blob: f3df7e16129131b52ea02f2b325ec5caa2471692 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2021 the V8 project authors. All rights reserved.
#ifndef V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_
#define V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_
#include "src/codegen/riscv/assembler-riscv.h"
// Include the non-inl header before the rest of the headers.
#include "src/codegen/assembler-arch.h"
#include "src/codegen/assembler.h"
#include "src/debug/debug.h"
#include "src/diagnostics/disasm.h"
#include "src/diagnostics/disassembler.h"
#include "src/heap/heap-layout-inl.h"
#include "src/heap/heap-layout.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
[[nodiscard]] static inline Instr SetHi20Offset(int32_t hi29, Instr instr);
[[nodiscard]] static inline Instr SetLo12Offset(int32_t lo12, Instr instr);
bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
void Assembler::CheckBuffer() {
if (V8_UNLIKELY(buffer_space() <= kGap)) {
GrowBuffer();
}
}
void Assembler::CheckConstantPoolQuick(int margin) {
if (V8_UNLIKELY(pc_offset() >= constpool_.NextCheckIn() - margin)) {
constpool_.Check(Emission::kIfNeeded, Jump::kRequired, margin);
}
}
void Assembler::CheckTrampolinePoolQuick(int margin) {
DEBUG_PRINTF("\tCheckTrampolinePoolQuick pc_offset:%d %d\n", pc_offset(),
trampoline_check_ - margin);
if (V8_UNLIKELY(pc_offset() >= trampoline_check_ - margin)) {
CheckTrampolinePool();
}
}
void Assembler::DisassembleInstruction(uint8_t* pc) {
if (V8_UNLIKELY(v8_flags.riscv_debug)) {
DisassembleInstructionHelper(pc);
}
}
void WritableRelocInfo::apply(intptr_t delta) {
if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
// Absolute code pointer inside code object moves with the code object.
Assembler::RelocateInternalReference(rmode_, pc_, delta, &jit_allocation_);
} else {
DCHECK(IsRelativeCodeTarget(rmode_) || IsNearBuiltinEntry(rmode_));
Assembler::RelocateRelativeReference(rmode_, pc_, delta, &jit_allocation_);
}
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTargetMode(rmode_) || IsWasmCall(rmode_) ||
IsNearBuiltinEntry(rmode_) || IsWasmStubCall(rmode_) ||
IsExternalReference(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
Address RelocInfo::target_address_address() {
DCHECK(HasTargetAddressAddress());
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LUI/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written. In this case the target_address_address function should
// return the end of the instructions to be patched, allowing the
// deserializer to deserialize the instructions as raw bytes and put them in
// place, ready to be patched with the target. After jump optimization,
// that is the address of the instruction that follows J/JAL/JR/JALR
// instruction.
#ifdef V8_TARGET_ARCH_RISCV64
return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize;
#elif defined(V8_TARGET_ARCH_RISCV32)
return pc_ + Assembler::kInstructionsFor32BitConstant * kInstrSize;
#endif
}
Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
int RelocInfo::target_address_size() {
if (IsCodedSpecially()) {
return Assembler::kSpecialTargetSize;
} else {
return kSystemPointerSize;
}
}
void Assembler::set_target_compressed_address_at(
Address pc, Address constant_pool, Tagged_t target,
WritableJitAllocation* jit_allocation, ICacheFlushMode icache_flush_mode) {
if (COMPRESS_POINTERS_BOOL) {
Assembler::set_uint32_constant_at(pc, constant_pool,
static_cast<uint32_t>(target),
jit_allocation, icache_flush_mode);
} else {
UNREACHABLE();
}
}
Tagged_t Assembler::target_compressed_address_at(Address pc,
Address constant_pool) {
disasm::NameConverter converter;
disasm::Disassembler disasm(converter);
base::EmbeddedVector<char, 128> disasm_buffer;
disasm.InstructionDecode(disasm_buffer, reinterpret_cast<uint8_t*>(pc));
DEBUG_PRINTF("%s\n", disasm_buffer.begin());
disasm.InstructionDecode(disasm_buffer,
reinterpret_cast<uint8_t*>(pc + kInstrSize));
DEBUG_PRINTF("%s\n", disasm_buffer.begin());
DEBUG_PRINTF("\t target_compressed_address_at %d\n",
uint32_constant_at(pc, constant_pool));
return static_cast<Tagged_t>(uint32_constant_at(pc, constant_pool));
}
WasmCodePointer RelocInfo::wasm_code_pointer_table_entry() const {
DCHECK(rmode_ == WASM_CODE_POINTER_TABLE_ENTRY);
return WasmCodePointer(Assembler::uint32_constant_at(pc_, constant_pool_));
}
void WritableRelocInfo::set_wasm_code_pointer_table_entry(
WasmCodePointer target, ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::WASM_CODE_POINTER_TABLE_ENTRY);
Assembler::set_uint32_constant_at(pc_, constant_pool_, target.value(),
&jit_allocation_, icache_flush_mode);
}
Handle<Object> Assembler::code_target_object_handle_at(Address pc,
Address constant_pool) {
int index =
static_cast<int>(target_address_at(pc, constant_pool)) & 0xFFFFFFFF;
return GetCodeTarget(index);
}
Handle<HeapObject> Assembler::compressed_embedded_object_handle_at(
Address pc, Address const_pool) {
DEBUG_PRINTF("\tcompressed_embedded_object_handle_at: pc: 0x%" PRIxPTR " \t ",
pc);
return GetEmbeddedObject(target_compressed_address_at(pc, const_pool));
}
Handle<HeapObject> Assembler::embedded_object_handle_at(Address pc) {
DEBUG_PRINTF("\tembedded_object_handle_at: pc: 0x%" PRIxPTR " \n", pc);
disasm::NameConverter converter;
disasm::Disassembler disasm(converter);
base::EmbeddedVector<char, 128> disasm_buffer;
disasm.InstructionDecode(disasm_buffer, reinterpret_cast<uint8_t*>(pc));
DEBUG_PRINTF("%s\n", disasm_buffer.begin());
disasm.InstructionDecode(disasm_buffer,
reinterpret_cast<uint8_t*>(pc + kInstrSize));
DEBUG_PRINTF("%s\n", disasm_buffer.begin());
#if V8_TARGET_ARCH_RISCV64
Instr instr1 = Assembler::instr_at(pc);
Instr instr2 = Assembler::instr_at(pc + kInstrSize);
DCHECK(IsAuipc(instr1));
DCHECK(IsLd(instr2));
int32_t embedded_target_offset = BranchLongOffset(instr1, instr2);
DEBUG_PRINTF("\tembedded_target_offset %d\n", embedded_target_offset);
static_assert(sizeof(EmbeddedObjectIndex) == sizeof(intptr_t));
DEBUG_PRINTF("\t EmbeddedObjectIndex %lu\n",
Memory<EmbeddedObjectIndex>(pc + embedded_target_offset));
return GetEmbeddedObject(
Memory<EmbeddedObjectIndex>(pc + embedded_target_offset));
#else
DCHECK(IsLui(Assembler::instr_at(pc)));
DCHECK(IsAddi(Assembler::instr_at(pc + kInstrSize)));
auto target = target_address_at(pc, kNullAddress);
DEBUG_PRINTF("\ttarget %d\n", target);
return Handle<HeapObject>(reinterpret_cast<Address*>(target));
#endif
}
#if V8_TARGET_ARCH_RISCV64
void Assembler::set_embedded_object_index_referenced_from(
Address pc, EmbeddedObjectIndex data) {
Instr instr1 = Assembler::instr_at(pc);
Instr instr2 = Assembler::instr_at(pc + kInstrSize);
DCHECK(IsAuipc(instr1));
DCHECK(IsLd(instr2));
int32_t embedded_target_offset = BranchLongOffset(instr1, instr2);
Memory<EmbeddedObjectIndex>(pc + embedded_target_offset) = data;
}
#endif
void Assembler::deserialization_set_special_target_at(
Address instruction_payload, Tagged<Code> code, Address target) {
set_target_address_at(instruction_payload,
!code.is_null() ? code->constant_pool() : kNullAddress,
target);
}
int Assembler::deserialization_special_target_size(
Address instruction_payload) {
return kSpecialTargetSize;
}
void Assembler::set_target_internal_reference_encoded_at(Address pc,
Address target) {
#ifdef V8_TARGET_ARCH_RISCV64
set_target_value_at(pc, static_cast<uint64_t>(target));
#elif defined(V8_TARGET_ARCH_RISCV32)
set_target_value_at(pc, static_cast<uint32_t>(target));
#endif
}
void Assembler::deserialization_set_target_internal_reference_at(
Address pc, Address target, WritableJitAllocation& jit_allocation,
RelocInfo::Mode mode) {
jit_allocation.WriteUnalignedValue<Address>(pc, target);
}
Tagged<HeapObject> RelocInfo::target_object(PtrComprCageBase cage_base) {
DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
if (IsCompressedEmbeddedObject(rmode_)) {
return Cast<HeapObject>(
Tagged<Object>(V8HeapCompressionScheme::DecompressTagged(
Assembler::target_compressed_address_at(pc_, constant_pool_))));
} else {
return Cast<HeapObject>(
Tagged<Object>(Assembler::target_address_at(pc_, constant_pool_)));
}
}
DirectHandle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
if (IsCodeTarget(rmode_)) {
return Cast<HeapObject>(
origin->code_target_object_handle_at(pc_, constant_pool_));
} else if (IsCompressedEmbeddedObject(rmode_)) {
return origin->compressed_embedded_object_handle_at(pc_, constant_pool_);
} else if (IsFullEmbeddedObject(rmode_)) {
return origin->embedded_object_handle_at(pc_);
} else {
DCHECK(IsRelativeCodeTarget(rmode_));
return origin->relative_code_target_object_handle_at(pc_);
}
}
void WritableRelocInfo::set_target_object(Tagged<HeapObject> target,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
if (IsCompressedEmbeddedObject(rmode_)) {
DCHECK(COMPRESS_POINTERS_BOOL);
// We must not compress pointers to objects outside of the main pointer
// compression cage as we wouldn't be able to decompress them with the
// correct cage base.
DCHECK_IMPLIES(V8_ENABLE_SANDBOX_BOOL,
!TrustedHeapLayout::InTrustedSpace(target));
DCHECK_IMPLIES(V8_EXTERNAL_CODE_SPACE_BOOL,
!TrustedHeapLayout::InCodeSpace(target));
Assembler::set_target_compressed_address_at(
pc_, constant_pool_,
V8HeapCompressionScheme::CompressObject(target.ptr()), &jit_allocation_,
icache_flush_mode);
} else {
DCHECK(IsFullEmbeddedObject(rmode_));
Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
&jit_allocation_, icache_flush_mode);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_address_at(pc_, constant_pool_);
}
void WritableRelocInfo::set_target_external_reference(
Address target, ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
Assembler::set_target_address_at(pc_, constant_pool_, target,
&jit_allocation_, icache_flush_mode);
}
Address RelocInfo::target_internal_reference() {
if (IsInternalReference(rmode_)) {
return Memory<Address>(pc_);
} else {
// Encoded internal references are j/jal instructions.
DCHECK(IsInternalReferenceEncoded(rmode_));
DCHECK(Assembler::IsLui(Assembler::instr_at(pc_ + 0 * kInstrSize)));
Address address = Assembler::target_constant_address_at(pc_);
return address;
}
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
return pc_;
}
JSDispatchHandle RelocInfo::js_dispatch_handle() {
DCHECK(rmode_ == JS_DISPATCH_HANDLE);
return JSDispatchHandle(Assembler::uint32_constant_at(pc_, constant_pool_));
}
Handle<Code> Assembler::relative_code_target_object_handle_at(
Address pc) const {
Instr instr1 = Assembler::instr_at(pc);
Instr instr2 = Assembler::instr_at(pc + kInstrSize);
DCHECK(IsAuipc(instr1));
DCHECK(IsJalr(instr2));
int32_t code_target_index = BranchLongOffset(instr1, instr2);
return TrustedCast<Code>(GetEmbeddedObject(code_target_index));
}
Builtin Assembler::target_builtin_at(Address pc) {
Instr instr1 = Assembler::instr_at(pc);
Instr instr2 = Assembler::instr_at(pc + kInstrSize);
DCHECK(IsAuipc(instr1));
DCHECK(IsJalr(instr2));
int32_t builtin_id = BranchLongOffset(instr1, instr2);
DCHECK(Builtins::IsBuiltinId(builtin_id));
return static_cast<Builtin>(builtin_id);
}
Builtin RelocInfo::target_builtin_at(Assembler* origin) {
DCHECK(IsNearBuiltinEntry(rmode_));
return Assembler::target_builtin_at(pc_);
}
Address RelocInfo::target_off_heap_target() {
DCHECK(IsOffHeapTarget(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
int32_t Assembler::target_constant32_at(Address pc) {
Instruction* instr0 = Instruction::At((unsigned char*)pc);
Instruction* instr1 = Instruction::At((unsigned char*)(pc + 1 * kInstrSize));
// Interpret instructions for address generated by li: See listing in
// Assembler::set_target_address_at() just below.
if (IsLui(*reinterpret_cast<Instr*>(instr0)) &&
IsAddi(*reinterpret_cast<Instr*>(instr1))) {
// Assemble the 32bit value.
int32_t constant32 =
static_cast<int32_t>(instr0->Imm20UValue() << kImm20Shift) +
static_cast<int32_t>(instr1->Imm12Value());
return constant32;
}
// We should never get here, force a bad address if we do.
UNREACHABLE();
}
void Assembler::set_target_constant32_at(Address pc, uint32_t target,
WritableJitAllocation* jit_allocation,
ICacheFlushMode icache_flush_mode) {
Instruction* instr0 = Instruction::At((unsigned char*)pc);
Instruction* instr1 = Instruction::At((unsigned char*)(pc + 1 * kInstrSize));
#ifdef DEBUG
// Check we have the result from a li macro-instruction.
DCHECK(IsLui(*reinterpret_cast<Instr*>(instr0)) &&
IsAddi(*reinterpret_cast<Instr*>(instr1)));
#endif
int32_t high_20 = (static_cast<int32_t>(target) + 0x800) >> 12; // 20 bits
int32_t low_12 = static_cast<int32_t>(target) << 20 >> 20; // 12 bits
instr_at_put(pc, SetHi20Offset(high_20, instr0->InstructionBits()),
jit_allocation);
instr_at_put(pc + 1 * kInstrSize,
SetLo12Offset(low_12, instr1->InstructionBits()),
jit_allocation);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
FlushInstructionCache(pc, 2 * kInstrSize);
}
DCHECK_EQ(static_cast<uint32_t>(target_constant32_at(pc)), target);
}
uint32_t Assembler::uint32_constant_at(Address pc, Address constant_pool) {
Instruction* instr0 = reinterpret_cast<Instruction*>(pc);
Instruction* instr1 = reinterpret_cast<Instruction*>(pc + 1 * kInstrSize);
CHECK(IsLui(*reinterpret_cast<Instr*>(instr0)));
CHECK(IsAddi(*reinterpret_cast<Instr*>(instr1)));
return target_constant32_at(pc);
}
void Assembler::set_uint32_constant_at(Address pc, Address constant_pool,
uint32_t new_constant,
WritableJitAllocation* jit_allocation,
ICacheFlushMode icache_flush_mode) {
Instruction* instr1 = reinterpret_cast<Instruction*>(pc);
Instruction* instr2 = reinterpret_cast<Instruction*>(pc + 1 * kInstrSize);
CHECK(IsLui(*reinterpret_cast<Instr*>(instr1)));
CHECK(IsAddi(*reinterpret_cast<Instr*>(instr2)));
set_target_constant32_at(pc, new_constant, jit_allocation, icache_flush_mode);
}
[[nodiscard]] static inline Instr SetHi20Offset(int32_t hi20, Instr instr) {
DCHECK(Assembler::IsAuipc(instr) || Assembler::IsLui(instr));
DCHECK(is_int20(hi20));
instr = (instr & ~kImm31_12Mask) | ((hi20 & kImm19_0Mask) << 12);
return instr;
}
[[nodiscard]] static inline Instr SetLo12Offset(int32_t lo12, Instr instr) {
DCHECK(Assembler::IsJalr(instr) || Assembler::IsAddi(instr) ||
Assembler::IsLoadWord(instr));
DCHECK(is_int12(lo12));
instr &= ~kImm12Mask;
int32_t imm12 = lo12 << kImm12Shift;
DCHECK(Assembler::IsJalr(instr | (imm12 & kImm12Mask)) ||
Assembler::IsAddi(instr | (imm12 & kImm12Mask)) ||
Assembler::IsLoadWord(instr | (imm12 & kImm12Mask)));
return instr | (imm12 & kImm12Mask);
}
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_