blob: 60375300b88f04522778e33f9351ad3c03646740 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/arm64/codegen-arm64.h"
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/assembler-arm64-inl.h"
#include "src/arm64/macro-assembler-arm64-inl.h"
#include "src/arm64/simulator-arm64.h"
#include "src/codegen.h"
#include "src/macro-assembler.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
return nullptr;
}
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterFrame(StackFrame::INTERNAL);
DCHECK(!masm->has_frame());
masm->set_has_frame(true);
}
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
masm->LeaveFrame(StackFrame::INTERNAL);
DCHECK(masm->has_frame());
masm->set_has_frame(false);
}
// -------------------------------------------------------------------------
// Code generators
CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
USE(isolate);
DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
// The sequence of instructions that is patched out for aging code is the
// following boilerplate stack-building prologue that is found both in
// FUNCTION and OPTIMIZED_FUNCTION code:
PatchingAssembler patcher(isolate, young_sequence_.start(),
young_sequence_.length() / kInstructionSize);
// The young sequence is the frame setup code for FUNCTION code types. It is
// generated by FullCodeGenerator::Generate.
MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
#ifdef DEBUG
const int length = kCodeAgeStubEntryOffset / kInstructionSize;
DCHECK(old_sequence_.length() >= kCodeAgeStubEntryOffset);
PatchingAssembler patcher_old(isolate, old_sequence_.start(), length);
MacroAssembler::EmitCodeAgeSequence(&patcher_old, NULL);
#endif
}
#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
return memcmp(candidate, old_sequence_.start(), kCodeAgeStubEntryOffset) == 0;
}
#endif
bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
return MacroAssembler::IsYoungSequence(isolate, sequence);
}
Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) {
if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge;
byte* target = sequence + kCodeAgeStubEntryOffset;
Code* stub = GetCodeFromTargetAddress(Memory::Address_at(target));
return GetAgeOfCodeAgeStub(stub);
}
void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence,
Code::Age age) {
PatchingAssembler patcher(isolate, sequence,
kNoCodeAgeSequenceLength / kInstructionSize);
if (age == kNoAgeCodeAge) {
MacroAssembler::EmitFrameSetupForCodeAgePatching(&patcher);
} else {
Code* stub = GetCodeAgeStub(isolate, age);
MacroAssembler::EmitCodeAgeSequence(&patcher, stub);
}
}
void StringCharLoadGenerator::Generate(MacroAssembler* masm,
Register string,
Register index,
Register result,
Label* call_runtime) {
DCHECK(string.Is64Bits() && index.Is32Bits() && result.Is64Bits());
Label indirect_string_loaded;
__ Bind(&indirect_string_loaded);
// Fetch the instance type of the receiver into result register.
__ Ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ Ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// We need special handling for indirect strings.
Label check_sequential;
__ TestAndBranchIfAllClear(result, kIsIndirectStringMask, &check_sequential);
// Dispatch on the indirect string shape: slice or cons.
Label cons_string, thin_string;
__ And(result, result, kStringRepresentationMask);
__ Cmp(result, kConsStringTag);
__ B(eq, &cons_string);
__ Cmp(result, kThinStringTag);
__ B(eq, &thin_string);
// Handle slices.
__ Ldr(result.W(),
UntagSmiFieldMemOperand(string, SlicedString::kOffsetOffset));
__ Ldr(string, FieldMemOperand(string, SlicedString::kParentOffset));
__ Add(index, index, result.W());
__ B(&indirect_string_loaded);
// Handle thin strings.
__ Bind(&thin_string);
__ Ldr(string, FieldMemOperand(string, ThinString::kActualOffset));
__ B(&indirect_string_loaded);
// Handle cons strings.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ Bind(&cons_string);
__ Ldr(result, FieldMemOperand(string, ConsString::kSecondOffset));
__ JumpIfNotRoot(result, Heap::kempty_stringRootIndex, call_runtime);
// Get the first of the two strings and load its instance type.
__ Ldr(string, FieldMemOperand(string, ConsString::kFirstOffset));
__ B(&indirect_string_loaded);
// Distinguish sequential and external strings. Only these two string
// representations can reach here (slices and flat cons strings have been
// reduced to the underlying sequential or external string).
Label external_string, check_encoding;
__ Bind(&check_sequential);
STATIC_ASSERT(kSeqStringTag == 0);
__ TestAndBranchIfAnySet(result, kStringRepresentationMask, &external_string);
// Prepare sequential strings
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Add(string, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
__ B(&check_encoding);
// Handle external strings.
__ Bind(&external_string);
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ Tst(result, kIsIndirectStringMask);
__ Assert(eq, kExternalStringExpectedButNotFound);
}
// Rule out short external strings.
STATIC_ASSERT(kShortExternalStringTag != 0);
// TestAndBranchIfAnySet can emit Tbnz. Do not use it because call_runtime
// can be bound far away in deferred code.
__ Tst(result, kShortExternalStringMask);
__ B(ne, call_runtime);
__ Ldr(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
Label one_byte, done;
__ Bind(&check_encoding);
STATIC_ASSERT(kTwoByteStringTag == 0);
__ TestAndBranchIfAnySet(result, kStringEncodingMask, &one_byte);
// Two-byte string.
__ Ldrh(result, MemOperand(string, index, SXTW, 1));
__ B(&done);
__ Bind(&one_byte);
// One-byte string.
__ Ldrb(result, MemOperand(string, index, SXTW));
__ Bind(&done);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM64