| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_CODEGEN_ARM_CONSTANTS_ARM_H_ |
| #define V8_CODEGEN_ARM_CONSTANTS_ARM_H_ |
| |
| #include <stdint.h> |
| |
| #include "src/base/logging.h" |
| #include "src/base/macros.h" |
| #include "src/common/code-memory-access.h" |
| #include "src/common/globals.h" |
| #include "src/utils/boxed-float.h" |
| #include "src/utils/utils.h" |
| |
| // ARM EABI is required. |
| #if defined(__arm__) && !defined(__ARM_EABI__) |
| #error ARM EABI support is required. |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Constant pool marker. |
| // Use UDF, the permanently undefined instruction. |
| const int kConstantPoolMarkerMask = 0xfff000f0; |
| const int kConstantPoolMarker = 0xe7f000f0; |
| const int kConstantPoolLengthMaxMask = 0xffff; |
| inline int EncodeConstantPoolLength(int length) { |
| DCHECK((length & kConstantPoolLengthMaxMask) == length); |
| return ((length & 0xfff0) << 4) | (length & 0xf); |
| } |
| inline int DecodeConstantPoolLength(int instr) { |
| DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker); |
| return ((instr >> 4) & 0xfff0) | (instr & 0xf); |
| } |
| |
| // Number of registers in normal ARM mode. |
| constexpr int kNumRegisters = 16; |
| constexpr int kRegSizeInBitsLog2 = 5; |
| |
| // VFP support. |
| constexpr int kNumVFPSingleRegisters = 32; |
| constexpr int kNumVFPDoubleRegisters = 32; |
| constexpr int kNumVFPRegisters = |
| kNumVFPSingleRegisters + kNumVFPDoubleRegisters; |
| |
| // PC is register 15. |
| constexpr int kPCRegister = 15; |
| constexpr int kNoRegister = -1; |
| |
| // Used in embedded constant pool builder - max reach in bits for |
| // various load instructions (unsigned) |
| constexpr int kLdrMaxReachBits = 12; |
| constexpr int kVldrMaxReachBits = 10; |
| |
| // The actual value of the kRootRegister is offset from the IsolateData's start |
| // to take advantage of negative displacement values. |
| // |
| // Loads allow a uint12 value with a separate sign bit (range [-4095, +4095]), |
| // so the first root is still addressable with a single load instruction. |
| constexpr int kRootRegisterBias = 4095; |
| |
| // TODO(pkasting): For all the enum type aliases below, if overload resolution |
| // is desired, we could try to add some kind of constexpr class with implicit |
| // conversion to/from int and operator overloads, then inherit from that. |
| |
| // ----------------------------------------------------------------------------- |
| // Conditions. |
| |
| // Defines constants and accessor classes to assemble, disassemble and |
| // simulate ARM instructions. |
| // |
| // Section references in the code refer to the "ARM Architecture Reference |
| // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf) |
| // |
| // Constants for specific fields are defined in their respective named enums. |
| // General constants are in an anonymous enum in class Instr. |
| |
| // Values for the condition field as defined in section A3.2 |
| enum Condition : int { |
| kNoCondition = -1, |
| |
| eq = 0 << 28, // Z set Equal. |
| ne = 1 << 28, // Z clear Not equal. |
| cs = 2 << 28, // C set Unsigned higher or same. |
| cc = 3 << 28, // C clear Unsigned lower. |
| mi = 4 << 28, // N set Negative. |
| pl = 5 << 28, // N clear Positive or zero. |
| vs = 6 << 28, // V set Overflow. |
| vc = 7 << 28, // V clear No overflow. |
| hi = 8 << 28, // C set, Z clear Unsigned higher. |
| ls = 9 << 28, // C clear or Z set Unsigned lower or same. |
| ge = 10 << 28, // N == V Greater or equal. |
| lt = 11 << 28, // N != V Less than. |
| gt = 12 << 28, // Z clear, N == V Greater than. |
| le = 13 << 28, // Z set or N != V Less then or equal |
| al = 14 << 28, // Always. |
| |
| // Special condition (refer to section A3.2.1). |
| kSpecialCondition = 15 << 28, |
| kNumberOfConditions = 16, |
| |
| // Aliases. |
| hs = cs, // C set Unsigned higher or same. |
| lo = cc, // C clear Unsigned lower. |
| |
| // Unified cross-platform condition names/aliases. |
| kEqual = eq, |
| kNotEqual = ne, |
| kLessThan = lt, |
| kGreaterThan = gt, |
| kLessThanEqual = le, |
| kGreaterThanEqual = ge, |
| kUnsignedLessThan = lo, |
| kUnsignedGreaterThan = hi, |
| kUnsignedLessThanEqual = ls, |
| kUnsignedGreaterThanEqual = hs, |
| kOverflow = vs, |
| kNoOverflow = vc, |
| kZero = eq, |
| kNotZero = ne, |
| }; |
| |
| inline Condition NegateCondition(Condition cond) { |
| DCHECK(cond != al); |
| return static_cast<Condition>(cond ^ ne); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Instructions encoding. |
| |
| // Instr is merely used by the Assembler to distinguish 32bit integers |
| // representing instructions from usual 32 bit values. |
| // Instruction objects are pointers to 32bit values, and provide methods to |
| // access the various ISA fields. |
| using Instr = int32_t; |
| |
| // Opcodes for Data-processing instructions (instructions with a type 0 and 1) |
| // as defined in section A3.4 |
| using Opcode = int; |
| constexpr Opcode AND = 0 << 21; // Logical AND. |
| constexpr Opcode EOR = 1 << 21; // Logical Exclusive OR. |
| constexpr Opcode SUB = 2 << 21; // Subtract. |
| constexpr Opcode RSB = 3 << 21; // Reverse Subtract. |
| constexpr Opcode ADD = 4 << 21; // Add. |
| constexpr Opcode ADC = 5 << 21; // Add with Carry. |
| constexpr Opcode SBC = 6 << 21; // Subtract with Carry. |
| constexpr Opcode RSC = 7 << 21; // Reverse Subtract with Carry. |
| constexpr Opcode TST = 8 << 21; // Test. |
| constexpr Opcode TEQ = 9 << 21; // Test Equivalence. |
| constexpr Opcode CMP = 10 << 21; // Compare. |
| constexpr Opcode CMN = 11 << 21; // Compare Negated. |
| constexpr Opcode ORR = 12 << 21; // Logical (inclusive) OR. |
| constexpr Opcode MOV = 13 << 21; // Move. |
| constexpr Opcode BIC = 14 << 21; // Bit Clear. |
| constexpr Opcode MVN = 15 << 21; // Move Not. |
| |
| // The bits for bit 7-4 for some type 0 miscellaneous instructions. |
| using MiscInstructionsBits74 = int; |
| // With bits 22-21 01. |
| constexpr MiscInstructionsBits74 BX = 1 << 4; |
| constexpr MiscInstructionsBits74 BXJ = 2 << 4; |
| constexpr MiscInstructionsBits74 BLX = 3 << 4; |
| constexpr MiscInstructionsBits74 BKPT = 7 << 4; |
| |
| // With bits 22-21 11. |
| constexpr MiscInstructionsBits74 CLZ = 1 << 4; |
| |
| // Instruction encoding bits and masks. |
| constexpr int H = 1 << 5; // Halfword (or byte). |
| constexpr int S6 = 1 << 6; // Signed (or unsigned). |
| constexpr int L = 1 << 20; // Load (or store). |
| constexpr int S = 1 << 20; // Set condition code (or leave unchanged). |
| constexpr int W = 1 << 21; // Writeback base register (or leave unchanged). |
| constexpr int A = 1 << 21; // Accumulate in multiply instruction (or not). |
| constexpr int B = 1 << 22; // Unsigned byte (or word). |
| constexpr int N = 1 << 22; // Long (or short). |
| constexpr int U = 1 << 23; // Positive (or negative) offset/index. |
| constexpr int P = |
| 1 << 24; // Offset/pre-indexed addressing (or post-indexed addressing). |
| constexpr int I = 1 << 25; // Immediate shifter operand (or not). |
| constexpr int B0 = 1 << 0; |
| constexpr int B4 = 1 << 4; |
| constexpr int B5 = 1 << 5; |
| constexpr int B6 = 1 << 6; |
| constexpr int B7 = 1 << 7; |
| constexpr int B8 = 1 << 8; |
| constexpr int B9 = 1 << 9; |
| constexpr int B10 = 1 << 10; |
| constexpr int B12 = 1 << 12; |
| constexpr int B16 = 1 << 16; |
| constexpr int B17 = 1 << 17; |
| constexpr int B18 = 1 << 18; |
| constexpr int B19 = 1 << 19; |
| constexpr int B20 = 1 << 20; |
| constexpr int B21 = 1 << 21; |
| constexpr int B22 = 1 << 22; |
| constexpr int B23 = 1 << 23; |
| constexpr int B24 = 1 << 24; |
| constexpr int B25 = 1 << 25; |
| constexpr int B26 = 1 << 26; |
| constexpr int B27 = 1 << 27; |
| constexpr int B28 = 1 << 28; |
| |
| // Instruction bit masks. |
| constexpr int kCondMask = 15 << 28; |
| constexpr int kALUMask = 0x6f << 21; |
| constexpr int kRdMask = 15 << 12; // In str instruction. |
| constexpr int kCoprocessorMask = 15 << 8; |
| constexpr int kOpCodeMask = 15 << 21; // In data-processing instructions. |
| constexpr int kImm24Mask = (1 << 24) - 1; |
| constexpr int kImm16Mask = (1 << 16) - 1; |
| constexpr int kImm8Mask = (1 << 8) - 1; |
| constexpr int kOff12Mask = (1 << 12) - 1; |
| constexpr int kOff8Mask = (1 << 8) - 1; |
| |
| using BarrierOption = int; |
| constexpr BarrierOption OSHLD = 0x1; |
| constexpr BarrierOption OSHST = 0x2; |
| constexpr BarrierOption OSH = 0x3; |
| constexpr BarrierOption NSHLD = 0x5; |
| constexpr BarrierOption NSHST = 0x6; |
| constexpr BarrierOption NSH = 0x7; |
| constexpr BarrierOption ISHLD = 0x9; |
| constexpr BarrierOption ISHST = 0xa; |
| constexpr BarrierOption ISH = 0xb; |
| constexpr BarrierOption LD = 0xd; |
| constexpr BarrierOption ST = 0xe; |
| constexpr BarrierOption SY = 0xf; |
| |
| // ----------------------------------------------------------------------------- |
| // Addressing modes and instruction variants. |
| |
| // Condition code updating mode. |
| using SBit = int; |
| constexpr SBit SetCC = 1 << 20; // Set condition code. |
| constexpr SBit LeaveCC = 0 << 20; // Leave condition code unchanged. |
| |
| // Status register selection. |
| using SRegister = int; |
| constexpr SRegister CPSR = 0 << 22; |
| constexpr SRegister SPSR = 1 << 22; |
| |
| // Shifter types for Data-processing operands as defined in section A5.1.2. |
| using ShiftOp = int; |
| constexpr ShiftOp LSL = 0 << 5; // Logical shift left. |
| constexpr ShiftOp LSR = 1 << 5; // Logical shift right. |
| constexpr ShiftOp ASR = 2 << 5; // Arithmetic shift right. |
| constexpr ShiftOp ROR = 3 << 5; // Rotate right. |
| |
| // RRX is encoded as ROR with shift_imm == 0. |
| // Use a special code to make the distinction. The RRX ShiftOp is only used |
| // as an argument, and will never actually be encoded. The Assembler will |
| // detect it and emit the correct ROR shift operand with shift_imm == 0. |
| constexpr ShiftOp RRX = -1; |
| constexpr ShiftOp kNumberOfShifts = 4; |
| |
| // Status register fields. |
| using SRegisterField = int; |
| constexpr SRegisterField CPSR_c = CPSR | 1 << 16; |
| constexpr SRegisterField CPSR_x = CPSR | 1 << 17; |
| constexpr SRegisterField CPSR_s = CPSR | 1 << 18; |
| constexpr SRegisterField CPSR_f = CPSR | 1 << 19; |
| constexpr SRegisterField SPSR_c = SPSR | 1 << 16; |
| constexpr SRegisterField SPSR_x = SPSR | 1 << 17; |
| constexpr SRegisterField SPSR_s = SPSR | 1 << 18; |
| constexpr SRegisterField SPSR_f = SPSR | 1 << 19; |
| |
| // Status register field mask (or'ed SRegisterField enum values). |
| using SRegisterFieldMask = uint32_t; |
| |
| // Memory operand addressing mode. |
| using AddrMode = int; |
| // Bit encoding P U W. |
| constexpr AddrMode Offset = (8 | 4 | 0) |
| << 21; // Offset (without writeback to base). |
| constexpr AddrMode PreIndex = (8 | 4 | 1) |
| << 21; // Pre-indexed addressing with writeback. |
| constexpr AddrMode PostIndex = |
| (0 | 4 | 0) << 21; // Post-indexed addressing with writeback. |
| constexpr AddrMode NegOffset = |
| (8 | 0 | 0) << 21; // Negative offset (without writeback to base). |
| constexpr AddrMode NegPreIndex = (8 | 0 | 1) |
| << 21; // Negative pre-indexed with writeback. |
| constexpr AddrMode NegPostIndex = |
| (0 | 0 | 0) << 21; // Negative post-indexed with writeback. |
| |
| // Load/store multiple addressing mode. |
| using BlockAddrMode = int; |
| // Bit encoding P U W . |
| constexpr BlockAddrMode da = (0 | 0 | 0) << 21; // Decrement after. |
| constexpr BlockAddrMode ia = (0 | 4 | 0) << 21; // Increment after. |
| constexpr BlockAddrMode db = (8 | 0 | 0) << 21; // Decrement before. |
| constexpr BlockAddrMode ib = (8 | 4 | 0) << 21; // Increment before. |
| constexpr BlockAddrMode da_w = |
| (0 | 0 | 1) << 21; // Decrement after with writeback to base. |
| constexpr BlockAddrMode ia_w = |
| (0 | 4 | 1) << 21; // Increment after with writeback to base. |
| constexpr BlockAddrMode db_w = |
| (8 | 0 | 1) << 21; // Decrement before with writeback to base. |
| constexpr BlockAddrMode ib_w = |
| (8 | 4 | 1) << 21; // Increment before with writeback to base. |
| |
| // Alias modes for comparison when writeback does not matter. |
| constexpr BlockAddrMode da_x = (0 | 0 | 0) << 21; // Decrement after. |
| constexpr BlockAddrMode ia_x = (0 | 4 | 0) << 21; // Increment after. |
| constexpr BlockAddrMode db_x = (8 | 0 | 0) << 21; // Decrement before. |
| constexpr BlockAddrMode ib_x = (8 | 4 | 0) << 21; // Increment before. |
| |
| constexpr BlockAddrMode kBlockAddrModeMask = (8 | 4 | 1) << 21; |
| |
| // Coprocessor load/store operand size. |
| using LFlag = int; |
| constexpr LFlag Long = 1 << 22; // Long load/store coprocessor. |
| constexpr LFlag Short = 0 << 22; // Short load/store coprocessor. |
| |
| // Neon sizes. |
| using NeonSize = int; |
| constexpr NeonSize Neon8 = 0x0; |
| constexpr NeonSize Neon16 = 0x1; |
| constexpr NeonSize Neon32 = 0x2; |
| constexpr NeonSize Neon64 = 0x3; |
| |
| // NEON data type, top bit set for unsigned data types. |
| using NeonDataType = int; |
| constexpr NeonDataType NeonS8 = 0; |
| constexpr NeonDataType NeonS16 = 1; |
| constexpr NeonDataType NeonS32 = 2; |
| constexpr NeonDataType NeonS64 = 3; |
| constexpr NeonDataType NeonU8 = 4; |
| constexpr NeonDataType NeonU16 = 5; |
| constexpr NeonDataType NeonU32 = 6; |
| constexpr NeonDataType NeonU64 = 7; |
| |
| inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; } |
| inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; } |
| |
| // Convert sizes to data types (U bit is clear). |
| inline NeonDataType NeonSizeToDataType(NeonSize size) { |
| DCHECK_NE(Neon64, size); |
| return static_cast<NeonDataType>(size); |
| } |
| |
| inline NeonSize NeonDataTypeToSize(NeonDataType dt) { |
| return static_cast<NeonSize>(NeonSz(dt)); |
| } |
| |
| using NeonListType = int; |
| constexpr NeonListType nlt_1 = 0x7; |
| constexpr NeonListType nlt_2 = 0xA; |
| constexpr NeonListType nlt_3 = 0x6; |
| constexpr NeonListType nlt_4 = 0x2; |
| |
| // ----------------------------------------------------------------------------- |
| // Supervisor Call (svc) specific support. |
| |
| // Special Software Interrupt codes when used in the presence of the ARM |
| // simulator. |
| // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for |
| // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. |
| using SoftwareInterruptCodes = int; |
| // transition to C code |
| constexpr SoftwareInterruptCodes kCallRtRedirected = 0x10; |
| // break point |
| constexpr SoftwareInterruptCodes kBreakpoint = 0x20; |
| // stop |
| constexpr SoftwareInterruptCodes kStopCode = 1 << 23; |
| constexpr uint32_t kStopCodeMask = kStopCode - 1; |
| constexpr uint32_t kMaxStopCode = kStopCode - 1; |
| constexpr int32_t kDefaultStopCode = -1; |
| |
| // Type of VFP register. Determines register encoding. |
| using VFPRegPrecision = int; |
| constexpr VFPRegPrecision kSinglePrecision = 0; |
| constexpr VFPRegPrecision kDoublePrecision = 1; |
| constexpr VFPRegPrecision kSimd128Precision = 2; |
| |
| // VFP FPSCR constants. |
| using VFPConversionMode = int; |
| constexpr VFPConversionMode kFPSCRRounding = 0; |
| constexpr VFPConversionMode kDefaultRoundToZero = 1; |
| |
| // This mask does not include the "inexact" or "input denormal" cumulative |
| // exceptions flags, because we usually don't want to check for it. |
| constexpr uint32_t kVFPExceptionMask = 0xf; |
| constexpr uint32_t kVFPInvalidOpExceptionBit = 1 << 0; |
| constexpr uint32_t kVFPOverflowExceptionBit = 1 << 2; |
| constexpr uint32_t kVFPUnderflowExceptionBit = 1 << 3; |
| constexpr uint32_t kVFPInexactExceptionBit = 1 << 4; |
| constexpr uint32_t kVFPFlushToZeroMask = 1 << 24; |
| constexpr uint32_t kVFPDefaultNaNModeControlBit = 1 << 25; |
| |
| constexpr uint32_t kVFPNConditionFlagBit = 1 << 31; |
| constexpr uint32_t kVFPZConditionFlagBit = 1 << 30; |
| constexpr uint32_t kVFPCConditionFlagBit = 1 << 29; |
| constexpr uint32_t kVFPVConditionFlagBit = 1 << 28; |
| |
| // VFP rounding modes. See ARM DDI 0406B Page A2-29. |
| using VFPRoundingMode = int; |
| constexpr VFPRoundingMode RN = 0 << 22; // Round to Nearest. |
| constexpr VFPRoundingMode RP = 1 << 22; // Round towards Plus Infinity. |
| constexpr VFPRoundingMode RM = 2 << 22; // Round towards Minus Infinity. |
| constexpr VFPRoundingMode RZ = 3 << 22; // Round towards zero. |
| |
| // Aliases. |
| constexpr VFPRoundingMode kRoundToNearest = RN; |
| constexpr VFPRoundingMode kRoundToPlusInf = RP; |
| constexpr VFPRoundingMode kRoundToMinusInf = RM; |
| constexpr VFPRoundingMode kRoundToZero = RZ; |
| |
| const uint32_t kVFPRoundingModeMask = 3 << 22; |
| |
| enum CheckForInexactConversion { |
| kCheckForInexactConversion, |
| kDontCheckForInexactConversion |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Hints. |
| |
| // Branch hints are not used on the ARM. They are defined so that they can |
| // appear in shared function signatures, but will be ignored in ARM |
| // implementations. |
| enum Hint { no_hint }; |
| |
| // Hints are not used on the arm. Negating is trivial. |
| inline Hint NegateHint(Hint ignored) { return no_hint; } |
| |
| // ----------------------------------------------------------------------------- |
| // Instruction abstraction. |
| |
| // The class Instruction enables access to individual fields defined in the ARM |
| // architecture instruction set encoding as described in figure A3-1. |
| // Note that the Assembler uses typedef int32_t Instr. |
| // |
| // Example: Test whether the instruction at ptr does set the condition code |
| // bits. |
| // |
| // bool InstructionSetsConditionCodes(uint8_t* ptr) { |
| // Instruction* instr = Instruction::At(ptr); |
| // int type = instr->TypeValue(); |
| // return ((type == 0) || (type == 1)) && instr->HasS(); |
| // } |
| // |
| |
| constexpr uint8_t kInstrSize = 4; |
| constexpr uint8_t kInstrSizeLog2 = 2; |
| |
| class Instruction { |
| public: |
| // Difference between address of current opcode and value read from pc |
| // register. |
| static constexpr int kPcLoadDelta = 8; |
| |
| // Helper macro to define static accessors. |
| // We use the cast to char* trick to bypass the strict anti-aliasing rules. |
| #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \ |
| static inline return_type Name(Instr instr) { \ |
| char* temp = reinterpret_cast<char*>(&instr); \ |
| return reinterpret_cast<Instruction*>(temp)->Name(); \ |
| } |
| |
| #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name) |
| |
| // Get the raw instruction bits. |
| inline Instr InstructionBits() const { |
| return *reinterpret_cast<const Instr*>(this); |
| } |
| |
| // Set the raw instruction bits to value. |
| V8_EXPORT_PRIVATE void SetInstructionBits( |
| Instr value, WritableJitAllocation* jit_allocation = nullptr); |
| |
| // Extract a single bit from the instruction bits and return it as bit 0 in |
| // the result. |
| inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } |
| |
| // Extract a bit field <hi:lo> from the instruction bits and return it in the |
| // least-significant bits of the result. |
| inline int Bits(int hi, int lo) const { |
| return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1); |
| } |
| |
| // Read a bit field <hi:lo>, leaving its position unchanged in the result. |
| inline int BitField(int hi, int lo) const { |
| return InstructionBits() & (((2 << (hi - lo)) - 1) << lo); |
| } |
| |
| // Accessors for the different named fields used in the ARM encoding. |
| // The naming of these accessor corresponds to figure A3-1. |
| // |
| // Two kind of accessors are declared: |
| // - <Name>Field() will return the raw field, i.e. the field's bits at their |
| // original place in the instruction encoding. |
| // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as |
| // 0xC0810002 ConditionField(instr) will return 0xC0000000. |
| // - <Name>Value() will return the field value, shifted back to bit 0. |
| // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as |
| // 0xC0810002 ConditionField(instr) will return 0xC. |
| |
| // Generally applicable fields |
| inline int ConditionValue() const { return Bits(31, 28); } |
| inline Condition ConditionField() const { |
| return static_cast<Condition>(BitField(31, 28)); |
| } |
| DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue) |
| DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField) |
| |
| inline int TypeValue() const { return Bits(27, 25); } |
| inline int SpecialValue() const { return Bits(27, 23); } |
| |
| inline int RnValue() const { return Bits(19, 16); } |
| DECLARE_STATIC_ACCESSOR(RnValue) |
| inline int RdValue() const { return Bits(15, 12); } |
| DECLARE_STATIC_ACCESSOR(RdValue) |
| |
| inline int CoprocessorValue() const { return Bits(11, 8); } |
| // Support for VFP. |
| // Vn(19-16) | Vd(15-12) | Vm(3-0) |
| inline int VnValue() const { return Bits(19, 16); } |
| inline int VmValue() const { return Bits(3, 0); } |
| inline int VdValue() const { return Bits(15, 12); } |
| inline int NValue() const { return Bit(7); } |
| inline int MValue() const { return Bit(5); } |
| inline int DValue() const { return Bit(22); } |
| inline int RtValue() const { return Bits(15, 12); } |
| inline int PValue() const { return Bit(24); } |
| inline int UValue() const { return Bit(23); } |
| inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); } |
| inline int Opc2Value() const { return Bits(19, 16); } |
| inline int Opc3Value() const { return Bits(7, 6); } |
| inline int SzValue() const { return Bit(8); } |
| inline int VLValue() const { return Bit(20); } |
| inline int VCValue() const { return Bit(8); } |
| inline int VAValue() const { return Bits(23, 21); } |
| inline int VBValue() const { return Bits(6, 5); } |
| inline int VFPNRegValue(VFPRegPrecision pre) { |
| return VFPGlueRegValue(pre, 16, 7); |
| } |
| inline int VFPMRegValue(VFPRegPrecision pre) { |
| return VFPGlueRegValue(pre, 0, 5); |
| } |
| inline int VFPDRegValue(VFPRegPrecision pre) { |
| return VFPGlueRegValue(pre, 12, 22); |
| } |
| |
| // Fields used in Data processing instructions |
| inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); } |
| inline Opcode OpcodeField() const { |
| return static_cast<Opcode>(BitField(24, 21)); |
| } |
| inline int SValue() const { return Bit(20); } |
| // with register |
| inline int RmValue() const { return Bits(3, 0); } |
| DECLARE_STATIC_ACCESSOR(RmValue) |
| inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); } |
| inline ShiftOp ShiftField() const { |
| return static_cast<ShiftOp>(BitField(6, 5)); |
| } |
| inline int RegShiftValue() const { return Bit(4); } |
| inline int RsValue() const { return Bits(11, 8); } |
| inline int ShiftAmountValue() const { return Bits(11, 7); } |
| // with immediate |
| inline int RotateValue() const { return Bits(11, 8); } |
| DECLARE_STATIC_ACCESSOR(RotateValue) |
| inline int Immed8Value() const { return Bits(7, 0); } |
| DECLARE_STATIC_ACCESSOR(Immed8Value) |
| inline int Immed4Value() const { return Bits(19, 16); } |
| inline int ImmedMovwMovtValue() const { |
| return Immed4Value() << 12 | Offset12Value(); |
| } |
| DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue) |
| |
| // Fields used in Load/Store instructions |
| inline int PUValue() const { return Bits(24, 23); } |
| inline int PUField() const { return BitField(24, 23); } |
| inline int BValue() const { return Bit(22); } |
| inline int WValue() const { return Bit(21); } |
| inline int LValue() const { return Bit(20); } |
| // with register uses same fields as Data processing instructions above |
| // with immediate |
| inline int Offset12Value() const { return Bits(11, 0); } |
| // multiple |
| inline int RlistValue() const { return Bits(15, 0); } |
| // extra loads and stores |
| inline int SignValue() const { return Bit(6); } |
| inline int HValue() const { return Bit(5); } |
| inline int ImmedHValue() const { return Bits(11, 8); } |
| inline int ImmedLValue() const { return Bits(3, 0); } |
| |
| // Fields used in Branch instructions |
| inline int LinkValue() const { return Bit(24); } |
| inline int SImmed24Value() const { |
| return signed_bitextract_32(23, 0, InstructionBits()); |
| } |
| |
| bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; } |
| |
| int GetBranchOffset() { |
| DCHECK(IsBranch()); |
| return SImmed24Value() * kInstrSize; |
| } |
| |
| inline void SetBranchOffset(int32_t branch_offset, |
| WritableJitAllocation* jit_allocation) { |
| DCHECK(IsBranch()); |
| DCHECK_EQ(branch_offset % kInstrSize, 0); |
| int32_t new_imm24 = branch_offset / kInstrSize; |
| CHECK(is_int24(new_imm24)); |
| SetInstructionBits( |
| (InstructionBits() & ~(kImm24Mask)) | (new_imm24 & kImm24Mask), |
| jit_allocation); |
| } |
| |
| // Fields used in Software interrupt instructions |
| inline SoftwareInterruptCodes SvcValue() const { |
| return static_cast<SoftwareInterruptCodes>(Bits(23, 0)); |
| } |
| |
| // Test for special encodings of type 0 instructions (extra loads and stores, |
| // as well as multiplications). |
| inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); } |
| |
| // Test for miscellaneous instructions encodings of type 0 instructions. |
| inline bool IsMiscType0() const { |
| return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) && |
| ((Bit(7) == 0)); |
| } |
| |
| // Test for nop-like instructions which fall under type 1. |
| inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; } |
| |
| // Test for a stop instruction. |
| inline bool IsStop() const { |
| return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode); |
| } |
| |
| // Special accessors that test for existence of a value. |
| inline bool HasS() const { return SValue() == 1; } |
| inline bool HasB() const { return BValue() == 1; } |
| inline bool HasW() const { return WValue() == 1; } |
| inline bool HasL() const { return LValue() == 1; } |
| inline bool HasU() const { return UValue() == 1; } |
| inline bool HasSign() const { return SignValue() == 1; } |
| inline bool HasH() const { return HValue() == 1; } |
| inline bool HasLink() const { return LinkValue() == 1; } |
| |
| // Decode the double immediate from a vmov instruction. |
| Float64 DoubleImmedVmov() const; |
| |
| // Instructions are read of out a code stream. The only way to get a |
| // reference to an instruction is to convert a pointer. There is no way |
| // to allocate or create instances of class Instruction. |
| // Use the At(pc) function to create references to Instruction. |
| static Instruction* At(Address pc) { |
| return reinterpret_cast<Instruction*>(pc); |
| } |
| |
| private: |
| // Join split register codes, depending on register precision. |
| // four_bit is the position of the least-significant bit of the four |
| // bit specifier. one_bit is the position of the additional single bit |
| // specifier. |
| inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { |
| if (pre == kSinglePrecision) { |
| return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit); |
| } else { |
| int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit); |
| if (pre == kDoublePrecision) { |
| return reg_num; |
| } |
| DCHECK_EQ(kSimd128Precision, pre); |
| DCHECK_EQ(reg_num & 1, 0); |
| return reg_num / 2; |
| } |
| } |
| |
| // We need to prevent the creation of instances of class Instruction. |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); |
| }; |
| |
| // Helper functions for converting between register numbers and names. |
| class Registers { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg); |
| |
| // Lookup the register number for the name provided. |
| static int Number(const char* name); |
| |
| struct RegisterAlias { |
| int reg; |
| const char* name; |
| }; |
| |
| private: |
| static const char* names_[kNumRegisters]; |
| static const RegisterAlias aliases_[]; |
| }; |
| |
| // Helper functions for converting between VFP register numbers and names. |
| class VFPRegisters { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg, bool is_double); |
| |
| // Lookup the register number for the name provided. |
| // Set flag pointed by is_double to true if register |
| // is double-precision. |
| static int Number(const char* name, bool* is_double); |
| |
| private: |
| static const char* names_[kNumVFPRegisters]; |
| }; |
| |
| // The maximum size of the code range s.t. pc-relative calls are possible |
| // between all Code objects in the range. |
| // |
| // Relative jumps on ARM can address ±32 MB. |
| constexpr size_t kMaxPCRelativeCodeRangeInMB = 32; |
| |
| // The maximum size of the stack restore after a fast API call that pops the |
| // stack parameters of the call off the stack. |
| constexpr int kMaxSizeOfMoveAfterFastCall = 4; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_ARM_CONSTANTS_ARM_H_ |