset);
if (value == isolate()->heap()->empty_descriptor_array()) {
clear_instance_descriptors();
return;
} else {
if (object->IsSmi()) {
value->set_bit_field3_storage(Smi::cast(object)->value());
} else {
value->set_bit_field3_storage(
DescriptorArray::cast(object)->bit_field3_storage());
}
}
ASSERT(!is_shared());
WRITE_FIELD(this, kInstanceDescriptorsOrBitField3Offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(),
this,
kInstanceDescriptorsOrBitField3Offset,
mode);
}
int Map::bit_field3() {
Object* object = READ_FIELD(this,
kInstanceDescriptorsOrBitField3Offset);
if (object->IsSmi()) {
return Smi::cast(object)->value();
} else {
return DescriptorArray::cast(object)->bit_field3_storage();
}
}
void Map::set_bit_field3(int value) {
ASSERT(Smi::IsValid(value));
Object* object = READ_FIELD(this,
kInstanceDescriptorsOrBitField3Offset);
if (object->IsSmi()) {
WRITE_FIELD(this,
kInstanceDescriptorsOrBitField3Offset,
Smi::FromInt(value));
} else {
DescriptorArray::cast(object)->set_bit_field3_storage(value);
}
}
ACCESSORS(Map, code_cache, Object, kCodeCacheOffset)
ACCESSORS(Map, prototype_transitions, FixedArray, kPrototypeTransitionsOffset)
ACCESSORS(Map, constructor, Object, kConstructorOffset)
ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
ACCESSORS(JSFunction, literals, FixedArray, kLiteralsOffset)
ACCESSORS_GCSAFE(JSFunction, next_function_link, Object,
kNextFunctionLinkOffset)
ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset)
ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset)
ACCESSORS(GlobalObject, global_receiver, JSObject, kGlobalReceiverOffset)
ACCESSORS(JSGlobalProxy, context, Object, kContextOffset)
ACCESSORS(AccessorInfo, getter, Object, kGetterOffset)
ACCESSORS(AccessorInfo, setter, Object, kSetterOffset)
ACCESSORS(AccessorInfo, data, Object, kDataOffset)
ACCESSORS(AccessorInfo, name, Object, kNameOffset)
ACCESSORS(AccessorInfo, flag, Smi, kFlagOffset)
ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
ACCESSORS(FunctionTemplateInfo, property_accessors, Object,
kPropertyAccessorsOffset)
ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
kPrototypeTemplateOffset)
ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
kNamedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
kIndexedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, instance_template, Object,
kInstanceTemplateOffset)
ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
kInstanceCallHandlerOffset)
ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
kAccessCheckInfoOffset)
ACCESSORS(FunctionTemplateInfo, flag, Smi, kFlagOffset)
ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
kInternalFieldCountOffset)
ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset)
ACCESSORS(SignatureInfo, args, Object, kArgsOffset)
ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
ACCESSORS(Script, source, Object, kSourceOffset)
ACCESSORS(Script, name, Object, kNameOffset)
ACCESSORS(Script, id, Object, kIdOffset)
ACCESSORS(Script, line_offset, Smi, kLineOffsetOffset)
ACCESSORS(Script, column_offset, Smi, kColumnOffsetOffset)
ACCESSORS(Script, data, Object, kDataOffset)
ACCESSORS(Script, context_data, Object, kContextOffset)
ACCESSORS(Script, wrapper, Foreign, kWrapperOffset)
ACCESSORS(Script, type, Smi, kTypeOffset)
ACCESSORS(Script, compilation_type, Smi, kCompilationTypeOffset)
ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset)
ACCESSORS(Script, eval_from_instructions_offset, Smi,
kEvalFrominstructionsOffsetOffset)
#ifdef ENABLE_DEBUGGER_SUPPORT
ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex)
ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex)
ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
ACCESSORS(BreakPointInfo, code_position, Smi, kCodePositionIndex)
ACCESSORS(BreakPointInfo, source_position, Smi, kSourcePositionIndex)
ACCESSORS(BreakPointInfo, statement_position, Smi, kStatementPositionIndex)
ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
#endif
ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
ACCESSORS_GCSAFE(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset)
ACCESSORS_GCSAFE(SharedFunctionInfo, initial_map, Object, kInitialMapOffset)
ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
kInstanceClassNameOffset)
ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset)
ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset)
ACCESSORS(SharedFunctionInfo, this_property_assignments, Object,
kThisPropertyAssignmentsOffset)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
kHiddenPrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
kNeedsAccessCheckBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype,
kReadOnlyPrototypeBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
kIsExpressionBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
kIsTopLevelBit)
BOOL_GETTER(SharedFunctionInfo,
compiler_hints,
has_only_simple_this_property_assignments,
kHasOnlySimpleThisPropertyAssignments)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
allows_lazy_compilation,
kAllowLazyCompilation)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
uses_arguments,
kUsesArguments)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
has_duplicate_parameters,
kHasDuplicateParameters)
#if V8_HOST_ARCH_32_BIT
SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count,
kFormalParameterCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
kExpectedNofPropertiesOffset)
SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type,
kStartPositionAndTypeOffset)
SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
SMI_ACCESSORS(SharedFunctionInfo, function_token_position,
kFunctionTokenPositionOffset)
SMI_ACCESSORS(SharedFunctionInfo, compiler_hints,
kCompilerHintsOffset)
SMI_ACCESSORS(SharedFunctionInfo, this_property_assignments_count,
kThisPropertyAssignmentsCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, opt_count, kOptCountOffset)
#else
#define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \
STATIC_ASSERT(holder::offset % kPointerSize == 0); \
int holder::name() { \
int value = READ_INT_FIELD(this, offset); \
ASSERT(kHeapObjectTag == 1); \
ASSERT((value & kHeapObjectTag) == 0); \
return value >> 1; \
} \
void holder::set_##name(int value) { \
ASSERT(kHeapObjectTag == 1); \
ASSERT((value & 0xC0000000) == 0xC0000000 || \
(value & 0xC0000000) == 0x000000000); \
WRITE_INT_FIELD(this, \
offset, \
(value << 1) & ~kHeapObjectTag); \
}
#define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \
STATIC_ASSERT(holder::offset % kPointerSize == kIntSize); \
INT_ACCESSORS(holder, name, offset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
formal_parameter_count,
kFormalParameterCountOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
expected_nof_properties,
kExpectedNofPropertiesOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
start_position_and_type,
kStartPositionAndTypeOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
function_token_position,
kFunctionTokenPositionOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
compiler_hints,
kCompilerHintsOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
this_property_assignments_count,
kThisPropertyAssignmentsCountOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, opt_count, kOptCountOffset)
#endif
int SharedFunctionInfo::construction_count() {
return READ_BYTE_FIELD(this, kConstructionCountOffset);
}
void SharedFunctionInfo::set_construction_count(int value) {
ASSERT(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kConstructionCountOffset, static_cast<byte>(value));
}
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
live_objects_may_exist,
kLiveObjectsMayExist)
bool SharedFunctionInfo::IsInobjectSlackTrackingInProgress() {
return initial_map() != HEAP->undefined_value();
}
BOOL_GETTER(SharedFunctionInfo,
compiler_hints,
optimization_disabled,
kOptimizationDisabled)
void SharedFunctionInfo::set_optimization_disabled(bool disable) {
set_compiler_hints(BooleanBit::set(compiler_hints(),
kOptimizationDisabled,
disable));
// If disabling optimizations we reflect that in the code object so
// it will not be counted as optimizable code.
if ((code()->kind() == Code::FUNCTION) && disable) {
code()->set_optimizable(false);
}
}
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, strict_mode,
kStrictModeFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints,
name_should_print_as_anonymous,
kNameShouldPrintAsAnonymous)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous)
ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset)
ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset)
ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset)
bool Script::HasValidSource() {
Object* src = this->source();
if (!src->IsString()) return true;
String* src_str = String::cast(src);
if (!StringShape(src_str).IsExternal()) return true;
if (src_str->IsAsciiRepresentation()) {
return ExternalAsciiString::cast(src)->resource() != NULL;
} else if (src_str->IsTwoByteRepresentation()) {
return ExternalTwoByteString::cast(src)->resource() != NULL;
}
return true;
}
void SharedFunctionInfo::DontAdaptArguments() {
ASSERT(code()->kind() == Code::BUILTIN);
set_formal_parameter_count(kDontAdaptArgumentsSentinel);
}
int SharedFunctionInfo::start_position() {
return start_position_and_type() >> kStartPositionShift;
}
void SharedFunctionInfo::set_start_position(int start_position) {
set_start_position_and_type((start_position << kStartPositionShift)
| (start_position_and_type() & ~kStartPositionMask));
}
Code* SharedFunctionInfo::code() {
return Code::cast(READ_FIELD(this, kCodeOffset));
}
Code* SharedFunctionInfo::unchecked_code() {
return reinterpret_cast<Code*>(READ_FIELD(this, kCodeOffset));
}
void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kCodeOffset, value);
ASSERT(!Isolate::Current()->heap()->InNewSpace(value));
}
SerializedScopeInfo* SharedFunctionInfo::scope_info() {
return reinterpret_cast<SerializedScopeInfo*>(
READ_FIELD(this, kScopeInfoOffset));
}
void SharedFunctionInfo::set_scope_info(SerializedScopeInfo* value,
WriteBarrierMode mode) {
WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value));
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kScopeInfoOffset, mode);
}
Smi* SharedFunctionInfo::deopt_counter() {
return reinterpret_cast<Smi*>(READ_FIELD(this, kDeoptCounterOffset));
}
void SharedFunctionInfo::set_deopt_counter(Smi* value) {
WRITE_FIELD(this, kDeoptCounterOffset, value);
}
bool SharedFunctionInfo::is_compiled() {
return code() !=
Isolate::Current()->builtins()->builtin(Builtins::kLazyCompile);
}
bool SharedFunctionInfo::IsApiFunction() {
return function_data()->IsFunctionTemplateInfo();
}
FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() {
ASSERT(IsApiFunction());
return FunctionTemplateInfo::cast(function_data());
}
bool SharedFunctionInfo::HasBuiltinFunctionId() {
return function_data()->IsSmi();
}
BuiltinFunctionId SharedFunctionInfo::builtin_function_id() {
ASSERT(HasBuiltinFunctionId());
return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value());
}
int SharedFunctionInfo::code_age() {
return (compiler_hints() >> kCodeAgeShift) & kCodeAgeMask;
}
void SharedFunctionInfo::set_code_age(int code_age) {
set_compiler_hints(compiler_hints() |
((code_age & kCodeAgeMask) << kCodeAgeShift));
}
bool SharedFunctionInfo::has_deoptimization_support() {
Code* code = this->code();
return code->kind() == Code::FUNCTION && code->has_deoptimization_support();
}
bool JSFunction::IsBuiltin() {
return context()->global()->IsJSBuiltinsObject();
}
bool JSFunction::NeedsArgumentsAdaption() {
return shared()->formal_parameter_count() !=
SharedFunctionInfo::kDontAdaptArgumentsSentinel;
}
bool JSFunction::IsOptimized() {
return code()->kind() == Code::OPTIMIZED_FUNCTION;
}
bool JSFunction::IsOptimizable() {
return code()->kind() == Code::FUNCTION && code()->optimizable();
}
bool JSFunction::IsMarkedForLazyRecompilation() {
return code() == GetIsolate()->builtins()->builtin(Builtins::kLazyRecompile);
}
Code* JSFunction::code() {
return Code::cast(unchecked_code());
}
Code* JSFunction::unchecked_code() {
return reinterpret_cast<Code*>(
Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset)));
}
void JSFunction::set_code(Code* value) {
// Skip the write barrier because code is never in new space.
ASSERT(!HEAP->InNewSpace(value));
Address entry = value->entry();
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
}
void JSFunction::ReplaceCode(Code* code) {
bool was_optimized = IsOptimized();
bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION;
set_code(code);
// Add/remove the function from the list of optimized functions for this
// context based on the state change.
if (!was_optimized && is_optimized) {
context()->global_context()->AddOptimizedFunction(this);
}
if (was_optimized && !is_optimized) {
context()->global_context()->RemoveOptimizedFunction(this);
}
}
Context* JSFunction::context() {
return Context::cast(READ_FIELD(this, kContextOffset));
}
Object* JSFunction::unchecked_context() {
return READ_FIELD(this, kContextOffset);
}
SharedFunctionInfo* JSFunction::unchecked_shared() {
return reinterpret_cast<SharedFunctionInfo*>(
READ_FIELD(this, kSharedFunctionInfoOffset));
}
void JSFunction::set_context(Object* value) {
ASSERT(value->IsUndefined() || value->IsContext());
WRITE_FIELD(this, kContextOffset, value);
WRITE_BARRIER(this, kContextOffset);
}
ACCESSORS(JSFunction, prototype_or_initial_map, Object,
kPrototypeOrInitialMapOffset)
Map* JSFunction::initial_map() {
return Map::cast(prototype_or_initial_map());
}
void JSFunction::set_initial_map(Map* value) {
set_prototype_or_initial_map(value);
}
bool JSFunction::has_initial_map() {
return prototype_or_initial_map()->IsMap();
}
bool JSFunction::has_instance_prototype() {
return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
}
bool JSFunction::has_prototype() {
return map()->has_non_instance_prototype() || has_instance_prototype();
}
Object* JSFunction::instance_prototype() {
ASSERT(has_instance_prototype());
if (has_initial_map()) return initial_map()->prototype();
// When there is no initial map and the prototype is a JSObject, the
// initial map field is used for the prototype field.
return prototype_or_initial_map();
}
Object* JSFunction::prototype() {
ASSERT(has_prototype());
// If the function's prototype property has been set to a non-JSObject
// value, that value is stored in the constructor field of the map.
if (map()->has_non_instance_prototype()) return map()->constructor();
return instance_prototype();
}
bool JSFunction::should_have_prototype() {
return map()->function_with_prototype();
}
bool JSFunction::is_compiled() {
return code() != GetIsolate()->builtins()->builtin(Builtins::kLazyCompile);
}
int JSFunction::NumberOfLiterals() {
return literals()->length();
}
Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) {
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
return READ_FIELD(this, OffsetOfFunctionWithId(id));
}
void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id,
Object* value) {
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
WRITE_FIELD(this, OffsetOfFunctionWithId(id), value);
WRITE_BARRIER(this, OffsetOfFunctionWithId(id));
}
Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) {
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id)));
}
void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id,
Code* value) {
ASSERT(id < kJSBuiltinsCount); // id is unsigned.
WRITE_FIELD(this, OffsetOfCodeWithId(id), value);
ASSERT(!HEAP->InNewSpace(value));
}
ACCESSORS(JSProxy, handler, Object, kHandlerOffset)
ACCESSORS(JSProxy, padding, Object, kPaddingOffset)
ACCESSORS(JSWeakMap, table, ObjectHashTable, kTableOffset)
ACCESSORS_GCSAFE(JSWeakMap, next, Object, kNextOffset)
ObjectHashTable* JSWeakMap::unchecked_table() {
return reinterpret_cast<ObjectHashTable*>(READ_FIELD(this, kTableOffset));
}
Address Foreign::address() {
return AddressFrom<Address>(READ_INTPTR_FIELD(this, kAddressOffset));
}
void Foreign::set_address(Address value) {
WRITE_INTPTR_FIELD(this, kAddressOffset, OffsetFrom(value));
}
ACCESSORS(JSValue, value, Object, kValueOffset)
JSValue* JSValue::cast(Object* obj) {
ASSERT(obj->IsJSValue());
ASSERT(HeapObject::cast(obj)->Size() == JSValue::kSize);
return reinterpret_cast<JSValue*>(obj);
}
ACCESSORS(JSMessageObject, type, String, kTypeOffset)
ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset)
ACCESSORS(JSMessageObject, script, Object, kScriptOffset)
ACCESSORS(JSMessageObject, stack_trace, Object, kStackTraceOffset)
ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset)
SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset)
SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset)
JSMessageObject* JSMessageObject::cast(Object* obj) {
ASSERT(obj->IsJSMessageObject());
ASSERT(HeapObject::cast(obj)->Size() == JSMessageObject::kSize);
return reinterpret_cast<JSMessageObject*>(obj);
}
INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset)
ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset)
ACCESSORS(Code, next_code_flushing_candidate,
Object, kNextCodeFlushingCandidateOffset)
byte* Code::instruction_start() {
return FIELD_ADDR(this, kHeaderSize);
}
byte* Code::instruction_end() {
return instruction_start() + instruction_size();
}
int Code::body_size() {
return RoundUp(instruction_size(), kObjectAlignment);
}
FixedArray* Code::unchecked_deoptimization_data() {
return reinterpret_cast<FixedArray*>(
READ_FIELD(this, kDeoptimizationDataOffset));
}
ByteArray* Code::unchecked_relocation_info() {
return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
}
byte* Code::relocation_start() {
return unchecked_relocation_info()->GetDataStartAddress();
}
int Code::relocation_size() {
return unchecked_relocation_info()->length();
}
byte* Code::entry() {
return instruction_start();
}
bool Code::contains(byte* pc) {
return (instruction_start() <= pc) &&
(pc <= instruction_start() + instruction_size());
}
ACCESSORS(JSArray, length, Object, kLengthOffset)
ACCESSORS(JSRegExp, data, Object, kDataOffset)
JSRegExp::Type JSRegExp::TypeTag() {
Object* data = this->data();
if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
return static_cast<JSRegExp::Type>(smi->value());
}
JSRegExp::Type JSRegExp::TypeTagUnchecked() {
Smi* smi = Smi::cast(DataAtUnchecked(kTagIndex));
return static_cast<JSRegExp::Type>(smi->value());
}
int JSRegExp::CaptureCount() {
switch (TypeTag()) {
case ATOM:
return 0;
case IRREGEXP:
return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
default:
UNREACHABLE();
return -1;
}
}
JSRegExp::Flags JSRegExp::GetFlags() {
ASSERT(this->data()->IsFixedArray());
Object* data = this->data();
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
return Flags(smi->value());
}
String* JSRegExp::Pattern() {
ASSERT(this->data()->IsFixedArray());
Object* data = this->data();
String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex));
return pattern;
}
Object* JSRegExp::DataAt(int index) {
ASSERT(TypeTag() != NOT_COMPILED);
return FixedArray::cast(data())->get(index);
}
Object* JSRegExp::DataAtUnchecked(int index) {
FixedArray* fa = reinterpret_cast<FixedArray*>(data());
int offset = FixedArray::kHeaderSize + index * kPointerSize;
return READ_FIELD(fa, offset);
}
void JSRegExp::SetDataAt(int index, Object* value) {
ASSERT(TypeTag() != NOT_COMPILED);
ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
FixedArray::cast(data())->set(index, value);
}
void JSRegExp::SetDataAtUnchecked(int index, Object* value, Heap* heap) {
ASSERT(index >= kDataIndex); // Only implementation data can be set this way.
FixedArray* fa = reinterpret_cast<FixedArray*>(data());
if (value->IsSmi()) {
fa->set_unchecked(index, Smi::cast(value));
} else {
fa->set_unchecked(heap, index, value, SKIP_WRITE_BARRIER);
}
}
ElementsKind JSObject::GetElementsKind() {
ElementsKind kind = map()->elements_kind();
ASSERT((kind == FAST_ELEMENTS &&
(elements()->map() == GetHeap()->fixed_array_map() ||
elements()->map() == GetHeap()->fixed_cow_array_map())) ||
(kind == FAST_DOUBLE_ELEMENTS &&
elements()->IsFixedDoubleArray()) ||
(kind == DICTIONARY_ELEMENTS &&
elements()->IsFixedArray() &&
elements()->IsDictionary()) ||
(kind > DICTIONARY_ELEMENTS));
return kind;
}
ElementsAccessor* JSObject::GetElementsAccessor() {
return ElementsAccessor::ForKind(GetElementsKind());
}
bool JSObject::HasFastElements() {
return GetElementsKind() == FAST_ELEMENTS;
}
bool JSObject::HasFastDoubleElements() {
return GetElementsKind() == FAST_DOUBLE_ELEMENTS;
}
bool JSObject::HasDictionaryElements() {
return GetElementsKind() == DICTIONARY_ELEMENTS;
}
bool JSObject::HasExternalArrayElements() {
HeapObject* array = elements();
ASSERT(array != NULL);
return array->IsExternalArray();
}
#define EXTERNAL_ELEMENTS_CHECK(name, type) \
bool JSObject::HasExternal##name##Elements() { \
HeapObject* array = elements(); \
ASSERT(array != NULL); \
if (!array->IsHeapObject()) \
return false; \
return array->map()->instance_type() == type; \
}
EXTERNAL_ELEMENTS_CHECK(Byte, EXTERNAL_BYTE_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(UnsignedByte, EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Short, EXTERNAL_SHORT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(UnsignedShort,
EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Int, EXTERNAL_INT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(UnsignedInt,
EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Float,
EXTERNAL_FLOAT_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Double,
EXTERNAL_DOUBLE_ARRAY_TYPE)
EXTERNAL_ELEMENTS_CHECK(Pixel, EXTERNAL_PIXEL_ARRAY_TYPE)
bool JSObject::HasNamedInterceptor() {
return map()->has_named_interceptor();
}
bool JSObject::HasIndexedInterceptor() {
return map()->has_indexed_interceptor();
}
bool JSObject::AllowsSetElementsLength() {
bool result = elements()->IsFixedArray() ||
elements()->IsFixedDoubleArray();
ASSERT(result == !HasExternalArrayElements());
return result;
}
MaybeObject* JSObject::EnsureWritableFastElements() {
ASSERT(HasFastElements());
FixedArray* elems = FixedArray::cast(elements());
Isolate* isolate = GetIsolate();
if (elems->map() != isolate->heap()->fixed_cow_array_map()) return elems;
Object* writable_elems;
{ MaybeObject* maybe_writable_elems = isolate->heap()->CopyFixedArrayWithMap(
elems, isolate->heap()->fixed_array_map());
if (!maybe_writable_elems->ToObject(&writable_elems)) {
return maybe_writable_elems;
}
}
set_elements(FixedArray::cast(writable_elems));
isolate->counters()->cow_arrays_converted()->Increment();
return writable_elems;
}
StringDictionary* JSObject::property_dictionary() {
ASSERT(!HasFastProperties());
return StringDictionary::cast(properties());
}
NumberDictionary* JSObject::element_dictionary() {
ASSERT(HasDictionaryElements());
return NumberDictionary::cast(elements());
}
bool String::IsHashFieldComputed(uint32_t field) {
return (field & kHashNotComputedMask) == 0;
}
bool String::HasHashCode() {
return IsHashFieldComputed(hash_field());
}
uint32_t String::Hash() {
// Fast case: has hash code already been computed?
uint32_t field = hash_field();
if (IsHashFieldComputed(field)) return field >> kHashShift;
// Slow case: compute hash code and set it.
return ComputeAndSetHash();
}
StringHasher::StringHasher(int length)
: length_(length),
raw_running_hash_(0),
array_index_(0),
is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
is_first_char_(true),
is_valid_(true) { }
bool StringHasher::has_trivial_hash() {
return length_ > String::kMaxHashCalcLength;
}
void StringHasher::AddCharacter(uc32 c) {
// Use the Jenkins one-at-a-time hash function to update the hash
// for the given character.
raw_running_hash_ += c;
raw_running_hash_ += (raw_running_hash_ << 10);
raw_running_hash_ ^= (raw_running_hash_ >> 6);
// Incremental array index computation.
if (is_array_index_) {
if (c < '0' || c > '9') {
is_array_index_ = false;
} else {
int d = c - '0';
if (is_first_char_) {
is_first_char_ = false;
if (c == '0' && length_ > 1) {
is_array_index_ = false;
return;
}
}
if (array_index_ > 429496729U - ((d + 2) >> 3)) {
is_array_index_ = false;
} else {
array_index_ = array_index_ * 10 + d;
}
}
}
}
void StringHasher::AddCharacterNoIndex(uc32 c) {
ASSERT(!is_array_index());
raw_running_hash_ += c;
raw_running_hash_ += (raw_running_hash_ << 10);
raw_running_hash_ ^= (raw_running_hash_ >> 6);
}
uint32_t StringHasher::GetHash() {
// Get the calculated raw hash value and do some more bit ops to distribute
// the hash further. Ensure that we never return zero as the hash value.
uint32_t result = raw_running_hash_;
result += (result << 3);
result ^= (result >> 11);
result += (result << 15);
if (result == 0) {
result = 27;
}
return result;
}
template <typename schar>
uint32_t HashSequentialString(const schar* chars, int length) {
StringHasher hasher(length);
if (!hasher.has_trivial_hash()) {
int i;
for (i = 0; hasher.is_array_index() && (i < length); i++) {
hasher.AddCharacter(chars[i]);
}
for (; i < length; i++) {
hasher.AddCharacterNoIndex(chars[i]);
}
}
return hasher.GetHashField();
}
bool String::AsArrayIndex(uint32_t* index) {
uint32_t field = hash_field();
if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
return false;
}
return SlowAsArrayIndex(index);
}
Object* JSReceiver::GetPrototype() {
return HeapObject::cast(this)->map()->prototype();
}
bool JSReceiver::HasProperty(String* name) {
if (IsJSProxy()) {
return JSProxy::cast(this)->HasPropertyWithHandler(name);
}
return GetPropertyAttribute(name) != ABSENT;
}
bool JSReceiver::HasLocalProperty(String* name) {
if (IsJSProxy()) {
return JSProxy::cast(this)->HasPropertyWithHandler(name);
}
return GetLocalPropertyAttribute(name) != ABSENT;
}
PropertyAttributes JSReceiver::GetPropertyAttribute(String* key) {
return GetPropertyAttributeWithReceiver(this, key);
}
// TODO(504): this may be useful in other places too where JSGlobalProxy
// is used.
Object* JSObject::BypassGlobalProxy() {
if (IsJSGlobalProxy()) {
Object* proto = GetPrototype();
if (proto->IsNull()) return GetHeap()->undefined_value();
ASSERT(proto->IsJSGlobalObject());
return proto;
}
return this;
}
bool JSObject::HasHiddenPropertiesObject() {
ASSERT(!IsJSGlobalProxy());
return GetPropertyAttributePostInterceptor(this,
GetHeap()->hidden_symbol(),
false) != ABSENT;
}
Object* JSObject::GetHiddenPropertiesObject() {
ASSERT(!IsJSGlobalProxy());
PropertyAttributes attributes;
// You can't install a getter on a property indexed by the hidden symbol,
// so we can be sure that GetLocalPropertyPostInterceptor returns a real
// object.
Object* result =
GetLocalPropertyPostInterceptor(this,
GetHeap()->hidden_symbol(),
&attributes)->ToObjectUnchecked();
return result;
}
MaybeObject* JSObject::SetHiddenPropertiesObject(Object* hidden_obj) {
ASSERT(!IsJSGlobalProxy());
return SetPropertyPostInterceptor(GetHeap()->hidden_symbol(),
hidden_obj,
DONT_ENUM,
kNonStrictMode);
}
bool JSObject::HasHiddenProperties() {
return !GetHiddenProperties(OMIT_CREATION)->ToObjectChecked()->IsUndefined();
}
bool JSObject::HasElement(uint32_t index) {
return HasElementWithReceiver(this, index);
}
bool AccessorInfo::all_can_read() {
return BooleanBit::get(flag(), kAllCanReadBit);
}
void AccessorInfo::set_all_can_read(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
}
bool AccessorInfo::all_can_write() {
return BooleanBit::get(flag(), kAllCanWriteBit);
}
void AccessorInfo::set_all_can_write(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
}
bool AccessorInfo::prohibits_overwriting() {
return BooleanBit::get(flag(), kProhibitsOverwritingBit);
}
void AccessorInfo::set_prohibits_overwriting(bool value) {
set_flag(BooleanBit::set(flag(), kProhibitsOverwritingBit, value));
}
PropertyAttributes AccessorInfo::property_attributes() {
return AttributesField::decode(static_cast<uint32_t>(flag()->value()));
}
void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
set_flag(Smi::FromInt(AttributesField::update(flag()->value(), attributes)));
}
template<typename Shape, typename Key>
void Dictionary<Shape, Key>::SetEntry(int entry,
Object* key,
Object* value) {
SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0)));
}
template<typename Shape, typename Key>
void Dictionary<Shape, Key>::SetEntry(int entry,
Object* key,
Object* value,
PropertyDetails details) {
ASSERT(!key->IsString() || details.IsDeleted() || details.index() > 0);
int index = HashTable<Shape, Key>::EntryToIndex(entry);
AssertNoAllocation no_gc;
WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc);
FixedArray::set(index, key, mode);
FixedArray::set(index+1, value, mode);
FixedArray::fast_set(this, index+2, details.AsSmi());
}
bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
ASSERT(other->IsNumber());
return key == static_cast<uint32_t>(other->Number());
}
uint32_t NumberDictionaryShape::Hash(uint32_t key) {
return ComputeIntegerHash(key);
}
uint32_t NumberDictionaryShape::HashForObject(uint32_t key, Object* other) {
ASSERT(other->IsNumber());
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()));
}
MaybeObject* NumberDictionaryShape::AsObject(uint32_t key) {
return Isolate::Current()->heap()->NumberFromUint32(key);
}
bool StringDictionaryShape::IsMatch(String* key, Object* other) {
// We know that all entries in a hash table had their hash keys created.
// Use that knowledge to have fast failure.
if (key->Hash() != String::cast(other)->Hash()) return false;
return key->Equals(String::cast(other));
}
uint32_t StringDictionaryShape::Hash(String* key) {
return key->Hash();
}
uint32_t StringDictionaryShape::HashForObject(String* key, Object* other) {
return String::cast(other)->Hash();
}
MaybeObject* StringDictionaryShape::AsObject(String* key) {
return key;
}
bool ObjectHashTableShape::IsMatch(JSObject* key, Object* other) {
return key == JSObject::cast(other);
}
uint32_t ObjectHashTableShape::Hash(JSObject* key) {
MaybeObject* maybe_hash = key->GetIdentityHash(JSObject::OMIT_CREATION);
ASSERT(!maybe_hash->IsFailure());
return Smi::cast(maybe_hash->ToObjectUnchecked())->value();
}
uint32_t ObjectHashTableShape::HashForObject(JSObject* key, Object* other) {
MaybeObject* maybe_hash = JSObject::cast(other)->GetIdentityHash(
JSObject::OMIT_CREATION);
ASSERT(!maybe_hash->IsFailure());
return Smi::cast(maybe_hash->ToObjectUnchecked())->value();
}
MaybeObject* ObjectHashTableShape::AsObject(JSObject* key) {
return key;
}
void ObjectHashTable::RemoveEntry(int entry) {
RemoveEntry(entry, GetHeap());
}
void Map::ClearCodeCache(Heap* heap) {
// No write barrier is needed since empty_fixed_array is not in new space.
// Please note this function is used during marking:
// - MarkCompactCollector::MarkUnmarkedObject
ASSERT(!heap->InNewSpace(heap->raw_unchecked_empty_fixed_array()));
WRITE_FIELD(this, kCodeCacheOffset, heap->raw_unchecked_empty_fixed_array());
}
void JSArray::EnsureSize(int required_size) {
ASSERT(HasFastElements());
FixedArray* elts = FixedArray::cast(elements());
const int kArraySizeThatFitsComfortablyInNewSpace = 128;
if (elts->length() < required_size) {
// Doubling in size would be overkill, but leave some slack to avoid
// constantly growing.
Expand(required_size + (required_size >> 3));
// It's a performance benefit to keep a frequently used array in new-space.
} else if (!GetHeap()->new_space()->Contains(elts) &&
required_size < kArraySizeThatFitsComfortablyInNewSpace) {
// Expand will allocate a new backing store in new space even if the size
// we asked for isn't larger than what we had before.
Expand(required_size);
}
}
void JSArray::set_length(Smi* length) {
set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER);
}
void JSArray::SetContent(FixedArray* storage) {
set_length(Smi::FromInt(storage->length()));
set_elements(storage);
}
MaybeObject* FixedArray::Copy() {
if (length() == 0) return this;
return GetHeap()->CopyFixedArray(this);
}
Relocatable::Relocatable(Isolate* isolate) {
ASSERT(isolate == Isolate::Current());
isolate_ = isolate;
prev_ = isolate->relocatable_top();
isolate->set_relocatable_top(this);
}
Relocatable::~Relocatable() {
ASSERT(isolate_ == Isolate::Current());
ASSERT_EQ(isolate_->relocatable_top(), this);
isolate_->set_relocatable_top(prev_);
}
int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) {
return map->instance_size();
}
void Foreign::ForeignIterateBody(ObjectVisitor* v) {
v->VisitExternalReference(
reinterpret_cast<Address *>(FIELD_ADDR(this, kAddressOffset)));
}
template<typename StaticVisitor>
void Foreign::ForeignIterateBody() {
StaticVisitor::VisitExternalReference(
reinterpret_cast<Address *>(FIELD_ADDR(this, kAddressOffset)));
}
void ExternalAsciiString::ExternalAsciiStringIterateBody(ObjectVisitor* v) {
typedef v8::String::ExternalAsciiStringResource Resource;
v->VisitExternalAsciiString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template<typename StaticVisitor>
void ExternalAsciiString::ExternalAsciiStringIterateBody() {
typedef v8::String::ExternalAsciiStringResource Resource;
StaticVisitor::VisitExternalAsciiString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) {
typedef v8::String::ExternalStringResource Resource;
v->VisitExternalTwoByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template<typename StaticVisitor>
void ExternalTwoByteString::ExternalTwoByteStringIterateBody() {
typedef v8::String::ExternalStringResource Resource;
StaticVisitor::VisitExternalTwoByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
#define SLOT_ADDR(obj, offset) \
reinterpret_cast<Object**>((obj)->address() + offset)
template<int start_offset, int end_offset, int size>
void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody(
HeapObject* obj,
ObjectVisitor* v) {
v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, end_offset));
}
template<int start_offset>
void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj,
int object_size,
ObjectVisitor* v) {
v->VisitPointers(SLOT_ADDR(obj, start_offset), SLOT_ADDR(obj, object_size));
}
#undef SLOT_ADDR
#undef CAST_ACCESSOR
#undef INT_ACCESSORS
#undef SMI_ACCESSORS
#undef ACCESSORS
#undef FIELD_ADDR
#undef READ_FIELD
#undef WRITE_FIELD
#undef WRITE_BARRIER
#undef CONDITIONAL_WRITE_BARRIER
#undef READ_MEMADDR_FIELD
#undef WRITE_MEMADDR_FIELD
#undef READ_DOUBLE_FIELD
#undef WRITE_DOUBLE_FIELD
#undef READ_INT_FIELD
#undef WRITE_INT_FIELD
#undef READ_SHORT_FIELD
#undef WRITE_SHORT_FIELD
#undef READ_BYTE_FIELD
#undef WRITE_BYTE_FIELD
} } // namespace v8::internal
#endif // V8_OBJECTS_INL_H_