blob: 9669d8d8fdf25b839c1c19ddef6fe7f22c2d5a76 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been modified
// significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
#ifndef V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_
#define V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_
#include "src/codegen/s390/assembler-s390.h"
// Include the non-inl header before the rest of the headers.
#include "src/codegen/assembler.h"
#include "src/codegen/flush-instruction-cache.h"
#include "src/debug/debug.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsOptimizer() { return true; }
void WritableRelocInfo::apply(intptr_t delta) {
// Absolute code pointer inside code object moves with the code object.
if (IsInternalReference(rmode_)) {
// Jump table entry
Address target = Memory<Address>(pc_);
jit_allocation_.WriteValue(pc_, target + delta);
} else if (IsCodeTarget(rmode_)) {
SixByteInstr instr =
Instruction::InstructionBits(reinterpret_cast<const uint8_t*>(pc_));
int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords
- static_cast<int32_t>(delta);
instr >>= 32; // Clear the 4-byte displacement field.
instr <<= 32;
instr |= static_cast<uint32_t>(dis / 2);
Instruction::SetInstructionBits<SixByteInstr>(
reinterpret_cast<uint8_t*>(pc_), instr, &jit_allocation_);
} else {
// mov sequence
DCHECK(IsInternalReferenceEncoded(rmode_));
Address target = Assembler::target_address_at(pc_, constant_pool_);
Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
&jit_allocation_, SKIP_ICACHE_FLUSH);
}
}
Address RelocInfo::target_internal_reference() {
if (IsInternalReference(rmode_)) {
// Jump table entry
return Memory<Address>(pc_);
} else {
// mov sequence
DCHECK(IsInternalReferenceEncoded(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
return pc_;
}
Address RelocInfo::target_address() {
DCHECK(IsRelativeCodeTarget(rmode_) || IsCodeTarget(rmode_) ||
IsWasmCall(rmode_) || IsWasmStubCall(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
Address RelocInfo::target_address_address() {
DCHECK(HasTargetAddressAddress());
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LIS/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written.
return pc_;
}
Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
void Assembler::set_target_compressed_address_at(
Address pc, Address constant_pool, Tagged_t target,
WritableJitAllocation* jit_allocation, ICacheFlushMode icache_flush_mode) {
Assembler::set_target_address_at(pc, constant_pool,
static_cast<Address>(target), jit_allocation,
icache_flush_mode);
}
int RelocInfo::target_address_size() {
if (IsCodedSpecially()) {
return Assembler::kSpecialTargetSize;
} else {
return kSystemPointerSize;
}
}
Tagged_t Assembler::target_compressed_address_at(Address pc,
Address constant_pool) {
return static_cast<Tagged_t>(target_address_at(pc, constant_pool));
}
Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
SixByteInstr instr =
Instruction::InstructionBits(reinterpret_cast<const uint8_t*>(pc));
int index = instr & 0xFFFFFFFF;
return GetCodeTarget(index);
}
Tagged<HeapObject> RelocInfo::target_object(PtrComprCageBase cage_base) {
DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
if (IsCompressedEmbeddedObject(rmode_)) {
return Cast<HeapObject>(
Tagged<Object>(V8HeapCompressionScheme::DecompressTagged(
Assembler::target_compressed_address_at(pc_, constant_pool_))));
} else {
return Cast<HeapObject>(
Tagged<Object>(Assembler::target_address_at(pc_, constant_pool_)));
}
}
Handle<HeapObject> Assembler::compressed_embedded_object_handle_at(
Address pc, Address const_pool) {
return GetEmbeddedObject(target_compressed_address_at(pc, const_pool));
}
DirectHandle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsRelativeCodeTarget(rmode_) || IsCodeTarget(rmode_) ||
IsEmbeddedObjectMode(rmode_));
if (IsCodeTarget(rmode_) || IsRelativeCodeTarget(rmode_)) {
return Cast<HeapObject>(origin->code_target_object_handle_at(pc_));
} else {
if (IsCompressedEmbeddedObject(rmode_)) {
return origin->compressed_embedded_object_handle_at(pc_, constant_pool_);
}
return DirectHandle<HeapObject>::FromSlot(reinterpret_cast<Address*>(
Assembler::target_address_at(pc_, constant_pool_)));
}
}
void WritableRelocInfo::set_target_object(Tagged<HeapObject> target,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
if (IsCompressedEmbeddedObject(rmode_)) {
Assembler::set_target_compressed_address_at(
pc_, constant_pool_,
V8HeapCompressionScheme::CompressObject(target.ptr()), &jit_allocation_,
icache_flush_mode);
} else {
DCHECK(IsFullEmbeddedObject(rmode_));
Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
&jit_allocation_, icache_flush_mode);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_address_at(pc_, constant_pool_);
}
void WritableRelocInfo::set_target_external_reference(
Address target, ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
Assembler::set_target_address_at(pc_, constant_pool_, target,
&jit_allocation_, icache_flush_mode);
}
WasmCodePointer RelocInfo::wasm_code_pointer_table_entry() const {
DCHECK(rmode_ == WASM_CODE_POINTER_TABLE_ENTRY);
return WasmCodePointer{Assembler::uint32_constant_at(pc_, constant_pool_)};
}
void WritableRelocInfo::set_wasm_code_pointer_table_entry(
WasmCodePointer target, ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::WASM_CODE_POINTER_TABLE_ENTRY);
Assembler::set_uint32_constant_at(pc_, constant_pool_, target.value(),
&jit_allocation_, icache_flush_mode);
}
JSDispatchHandle RelocInfo::js_dispatch_handle() {
DCHECK(rmode_ == JS_DISPATCH_HANDLE);
return JSDispatchHandle(Assembler::uint32_constant_at(pc_, constant_pool_));
}
Builtin RelocInfo::target_builtin_at(Assembler* origin) { UNREACHABLE(); }
Address RelocInfo::target_off_heap_target() {
DCHECK(IsOffHeapTarget(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
// Operand constructors
Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NO_INFO) {}
// Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
Address Assembler::target_address_at(Address pc, Address constant_pool) {
// S390 Instruction!
// We want to check for instructions generated by Asm::mov()
Opcode op1 =
Instruction::S390OpcodeValue(reinterpret_cast<const uint8_t*>(pc));
SixByteInstr instr_1 =
Instruction::InstructionBits(reinterpret_cast<const uint8_t*>(pc));
if (BRASL == op1 || BRCL == op1) {
int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
return pc + dis;
}
int instr1_length =
Instruction::InstructionLength(reinterpret_cast<const uint8_t*>(pc));
Opcode op2 = Instruction::S390OpcodeValue(
reinterpret_cast<const uint8_t*>(pc + instr1_length));
SixByteInstr instr_2 = Instruction::InstructionBits(
reinterpret_cast<const uint8_t*>(pc + instr1_length));
// IIHF for hi_32, IILF for lo_32
if (IIHF == op1 && IILF == op2) {
return static_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
((instr_2 & 0xFFFFFFFF)));
}
UNIMPLEMENTED();
return 0;
}
int Assembler::deserialization_special_target_size(
Address instruction_payload) {
return kSpecialTargetSize;
}
void Assembler::deserialization_set_target_internal_reference_at(
Address pc, Address target, WritableJitAllocation& jit_allocation,
RelocInfo::Mode mode) {
if (RelocInfo::IsInternalReferenceEncoded(mode)) {
set_target_address_at(pc, kNullAddress, target, &jit_allocation,
SKIP_ICACHE_FLUSH);
} else {
jit_allocation.WriteUnalignedValue<Address>(pc, target);
}
}
// This code assumes the FIXED_SEQUENCE of IIHF/IILF
void Assembler::set_target_address_at(Address pc, Address constant_pool,
Address target,
WritableJitAllocation* jit_allocation,
ICacheFlushMode icache_flush_mode) {
// Check for instructions generated by Asm::mov()
Opcode op1 =
Instruction::S390OpcodeValue(reinterpret_cast<const uint8_t*>(pc));
SixByteInstr instr_1 =
Instruction::InstructionBits(reinterpret_cast<const uint8_t*>(pc));
bool patched = false;
if (BRASL == op1 || BRCL == op1) {
instr_1 >>= 32; // Zero out the lower 32-bits
instr_1 <<= 32;
int32_t halfwords = (target - pc) / 2; // number of halfwords
instr_1 |= static_cast<uint32_t>(halfwords);
Instruction::SetInstructionBits<SixByteInstr>(
reinterpret_cast<uint8_t*>(pc), instr_1, jit_allocation);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
FlushInstructionCache(pc, 6);
}
patched = true;
} else {
int instr1_length =
Instruction::InstructionLength(reinterpret_cast<const uint8_t*>(pc));
Opcode op2 = Instruction::S390OpcodeValue(
reinterpret_cast<const uint8_t*>(pc + instr1_length));
SixByteInstr instr_2 = Instruction::InstructionBits(
reinterpret_cast<const uint8_t*>(pc + instr1_length));
// IIHF for hi_32, IILF for lo_32
if (IIHF == op1 && IILF == op2) {
// IIHF
instr_1 >>= 32; // Zero out the lower 32-bits
instr_1 <<= 32;
instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
Instruction::SetInstructionBits<SixByteInstr>(
reinterpret_cast<uint8_t*>(pc), instr_1, jit_allocation);
// IILF
instr_2 >>= 32;
instr_2 <<= 32;
instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
Instruction::SetInstructionBits<SixByteInstr>(
reinterpret_cast<uint8_t*>(pc + instr1_length), instr_2,
jit_allocation);
if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
FlushInstructionCache(pc, 12);
}
patched = true;
}
}
if (!patched) UNREACHABLE();
}
uint32_t Assembler::uint32_constant_at(Address pc, Address constant_pool) {
return static_cast<uint32_t>(Assembler::target_address_at(pc, constant_pool));
}
void Assembler::set_uint32_constant_at(Address pc, Address constant_pool,
uint32_t new_constant,
WritableJitAllocation* jit_allocation,
ICacheFlushMode icache_flush_mode) {
Assembler::set_target_address_at(pc, constant_pool,
static_cast<Address>(new_constant),
jit_allocation, icache_flush_mode);
}
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_