| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2021 the V8 project authors. All rights reserved. |
| |
| #ifndef V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_ |
| #define V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_ |
| |
| #include "src/codegen/riscv/assembler-riscv.h" |
| // Include the non-inl header before the rest of the headers. |
| |
| #include "src/codegen/assembler-arch.h" |
| #include "src/codegen/assembler.h" |
| #include "src/debug/debug.h" |
| #include "src/diagnostics/disasm.h" |
| #include "src/diagnostics/disassembler.h" |
| #include "src/heap/heap-layout-inl.h" |
| #include "src/heap/heap-layout.h" |
| #include "src/objects/objects-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| [[nodiscard]] static inline Instr SetHi20Offset(int32_t hi29, Instr instr); |
| [[nodiscard]] static inline Instr SetLo12Offset(int32_t lo12, Instr instr); |
| |
| bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); } |
| EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } |
| |
| void Assembler::CheckBuffer() { |
| if (V8_UNLIKELY(buffer_space() <= kGap)) { |
| GrowBuffer(); |
| } |
| } |
| |
| void Assembler::CheckConstantPoolQuick(int margin) { |
| if (V8_UNLIKELY(pc_offset() >= constpool_.NextCheckIn() - margin)) { |
| constpool_.Check(Emission::kIfNeeded, Jump::kRequired, margin); |
| } |
| } |
| |
| void Assembler::CheckTrampolinePoolQuick(int margin) { |
| DEBUG_PRINTF("\tCheckTrampolinePoolQuick pc_offset:%d %d\n", pc_offset(), |
| trampoline_check_ - margin); |
| if (V8_UNLIKELY(pc_offset() >= trampoline_check_ - margin)) { |
| CheckTrampolinePool(); |
| } |
| } |
| |
| void Assembler::DisassembleInstruction(uint8_t* pc) { |
| if (V8_UNLIKELY(v8_flags.riscv_debug)) { |
| DisassembleInstructionHelper(pc); |
| } |
| } |
| |
| void WritableRelocInfo::apply(intptr_t delta) { |
| if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) { |
| // Absolute code pointer inside code object moves with the code object. |
| Assembler::RelocateInternalReference(rmode_, pc_, delta, &jit_allocation_); |
| } else { |
| DCHECK(IsRelativeCodeTarget(rmode_) || IsNearBuiltinEntry(rmode_)); |
| Assembler::RelocateRelativeReference(rmode_, pc_, delta, &jit_allocation_); |
| } |
| } |
| |
| Address RelocInfo::target_address() { |
| DCHECK(IsCodeTargetMode(rmode_) || IsWasmCall(rmode_) || |
| IsNearBuiltinEntry(rmode_) || IsWasmStubCall(rmode_) || |
| IsExternalReference(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| Address RelocInfo::target_address_address() { |
| DCHECK(HasTargetAddressAddress()); |
| // Read the address of the word containing the target_address in an |
| // instruction stream. |
| // The only architecture-independent user of this function is the serializer. |
| // The serializer uses it to find out how many raw bytes of instruction to |
| // output before the next target. |
| // For an instruction like LUI/ORI where the target bits are mixed into the |
| // instruction bits, the size of the target will be zero, indicating that the |
| // serializer should not step forward in memory after a target is resolved |
| // and written. In this case the target_address_address function should |
| // return the end of the instructions to be patched, allowing the |
| // deserializer to deserialize the instructions as raw bytes and put them in |
| // place, ready to be patched with the target. After jump optimization, |
| // that is the address of the instruction that follows J/JAL/JR/JALR |
| // instruction. |
| #ifdef V8_TARGET_ARCH_RISCV64 |
| return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize; |
| #elif defined(V8_TARGET_ARCH_RISCV32) |
| return pc_ + Assembler::kInstructionsFor32BitConstant * kInstrSize; |
| #endif |
| } |
| |
| Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } |
| |
| int RelocInfo::target_address_size() { |
| if (IsCodedSpecially()) { |
| return Assembler::kSpecialTargetSize; |
| } else { |
| return kSystemPointerSize; |
| } |
| } |
| |
| void Assembler::set_target_compressed_address_at( |
| Address pc, Address constant_pool, Tagged_t target, |
| WritableJitAllocation* jit_allocation, ICacheFlushMode icache_flush_mode) { |
| if (COMPRESS_POINTERS_BOOL) { |
| Assembler::set_uint32_constant_at(pc, constant_pool, |
| static_cast<uint32_t>(target), |
| jit_allocation, icache_flush_mode); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| Tagged_t Assembler::target_compressed_address_at(Address pc, |
| Address constant_pool) { |
| disasm::NameConverter converter; |
| disasm::Disassembler disasm(converter); |
| base::EmbeddedVector<char, 128> disasm_buffer; |
| |
| disasm.InstructionDecode(disasm_buffer, reinterpret_cast<uint8_t*>(pc)); |
| DEBUG_PRINTF("%s\n", disasm_buffer.begin()); |
| disasm.InstructionDecode(disasm_buffer, |
| reinterpret_cast<uint8_t*>(pc + kInstrSize)); |
| DEBUG_PRINTF("%s\n", disasm_buffer.begin()); |
| |
| DEBUG_PRINTF("\t target_compressed_address_at %d\n", |
| uint32_constant_at(pc, constant_pool)); |
| return static_cast<Tagged_t>(uint32_constant_at(pc, constant_pool)); |
| } |
| |
| WasmCodePointer RelocInfo::wasm_code_pointer_table_entry() const { |
| DCHECK(rmode_ == WASM_CODE_POINTER_TABLE_ENTRY); |
| return WasmCodePointer(Assembler::uint32_constant_at(pc_, constant_pool_)); |
| } |
| |
| void WritableRelocInfo::set_wasm_code_pointer_table_entry( |
| WasmCodePointer target, ICacheFlushMode icache_flush_mode) { |
| DCHECK(rmode_ == RelocInfo::WASM_CODE_POINTER_TABLE_ENTRY); |
| Assembler::set_uint32_constant_at(pc_, constant_pool_, target.value(), |
| &jit_allocation_, icache_flush_mode); |
| } |
| |
| Handle<Object> Assembler::code_target_object_handle_at(Address pc, |
| Address constant_pool) { |
| int index = |
| static_cast<int>(target_address_at(pc, constant_pool)) & 0xFFFFFFFF; |
| return GetCodeTarget(index); |
| } |
| |
| Handle<HeapObject> Assembler::compressed_embedded_object_handle_at( |
| Address pc, Address const_pool) { |
| DEBUG_PRINTF("\tcompressed_embedded_object_handle_at: pc: 0x%" PRIxPTR " \t ", |
| pc); |
| return GetEmbeddedObject(target_compressed_address_at(pc, const_pool)); |
| } |
| |
| Handle<HeapObject> Assembler::embedded_object_handle_at(Address pc) { |
| DEBUG_PRINTF("\tembedded_object_handle_at: pc: 0x%" PRIxPTR " \n", pc); |
| disasm::NameConverter converter; |
| disasm::Disassembler disasm(converter); |
| base::EmbeddedVector<char, 128> disasm_buffer; |
| |
| disasm.InstructionDecode(disasm_buffer, reinterpret_cast<uint8_t*>(pc)); |
| DEBUG_PRINTF("%s\n", disasm_buffer.begin()); |
| disasm.InstructionDecode(disasm_buffer, |
| reinterpret_cast<uint8_t*>(pc + kInstrSize)); |
| DEBUG_PRINTF("%s\n", disasm_buffer.begin()); |
| #if V8_TARGET_ARCH_RISCV64 |
| Instr instr1 = Assembler::instr_at(pc); |
| Instr instr2 = Assembler::instr_at(pc + kInstrSize); |
| DCHECK(IsAuipc(instr1)); |
| DCHECK(IsLd(instr2)); |
| int32_t embedded_target_offset = BranchLongOffset(instr1, instr2); |
| DEBUG_PRINTF("\tembedded_target_offset %d\n", embedded_target_offset); |
| static_assert(sizeof(EmbeddedObjectIndex) == sizeof(intptr_t)); |
| DEBUG_PRINTF("\t EmbeddedObjectIndex %lu\n", |
| Memory<EmbeddedObjectIndex>(pc + embedded_target_offset)); |
| return GetEmbeddedObject( |
| Memory<EmbeddedObjectIndex>(pc + embedded_target_offset)); |
| #else |
| DCHECK(IsLui(Assembler::instr_at(pc))); |
| DCHECK(IsAddi(Assembler::instr_at(pc + kInstrSize))); |
| auto target = target_address_at(pc, kNullAddress); |
| DEBUG_PRINTF("\ttarget %d\n", target); |
| return Handle<HeapObject>(reinterpret_cast<Address*>(target)); |
| #endif |
| } |
| |
| #if V8_TARGET_ARCH_RISCV64 |
| void Assembler::set_embedded_object_index_referenced_from( |
| Address pc, EmbeddedObjectIndex data) { |
| Instr instr1 = Assembler::instr_at(pc); |
| Instr instr2 = Assembler::instr_at(pc + kInstrSize); |
| DCHECK(IsAuipc(instr1)); |
| DCHECK(IsLd(instr2)); |
| int32_t embedded_target_offset = BranchLongOffset(instr1, instr2); |
| Memory<EmbeddedObjectIndex>(pc + embedded_target_offset) = data; |
| } |
| #endif |
| |
| void Assembler::deserialization_set_special_target_at( |
| Address instruction_payload, Tagged<Code> code, Address target) { |
| set_target_address_at(instruction_payload, |
| !code.is_null() ? code->constant_pool() : kNullAddress, |
| target); |
| } |
| |
| int Assembler::deserialization_special_target_size( |
| Address instruction_payload) { |
| return kSpecialTargetSize; |
| } |
| |
| void Assembler::set_target_internal_reference_encoded_at(Address pc, |
| Address target) { |
| #ifdef V8_TARGET_ARCH_RISCV64 |
| set_target_value_at(pc, static_cast<uint64_t>(target)); |
| #elif defined(V8_TARGET_ARCH_RISCV32) |
| set_target_value_at(pc, static_cast<uint32_t>(target)); |
| #endif |
| } |
| |
| void Assembler::deserialization_set_target_internal_reference_at( |
| Address pc, Address target, WritableJitAllocation& jit_allocation, |
| RelocInfo::Mode mode) { |
| jit_allocation.WriteUnalignedValue<Address>(pc, target); |
| } |
| |
| Tagged<HeapObject> RelocInfo::target_object(PtrComprCageBase cage_base) { |
| DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); |
| if (IsCompressedEmbeddedObject(rmode_)) { |
| return Cast<HeapObject>( |
| Tagged<Object>(V8HeapCompressionScheme::DecompressTagged( |
| Assembler::target_compressed_address_at(pc_, constant_pool_)))); |
| } else { |
| return Cast<HeapObject>( |
| Tagged<Object>(Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| } |
| |
| DirectHandle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { |
| if (IsCodeTarget(rmode_)) { |
| return Cast<HeapObject>( |
| origin->code_target_object_handle_at(pc_, constant_pool_)); |
| } else if (IsCompressedEmbeddedObject(rmode_)) { |
| return origin->compressed_embedded_object_handle_at(pc_, constant_pool_); |
| } else if (IsFullEmbeddedObject(rmode_)) { |
| return origin->embedded_object_handle_at(pc_); |
| } else { |
| DCHECK(IsRelativeCodeTarget(rmode_)); |
| return origin->relative_code_target_object_handle_at(pc_); |
| } |
| } |
| |
| void WritableRelocInfo::set_target_object(Tagged<HeapObject> target, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); |
| if (IsCompressedEmbeddedObject(rmode_)) { |
| DCHECK(COMPRESS_POINTERS_BOOL); |
| // We must not compress pointers to objects outside of the main pointer |
| // compression cage as we wouldn't be able to decompress them with the |
| // correct cage base. |
| DCHECK_IMPLIES(V8_ENABLE_SANDBOX_BOOL, |
| !TrustedHeapLayout::InTrustedSpace(target)); |
| DCHECK_IMPLIES(V8_EXTERNAL_CODE_SPACE_BOOL, |
| !TrustedHeapLayout::InCodeSpace(target)); |
| Assembler::set_target_compressed_address_at( |
| pc_, constant_pool_, |
| V8HeapCompressionScheme::CompressObject(target.ptr()), &jit_allocation_, |
| icache_flush_mode); |
| } else { |
| DCHECK(IsFullEmbeddedObject(rmode_)); |
| Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(), |
| &jit_allocation_, icache_flush_mode); |
| } |
| } |
| |
| Address RelocInfo::target_external_reference() { |
| DCHECK(rmode_ == EXTERNAL_REFERENCE); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| void WritableRelocInfo::set_target_external_reference( |
| Address target, ICacheFlushMode icache_flush_mode) { |
| DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); |
| Assembler::set_target_address_at(pc_, constant_pool_, target, |
| &jit_allocation_, icache_flush_mode); |
| } |
| |
| Address RelocInfo::target_internal_reference() { |
| if (IsInternalReference(rmode_)) { |
| return Memory<Address>(pc_); |
| } else { |
| // Encoded internal references are j/jal instructions. |
| DCHECK(IsInternalReferenceEncoded(rmode_)); |
| DCHECK(Assembler::IsLui(Assembler::instr_at(pc_ + 0 * kInstrSize))); |
| Address address = Assembler::target_constant_address_at(pc_); |
| return address; |
| } |
| } |
| |
| Address RelocInfo::target_internal_reference_address() { |
| DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); |
| return pc_; |
| } |
| |
| JSDispatchHandle RelocInfo::js_dispatch_handle() { |
| DCHECK(rmode_ == JS_DISPATCH_HANDLE); |
| return JSDispatchHandle(Assembler::uint32_constant_at(pc_, constant_pool_)); |
| } |
| |
| Handle<Code> Assembler::relative_code_target_object_handle_at( |
| Address pc) const { |
| Instr instr1 = Assembler::instr_at(pc); |
| Instr instr2 = Assembler::instr_at(pc + kInstrSize); |
| DCHECK(IsAuipc(instr1)); |
| DCHECK(IsJalr(instr2)); |
| int32_t code_target_index = BranchLongOffset(instr1, instr2); |
| return TrustedCast<Code>(GetEmbeddedObject(code_target_index)); |
| } |
| |
| Builtin Assembler::target_builtin_at(Address pc) { |
| Instr instr1 = Assembler::instr_at(pc); |
| Instr instr2 = Assembler::instr_at(pc + kInstrSize); |
| DCHECK(IsAuipc(instr1)); |
| DCHECK(IsJalr(instr2)); |
| int32_t builtin_id = BranchLongOffset(instr1, instr2); |
| DCHECK(Builtins::IsBuiltinId(builtin_id)); |
| return static_cast<Builtin>(builtin_id); |
| } |
| |
| Builtin RelocInfo::target_builtin_at(Assembler* origin) { |
| DCHECK(IsNearBuiltinEntry(rmode_)); |
| return Assembler::target_builtin_at(pc_); |
| } |
| |
| Address RelocInfo::target_off_heap_target() { |
| DCHECK(IsOffHeapTarget(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| int32_t Assembler::target_constant32_at(Address pc) { |
| Instruction* instr0 = Instruction::At((unsigned char*)pc); |
| Instruction* instr1 = Instruction::At((unsigned char*)(pc + 1 * kInstrSize)); |
| |
| // Interpret instructions for address generated by li: See listing in |
| // Assembler::set_target_address_at() just below. |
| if (IsLui(*reinterpret_cast<Instr*>(instr0)) && |
| IsAddi(*reinterpret_cast<Instr*>(instr1))) { |
| // Assemble the 32bit value. |
| int32_t constant32 = |
| static_cast<int32_t>(instr0->Imm20UValue() << kImm20Shift) + |
| static_cast<int32_t>(instr1->Imm12Value()); |
| return constant32; |
| } |
| // We should never get here, force a bad address if we do. |
| UNREACHABLE(); |
| } |
| |
| void Assembler::set_target_constant32_at(Address pc, uint32_t target, |
| WritableJitAllocation* jit_allocation, |
| ICacheFlushMode icache_flush_mode) { |
| Instruction* instr0 = Instruction::At((unsigned char*)pc); |
| Instruction* instr1 = Instruction::At((unsigned char*)(pc + 1 * kInstrSize)); |
| #ifdef DEBUG |
| // Check we have the result from a li macro-instruction. |
| DCHECK(IsLui(*reinterpret_cast<Instr*>(instr0)) && |
| IsAddi(*reinterpret_cast<Instr*>(instr1))); |
| #endif |
| int32_t high_20 = (static_cast<int32_t>(target) + 0x800) >> 12; // 20 bits |
| int32_t low_12 = static_cast<int32_t>(target) << 20 >> 20; // 12 bits |
| instr_at_put(pc, SetHi20Offset(high_20, instr0->InstructionBits()), |
| jit_allocation); |
| instr_at_put(pc + 1 * kInstrSize, |
| SetLo12Offset(low_12, instr1->InstructionBits()), |
| jit_allocation); |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| FlushInstructionCache(pc, 2 * kInstrSize); |
| } |
| DCHECK_EQ(static_cast<uint32_t>(target_constant32_at(pc)), target); |
| } |
| |
| uint32_t Assembler::uint32_constant_at(Address pc, Address constant_pool) { |
| Instruction* instr0 = reinterpret_cast<Instruction*>(pc); |
| Instruction* instr1 = reinterpret_cast<Instruction*>(pc + 1 * kInstrSize); |
| CHECK(IsLui(*reinterpret_cast<Instr*>(instr0))); |
| CHECK(IsAddi(*reinterpret_cast<Instr*>(instr1))); |
| return target_constant32_at(pc); |
| } |
| void Assembler::set_uint32_constant_at(Address pc, Address constant_pool, |
| uint32_t new_constant, |
| WritableJitAllocation* jit_allocation, |
| ICacheFlushMode icache_flush_mode) { |
| Instruction* instr1 = reinterpret_cast<Instruction*>(pc); |
| Instruction* instr2 = reinterpret_cast<Instruction*>(pc + 1 * kInstrSize); |
| CHECK(IsLui(*reinterpret_cast<Instr*>(instr1))); |
| CHECK(IsAddi(*reinterpret_cast<Instr*>(instr2))); |
| set_target_constant32_at(pc, new_constant, jit_allocation, icache_flush_mode); |
| } |
| |
| [[nodiscard]] static inline Instr SetHi20Offset(int32_t hi20, Instr instr) { |
| DCHECK(Assembler::IsAuipc(instr) || Assembler::IsLui(instr)); |
| DCHECK(is_int20(hi20)); |
| instr = (instr & ~kImm31_12Mask) | ((hi20 & kImm19_0Mask) << 12); |
| return instr; |
| } |
| |
| [[nodiscard]] static inline Instr SetLo12Offset(int32_t lo12, Instr instr) { |
| DCHECK(Assembler::IsJalr(instr) || Assembler::IsAddi(instr) || |
| Assembler::IsLoadWord(instr)); |
| DCHECK(is_int12(lo12)); |
| instr &= ~kImm12Mask; |
| int32_t imm12 = lo12 << kImm12Shift; |
| DCHECK(Assembler::IsJalr(instr | (imm12 & kImm12Mask)) || |
| Assembler::IsAddi(instr | (imm12 & kImm12Mask)) || |
| Assembler::IsLoadWord(instr | (imm12 & kImm12Mask))); |
| return instr | (imm12 & kImm12Mask); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_ |