|  | // Copyright 2011 the V8 project authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "src/dateparser.h" | 
|  |  | 
|  | #include "src/char-predicates-inl.h" | 
|  | #include "src/objects-inl.h" | 
|  |  | 
|  | namespace v8 { | 
|  | namespace internal { | 
|  |  | 
|  | bool DateParser::DayComposer::Write(FixedArray* output) { | 
|  | if (index_ < 1) return false; | 
|  | // Day and month defaults to 1. | 
|  | while (index_ < kSize) { | 
|  | comp_[index_++] = 1; | 
|  | } | 
|  |  | 
|  | int year = 0;  // Default year is 0 (=> 2000) for KJS compatibility. | 
|  | int month = kNone; | 
|  | int day = kNone; | 
|  |  | 
|  | if (named_month_ == kNone) { | 
|  | if (is_iso_date_ || (index_ == 3 && !IsDay(comp_[0]))) { | 
|  | // YMD | 
|  | year = comp_[0]; | 
|  | month = comp_[1]; | 
|  | day = comp_[2]; | 
|  | } else { | 
|  | // MD(Y) | 
|  | month = comp_[0]; | 
|  | day = comp_[1]; | 
|  | if (index_ == 3) year = comp_[2]; | 
|  | } | 
|  | } else { | 
|  | month = named_month_; | 
|  | if (index_ == 1) { | 
|  | // MD or DM | 
|  | day = comp_[0]; | 
|  | } else if (!IsDay(comp_[0])) { | 
|  | // YMD, MYD, or YDM | 
|  | year = comp_[0]; | 
|  | day = comp_[1]; | 
|  | } else { | 
|  | // DMY, MDY, or DYM | 
|  | day = comp_[0]; | 
|  | year = comp_[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!is_iso_date_) { | 
|  | if (Between(year, 0, 49)) year += 2000; | 
|  | else if (Between(year, 50, 99)) year += 1900; | 
|  | } | 
|  |  | 
|  | if (!Smi::IsValid(year) || !IsMonth(month) || !IsDay(day)) return false; | 
|  |  | 
|  | output->set(YEAR, Smi::FromInt(year)); | 
|  | output->set(MONTH, Smi::FromInt(month - 1));  // 0-based | 
|  | output->set(DAY, Smi::FromInt(day)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool DateParser::TimeComposer::Write(FixedArray* output) { | 
|  | // All time slots default to 0 | 
|  | while (index_ < kSize) { | 
|  | comp_[index_++] = 0; | 
|  | } | 
|  |  | 
|  | int& hour = comp_[0]; | 
|  | int& minute = comp_[1]; | 
|  | int& second = comp_[2]; | 
|  | int& millisecond = comp_[3]; | 
|  |  | 
|  | if (hour_offset_ != kNone) { | 
|  | if (!IsHour12(hour)) return false; | 
|  | hour %= 12; | 
|  | hour += hour_offset_; | 
|  | } | 
|  |  | 
|  | if (!IsHour(hour) || !IsMinute(minute) || | 
|  | !IsSecond(second) || !IsMillisecond(millisecond)) { | 
|  | // A 24th hour is allowed if minutes, seconds, and milliseconds are 0 | 
|  | if (hour != 24 || minute != 0 || second != 0 || millisecond != 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | output->set(HOUR, Smi::FromInt(hour)); | 
|  | output->set(MINUTE, Smi::FromInt(minute)); | 
|  | output->set(SECOND, Smi::FromInt(second)); | 
|  | output->set(MILLISECOND, Smi::FromInt(millisecond)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool DateParser::TimeZoneComposer::Write(FixedArray* output) { | 
|  | if (sign_ != kNone) { | 
|  | if (hour_ == kNone) hour_ = 0; | 
|  | if (minute_ == kNone) minute_ = 0; | 
|  | // Avoid signed integer overflow (undefined behavior) by doing unsigned | 
|  | // arithmetic. | 
|  | unsigned total_seconds_unsigned = hour_ * 3600U + minute_ * 60U; | 
|  | if (total_seconds_unsigned > Smi::kMaxValue) return false; | 
|  | int total_seconds = static_cast<int>(total_seconds_unsigned); | 
|  | if (sign_ < 0) { | 
|  | total_seconds = -total_seconds; | 
|  | } | 
|  | DCHECK(Smi::IsValid(total_seconds)); | 
|  | output->set(UTC_OFFSET, Smi::FromInt(total_seconds)); | 
|  | } else { | 
|  | output->set_null(UTC_OFFSET); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const int8_t DateParser::KeywordTable:: | 
|  | array[][DateParser::KeywordTable::kEntrySize] = { | 
|  | {'j', 'a', 'n', DateParser::MONTH_NAME, 1}, | 
|  | {'f', 'e', 'b', DateParser::MONTH_NAME, 2}, | 
|  | {'m', 'a', 'r', DateParser::MONTH_NAME, 3}, | 
|  | {'a', 'p', 'r', DateParser::MONTH_NAME, 4}, | 
|  | {'m', 'a', 'y', DateParser::MONTH_NAME, 5}, | 
|  | {'j', 'u', 'n', DateParser::MONTH_NAME, 6}, | 
|  | {'j', 'u', 'l', DateParser::MONTH_NAME, 7}, | 
|  | {'a', 'u', 'g', DateParser::MONTH_NAME, 8}, | 
|  | {'s', 'e', 'p', DateParser::MONTH_NAME, 9}, | 
|  | {'o', 'c', 't', DateParser::MONTH_NAME, 10}, | 
|  | {'n', 'o', 'v', DateParser::MONTH_NAME, 11}, | 
|  | {'d', 'e', 'c', DateParser::MONTH_NAME, 12}, | 
|  | {'a', 'm', '\0', DateParser::AM_PM, 0}, | 
|  | {'p', 'm', '\0', DateParser::AM_PM, 12}, | 
|  | {'u', 't', '\0', DateParser::TIME_ZONE_NAME, 0}, | 
|  | {'u', 't', 'c', DateParser::TIME_ZONE_NAME, 0}, | 
|  | {'z', '\0', '\0', DateParser::TIME_ZONE_NAME, 0}, | 
|  | {'g', 'm', 't', DateParser::TIME_ZONE_NAME, 0}, | 
|  | {'c', 'd', 't', DateParser::TIME_ZONE_NAME, -5}, | 
|  | {'c', 's', 't', DateParser::TIME_ZONE_NAME, -6}, | 
|  | {'e', 'd', 't', DateParser::TIME_ZONE_NAME, -4}, | 
|  | {'e', 's', 't', DateParser::TIME_ZONE_NAME, -5}, | 
|  | {'m', 'd', 't', DateParser::TIME_ZONE_NAME, -6}, | 
|  | {'m', 's', 't', DateParser::TIME_ZONE_NAME, -7}, | 
|  | {'p', 'd', 't', DateParser::TIME_ZONE_NAME, -7}, | 
|  | {'p', 's', 't', DateParser::TIME_ZONE_NAME, -8}, | 
|  | {'t', '\0', '\0', DateParser::TIME_SEPARATOR, 0}, | 
|  | {'\0', '\0', '\0', DateParser::INVALID, 0}, | 
|  | }; | 
|  |  | 
|  |  | 
|  | // We could use perfect hashing here, but this is not a bottleneck. | 
|  | int DateParser::KeywordTable::Lookup(const uint32_t* pre, int len) { | 
|  | int i; | 
|  | for (i = 0; array[i][kTypeOffset] != INVALID; i++) { | 
|  | int j = 0; | 
|  | while (j < kPrefixLength && | 
|  | pre[j] == static_cast<uint32_t>(array[i][j])) { | 
|  | j++; | 
|  | } | 
|  | // Check if we have a match and the length is legal. | 
|  | // Word longer than keyword is only allowed for month names. | 
|  | if (j == kPrefixLength && | 
|  | (len <= kPrefixLength || array[i][kTypeOffset] == MONTH_NAME)) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  |  | 
|  | int DateParser::ReadMilliseconds(DateToken token) { | 
|  | // Read first three significant digits of the original numeral, | 
|  | // as inferred from the value and the number of digits. | 
|  | // I.e., use the number of digits to see if there were | 
|  | // leading zeros. | 
|  | int number = token.number(); | 
|  | int length = token.length(); | 
|  | if (length < 3) { | 
|  | // Less than three digits. Multiply to put most significant digit | 
|  | // in hundreds position. | 
|  | if (length == 1) { | 
|  | number *= 100; | 
|  | } else if (length == 2) { | 
|  | number *= 10; | 
|  | } | 
|  | } else if (length > 3) { | 
|  | if (length > kMaxSignificantDigits) length = kMaxSignificantDigits; | 
|  | // More than three digits. Divide by 10^(length - 3) to get three | 
|  | // most significant digits. | 
|  | int factor = 1; | 
|  | do { | 
|  | DCHECK_LE(factor, 100000000);  // factor won't overflow. | 
|  | factor *= 10; | 
|  | length--; | 
|  | } while (length > 3); | 
|  | number /= factor; | 
|  | } | 
|  | return number; | 
|  | } | 
|  |  | 
|  |  | 
|  | }  // namespace internal | 
|  | }  // namespace v8 |