| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/ic/ic-state.h" |
| |
| #include "src/ic/ic.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // static |
| void ICUtility::Clear(Isolate* isolate, Address address, |
| Address constant_pool) { |
| IC::Clear(isolate, address, constant_pool); |
| } |
| |
| |
| CallICState::CallICState(ExtraICState extra_ic_state) |
| : argc_(ArgcBits::decode(extra_ic_state)), |
| call_type_(CallTypeBits::decode(extra_ic_state)) {} |
| |
| |
| ExtraICState CallICState::GetExtraICState() const { |
| ExtraICState extra_ic_state = |
| ArgcBits::encode(argc_) | CallTypeBits::encode(call_type_); |
| return extra_ic_state; |
| } |
| |
| |
| std::ostream& operator<<(std::ostream& os, const CallICState& s) { |
| return os << "(args(" << s.arg_count() << "), " |
| << (s.call_type() == CallICState::METHOD ? "METHOD" : "FUNCTION") |
| << ", "; |
| } |
| |
| |
| // static |
| STATIC_CONST_MEMBER_DEFINITION const int BinaryOpICState::FIRST_TOKEN; |
| |
| |
| // static |
| STATIC_CONST_MEMBER_DEFINITION const int BinaryOpICState::LAST_TOKEN; |
| |
| |
| BinaryOpICState::BinaryOpICState(Isolate* isolate, ExtraICState extra_ic_state) |
| : fixed_right_arg_( |
| HasFixedRightArgField::decode(extra_ic_state) |
| ? Just(1 << FixedRightArgValueField::decode(extra_ic_state)) |
| : Nothing<int>()), |
| isolate_(isolate) { |
| op_ = |
| static_cast<Token::Value>(FIRST_TOKEN + OpField::decode(extra_ic_state)); |
| strong_ = StrengthField::decode(extra_ic_state); |
| left_kind_ = LeftKindField::decode(extra_ic_state); |
| right_kind_ = fixed_right_arg_.IsJust() |
| ? (Smi::IsValid(fixed_right_arg_.FromJust()) ? SMI : INT32) |
| : RightKindField::decode(extra_ic_state); |
| result_kind_ = ResultKindField::decode(extra_ic_state); |
| DCHECK_LE(FIRST_TOKEN, op_); |
| DCHECK_LE(op_, LAST_TOKEN); |
| } |
| |
| |
| ExtraICState BinaryOpICState::GetExtraICState() const { |
| ExtraICState extra_ic_state = |
| OpField::encode(op_ - FIRST_TOKEN) | LeftKindField::encode(left_kind_) | |
| ResultKindField::encode(result_kind_) | StrengthField::encode(strong_) | |
| HasFixedRightArgField::encode(fixed_right_arg_.IsJust()); |
| if (fixed_right_arg_.IsJust()) { |
| extra_ic_state = FixedRightArgValueField::update( |
| extra_ic_state, WhichPowerOf2(fixed_right_arg_.FromJust())); |
| } else { |
| extra_ic_state = RightKindField::update(extra_ic_state, right_kind_); |
| } |
| return extra_ic_state; |
| } |
| |
| |
| // static |
| void BinaryOpICState::GenerateAheadOfTime( |
| Isolate* isolate, void (*Generate)(Isolate*, const BinaryOpICState&)) { |
| // TODO(olivf) We should investigate why adding stubs to the snapshot is so |
| // expensive at runtime. When solved we should be able to add most binops to |
| // the snapshot instead of hand-picking them. |
| // Generated list of commonly used stubs |
| #define GENERATE(op, left_kind, right_kind, result_kind) \ |
| do { \ |
| BinaryOpICState state(isolate, op, Strength::WEAK); \ |
| state.left_kind_ = left_kind; \ |
| state.fixed_right_arg_ = Nothing<int>(); \ |
| state.right_kind_ = right_kind; \ |
| state.result_kind_ = result_kind; \ |
| Generate(isolate, state); \ |
| } while (false) |
| GENERATE(Token::ADD, INT32, INT32, INT32); |
| GENERATE(Token::ADD, INT32, INT32, NUMBER); |
| GENERATE(Token::ADD, INT32, NUMBER, NUMBER); |
| GENERATE(Token::ADD, INT32, SMI, INT32); |
| GENERATE(Token::ADD, NUMBER, INT32, NUMBER); |
| GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER); |
| GENERATE(Token::ADD, NUMBER, SMI, NUMBER); |
| GENERATE(Token::ADD, SMI, INT32, INT32); |
| GENERATE(Token::ADD, SMI, INT32, NUMBER); |
| GENERATE(Token::ADD, SMI, NUMBER, NUMBER); |
| GENERATE(Token::ADD, SMI, SMI, INT32); |
| GENERATE(Token::ADD, SMI, SMI, SMI); |
| GENERATE(Token::BIT_AND, INT32, INT32, INT32); |
| GENERATE(Token::BIT_AND, INT32, INT32, SMI); |
| GENERATE(Token::BIT_AND, INT32, SMI, INT32); |
| GENERATE(Token::BIT_AND, INT32, SMI, SMI); |
| GENERATE(Token::BIT_AND, NUMBER, INT32, INT32); |
| GENERATE(Token::BIT_AND, NUMBER, SMI, SMI); |
| GENERATE(Token::BIT_AND, SMI, INT32, INT32); |
| GENERATE(Token::BIT_AND, SMI, INT32, SMI); |
| GENERATE(Token::BIT_AND, SMI, NUMBER, SMI); |
| GENERATE(Token::BIT_AND, SMI, SMI, SMI); |
| GENERATE(Token::BIT_OR, INT32, INT32, INT32); |
| GENERATE(Token::BIT_OR, INT32, INT32, SMI); |
| GENERATE(Token::BIT_OR, INT32, SMI, INT32); |
| GENERATE(Token::BIT_OR, INT32, SMI, SMI); |
| GENERATE(Token::BIT_OR, NUMBER, SMI, INT32); |
| GENERATE(Token::BIT_OR, NUMBER, SMI, SMI); |
| GENERATE(Token::BIT_OR, SMI, INT32, INT32); |
| GENERATE(Token::BIT_OR, SMI, INT32, SMI); |
| GENERATE(Token::BIT_OR, SMI, SMI, SMI); |
| GENERATE(Token::BIT_XOR, INT32, INT32, INT32); |
| GENERATE(Token::BIT_XOR, INT32, INT32, SMI); |
| GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI); |
| GENERATE(Token::BIT_XOR, INT32, SMI, INT32); |
| GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32); |
| GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32); |
| GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI); |
| GENERATE(Token::BIT_XOR, SMI, INT32, INT32); |
| GENERATE(Token::BIT_XOR, SMI, INT32, SMI); |
| GENERATE(Token::BIT_XOR, SMI, SMI, SMI); |
| GENERATE(Token::DIV, INT32, INT32, INT32); |
| GENERATE(Token::DIV, INT32, INT32, NUMBER); |
| GENERATE(Token::DIV, INT32, NUMBER, NUMBER); |
| GENERATE(Token::DIV, INT32, SMI, INT32); |
| GENERATE(Token::DIV, INT32, SMI, NUMBER); |
| GENERATE(Token::DIV, NUMBER, INT32, NUMBER); |
| GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER); |
| GENERATE(Token::DIV, NUMBER, SMI, NUMBER); |
| GENERATE(Token::DIV, SMI, INT32, INT32); |
| GENERATE(Token::DIV, SMI, INT32, NUMBER); |
| GENERATE(Token::DIV, SMI, NUMBER, NUMBER); |
| GENERATE(Token::DIV, SMI, SMI, NUMBER); |
| GENERATE(Token::DIV, SMI, SMI, SMI); |
| GENERATE(Token::MOD, NUMBER, SMI, NUMBER); |
| GENERATE(Token::MOD, SMI, SMI, SMI); |
| GENERATE(Token::MUL, INT32, INT32, INT32); |
| GENERATE(Token::MUL, INT32, INT32, NUMBER); |
| GENERATE(Token::MUL, INT32, NUMBER, NUMBER); |
| GENERATE(Token::MUL, INT32, SMI, INT32); |
| GENERATE(Token::MUL, INT32, SMI, NUMBER); |
| GENERATE(Token::MUL, NUMBER, INT32, NUMBER); |
| GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER); |
| GENERATE(Token::MUL, NUMBER, SMI, NUMBER); |
| GENERATE(Token::MUL, SMI, INT32, INT32); |
| GENERATE(Token::MUL, SMI, INT32, NUMBER); |
| GENERATE(Token::MUL, SMI, NUMBER, NUMBER); |
| GENERATE(Token::MUL, SMI, SMI, INT32); |
| GENERATE(Token::MUL, SMI, SMI, NUMBER); |
| GENERATE(Token::MUL, SMI, SMI, SMI); |
| GENERATE(Token::SAR, INT32, SMI, INT32); |
| GENERATE(Token::SAR, INT32, SMI, SMI); |
| GENERATE(Token::SAR, NUMBER, SMI, SMI); |
| GENERATE(Token::SAR, SMI, SMI, SMI); |
| GENERATE(Token::SHL, INT32, SMI, INT32); |
| GENERATE(Token::SHL, INT32, SMI, SMI); |
| GENERATE(Token::SHL, NUMBER, SMI, SMI); |
| GENERATE(Token::SHL, SMI, SMI, INT32); |
| GENERATE(Token::SHL, SMI, SMI, SMI); |
| GENERATE(Token::SHR, INT32, SMI, SMI); |
| GENERATE(Token::SHR, NUMBER, SMI, INT32); |
| GENERATE(Token::SHR, NUMBER, SMI, SMI); |
| GENERATE(Token::SHR, SMI, SMI, SMI); |
| GENERATE(Token::SUB, INT32, INT32, INT32); |
| GENERATE(Token::SUB, INT32, NUMBER, NUMBER); |
| GENERATE(Token::SUB, INT32, SMI, INT32); |
| GENERATE(Token::SUB, NUMBER, INT32, NUMBER); |
| GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER); |
| GENERATE(Token::SUB, NUMBER, SMI, NUMBER); |
| GENERATE(Token::SUB, SMI, INT32, INT32); |
| GENERATE(Token::SUB, SMI, NUMBER, NUMBER); |
| GENERATE(Token::SUB, SMI, SMI, SMI); |
| #undef GENERATE |
| #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind) \ |
| do { \ |
| BinaryOpICState state(isolate, op, Strength::WEAK); \ |
| state.left_kind_ = left_kind; \ |
| state.fixed_right_arg_ = Just(fixed_right_arg_value); \ |
| state.right_kind_ = SMI; \ |
| state.result_kind_ = result_kind; \ |
| Generate(isolate, state); \ |
| } while (false) |
| GENERATE(Token::MOD, SMI, 2, SMI); |
| GENERATE(Token::MOD, SMI, 4, SMI); |
| GENERATE(Token::MOD, SMI, 8, SMI); |
| GENERATE(Token::MOD, SMI, 16, SMI); |
| GENERATE(Token::MOD, SMI, 32, SMI); |
| GENERATE(Token::MOD, SMI, 2048, SMI); |
| #undef GENERATE |
| } |
| |
| |
| Type* BinaryOpICState::GetResultType(Zone* zone) const { |
| Kind result_kind = result_kind_; |
| if (HasSideEffects()) { |
| result_kind = NONE; |
| } else if (result_kind == GENERIC && op_ == Token::ADD) { |
| return Type::Union(Type::Number(zone), Type::String(zone), zone); |
| } else if (result_kind == NUMBER && op_ == Token::SHR) { |
| return Type::Unsigned32(zone); |
| } |
| DCHECK_NE(GENERIC, result_kind); |
| return KindToType(result_kind, zone); |
| } |
| |
| |
| std::ostream& operator<<(std::ostream& os, const BinaryOpICState& s) { |
| os << "(" << Token::Name(s.op_); |
| if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos"; |
| if (is_strong(s.strength())) os << "_Strong"; |
| os << ":" << BinaryOpICState::KindToString(s.left_kind_) << "*"; |
| if (s.fixed_right_arg_.IsJust()) { |
| os << s.fixed_right_arg_.FromJust(); |
| } else { |
| os << BinaryOpICState::KindToString(s.right_kind_); |
| } |
| return os << "->" << BinaryOpICState::KindToString(s.result_kind_) << ")"; |
| } |
| |
| |
| void BinaryOpICState::Update(Handle<Object> left, Handle<Object> right, |
| Handle<Object> result) { |
| ExtraICState old_extra_ic_state = GetExtraICState(); |
| |
| left_kind_ = UpdateKind(left, left_kind_); |
| right_kind_ = UpdateKind(right, right_kind_); |
| |
| int32_t fixed_right_arg_value = 0; |
| bool has_fixed_right_arg = |
| op_ == Token::MOD && right->ToInt32(&fixed_right_arg_value) && |
| fixed_right_arg_value > 0 && |
| base::bits::IsPowerOfTwo32(fixed_right_arg_value) && |
| FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) && |
| (left_kind_ == SMI || left_kind_ == INT32) && |
| (result_kind_ == NONE || !fixed_right_arg_.IsJust()); |
| fixed_right_arg_ = |
| has_fixed_right_arg ? Just(fixed_right_arg_value) : Nothing<int32_t>(); |
| result_kind_ = UpdateKind(result, result_kind_); |
| |
| if (!Token::IsTruncatingBinaryOp(op_)) { |
| Kind input_kind = Max(left_kind_, right_kind_); |
| if (result_kind_ < input_kind && input_kind <= NUMBER) { |
| result_kind_ = input_kind; |
| } |
| } |
| |
| // We don't want to distinguish INT32 and NUMBER for string add (because |
| // NumberToString can't make use of this anyway). |
| if (left_kind_ == STRING && right_kind_ == INT32) { |
| DCHECK_EQ(STRING, result_kind_); |
| DCHECK_EQ(Token::ADD, op_); |
| right_kind_ = NUMBER; |
| } else if (right_kind_ == STRING && left_kind_ == INT32) { |
| DCHECK_EQ(STRING, result_kind_); |
| DCHECK_EQ(Token::ADD, op_); |
| left_kind_ = NUMBER; |
| } |
| |
| if (old_extra_ic_state == GetExtraICState()) { |
| // Tagged operations can lead to non-truncating HChanges |
| if (left->IsUndefined() || left->IsBoolean()) { |
| left_kind_ = GENERIC; |
| } else { |
| DCHECK(right->IsUndefined() || right->IsBoolean()); |
| right_kind_ = GENERIC; |
| } |
| } |
| } |
| |
| |
| BinaryOpICState::Kind BinaryOpICState::UpdateKind(Handle<Object> object, |
| Kind kind) const { |
| Kind new_kind = GENERIC; |
| bool is_truncating = Token::IsTruncatingBinaryOp(op()); |
| if (object->IsBoolean() && is_truncating) { |
| // Booleans will be automatically truncated by HChange. |
| new_kind = INT32; |
| } else if (object->IsUndefined()) { |
| // Undefined will be automatically truncated by HChange. |
| new_kind = is_truncating ? INT32 : NUMBER; |
| } else if (object->IsSmi()) { |
| new_kind = SMI; |
| } else if (object->IsHeapNumber()) { |
| double value = Handle<HeapNumber>::cast(object)->value(); |
| new_kind = IsInt32Double(value) ? INT32 : NUMBER; |
| } else if (object->IsString() && op() == Token::ADD) { |
| new_kind = STRING; |
| } |
| if (new_kind == INT32 && SmiValuesAre32Bits()) { |
| new_kind = NUMBER; |
| } |
| if (kind != NONE && ((new_kind <= NUMBER && kind > NUMBER) || |
| (new_kind > NUMBER && kind <= NUMBER))) { |
| new_kind = GENERIC; |
| } |
| return Max(kind, new_kind); |
| } |
| |
| |
| // static |
| const char* BinaryOpICState::KindToString(Kind kind) { |
| switch (kind) { |
| case NONE: |
| return "None"; |
| case SMI: |
| return "Smi"; |
| case INT32: |
| return "Int32"; |
| case NUMBER: |
| return "Number"; |
| case STRING: |
| return "String"; |
| case GENERIC: |
| return "Generic"; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| // static |
| Type* BinaryOpICState::KindToType(Kind kind, Zone* zone) { |
| switch (kind) { |
| case NONE: |
| return Type::None(zone); |
| case SMI: |
| return Type::SignedSmall(zone); |
| case INT32: |
| return Type::Signed32(zone); |
| case NUMBER: |
| return Type::Number(zone); |
| case STRING: |
| return Type::String(zone); |
| case GENERIC: |
| return Type::Any(zone); |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| const char* CompareICState::GetStateName(State state) { |
| switch (state) { |
| case UNINITIALIZED: |
| return "UNINITIALIZED"; |
| case SMI: |
| return "SMI"; |
| case NUMBER: |
| return "NUMBER"; |
| case INTERNALIZED_STRING: |
| return "INTERNALIZED_STRING"; |
| case STRING: |
| return "STRING"; |
| case UNIQUE_NAME: |
| return "UNIQUE_NAME"; |
| case OBJECT: |
| return "OBJECT"; |
| case KNOWN_OBJECT: |
| return "KNOWN_OBJECT"; |
| case GENERIC: |
| return "GENERIC"; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| Type* CompareICState::StateToType(Zone* zone, State state, Handle<Map> map) { |
| switch (state) { |
| case UNINITIALIZED: |
| return Type::None(zone); |
| case SMI: |
| return Type::SignedSmall(zone); |
| case NUMBER: |
| return Type::Number(zone); |
| case STRING: |
| return Type::String(zone); |
| case INTERNALIZED_STRING: |
| return Type::InternalizedString(zone); |
| case UNIQUE_NAME: |
| return Type::UniqueName(zone); |
| case OBJECT: |
| return Type::Receiver(zone); |
| case KNOWN_OBJECT: |
| return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone); |
| case GENERIC: |
| return Type::Any(zone); |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| |
| CompareICState::State CompareICState::NewInputState(State old_state, |
| Handle<Object> value) { |
| switch (old_state) { |
| case UNINITIALIZED: |
| if (value->IsSmi()) return SMI; |
| if (value->IsHeapNumber()) return NUMBER; |
| if (value->IsInternalizedString()) return INTERNALIZED_STRING; |
| if (value->IsString()) return STRING; |
| if (value->IsSymbol()) return UNIQUE_NAME; |
| if (value->IsJSObject()) return OBJECT; |
| break; |
| case SMI: |
| if (value->IsSmi()) return SMI; |
| if (value->IsHeapNumber()) return NUMBER; |
| break; |
| case NUMBER: |
| if (value->IsNumber()) return NUMBER; |
| break; |
| case INTERNALIZED_STRING: |
| if (value->IsInternalizedString()) return INTERNALIZED_STRING; |
| if (value->IsString()) return STRING; |
| if (value->IsSymbol()) return UNIQUE_NAME; |
| break; |
| case STRING: |
| if (value->IsString()) return STRING; |
| break; |
| case UNIQUE_NAME: |
| if (value->IsUniqueName()) return UNIQUE_NAME; |
| break; |
| case OBJECT: |
| if (value->IsJSObject()) return OBJECT; |
| break; |
| case GENERIC: |
| break; |
| case KNOWN_OBJECT: |
| UNREACHABLE(); |
| break; |
| } |
| return GENERIC; |
| } |
| |
| |
| // static |
| CompareICState::State CompareICState::TargetState( |
| State old_state, State old_left, State old_right, Token::Value op, |
| bool has_inlined_smi_code, Handle<Object> x, Handle<Object> y) { |
| switch (old_state) { |
| case UNINITIALIZED: |
| if (x->IsSmi() && y->IsSmi()) return SMI; |
| if (x->IsNumber() && y->IsNumber()) return NUMBER; |
| if (Token::IsOrderedRelationalCompareOp(op)) { |
| // Ordered comparisons treat undefined as NaN, so the |
| // NUMBER stub will do the right thing. |
| if ((x->IsNumber() && y->IsUndefined()) || |
| (y->IsNumber() && x->IsUndefined())) { |
| return NUMBER; |
| } |
| } |
| if (x->IsInternalizedString() && y->IsInternalizedString()) { |
| // We compare internalized strings as plain ones if we need to determine |
| // the order in a non-equality compare. |
| return Token::IsEqualityOp(op) ? INTERNALIZED_STRING : STRING; |
| } |
| if (x->IsString() && y->IsString()) return STRING; |
| if (!Token::IsEqualityOp(op)) return GENERIC; |
| if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; |
| if (x->IsJSObject() && y->IsJSObject()) { |
| if (Handle<JSObject>::cast(x)->map() == |
| Handle<JSObject>::cast(y)->map()) { |
| return KNOWN_OBJECT; |
| } else { |
| return OBJECT; |
| } |
| } |
| return GENERIC; |
| case SMI: |
| return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC; |
| case INTERNALIZED_STRING: |
| DCHECK(Token::IsEqualityOp(op)); |
| if (x->IsString() && y->IsString()) return STRING; |
| if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; |
| return GENERIC; |
| case NUMBER: |
| // If the failure was due to one side changing from smi to heap number, |
| // then keep the state (if other changed at the same time, we will get |
| // a second miss and then go to generic). |
| if (old_left == SMI && x->IsHeapNumber()) return NUMBER; |
| if (old_right == SMI && y->IsHeapNumber()) return NUMBER; |
| return GENERIC; |
| case KNOWN_OBJECT: |
| DCHECK(Token::IsEqualityOp(op)); |
| if (x->IsJSObject() && y->IsJSObject()) { |
| return OBJECT; |
| } |
| return GENERIC; |
| case STRING: |
| case UNIQUE_NAME: |
| case OBJECT: |
| case GENERIC: |
| return GENERIC; |
| } |
| UNREACHABLE(); |
| return GENERIC; // Make the compiler happy. |
| } |
| } // namespace internal |
| } // namespace v8 |