| // Copyright 2022 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_CODEGEN_RISCV_BASE_CONSTANTS_RISCV_H_ |
| #define V8_CODEGEN_RISCV_BASE_CONSTANTS_RISCV_H_ |
| |
| #include "src/base/logging.h" |
| #include "src/base/macros.h" |
| #include "src/common/globals.h" |
| #include "src/flags/flags.h" |
| |
| #ifdef DEBUG |
| #define UNIMPLEMENTED_RISCV() \ |
| v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \ |
| __FILE__, __LINE__, __func__); |
| #else |
| #define UNIMPLEMENTED_RISCV() |
| #endif |
| |
| #define UNSUPPORTED_RISCV() \ |
| v8::internal::PrintF("Unsupported instruction %d.\n", __LINE__); \ |
| UNIMPLEMENTED(); |
| |
| enum Endianness { kLittle, kBig }; |
| |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| static const Endianness kArchEndian = kLittle; |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| static const Endianness kArchEndian = kBig; |
| #else |
| #error Unknown endianness |
| #endif |
| |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| const uint32_t kLeastSignificantByteInInt32Offset = 0; |
| const uint32_t kLessSignificantWordInDoublewordOffset = 0; |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| const uint32_t kLeastSignificantByteInInt32Offset = 3; |
| const uint32_t kLessSignificantWordInDoublewordOffset = 4; |
| #else |
| #error Unknown endianness |
| #endif |
| |
| #ifndef __STDC_FORMAT_MACROS |
| #define __STDC_FORMAT_MACROS |
| #endif |
| #include <inttypes.h> |
| |
| // Defines constants and accessor classes to assemble, disassemble and |
| // simulate RISC-V instructions. |
| // |
| // See: The RISC-V Instruction Set Manual |
| // Volume I: User-Level ISA |
| // Try https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf. |
| namespace v8 { |
| namespace internal { |
| using Opcode = uint32_t; |
| |
| // Actual value of root register is offset from the root array's start |
| // to take advantage of negative displacement values. |
| constexpr int kRootRegisterBias = 256; |
| |
| #define RVV_LMUL(V) \ |
| V(m1) \ |
| V(m2) \ |
| V(m4) \ |
| V(m8) \ |
| V(RESERVED) \ |
| V(mf8) \ |
| V(mf4) \ |
| V(mf2) |
| |
| enum Vlmul { |
| #define DEFINE_FLAG(name) name, |
| RVV_LMUL(DEFINE_FLAG) |
| #undef DEFINE_FLAG |
| kVlInvalid |
| }; |
| |
| #define RVV_SEW(V) \ |
| V(E8) \ |
| V(E16) \ |
| V(E32) \ |
| V(E64) |
| |
| #define DEFINE_FLAG(name) name, |
| enum VSew { |
| RVV_SEW(DEFINE_FLAG) |
| #undef DEFINE_FLAG |
| kVsInvalid |
| }; |
| |
| // RISC-V can perform PC-relative jumps within a 32-bit range using the |
| // following two instructions: |
| // auipc t6, imm20 ; t6 = PC + imm20 * 2^12 |
| // jalr ra, t6, imm12; ra = PC + 4, PC = t6 + imm12, |
| // Both imm20 and imm12 are treated as two's-complement signed values, usually |
| // calculated as: |
| // imm20 = (offset + 0x800) >> 12 |
| // imm12 = offset & 0xfff |
| // offset is the signed offset from the auipc instruction. Adding 0x800 handles |
| // the offset, but if the offset is >= 2^31 - 2^11, it will overflow. Therefore, |
| // the true 32-bit range is: |
| // [-2^31 - 2^11, 2^31 - 2^11) |
| constexpr size_t kMaxPCRelativeCodeRangeInMB = 2047; |
| |
| // ----------------------------------------------------------------------------- |
| // Registers and FPURegisters. |
| |
| // Number of general purpose registers. |
| const int kNumRegisters = 32; |
| const int kInvalidRegister = -1; |
| |
| // Number of registers with pc. |
| const int kNumSimuRegisters = 33; |
| |
| // In the simulator, the PC register is simulated as the 34th register. |
| const int kPCRegister = 34; |
| |
| // Number coprocessor registers. |
| const int kNumFPURegisters = 32; |
| const int kInvalidFPURegister = -1; |
| |
| // Number vectotr registers |
| const int kNumVRegisters = 32; |
| const int kInvalidVRegister = -1; |
| // 'pref' instruction hints |
| const int32_t kPrefHintLoad = 0; |
| const int32_t kPrefHintStore = 1; |
| const int32_t kPrefHintLoadStreamed = 4; |
| const int32_t kPrefHintStoreStreamed = 5; |
| const int32_t kPrefHintLoadRetained = 6; |
| const int32_t kPrefHintStoreRetained = 7; |
| const int32_t kPrefHintWritebackInvalidate = 25; |
| const int32_t kPrefHintPrepareForStore = 30; |
| |
| // Helper functions for converting between register numbers and names. |
| class Registers { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg); |
| |
| // Lookup the register number for the name provided. |
| static int Number(const char* name); |
| |
| struct RegisterAlias { |
| int reg; |
| const char* name; |
| }; |
| |
| private: |
| static const char* names_[kNumSimuRegisters]; |
| static const RegisterAlias aliases_[]; |
| }; |
| |
| // Helper functions for converting between register numbers and names. |
| class FPURegisters { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg); |
| |
| // Lookup the register number for the name provided. |
| static int Number(const char* name); |
| |
| struct RegisterAlias { |
| int creg; |
| const char* name; |
| }; |
| |
| private: |
| static const char* names_[kNumFPURegisters]; |
| static const RegisterAlias aliases_[]; |
| }; |
| |
| class VRegisters { |
| public: |
| // Return the name of the register. |
| static const char* Name(int reg); |
| |
| // Lookup the register number for the name provided. |
| static int Number(const char* name); |
| |
| struct RegisterAlias { |
| int creg; |
| const char* name; |
| }; |
| |
| private: |
| static const char* names_[kNumVRegisters]; |
| static const RegisterAlias aliases_[]; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Instructions encoding constants. |
| |
| // On RISCV all instructions are 32 bits, except for RVC. |
| using Instr = int32_t; |
| using ShortInstr = int16_t; |
| |
| // Special Software Interrupt codes when used in the presence of the RISC-V |
| // simulator. |
| enum SoftwareInterruptCodes { |
| // Transition to C code. |
| call_rt_redirected = 0xfffff |
| }; |
| |
| // On RISC-V Simulator breakpoints can have different codes: |
| // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints, |
| // the simulator will run through them and print the registers. |
| // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop() |
| // instructions (see Assembler::stop()). |
| // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the |
| // debugger. |
| const uint32_t kMaxTracepointCode = 63; |
| const uint32_t kMaxWatchpointCode = 31; |
| // Indicate that the stack is being switched, so the simulator must update its |
| // stack limit. The new stack limit is passed in t6. |
| const uint32_t kExceptionIsSwitchStackLimit = 128; |
| const uint32_t kMaxStopCode = 127; |
| static_assert(kMaxWatchpointCode < kMaxStopCode); |
| static_assert(kMaxTracepointCode < kMaxStopCode); |
| |
| // Debug parameters. |
| // |
| // For example: |
| // |
| // __ Debug(TRACE_ENABLE | LOG_TRACE); |
| // starts tracing: set v8_flags.trace-sim is true. |
| // __ Debug(TRACE_ENABLE | LOG_REGS); |
| // PrintAllregs. |
| // __ Debug(TRACE_DISABLE | LOG_TRACE); |
| // stops tracing: set v8_flags.trace-sim is false. |
| const unsigned kDebuggerTracingDirectivesMask = 0b111 << 3; |
| enum DebugParameters : uint32_t { |
| NO_PARAM = 1 << 5, |
| BREAK = 1 << 0, |
| LOG_TRACE = 1 << 1, |
| LOG_REGS = 1 << 2, |
| LOG_ALL = LOG_TRACE, |
| // Trace control. |
| TRACE_ENABLE = 1 << 3 | NO_PARAM, |
| TRACE_DISABLE = 1 << 4 | NO_PARAM, |
| }; |
| |
| // ----- Fields offset and length. |
| // RISCV constants |
| const int kBaseOpcodeShift = 0; |
| const int kBaseOpcodeBits = 7; |
| const int kFunct6Shift = 26; |
| const int kFunct6Bits = 6; |
| const int kFunct7Shift = 25; |
| const int kFunct7Bits = 7; |
| const int kFunct5Shift = 27; |
| const int kFunct5Bits = 5; |
| const int kFunct3Shift = 12; |
| const int kFunct3Bits = 3; |
| const int kFunct2Shift = 25; |
| const int kFunct2Bits = 2; |
| const int kRs1Shift = 15; |
| const int kRs1Bits = 5; |
| const int kVs1Shift = 15; |
| const int kVs1Bits = 5; |
| const int kVs2Shift = 20; |
| const int kVs2Bits = 5; |
| const int kVdShift = 7; |
| const int kVdBits = 5; |
| const int kRs2Shift = 20; |
| const int kRs2Bits = 5; |
| const int kRs3Shift = 27; |
| const int kRs3Bits = 5; |
| const int kRdShift = 7; |
| const int kRdBits = 5; |
| const int kRlShift = 25; |
| const int kAqShift = 26; |
| const int kImm12Shift = 20; |
| const int kImm12Bits = 12; |
| const int kImm11Shift = 2; |
| const int kImm11Bits = 11; |
| const int kShamtShift = 20; |
| const int kShamtBits = 5; |
| const uint32_t kShamtMask = (((1 << kShamtBits) - 1) << kShamtShift); |
| const int kShamtWShift = 20; |
| // FIXME: remove this once we have a proper way to handle the wide shift amount |
| const int kShamtWBits = 6; |
| const int kArithShiftShift = 30; |
| const int kImm20Shift = 12; |
| const int kImm20Bits = 20; |
| const int kCsrShift = 20; |
| const int kCsrBits = 12; |
| const int kMemOrderBits = 4; |
| const int kPredOrderShift = 24; |
| const int kSuccOrderShift = 20; |
| |
| // for C extension |
| const int kRvcFunct4Shift = 12; |
| const int kRvcFunct4Bits = 4; |
| const int kRvcFunct3Shift = 13; |
| const int kRvcFunct3Bits = 3; |
| const int kRvcRs1Shift = 7; |
| const int kRvcRs1Bits = 5; |
| const int kRvcRs2Shift = 2; |
| const int kRvcRs2Bits = 5; |
| const int kRvcRdShift = 7; |
| const int kRvcRdBits = 5; |
| const int kRvcRs1sShift = 7; |
| const int kRvcRs1sBits = 3; |
| const int kRvcRs2sShift = 2; |
| const int kRvcRs2sBits = 3; |
| const int kRvcFunct2Shift = 5; |
| const int kRvcFunct2BShift = 10; |
| const int kRvcFunct2Bits = 2; |
| const int kRvcFunct6Shift = 10; |
| const int kRvcFunct6Bits = 6; |
| |
| const uint32_t kRvcOpcodeMask = |
| 0b11 | (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift); |
| const uint32_t kRvcFunct3Mask = |
| (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift); |
| const uint32_t kRvcFunct4Mask = |
| (((1 << kRvcFunct4Bits) - 1) << kRvcFunct4Shift); |
| const uint32_t kRvcFunct6Mask = |
| (((1 << kRvcFunct6Bits) - 1) << kRvcFunct6Shift); |
| const uint32_t kRvcFunct2Mask = |
| (((1 << kRvcFunct2Bits) - 1) << kRvcFunct2Shift); |
| const uint32_t kRvcFunct2BMask = |
| (((1 << kRvcFunct2Bits) - 1) << kRvcFunct2BShift); |
| const uint32_t kCRTypeMask = kRvcOpcodeMask | kRvcFunct4Mask; |
| const uint32_t kCSTypeMask = kRvcOpcodeMask | kRvcFunct6Mask; |
| const uint32_t kCATypeMask = kRvcOpcodeMask | kRvcFunct6Mask | kRvcFunct2Mask; |
| const uint32_t kRvcBImm8Mask = (((1 << 5) - 1) << 2) | (((1 << 3) - 1) << 10); |
| |
| // We only support 64-bit elements. Also see RVV_SEW above. |
| constexpr int kRvvELEN = 64; |
| |
| // Maximum supported VLEN in bits. |
| // Code that could fail with larger VLEN should static_assert against this |
| // constant. |
| constexpr int kMaxRvvVLEN = 512; |
| |
| #ifdef RVV_VLEN |
| constexpr int kSimulatorRvvVLEN = RVV_VLEN; |
| static_assert(kSimulatorRvvVLEN >= 128, "RvvVLEN must be >= 128 bit"); |
| static_assert((kSimulatorRvvVLEN & (kSimulatorRvvVLEN - 1)) == 0, |
| "RvvVLEN must be a power of 2"); |
| static_assert(kSimulatorRvvVLEN <= kMaxRvvVLEN, |
| "RvvVLEN size is unimplemented"); |
| #else |
| constexpr int kSimulatorRvvVLEN = 128; |
| #endif |
| |
| const int kRvvFunct6Shift = 26; |
| const int kRvvFunct6Bits = 6; |
| const uint32_t kRvvFunct6Mask = |
| (((1 << kRvvFunct6Bits) - 1) << kRvvFunct6Shift); |
| |
| const int kRvvVmBits = 1; |
| const int kRvvVmShift = 25; |
| const uint32_t kRvvVmMask = (((1 << kRvvVmBits) - 1) << kRvvVmShift); |
| |
| const int kRvvVs2Bits = 5; |
| const int kRvvVs2Shift = 20; |
| const uint32_t kRvvVs2Mask = (((1 << kRvvVs2Bits) - 1) << kRvvVs2Shift); |
| |
| const int kRvvVs1Bits = 5; |
| const int kRvvVs1Shift = 15; |
| const uint32_t kRvvVs1Mask = (((1 << kRvvVs1Bits) - 1) << kRvvVs1Shift); |
| |
| const int kRvvRs1Bits = kRvvVs1Bits; |
| const int kRvvRs1Shift = kRvvVs1Shift; |
| const uint32_t kRvvRs1Mask = (((1 << kRvvRs1Bits) - 1) << kRvvRs1Shift); |
| |
| const int kRvvRs2Bits = 5; |
| const int kRvvRs2Shift = 20; |
| const uint32_t kRvvRs2Mask = (((1 << kRvvRs2Bits) - 1) << kRvvRs2Shift); |
| |
| const int kRvvImm5Bits = kRvvVs1Bits; |
| const int kRvvImm5Shift = kRvvVs1Shift; |
| const uint32_t kRvvImm5Mask = (((1 << kRvvImm5Bits) - 1) << kRvvImm5Shift); |
| |
| const int kRvvVdBits = 5; |
| const int kRvvVdShift = 7; |
| const uint32_t kRvvVdMask = (((1 << kRvvVdBits) - 1) << kRvvVdShift); |
| |
| const int kRvvRdBits = kRvvVdBits; |
| const int kRvvRdShift = kRvvVdShift; |
| const uint32_t kRvvRdMask = (((1 << kRvvRdBits) - 1) << kRvvRdShift); |
| |
| const int kRvvZimmBits = 11; |
| const int kRvvZimmShift = 20; |
| const uint32_t kRvvZimmMask = (((1 << kRvvZimmBits) - 1) << kRvvZimmShift); |
| |
| const int kRvvUimmShift = kRvvRs1Shift; |
| const int kRvvUimmBits = kRvvRs1Bits; |
| const uint32_t kRvvUimmMask = (((1 << kRvvUimmBits) - 1) << kRvvUimmShift); |
| |
| const int kRvvWidthBits = 3; |
| const int kRvvWidthShift = 12; |
| const uint32_t kRvvWidthMask = (((1 << kRvvWidthBits) - 1) << kRvvWidthShift); |
| |
| const int kRvvMopBits = 2; |
| const int kRvvMopShift = 26; |
| const uint32_t kRvvMopMask = (((1 << kRvvMopBits) - 1) << kRvvMopShift); |
| |
| const int kRvvMewBits = 1; |
| const int kRvvMewShift = 28; |
| const uint32_t kRvvMewMask = (((1 << kRvvMewBits) - 1) << kRvvMewShift); |
| |
| const int kRvvNfBits = 3; |
| const int kRvvNfShift = 29; |
| const uint32_t kRvvNfMask = (((1 << kRvvNfBits) - 1) << kRvvNfShift); |
| |
| // RISCV Instruction bit masks |
| const uint32_t kBaseOpcodeMask = ((1 << kBaseOpcodeBits) - 1) |
| << kBaseOpcodeShift; |
| const uint32_t kFunct3Mask = ((1 << kFunct3Bits) - 1) << kFunct3Shift; |
| const uint32_t kFunct5Mask = ((1 << kFunct5Bits) - 1) << kFunct5Shift; |
| const uint32_t kFunct6Mask = ((1 << kFunct6Bits) - 1) << kFunct6Shift; |
| const uint32_t kFunct7Mask = ((1 << kFunct7Bits) - 1) << kFunct7Shift; |
| const uint32_t kFunct2Mask = 0b11 << kFunct7Shift; |
| const uint32_t kRTypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct7Mask; |
| const uint32_t kRATypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct5Mask; |
| const uint32_t kRFPTypeMask = kBaseOpcodeMask | kFunct7Mask; |
| const uint32_t kR4TypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct2Mask; |
| const uint32_t kITypeMask = kBaseOpcodeMask | kFunct3Mask; |
| const uint32_t kSTypeMask = kBaseOpcodeMask | kFunct3Mask; |
| const uint32_t kBTypeMask = kBaseOpcodeMask | kFunct3Mask; |
| const uint32_t kUTypeMask = kBaseOpcodeMask; |
| const uint32_t kJTypeMask = kBaseOpcodeMask; |
| const uint32_t kVTypeMask = kRvvFunct6Mask | kFunct3Mask | kBaseOpcodeMask; |
| const uint32_t kRs1FieldMask = ((1 << kRs1Bits) - 1) << kRs1Shift; |
| const uint32_t kRs2FieldMask = ((1 << kRs2Bits) - 1) << kRs2Shift; |
| const uint32_t kRs3FieldMask = ((1 << kRs3Bits) - 1) << kRs3Shift; |
| const uint32_t kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift; |
| const uint32_t kBImm12Mask = kFunct7Mask | kRdFieldMask; |
| const uint32_t kImm20Mask = ((1 << kImm20Bits) - 1) << kImm20Shift; |
| const uint32_t kImm12Mask = ((1 << kImm12Bits) - 1) << kImm12Shift; |
| const uint32_t kImm11Mask = ((1 << kImm11Bits) - 1) << kImm11Shift; |
| const uint32_t kImm31_12Mask = ((1 << 20) - 1) << 12; |
| const uint32_t kImm19_0Mask = ((1 << 20) - 1); |
| const uint32_t kMopMask = kITypeMask | 0b1 << 31 | 0b11 << 28 | 0b1 << 25; |
| |
| const int kNopByte = 0x00000013; |
| // Original MIPS constants |
| const int kImm16Shift = 0; |
| const int kImm16Bits = 16; |
| const uint32_t kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift; |
| |
| // ----- Emulated conditions. |
| // On RISC-V we use this enum to abstract from conditional branch instructions. |
| // The 'U' prefix is used to specify unsigned comparisons. |
| // Opposite conditions must be paired as odd/even numbers |
| // because 'NegateCondition' function flips LSB to negate condition. |
| enum Condition : int { // Any value < 0 is considered no_condition. |
| overflow = 0, |
| no_overflow = 1, |
| Uless = 2, |
| Ugreater_equal = 3, |
| Uless_equal = 4, |
| Ugreater = 5, |
| equal = 6, |
| not_equal = 7, // Unordered or Not Equal. |
| less = 8, |
| greater_equal = 9, |
| less_equal = 10, |
| greater = 11, |
| cc_always = 12, |
| |
| // Aliases. |
| eq = equal, |
| ne = not_equal, |
| ge = greater_equal, |
| lt = less, |
| gt = greater, |
| le = less_equal, |
| al = cc_always, |
| ult = Uless, |
| uge = Ugreater_equal, |
| ule = Uless_equal, |
| ugt = Ugreater, |
| |
| // Unified cross-platform condition names/aliases. |
| kEqual = equal, |
| kNotEqual = not_equal, |
| kLessThan = less, |
| kGreaterThan = greater, |
| kLessThanEqual = less_equal, |
| kGreaterThanEqual = greater_equal, |
| kUnsignedLessThan = Uless, |
| kUnsignedGreaterThan = Ugreater, |
| kUnsignedLessThanEqual = Uless_equal, |
| kUnsignedGreaterThanEqual = Ugreater_equal, |
| kOverflow = overflow, |
| kNoOverflow = no_overflow, |
| kZero = equal, |
| kNotZero = not_equal, |
| }; |
| |
| // Returns the equivalent of !cc. |
| inline Condition NegateCondition(Condition cc) { |
| DCHECK(cc != cc_always); |
| return static_cast<Condition>(cc ^ 1); |
| } |
| |
| inline Condition NegateFpuCondition(Condition cc) { |
| DCHECK(cc != cc_always); |
| switch (cc) { |
| case ult: |
| return ge; |
| case ugt: |
| return le; |
| case uge: |
| return lt; |
| case ule: |
| return gt; |
| case lt: |
| return uge; |
| case gt: |
| return ule; |
| case ge: |
| return ult; |
| case le: |
| return ugt; |
| case eq: |
| return ne; |
| case ne: |
| return eq; |
| default: |
| return cc; |
| } |
| } |
| |
| // ----- Coprocessor conditions. |
| enum FPUCondition { |
| kNoFPUCondition = -1, |
| EQ = 0x02, // Ordered and Equal |
| NE = 0x03, // Unordered or Not Equal |
| LT = 0x04, // Ordered and Less Than |
| GE = 0x05, // Ordered and Greater Than or Equal |
| LE = 0x06, // Ordered and Less Than or Equal |
| GT = 0x07, // Ordered and Greater Than |
| }; |
| |
| enum CheckForInexactConversion { |
| kCheckForInexactConversion, |
| kDontCheckForInexactConversion |
| }; |
| |
| enum class MaxMinKind : int { kMin = 0, kMax = 1 }; |
| |
| // ---------------------------------------------------------------------------- |
| // RISCV flags |
| |
| enum ControlStatusReg { |
| csr_fflags = 0x001, // Floating-Point Accrued Exceptions (RW) |
| csr_frm = 0x002, // Floating-Point Dynamic Rounding Mode (RW) |
| csr_fcsr = 0x003, // Floating-Point Control and Status Register (RW) |
| csr_cycle = 0xc00, // Cycle counter for RDCYCLE instruction (RO) |
| csr_time = 0xc01, // Timer for RDTIME instruction (RO) |
| csr_instret = 0xc02, // Insns-retired counter for RDINSTRET instruction (RO) |
| csr_cycleh = 0xc80, // Upper 32 bits of cycle, RV32I only (RO) |
| csr_timeh = 0xc81, // Upper 32 bits of time, RV32I only (RO) |
| csr_instreth = 0xc82 // Upper 32 bits of instret, RV32I only (RO) |
| }; |
| |
| enum FFlagsMask { |
| kInvalidOperation = 0b10000, // NV: Invalid |
| kDivideByZero = 0b1000, // DZ: Divide by Zero |
| kFPUOverflow = 0b100, // OF: Overflow |
| kUnderflow = 0b10, // UF: Underflow |
| kInexact = 0b1 // NX: Inexact |
| }; |
| |
| enum FPURoundingMode { |
| RNE = 0b000, // Round to Nearest, ties to Even |
| RTZ = 0b001, // Round towards Zero |
| RDN = 0b010, // Round Down (towards -infinity) |
| RUP = 0b011, // Round Up (towards +infinity) |
| RMM = 0b100, // Round to Nearest, tiest to Max Magnitude |
| DYN = 0b111 // In instruction's rm field, selects dynamic rounding mode; |
| // In Rounding Mode register, Invalid |
| }; |
| |
| enum MemoryOdering { |
| PSI = 0b1000, // PI or SI |
| PSO = 0b0100, // PO or SO |
| PSR = 0b0010, // PR or SR |
| PSW = 0b0001, // PW or SW |
| PSIORW = PSI | PSO | PSR | PSW |
| }; |
| |
| const int kFloat32ExponentBias = 127; |
| const int kFloat32MantissaBits = 23; |
| const int kFloat32ExponentBits = 8; |
| const int kFloat64ExponentBias = 1023; |
| const int kFloat64MantissaBits = 52; |
| const int kFloat64ExponentBits = 11; |
| |
| enum FClassFlag { |
| kNegativeInfinity = 1, |
| kNegativeNormalNumber = 1 << 1, |
| kNegativeSubnormalNumber = 1 << 2, |
| kNegativeZero = 1 << 3, |
| kPositiveZero = 1 << 4, |
| kPositiveSubnormalNumber = 1 << 5, |
| kPositiveNormalNumber = 1 << 6, |
| kPositiveInfinity = 1 << 7, |
| kSignalingNaN = 1 << 8, |
| kQuietNaN = 1 << 9 |
| }; |
| |
| enum TailAgnosticType { |
| ta = 0x1, // Tail agnostic |
| tu = 0x0, // Tail undisturbed |
| }; |
| |
| enum MaskAgnosticType { |
| ma = 0x1, // Mask agnostic |
| mu = 0x0, // Mask undisturbed |
| }; |
| enum MaskType { |
| Mask = 0x0, // use the mask |
| NoMask = 0x1, |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Hints. |
| |
| // Branch hints are not used on RISC-V. They are defined so that they can |
| // appear in shared function signatures, but will be ignored in RISC-V |
| // implementations. |
| enum Hint { no_hint = 0 }; |
| |
| inline Hint NegateHint(Hint hint) { return no_hint; } |
| |
| enum BaseOpcode : uint32_t { |
| LOAD = 0b0000011, // I form: LB LH LW LBU LHU |
| LOAD_FP = 0b0000111, // I form: FLW FLD FLQ |
| MISC_MEM = 0b0001111, // I special form: FENCE FENCE.I |
| OP_IMM = 0b0010011, // I form: ADDI SLTI SLTIU XORI ORI ANDI SLLI SRLI SRAI |
| // Note: SLLI/SRLI/SRAI I form first, then func3 001/101 => R type |
| AUIPC = 0b0010111, // U form: AUIPC |
| OP_IMM_32 = 0b0011011, // I form: ADDIW SLLIW SRLIW SRAIW |
| // Note: SRLIW SRAIW I form first, then func3 101 special shift encoding |
| STORE = 0b0100011, // S form: SB SH SW SD |
| STORE_FP = 0b0100111, // S form: FSW FSD FSQ |
| AMO = 0b0101111, // R form: All A instructions |
| OP = 0b0110011, // R: ADD SUB SLL SLT SLTU XOR SRL SRA OR AND and 32M set |
| LUI = 0b0110111, // U form: LUI |
| OP_32 = 0b0111011, // R: ADDW SUBW SLLW SRLW SRAW MULW DIVW DIVUW REMW REMUW |
| MADD = 0b1000011, // R4 type: FMADD.S FMADD.D FMADD.Q |
| MSUB = 0b1000111, // R4 type: FMSUB.S FMSUB.D FMSUB.Q |
| NMSUB = 0b1001011, // R4 type: FNMSUB.S FNMSUB.D FNMSUB.Q |
| NMADD = 0b1001111, // R4 type: FNMADD.S FNMADD.D FNMADD.Q |
| OP_FP = 0b1010011, // R type: Q ext |
| BRANCH = 0b1100011, // B form: BEQ BNE, BLT, BGE, BLTU BGEU |
| JALR = 0b1100111, // I form: JALR |
| JAL = 0b1101111, // J form: JAL |
| SYSTEM = 0b1110011, // I form: ECALL EBREAK Zicsr ext |
| OP_V = 0b1010111, // V form: RVV |
| |
| // C extension |
| C0 = 0b00, |
| C1 = 0b01, |
| C2 = 0b10, |
| FUNCT2_0 = 0b00, |
| FUNCT2_1 = 0b01, |
| FUNCT2_2 = 0b10, |
| FUNCT2_3 = 0b11, |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Specific instructions, constants, and masks. |
| // These constants are declared in assembler-riscv64.cc, as they use named |
| // registers and other constants. |
| |
| // An Illegal instruction |
| const Instr kIllegalInstr = 0; // All other bits are 0s (i.e., ecall) |
| // An ECALL instruction, used for redirected real time call |
| const Instr rtCallRedirInstr = SYSTEM; // All other bits are 0s (i.e., ecall) |
| // An EBreak instruction, used for debugging and semi-hosting |
| const Instr kBreakInstr = SYSTEM | 1 << kImm12Shift; // ebreak |
| |
| constexpr uint8_t kInstrSize = 4; |
| constexpr uint8_t kShortInstrSize = 2; |
| constexpr uint8_t kInstrSizeLog2 = 2; |
| |
| class InstructionBase { |
| public: |
| enum { |
| // On RISC-V, PC cannot actually be directly accessed. We behave as if PC |
| // was always the value of the current instruction being executed. |
| kPCReadOffset = 0 |
| }; |
| |
| // Instruction type. |
| enum Type { |
| kRType, |
| kR4Type, // Special R4 for Q extension |
| kIType, |
| kSType, |
| kBType, |
| kUType, |
| kJType, |
| // C extension |
| kCRType, |
| kCIType, |
| kCSSType, |
| kCIWType, |
| kCLType, |
| kCSType, |
| kCAType, |
| kCBType, |
| kCJType, |
| // V extension |
| kVType, |
| kVLType, |
| kVSType, |
| kVAMOType, |
| kVIVVType, |
| kVFVVType, |
| kVMVVType, |
| kVIVIType, |
| kVIVXType, |
| kVFVFType, |
| kVMVXType, |
| kVSETType, |
| kUnsupported = -1 |
| }; |
| |
| inline bool IsIllegalInstruction() const { |
| uint16_t FirstHalfWord = *reinterpret_cast<const uint16_t*>(this); |
| return FirstHalfWord == 0; |
| } |
| |
| bool IsShortInstruction() const; |
| |
| inline uint8_t InstructionSize() const { |
| return (v8_flags.riscv_c_extension && this->IsShortInstruction()) |
| ? kShortInstrSize |
| : kInstrSize; |
| } |
| |
| // Get the raw instruction bits. |
| inline Instr InstructionBits() const { |
| if (v8_flags.riscv_c_extension && this->IsShortInstruction()) { |
| return 0x0000FFFF & (*reinterpret_cast<const ShortInstr*>(this)); |
| } |
| return *reinterpret_cast<const Instr*>(this); |
| } |
| |
| // Set the raw instruction bits to value. |
| inline void SetInstructionBits(Instr value) { |
| *reinterpret_cast<Instr*>(this) = value; |
| } |
| |
| // Read one particular bit out of the instruction bits. |
| inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } |
| |
| // Read a bit field out of the instruction bits. |
| inline int Bits(int hi, int lo) const { |
| return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1); |
| } |
| |
| // Accessors for the different named fields used in the RISC-V encoding. |
| inline BaseOpcode BaseOpcodeValue() const { |
| return static_cast<BaseOpcode>( |
| Bits(kBaseOpcodeShift + kBaseOpcodeBits - 1, kBaseOpcodeShift)); |
| } |
| |
| // Return the fields at their original place in the instruction encoding. |
| inline BaseOpcode BaseOpcodeFieldRaw() const { |
| return static_cast<BaseOpcode>(InstructionBits() & kBaseOpcodeMask); |
| } |
| |
| // Safe to call within R-type instructions |
| inline int Funct7FieldRaw() const { return InstructionBits() & kFunct7Mask; } |
| |
| // Safe to call within R-type instructions |
| inline int Funct6FieldRaw() const { return InstructionBits() & kFunct6Mask; } |
| |
| // Safe to call within R-, I-, S-, or B-type instructions |
| inline int Funct3FieldRaw() const { return InstructionBits() & kFunct3Mask; } |
| |
| // Safe to call within R-, I-, S-, or B-type instructions |
| inline int Rs1FieldRawNoAssert() const { |
| return InstructionBits() & kRs1FieldMask; |
| } |
| |
| // Safe to call within R-, S-, or B-type instructions |
| inline int Rs2FieldRawNoAssert() const { |
| return InstructionBits() & kRs2FieldMask; |
| } |
| |
| // Safe to call within R4-type instructions |
| inline int Rs3FieldRawNoAssert() const { |
| return InstructionBits() & kRs3FieldMask; |
| } |
| |
| inline int32_t ITypeBits() const { return InstructionBits() & kITypeMask; } |
| |
| inline int32_t InstructionOpcodeType() const { |
| if (IsShortInstruction()) { |
| return InstructionBits() & kRvcOpcodeMask; |
| } else { |
| return InstructionBits() & kBaseOpcodeMask; |
| } |
| } |
| |
| // Get the encoding type of the instruction. |
| Type InstructionType() const; |
| |
| protected: |
| InstructionBase() {} |
| }; |
| |
| template <class T> |
| class InstructionGetters : public T { |
| public: |
| uint32_t OperandFunct3() const { |
| return this->InstructionBits() & (kBaseOpcodeMask | kFunct3Mask); |
| } |
| bool IsLoad(); |
| bool IsStore(); |
| inline int BaseOpcode() const { |
| return this->InstructionBits() & kBaseOpcodeMask; |
| } |
| |
| inline int RvcOpcode() const { |
| DCHECK(this->IsShortInstruction()); |
| return this->InstructionBits() & kRvcOpcodeMask; |
| } |
| |
| inline int Rs1Value() const { |
| DCHECK(this->InstructionType() == InstructionBase::kRType || |
| this->InstructionType() == InstructionBase::kR4Type || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kSType || |
| this->InstructionType() == InstructionBase::kBType || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kVType); |
| return this->Bits(kRs1Shift + kRs1Bits - 1, kRs1Shift); |
| } |
| |
| inline int Rs2Value() const { |
| DCHECK(this->InstructionType() == InstructionBase::kRType || |
| this->InstructionType() == InstructionBase::kR4Type || |
| this->InstructionType() == InstructionBase::kSType || |
| this->InstructionType() == InstructionBase::kBType || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kVType); |
| return this->Bits(kRs2Shift + kRs2Bits - 1, kRs2Shift); |
| } |
| |
| inline int Rs3Value() const { |
| DCHECK(this->InstructionType() == InstructionBase::kR4Type); |
| return this->Bits(kRs3Shift + kRs3Bits - 1, kRs3Shift); |
| } |
| |
| inline int Vs1Value() const { |
| DCHECK(this->InstructionType() == InstructionBase::kVType || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kSType); |
| return this->Bits(kVs1Shift + kVs1Bits - 1, kVs1Shift); |
| } |
| |
| inline int Vs2Value() const { |
| DCHECK(this->InstructionType() == InstructionBase::kVType || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kSType); |
| return this->Bits(kVs2Shift + kVs2Bits - 1, kVs2Shift); |
| } |
| |
| inline int VdValue() const { |
| DCHECK(this->InstructionType() == InstructionBase::kVType || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kSType); |
| return this->Bits(kVdShift + kVdBits - 1, kVdShift); |
| } |
| |
| inline int RdValue() const { |
| DCHECK(this->InstructionType() == InstructionBase::kRType || |
| this->InstructionType() == InstructionBase::kR4Type || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kSType || |
| this->InstructionType() == InstructionBase::kUType || |
| this->InstructionType() == InstructionBase::kJType || |
| this->InstructionType() == InstructionBase::kVType); |
| return this->Bits(kRdShift + kRdBits - 1, kRdShift); |
| } |
| |
| inline int RvcRs1Value() const { return this->RvcRdValue(); } |
| |
| int RvcRdValue() const; |
| |
| int RvcRs2Value() const; |
| |
| int RvcRs1sValue() const; |
| |
| int RvcRs2sValue() const; |
| |
| int Funct7Value() const; |
| |
| inline int Funct3Value() const { |
| DCHECK(this->InstructionType() == InstructionBase::kRType || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kSType || |
| this->InstructionType() == InstructionBase::kBType); |
| return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift); |
| } |
| |
| inline int Funct5Value() const { |
| DCHECK(this->InstructionType() == InstructionBase::kRType && |
| this->BaseOpcode() == OP_FP); |
| return this->Bits(kFunct5Shift + kFunct5Bits - 1, kFunct5Shift); |
| } |
| |
| int RvcFunct6Value() const; |
| |
| int RvcFunct4Value() const; |
| |
| int RvcFunct3Value() const; |
| |
| int RvcFunct2Value() const; |
| |
| int RvcFunct2BValue() const; |
| |
| inline int CsrValue() const { |
| DCHECK(this->InstructionType() == InstructionBase::kIType && |
| this->BaseOpcode() == SYSTEM); |
| return (this->Bits(kCsrShift + kCsrBits - 1, kCsrShift)); |
| } |
| |
| inline int RoundMode() const { |
| DCHECK((this->InstructionType() == InstructionBase::kRType || |
| this->InstructionType() == InstructionBase::kR4Type) && |
| this->BaseOpcode() == OP_FP); |
| return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift); |
| } |
| |
| inline int MemoryOrder(bool is_pred) const { |
| DCHECK((this->InstructionType() == InstructionBase::kIType && |
| this->BaseOpcode() == MISC_MEM)); |
| if (is_pred) { |
| return this->Bits(kPredOrderShift + kMemOrderBits - 1, kPredOrderShift); |
| } else { |
| return this->Bits(kSuccOrderShift + kMemOrderBits - 1, kSuccOrderShift); |
| } |
| } |
| |
| inline int Imm12Value() const { |
| DCHECK(this->InstructionType() == InstructionBase::kIType); |
| int Value = this->Bits(kImm12Shift + kImm12Bits - 1, kImm12Shift); |
| return Value << 20 >> 20; |
| } |
| |
| inline int32_t Imm12SExtValue() const { |
| int32_t Value = this->Imm12Value() << 20 >> 20; |
| return Value; |
| } |
| |
| inline int BranchOffset() const { |
| DCHECK(this->InstructionType() == InstructionBase::kBType); |
| // | imm[12|10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode | |
| // 31 25 11 7 |
| uint32_t Bits = this->InstructionBits(); |
| int16_t imm13 = ((Bits & 0xf00) >> 7) | ((Bits & 0x7e000000) >> 20) | |
| ((Bits & 0x80) << 4) | ((Bits & 0x80000000) >> 19); |
| return imm13 << 19 >> 19; |
| } |
| |
| inline int StoreOffset() const { |
| DCHECK(this->InstructionType() == InstructionBase::kSType); |
| // | imm[11:5] | rs2 | rs1 | funct3 | imm[4:0] | opcode | |
| // 31 25 11 7 |
| uint32_t Bits = this->InstructionBits(); |
| int16_t imm12 = ((Bits & 0xf80) >> 7) | ((Bits & 0xfe000000) >> 20); |
| return imm12 << 20 >> 20; |
| } |
| |
| inline int Imm20UValue() const { |
| DCHECK(this->InstructionType() == InstructionBase::kUType); |
| // | imm[31:12] | rd | opcode | |
| // 31 12 |
| int32_t Bits = this->InstructionBits(); |
| return Bits >> 12; |
| } |
| |
| inline int Imm20JValue() const { |
| DCHECK(this->InstructionType() == InstructionBase::kJType); |
| // | imm[20|10:1|11|19:12] | rd | opcode | |
| // 31 12 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm20 = ((Bits & 0x7fe00000) >> 20) | ((Bits & 0x100000) >> 9) | |
| (Bits & 0xff000) | ((Bits & 0x80000000) >> 11); |
| return imm20 << 11 >> 11; |
| } |
| |
| inline bool IsArithShift() const { |
| // Valid only for right shift operations |
| DCHECK((this->BaseOpcode() == OP || this->BaseOpcode() == OP_32 || |
| this->BaseOpcode() == OP_IMM || this->BaseOpcode() == OP_IMM_32) && |
| this->Funct3Value() == 0b101); |
| return this->InstructionBits() & 0x40000000; |
| } |
| |
| inline int Shamt() const { |
| // Valid only for shift instructions (SLLI, SRLI, SRAI) |
| DCHECK(((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM || |
| (this->InstructionBits() & kBaseOpcodeMask) == OP_IMM_32) && |
| (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); |
| // | 0A0000 | shamt | rs1 | funct3 | rd | opcode | |
| // 31 25 20 |
| return this->Bits(kImm12Shift + 5, kImm12Shift); |
| } |
| |
| inline int Shamt32() const { |
| // Valid only for shift instructions (SLLIW, SRLIW, SRAIW) |
| #ifdef V8_TARGET_ARCH_RISCV32 |
| DCHECK(((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM_32 || |
| (this->InstructionBits() & kBaseOpcodeMask) == OP_IMM) && |
| (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); |
| #else |
| DCHECK((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM_32 && |
| (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); |
| #endif |
| // | 0A00000 | shamt | rs1 | funct3 | rd | opcode | |
| // 31 24 20 |
| return this->Bits(kImm12Shift + 4, kImm12Shift); |
| } |
| |
| inline int RvcImm6Value() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | imm[5] | rs1/rd | imm[4:0] | opcode | |
| // 15 12 6 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm6 = ((Bits & 0x1000) >> 7) | ((Bits & 0x7c) >> 2); |
| return imm6 << 26 >> 26; |
| } |
| |
| inline int RvcImm6Addi16spValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | nzimm[9] | 2 | nzimm[4|6|8:7|5] | opcode | |
| // 15 12 6 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm10 = ((Bits & 0x1000) >> 3) | ((Bits & 0x40) >> 2) | |
| ((Bits & 0x20) << 1) | ((Bits & 0x18) << 4) | |
| ((Bits & 0x4) << 3); |
| DCHECK_NE(imm10, 0); |
| return imm10 << 22 >> 22; |
| } |
| |
| inline int RvcImm8Addi4spnValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | nzimm[11] | rd' | opcode | |
| // 15 13 5 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t uimm10 = ((Bits & 0x20) >> 2) | ((Bits & 0x40) >> 4) | |
| ((Bits & 0x780) >> 1) | ((Bits & 0x1800) >> 7); |
| DCHECK_NE(uimm10, 0); |
| return uimm10; |
| } |
| |
| inline int RvcShamt6() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | nzuimm[5] | rs1/rd | nzuimm[4:0] | opcode | |
| // 15 12 6 2 |
| int32_t imm6 = this->RvcImm6Value(); |
| return imm6 & 0x3f; |
| } |
| |
| inline int RvcImm6LwspValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | uimm[5] | rs1 | uimm[4:2|7:6] | opcode | |
| // 15 12 6 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm8 = |
| ((Bits & 0x1000) >> 7) | ((Bits & 0x70) >> 2) | ((Bits & 0xc) << 4); |
| return imm8; |
| } |
| |
| inline int RvcImm6LdspValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | uimm[5] | rs1 | uimm[4:3|8:6] | opcode | |
| // 15 12 6 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm9 = |
| ((Bits & 0x1000) >> 7) | ((Bits & 0x60) >> 2) | ((Bits & 0x1c) << 4); |
| return imm9; |
| } |
| |
| inline int RvcImm6SwspValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | uimm[5:2|7:6] | rs2 | opcode | |
| // 15 12 7 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm8 = ((Bits & 0x1e00) >> 7) | ((Bits & 0x180) >> 1); |
| return imm8; |
| } |
| |
| inline int RvcImm6SdspValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | uimm[5:3|8:6] | rs2 | opcode | |
| // 15 12 7 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm9 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x380) >> 1); |
| return imm9; |
| } |
| |
| inline int RvcImm5WValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | imm[5:3] | rs1 | imm[2|6] | rd | opcode | |
| // 15 12 10 6 4 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm7 = |
| ((Bits & 0x1c00) >> 7) | ((Bits & 0x40) >> 4) | ((Bits & 0x20) << 1); |
| return imm7; |
| } |
| |
| inline int RvcImm5DValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | imm[5:3] | rs1 | imm[7:6] | rd | opcode | |
| // 15 12 10 6 4 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm8 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x60) << 1); |
| return imm8; |
| } |
| |
| inline int RvcImm11CJValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | [11|4|9:8|10|6|7|3:1|5] | opcode | |
| // 15 12 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm12 = ((Bits & 0x4) << 3) | ((Bits & 0x38) >> 2) | |
| ((Bits & 0x40) << 1) | ((Bits & 0x80) >> 1) | |
| ((Bits & 0x100) << 2) | ((Bits & 0x600) >> 1) | |
| ((Bits & 0x800) >> 7) | ((Bits & 0x1000) >> 1); |
| return imm12 << 20 >> 20; |
| } |
| |
| inline int RvcImm8BValue() const { |
| DCHECK(this->IsShortInstruction()); |
| // | funct3 | imm[8|4:3] | rs1` | imm[7:6|2:1|5] | opcode | |
| // 15 12 10 7 2 |
| uint32_t Bits = this->InstructionBits(); |
| int32_t imm9 = ((Bits & 0x4) << 3) | ((Bits & 0x18) >> 2) | |
| ((Bits & 0x60) << 1) | ((Bits & 0xc00) >> 7) | |
| ((Bits & 0x1000) >> 4); |
| return imm9 << 23 >> 23; |
| } |
| |
| inline int vl_vs_width() { |
| int width = 0; |
| if ((this->InstructionBits() & kBaseOpcodeMask) != LOAD_FP && |
| (this->InstructionBits() & kBaseOpcodeMask) != STORE_FP) |
| return -1; |
| switch (this->InstructionBits() & (kRvvWidthMask | kRvvMewMask)) { |
| case 0x0: |
| width = 8; |
| break; |
| case 0x00005000: |
| width = 16; |
| break; |
| case 0x00006000: |
| width = 32; |
| break; |
| case 0x00007000: |
| width = 64; |
| break; |
| case 0x10000000: |
| width = 128; |
| break; |
| case 0x10005000: |
| width = 256; |
| break; |
| case 0x10006000: |
| width = 512; |
| break; |
| case 0x10007000: |
| width = 1024; |
| break; |
| default: |
| width = -1; |
| break; |
| } |
| return width; |
| } |
| |
| uint32_t Rvvzimm() const; |
| |
| uint32_t Rvvuimm() const; |
| |
| uint32_t MopNumber(); |
| |
| inline uint32_t RvvVsew() const { |
| uint32_t zimm = this->Rvvzimm(); |
| uint32_t vsew = (zimm >> 3) & 0x7; |
| return vsew; |
| } |
| |
| inline uint32_t RvvVlmul() const { |
| uint32_t zimm = this->Rvvzimm(); |
| uint32_t vlmul = zimm & 0x7; |
| return vlmul; |
| } |
| |
| inline uint8_t RvvVM() const { |
| DCHECK(this->InstructionType() == InstructionBase::kVType || |
| this->InstructionType() == InstructionBase::kIType || |
| this->InstructionType() == InstructionBase::kSType); |
| return this->Bits(kRvvVmShift + kRvvVmBits - 1, kRvvVmShift); |
| } |
| |
| inline const char* RvvSEW() const { |
| uint32_t vsew = this->RvvVsew(); |
| switch (vsew) { |
| #define CAST_VSEW(name) \ |
| case name: \ |
| return #name; |
| RVV_SEW(CAST_VSEW) |
| default: |
| return "unknown"; |
| #undef CAST_VSEW |
| } |
| } |
| |
| inline const char* RvvLMUL() const { |
| uint32_t vlmul = this->RvvVlmul(); |
| switch (vlmul) { |
| #define CAST_VLMUL(name) \ |
| case name: \ |
| return #name; |
| RVV_LMUL(CAST_VLMUL) |
| default: |
| return "unknown"; |
| #undef CAST_VLMUL |
| } |
| } |
| |
| #define sext(x, len) ((static_cast<int32_t>(x) << (32 - len)) >> (32 - len)) |
| #define zext(x, len) ((static_cast<uint32_t>(x) << (32 - len)) >> (32 - len)) |
| |
| inline int32_t RvvSimm5() const { |
| DCHECK(this->InstructionType() == InstructionBase::kVType); |
| return sext(this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift), |
| kRvvImm5Bits); |
| } |
| |
| inline uint32_t RvvUimm5() const { |
| DCHECK(this->InstructionType() == InstructionBase::kVType); |
| uint32_t imm = this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift); |
| return zext(imm, kRvvImm5Bits); |
| } |
| #undef sext |
| #undef zext |
| inline bool AqValue() const { return this->Bits(kAqShift, kAqShift); } |
| |
| inline bool RlValue() const { return this->Bits(kRlShift, kRlShift); } |
| |
| // Say if the instruction is a break or a trap. |
| bool IsTrap() const; |
| |
| bool IsAUIPC() const { |
| return (this->InstructionBits() & kBaseOpcodeMask) == AUIPC; |
| } |
| }; |
| |
| class Instruction : public InstructionGetters<InstructionBase> { |
| public: |
| // Instructions are read of out a code stream. The only way to get a |
| // reference to an instruction is to convert a pointer. There is no way |
| // to allocate or create instances of class Instruction. |
| // Use the At(pc) function to create references to Instruction. |
| static Instruction* At(uint8_t* pc) { |
| return reinterpret_cast<Instruction*>(pc); |
| } |
| |
| private: |
| // We need to prevent the creation of instances of class Instruction. |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction); |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // RISC-V assembly various constants. |
| |
| // C/C++ argument slots size. |
| const int kCArgSlotCount = 0; |
| |
| // TODO(plind): below should be based on kSystemPointerSize |
| // TODO(plind): find all usages and remove the needless instructions for n64. |
| const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2; |
| |
| const int kInvalidStackOffset = -1; |
| const int kBranchReturnOffset = 2 * kInstrSize; |
| |
| static const int kNegOffset = 0x00008000; |
| |
| // ----------------------------------------------------------------------------- |
| // Instructions. |
| |
| template <class P> |
| bool InstructionGetters<P>::IsTrap() const { |
| return (this->InstructionBits() == kBreakInstr); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_CODEGEN_RISCV_BASE_CONSTANTS_RISCV_H_ |