blob: ea1500e67e67ecbff6cbb528c0ef996bb5ecb0f5 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// PLEASE READ BEFORE CHANGING THIS FILE!
//
// This file implements the support code for the out of bounds signal handler.
// Nothing in here actually runs in the signal handler, but the code here
// manipulates data structures used by the signal handler so we still need to be
// careful. In order to minimize this risk, here are some rules to follow.
//
// 1. Avoid introducing new external dependencies. The files in src/trap-handler
// should be as self-contained as possible to make it easy to audit the code.
//
// 2. Any changes must be reviewed by someone from the crash reporting
// or security team. Se OWNERS for suggested reviewers.
//
// For more information, see https://goo.gl/yMeyUY.
//
// For the code that runs in the signal handler itself, see handler-inside.cc.
#include <signal.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <atomic>
#include <limits>
#include "src/trap-handler/trap-handler-internal.h"
#include "src/trap-handler/trap-handler.h"
namespace {
size_t gNextCodeObject = 0;
}
namespace v8 {
namespace internal {
namespace trap_handler {
const size_t kInitialCodeObjectSize = 1024;
const size_t kCodeObjectGrowthFactor = 2;
constexpr size_t HandlerDataSize(size_t num_protected_instructions) {
return offsetof(CodeProtectionInfo, instructions) +
num_protected_instructions * sizeof(ProtectedInstructionData);
}
CodeProtectionInfo* CreateHandlerData(
void* base, size_t size, size_t num_protected_instructions,
ProtectedInstructionData* protected_instructions) {
const size_t alloc_size = HandlerDataSize(num_protected_instructions);
CodeProtectionInfo* data =
reinterpret_cast<CodeProtectionInfo*>(malloc(alloc_size));
if (data == nullptr) {
return nullptr;
}
data->base = base;
data->size = size;
data->num_protected_instructions = num_protected_instructions;
memcpy(data->instructions, protected_instructions,
num_protected_instructions * sizeof(ProtectedInstructionData));
return data;
}
void UpdateHandlerDataCodePointer(int index, void* base) {
MetadataLock lock;
if (static_cast<size_t>(index) >= gNumCodeObjects) {
abort();
}
CodeProtectionInfo* data = gCodeObjects[index].code_info;
data->base = base;
}
int RegisterHandlerData(void* base, size_t size,
size_t num_protected_instructions,
ProtectedInstructionData* protected_instructions) {
// TODO(eholk): in debug builds, make sure this data isn't already registered.
CodeProtectionInfo* data = CreateHandlerData(
base, size, num_protected_instructions, protected_instructions);
if (data == nullptr) {
abort();
}
MetadataLock lock;
size_t i = gNextCodeObject;
// Explicitly convert std::numeric_limits<int>::max() to unsigned to avoid
// compiler warnings about signed/unsigned comparisons. We aren't worried
// about sign extension because we know std::numeric_limits<int>::max() is
// positive.
const size_t int_max = std::numeric_limits<int>::max();
// We didn't find an opening in the available space, so grow.
if (i == gNumCodeObjects) {
size_t new_size = gNumCodeObjects > 0
? gNumCodeObjects * kCodeObjectGrowthFactor
: kInitialCodeObjectSize;
// Because we must return an int, there is no point in allocating space for
// more objects than can fit in an int.
if (new_size > int_max) {
new_size = int_max;
}
if (new_size == gNumCodeObjects) {
return -1;
}
// Now that we know our new size is valid, we can go ahead and realloc the
// array.
gCodeObjects = static_cast<CodeProtectionInfoListEntry*>(
realloc(gCodeObjects, sizeof(*gCodeObjects) * new_size));
if (gCodeObjects == nullptr) {
abort();
}
memset(gCodeObjects + gNumCodeObjects, 0,
sizeof(*gCodeObjects) * (new_size - gNumCodeObjects));
gNumCodeObjects = new_size;
}
DCHECK(gCodeObjects[i].code_info == nullptr);
// Find out where the next entry should go.
if (gCodeObjects[i].next_free == 0) {
// if this is a fresh entry, use the next one.
gNextCodeObject = i + 1;
DCHECK(gNextCodeObject == gNumCodeObjects ||
(gCodeObjects[gNextCodeObject].code_info == nullptr &&
gCodeObjects[gNextCodeObject].next_free == 0));
} else {
gNextCodeObject = gCodeObjects[i].next_free - 1;
}
if (i <= int_max) {
gCodeObjects[i].code_info = data;
return static_cast<int>(i);
} else {
return -1;
}
}
void ReleaseHandlerData(int index) {
// Remove the data from the global list if it's there.
CodeProtectionInfo* data = nullptr;
{
MetadataLock lock;
data = gCodeObjects[index].code_info;
gCodeObjects[index].code_info = nullptr;
// +1 because we reserve {next_entry == 0} to indicate a fresh list entry.
gCodeObjects[index].next_free = gNextCodeObject + 1;
gNextCodeObject = index;
}
// TODO(eholk): on debug builds, ensure there are no more copies in
// the list.
free(data);
}
bool RegisterDefaultSignalHandler() {
#if V8_TRAP_HANDLER_SUPPORTED
struct sigaction action;
action.sa_sigaction = HandleSignal;
action.sa_flags = SA_SIGINFO;
sigemptyset(&action.sa_mask);
// {sigaction} installs a new custom segfault handler. On success, it returns
// 0. If we get a nonzero value, we report an error to the caller by returning
// false.
if (sigaction(SIGSEGV, &action, nullptr) != 0) {
return false;
}
return true;
#else
return false;
#endif
}
} // namespace trap_handler
} // namespace internal
} // namespace v8