blob: 89e7de360f270cee23bd1734808739075bc046de [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <assert.h> // For assert
#include <limits.h> // For LONG_MIN, LONG_MAX.
#if V8_TARGET_ARCH_S390X
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/builtins/builtins-inl.h"
#include "src/codegen/callable.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/external-reference-table.h"
#include "src/codegen/interface-descriptors-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/register-configuration.h"
#include "src/codegen/register.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frames-inl.h"
#include "src/heap/mutable-page-metadata.h"
#include "src/init/bootstrapper.h"
#include "src/logging/counters.h"
#include "src/objects/smi.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/snapshot.h"
// Satisfy cpplint check, but don't include platform-specific header. It is
// included recursively via macro-assembler.h.
#if 0
#include "src/codegen/s390/macro-assembler-s390.h"
#endif
#define __ ACCESS_MASM(masm)
namespace v8 {
namespace internal {
namespace {
// For WebAssembly we care about the full floating point (Simd) registers. If we
// are not running Wasm, we can get away with saving half of those (F64)
// registers.
#if V8_ENABLE_WEBASSEMBLY
constexpr int kStackSavedSavedFPSizeInBytes =
kNumCallerSavedDoubles * kSimd128Size;
#else
constexpr int kStackSavedSavedFPSizeInBytes =
kNumCallerSavedDoubles * kDoubleSize;
#endif // V8_ENABLE_WEBASSEMBLY
} // namespace
void MacroAssembler::DoubleMax(DoubleRegister result_reg,
DoubleRegister left_reg,
DoubleRegister right_reg) {
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_1)) {
vfmax(result_reg, left_reg, right_reg, Condition(1), Condition(8),
Condition(3));
return;
}
Label check_zero, return_left, return_right, return_nan, done;
cdbr(left_reg, right_reg);
bunordered(&return_nan, Label::kNear);
beq(&check_zero);
bge(&return_left, Label::kNear);
b(&return_right, Label::kNear);
bind(&check_zero);
lzdr(kDoubleRegZero);
cdbr(left_reg, kDoubleRegZero);
/* left == right != 0. */
bne(&return_left, Label::kNear);
/* At this point, both left and right are either 0 or -0. */
/* N.B. The following works because +0 + -0 == +0 */
/* For max we want logical-and of sign bit: (L + R) */
ldr(result_reg, left_reg);
adbr(result_reg, right_reg);
b(&done, Label::kNear);
bind(&return_nan);
/* If left or right are NaN, adbr propagates the appropriate one.*/
adbr(left_reg, right_reg);
b(&return_left, Label::kNear);
bind(&return_right);
if (right_reg != result_reg) {
ldr(result_reg, right_reg);
}
b(&done, Label::kNear);
bind(&return_left);
if (left_reg != result_reg) {
ldr(result_reg, left_reg);
}
bind(&done);
}
void MacroAssembler::DoubleMin(DoubleRegister result_reg,
DoubleRegister left_reg,
DoubleRegister right_reg) {
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_1)) {
vfmin(result_reg, left_reg, right_reg, Condition(1), Condition(8),
Condition(3));
return;
}
Label check_zero, return_left, return_right, return_nan, done;
cdbr(left_reg, right_reg);
bunordered(&return_nan, Label::kNear);
beq(&check_zero);
ble(&return_left, Label::kNear);
b(&return_right, Label::kNear);
bind(&check_zero);
lzdr(kDoubleRegZero);
cdbr(left_reg, kDoubleRegZero);
/* left == right != 0. */
bne(&return_left, Label::kNear);
/* At this point, both left and right are either 0 or -0. */
/* N.B. The following works because +0 + -0 == +0 */
/* For min we want logical-or of sign bit: -(-L + -R) */
lcdbr(left_reg, left_reg);
ldr(result_reg, left_reg);
if (left_reg == right_reg) {
adbr(result_reg, right_reg);
} else {
sdbr(result_reg, right_reg);
}
lcdbr(result_reg, result_reg);
b(&done, Label::kNear);
bind(&return_nan);
/* If left or right are NaN, adbr propagates the appropriate one.*/
adbr(left_reg, right_reg);
b(&return_left, Label::kNear);
bind(&return_right);
if (right_reg != result_reg) {
ldr(result_reg, right_reg);
}
b(&done, Label::kNear);
bind(&return_left);
if (left_reg != result_reg) {
ldr(result_reg, left_reg);
}
bind(&done);
}
void MacroAssembler::FloatMax(DoubleRegister result_reg,
DoubleRegister left_reg,
DoubleRegister right_reg) {
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_1)) {
vfmax(result_reg, left_reg, right_reg, Condition(1), Condition(8),
Condition(2));
return;
}
Label check_zero, return_left, return_right, return_nan, done;
cebr(left_reg, right_reg);
bunordered(&return_nan, Label::kNear);
beq(&check_zero);
bge(&return_left, Label::kNear);
b(&return_right, Label::kNear);
bind(&check_zero);
lzdr(kDoubleRegZero);
cebr(left_reg, kDoubleRegZero);
/* left == right != 0. */
bne(&return_left, Label::kNear);
/* At this point, both left and right are either 0 or -0. */
/* N.B. The following works because +0 + -0 == +0 */
/* For max we want logical-and of sign bit: (L + R) */
ldr(result_reg, left_reg);
aebr(result_reg, right_reg);
b(&done, Label::kNear);
bind(&return_nan);
/* If left or right are NaN, aebr propagates the appropriate one.*/
aebr(left_reg, right_reg);
b(&return_left, Label::kNear);
bind(&return_right);
if (right_reg != result_reg) {
ldr(result_reg, right_reg);
}
b(&done, Label::kNear);
bind(&return_left);
if (left_reg != result_reg) {
ldr(result_reg, left_reg);
}
bind(&done);
}
void MacroAssembler::FloatMin(DoubleRegister result_reg,
DoubleRegister left_reg,
DoubleRegister right_reg) {
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_1)) {
vfmin(result_reg, left_reg, right_reg, Condition(1), Condition(8),
Condition(2));
return;
}
Label check_zero, return_left, return_right, return_nan, done;
cebr(left_reg, right_reg);
bunordered(&return_nan, Label::kNear);
beq(&check_zero);
ble(&return_left, Label::kNear);
b(&return_right, Label::kNear);
bind(&check_zero);
lzdr(kDoubleRegZero);
cebr(left_reg, kDoubleRegZero);
/* left == right != 0. */
bne(&return_left, Label::kNear);
/* At this point, both left and right are either 0 or -0. */
/* N.B. The following works because +0 + -0 == +0 */
/* For min we want logical-or of sign bit: -(-L + -R) */
lcebr(left_reg, left_reg);
ldr(result_reg, left_reg);
if (left_reg == right_reg) {
aebr(result_reg, right_reg);
} else {
sebr(result_reg, right_reg);
}
lcebr(result_reg, result_reg);
b(&done, Label::kNear);
bind(&return_nan);
/* If left or right are NaN, aebr propagates the appropriate one.*/
aebr(left_reg, right_reg);
b(&return_left, Label::kNear);
bind(&return_right);
if (right_reg != result_reg) {
ldr(result_reg, right_reg);
}
b(&done, Label::kNear);
bind(&return_left);
if (left_reg != result_reg) {
ldr(result_reg, left_reg);
}
bind(&done);
}
void MacroAssembler::CeilF32(DoubleRegister dst, DoubleRegister src) {
fiebra(ROUND_TOWARD_POS_INF, dst, src);
}
void MacroAssembler::CeilF64(DoubleRegister dst, DoubleRegister src) {
fidbra(ROUND_TOWARD_POS_INF, dst, src);
}
void MacroAssembler::FloorF32(DoubleRegister dst, DoubleRegister src) {
fiebra(ROUND_TOWARD_NEG_INF, dst, src);
}
void MacroAssembler::FloorF64(DoubleRegister dst, DoubleRegister src) {
fidbra(ROUND_TOWARD_NEG_INF, dst, src);
}
void MacroAssembler::TruncF32(DoubleRegister dst, DoubleRegister src) {
fiebra(ROUND_TOWARD_0, dst, src);
}
void MacroAssembler::TruncF64(DoubleRegister dst, DoubleRegister src) {
fidbra(ROUND_TOWARD_0, dst, src);
}
void MacroAssembler::NearestIntF32(DoubleRegister dst, DoubleRegister src) {
fiebra(ROUND_TO_NEAREST_TO_EVEN, dst, src);
}
void MacroAssembler::NearestIntF64(DoubleRegister dst, DoubleRegister src) {
fidbra(ROUND_TO_NEAREST_TO_EVEN, dst, src);
}
int MacroAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) const {
int bytes = 0;
RegList exclusions = {exclusion1, exclusion2, exclusion3};
RegList list = kJSCallerSaved - exclusions;
bytes += list.Count() * kSystemPointerSize;
if (fp_mode == SaveFPRegsMode::kSave) {
bytes += kStackSavedSavedFPSizeInBytes;
}
return bytes;
}
int MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register scratch,
Register exclusion1, Register exclusion2,
Register exclusion3) {
int bytes = 0;
RegList exclusions = {exclusion1, exclusion2, exclusion3};
RegList list = kJSCallerSaved - exclusions;
MultiPush(list);
bytes += list.Count() * kSystemPointerSize;
if (fp_mode == SaveFPRegsMode::kSave) {
MultiPushF64OrV128(kCallerSavedDoubles, scratch);
bytes += kStackSavedSavedFPSizeInBytes;
}
return bytes;
}
int MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register scratch,
Register exclusion1, Register exclusion2,
Register exclusion3) {
int bytes = 0;
if (fp_mode == SaveFPRegsMode::kSave) {
MultiPopF64OrV128(kCallerSavedDoubles, scratch);
bytes += kStackSavedSavedFPSizeInBytes;
}
RegList exclusions = {exclusion1, exclusion2, exclusion3};
RegList list = kJSCallerSaved - exclusions;
MultiPop(list);
bytes += list.Count() * kSystemPointerSize;
return bytes;
}
void MacroAssembler::LoadFromConstantsTable(Register destination,
int constant_index) {
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable));
const uint32_t offset = OFFSET_OF_DATA_START(FixedArray) +
constant_index * kSystemPointerSize - kHeapObjectTag;
CHECK(is_uint19(offset));
DCHECK_NE(destination, r0);
LoadRoot(destination, RootIndex::kBuiltinsConstantsTable);
LoadTaggedField(destination,
FieldMemOperand(destination, FixedArray::OffsetOfElementAt(
constant_index)),
r1);
}
void MacroAssembler::LoadRootRelative(Register destination, int32_t offset) {
LoadU64(destination, MemOperand(kRootRegister, offset));
}
void MacroAssembler::StoreRootRelative(int32_t offset, Register value) {
StoreU64(value, MemOperand(kRootRegister, offset));
}
void MacroAssembler::LoadRootRegisterOffset(Register destination,
intptr_t offset) {
if (offset == 0) {
mov(destination, kRootRegister);
} else if (is_uint12(offset)) {
la(destination, MemOperand(kRootRegister, offset));
} else {
DCHECK(is_int20(offset));
lay(destination, MemOperand(kRootRegister, offset));
}
}
MemOperand MacroAssembler::ExternalReferenceAsOperand(
ExternalReference reference, Register scratch) {
if (root_array_available()) {
if (reference.IsIsolateFieldId()) {
return MemOperand(kRootRegister, reference.offset_from_root_register());
}
if (options().enable_root_relative_access) {
intptr_t offset =
RootRegisterOffsetForExternalReference(isolate(), reference);
if (is_int32(offset)) {
return MemOperand(kRootRegister, static_cast<int32_t>(offset));
}
}
if (options().isolate_independent_code) {
if (IsAddressableThroughRootRegister(isolate(), reference)) {
// Some external references can be efficiently loaded as an offset from
// kRootRegister.
intptr_t offset =
RootRegisterOffsetForExternalReference(isolate(), reference);
CHECK(is_int32(offset));
return MemOperand(kRootRegister, static_cast<int32_t>(offset));
} else {
// Otherwise, do a memory load from the external reference table.
LoadU64(scratch,
MemOperand(kRootRegister,
RootRegisterOffsetForExternalReferenceTableEntry(
isolate(), reference)));
return MemOperand(scratch, 0);
}
}
}
Move(scratch, reference);
return MemOperand(scratch, 0);
}
void MacroAssembler::GetLabelAddress(Register dest, Label* target) {
larl(dest, target);
}
void MacroAssembler::Jump(Register target, Condition cond) { b(cond, target); }
void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond) {
Label skip;
if (cond != al) b(NegateCondition(cond), &skip);
mov(ip, Operand(target, rmode));
b(ip);
bind(&skip);
}
void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(!RelocInfo::IsCodeTarget(rmode));
Jump(static_cast<intptr_t>(target), rmode, cond);
}
void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
DCHECK_IMPLIES(options().isolate_independent_code,
Builtins::IsIsolateIndependentBuiltin(*code));
Builtin builtin = Builtin::kNoBuiltinId;
if (isolate()->builtins()->IsBuiltinHandle(code, &builtin)) {
TailCallBuiltin(builtin, cond);
return;
}
DCHECK(RelocInfo::IsCodeTarget(rmode));
jump(code, RelocInfo::RELATIVE_CODE_TARGET, cond);
}
void MacroAssembler::Jump(const ExternalReference& reference) {
#if V8_OS_ZOS
// Place reference into scratch r12 ip register
Move(ip, reference);
// z/OS uses function descriptors, extract code entry into r6
LoadMultipleP(r5, r6, MemOperand(ip));
// Preserve return address into r14
mov(r14, r7);
// Call C Function
StoreReturnAddressAndCall(r6);
// Branch to return address in r14
b(r14);
#else
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
Move(scratch, reference);
Jump(scratch);
#endif
}
void MacroAssembler::Call(Register target) {
// Branch to target via indirect branch
basr(r14, target);
}
void MacroAssembler::CallJSEntry(Register target) {
DCHECK(target == r4);
Call(target);
}
int MacroAssembler::CallSizeNotPredictableCodeSize(Address target,
RelocInfo::Mode rmode,
Condition cond) {
// S390 Assembler::move sequence is IILF / IIHF
int size;
size = 14; // IILF + IIHF + BASR
return size;
}
void MacroAssembler::Call(Address target, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(cond == al);
mov(ip, Operand(target, rmode));
basr(r14, ip);
}
void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(RelocInfo::IsCodeTarget(rmode) && cond == al);
DCHECK_IMPLIES(options().isolate_independent_code,
Builtins::IsIsolateIndependentBuiltin(*code));
Builtin builtin = Builtin::kNoBuiltinId;
if (isolate()->builtins()->IsBuiltinHandle(code, &builtin)) {
CallBuiltin(builtin);
return;
}
DCHECK(RelocInfo::IsCodeTarget(rmode));
call(code, rmode);
}
void MacroAssembler::CallBuiltin(Builtin builtin, Condition cond) {
ASM_CODE_COMMENT_STRING(this, CommentForOffHeapTrampoline("call", builtin));
// Use ip directly instead of using UseScratchRegisterScope, as we do not
// preserve scratch registers across calls.
switch (options().builtin_call_jump_mode) {
case BuiltinCallJumpMode::kAbsolute: {
mov(ip, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET));
Call(ip);
break;
}
case BuiltinCallJumpMode::kPCRelative:
UNREACHABLE();
case BuiltinCallJumpMode::kIndirect:
LoadU64(ip, EntryFromBuiltinAsOperand(builtin));
Call(ip);
break;
case BuiltinCallJumpMode::kForMksnapshot: {
Handle<Code> code = isolate()->builtins()->code_handle(builtin);
call(code, RelocInfo::CODE_TARGET);
break;
}
}
}
void MacroAssembler::TailCallBuiltin(Builtin builtin, Condition cond) {
ASM_CODE_COMMENT_STRING(this,
CommentForOffHeapTrampoline("tail call", builtin));
// Use ip directly instead of using UseScratchRegisterScope, as we do not
// preserve scratch registers across calls.
switch (options().builtin_call_jump_mode) {
case BuiltinCallJumpMode::kAbsolute: {
mov(ip, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET));
Jump(ip, cond);
break;
}
case BuiltinCallJumpMode::kPCRelative:
UNREACHABLE();
case BuiltinCallJumpMode::kIndirect:
LoadU64(ip, EntryFromBuiltinAsOperand(builtin));
Jump(ip, cond);
break;
case BuiltinCallJumpMode::kForMksnapshot: {
if (options().use_pc_relative_calls_and_jumps_for_mksnapshot) {
Handle<Code> code = isolate()->builtins()->code_handle(builtin);
jump(code, RelocInfo::RELATIVE_CODE_TARGET, cond);
} else {
LoadU64(ip, EntryFromBuiltinAsOperand(builtin));
Jump(ip, cond);
}
break;
}
}
}
void MacroAssembler::Drop(int count) {
if (count > 0) {
int total = count * kSystemPointerSize;
if (is_uint12(total)) {
la(sp, MemOperand(sp, total));
} else if (is_int20(total)) {
lay(sp, MemOperand(sp, total));
} else {
AddS64(sp, Operand(total));
}
}
}
void MacroAssembler::Drop(Register count, Register scratch) {
ShiftLeftU64(scratch, count, Operand(kSystemPointerSizeLog2));
AddS64(sp, sp, scratch);
}
// Enforce alignment of sp.
void MacroAssembler::EnforceStackAlignment() {
int frame_alignment = ActivationFrameAlignment();
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
uint64_t frame_alignment_mask = ~(static_cast<uint64_t>(frame_alignment) - 1);
AndP(sp, sp, Operand(frame_alignment_mask));
}
void MacroAssembler::TestCodeIsMarkedForDeoptimization(Register code,
Register scratch) {
LoadU32(scratch, FieldMemOperand(code, Code::kFlagsOffset));
TestBit(scratch, Code::kMarkedForDeoptimizationBit, scratch);
}
Operand MacroAssembler::ClearedValue() const {
return Operand(static_cast<int32_t>(i::kClearedWeakValue.ptr()));
}
void MacroAssembler::Call(Label* target) { b(r14, target); }
void MacroAssembler::Push(Handle<HeapObject> handle) {
mov(r0, Operand(handle));
push(r0);
}
void MacroAssembler::Push(Tagged<Smi> smi) {
mov(r0, Operand(smi));
push(r0);
}
void MacroAssembler::Push(Tagged<TaggedIndex> index) {
// TaggedIndex is the same as Smi for 32 bit archs.
mov(r0, Operand(static_cast<uint32_t>(index.value())));
push(r0);
}
void MacroAssembler::Move(Register dst, Handle<HeapObject> value,
RelocInfo::Mode rmode) {
// TODO(jgruber,v8:8887): Also consider a root-relative load when generating
// non-isolate-independent code. In many cases it might be cheaper than
// embedding the relocatable value.
if (root_array_available_ && options().isolate_independent_code) {
IndirectLoadConstant(dst, value);
return;
} else if (RelocInfo::IsCompressedEmbeddedObject(rmode)) {
EmbeddedObjectIndex index = AddEmbeddedObject(value);
DCHECK(is_uint32(index));
mov(dst, Operand(static_cast<int>(index), rmode));
} else {
DCHECK(RelocInfo::IsFullEmbeddedObject(rmode));
mov(dst, Operand(value.address(), rmode));
}
}
void MacroAssembler::Move(Register dst, ExternalReference reference) {
if (root_array_available()) {
if (reference.IsIsolateFieldId()) {
AddS64(dst, kRootRegister,
Operand(reference.offset_from_root_register()));
return;
}
if (options().isolate_independent_code) {
IndirectLoadExternalReference(dst, reference);
return;
}
}
// External references should not get created with IDs if
// `!root_array_available()`.
CHECK(!reference.IsIsolateFieldId());
mov(dst, Operand(reference));
}
void MacroAssembler::LoadIsolateField(Register dst, IsolateFieldId id) {
Move(dst, ExternalReference::Create(id));
}
void MacroAssembler::Move(Register dst, Register src, Condition cond) {
if (dst != src) {
if (cond == al) {
mov(dst, src);
} else {
LoadOnConditionP(cond, dst, src);
}
}
}
void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) {
if (dst != src) {
ldr(dst, src);
}
}
void MacroAssembler::Move(Register dst, const MemOperand& src) {
LoadU64(dst, src);
}
// Wrapper around Assembler::mvc (SS-a format)
void MacroAssembler::MoveChar(const MemOperand& opnd1, const MemOperand& opnd2,
const Operand& length) {
mvc(opnd1, opnd2, Operand(static_cast<intptr_t>(length.immediate() - 1)));
}
// Wrapper around Assembler::clc (SS-a format)
void MacroAssembler::CompareLogicalChar(const MemOperand& opnd1,
const MemOperand& opnd2,
const Operand& length) {
clc(opnd1, opnd2, Operand(static_cast<intptr_t>(length.immediate() - 1)));
}
// Wrapper around Assembler::xc (SS-a format)
void MacroAssembler::ExclusiveOrChar(const MemOperand& opnd1,
const MemOperand& opnd2,
const Operand& length) {
xc(opnd1, opnd2, Operand(static_cast<intptr_t>(length.immediate() - 1)));
}
// Wrapper around Assembler::risbg(n) (RIE-f)
void MacroAssembler::RotateInsertSelectBits(Register dst, Register src,
const Operand& startBit,
const Operand& endBit,
const Operand& shiftAmt,
bool zeroBits) {
if (zeroBits)
// High tag the top bit of I4/EndBit to zero out any unselected bits
risbg(dst, src, startBit,
Operand(static_cast<intptr_t>(endBit.immediate() | 0x80)), shiftAmt);
else
risbg(dst, src, startBit, endBit, shiftAmt);
}
void MacroAssembler::BranchRelativeOnIdxHighP(Register dst, Register inc,
Label* L) {
brxhg(dst, inc, L);
}
void MacroAssembler::PushArray(Register array, Register size, Register scratch,
Register scratch2, PushArrayOrder order) {
Label loop, done;
if (order == kNormal) {
ShiftLeftU64(scratch, size, Operand(kSystemPointerSizeLog2));
lay(scratch, MemOperand(array, scratch));
bind(&loop);
CmpS64(array, scratch);
bge(&done);
lay(scratch, MemOperand(scratch, -kSystemPointerSize));
lay(sp, MemOperand(sp, -kSystemPointerSize));
MoveChar(MemOperand(sp), MemOperand(scratch), Operand(kSystemPointerSize));
b(&loop);
bind(&done);
} else {
DCHECK_NE(scratch2, r0);
ShiftLeftU64(scratch, size, Operand(kSystemPointerSizeLog2));
lay(scratch, MemOperand(array, scratch));
mov(scratch2, array);
bind(&loop);
CmpS64(scratch2, scratch);
bge(&done);
lay(sp, MemOperand(sp, -kSystemPointerSize));
MoveChar(MemOperand(sp), MemOperand(scratch2), Operand(kSystemPointerSize));
lay(scratch2, MemOperand(scratch2, kSystemPointerSize));
b(&loop);
bind(&done);
}
}
void MacroAssembler::MultiPush(RegList regs, Register location) {
int16_t num_to_push = regs.Count();
int16_t stack_offset = num_to_push * kSystemPointerSize;
SubS64(location, location, Operand(stack_offset));
for (int16_t i = Register::kNumRegisters - 1; i >= 0; i--) {
if ((regs.bits() & (1 << i)) != 0) {
stack_offset -= kSystemPointerSize;
StoreU64(ToRegister(i), MemOperand(location, stack_offset));
}
}
}
void MacroAssembler::MultiPop(RegList regs, Register location) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < Register::kNumRegisters; i++) {
if ((regs.bits() & (1 << i)) != 0) {
LoadU64(ToRegister(i), MemOperand(location, stack_offset));
stack_offset += kSystemPointerSize;
}
}
AddS64(location, location, Operand(stack_offset));
}
void MacroAssembler::MultiPushDoubles(DoubleRegList dregs, Register location) {
int16_t num_to_push = dregs.Count();
int16_t stack_offset = num_to_push * kDoubleSize;
SubS64(location, location, Operand(stack_offset));
for (int16_t i = DoubleRegister::kNumRegisters - 1; i >= 0; i--) {
if ((dregs.bits() & (1 << i)) != 0) {
DoubleRegister dreg = DoubleRegister::from_code(i);
stack_offset -= kDoubleSize;
StoreF64(dreg, MemOperand(location, stack_offset));
}
}
}
void MacroAssembler::MultiPushV128(DoubleRegList dregs, Register scratch,
Register location) {
int16_t num_to_push = dregs.Count();
int16_t stack_offset = num_to_push * kSimd128Size;
SubS64(location, location, Operand(stack_offset));
for (int16_t i = Simd128Register::kNumRegisters - 1; i >= 0; i--) {
if ((dregs.bits() & (1 << i)) != 0) {
Simd128Register dreg = Simd128Register::from_code(i);
stack_offset -= kSimd128Size;
StoreV128(dreg, MemOperand(location, stack_offset), scratch);
}
}
}
void MacroAssembler::MultiPopDoubles(DoubleRegList dregs, Register location) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < DoubleRegister::kNumRegisters; i++) {
if ((dregs.bits() & (1 << i)) != 0) {
DoubleRegister dreg = DoubleRegister::from_code(i);
LoadF64(dreg, MemOperand(location, stack_offset));
stack_offset += kDoubleSize;
}
}
AddS64(location, location, Operand(stack_offset));
}
void MacroAssembler::MultiPopV128(DoubleRegList dregs, Register scratch,
Register location) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < Simd128Register::kNumRegisters; i++) {
if ((dregs.bits() & (1 << i)) != 0) {
Simd128Register dreg = Simd128Register::from_code(i);
LoadV128(dreg, MemOperand(location, stack_offset), scratch);
stack_offset += kSimd128Size;
}
}
AddS64(location, location, Operand(stack_offset));
}
void MacroAssembler::MultiPushF64OrV128(DoubleRegList dregs, Register scratch,
Register location) {
#if V8_ENABLE_WEBASSEMBLY
bool generating_bultins =
isolate() && isolate()->IsGeneratingEmbeddedBuiltins();
if (generating_bultins) {
Label push_doubles, simd_pushed;
Move(r1, ExternalReference::supports_wasm_simd_128_address());
LoadU8(r1, MemOperand(r1));
LoadAndTestP(r1, r1); // If > 0 then simd is available.
ble(&push_doubles, Label::kNear);
// Save vector registers, don't save double registers anymore.
MultiPushV128(dregs, scratch);
b(&simd_pushed);
bind(&push_doubles);
// Simd not supported, only save double registers.
MultiPushDoubles(dregs);
// We still need to allocate empty space on the stack as if
// Simd rgeisters were saved (see kFixedFrameSizeFromFp).
lay(sp, MemOperand(sp, -(dregs.Count() * kDoubleSize)));
bind(&simd_pushed);
} else {
if (CpuFeatures::SupportsWasmSimd128()) {
MultiPushV128(dregs, scratch);
} else {
MultiPushDoubles(dregs);
lay(sp, MemOperand(sp, -(dregs.Count() * kDoubleSize)));
}
}
#else
MultiPushDoubles(dregs);
#endif
}
void MacroAssembler::MultiPopF64OrV128(DoubleRegList dregs, Register scratch,
Register location) {
#if V8_ENABLE_WEBASSEMBLY
bool generating_bultins =
isolate() && isolate()->IsGeneratingEmbeddedBuiltins();
if (generating_bultins) {
Label pop_doubles, simd_popped;
Move(r1, ExternalReference::supports_wasm_simd_128_address());
LoadU8(r1, MemOperand(r1));
LoadAndTestP(r1, r1); // If > 0 then simd is available.
ble(&pop_doubles, Label::kNear);
// Pop vector registers, don't pop double registers anymore.
MultiPopV128(dregs, scratch);
b(&simd_popped);
bind(&pop_doubles);
// Simd not supported, only pop double registers.
lay(sp, MemOperand(sp, dregs.Count() * kDoubleSize));
MultiPopDoubles(dregs);
bind(&simd_popped);
} else {
if (CpuFeatures::SupportsWasmSimd128()) {
MultiPopV128(dregs, scratch);
} else {
lay(sp, MemOperand(sp, dregs.Count() * kDoubleSize));
MultiPopDoubles(dregs);
}
}
#else
MultiPopDoubles(dregs);
#endif
}
void MacroAssembler::PushAll(RegList registers) {
if (registers.is_empty()) return;
ASM_CODE_COMMENT(this);
// TODO(victorgomes): {stm/ldm} pushes/pops registers in the opposite order
// as expected by Maglev frame. Consider massaging Maglev to accept this
// order instead.
// Can not use MultiPush(registers, sp) due to orders
for (Register reg : registers) {
Push(reg);
}
}
void MacroAssembler::PopAll(RegList registers) {
if (registers.is_empty()) return;
ASM_CODE_COMMENT(this);
// Can not use MultiPop(registers, sp);
for (Register reg : base::Reversed(registers)) {
Pop(reg);
}
}
void MacroAssembler::PushAll(DoubleRegList registers, int stack_slot_size) {
if (registers.is_empty()) return;
ASM_CODE_COMMENT(this);
MultiPushDoubles(registers, sp);
}
void MacroAssembler::PopAll(DoubleRegList registers, int stack_slot_size) {
if (registers.is_empty()) return;
ASM_CODE_COMMENT(this);
MultiPopDoubles(registers, sp);
}
void MacroAssembler::LoadTaggedRoot(Register destination, RootIndex index) {
ASM_CODE_COMMENT(this);
if (CanBeImmediate(index)) {
mov(destination, Operand(ReadOnlyRootPtr(index), RelocInfo::Mode::NO_INFO));
return;
}
LoadRoot(destination, index);
}
void MacroAssembler::LoadRoot(Register destination, RootIndex index,
Condition) {
if (CanBeImmediate(index)) {
DecompressTagged(destination, ReadOnlyRootPtr(index));
return;
}
LoadU64(destination,
MemOperand(kRootRegister, RootRegisterOffsetForRootIndex(index)), r0);
}
void MacroAssembler::LoadTaggedField(const Register& destination,
const MemOperand& field_operand,
const Register& scratch) {
if (COMPRESS_POINTERS_BOOL) {
DecompressTagged(destination, field_operand);
} else {
LoadU64(destination, field_operand, scratch);
}
}
void MacroAssembler::LoadTaggedFieldWithoutDecompressing(
const Register& destination, const MemOperand& field_operand,
const Register& scratch) {
if (COMPRESS_POINTERS_BOOL) {
LoadU32(destination, field_operand, scratch);
} else {
LoadU64(destination, field_operand, scratch);
}
}
void MacroAssembler::SmiUntag(Register dst, const MemOperand& src) {
if (SmiValuesAre31Bits()) {
LoadS32(dst, src);
} else {
LoadU64(dst, src);
}
SmiUntag(dst);
}
void MacroAssembler::SmiUntagField(Register dst, const MemOperand& src) {
SmiUntag(dst, src);
}
void MacroAssembler::StoreTaggedField(const Register& value,
const MemOperand& dst_field_operand,
const Register& scratch) {
if (COMPRESS_POINTERS_BOOL) {
RecordComment("[ StoreTagged");
StoreU32(value, dst_field_operand);
RecordComment("]");
} else {
StoreU64(value, dst_field_operand, scratch);
}
}
void MacroAssembler::DecompressTaggedSigned(Register destination,
Register src) {
RecordComment("[ DecompressTaggedSigned");
llgfr(destination, src);
RecordComment("]");
}
void MacroAssembler::DecompressTaggedSigned(Register destination,
MemOperand field_operand) {
RecordComment("[ DecompressTaggedSigned");
llgf(destination, field_operand);
RecordComment("]");
}
void MacroAssembler::DecompressTagged(Register destination, Register source) {
RecordComment("[ DecompressTagged");
llgfr(destination, source);
agr(destination, kPtrComprCageBaseRegister);
RecordComment("]");
}
void MacroAssembler::DecompressTagged(Register destination,
MemOperand field_operand) {
RecordComment("[ DecompressTagged");
llgf(destination, field_operand);
agr(destination, kPtrComprCageBaseRegister);
RecordComment("]");
}
void MacroAssembler::DecompressTagged(const Register& destination,
Tagged_t immediate) {
ASM_CODE_COMMENT(this);
mov(destination, Operand(immediate, RelocInfo::NO_INFO));
agr(destination, kRootRegister);
}
void MacroAssembler::LoadTaggedSignedField(Register destination,
MemOperand field_operand) {
if (COMPRESS_POINTERS_BOOL) {
DecompressTaggedSigned(destination, field_operand);
} else {
LoadU64(destination, field_operand);
}
}
void MacroAssembler::RecordWriteField(Register object, int offset,
Register value, Register slot_address,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
SmiCheck smi_check) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == SmiCheck::kInline) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kSystemPointerSize.
DCHECK(IsAligned(offset, kTaggedSize));
lay(slot_address, MemOperand(object, offset - kHeapObjectTag));
if (v8_flags.slow_debug_code) {
Label ok;
AndP(r0, slot_address, Operand(kTaggedSize - 1));
beq(&ok, Label::kNear);
stop();
bind(&ok);
}
RecordWrite(object, slot_address, value, lr_status, save_fp, SmiCheck::kOmit);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (v8_flags.slow_debug_code) {
mov(value, Operand(base::bit_cast<intptr_t>(kZapValue + 4)));
mov(slot_address, Operand(base::bit_cast<intptr_t>(kZapValue + 8)));
}
}
void MacroAssembler::Zero(const MemOperand& dest) {
ASM_CODE_COMMENT(this);
Register scratch = r0;
mov(scratch, Operand::Zero());
StoreU64(scratch, dest);
}
void MacroAssembler::Zero(const MemOperand& dest1, const MemOperand& dest2) {
ASM_CODE_COMMENT(this);
Register scratch = r0;
mov(scratch, Operand::Zero());
StoreU64(scratch, dest1);
StoreU64(scratch, dest2);
}
void MacroAssembler::MaybeSaveRegisters(RegList registers) {
if (registers.is_empty()) return;
MultiPush(registers);
}
void MacroAssembler::MaybeRestoreRegisters(RegList registers) {
if (registers.is_empty()) return;
MultiPop(registers);
}
void MacroAssembler::CallEphemeronKeyBarrier(Register object,
Register slot_address,
SaveFPRegsMode fp_mode) {
DCHECK(!AreAliased(object, slot_address));
RegList registers =
WriteBarrierDescriptor::ComputeSavedRegisters(object, slot_address);
MaybeSaveRegisters(registers);
Register object_parameter = WriteBarrierDescriptor::ObjectRegister();
Register slot_address_parameter =
WriteBarrierDescriptor::SlotAddressRegister();
Push(object);
Push(slot_address);
Pop(slot_address_parameter);
Pop(object_parameter);
CallBuiltin(Builtins::EphemeronKeyBarrier(fp_mode));
MaybeRestoreRegisters(registers);
}
void MacroAssembler::CallRecordWriteStubSaveRegisters(Register object,
Register slot_address,
SaveFPRegsMode fp_mode,
StubCallMode mode) {
DCHECK(!AreAliased(object, slot_address));
RegList registers =
WriteBarrierDescriptor::ComputeSavedRegisters(object, slot_address);
MaybeSaveRegisters(registers);
Register object_parameter = WriteBarrierDescriptor::ObjectRegister();
Register slot_address_parameter =
WriteBarrierDescriptor::SlotAddressRegister();
Push(object);
Push(slot_address);
Pop(slot_address_parameter);
Pop(object_parameter);
CallRecordWriteStub(object_parameter, slot_address_parameter, fp_mode, mode);
MaybeRestoreRegisters(registers);
}
void MacroAssembler::CallRecordWriteStub(Register object, Register slot_address,
SaveFPRegsMode fp_mode,
StubCallMode mode) {
// Use CallRecordWriteStubSaveRegisters if the object and slot registers
// need to be caller saved.
DCHECK_EQ(WriteBarrierDescriptor::ObjectRegister(), object);
DCHECK_EQ(WriteBarrierDescriptor::SlotAddressRegister(), slot_address);
#if V8_ENABLE_WEBASSEMBLY
if (mode == StubCallMode::kCallWasmRuntimeStub) {
auto wasm_target =
static_cast<Address>(wasm::WasmCode::GetRecordWriteBuiltin(fp_mode));
Call(wasm_target, RelocInfo::WASM_STUB_CALL);
#else
if (false) {
#endif
} else {
CallBuiltin(Builtins::RecordWrite(fp_mode));
}
}
void MacroAssembler::CallVerifySkippedWriteBarrierStubSaveRegisters(
Register object, Register value, SaveFPRegsMode fp_mode) {
ASM_CODE_COMMENT(this);
PushCallerSaved(fp_mode, ip);
CallVerifySkippedWriteBarrierStub(object, value);
PopCallerSaved(fp_mode, ip);
}
void MacroAssembler::CallVerifySkippedWriteBarrierStub(Register object,
Register value) {
ASM_CODE_COMMENT(this);
push(value);
push(object);
pop(kCArgRegs[0]);
pop(kCArgRegs[1]);
PrepareCallCFunction(2, r0);
CallCFunction(ExternalReference::verify_skipped_write_barrier(), 2);
}
// Will clobber 4 registers: object, address, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(Register object, Register slot_address,
Register value, LinkRegisterStatus lr_status,
SaveFPRegsMode fp_mode, SmiCheck smi_check) {
DCHECK(!AreAliased(object, slot_address, value));
if (v8_flags.slow_debug_code) {
LoadTaggedField(r0, MemOperand(slot_address));
CmpS64(value, r0);
Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite);
}
if (v8_flags.disable_write_barriers) {
return;
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == SmiCheck::kInline) {
JumpIfSmi(value, &done);
}
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
// Record the actual write.
if (lr_status == kLRHasNotBeenSaved) {
push(r14);
}
CallRecordWriteStubSaveRegisters(object, slot_address, fp_mode);
if (lr_status == kLRHasNotBeenSaved) {
pop(r14);
}
if (v8_flags.slow_debug_code) mov(slot_address, Operand(kZapValue));
bind(&done);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (v8_flags.slow_debug_code) {
mov(slot_address, Operand(base::bit_cast<intptr_t>(kZapValue + 12)));
mov(value, Operand(base::bit_cast<intptr_t>(kZapValue + 16)));
}
}
void MacroAssembler::PushCommonFrame(Register marker_reg) {
ASM_CODE_COMMENT(this);
int fp_delta = 0;
if (marker_reg.is_valid()) {
Push(r14, fp, marker_reg);
fp_delta = 1;
} else {
Push(r14, fp);
fp_delta = 0;
}
la(fp, MemOperand(sp, fp_delta * kSystemPointerSize));
}
void MacroAssembler::PopCommonFrame(Register marker_reg) {
if (marker_reg.is_valid()) {
Pop(r14, fp, marker_reg);
} else {
Pop(r14, fp);
}
}
void MacroAssembler::PushStandardFrame(Register function_reg) {
int fp_delta = 0;
if (function_reg.is_valid()) {
Push(r14, fp, cp, function_reg);
fp_delta = 2;
} else {
Push(r14, fp, cp);
fp_delta = 1;
}
la(fp, MemOperand(sp, fp_delta * kSystemPointerSize));
Push(kJavaScriptCallArgCountRegister);
}
void MacroAssembler::RestoreFrameStateForTailCall() {
// if (V8_EMBEDDED_CONSTANT_POOL_BOOL) {
// LoadU64(kConstantPoolRegister,
// MemOperand(fp, StandardFrameConstants::kConstantPoolOffset));
// set_constant_pool_available(false);
// }
DCHECK(!V8_EMBEDDED_CONSTANT_POOL_BOOL);
LoadU64(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
LoadU64(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
}
void MacroAssembler::CanonicalizeNaN(const DoubleRegister dst,
const DoubleRegister src) {
// Turn potential sNaN into qNaN
if (dst != src) ldr(dst, src);
lzdr(kDoubleRegZero);
sdbr(dst, kDoubleRegZero);
}
void MacroAssembler::ConvertIntToDouble(DoubleRegister dst, Register src) {
cdfbr(dst, src);
}
void MacroAssembler::ConvertUnsignedIntToDouble(DoubleRegister dst,
Register src) {
if (CpuFeatures::IsSupported(FLOATING_POINT_EXT)) {
cdlfbr(Condition(5), Condition(0), dst, src);
} else {
// zero-extend src
llgfr(src, src);
// convert to double
cdgbr(dst, src);
}
}
void MacroAssembler::ConvertIntToFloat(DoubleRegister dst, Register src) {
cefbra(Condition(4), dst, src);
}
void MacroAssembler::ConvertUnsignedIntToFloat(DoubleRegister dst,
Register src) {
celfbr(Condition(4), Condition(0), dst, src);
}
void MacroAssembler::ConvertInt64ToFloat(DoubleRegister double_dst,
Register src) {
cegbr(double_dst, src);
}
void MacroAssembler::ConvertInt64ToDouble(DoubleRegister double_dst,
Register src) {
cdgbr(double_dst, src);
}
void MacroAssembler::ConvertUnsignedInt64ToFloat(DoubleRegister double_dst,
Register src) {
celgbr(Condition(0), Condition(0), double_dst, src);
}
void MacroAssembler::ConvertUnsignedInt64ToDouble(DoubleRegister double_dst,
Register src) {
cdlgbr(Condition(0), Condition(0), double_dst, src);
}
void MacroAssembler::ConvertFloat32ToInt64(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
}
cgebr(m, dst, double_input);
}
void MacroAssembler::ConvertDoubleToInt64(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
}
cgdbr(m, dst, double_input);
}
void MacroAssembler::ConvertDoubleToInt32(const Register dst,
const DoubleRegister double_input,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
m = Condition(4);
break;
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
}
lghi(dst, Operand::Zero());
cfdbr(m, dst, double_input);
}
void MacroAssembler::ConvertFloat32ToInt32(const Register result,
const DoubleRegister double_input,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
m = Condition(4);
break;
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
}
lghi(result, Operand::Zero());
cfebr(m, result, double_input);
}
void MacroAssembler::ConvertFloat32ToUnsignedInt32(
const Register result, const DoubleRegister double_input,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
}
lghi(result, Operand::Zero());
clfebr(m, Condition(0), result, double_input);
}
void MacroAssembler::ConvertFloat32ToUnsignedInt64(
const Register result, const DoubleRegister double_input,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
}
clgebr(m, Condition(0), result, double_input);
}
void MacroAssembler::ConvertDoubleToUnsignedInt64(
const Register dst, const DoubleRegister double_input,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
}
clgdbr(m, Condition(0), dst, double_input);
}
void MacroAssembler::ConvertDoubleToUnsignedInt32(
const Register dst, const DoubleRegister double_input,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
}
lghi(dst, Operand::Zero());
clfdbr(m, Condition(0), dst, double_input);
}
void MacroAssembler::MovDoubleToInt64(Register dst, DoubleRegister src) {
lgdr(dst, src);
}
void MacroAssembler::MovInt64ToDouble(DoubleRegister dst, Register src) {
ldgr(dst, src);
}
void MacroAssembler::StubPrologue(StackFrame::Type type, Register base,
int prologue_offset) {
{
ConstantPoolUnavailableScope constant_pool_unavailable(this);
mov(r1, Operand(StackFrame::TypeToMarker(type)));
PushCommonFrame(r1);
}
}
void MacroAssembler::Prologue(Register base, int prologue_offset) {
DCHECK(base != no_reg);
PushStandardFrame(r3);
}
void MacroAssembler::DropArguments(Register count) {
ShiftLeftU64(ip, count, Operand(kSystemPointerSizeLog2));
lay(sp, MemOperand(sp, ip));
}
void MacroAssembler::DropArgumentsAndPushNewReceiver(Register argc,
Register receiver) {
DCHECK(!AreAliased(argc, receiver));
DropArguments(argc);
push(receiver);
}
void MacroAssembler::EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg) {
ASM_CODE_COMMENT(this);
// We create a stack frame with:
// Return Addr <-- old sp
// Old FP <-- new fp
// CP
// type
// CodeObject <-- new sp
Register scratch = no_reg;
if (!StackFrame::IsJavaScript(type)) {
scratch = ip;
mov(scratch, Operand(StackFrame::TypeToMarker(type)));
}
PushCommonFrame(scratch);
#if V8_ENABLE_WEBASSEMBLY
if (type == StackFrame::WASM) Push(kWasmImplicitArgRegister);
#endif // V8_ENABLE_WEBASSEMBLY
}
int MacroAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) {
ASM_CODE_COMMENT(this);
// Drop the execution stack down to the frame pointer and restore
// the caller frame pointer, return address and constant pool pointer.
LoadU64(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
if (is_int20(StandardFrameConstants::kCallerSPOffset + stack_adjustment)) {
lay(r1, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
stack_adjustment));
} else {
AddS64(r1, fp,
Operand(StandardFrameConstants::kCallerSPOffset + stack_adjustment));
}
LoadU64(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
mov(sp, r1);
int frame_ends = pc_offset();
return frame_ends;
}
// ExitFrame layout (probably wrongish.. needs updating)
//
// SP -> previousSP
// LK reserved
// sp_on_exit (for debug?)
// oldSP->prev SP
// LK
// <parameters on stack>
// Prior to calling EnterExitFrame, we've got a bunch of parameters
// on the stack that we need to wrap a real frame around.. so first
// we reserve a slot for LK and push the previous SP which is captured
// in the fp register (r11)
// Then - we buy a new frame
// r14
// oldFP <- newFP
// SP
// Floats
// gaps
// Args
// ABIRes <- newSP
void MacroAssembler::EnterExitFrame(Register scratch, int stack_space,
StackFrame::Type frame_type) {
DCHECK(frame_type == StackFrame::EXIT ||
frame_type == StackFrame::BUILTIN_EXIT ||
frame_type == StackFrame::API_ACCESSOR_EXIT ||
frame_type == StackFrame::API_CALLBACK_EXIT);
// Set up the frame structure on the stack.
DCHECK_EQ(2 * kSystemPointerSize, ExitFrameConstants::kCallerSPDisplacement);
DCHECK_EQ(1 * kSystemPointerSize, ExitFrameConstants::kCallerPCOffset);
DCHECK_EQ(0 * kSystemPointerSize, ExitFrameConstants::kCallerFPOffset);
using ER = ExternalReference;
// This is an opportunity to build a frame to wrap
// all of the pushes that have happened inside of V8
// since we were called from C code
mov(r1, Operand(StackFrame::TypeToMarker(frame_type)));
PushCommonFrame(r1);
// Reserve room for saved entry sp.
lay(sp, MemOperand(fp, -ExitFrameConstants::kFixedFrameSizeFromFp));
if (v8_flags.debug_code) {
StoreU64(MemOperand(fp, ExitFrameConstants::kSPOffset), Operand::Zero(),
r1);
}
// Save the frame pointer and the context in top.
ER c_entry_fp_address =
ER::Create(IsolateAddressId::kCEntryFPAddress, isolate());
StoreU64(fp, ExternalReferenceAsOperand(c_entry_fp_address, no_reg));
ER context_address = ER::Create(IsolateAddressId::kContextAddress, isolate());
StoreU64(cp, ExternalReferenceAsOperand(context_address, no_reg));
lay(sp, MemOperand(sp, -(stack_space + 1) * kSystemPointerSize));
// Allocate and align the frame preparing for calling the runtime
// function.
const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
if (frame_alignment > 0) {
DCHECK_EQ(frame_alignment, 8);
ClearRightImm(sp, sp, Operand(3)); // equivalent to &= -8
}
lay(sp, MemOperand(sp, -kNumRequiredStackFrameSlots * kSystemPointerSize));
StoreU64(MemOperand(sp), Operand::Zero(), r0);
// Set the exit frame sp value to point just before the return address
// location.
lay(r1, MemOperand(sp, kStackFrameSPSlot * kSystemPointerSize));
StoreU64(r1, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
int MacroAssembler::ActivationFrameAlignment() {
#if !defined(USE_SIMULATOR)
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one S390
// platform for another S390 platform with a different alignment.
return base::OS::ActivationFrameAlignment();
#else // Simulated
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return v8_flags.sim_stack_alignment;
#endif
}
void MacroAssembler::LeaveExitFrame(Register scratch) {
using ER = ExternalReference;
// Restore current context from top and clear it in debug mode.
ER context_address = ER::Create(IsolateAddressId::kContextAddress, isolate());
LoadU64(cp, ExternalReferenceAsOperand(context_address, no_reg));
#ifdef DEBUG
mov(scratch, Operand(Context::kNoContext));
StoreU64(scratch, ExternalReferenceAsOperand(context_address, no_reg));
#endif
// Clear the top frame.
ER c_entry_fp_address =
ER::Create(IsolateAddressId::kCEntryFPAddress, isolate());
mov(scratch, Operand::Zero());
StoreU64(scratch, ExternalReferenceAsOperand(c_entry_fp_address, no_reg));
// Tear down the exit frame, pop the arguments, and return.
LeaveFrame(StackFrame::EXIT);
}
void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
Move(dst, d0);
}
void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
Move(dst, d0);
}
MemOperand MacroAssembler::StackLimitAsMemOperand(StackLimitKind kind) {
DCHECK(root_array_available());
Isolate* isolate = this->isolate();
ExternalReference limit =
kind == StackLimitKind::kRealStackLimit
? ExternalReference::address_of_real_jslimit(isolate)
: ExternalReference::address_of_jslimit(isolate);
DCHECK(MacroAssembler::IsAddressableThroughRootRegister(isolate, limit));
intptr_t offset =
MacroAssembler::RootRegisterOffsetForExternalReference(isolate, limit);
CHECK(is_int32(offset));
return MemOperand(kRootRegister, offset);
}
void MacroAssembler::StackOverflowCheck(Register num_args, Register scratch,
Label* stack_overflow) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
LoadU64(scratch, StackLimitAsMemOperand(StackLimitKind::kRealStackLimit));
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
SubS64(scratch, sp, scratch);
// Check if the arguments will overflow the stack.
ShiftLeftU64(r0, num_args, Operand(kSystemPointerSizeLog2));
CmpS64(scratch, r0);
ble(stack_overflow); // Signed comparison.
}
void MacroAssembler::InvokePrologue(Register expected_parameter_count,
Register actual_parameter_count,
InvokeType type) {
Label regular_invoke;
// r2: actual arguments count
// r3: function (passed through to callee)
// r4: expected arguments count
DCHECK_EQ(actual_parameter_count, r2);
DCHECK_EQ(expected_parameter_count, r4);
// If overapplication or if the actual argument count is equal to the
// formal parameter count, no need to push extra undefined values.
SubS64(expected_parameter_count, expected_parameter_count,
actual_parameter_count);
ble(&regular_invoke);
Label stack_overflow;
Register scratch = r6;
StackOverflowCheck(expected_parameter_count, scratch, &stack_overflow);
// Underapplication. Move the arguments already in the stack, including the
// receiver and the return address.
{
Label copy, check;
Register num = r7, src = r8, dest = ip; // r7 and r8 are context and root.
mov(src, sp);
// Update stack pointer.
ShiftLeftU64(scratch, expected_parameter_count,
Operand(kSystemPointerSizeLog2));
SubS64(sp, sp, scratch);
mov(dest, sp);
ltgr(num, actual_parameter_count);
b(&check);
bind(&copy);
LoadU64(r0, MemOperand(src));
lay(src, MemOperand(src, kSystemPointerSize));
StoreU64(r0, MemOperand(dest));
lay(dest, MemOperand(dest, kSystemPointerSize));
SubS64(num, num, Operand(1));
bind(&check);
b(gt, &copy);
}
// Fill remaining expected arguments with undefined values.
LoadRoot(scratch, RootIndex::kUndefinedValue);
{
Label loop;
bind(&loop);
StoreU64(scratch, MemOperand(ip));
lay(ip, MemOperand(ip, kSystemPointerSize));
SubS64(expected_parameter_count, expected_parameter_count, Operand(1));
bgt(&loop);
}
b(&regular_invoke);
bind(&stack_overflow);
{
FrameScope frame(
this, has_frame() ? StackFrame::NO_FRAME_TYPE : StackFrame::INTERNAL);
CallRuntime(Runtime::kThrowStackOverflow);
bkpt(0);
}
bind(&regular_invoke);
}
void MacroAssembler::CheckDebugHook(Register fun, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count) {
Label skip_hook;
ExternalReference debug_hook_active =
ExternalReference::debug_hook_on_function_call_address(isolate());
Move(r6, debug_hook_active);
tm(MemOperand(r6), Operand(0xFF));
beq(&skip_hook);
{
// Load receiver to pass it later to DebugOnFunctionCall hook.
LoadReceiver(r6);
FrameScope frame(
this, has_frame() ? StackFrame::NO_FRAME_TYPE : StackFrame::INTERNAL);
SmiTag(expected_parameter_count);
Push(expected_parameter_count);
SmiTag(actual_parameter_count);
Push(actual_parameter_count);
if (new_target.is_valid()) {
Push(new_target);
}
Push(fun, fun, r6);
CallRuntime(Runtime::kDebugOnFunctionCall);
Pop(fun);
if (new_target.is_valid()) {
Pop(new_target);
}
Pop(actual_parameter_count);
SmiUntag(actual_parameter_count);
Pop(expected_parameter_count);
SmiUntag(expected_parameter_count);
}
bind(&skip_hook);
}
void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
Register expected_parameter_count,
Register actual_parameter_count,
InvokeType type) {
// You can't call a function without a valid frame.
DCHECK_IMPLIES(type == InvokeType::kCall, has_frame());
DCHECK_EQ(function, r3);
DCHECK_IMPLIES(new_target.is_valid(), new_target == r5);
// On function call, call into the debugger if necessary.
CheckDebugHook(function, new_target, expected_parameter_count,
actual_parameter_count);
// Clear the new.target register if not given.
if (!new_target.is_valid()) {
LoadRoot(r5, RootIndex::kUndefinedValue);
}
InvokePrologue(expected_parameter_count, actual_parameter_count, type);
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
constexpr int unused_argument_count = 0;
switch (type) {
case InvokeType::kCall:
CallJSFunction(function, unused_argument_count);
break;
case InvokeType::kJump:
JumpJSFunction(function);
break;
}
}
void MacroAssembler::InvokeFunctionWithNewTarget(
Register fun, Register new_target, Register actual_parameter_count,
InvokeType type) {
// You can't call a function without a valid frame.
DCHECK_IMPLIES(type == InvokeType::kCall, has_frame());
// Contract with called JS functions requires that function is passed in r3.
DCHECK_EQ(fun, r3);
Register expected_reg = r4;
Register temp_reg = r6;
LoadTaggedField(cp, FieldMemOperand(fun, JSFunction::kContextOffset));
LoadTaggedField(temp_reg,
FieldMemOperand(fun, JSFunction::kSharedFunctionInfoOffset));
LoadU16(expected_reg,
FieldMemOperand(temp_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
InvokeFunctionCode(fun, new_target, expected_reg, actual_parameter_count,
type);
}
void MacroAssembler::InvokeFunction(Register function,
Register expected_parameter_count,
Register actual_parameter_count,
InvokeType type) {
// You can't call a function without a valid frame.
DCHECK_IMPLIES(type == InvokeType::kCall, has_frame());
// Contract with called JS functions requires that function is passed in r3.
DCHECK_EQ(function, r3);
// Get the function and setup the context.
LoadTaggedField(cp, FieldMemOperand(function, JSFunction::kContextOffset));
InvokeFunctionCode(r3, no_reg, expected_parameter_count,
actual_parameter_count, type);
}
void MacroAssembler::PushStackHandler() {
// Adjust this code if not the case.
static_assert(StackHandlerConstants::kSize == 2 * kSystemPointerSize);
static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize);
// Link the current handler as the next handler.
Move(r7,
ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()));
// Buy the full stack frame for 5 slots.
lay(sp, MemOperand(sp, -StackHandlerConstants::kSize));
// Store padding.
lghi(r0, Operand::Zero());
StoreU64(r0, MemOperand(sp)); // Padding.
// Copy the old handler into the next handler slot.
MoveChar(MemOperand(sp, StackHandlerConstants::kNextOffset), MemOperand(r7),
Operand(kSystemPointerSize));
// Set this new handler as the current one.
StoreU64(sp, MemOperand(r7));
}
void MacroAssembler::PopStackHandler() {
static_assert(StackHandlerConstants::kSize == 2 * kSystemPointerSize);
static_assert(StackHandlerConstants::kNextOffset == 0);
// Pop the Next Handler into r3 and store it into Handler Address reference.
Pop(r3);
Move(ip,
ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()));
StoreU64(r3, MemOperand(ip));
Drop(1); // Drop padding.
}
void MacroAssembler::IsObjectType(Register object, Register scratch1,
Register scratch2, InstanceType type) {
ASM_CODE_COMMENT(this);
CompareObjectType(object, scratch1, scratch2, type);
}
void MacroAssembler::CompareObjectTypeRange(Register object, Register map,
Register type_reg, Register scratch,
InstanceType lower_limit,
InstanceType upper_limit) {
ASM_CODE_COMMENT(this);
LoadMap(map, object);
CompareInstanceTypeRange(map, type_reg, scratch, lower_limit, upper_limit);
}
void MacroAssembler::CompareRange(Register value, Register scratch,
unsigned lower_limit, unsigned higher_limit) {
ASM_CODE_COMMENT(this);
DCHECK_LT(lower_limit, higher_limit);
if (lower_limit != 0) {
mov(scratch, value);
slgfi(scratch, Operand(lower_limit));
CmpU64(scratch, Operand(higher_limit - lower_limit));
} else {
CmpU64(value, Operand(higher_limit));
}
}
void MacroAssembler::CompareInstanceTypeRange(Register map, Register type_reg,
Register scratch,
InstanceType lower_limit,
InstanceType higher_limit) {
DCHECK_LT(lower_limit, higher_limit);
LoadU16(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
CompareRange(type_reg, scratch, lower_limit, higher_limit);
}
void MacroAssembler::CompareRoot(Register obj, RootIndex index) {
if (!base::IsInRange(index, RootIndex::kFirstStrongOrReadOnlyRoot,
RootIndex::kLastStrongOrReadOnlyRoot)) {
// Some smi roots contain system pointer size values like stack limits.
LoadRoot(r0, index);
CmpU64(obj, r0);
return;
}
return CompareTaggedRoot(obj, index);
}
void MacroAssembler::CompareTaggedRoot(Register obj, RootIndex index) {
if (CanBeImmediate(index)) {
CompareTagged(obj, Operand(ReadOnlyRootPtr(index)));
return;
}
int32_t offset = RootRegisterOffsetForRootIndex(index);
#ifdef V8_TARGET_BIG_ENDIAN
offset += (COMPRESS_POINTERS_BOOL ? kTaggedSize : 0);
#endif
CompareTagged(obj, MemOperand(kRootRegister, offset));
}
void MacroAssembler::JumpIfIsInRange(Register value, Register scratch,
unsigned lower_limit,
unsigned higher_limit,
Label* on_in_range) {
CompareRange(value, scratch, lower_limit, higher_limit);
ble(on_in_range);
}
void MacroAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone,
Register result,
DoubleRegister double_input,
StubCallMode stub_mode) {
Label done;
TryInlineTruncateDoubleToI(result, double_input, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(r14);
// Put input on stack.
lay(sp, MemOperand(sp, -kDoubleSize));
StoreF64(double_input, MemOperand(sp));
#if V8_ENABLE_WEBASSEMBLY
if (stub_mode == StubCallMode::kCallWasmRuntimeStub) {
Call(static_cast<Address>(Builtin::kDoubleToI), RelocInfo::WASM_STUB_CALL);
#else
// For balance.
if (false) {
#endif // V8_ENABLE_WEBASSEMBLY
} else {
CallBuiltin(Builtin::kDoubleToI);
}
LoadU64(result, MemOperand(sp, 0));
la(sp, MemOperand(sp, kDoubleSize));
pop(r14);
bind(&done);
}
void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
DoubleRegister double_input,
Label* done) {
ConvertDoubleToInt64(result, double_input);
// Test for overflow
TestIfInt32(result);
beq(done);
}
namespace {
#ifndef V8_ENABLE_LEAPTIERING
void TailCallOptimizedCodeSlot(MacroAssembler* masm,
Register optimized_code_entry,
Register scratch) {
// ----------- S t a t e -------------
// -- r2 : actual argument count
// -- r5 : new target (preserved for callee if needed, and caller)
// -- r3 : target function (preserved for callee if needed, and caller)
// -----------------------------------
DCHECK(!AreAliased(r3, r5, optimized_code_entry, scratch));
Register closure = r3;
Label heal_optimized_code_slot;
// If the optimized code is cleared, go to runtime to update the optimization
// marker field.
__ LoadWeakValue(optimized_code_entry, optimized_code_entry,
&heal_optimized_code_slot);
// The entry references a CodeWrapper object. Unwrap it now.
__ LoadTaggedField(
optimized_code_entry,
FieldMemOperand(optimized_code_entry, CodeWrapper::kCodeOffset));
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
{
__ TestCodeIsMarkedForDeoptimization(optimized_code_entry, scratch);
__ bne(&heal_optimized_code_slot);
}
// Optimized code is good, get it into the closure and link the closure
// into the optimized functions list, then tail call the optimized code.
__ ReplaceClosureCodeWithOptimizedCode(optimized_code_entry, closure, scratch,
r7);
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
__ LoadCodeInstructionStart(r4, optimized_code_entry);
__ Jump(r4);
// Optimized code slot contains deoptimized code or code is cleared and
// optimized code marker isn't updated. Evict the code, update the marker
// and re-enter the closure's code.
__ bind(&heal_optimized_code_slot);
__ GenerateTailCallToReturnedCode(Runtime::kHealOptimizedCodeSlot);
}
#endif // V8_ENABLE_LEAPTIERING
} // namespace
#ifdef V8_ENABLE_DEBUG_CODE
void MacroAssembler::AssertFeedbackCell(Register object, Register scratch) {
if (v8_flags.debug_code) {
IsObjectType(object, scratch, scratch, FEEDBACK_CELL_TYPE);
Assert(eq, AbortReason::kExpectedFeedbackCell);
}
}
void MacroAssembler::AssertFeedbackVector(Register object, Register scratch) {
if (v8_flags.debug_code) {
IsObjectType(object, scratch, scratch, FEEDBACK_VECTOR_TYPE);
Assert(eq, AbortReason::kExpectedFeedbackVector);
}
}
void MacroAssembler::AssertFeedbackVector(Register object) {
if (v8_flags.debug_code) {
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
CompareObjectType(object, scratch, scratch, FEEDBACK_VECTOR_TYPE);
Assert(eq, AbortReason::kExpectedFeedbackVector);
}
}
#endif // V8_ENABLE_DEBUG_CODE
void MacroAssembler::GenerateTailCallToReturnedCode(
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- r2 : actual argument count
// -- r3 : target function (preserved for callee)
// -- r5 : new target (preserved for callee)
// -----------------------------------
{
FrameAndConstantPoolScope scope(this, StackFrame::INTERNAL);
// Push a copy of the target function, the new target and the actual
// argument count.
// Push function as parameter to the runtime call.
SmiTag(kJavaScriptCallArgCountRegister);
Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister);
CallRuntime(function_id, 1);
#ifndef V8_ENABLE_LEAPTIERING
mov(r4, r2);
#endif
// Restore target function, new target and actual argument count.
Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
kJavaScriptCallArgCountRegister);
SmiUntag(kJavaScriptCallArgCountRegister);
}
static_assert(kJavaScriptCallCodeStartRegister == r4, "ABI mismatch");
#ifdef V8_ENABLE_LEAPTIERING
JumpJSFunction(kJavaScriptCallTargetRegister);
#else
JumpCodeObject(r4);
#endif
}
#ifndef V8_ENABLE_LEAPTIERING
// Optimized code is good, get it into the closure and link the closure
// into the optimized functions list, then tail call the optimized code.
void MacroAssembler::ReplaceClosureCodeWithOptimizedCode(
Register optimized_code, Register closure, Register scratch1,
Register slot_address) {
DCHECK(!AreAliased(optimized_code, closure, scratch1, slot_address));
DCHECK_EQ(closure, kJSFunctionRegister);
DCHECK(!AreAliased(optimized_code, closure));
// Store code entry in the closure.
StoreTaggedField(optimized_code,
FieldMemOperand(closure, JSFunction::kCodeOffset), r0);
// Write barrier clobbers scratch1 below.
Register value = scratch1;
mov(value, optimized_code);
RecordWriteField(closure, JSFunction::kCodeOffset, value, slot_address,
kLRHasNotBeenSaved, SaveFPRegsMode::kIgnore,
SmiCheck::kOmit);
}
// Read off the flags in the feedback vector and check if there
// is optimized code or a tiering state that needs to be processed.
Condition MacroAssembler::LoadFeedbackVectorFlagsAndCheckIfNeedsProcessing(
Register flags, Register feedback_vector, CodeKind current_code_kind) {
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(flags, feedback_vector));
DCHECK(CodeKindCanTierUp(current_code_kind));
LoadU16(flags,
FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset));
uint32_t kFlagsMask = FeedbackVector::kFlagsTieringStateIsAnyRequested |
FeedbackVector::kFlagsMaybeHasTurbofanCode |
FeedbackVector::kFlagsLogNextExecution;
if (current_code_kind != CodeKind::MAGLEV) {
kFlagsMask |= FeedbackVector::kFlagsMaybeHasMaglevCode;
}
CHECK(is_uint16(kFlagsMask));
tmll(flags, Operand(kFlagsMask));
return Condition(7);
}
// Read off the flags in the feedback vector and check if there
// is optimized code or a tiering state that needs to be processed.
void MacroAssembler::LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing(
Register flags, Register feedback_vector, CodeKind current_code_kind,
Label* flags_need_processing) {
ASM_CODE_COMMENT(this);
b(LoadFeedbackVectorFlagsAndCheckIfNeedsProcessing(flags, feedback_vector,
current_code_kind),
flags_need_processing);
}
void MacroAssembler::OptimizeCodeOrTailCallOptimizedCodeSlot(
Register flags, Register feedback_vector) {
DCHECK(!AreAliased(flags, feedback_vector));
Label maybe_has_optimized_code, maybe_needs_logging;
// Check if optimized code is available
TestBitMask(flags, FeedbackVector::kFlagsTieringStateIsAnyRequested, r0);
beq(&maybe_needs_logging);
GenerateTailCallToReturnedCode(Runtime::kCompileOptimized);
bind(&maybe_needs_logging);
TestBitMask(flags, FeedbackVector::LogNextExecutionBit::kMask, r0);
beq(&maybe_has_optimized_code);
GenerateTailCallToReturnedCode(Runtime::kFunctionLogNextExecution);
bind(&maybe_has_optimized_code);
Register optimized_code_entry = flags;
LoadTaggedField(optimized_code_entry,
FieldMemOperand(feedback_vector,
FeedbackVector::kMaybeOptimizedCodeOffset));
TailCallOptimizedCodeSlot(this, optimized_code_entry, r1);
}
#endif // !V8_ENABLE_LEAPTIERING
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments) {
// All parameters are on the stack. r2 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r2, Operand(num_arguments));
Move(r3, ExternalReference::Create(f));
bool switch_to_central_stack = options().is_wasm;
CallBuiltin(Builtins::RuntimeCEntry(f->result_size, switch_to_central_stack));
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
DCHECK_EQ(1, function->result_size);
if (function->nargs >= 0) {
mov(r2, Operand(function->nargs));
}
JumpToExternalReference(ExternalReference::Create(fid));
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame) {
Move(r3, builtin);
TailCallBuiltin(Builtins::CEntry(1, ArgvMode::kStack, builtin_exit_frame));
}
void MacroAssembler::LoadWeakValue(Register out, Register in,
Label* target_if_cleared) {
CmpS32(in, Operand(kClearedWeakHeapObjectLower32));
beq(target_if_cleared);
AndP(out, in, Operand(~kWeakHeapObjectMask));
}
void MacroAssembler::EmitIncrementCounter(StatsCounter* counter, int value,
Register scratch1,
Register scratch2) {
DCHECK(value > 0 && is_int8(value));
if (v8_flags.native_code_counters && counter->Enabled()) {
Move(scratch2, ExternalReference::Create(counter));
// @TODO(john.yan): can be optimized by asi()
LoadS32(scratch1, MemOperand(scratch2));
AddS64(scratch1, Operand(value));
StoreU32(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::EmitDecrementCounter(StatsCounter* counter, int value,
Register scratch1,
Register scratch2) {
DCHECK(value > 0 && is_int8(value));
if (v8_flags.native_code_counters && counter->Enabled()) {
Move(scratch2, ExternalReference::Create(counter));
// @TODO(john.yan): can be optimized by asi()
LoadS32(scratch1, MemOperand(scratch2));
AddS64(scratch1, Operand(-value));
StoreU32(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::Check(Condition cond, AbortReason reason, CRegister cr) {
Label L;
b(to_condition(cond), &L);
Abort(reason);
// will not return here
bind(&L);
}
void MacroAssembler::Abort(AbortReason reason) {
ASM_CODE_COMMENT(this);
if (v8_flags.code_comments) {
RecordComment("Abort message:", SourceLocation{});
RecordComment(GetAbortReason(reason), SourceLocation{});
}
// Without debug code, save the code size and just trap.
if (!v8_flags.debug_code || v8_flags.trap_on_abort) {
stop();
return;
}
if (should_abort_hard()) {
// We don't care if we constructed a frame. Just pretend we did.
FrameScope assume_frame(this, StackFrame::NO_FRAME_TYPE);
lgfi(r2, Operand(static_cast<int>(reason)));
PrepareCallCFunction(1, 0, r3);
#if V8_OS_ZOS
CallCFunction(ExternalReference::abort_with_reason(), 1, 0);
#else
Move(r3, ExternalReference::abort_with_reason());
// Use Call directly to avoid any unneeded overhead. The function won't
// return anyway.
Call(r3);
#endif
return;
}
LoadSmiLiteral(r3, Smi::FromInt(static_cast<int>(reason)));
{
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NO_FRAME_TYPE);
if (root_array_available()) {
// Generate an indirect call via builtins entry table here in order to
// ensure that the interpreter_entry_return_pc_offset is the same for
// InterpreterEntryTrampoline and InterpreterEntryTrampolineForProfiling
// when v8_flags.debug_code is enabled.
LoadEntryFromBuiltin(Builtin::kAbort, ip);
Call(ip);
} else {
CallBuiltin(Builtin::kAbort);
}
}
// will not return here
}
void MacroAssembler::LoadCompressedMap(Register destination, Register object) {
CHECK(COMPRESS_POINTERS_BOOL);
LoadU32(destination, FieldMemOperand(object, HeapObject::kMapOffset));
}
void MacroAssembler::LoadMap(Register destination, Register object) {
LoadTaggedField(destination, FieldMemOperand(object, HeapObject::kMapOffset));
}
void MacroAssembler::LoadFeedbackVector(Register dst, Register closure,
Register scratch, Label* fbv_undef) {
Label done;
// Load the feedback vector from the closure.
LoadTaggedField(dst,
FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
LoadTaggedField(dst, FieldMemOperand(dst, FeedbackCell::kValueOffset));
// Check if feedback vector is valid.
IsObjectType(dst, scratch, scratch, FEEDBACK_VECTOR_TYPE);
b(eq, &done);
// Not valid, load undefined.
LoadRoot(dst, RootIndex::kUndefinedValue);
b(fbv_undef);
bind(&done);
}
void MacroAssembler::LoadInterpreterDataBytecodeArray(
Register destination, Register interpreter_data) {
LoadTaggedField(destination,
FieldMemOperand(interpreter_data,
offsetof(InterpreterData, bytecode_array_)));
}
void MacroAssembler::LoadInterpreterDataInterpreterTrampoline(
Register destination, Register interpreter_data) {
LoadTaggedField(
destination,
FieldMemOperand(interpreter_data,
offsetof(InterpreterData, interpreter_trampoline_)));
}
void MacroAssembler::LoadNativeContextSlot(Register dst, int index) {
LoadMap(dst, cp);
LoadTaggedField(
dst, FieldMemOperand(
dst, Map::kConstructorOrBackPointerOrNativeContextOffset));
LoadTaggedField(dst, MemOperand(dst, Context::SlotOffset(index)));
}
#ifdef V8_ENABLE_DEBUG_CODE
void MacroAssembler::Assert(Condition cond, AbortReason reason, CRegister cr) {
if (v8_flags.debug_code) Check(cond, reason, cr);
}
void MacroAssembler::AssertUnreachable(AbortReason reason) {
if (v8_flags.debug_code) Abort(reason);
}
void MacroAssembler::AssertZeroExtended(Register int32_register) {
if (!v8_flags.slow_debug_code) return;
ASM_CODE_COMMENT(this);
mov(r0, Operand(kMaxUInt32));
CmpS64(int32_register, r0);
Check(le, AbortReason::k32BitValueInRegisterIsNotZeroExtended);
}
void MacroAssembler::AssertMap(Register object) {
if (!v8_flags.debug_code) return;
ASM_CODE_COMMENT(this);
TestIfSmi(object);
Check(ne, AbortReason::kOperandIsNotAMap);
Push(object);
LoadMap(object, object);
CompareInstanceType(object, object, MAP_TYPE);
Pop(object);
Check(eq, AbortReason::kOperandIsNotAMap);
}
void MacroAssembler::AssertNotSmi(Register object) {
if (v8_flags.debug_code) {
static_assert(kSmiTag == 0);
TestIfSmi(object);
Check(ne, AbortReason::kOperandIsASmi, cr0);
}
}
void MacroAssembler::AssertSmi(Register object) {
if (v8_flags.debug_code) {
static_assert(kSmiTag == 0);
TestIfSmi(object);
Check(eq, AbortReason::kOperandIsNotASmi, cr0);
}
}
void MacroAssembler::AssertConstructor(Register object, Register scratch) {
if (v8_flags.debug_code) {
static_assert(kSmiTag == 0);
TestIfSmi(object);
Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor);
LoadMap(scratch, object);
tm(FieldMemOperand(scratch, Map::kBitFieldOffset),
Operand(Map::Bits1::IsConstructorBit::kMask));
Check(ne, AbortReason::kOperandIsNotAConstructor);
}
}
void MacroAssembler::AssertFunction(Register object) {
if (v8_flags.debug_code) {
static_assert(kSmiTag == 0);
TestIfSmi(object);
Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, cr0);
push(object);
LoadMap(object, object);
CompareInstanceTypeRange(object, object, object, FIRST_JS_FUNCTION_TYPE,
LAST_JS_FUNCTION_TYPE);
pop(object);
Check(le, AbortReason::kOperandIsNotAFunction);
}
}
void MacroAssembler::AssertCallableFunction(Register object) {
if (!v8_flags.debug_code) return;
ASM_CODE_COMMENT(this);
static_assert(kSmiTag == 0);
TestIfSmi(object);
Check(ne, AbortReason::kOperandIsASmiAndNotAFunction);
push(object);
LoadMap(object, object);
CompareInstanceTypeRange(object, object, object,
FIRST_CALLABLE_JS_FUNCTION_TYPE,
LAST_CALLABLE_JS_FUNCTION_TYPE);
pop(object);
Check(le, AbortReason::kOperandIsNotACallableFunction);
}
void MacroAssembler::AssertBoundFunction(Register object) {
if (v8_flags.debug_code) {
static_assert(kSmiTag == 0);
TestIfSmi(object);
Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, cr0);
push(object);
IsObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE);
pop(object);
Check(eq, AbortReason::kOperandIsNotABoundFunction);
}
}
void MacroAssembler::AssertGeneratorObject(Register object) {
if (!v8_flags.debug_code) return;
TestIfSmi(object);
Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, cr0);
// Load map
Register map = object;
push(object);
LoadMap(map, object);
// Check if JSGeneratorObject
Register scratch = object;
CompareInstanceTypeRange(map, scratch, scratch,
FIRST_JS_GENERATOR_OBJECT_TYPE,
LAST_JS_GENERATOR_OBJECT_TYPE);
// Restore generator object to register and perform assertion
pop(object);
Check(le, AbortReason::kOperandIsNotAGeneratorObject);
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
Register scratch) {
if (v8_flags.debug_code) {
Label done_checking;
AssertNotSmi(object);
CompareRoot(object, RootIndex::kUndefinedValue);
beq(&done_checking, Label::kNear);
LoadMap(scratch, object);
CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE);
Assert(eq, AbortReason::kExpectedUndefinedOrCell);
bind(&done_checking);
}
}
void MacroAssembler::AssertJSAny(Register object, Register map_tmp,
Register tmp, AbortReason abort_reason) {
if (!v8_flags.debug_code) return;
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(object, map_tmp, tmp));
Label ok;
JumpIfSmi(object, &ok);
LoadMap(map_tmp, object);
CompareInstanceType(map_tmp, tmp, LAST_NAME_TYPE);
ble(&ok);
CompareInstanceType(map_tmp, tmp, FIRST_JS_RECEIVER_TYPE);
bge(&ok);
CompareRoot(map_tmp, RootIndex::kHeapNumberMap);
beq(&ok);
CompareRoot(map_tmp, RootIndex::kBigIntMap);
beq(&ok);
CompareRoot(object, RootIndex::kUndefinedValue);
beq(&ok);
CompareRoot(object, RootIndex::kTrueValue);
beq(&ok);
CompareRoot(object, RootIndex::kFalseValue);
beq(&ok);
CompareRoot(object, RootIndex::kNullValue);
beq(&ok);
Abort(abort_reason);
bind(&ok);
}
#endif // V8_ENABLE_DEBUG_CODE
int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments) {
int stack_passed_words = 0;
if (num_double_arguments > DoubleRegister::kNumRegisters) {
stack_passed_words +=
2 * (num_double_arguments - DoubleRegister::kNumRegisters);
}
// Up to five simple arguments are passed in registers r2..r6
if (num_reg_arguments > kRegisterPassedArguments) {
stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
}
return stack_passed_words;
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
int num_double_arguments,
Register scratch) {
int frame_alignment = ActivationFrameAlignment();
int stack_passed_arguments =
CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
int stack_space = kNumRequiredStackFrameSlots;
if (frame_alignment > kSystemPointerSize) {
// Make stack end at alignment and make room for stack arguments
// -- preserving original value of sp.
mov(scratch, sp);
lay(sp, MemOperand(sp, -(stack_passed_arguments + 1) * kSystemPointerSize));
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
ClearRightImm(sp, sp,
Operand(base::bits::WhichPowerOfTwo(frame_alignment)));
StoreU64(scratch,
MemOperand(sp, (stack_passed_arguments)*kSystemPointerSize));
} else {
stack_space += stack_passed_arguments;
}
lay(sp, MemOperand(sp, (-stack_space) * kSystemPointerSize));
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
Register scratch) {
PrepareCallCFunction(num_reg_arguments, 0, scratch);
}
void MacroAssembler::MovToFloatParameter(DoubleRegister src) { Move(d0, src); }
void MacroAssembler::MovToFloatResult(DoubleRegister src) { Move(d0, src); }
void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
DoubleRegister src2) {
if (src2 == d0) {
DCHECK(src1 != d2);
Move(d2, src2);
Move(d0, src1);
} else {
Move(d0, src1);
Move(d2, src2);
}
}
int MacroAssembler::CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments,
SetIsolateDataSlots set_isolate_data_slots,
bool has_function_descriptor,
Label* return_label) {
Move(ip, function);
return CallCFunction(ip, num_reg_arguments, num_double_arguments,
set_isolate_data_slots, has_function_descriptor,
return_label);
}
int MacroAssembler::CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments,
SetIsolateDataSlots set_isolate_data_slots,
bool has_function_descriptor,
Label* return_label) {
ASM_CODE_COMMENT(this);
DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters);
DCHECK(has_frame());
#if V8_OS_ZOS
// Shuffle input arguments
mov(r1, r2);
mov(r2, r3);
mov(r3, r4);
// XPLINK treats r7 as voliatile return register, but r14 as preserved
// Since Linux is the other way around, perserve r7 value in r14 across
// the call.
mov(r14, r7);
// XPLINK linkage requires args in r5,r6,r7,r8,r9 to be passed on the stack.
// However, for DirectAPI C calls, there may not be stack slots
// for these 4th and 5th parameters if num_reg_arguments are less
// than 3. In that case, we need to still preserve r5/r6 into
// register save area, as they are considered volatile in XPLINK.
if (num_reg_arguments == 4) {
StoreU64(r5, MemOperand(sp, 19 * kSystemPointerSize));
StoreU64(r6, MemOperand(sp, 6 * kSystemPointerSize));
} else if (num_reg_arguments >= 5) {
// Save original r5 - r6 to Stack, r7 - r9 already saved to Stack
StoreMultipleP(r5, r6, MemOperand(sp, 19 * kSystemPointerSize));
} else {
StoreMultipleP(r5, r6, MemOperand(sp, 5 * kSystemPointerSize));
}
#endif
Label get_pc;
if (set_isolate_data_slots == SetIsolateDataSlots::kYes) {
// Save the frame pointer and PC so that the stack layout remains iterable,
// even without an ExitFrame which normally exists between JS and C frames.
// See x64 code for reasoning about how to address the isolate data fields.
larl(r0, &get_pc);
CHECK(root_array_available());
StoreU64(r0,
ExternalReferenceAsOperand(IsolateFieldId::kFastCCallCallerPC));
StoreU64(fp,
ExternalReferenceAsOperand(IsolateFieldId::kFastCCallCallerFP));
}
#if V8_OS_ZOS
// Set up the system stack pointer with the XPLINK bias.
lay(r4, MemOperand(sp, -kStackPointerBias));
Register dest = function;
if (has_function_descriptor) {
LoadMultipleP(r5, r6, MemOperand(function));
dest = r6;
}
#else
Register dest = function;
if (ABI_CALL_VIA_IP) {
Move(ip, function);
dest = ip;
}
#endif
#if V8_OS_ZOS
if (has_function_descriptor) {
// Branch to target via indirect branch
basr(r7, dest);
nop(BASR_CALL_TYPE_NOP);
} else {
basr(r7, dest);
}
// Restore r5-r9 from the appropriate stack locations (see notes above).
if (num_reg_arguments == 4) {
LoadU64(r5, MemOperand(sp, 19 * kSystemPointerSize));
LoadU64(r6, MemOperand(sp, 6 * kSystemPointerSize));
} else if (num_reg_arguments >= 5) {
LoadMultipleP(r5, r6, MemOperand(sp, 19 * kSystemPointerSize));
} else {
LoadMultipleP(r5, r6, MemOperand(sp, 5 * kSystemPointerSize));
}
// Restore original r7
mov(r7, r14);
// Shuffle the result
mov(r2, r3);
#else
Call(dest);
#endif
int call_pc_offset = pc_offset();
bind(&get_pc);
if (return_label) bind(return_label);
int before_offset = pc_offset();
int stack_passed_arguments =
CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
if (ActivationFrameAlignment() > kSystemPointerSize) {
// Load the original stack pointer (pre-alignment) from the stack
LoadU64(sp, MemOperand(sp, stack_space * kSystemPointerSize));
} else {
// Using agfi to match the instruction size kMaxSizeOfMoveAfterFastCall.
agfi(sp, Operand(stack_space * kSystemPointerSize));
}
// We assume that the move instruction uses kMaxSizeOfMoveAfterFastCall
// bytes. When we patch in the deopt trampoline, we patch it in after the
// move instruction, so that the stack has been restored correctly.
CHECK_EQ(kMaxSizeOfMoveAfterFastCall, pc_offset() - before_offset);
if (set_isolate_data_slots == SetIsolateDataSlots::kYes) {
// We don't unset the PC; the FP is the source of truth.
Register zero_scratch = r0;
lghi(zero_scratch, Operand::Zero());
StoreU64(zero_scratch,
ExternalReferenceAsOperand(IsolateFieldId::kFastCCallCallerFP));
}
return call_pc_offset;
}
int MacroAssembler::CallCFunction(ExternalReference function, int num_arguments,
SetIsolateDataSlots set_isolate_data_slots,
bool has_function_descriptor,
Label* return_label) {
return CallCFunction(function, num_arguments, 0, set_isolate_data_slots,
has_function_descriptor, return_label);
}
int MacroAssembler::CallCFunction(Register function, int num_arguments,
SetIsolateDataSlots set_isolate_data_slots,
bool has_function_descriptor,
Label* return_label) {
return CallCFunction(function, num_arguments, 0, set_isolate_data_slots,
has_function_descriptor, return_label);
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch, // scratch may be same register as object
int mask, Condition cc, Label* condition_met) {
DCHECK(cc == ne || cc == eq);
ClearRightImm(scratch, object, Operand(kPageSizeBits));
if (base::bits::IsPowerOfTwo(mask)) {
// If it's a power of two, we can use Test-Under-Mask Memory-Imm form
// which allows testing of a single byte in memory.
int32_t byte_offset = 4;
uint32_t shifted_mask = mask;
// Determine the byte offset to be tested
if (mask <= 0x80) {
byte_offset = kSystemPointerSize - 1;
} else if (mask < 0x8000) {
byte_offset = kSystemPointerSize - 2;
shifted_mask = mask >> 8;
} else if (mask < 0x800000) {
byte_offset = kSystemPointerSize - 3;
shifted_mask = mask >> 16;
} else {
byte_offset = kSystemPointerSize - 4;
shifted_mask = mask >> 24;
}
#if V8_TARGET_LITTLE_ENDIAN
// Reverse the byte_offset if emulating on little endian platform
byte_offset = kSystemPointerSize - byte_offset - 1;
#endif
tm(MemOperand(scratch, MemoryChunk::FlagsOffset() + byte_offset),
Operand(shifted_mask));
} else {
LoadU64(scratch, MemOperand(scratch, MemoryChunk::FlagsOffset()));
AndP(r0, scratch, Operand(mask));
}
// Should be okay to remove rc
if (cc == ne) {
bne(condition_met);
}
if (cc == eq) {
beq(condition_met);
}
}
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3,
Register reg4, Register reg5,
Register reg6) {
RegList regs = {reg1, reg2, reg3, reg4, reg5, reg6};
const RegisterConfiguration* config = RegisterConfiguration::Default();
for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
int code = config->GetAllocatableGeneralCode(i);
Register candidate = Register::from_code(code);
if (regs.has(candidate)) continue;
return candidate;
}
UNREACHABLE();
}
void MacroAssembler::PreCheckSkippedWriteBarrier(Register object,
Register value,
Register scratch, Label* ok) {
ASM_CODE_COMMENT(this);
DCHECK(!AreAliased(object, scratch));
DCHECK(!AreAliased(value, scratch));
// The most common case: Static write barrier elimination is allowed on the
// last young allocation.
{
UseScratchRegisterScope temps(this);
Register scratch1 = temps.Acquire();
DCHECK(!AreAliased(scratch, scratch1));
SubS64(scratch, object, Operand(kHeapObjectTag));
LoadU64(scratch1, MemOperand(kRootRegister,
IsolateData::last_young_allocation_offset()));
CmpU64(scratch, scratch1);
b(to_condition(Condition::kEqual), ok);
}
// Write barier can also be removed if value is in read-only space.
CheckPageFlag(value, scratch, MemoryChunk::kIsInReadOnlyHeapMask, ne, ok);
Label not_ok;
// Handle allocation folding, allow WB removal if:
// LAB start <= last_young_allocation_ < (object address+1) < LAB top
// Note that object has tag bit set, so object == object address+1.
{
UseScratchRegisterScope temps(this);
Register scratch1 = temps.Acquire();
DCHECK(!AreAliased(scratch, scratch1));
// Check LAB start <= last_young_allocation_.
LoadU64(scratch,
MemOperand(kRootRegister,
IsolateData::new_allocation_info_start_offset()));
LoadU64(scratch1, MemOperand(kRootRegister,
IsolateData::last_young_allocation_offset()));
CmpU64(scratch, scratch1);
b(to_condition(Condition::kUnsignedGreaterThan), &not_ok);
// Check last_young_allocation_ < (object address+1).
CmpU64(scratch1, object);
b(to_condition(Condition::kUnsignedGreaterThanEqual), &not_ok);
// Check (object address+1) < LAB top.
LoadU64(scratch, MemOperand(kRootRegister,
IsolateData::new_allocation_info_top_offset()));
CmpU64(object, scratch);
b(to_condition(Condition::kUnsignedLessThan), ok);
}
// Slow path: Potentially check more cases in C++.
bind(&not_ok);
}
void MacroAssembler::mov(Register dst, Register src) { lgr(dst, src); }
void MacroAssembler::mov(Register dst, const Operand& src) {
int64_t value = 0;
if (src.is_heap_number_request()) {
RequestHeapNumber(src.heap_number_request());
} else {
value = src.immediate();
}
if (src.rmode() != RelocInfo::NO_INFO) {
// some form of relocation needed
RecordRelocInfo(src.rmode(), value);
}
int32_t hi_32 = static_cast<int32_t>(value >> 32);
int32_t lo_32 = static_cast<int32_t>(value);
if (src.rmode() == RelocInfo::NO_INFO) {
if (hi_32 == 0) {
if (is_uint16(lo_32)) {
llill(dst, Operand(lo_32));
return;
}
llilf(dst, Operand(lo_32));
return;
} else if (lo_32 == 0) {
if (is_uint16(hi_32)) {
llihl(dst, Operand(hi_32));
return;
}
llihf(dst, Operand(hi_32));
return;
} else if (is_int16(value)) {
lghi(dst, Operand(value));
return;
} else if (is_int32(value)) {
lgfi(dst, Operand(value));
return;
}
}
iihf(dst, Operand(hi_32));
iilf(dst, Operand(lo_32));
}
void MacroAssembler::MulS32(Register dst, const MemOperand& src1) {
if (is_uint12(src1.offset())) {
ms(dst, src1);
} else if (is_int20(src1.offset())) {
msy(dst, src1);
} else {
UNIMPLEMENTED();
}
}
void MacroAssembler::MulS32(Register dst, Register src1) { msr(dst, src1); }
void MacroAssembler::MulS32(Register dst, const Operand& src1) {
msfi(dst, src1);
}
#define Generate_MulHigh32(instr) \
{ \
lgfr(dst, src1); \
instr(dst, src2); \
srlg(dst, dst, Operand(32)); \
}
void MacroAssembler::MulHighS32(Register dst, Register src1,
const MemOperand& src2) {
Generate_MulHigh32(msgf);
}
void MacroAssembler::MulHighS32(Register dst, Register src1, Register src2) {
if (dst == src2) {
std::swap(src1, src2);
}
Generate_MulHigh32(msgfr);
}
void MacroAssembler::MulHighS32(Register dst, Register src1,
const Operand& src2) {
Generate_MulHigh32(msgfi);
}
#undef Generate_MulHigh32
#define Generate_MulHighU32(instr) \
{ \
lr(r1, src1); \
instr(r0, src2); \
LoadU32(dst, r0); \
}
void MacroAssembler::MulHighU32(Register dst, Register src1,
const MemOperand& src2) {
Generate_MulHighU32(ml);
}
void MacroAssembler::MulHighU32(Register dst, Register src1, Register src2) {
Generate_MulHighU32(mlr);
}
void MacroAssembler::MulHighU32(Register dst, Register src1,
const Operand& src2) {
USE(dst);
USE(src1);
USE(src2);
UNREACHABLE();
}
#undef Generate_MulHighU32
#define Generate_Mul32WithOverflowIfCCUnequal(instr) \
{ \
lgfr(dst, src1); \
instr(dst, src2); \
cgfr(dst, dst); \
}
void MacroAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
const MemOperand& src2) {
Register result = dst;
if (src2.rx() == dst || src2.rb() == dst) dst = r0;
Generate_Mul32WithOverflowIfCCUnequal(msgf);
if (result != dst) llgfr(result, dst);
}
void MacroAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
Register src2) {
if (dst == src2) {
std::swap(src1, src2);
}
Generate_Mul32WithOverflowIfCCUnequal(msgfr);
}
void MacroAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1,
const Operand& src2) {
Generate_Mul32WithOverflowIfCCUnequal(msgfi);
}
#undef Generate_Mul32WithOverflowIfCCUnequal
#define Generate_Div32(instr) \
{ \
lgfr(r1, src1); \
instr(r0, src2); \
LoadU32(dst, r1); \
}
void MacroAssembler::DivS32(Register dst, Register src1,
const MemOperand& src2) {
Generate_Div32(dsgf);
}
void MacroAssembler::DivS32(Register dst, Register src1, Register src2) {
Generate_Div32(dsgfr);
}
#undef Generate_Div32
#define Generate_DivU32(instr) \
{ \
lr(r0, src1); \
srdl(r0, Operand(32)); \
instr(r0, src2); \
LoadU32(dst, r1); \
}
void MacroAssembler::DivU32(Register dst, Register src1,
const MemOperand& src2) {
Generate_DivU32(dl);
}
void MacroAssembler::DivU32(Register dst, Register src1, Register src2) {
Generate_DivU32(dlr);
}
#undef Generate_DivU32
#define Generate_Div64(instr) \
{ \
lgr(r1, src1); \
instr(r0, src2); \
lgr(dst, r1); \
}
void MacroAssembler::DivS64(Register dst, Register src1,
const MemOperand& src2) {
Generate_Div64(dsg);
}
void MacroAssembler::DivS64(Register dst, Register src1, Register src2) {
Generate_Div64(dsgr);
}
#undef Generate_Div64
#define Generate_DivU64(instr) \
{ \
lgr(r1, src1); \
lghi(r0, Operand::Zero()); \
instr(r0, src2); \
lgr(dst, r1); \
}
void MacroAssembler::DivU64(Register dst, Register src1,
const MemOperand& src2) {
Generate_DivU64(dlg);
}
void MacroAssembler::DivU64(Register dst, Register src1, Register src2) {
Generate_DivU64(dlgr);
}
#undef Generate_DivU64
#define Generate_Mod32(instr) \
{ \
lgfr(r1, src1); \
instr(r0, src2); \
LoadU32(dst, r0); \
}
void MacroAssembler::ModS32(Register dst, Register src1,
const MemOperand& src2) {
Generate_Mod32(dsgf);
}
void MacroAssembler::ModS32(Register dst, Register src1, Register src2) {
Generate_Mod32(dsgfr);
}
#undef Generate_Mod32
#define Generate_ModU32(instr) \
{ \
lr(r0, src1); \
srdl(r0, Operand(32)); \
instr(r0, src2); \
LoadU32(dst, r0); \
}
void MacroAssembler::ModU32(Register dst, Register src1,
const MemOperand& src2) {
Generate_ModU32(dl);
}
void MacroAssembler::ModU32(Register dst, Register src1, Register src2) {
Generate_ModU32(dlr);
}
#undef Generate_ModU32
#define Generate_Mod64(instr) \
{ \
lgr(r1, src1); \
instr(r0, src2); \
lgr(dst, r0); \
}
void MacroAssembler::ModS64(Register dst, Register src1,
const MemOperand& src2) {
Generate_Mod64(dsg);
}
void MacroAssembler::ModS64(Register dst, Register src1, Register src2) {
Generate_Mod64(dsgr);
}
#undef Generate_Mod64
#define Generate_ModU64(instr) \
{ \
lgr(r1, src1); \
lghi(r0, Operand::Zero()); \
instr(r0, src2); \
lgr(dst, r0); \
}
void MacroAssembler::ModU64(Register dst, Register src1,
const MemOperand& src2) {
Generate_ModU64(dlg);
}
void MacroAssembler::ModU64(Register dst, Register src1, Register src2) {
Generate_ModU64(dlgr);
}
#undef Generate_ModU64
void MacroAssembler::MulS64(Register dst, const Operand& opnd) {
msgfi(dst, opnd);
}
void MacroAssembler::MulS64(Register dst, Register src) { msgr(dst, src); }
void MacroAssembler::MulS64(Register dst, const MemOperand& opnd) {
msg(dst, opnd);
}
void MacroAssembler::MulHighS64(Register dst, Register src1, Register src2) {
if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) {
mgrk(r0, src1, src2);
lgr(dst, r0);
} else {
SaveFPRegsMode fp_mode = SaveFPRegsMode::kSave;
PushCallerSaved(fp_mode, ip);
Push(src1, src2);
Pop(r2, r3);
{
FrameScope scope(this, StackFrame::INTERNAL);
PrepareCallCFunction(2, 0, r0);
CallCFunction(ExternalReference::int64_mul_high_function(), 2, 0);
}
mov(r0, r2);
PopCallerSaved(fp_mode, ip);
mov(dst, r0);
}
}
void MacroAssembler::MulHighS64(Register dst, Register src1,
const MemOperand& src2) {
// TODO(v8): implement this.
UNIMPLEMENTED();
}
void MacroAssembler::MulHighU64(Register dst, Register src1, Register src2) {
lgr(r1, src1);
mlgr(r0, src2);
lgr(dst, r0);
}
void MacroAssembler::MulHighU64(Register dst, Register src1,
const MemOperand& src2) {
// TODO(v8): implement this.
UNIMPLEMENTED();
}
void MacroAssembler::Sqrt(DoubleRegister result, DoubleRegister input) {
sqdbr(result, input);
}
void MacroAssembler::Sqrt(DoubleRegister result, const MemOperand& input) {
if (is_uint12(input.offset())) {
sqdb(result, input);
} else {
ldy(result, input);
sqdbr(result, result);
}
}
//----------------------------------------------------------------------------
// Add Instructions
//----------------------------------------------------------------------------
// Add 32-bit (Register dst = Register dst + Immediate opnd)
void MacroAssembler::AddS32(Register dst, const Operand& opnd) {
if (is_int16(opnd.immediate()))
ahi(dst, opnd);
else
afi(dst, opnd);
}
// Add Pointer Size (Register dst = Register dst + Immediate opnd)
void MacroAssembler::AddS64(Register dst, const Operand& opnd) {
if (is_int16(opnd.immediate()))
aghi(dst, opnd);
else
agfi(dst, opnd);
}
void MacroAssembler::AddS32(Register dst, Register src, int32_t opnd) {
AddS32(dst, src, Operand(opnd));
}
// Add 32-bit (Register dst = Register src + Immediate opnd)
void MacroAssembler::AddS32(Register dst, Register src, const Operand& opnd) {
if (dst != src) {
if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) {
ahik(dst, src, opnd);
return;
}
lr(dst, src);
}
AddS32(dst, opnd);
}
void MacroAssembler::AddS64(Register dst, Register src, int32_t opnd) {
AddS64(dst, src, Operand(opnd));
}
// Add Pointer Size (Register dst = Register src + Immediate opnd)
void MacroAssembler::AddS64(Register dst, Register src, const Operand& opnd) {
if (dst != src) {
if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) {
aghik(dst, src, opnd);
return;
}
mov(dst, src);
}
AddS64(dst, opnd);
}
// Add 32-bit (Register dst = Register dst + Register src)
void MacroAssembler::AddS32(Register dst, Register src) { ar(dst, src); }
// Add Pointer Size (Register dst = Register dst + Register src)
void MacroAssembler::AddS64(Register dst, Register src) { agr(dst, src); }
// Add 32-bit (Register dst = Register src1 + Register src2)
void MacroAssembler::AddS32(Register dst, Register src1, Register src2) {
if (dst != src1 && dst != src2) {
// We prefer to generate AR/AGR, over the non clobbering ARK/AGRK
// as AR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ark(dst, src1, src2);
return;
} else {
lr(dst, src1);
}
} else if (dst == src2) {
src2 = src1;
}
ar(dst, src2);
}
// Add Pointer Size (Register dst = Register src1 + Register src2)
void MacroAssembler::AddS64(Register dst, Register src1, Register src2) {
if (dst != src1 && dst != src2) {
// We prefer to generate AR/AGR, over the non clobbering ARK/AGRK
// as AR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
agrk(dst, src1, src2);
return;
} else {
mov(dst, src1);
}
} else if (dst == src2) {
src2 = src1;
}
agr(dst, src2);
}
// Add 32-bit (Register-Memory)
void MacroAssembler::AddS32(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
a(dst, opnd);
else
ay(dst, opnd);
}
// Add Pointer Size (Register-Memory)
void MacroAssembler::AddS64(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
ag(dst, opnd);
}
// Add 32-bit (Memory - Immediate)
void MacroAssembler::AddS32(const MemOperand& opnd, const Operand& imm) {
DCHECK(is_int8(imm.immediate()));
DCHECK(is_int20(opnd.offset()));
DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT));
asi(opnd, imm);
}
// Add Pointer-sized (Memory - Immediate)
void MacroAssembler::AddS64(const MemOperand& opnd, const Operand& imm) {
DCHECK(is_int8(imm.immediate()));
DCHECK(is_int20(opnd.offset()));
DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT));
agsi(opnd, imm);
}
//----------------------------------------------------------------------------
// Add Logical Instructions
//----------------------------------------------------------------------------
// Add Logical 32-bit (Register dst = Register src1 + Register src2)
void MacroAssembler::AddU32(Register dst, Register src1, Register src2) {
if (dst != src2 && dst != src1) {
lr(dst, src1);
alr(dst, src2);
} else if (dst != src2) {
// dst == src1
DCHECK(dst == src1);
alr(dst, src2);
} else {
// dst == src2
DCHECK(dst == src2);
alr(dst, src1);
}
}
// Add Logical 32-bit (Register dst = Register dst + Immediate opnd)
void MacroAssembler::AddU32(Register dst, const Operand& imm) {
alfi(dst, imm);
}
// Add Logical Pointer Size (Register dst = Register dst + Immediate opnd)
void MacroAssembler::AddU64(Register dst, const Operand& imm) {
algfi(dst, imm);
}
void MacroAssembler::AddU64(Register dst, Register src1, Register src2) {
if (dst != src2 && dst != src1) {
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
algrk(dst, src1, src2);
} else {
lgr(dst, src1);
algr(dst, src2);
}
} else if (dst != src2) {
// dst == src1
DCHECK(dst == src1);
algr(dst, src2);
} else {
// dst == src2
DCHECK(dst == src2);
algr(dst, src1);
}
}
// Add Logical 32-bit (Register-Memory)
void MacroAssembler::AddU32(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
al_z(dst, opnd);
else
aly(dst, opnd);
}
// Add Logical Pointer Size (Register-Memory)
void MacroAssembler::AddU64(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
alg(dst, opnd);
}
//----------------------------------------------------------------------------
// Subtract Instructions
//----------------------------------------------------------------------------
// Subtract Logical 32-bit (Register dst = Register src1 - Register src2)
void MacroAssembler::SubU32(Register dst, Register src1, Register src2) {
if (dst != src2 && dst != src1) {
lr(dst, src1);
slr(dst, src2);
} else if (dst != src2) {
// dst == src1
DCHECK(dst == src1);
slr(dst, src2);
} else {
// dst == src2
DCHECK(dst == src2);
lr(r0, dst);
SubU32(dst, src1, r0);
}
}
// Subtract 32-bit (Register dst = Register dst - Immediate opnd)
void MacroAssembler::SubS32(Register dst, const Operand& imm) {
AddS32(dst, Operand(-(imm.immediate())));
}
// Subtract Pointer Size (Register dst = Register dst - Immediate opnd)
void MacroAssembler::SubS64(Register dst, const Operand& imm) {
AddS64(dst, Operand(-(imm.immediate())));
}
void MacroAssembler::SubS32(Register dst, Register src, int32_t imm) {
SubS32(dst, src, Operand(imm));
}
// Subtract 32-bit (Register dst = Register src - Immediate opnd)
void MacroAssembler::SubS32(Register dst, Register src, const Operand& imm) {
AddS32(dst, src, Operand(-(imm.immediate())));
}
void MacroAssembler::SubS64(Register dst, Register src, int32_t imm) {
SubS64(dst, src, Operand(imm));
}
// Subtract Pointer Sized (Register dst = Register src - Immediate opnd)
void MacroAssembler::SubS64(Register dst, Register src, const Operand& imm) {
AddS64(dst, src, Operand(-(imm.immediate())));
}
// Subtract 32-bit (Register dst = Register dst - Register src)
void MacroAssembler::SubS32(Register dst, Register src) { sr(dst, src); }
// Subtract Pointer Size (Register dst = Register dst - Register src)
void MacroAssembler::SubS64(Register dst, Register src) { sgr(dst, src); }
// Subtract 32-bit (Register = Register - Register)
void MacroAssembler::SubS32(Register dst, Register src1, Register src2) {
// Use non-clobbering version if possible
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
srk(dst, src1, src2);
return;
}
if (dst != src1 && dst != src2) lr(dst, src1);
// In scenario where we have dst = src - dst, we need to swap and negate
if (dst != src1 && dst == src2) {
Label done;
lcr(dst, dst); // dst = -dst
b(overflow, &done);
ar(dst, src1); // dst = dst + src
bind(&done);
} else {
sr(dst, src2);
}
}
// Subtract Pointer Sized (Register = Register - Register)
void MacroAssembler::SubS64(Register dst, Register src1, Register src2) {
// Use non-clobbering version if possible
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
sgrk(dst, src1, src2);
return;
}
if (dst != src1 && dst != src2) mov(dst, src1);
// In scenario where we have dst = src - dst, we need to swap and negate
if (dst != src1 && dst == src2) {
Label done;
lcgr(dst, dst); // dst = -dst
b(overflow, &done);
AddS64(dst, src1); // dst = dst + src
bind(&done);
} else {
SubS64(dst, src2);
}
}
// Subtract 32-bit (Register-Memory)
void MacroAssembler::SubS32(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
s(dst, opnd);
else
sy(dst, opnd);
}
// Subtract Pointer Sized (Register - Memory)
void MacroAssembler::SubS64(Register dst, const MemOperand& opnd) {
sg(dst, opnd);
}
void MacroAssembler::MovIntToFloat(DoubleRegister dst, Register src) {
sllg(r0, src, Operand(32));
ldgr(dst, r0);
}
void MacroAssembler::MovFloatToInt(Register dst, DoubleRegister src) {
lgdr(dst, src);
srlg(dst, dst, Operand(32));
}
// Load And Subtract 32-bit (similar to laa/lan/lao/lax)
void MacroAssembler::LoadAndSub32(Register dst, Register src,
const MemOperand& opnd) {
lcr(dst, src);
laa(dst, dst, opnd);
}
void MacroAssembler::LoadAndSub64(Register dst, Register src,
const MemOperand& opnd) {
lcgr(dst, src);
laag(dst, dst, opnd);
}
//----------------------------------------------------------------------------
// Subtract Logical Instructions
//----------------------------------------------------------------------------
// Subtract Logical 32-bit (Register - Memory)
void MacroAssembler::SubU32(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
sl(dst, opnd);
else
sly(dst, opnd);
}
// Subtract Logical Pointer Sized (Register - Memory)
void MacroAssembler::SubU64(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
slgf(dst, opnd);
}
//----------------------------------------------------------------------------
// Bitwise Operations
//----------------------------------------------------------------------------
// AND 32-bit - dst = dst & src
void MacroAssembler::And(Register dst, Register src) { nr(dst, src); }
// AND Pointer Size - dst = dst & src
void MacroAssembler::AndP(Register dst, Register src) { ngr(dst, src); }
// Non-clobbering AND 32-bit - dst = src1 & src1
void MacroAssembler::And(Register dst, Register src1, Register src2) {
if (dst != src1 && dst != src2) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
nrk(dst, src1, src2);
return;
} else {
lr(dst, src1);
}
} else if (dst == src2) {
src2 = src1;
}
And(dst, src2);
}
// Non-clobbering AND pointer size - dst = src1 & src1
void MacroAssembler::AndP(Register dst, Register src1, Register src2) {
if (dst != src1 && dst != src2) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ngrk(dst, src1, src2);
return;
} else {
mov(dst, src1);
}
} else if (dst == src2) {
src2 = src1;
}
AndP(dst, src2);
}
// AND 32-bit (Reg - Mem)
void MacroAssembler::And(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
n(dst, opnd);
else
ny(dst, opnd);
}
// AND Pointer Size (Reg - Mem)
void MacroAssembler::AndP(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
ng(dst, opnd);
}
// AND 32-bit - dst = dst & imm
void MacroAssembler::And(Register dst, const Operand& opnd) { nilf(dst, opnd); }
// AND Pointer Size - dst = dst & imm
void MacroAssembler::AndP(Register dst, const Operand& opnd) {
intptr_t value = opnd.immediate();
if (value >> 32 != -1) {
// this may not work b/c condition code won't be set correctly
nihf(dst, Operand(value >> 32));
}
nilf(dst, Operand(value & 0xFFFFFFFF));
}
// AND 32-bit - dst = src & imm
void MacroAssembler::And(Register dst, Register src, const Operand& opnd) {
if (dst != src) lr(dst, src);
nilf(dst, opnd);
}
// AND Pointer Size - dst = src & imm
void MacroAssembler::AndP(Register dst, Register src, const Operand& opnd) {
// Try to exploit RISBG first
intptr_t value = opnd.immediate();
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
intptr_t shifted_value = value;
int trailing_zeros = 0;
// We start checking how many trailing zeros are left at the end.
while ((0 != shifted_value) && (0 == (shifted_value & 1))) {
trailing_zeros++;
shifted_value >>= 1;
}
// If temp (value with right-most set of zeros shifted out) is 1 less
// than power of 2, we have consecutive bits of 1.
// Special case: If shift_value is zero, we cannot use RISBG, as it requires
// selection of at least 1 bit.
if ((0 != shifted_value) && base::bits::IsPowerOfTwo(shifted_value + 1)) {
int startBit =
base::bits::CountLeadingZeros64(shifted_value) - trailing_zeros;
int endBit = 63 - trailing_zeros;
// Start: startBit, End: endBit, Shift = 0, true = zero unselected bits.
RotateInsertSelectBits(dst, src, Operand(startBit), Operand(endBit),
Operand::Zero(), true);
return;
} else if (-1 == shifted_value) {
// A Special case in which all top bits up to MSB are 1's. In this case,
// we can set startBit to be 0.
int endBit = 63 - trailing_zeros;
RotateInsertSelectBits(dst, src, Operand::Zero(), Operand(endBit),
Operand::Zero(), true);
return;
}
}
// If we are &'ing zero, we can just whack the dst register and skip copy
if (dst != src && (0 != value)) mov(dst, src);
AndP(dst, opnd);
}
// OR 32-bit - dst = dst & src
void MacroAssembler::Or(Register dst, Register src) { or_z(dst, src); }
// OR Pointer Size - dst = dst & src
void MacroAssembler::OrP(Register dst, Register src) { ogr(dst, src); }
// Non-clobbering OR 32-bit - dst = src1 & src1
void MacroAssembler::Or(Register dst, Register src1, Register src2) {
if (dst != src1 && dst != src2) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ork(dst, src1, src2);
return;
} else {
lr(dst, src1);
}
} else if (dst == src2) {
src2 = src1;
}
Or(dst, src2);
}
// Non-clobbering OR pointer size - dst = src1 & src1
void MacroAssembler::OrP(Register dst, Register src1, Register src2) {
if (dst != src1 && dst != src2) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ogrk(dst, src1, src2);
return;
} else {
mov(dst, src1);
}
} else if (dst == src2) {
src2 = src1;
}
OrP(dst, src2);
}
// OR 32-bit (Reg - Mem)
void MacroAssembler::Or(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
o(dst, opnd);
else
oy(dst, opnd);
}
// OR Pointer Size (Reg - Mem)
void MacroAssembler::OrP(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
og(dst, opnd);
}
// OR 32-bit - dst = dst & imm
void MacroAssembler::Or(Register dst, const Operand& opnd) { oilf(dst, opnd); }
// OR Pointer Size - dst = dst & imm
void MacroAssembler::OrP(Register dst, const Operand& opnd) {
intptr_t value = opnd.immediate();
if (value >> 32 != 0) {
// this may not work b/c condition code won't be set correctly
oihf(dst, Operand(value >> 32));
}
oilf(dst, Operand(value & 0xFFFFFFFF));
}
// OR 32-bit - dst = src & imm
void MacroAssembler::Or(Register dst, Register src, const Operand& opnd) {
if (dst != src) lr(dst, src);
oilf(dst, opnd);
}
// OR Pointer Size - dst = src & imm
void MacroAssembler::OrP(Register dst, Register src, const Operand& opnd) {
if (dst != src) mov(dst, src);
OrP(dst, opnd);
}
// XOR 32-bit - dst = dst & src
void MacroAssembler::Xor(Register dst, Register src) { xr(dst, src); }
// XOR Pointer Size - dst = dst & src
void MacroAssembler::XorP(Register dst, Register src) { xgr(dst, src); }
// Non-clobbering XOR 32-bit - dst = src1 & src1
void MacroAssembler::Xor(Register dst, Register src1, Register src2) {
if (dst != src1 && dst != src2) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
xrk(dst, src1, src2);
return;
} else {
lr(dst, src1);
}
} else if (dst == src2) {
src2 = src1;
}
Xor(dst, src2);
}
// Non-clobbering XOR pointer size - dst = src1 & src1
void MacroAssembler::XorP(Register dst, Register src1, Register src2) {
if (dst != src1 && dst != src2) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
xgrk(dst, src1, src2);
return;
} else {
mov(dst, src1);
}
} else if (dst == src2) {
src2 = src1;
}
XorP(dst, src2);
}
// XOR 32-bit (Reg - Mem)
void MacroAssembler::Xor(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
x(dst, opnd);
else
xy(dst, opnd);
}
// XOR Pointer Size (Reg - Mem)
void MacroAssembler::XorP(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
xg(dst, opnd);
}
// XOR 32-bit - dst = dst & imm
void MacroAssembler::Xor(Register dst, const Operand& opnd) { xilf(dst, opnd); }
// XOR Pointer Size - dst = dst & imm
void MacroAssembler::XorP(Register dst, const Operand& opnd) {
intptr_t value = opnd.immediate();
xihf(dst, Operand(value >> 32));
xilf(dst, Operand(value & 0xFFFFFFFF));
}
// XOR 32-bit - dst = src & imm
void MacroAssembler::Xor(Register dst, Register src, const Operand& opnd) {
if (dst != src) lr(dst, src);
xilf(dst, opnd);
}
// XOR Pointer Size - dst = src & imm
void MacroAssembler::XorP(Register dst, Register src, const Operand& opnd) {
if (dst != src) mov(dst, src);
XorP(dst, opnd);
}
void MacroAssembler::Not32(Register dst, Register src) {
if (src != no_reg && src != dst) lr(dst, src);
xilf(dst, Operand(0xFFFFFFFF));
}
void MacroAssembler::Not64(Register dst, Register src) {
if (src != no_reg && src != dst) lgr(dst, src);
xihf(dst, Operand(0xFFFFFFFF));
xilf(dst, Operand(0xFFFFFFFF));
}
void MacroAssembler::NotP(Register dst, Register src) {
Not64(dst, src);
}
void MacroAssembler::LoadPositiveP(Register result, Register input) {
lpgr(result, input);
}
void MacroAssembler::LoadPositive32(Register result, Register input) {
lpr(result, input);
lgfr(result, result);
}
//-----------------------------------------------------------------------------
// Compare Helpers
//-----------------------------------------------------------------------------
// Compare 32-bit Register vs Register
void MacroAssembler::CmpS32(Register src1, Register src2) { cr_z(src1, src2); }
// Compare Pointer Sized Register vs Register
void MacroAssembler::CmpS64(Register src1, Register src2) { cgr(src1, src2); }
// Compare 32-bit Register vs Immediate
// This helper will set up proper relocation entries if required.
void MacroAssembler::CmpS32(Register dst, const Operand& opnd) {
if (opnd.rmode() == RelocInfo::NO_INFO) {
intptr_t value = opnd.immediate();
if (is_int16(value))
chi(dst, opnd);
else
cfi(dst, opnd);
} else {
// Need to generate relocation record here
RecordRelocInfo(opnd.rmode(), opnd.immediate());
cfi(dst, opnd);
}
}
// Compare Pointer Sized Register vs Immediate
// This helper will set up proper relocation entries if required.
void MacroAssembler::CmpS64(Register dst, const Operand& opnd) {
if (opnd.rmode() == RelocInfo::NO_INFO) {
cgfi(dst, opnd);
} else {
mov(r0, opnd); // Need to generate 64-bit relocation
cgr(dst, r0);
}
}
// Compare 32-bit Register vs Memory
void MacroAssembler::CmpS32(Register dst, const MemOperand& opnd) {
// make sure offset is within 20 bit range
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
c(dst, opnd);
else
cy(dst, opnd);
}
// Compare Pointer Size Register vs Memory
void MacroAssembler::CmpS64(Register dst, const MemOperand& opnd) {
// make sure offset is within 20 bit range
DCHECK(is_int20(opnd.offset()));
cg(dst, opnd);
}
void MacroAssembler::CmpF32(DoubleRegister src1, DoubleRegister src2) {
cebr(src1, src2);
}
void MacroAssembler::CmpF64(DoubleRegister src1, DoubleRegister src2) {
cdbr(src1, src2);
}
void MacroAssembler::CmpF32(DoubleRegister src1, const MemOperand& src2) {
DCHECK(is_int12(src2.offset()));
ceb(src1, src2);
}
void MacroAssembler::CmpF64(DoubleRegister src1, const MemOperand& src2) {
DCHECK(is_int12(src2.offset()));
cdb(src1, src2);
}
// Using cs or scy based on the offset
void MacroAssembler::CmpAndSwap(Register old_val, Register new_val,
const MemOperand& opnd) {
if (is_uint12(opnd.offset())) {
cs(old_val, new_val, opnd);
} else {
csy(old_val, new_val, opnd);
}
}
void MacroAssembler::CmpAndSwap64(Register old_val, Register new_val,
const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
csg(old_val, new_val, opnd);
}
//-----------------------------------------------------------------------------
// Compare Logical Helpers
//-----------------------------------------------------------------------------
// Compare Logical 32-bit Register vs Register
void MacroAssembler::CmpU32(Register dst, Register src) { clr(dst, src); }
// Compare Logical Pointer Sized Register vs Register
void MacroAssembler::CmpU64(Register dst, Register src) {
clgr(dst, src);
}
// Compare Logical 32-bit Register vs Immediate
void MacroAssembler::CmpU32(Register dst, const Operand& opnd) {
clfi(dst, opnd);
}
// Compare Logical Pointer Sized Register vs Immediate
void MacroAssembler::CmpU64(Register dst, const Operand& opnd) {
DCHECK_EQ(static_cast<uint32_t>(opnd.immediate() >> 32), 0);
clgfi(dst, opnd);
}
// Compare Logical 32-bit Register vs Memory
void MacroAssembler::CmpU32(Register dst, const MemOperand& opnd) {
// make sure offset is within 20 bit range
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
cl(dst, opnd);
else
cly(dst, opnd);
}
// Compare Logical Pointer Sized Register vs Memory
void MacroAssembler::CmpU64(Register dst, const MemOperand& opnd) {
// make sure offset is within 20 bit range
DCHECK(is_int20(opnd.offset()));
clg(dst, opnd);
}
void MacroAssembler::Branch(Condition c, const Operand& opnd) {
intptr_t value = opnd.immediate();
if (is_int16(value))
brc(c, opnd);
else
brcl(c, opnd);
}
// Branch On Count. Decrement R1, and branch if R1 != 0.
void MacroAssembler::BranchOnCount(Register r1, Label* l) {
int32_t offset = branch_offset(l);
if (is_int16(offset)) {
brctg(r1, Operand(offset));
} else {
AddS64(r1, Operand(-1));
Branch(ne, Operand(offset));
}
}
void MacroAssembler::LoadSmiLiteral(Register dst, Tagged<Smi> smi) {
intptr_t value = static_cast<intptr_t>(smi.ptr());
#if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
llilf(dst, Operand(value));
#else
DCHECK_EQ(value & 0xFFFFFFFF, 0);
// The smi value is loaded in upper 32-bits. Lower 32-bit are zeros.
llihf(dst, Operand(value >> 32));
#endif
}
void MacroAssembler::CmpSmiLiteral(Register src1, Tagged<Smi> smi,
Register scratch) {
#if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
// CFI takes 32-bit immediate.
cfi(src1, Operand(smi));
#else
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
cih(src1, Operand(static_cast<intptr_t>(smi.ptr()) >> 32));
} else {
LoadSmiLiteral(scratch, smi);
cgr(src1, scratch);
}
#endif
}
void MacroAssembler::LoadU64(Register dst, const MemOperand& mem,
Register scratch) {
int offset = mem.offset();
MemOperand src = mem;
if (!is_int20(offset)) {
DCHECK(scratch != no_reg && scratch != r0 && mem.rx() == r0);
DCHECK(scratch != mem.rb());
mov(scratch, Operand(offset));
src = MemOperand(mem.rb(), scratch);
}
lg(dst, src);
}
// Store a "pointer" sized value to the memory location
void MacroAssembler::StoreU64(Register src, const MemOperand& mem,
Register scratch) {
if (!is_int20(mem.offset())) {
DCHECK(scratch != no_reg);
DCHECK(scratch != r0);
mov(scratch, Operand(mem.offset()));
stg(src, MemOperand(mem.rb(), scratch));
} else {
stg(src, mem);
}
}
// Store a "pointer" sized constant to the memory location
void MacroAssembler::StoreU64(const MemOperand& mem, const Operand& opnd,
Register scratch) {
// Relocations not supported
DCHECK_EQ(opnd.rmode(), RelocInfo::NO_INFO);
// Try to use MVGHI/MVHI
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_uint12(mem.offset()) &&
mem.getIndexRegister() == r0 && is_int16(opnd.immediate())) {
mvghi(mem, opnd);
} else {
mov(scratch, opnd);
StoreU64(scratch, mem);
}
}
void MacroAssembler::LoadMultipleP(Register dst1, Register dst2,
const MemOperand& mem) {
DCHECK(is_int20(mem.offset()));
lmg(dst1, dst2, mem);
}
void MacroAssembler::StoreMultipleP(Register src1, Register src2,
const MemOperand& mem) {
DCHECK(is_int20(mem.offset()));
stmg(src1, src2, mem);
}
void MacroAssembler::LoadMultipleW(Register dst1, Register dst2,
const MemOperand& mem) {
if (is_uint12(mem.offset())) {
lm(dst1, dst2, mem);
} else {
DCHECK(is_int20(mem.offset()));
lmy(dst1, dst2, mem);
}
}
void MacroAssembler::StoreMultipleW(Register src1, Register src2,
const MemOperand& mem) {
if (is_uint12(mem.offset())) {
stm(src1, src2, mem);
} else {
DCHECK(is_int20(mem.offset()));
stmy(src1, src2, mem);
}
}
// Load 32-bits and sign extend if necessary.
void MacroAssembler::LoadS32(Register dst, Register src) {
lgfr(dst, src);
}
// Load 32-bits and sign extend if necessary.
void MacroAssembler::LoadS32(Register dst, const MemOperand& mem,
Register scratch) {
int offset = mem.offset();
if (!is_int20(offset)) {
DCHECK(scratch != no_reg);
mov(scratch, Operand(offset));
lgf(dst, MemOperand(mem.rb(), scratch));
} else {
lgf(dst, mem);
}
}
// Load 32-bits and zero extend if necessary.
void MacroAssembler::LoadU32(Register dst, Register src) {
llgfr(dst, src);
}
// Variable length depending on whether offset fits into immediate field
// MemOperand of RX or RXY format
void MacroAssembler::LoadU32(Register dst, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
if (is_int20(offset)) {
llgf(dst, mem);
} else if (scratch != no_reg) {
// Materialize offset into scratch register.
mov(scratch, Operand(offset));
llgf(dst, MemOperand(base, scratch));
} else {
DCHECK(false);
}
}
void MacroAssembler::LoadU16(Register dst, const MemOperand& mem) {
// TODO(s390x): Add scratch reg
llgh(dst, mem);
}
void MacroAssembler::LoadU16(Register dst, Register src) {
llghr(dst, src);
}
void MacroAssembler::LoadS8(Register dst, const MemOperand& mem) {
// TODO(s390x): Add scratch reg
lgb(dst, mem);
}
void MacroAssembler::LoadS8(Register dst, Register src) {
lgbr(dst, src);
}
void MacroAssembler::LoadU8(Register dst, const MemOperand& mem) {
// TODO(s390x): Add scratch reg
llgc(dst, mem);
}
void MacroAssembler::LoadU8(Register dst, Register src) {
llgcr(dst, src);
}
#ifdef V8_TARGET_BIG_ENDIAN
void MacroAssembler::LoadU64LE(Register dst, const MemOperand& mem,
Register scratch) {
lrvg(dst, mem);
}
void MacroAssembler::LoadS32LE(Register dst, const MemOperand& opnd,
Register scratch) {
lrv(dst, opnd);
LoadS32(dst, dst);
}
void MacroAssembler::LoadU32LE(Register dst, const MemOperand& opnd,
Register scratch) {
lrv(dst, opnd);
LoadU32(dst, dst);
}
void MacroAssembler::LoadU16LE(Register dst, const MemOperand& opnd) {
lrvh(dst, opnd);
LoadU16(dst, dst);
}
void MacroAssembler::LoadS16LE(Register dst, const MemOperand& opnd) {
lrvh(dst, opnd);
LoadS16(dst, dst);
}
void MacroAssembler::LoadV128LE(DoubleRegister dst, const MemOperand& opnd,
Register scratch0, Register scratch1) {
bool use_vlbr = CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_2) &&
is_uint12(opnd.offset());
if (use_vlbr) {
vlbr(dst, opnd, Condition(4));
} else {
lrvg(scratch0, opnd);
lrvg(scratch1,
MemOperand(opnd.rx(), opnd.rb(), opnd.offset() + kSystemPointerSize));
vlvgp(dst, scratch1, scratch0);
}
}
void MacroAssembler::LoadF64LE(DoubleRegister dst, const MemOperand& opnd,
Register scratch) {
lrvg(scratch, opnd);
ldgr(dst, scratch);
}
void MacroAssembler::LoadF32LE(DoubleRegister dst, const MemOperand& opnd,
Register scratch) {
lrv(scratch, opnd);
ShiftLeftU64(scratch, scratch, Operand(32));
ldgr(dst, scratch);
}
void MacroAssembler::StoreU64LE(Register src, const MemOperand& mem,
Register scratch) {
if (!is_int20(mem.offset())) {
DCHECK(scratch != no_reg);
DCHECK(scratch != r0);
mov(scratch, Operand(mem.offset()));
strvg(src, MemOperand(mem.rb(), scratch));
} else {
strvg(src, mem);
}
}
void MacroAssembler::StoreU32LE(Register src, const MemOperand& mem,
Register scratch) {
if (!is_int20(mem.offset())) {
DCHECK(scratch != no_reg);
DCHECK(scratch != r0);
mov(scratch, Operand(mem.offset()));
strv(src, MemOperand(mem.rb(), scratch));
} else {
strv(src, mem);
}
}
void MacroAssembler::StoreU16LE(Register src, const MemOperand& mem,
Register scratch) {
if (!is_int20(mem.offset())) {
DCHECK(scratch != no_reg);
DCHECK(scratch != r0);
mov(scratch, Operand(mem.offset()));
strvh(src, MemOperand(mem.rb(), scratch));
} else {
strvh(src, mem);
}
}
void MacroAssembler::StoreF64LE(DoubleRegister src, const MemOperand& opnd,
Register scratch) {
DCHECK(is_int20(opnd.offset()));
lgdr(scratch, src);
strvg(scratch, opnd);
}
void MacroAssembler::StoreF32LE(DoubleRegister src, const MemOperand& opnd,
Register scratch) {
DCHECK(is_int20(opnd.offset()));
lgdr(scratch, src);
ShiftRightU64(scratch, scratch, Operand(32));
strv(scratch, opnd);
}
void MacroAssembler::StoreV128LE(Simd128Register src, const MemOperand& mem,
Register scratch1, Register scratch2) {
bool use_vstbr = CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_2) &&
is_uint12(mem.offset());
if (use_vstbr) {
vstbr(src, mem, Condition(4));
} else {
vlgv(scratch1, src, MemOperand(r0, 1), Condition(3));
vlgv(scratch2, src, MemOperand(r0, 0), Condition(3));
strvg(scratch1, mem);
strvg(scratch2,
MemOperand(mem.rx(), mem.rb(), mem.offset() + kSystemPointerSize));
}
}
#else
void MacroAssembler::LoadU64LE(Register dst, const MemOperand& mem,
Register scratch) {
LoadU64(dst, mem, scratch);
}
void MacroAssembler::LoadS32LE(Register dst, const MemOperand& opnd,
Register scratch) {
LoadS32(dst, opnd, scratch);
}
void MacroAssembler::LoadU32LE(Register dst, const MemOperand& opnd,
Register scratch) {
LoadU32(dst, opnd, scratch);
}
void MacroAssembler::LoadU16LE(Register dst, const MemOperand& opnd) {
LoadU16(dst, opnd);
}
void MacroAssembler::LoadS16LE(Register dst, const MemOperand& opnd) {
LoadS16(dst, opnd);
}
void MacroAssembler::LoadV128LE(DoubleRegister dst, const MemOperand& opnd,
Register scratch0, Register scratch1) {
USE(scratch1);
LoadV128(dst, opnd, scratch0);
}
void MacroAssembler::LoadF64LE(DoubleRegister dst, const MemOperand& opnd,
Register scratch) {
USE(scratch);
LoadF64(dst, opnd);
}
void MacroAssembler::LoadF32LE(DoubleRegister dst, const MemOperand& opnd,
Register scratch) {
USE(scratch);
LoadF32(dst, opnd);
}
void MacroAssembler::StoreU64LE(Register src, const MemOperand& mem,
Register scratch) {
StoreU64(src, mem, scratch);
}
void MacroAssembler::StoreU32LE(Register src, const MemOperand& mem,
Register scratch) {
StoreU32(src, mem, scratch);
}
void MacroAssembler::StoreU16LE(Register src, const MemOperand& mem,
Register scratch) {
StoreU16(src, mem, scratch);
}
void MacroAssembler::StoreF64LE(DoubleRegister src, const MemOperand& opnd,
Register scratch) {
StoreF64(src, opnd);
}
void MacroAssembler::StoreF32LE(DoubleRegister src, const MemOperand& opnd,
Register scratch) {
StoreF32(src, opnd);
}
void MacroAssembler::StoreV128LE(Simd128Register src, const MemOperand& mem,
Register scratch1, Register scratch2) {
StoreV128(src, mem, scratch1);
}
#endif
// Load And Test (Reg <- Reg)
void MacroAssembler::LoadAndTest32(Register dst, Register src) {
ltr(dst, src);
}
// Load And Test Pointer Sized (Reg <- Reg)
void MacroAssembler::LoadAndTestP(Register dst, Register src) {
ltgr(dst, src);
}
// Load And Test 32-bit (Reg <- Mem)
void MacroAssembler::LoadAndTest32(Register dst, const MemOperand& mem) {
lt_z(dst, mem);
}
// Load And Test Pointer Sized (Reg <- Mem)
void MacroAssembler::LoadAndTestP(Register dst, const MemOperand& mem) {
ltg(dst, mem);
}
// Load On Condition Pointer Sized (Reg <- Reg)
void MacroAssembler::LoadOnConditionP(Condition cond, Register dst,
Register src) {
locgr(cond, dst, src);
}
// Load Double Precision (64-bit) Floating Point number from memory
void MacroAssembler::LoadF64(DoubleRegister dst, const MemOperand& mem) {
// for 32bit and 64bit we all use 64bit floating point regs
if (is_uint12(mem.offset())) {
ld(dst, mem);
} else {
ldy(dst, mem);
}
}
// Load Single Precision (32-bit) Floating Point number from memory
void MacroAssembler::LoadF32(DoubleRegister dst, const MemOperand& mem) {
if (is_uint12(mem.offset())) {
le_z(dst, mem);
} else {
DCHECK(is_int20(mem.offset()));
ley(dst, mem);
}
}
void MacroAssembler::LoadV128(Simd128Register dst, const MemOperand& mem,
Register scratch) {
DCHECK(scratch != r0);
if (is_uint12(mem.offset())) {
vl(dst, mem, Condition(0));
} else {
DCHECK(is_int20(mem.offset()));
lay(scratch, mem);
vl(dst, MemOperand(scratch), Condition(0));
}
}
// Store Double Precision (64-bit) Floating Point number to memory
void MacroAssembler::StoreF64(DoubleRegister dst, const MemOperand& mem) {
if (is_uint12(mem.offset())) {
std(dst, mem);
} else {
stdy(dst, mem);
}
}
// Store Single Precision (32-bit) Floating Point number to memory
void MacroAssembler::StoreF32(DoubleRegister src, const MemOperand& mem) {
if (is_uint12(mem.offset())) {
ste(src, mem);
} else {
stey(src, mem);
}
}
void MacroAssembler::StoreV128(Simd128Register src, const MemOperand& mem,
Register scratch) {
DCHECK(scratch != r0);
if (is_uint12(mem.offset())) {
vst(src, mem, Condition(0));
} else {
DCHECK(is_int20(mem.offset()));
lay(scratch, mem);
vst(src, MemOperand(scratch), Condition(0));
}
}
void MacroAssembler::AddF32(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs) {
if (dst == lhs) {
aebr(dst, rhs);
} else if (dst == rhs) {
aebr(dst, lhs);
} else {
ler(dst, lhs);
aebr(dst, rhs);
}
}
void MacroAssembler::SubF32(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs) {
if (dst == lhs) {
sebr(dst, rhs);
} else if (dst == rhs) {
ler(kScratchDoubleReg, dst);
ler(dst, lhs);
sebr(dst, kScratchDoubleReg);
} else {
ler(dst, lhs);
sebr(dst, rhs);
}
}
void MacroAssembler::MulF32(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs) {
if (dst == lhs) {
meebr(dst, rhs);
} else if (dst == rhs) {
meebr(dst, lhs);
} else {
ler(dst, lhs);
meebr(dst, rhs);
}
}
void MacroAssembler::DivF32(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs) {
if (dst == lhs) {
debr(dst, rhs);
} else if (dst == rhs) {
lay(sp, MemOperand(sp, -kSystemPointerSize));
StoreF32(dst, MemOperand(sp));
ler(dst, lhs);
deb(dst, MemOperand(sp));
la(sp, MemOperand(sp, kSystemPointerSize));
} else {
ler(dst, lhs);
debr(dst, rhs);
}
}
void MacroAssembler::AddF64(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs) {
if (dst == lhs) {
adbr(dst, rhs);
} else if (dst == rhs) {
adbr(dst, lhs);
} else {
ldr(dst, lhs);
adbr(dst, rhs);
}
}
void MacroAssembler::SubF64(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs) {
if (dst == lhs) {
sdbr(dst, rhs);
} else if (dst == rhs) {
sdbr(dst, lhs);
lcdbr(dst, dst);
} else {
ldr(dst, lhs);
sdbr(dst, rhs);
}
}
void MacroAssembler::MulF64(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs) {
if (dst == lhs) {
mdbr(dst, rhs);
} else if (dst == rhs) {
mdbr(dst, lhs);
} else {
ldr(dst, lhs);
mdbr(dst, rhs);
}
}
void MacroAssembler::DivF64(DoubleRegister dst, DoubleRegister lhs,
DoubleRegister rhs) {
if (dst == lhs) {
ddbr(dst, rhs);
} else if (dst == rhs) {
lay(sp, MemOperand(sp, -kSystemPointerSize));
StoreF64(dst, MemOperand(sp));
ldr(dst, lhs);
ddb(dst, MemOperand(sp));
la(sp, MemOperand(sp, kSystemPointerSize));
} else {
ldr(dst, lhs);
ddbr(dst, rhs);
}
}
void MacroAssembler::AddFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch) {
if (is_uint12(opnd.offset())) {
aeb(dst, opnd);
} else {
ley(scratch, opnd);
aebr(dst, scratch);
}
}
void MacroAssembler::AddFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch) {
if (is_uint12(opnd.offset())) {
adb(dst, opnd);
} else {
ldy(scratch, opnd);
adbr(dst, scratch);
}
}
void MacroAssembler::SubFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch) {
if (is_uint12(opnd.offset())) {
seb(dst, opnd);
} else {
ley(scratch, opnd);
sebr(dst, scratch);
}
}
void MacroAssembler::SubFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch) {
if (is_uint12(opnd.offset())) {
sdb(dst, opnd);
} else {
ldy(scratch, opnd);
sdbr(dst, scratch);
}
}
void MacroAssembler::MulFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch) {
if (is_uint12(opnd.offset())) {
meeb(dst, opnd);
} else {
ley(scratch, opnd);
meebr(dst, scratch);
}
}
void MacroAssembler::MulFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch) {
if (is_uint12(opnd.offset())) {
mdb(dst, opnd);
} else {
ldy(scratch, opnd);
mdbr(dst, scratch);
}
}
void MacroAssembler::DivFloat32(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch) {
if (is_uint12(opnd.offset())) {
deb(dst, opnd);
} else {
ley(scratch, opnd);
debr(dst, scratch);
}
}
void MacroAssembler::DivFloat64(DoubleRegister dst, const MemOperand& opnd,
DoubleRegister scratch) {
if (is_uint12(opnd.offset())) {
ddb(dst, opnd);
} else {
ldy(scratch, opnd);
ddbr(dst, scratch);
}
}
void MacroAssembler::LoadF32AsF64(DoubleRegister dst, const MemOperand& opnd) {
if (is_uint12(opnd.offset())) {
ldeb(dst, opnd);
} else {
ley(dst, opnd);
ldebr(dst, dst);
}
}
// Variable length depending on whether offset fits into immediate field
// MemOperand of RX or RXY format
void MacroAssembler::StoreU32(Register src, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
bool use_RXform = false;
bool use_RXYform = false;
if (is_uint12(offset)) {
// RX-format supports unsigned 12-bits offset.
use_RXform = true;
} else if (is_int20(offset)) {
// RXY-format supports signed 20-bits offset.
use_RXYform = true;
} else if (scratch != no_reg) {
// Materialize offset into scratch register.
mov(scratch, Operand(offset));
} else {
// scratch is no_reg
DCHECK(false);
}
if (use_RXform) {
st(src, mem);
} else if (use_RXYform) {
sty(src, mem);
} else {
StoreU32(src, MemOperand(base, scratch));
}
}
void MacroAssembler::LoadS16(Register dst, Register src) {
lghr(dst, src);
}
// Loads 16-bits half-word value from memory and sign extends to pointer
// sized register
void MacroAssembler::LoadS16(Register dst, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
if (!is_int20(offset)) {
DCHECK(scratch != no_reg);
mov(scratch, Operand(offset));
lgh(dst, MemOperand(base, scratch));
} else {
lgh(dst, mem);
}
}
// Variable length depending on whether offset fits into immediate field
// MemOperand current only supports d-form
void MacroAssembler::StoreU16(Register src, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
if (is_uint12(offset)) {
sth(src, mem);
} else if (is_int20(offset)) {
sthy(src, mem);
} else {
DCHECK(scratch != no_reg);
mov(scratch, Operand(offset));
sth(src, MemOperand(base, scratch));
}
}
// Variable length depending on whether offset fits into immediate field
// MemOperand current only supports d-form
void MacroAssembler::StoreU8(Register src, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
if (is_uint12(offset)) {
stc(src, mem);
} else if (is_int20(offset)) {
stcy(src, mem);
} else {
DCHECK(scratch != no_reg);
mov(scratch, Operand(offset));
stc(src, MemOperand(base, scratch));
}
}
// Shift left logical for 32-bit integer types.
void MacroAssembler::ShiftLeftU32(Register dst, Register src,
const Operand& val) {
ShiftLeftU32(dst, src, r0, val);
}
// Shift left logical for 32-bit integer types.
void MacroAssembler::ShiftLeftU32(Register dst, Register src, Register val,
const Operand& val2) {
if (dst == src) {
sll(dst, val, val2);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
sllk(dst, src, val, val2);
} else {
DCHECK(dst != val || val == r0); // The lr/sll path clobbers val.
lr(dst, src);
sll(dst, val, val2);
}
}
// Shift left logical for 32-bit integer types.
void MacroAssembler::ShiftLeftU64(Register dst, Register src,
const Operand& val) {
ShiftLeftU64(dst, src, r0, val);
}
// Shift left logical for 32-bit integer types.
void MacroAssembler::ShiftLeftU64(Register dst, Register src, Register val,
const Operand& val2) {
sllg(dst, src, val, val2);
}
// Shift right logical for 32-bit integer types.
void MacroAssembler::ShiftRightU32(Register dst, Register src,
const Operand& val) {
ShiftRightU32(dst, src, r0, val);
}
// Shift right logical for 32-bit integer types.
void MacroAssembler::ShiftRightU32(Register dst, Register src, Register val,
const Operand& val2) {
if (dst == src) {
srl(dst, val, val2);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
srlk(dst, src, val, val2);
} else {
DCHECK(dst != val || val == r0); // The lr/srl path clobbers val.
lr(dst, src);
srl(dst, val, val2);
}
}
void MacroAssembler::ShiftRightU64(Register dst, Register src, Register val,
const Operand& val2) {
srlg(dst, src, val, val2);
}
// Shift right logical for 64-bit integer types.
void MacroAssembler::ShiftRightU64(Register dst, Register src,
const Operand& val) {
ShiftRightU64(dst, src, r0, val);
}
// Shift right arithmetic for 32-bit integer types.
void MacroAssembler::ShiftRightS32(Register dst, Register src,
const Operand& val) {
ShiftRightS32(dst, src, r0, val);
}
// Shift right arithmetic for 32-bit integer types.
void MacroAssembler::ShiftRightS32(Register dst, Register src, Register val,
const Operand& val2) {
if (dst == src) {
sra(dst, val, val2);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
srak(dst, src, val, val2);
} else {
DCHECK(dst != val || val == r0); // The lr/sra path clobbers val.
lr(dst, src);
sra(dst, val, val2);
}
}
// Shift right arithmetic for 64-bit integer types.
void MacroAssembler::ShiftRightS64(Register dst, Register src,
const Operand& val) {
ShiftRightS64(dst, src, r0, val);
}
// Shift right arithmetic for 64-bit integer types.
void MacroAssembler::ShiftRightS64(Register dst, Register src, Register val,
const Operand& val2) {
srag(dst, src, val, val2);
}
// Clear right most # of bits
void MacroAssembler::ClearRightImm(Register dst, Register src,
const Operand& val) {
int numBitsToClear = val.immediate() % (kSystemPointerSize * 8);
// Try to use RISBG if possible
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
int endBit = 63 - numBitsToClear;
RotateInsertSelectBits(dst, src, Operand::Zero(), Operand(endBit),
Operand::Zero(), true);
return;
}
uint64_t hexMask = ~((1L << numBitsToClear) - 1);
// S390 AND instr clobbers source. Make a copy if necessary
if (dst != src) mov(dst, src);
if (numBitsToClear <= 16) {
nill(dst, Operand(static_cast<uint16_t>(hexMask)));
} else if (numBitsToClear <= 32) {
nilf(dst, Operand(static_cast<uint32_t>(hexMask)));
} else if (numBitsToClear <= 64) {
nilf(dst, Operand(static_cast<intptr_t>(0)));
nihf(dst, Operand(hexMask >> 32));
}
}
void MacroAssembler::Popcnt32(Register dst, Register src) {
DCHECK(src != r0);
DCHECK(dst != r0);
popcnt(dst, src);
ShiftRightU32(r0, dst, Operand(16));
ar(dst, r0);
ShiftRightU32(r0, dst, Operand(8));
ar(dst, r0);
llgcr(dst, dst);
}
void MacroAssembler::Popcnt64(Register dst, Register src) {
DCHECK(src != r0);
DCHECK(dst != r0);
popcnt(dst, src);
ShiftRightU64(r0, dst, Operand(32));
AddS64(dst, r0);
ShiftRightU64(r0, dst, Operand(16));
AddS64(dst, r0);
ShiftRightU64(r0, dst, Operand(8));
AddS64(dst, r0);
LoadU8(dst, dst);
}
void MacroAssembler::SwapP(Register src, Register dst, Register scratch) {
if (src == dst) return;
DCHECK(!AreAliased(src, dst, scratch));
mov(scratch, src);
mov(src, dst);
mov(dst, scratch);
}
void MacroAssembler::SwapP(Register src, MemOperand dst, Register scratch) {
if (dst.rx() != r0) DCHECK(!AreAliased(src, dst.rx(), scratch));
if (dst.rb() != r0) DCHECK(!AreAliased(src, dst.rb(), scratch));
DCHECK(!AreAliased(src, scratch));
mov(scratch, src);
LoadU64(src, dst);
StoreU64(scratch, dst);
}
void MacroAssembler::SwapP(MemOperand src, MemOperand dst, Register scratch_0,
Register scratch_1) {
if (src.rx() != r0) DCHECK(!AreAliased(src.rx(), scratch_0, scratch_1));
if (src.rb() != r0) DCHECK(!AreAliased(src.rb(), scratch_0, scratch_1));
if (dst.rx() != r0) DCHECK(!AreAliased(dst.rx(), scratch_0, scratch_1));
if (dst.rb() != r0) DCHECK(!AreAliased(dst.rb(), scratch_0, scratch_1));
DCHECK(!AreAliased(scratch_0, scratch_1));
LoadU64(scratch_0, src);
LoadU64(scratch_1, dst);
StoreU64(scratch_0, dst);
StoreU64(scratch_1, src);
}
void MacroAssembler::SwapFloat32(DoubleRegister src, DoubleRegister dst,
DoubleRegister scratch) {
if (src == dst) return;
DCHECK(!AreAliased(src, dst, scratch));
ldr(scratch, src);
ldr(src, dst);
ldr(dst, scratch);
}
void MacroAssembler::SwapFloat32(DoubleRegister src, MemOperand dst,
DoubleRegister scratch) {
DCHECK(!AreAliased(src, scratch));
ldr(scratch, src);
LoadF32(src, dst);
StoreF32(scratch, dst);
}
void MacroAssembler::SwapFloat32(MemOperand src, MemOperand dst,
DoubleRegister scratch) {
// push d0, to be used as scratch
lay(sp, MemOperand(sp, -kDoubleSize));
StoreF64(d0, MemOperand(sp));
LoadF32(scratch, src);
LoadF32(d0, dst);
StoreF32(scratch, dst);
StoreF32(d0, src);
// restore d0
LoadF64(d0, MemOperand(sp));
lay(sp, MemOperand(sp, kDoubleSize));
}
void MacroAssembler::SwapDouble(DoubleRegister src, DoubleRegister dst,
DoubleRegister scratch) {
if (src == dst) return;
DCHECK(!AreAliased(src, dst, scratch));
ldr(scratch, src);
ldr(src, dst);
ldr(dst, scratch);
}
void MacroAssembler::SwapDouble(DoubleRegister src, MemOperand dst,
DoubleRegister scratch) {
DCHECK(!AreAliased(src, scratch));
ldr(scratch, src);
LoadF64(src, dst);
StoreF64(scratch, dst);
}
void MacroAssembler::SwapDouble(MemOperand src, MemOperand dst,
DoubleRegister scratch) {
// push d0, to be used as scratch
lay(sp, MemOperand(sp, -kDoubleSize));
StoreF64(d0, MemOperand(sp));
LoadF64(scratch, src);
LoadF64(d0, dst);
StoreF64(scratch, dst);
StoreF64(d0, src);
// restore d0
LoadF64(d0, MemOperand(sp));
lay(sp, MemOperand(sp, kDoubleSize));
}
void MacroAssembler::SwapSimd128(Simd128Register src, Simd128Register dst,
Simd128Register scratch) {
if (src == dst) return;
vlr(scratch, src, Condition(0), Condition(0), Condition(0));
vlr(src, dst, Condition(0), Condition(0), Condition(0));
vlr(dst, scratch, Condition(0), Condition(0), Condition(0));
}
void MacroAssembler::SwapSimd128(Simd128Register src, MemOperand dst,
Simd128Register scratch) {
DCHECK(!AreAliased(src, scratch));
vlr(scratch, src, Condition(0), Condition(0), Condition(0));
LoadV128(src, dst, ip);
StoreV128(scratch, dst, ip);
}
void MacroAssembler::SwapSimd128(MemOperand src, MemOperand dst,
Simd128Register scratch) {
// push d0, to be used as scratch
lay(sp, MemOperand(sp, -kSimd128Size));
StoreV128(d0, MemOperand(sp), ip);
LoadV128(scratch, src, ip);
LoadV128(d0, dst, ip);
StoreV128(scratch, dst, ip);
StoreV128(d0, src, ip);
// restore d0
LoadV128(d0, MemOperand(sp), ip);
lay(sp, MemOperand(sp, kSimd128Size));
}
void MacroAssembler::ComputeCodeStartAddress(Register dst) {
larl(dst, Operand(-pc_offset() / 2));
}
void MacroAssembler::LoadPC(Register dst) {
Label current_pc;
larl(dst, &current_pc);
bind(&current_pc);
}
void MacroAssembler::JumpIfEqual(Register x, int32_t y, Label* dest) {
CmpS32(x, Operand(y));
beq(dest);
}
void MacroAssembler::JumpIfLessThan(Register x, int32_t y, Label* dest) {
CmpS32(x, Operand(y));
blt(dest);
}
void MacroAssembler::LoadEntryFromBuiltinIndex(Register builtin_index,
Register target) {
static_assert(kSystemPointerSize == 8);
static_assert(kSmiTagSize == 1);
static_assert(kSmiTag == 0);
// The builtin_index register contains the builtin index as a Smi.
if (SmiValuesAre32Bits()) {
ShiftRightS64(target, builtin_index,
Operand(kSmiShift - kSystemPointerSizeLog2));
} else {
DCHECK(SmiValuesAre31Bits());
ShiftLeftU64(target, builtin_index,
Operand(kSystemPointerSizeLog2 - kSmiShift));
}
LoadU64(target, MemOperand(kRootRegister, target,
IsolateData::builtin_entry_table_offset()));
}
void MacroAssembler::CallBuiltinByIndex(Register builtin_index,
Register target) {
LoadEntryFromBuiltinIndex(builtin_index, target);
Call(target);
}
void MacroAssembler::LoadEntryFromBuiltin(Builtin builtin,
Register destination) {
ASM_CODE_COMMENT(this);
LoadU64(destination, EntryFromBuiltinAsOperand(builtin));
}
MemOperand MacroAssembler::EntryFromBuiltinAsOperand(Builtin builtin) {
ASM_CODE_COMMENT(this);
DCHECK(root_array_available());
return MemOperand(kRootRegister,
IsolateData::BuiltinEntrySlotOffset(builtin));
}
#ifdef V8_ENABLE_LEAPTIERING
void MacroAssembler::LoadEntrypointFromJSDispatchTable(Register destination,
Register dispatch_handle,
Register scratch) {
DCHECK(!AreAliased(destination, dispatch_handle, scratch));
ASM_CODE_COMMENT(this);
Register index = destination;
CHECK(root_array_available());
LoadU64(scratch,
ExternalReferenceAsOperand(IsolateFieldId::kJSDispatchTable));
ShiftRightU64(index, dispatch_handle, Operand(kJSDispatchHandleShift));
ShiftLeftU64(index, index, Operand(kJSDispatchTableEntrySizeLog2));
AddS64(scratch, scratch, index);
LoadU64(destination, MemOperand(scratch, JSDispatchEntry::kEntrypointOffset));
}
#endif // V8_ENABLE_LEAPTIERING
void MacroAssembler::LoadCodeInstructionStart(Register destination,
Register code_object,
CodeEntrypointTag tag) {
ASM_CODE_COMMENT(this);
LoadU64(destination,
FieldMemOperand(code_object, Code::kInstructionStartOffset));
}
void MacroAssembler::CallCodeObject(Register code_object) {
ASM_CODE_COMMENT(this);
LoadCodeInstructionStart(code_object, code_object);
Call(code_object);
}
void MacroAssembler::JumpCodeObject(Register code_object, JumpMode jump_mode) {
ASM_CODE_COMMENT(this);
DCHECK_EQ(JumpMode::kJump, jump_mode);
LoadCodeInstructionStart(code_object, code_object);
Jump(code_object);
}
void MacroAssembler::CallJSFunction(Register function_object,
uint16_t argument_count, Register scratch) {
Register code = kJavaScriptCallCodeStartRegister;
#if V8_ENABLE_LEAPTIERING
Register dispatch_handle = r0;
scratch = ip;
LoadU32(dispatch_handle,
FieldMemOperand(function_object, JSFunction::kDispatchHandleOffset));
LoadEntrypointFromJSDispatchTable(code, dispatch_handle, scratch);
Call(code);
#else
LoadTaggedField(code,
FieldMemOperand(function_object, JSFunction::kCodeOffset));
CallCodeObject(code);
#endif // V8_ENABLE_LEAPTIERING
}
#if V8_ENABLE_LEAPTIERING
void MacroAssembler::CallJSDispatchEntry(JSDispatchHandle dispatch_handle,
uint16_t argument_count) {
Register code = kJavaScriptCallCodeStartRegister;
Register dispatch_handle_reg = r0;
Register scratch = ip;
mov(dispatch_handle_reg,
Operand(dispatch_handle.value(), RelocInfo::JS_DISPATCH_HANDLE));
// WARNING: This entrypoint load is only safe because we are storing a
// RelocInfo for the dispatch handle in the movl above (thus keeping the
// dispatch entry alive) _and_ because the entrypoints are not compactable
// (thus meaning that the calculation in the entrypoint load is not
// invalidated by a compaction).
// TODO(leszeks): Make this less of a footgun.
static_assert(!JSDispatchTable::kSupportsCompaction);
LoadEntrypointFromJSDispatchTable(code, dispatch_handle_reg, scratch);
CHECK_EQ(argument_count,
IsolateGroup::current()->js_dispatch_table()->GetParameterCount(
dispatch_handle));
Call(code);
}
#endif
void MacroAssembler::JumpJSFunction(Register function_object,
JumpMode jump_mode) {
Register code = kJavaScriptCallCodeStartRegister;
#if V8_ENABLE_LEAPTIERING
Register dispatch_handle = r0;
Register scratch = ip;
LoadU32(dispatch_handle,
FieldMemOperand(function_object, JSFunction::kDispatchHandleOffset));
LoadEntrypointFromJSDispatchTable(code, dispatch_handle, scratch);
Jump(code);
#else
LoadTaggedField(code,
FieldMemOperand(function_object, JSFunction::kCodeOffset));
JumpCodeObject(code, jump_mode);
#endif // V8_ENABLE_LEAPTIERING
}
#if V8_OS_ZOS
// Helper for CallApiFunctionAndReturn().
void MacroAssembler::zosStoreReturnAddressAndCall(Register target,
Register scratch) {
DCHECK(target == r3 || target == r4);
// Shuffle the arguments from Linux arg register to XPLINK arg regs
mov(r1, r2);
if (target == r3) {
mov(r2, r3);
} else {
mov(r2, r3);
mov(r3, r4);
}
// Update System Stack Pointer with the appropriate XPLINK stack bias.
lay(r4, MemOperand(sp, -kStackPointerBias));
// Preserve r7 by placing into callee-saved register r13
mov(r13, r7);
// Load function pointer from slot 1 of fn desc.
LoadU64(ip, MemOperand(scratch, kSystemPointerSize));
// Load environment from slot 0 of fn desc.
LoadU64(r5, MemOperand(scratch));
StoreReturnAddressAndCall(ip);
// Restore r7 from r13
mov(r7, r13);
}
#endif // V8_OS_ZOS
#ifdef V8_ENABLE_WEBASSEMBLY
void MacroAssembler::ResolveWasmCodePointer(Register target) {
ASM_CODE_COMMENT(this);
static_assert(!V8_ENABLE_SANDBOX_BOOL);
ExternalReference global_jump_table =
ExternalReference::wasm_code_pointer_table();
UseScratchRegisterScope temps(this);
Register scratch = temps.Acquire();
Move(scratch, global_jump_table);
static_assert(sizeof(wasm::WasmCodePointerTableEntry) == kSystemPointerSize);
ShiftLeftU32(target, target, Operand(kSystemPointerSizeLog2));
LoadU64(target, MemOperand(scratch, target));
}
void MacroAssembler::CallWasmCodePointer(Register target,
CallJumpMode call_jump_mode) {
ResolveWasmCodePointer(target);
if (call_jump_mode == CallJumpMode::kTailCall) {
Jump(target);
} else {
Call(target);
}
}
void MacroAssembler::LoadWasmCodePointer(Register dst, MemOperand src) {
static_assert(sizeof(WasmCodePointer) == 4);
LoadU32(dst, src);
}
#endif
void MacroAssembler::StoreReturnAddressAndCall(Register target) {
// This generates the final instruction sequence for calls to C functions
// once an exit frame has been constructed.
//
// Note that this assumes the caller code (i.e. the InstructionStream object
// currently being generated) is immovable or that the callee function cannot
// trigger GC, since the callee function will return to it.
#if V8_OS_ZOS
Register ra = r7;
#else
Register ra = r14;
#endif
Label return_label;
larl(ra, &return_label); // Generate the return addr of call later.
#if V8_OS_ZOS
// Mimic the XPLINK expected no-op (2-byte) instruction at the return point.
// When the C call returns, the 2 bytes are skipped and then the proper
// instruction is executed.
lay(ra, MemOperand(ra, -2));
#endif
StoreU64(ra, MemOperand(sp, kStackFrameRASlot * kSystemPointerSize));
// zLinux ABI requires caller's frame to have sufficient space for callee
// preserved regsiter save area.
b(target);
bind(&return_label);
}
// Check if the code object is marked for deoptimization. If it is, then it
// jumps to the CompileLazyDeoptimizedCode builtin. In order to do this we need
// to:
// 1. read from memory the word that contains that bit, which can be found in
// the flags in the referenced {Code} object;
// 2. test kMarkedForDeoptimizationBit in those flags; and
// 3. if it is not zero then it jumps to the builtin.
//
// Note: With leaptiering we simply assert the code is not deoptimized.
void MacroAssembler::BailoutIfDeoptimized(Register scratch) {
int offset = InstructionStream::kCodeOffset - InstructionStream::kHeaderSize;
if (v8_flags.debug_code || !V8_ENABLE_LEAPTIERING_BOOL) {
LoadTaggedField(scratch,
MemOperand(kJavaScriptCallCodeStartRegister, offset));
TestCodeIsMarkedForDeoptimization(scratch, scratch);
}
#ifdef V8_ENABLE_LEAPTIERING
if (v8_flags.debug_code) {
Assert(to_condition(kZero), AbortReason::kInvalidDeoptimizedCode);
}
#else
Jump(BUILTIN_CODE(isolate(), CompileLazyDeoptimizedCode),
RelocInfo::CODE_TARGET, ne);
#endif
}
void MacroAssembler::CallForDeoptimization(Builtin target, int, Label* exit,
DeoptimizeKind kind, Label* ret,
Label*) {
ASM_CODE_COMMENT(this);
LoadU64(ip, MemOperand(kRootRegister,
IsolateData::BuiltinEntrySlotOffset(target)));
Call(ip);
DCHECK_EQ(SizeOfCodeGeneratedSince(exit),
(kind == DeoptimizeKind::kLazy) ? Deoptimizer::kLazyDeoptExitSize
: Deoptimizer::kEagerDeoptExitSize);
}
void MacroAssembler::Trap() { stop(); }
void MacroAssembler::DebugBreak() { stop(); }
void MacroAssembler::CountLeadingZerosU32(Register dst, Register src,
Register scratch_pair) {
llgfr(dst, src);
flogr(scratch_pair,
dst); // will modify a register pair scratch and scratch + 1
AddS32(dst, scratch_pair, Operand(-32));
}
void MacroAssembler::CountLeadingZerosU64(Register dst, Register src,
Register scratch_pair) {
if (CpuFeatures::IsSupported(MISC_INSTR_EXT4)) {
clzg(dst, src);
} else {
flogr(scratch_pair,
src); // will modify a register pair scratch and scratch + 1
mov(dst, scratch_pair);
}
}
void MacroAssembler::CountTrailingZerosU32(Register dst, Register src,
Register scratch_pair) {
Register scratch0 = scratch_pair;
Register scratch1 = Register::from_code(scratch_pair.code() + 1);
DCHECK(!AreAliased(dst, scratch0, scratch1));
DCHECK(!AreAliased(src, scratch0, scratch1));
Label done;
// Check if src is all zeros.
ltr(scratch1, src);
mov(dst, Operand(32));
beq(&done);
llgfr(scratch1, scratch1);
lcgr(scratch0, scratch1);
ngr(scratch1, scratch0);
flogr(scratch0, scratch1);
mov(dst, Operand(63));
SubS64(dst, scratch0);
bind(&done);
}
void MacroAssembler::CountTrailingZerosU64(Register dst, Register src,
Register scratch_pair) {
if (CpuFeatures::IsSupported(MISC_INSTR_EXT4)) {
ctzg(dst, src);
} else {
Register scratch0 = scratch_pair;
Register scratch1 = Register::from_code(scratch_pair.code() + 1);
DCHECK(!AreAliased(dst, scratch0, scratch1));
DCHECK(!AreAliased(src, scratch0, scratch1));
Label done;
// Check if src is all zeros.
ltgr(scratch1, src);
mov(dst, Operand(64));
beq(&done);
lcgr(scratch0, scratch1);
ngr(scratch0, scratch1);
flogr(scratch0, scratch0);
mov(dst, Operand(63));
SubS64(dst, scratch0);
bind(&done);
}
}
void MacroAssembler::AtomicCmpExchangeHelper(Register addr, Register output,
Register old_value,
Register new_value, int start,
int end, int shift_amount,
int offset, Register temp0,
Register temp1) {
LoadU32(temp0, MemOperand(addr, offset));
llgfr(temp1, temp0);
RotateInsertSelectBits(temp0, old_value, Operand(start), Operand(end),
Operand(shift_amount), false);
RotateInsertSelectBits(temp1, new_value, Operand(start), Operand(end),
Operand(shift_amount), false);
CmpAndSwap(temp0, temp1, MemOperand(addr, offset));
RotateInsertSelectBits(output, temp0, Operand(start + shift_amount),
Operand(end + shift_amount),
Operand(64 - shift_amount), true);
}
void MacroAssembler::AtomicCmpExchangeU8(Register addr, Register output,
Register old_value, Register new_value,
Register temp0, Register temp1) {
#ifdef V8_TARGET_BIG_ENDIAN
#define ATOMIC_COMP_EXCHANGE_BYTE(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 3 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 8 * idx; \
constexpr int end = start + 7; \
constexpr int shift_amount = (3 - idx) * 8; \
AtomicCmpExchangeHelper(addr, output, old_value, new_value, start, end, \
shift_amount, -idx, temp0, temp1); \
}
#else
#define ATOMIC_COMP_EXCHANGE_BYTE(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 3 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 8 * (3 - idx); \
constexpr int end = start + 7; \
constexpr int shift_amount = idx * 8; \
AtomicCmpExchangeHelper(addr, output, old_value, new_value, start, end, \
shift_amount, -idx, temp0, temp1); \
}
#endif
Label one, two, three, done;
tmll(addr, Operand(3));
b(Condition(1), &three);
b(Condition(2), &two);
b(Condition(4), &one);
/* ending with 0b00 */
ATOMIC_COMP_EXCHANGE_BYTE(0);
b(&done);
/* ending with 0b01 */
bind(&one);
ATOMIC_COMP_EXCHANGE_BYTE(1);
b(&done);
/* ending with 0b10 */
bind(&two);
ATOMIC_COMP_EXCHANGE_BYTE(2);
b(&done);
/* ending with 0b11 */
bind(&three);
ATOMIC_COMP_EXCHANGE_BYTE(3);
bind(&done);
}
void MacroAssembler::AtomicCmpExchangeU16(Register addr, Register output,
Register old_value,
Register new_value, Register temp0,
Register temp1) {
#ifdef V8_TARGET_BIG_ENDIAN
#define ATOMIC_COMP_EXCHANGE_HALFWORD(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 1 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 16 * idx; \
constexpr int end = start + 15; \
constexpr int shift_amount = (1 - idx) * 16; \
AtomicCmpExchangeHelper(addr, output, old_value, new_value, start, end, \
shift_amount, -idx * 2, temp0, temp1); \
}
#else
#define ATOMIC_COMP_EXCHANGE_HALFWORD(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 1 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 16 * (1 - idx); \
constexpr int end = start + 15; \
constexpr int shift_amount = idx * 16; \
AtomicCmpExchangeHelper(addr, output, old_value, new_value, start, end, \
shift_amount, -idx * 2, temp0, temp1); \
}
#endif
Label two, done;
tmll(addr, Operand(3));
b(Condition(2), &two);
ATOMIC_COMP_EXCHANGE_HALFWORD(0);
b(&done);
bind(&two);
ATOMIC_COMP_EXCHANGE_HALFWORD(1);
bind(&done);
}
void MacroAssembler::AtomicExchangeHelper(Register addr, Register value,
Register output, int start, int end,
int shift_amount, int offset,
Register scratch) {
Label do_cs;
LoadU32(output, MemOperand(addr, offset));
bind(&do_cs);
llgfr(scratch, output);
RotateInsertSelectBits(scratch, value, Operand(start), Operand(end),
Operand(shift_amount), false);
csy(output, scratch, MemOperand(addr, offset));
bne(&do_cs, Label::kNear);
srl(output, Operand(shift_amount));
}
void MacroAssembler::AtomicExchangeU8(Register addr, Register value,
Register output, Register scratch) {
#ifdef V8_TARGET_BIG_ENDIAN
#define ATOMIC_EXCHANGE_BYTE(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 3 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 8 * idx; \
constexpr int end = start + 7; \
constexpr int shift_amount = (3 - idx) * 8; \
AtomicExchangeHelper(addr, value, output, start, end, shift_amount, -idx, \
scratch); \
}
#else
#define ATOMIC_EXCHANGE_BYTE(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 3 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 8 * (3 - idx); \
constexpr int end = start + 7; \
constexpr int shift_amount = idx * 8; \
AtomicExchangeHelper(addr, value, output, start, end, shift_amount, -idx, \
scratch); \
}
#endif
Label three, two, one, done;
tmll(addr, Operand(3));
b(Condition(1), &three);
b(Condition(2), &two);
b(Condition(4), &one);
// end with 0b00
ATOMIC_EXCHANGE_BYTE(0);
b(&done);
// ending with 0b01
bind(&one);
ATOMIC_EXCHANGE_BYTE(1);
b(&done);
// ending with 0b10
bind(&two);
ATOMIC_EXCHANGE_BYTE(2);
b(&done);
// ending with 0b11
bind(&three);
ATOMIC_EXCHANGE_BYTE(3);
bind(&done);
}
void MacroAssembler::AtomicExchangeU16(Register addr, Register value,
Register output, Register scratch) {
#ifdef V8_TARGET_BIG_ENDIAN
#define ATOMIC_EXCHANGE_HALFWORD(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 1 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 16 * idx; \
constexpr int end = start + 15; \
constexpr int shift_amount = (1 - idx) * 16; \
AtomicExchangeHelper(addr, value, output, start, end, shift_amount, \
-idx * 2, scratch); \
}
#else
#define ATOMIC_EXCHANGE_HALFWORD(i) \
{ \
constexpr int idx = (i); \
static_assert(idx <= 1 && idx >= 0, "idx is out of range!"); \
constexpr int start = 32 + 16 * (1 - idx); \
constexpr int end = start + 15; \
constexpr int shift_amount = idx * 16; \
AtomicExchangeHelper(addr, value, output, start, end, shift_amount, \
-idx * 2, scratch); \
}
#endif
Label two, done;
tmll(addr, Operand(3));
b(Condition(2), &two);
// end with 0b00
ATOMIC_EXCHANGE_HALFWORD(0);
b(&done);
// ending with 0b10
bind(&two);
ATOMIC_EXCHANGE_HALFWORD(1);
bind(&done);
}
// Simd Support.
void MacroAssembler::F64x2Splat(Simd128Register dst, Simd128Register src) {
vrep(dst, src, Operand(0), Condition(3));
}
void MacroAssembler::F32x4Splat(Simd128Register dst, Simd128Register src) {
vrep(dst, src, Operand(0), Condition(2));
}
void MacroAssembler::I64x2Splat(Simd128Register dst, Register src) {
vlvg(dst, src, MemOperand(r0, 0), Condition(3));
vrep(dst, dst, Operand(0), Condition(3));
}
void MacroAssembler::I32x4Splat(Simd128Register dst, Register src) {
vlvg(dst, src, MemOperand(r0, 0), Condition(2));
vrep(dst, dst, Operand(0), Condition(2));
}
void MacroAssembler::I16x8Splat(Simd128Register dst, Register src) {
vlvg(dst, src, MemOperand(r0, 0), Condition(1));
vrep(dst, dst, Operand(0), Condition(1));
}
void MacroAssembler::I8x16Splat(Simd128Register dst, Register src) {
vlvg(dst, src, MemOperand(r0, 0), Condition(0));
vrep(dst, dst, Operand(0), Condition(0));
}
void MacroAssembler::F64x2ExtractLane(DoubleRegister dst, Simd128Register src,
uint8_t imm_lane_idx, Register) {
vrep(dst, src, Operand(1 - imm_lane_idx), Condition(3));
}
void MacroAssembler::F32x4ExtractLane(DoubleRegister dst, Simd128Register src,
uint8_t imm_lane_idx, Register) {
vrep(dst, src, Operand(3 - imm_lane_idx), Condition(2));
}
void MacroAssembler::I64x2ExtractLane(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register) {
vlgv(dst, src, MemOperand(r0, 1 - imm_lane_idx), Condition(3));
}
void MacroAssembler::I32x4ExtractLane(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register) {
vlgv(dst, src, MemOperand(r0, 3 - imm_lane_idx), Condition(2));
}
void MacroAssembler::I16x8ExtractLaneU(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register) {
vlgv(dst, src, MemOperand(r0, 7 - imm_lane_idx), Condition(1));
}
void MacroAssembler::I16x8ExtractLaneS(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register scratch) {
vlgv(scratch, src, MemOperand(r0, 7 - imm_lane_idx), Condition(1));
lghr(dst, scratch);
}
void MacroAssembler::I8x16ExtractLaneU(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register) {
vlgv(dst, src, MemOperand(r0, 15 - imm_lane_idx), Condition(0));
}
void MacroAssembler::I8x16ExtractLaneS(Register dst, Simd128Register src,
uint8_t imm_lane_idx, Register scratch) {
vlgv(scratch, src, MemOperand(r0, 15 - imm_lane_idx), Condition(0));
lgbr(dst, scratch);
}
void MacroAssembler::F64x2ReplaceLane(Simd128Register dst, Simd128Register src1,
DoubleRegister src2, uint8_t imm_lane_idx,
Register scratch) {
vlgv(scratch, src2, MemOperand(r0, 0), Condition(3));
if (src1 != dst) {
vlr(dst, src1, Condition(0), Condition(0), Condition(0));
}
vlvg(dst, scratch, MemOperand(r0, 1 - imm_lane_idx), Condition(3));
}
void MacroAssembler::F32x4ReplaceLane(Simd128Register dst, Simd128Register src1,
DoubleRegister src2, uint8_t imm_lane_idx,
Register scratch) {
vlgv(scratch, src2, MemOperand(r0, 0), Condition(2));
if (src1 != dst) {
vlr(dst, src1, Condition(0), Condition(0), Condition(0));
}
vlvg(dst, scratch, MemOperand(r0, 3 - imm_lane_idx), Condition(2));
}
void MacroAssembler::I64x2ReplaceLane(Simd128Register dst, Simd128Register src1,
Register src2, uint8_t imm_lane_idx,
Register) {
if (src1 != dst) {
vlr(dst, src1, Condition(0), Condition(0), Condition(0));
}
vlvg(dst, src2, MemOperand(r0, 1 - imm_lane_idx), Condition(3));
}
void MacroAssembler::I32x4ReplaceLane(Simd128Register dst, Simd128Register src1,
Register src2, uint8_t imm_lane_idx,
Register) {
if (src1 != dst) {
vlr(dst, src1, Condition(0), Condition(0), Condition(0));
}
vlvg(dst, src2, MemOperand(r0, 3 - imm_lane_idx), Condition(2));
}
void MacroAssembler::I16x8ReplaceLane(Simd128Register dst, Simd128Register src1,
Register src2, uint8_t imm_lane_idx,
Register) {
if (src1 != dst) {
vlr(dst, src1, Condition(0), Condition(0), Condition(0));
}
vlvg(dst, src2, MemOperand(r0, 7 - imm_lane_idx), Condition(1));
}
void MacroAssembler::I8x16ReplaceLane(Simd128Register dst, Simd128Register src1,
Register src2, uint8_t imm_lane_idx,
Register) {
if (src1 != dst) {
vlr(dst, src1, Condition(0), Condition(0), Condition(0));
}
vlvg(dst, src2, MemOperand(r0, 15 - imm_lane_idx), Condition(0));
}
void MacroAssembler::S128Not(Simd128Register dst, Simd128Register src) {
vno(dst, src, src, Condition(0), Condition(0), Condition(0));
}
void MacroAssembler::S128Zero(Simd128Register dst, Simd128Register src) {
vx(dst, src, src, Condition(0), Condition(0), Condition(0));
}
void MacroAssembler::S128AllOnes(Simd128Register dst, Simd128Register src) {
vceq(dst, src, src, Condition(0), Condition(3));
}
void MacroAssembler::S128Select(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register mask) {
vsel(dst, src1, src2, mask, Condition(0), Condition(0));
}
#define SIMD_UNOP_LIST_VRR_A(V) \
V(F64x2Abs, vfpso, 2, 0, 3) \
V(F64x2Neg, vfpso, 0, 0, 3) \
V(F64x2Sqrt, vfsq, 0, 0, 3) \
V(F64x2Ceil, vfi, 6, 0, 3) \
V(F64x2Floor, vfi, 7, 0, 3) \
V(F64x2Trunc, vfi, 5, 0, 3) \
V(F64x2NearestInt, vfi, 4, 0, 3) \
V(F32x4Abs, vfpso, 2, 0, 2) \
V(F32x4Neg, vfpso, 0, 0, 2) \
V(F32x4Sqrt, vfsq, 0, 0, 2) \
V(F32x4Ceil, vfi, 6, 0, 2) \
V(F32x4Floor, vfi, 7, 0, 2) \
V(F32x4Trunc, vfi, 5, 0, 2) \
V(F32x4NearestInt, vfi, 4, 0, 2) \
V(I64x2Abs, vlp, 0, 0, 3) \
V(I64x2Neg, vlc, 0, 0, 3) \
V(I64x2SConvertI32x4Low, vupl, 0, 0, 2) \
V(I64x2SConvertI32x4High, vuph, 0, 0, 2) \
V(I64x2UConvertI32x4Low, vupll, 0, 0, 2) \
V(I64x2UConvertI32x4High, vuplh, 0, 0, 2) \
V(I32x4Abs, vlp, 0, 0, 2) \
V(I32x4Neg, vlc, 0, 0, 2) \
V(I32x4SConvertI16x8Low, vupl, 0, 0, 1) \
V(I32x4SConvertI16x8High, vuph, 0, 0, 1) \
V(I32x4UConvertI16x8Low, vupll, 0, 0, 1) \
V(I32x4UConvertI16x8High, vuplh, 0, 0, 1) \
V(I16x8Abs, vlp, 0, 0, 1) \
V(I16x8Neg, vlc, 0, 0, 1) \
V(I16x8SConvertI8x16Low, vupl, 0, 0, 0) \
V(I16x8SConvertI8x16High, vuph, 0, 0, 0) \
V(I16x8UConvertI8x16Low, vupll, 0, 0, 0) \
V(I16x8UConvertI8x16High, vuplh, 0, 0, 0) \
V(I8x16Abs, vlp, 0, 0, 0) \
V(I8x16Neg, vlc, 0, 0, 0) \
V(I8x16Popcnt, vpopct, 0, 0, 0)
#define EMIT_SIMD_UNOP_VRR_A(name, op, c1, c2, c3) \
void MacroAssembler::name(Simd128Register dst, Simd128Register src) { \
op(dst, src, Condition(c1), Condition(c2), Condition(c3)); \
}
SIMD_UNOP_LIST_VRR_A(EMIT_SIMD_UNOP_VRR_A)
#undef EMIT_SIMD_UNOP_VRR_A
#undef SIMD_UNOP_LIST_VRR_A
#define SIMD_BINOP_LIST_VRR_B(V) \
V(I64x2Eq, vceq, 0, 3) \
V(I64x2GtS, vch, 0, 3) \
V(I32x4Eq, vceq, 0, 2) \
V(I32x4GtS, vch, 0, 2) \
V(I32x4GtU, vchl, 0, 2) \
V(I16x8Eq, vceq, 0, 1) \
V(I16x8GtS, vch, 0, 1) \
V(I16x8GtU, vchl, 0, 1) \
V(I8x16Eq, vceq, 0, 0) \
V(I8x16GtS, vch, 0, 0) \
V(I8x16GtU, vchl, 0, 0)
#define EMIT_SIMD_BINOP_VRR_B(name, op, c1, c2) \
void MacroAssembler::name(Simd128Register dst, Simd128Register src1, \
Simd128Register src2) { \
op(dst, src1, src2, Condition(c1), Condition(c2)); \
}
SIMD_BINOP_LIST_VRR_B(EMIT_SIMD_BINOP_VRR_B)
#undef EMIT_SIMD_BINOP_VRR_B
#undef SIMD_BINOP_LIST_VRR_B
#define SIMD_BINOP_LIST_VRR_C(V) \
V(F64x2Add, vfa, 0, 0, 3) \
V(F64x2Sub, vfs, 0, 0, 3) \
V(F64x2Mul, vfm, 0, 0, 3) \
V(F64x2Div, vfd, 0, 0, 3) \
V(F64x2Min, vfmin, 1, 0, 3) \
V(F64x2Max, vfmax, 1, 0, 3) \
V(F64x2Eq, vfce, 0, 0, 3) \
V(F64x2Pmin, vfmin, 3, 0, 3) \
V(F64x2Pmax, vfmax, 3, 0, 3) \
V(F32x4Add, vfa, 0, 0, 2) \
V(F32x4Sub, vfs, 0, 0, 2) \
V(F32x4Mul, vfm, 0, 0, 2) \
V(F32x4Div, vfd, 0, 0, 2) \
V(F32x4Min, vfmin, 1, 0, 2) \
V(F32x4Max, vfmax, 1, 0, 2) \
V(F32x4Eq, vfce, 0, 0, 2) \
V(F32x4Pmin, vfmin, 3, 0, 2) \
V(F32x4Pmax, vfmax, 3, 0, 2) \
V(I64x2Add, va, 0, 0, 3) \
V(I64x2Sub, vs, 0, 0, 3) \
V(I32x4Add, va, 0, 0, 2) \
V(I32x4Sub, vs, 0, 0, 2) \
V(I32x4Mul, vml, 0, 0, 2) \
V(I32x4MinS, vmn, 0, 0, 2) \
V(I32x4MinU, vmnl, 0, 0, 2) \
V(I32x4MaxS, vmx, 0, 0, 2) \
V(I32x4MaxU, vmxl, 0, 0, 2) \
V(I16x8Add, va, 0, 0, 1) \
V(I16x8Sub, vs, 0, 0, 1) \
V(I16x8Mul, vml, 0, 0, 1) \
V(I16x8MinS, vmn, 0, 0, 1) \
V(I16x8MinU, vmnl, 0, 0, 1) \
V(I16x8MaxS, vmx, 0, 0, 1) \
V(I16x8MaxU, vmxl, 0, 0, 1) \
V(I16x8RoundingAverageU, vavgl, 0, 0, 1) \
V(I8x16Add, va, 0, 0, 0) \
V(I8x16Sub, vs, 0, 0, 0) \
V(I8x16MinS, vmn, 0, 0, 0) \
V(I8x16MinU, vmnl, 0, 0, 0) \
V(I8x16MaxS, vmx, 0, 0, 0) \
V(I8x16MaxU, vmxl, 0, 0, 0) \
V(I8x16RoundingAverageU, vavgl, 0, 0, 0) \
V(S128And, vn, 0, 0, 0) \
V(S128Or, vo, 0, 0, 0) \
V(S128Xor, vx, 0, 0, 0) \
V(S128AndNot, vnc, 0, 0, 0)
#define EMIT_SIMD_BINOP_VRR_C(name, op, c1, c2, c3) \
void MacroAssembler::name(Simd128Register dst, Simd128Register src1, \
Simd128Register src2) { \
op(dst, src1, src2, Condition(c1), Condition(c2), Condition(c3)); \
}
SIMD_BINOP_LIST_VRR_C(EMIT_SIMD_BINOP_VRR_C)
#undef EMIT_SIMD_BINOP_VRR_C
#undef SIMD_BINOP_LIST_VRR_C
#define SIMD_SHIFT_LIST(V) \
V(I64x2Shl, veslv, 3) \
V(I64x2ShrS, vesrav, 3) \
V(I64x2ShrU, vesrlv, 3) \
V(I32x4Shl, veslv, 2) \
V(I32x4ShrS, vesrav, 2) \
V(I32x4ShrU, vesrlv, 2) \
V(I16x8Shl, veslv, 1) \
V(I16x8ShrS, vesrav, 1) \
V(I16x8ShrU, vesrlv, 1) \
V(I8x16Shl, veslv, 0) \
V(I8x16ShrS, vesrav, 0) \
V(I8x16ShrU, vesrlv, 0)
#define EMIT_SIMD_SHIFT(name, op, c1) \
void MacroAssembler::name(Simd128Register dst, Simd128Register src1, \
Register src2, Simd128Register scratch) { \
vlvg(scratch, src2, MemOperand(r0, 0), Condition(c1)); \
vrep(scratch, scratch, Operand(0), Condition(c1)); \
op(dst, src1, scratch, Condition(0), Condition(0), Condition(c1)); \
} \
void MacroAssembler::name(Simd128Register dst, Simd128Register src1, \
const Operand& src2, Register scratch1, \
Simd128Register scratch2) { \
mov(scratch1, src2); \
name(dst, src1, scratch1, scratch2); \
}
SIMD_SHIFT_LIST(EMIT_SIMD_SHIFT)
#undef EMIT_SIMD_SHIFT
#undef SIMD_SHIFT_LIST
#define SIMD_EXT_MUL_LIST(V) \
V(I64x2ExtMulLowI32x4S, vme, vmo, vmrl, 2) \
V(I64x2ExtMulHighI32x4S, vme, vmo, vmrh, 2) \
V(I64x2ExtMulLowI32x4U, vmle, vmlo, vmrl, 2) \
V(I64x2ExtMulHighI32x4U, vmle, vmlo, vmrh, 2) \
V(I32x4ExtMulLowI16x8S, vme, vmo, vmrl, 1) \
V(I32x4ExtMulHighI16x8S, vme, vmo, vmrh, 1) \
V(I32x4ExtMulLowI16x8U, vmle, vmlo, vmrl, 1) \
V(I32x4ExtMulHighI16x8U, vmle, vmlo, vmrh, 1) \
V(I16x8ExtMulLowI8x16S, vme, vmo, vmrl, 0) \
V(I16x8ExtMulHighI8x16S, vme, vmo, vmrh, 0) \
V(I16x8ExtMulLowI8x16U, vmle, vmlo, vmrl, 0) \
V(I16x8ExtMulHighI8x16U, vmle, vmlo, vmrh, 0)
#define EMIT_SIMD_EXT_MUL(name, mul_even, mul_odd, merge, mode) \
void MacroAssembler::name(Simd128Register dst, Simd128Register src1, \
Simd128Register src2, Simd128Register scratch) { \
mul_even(scratch, src1, src2, Condition(0), Condition(0), \
Condition(mode)); \
mul_odd(dst, src1, src2, Condition(0), Condition(0), Condition(mode)); \
merge(dst, scratch, dst, Condition(0), Condition(0), Condition(mode + 1)); \
}
SIMD_EXT_MUL_LIST(EMIT_SIMD_EXT_MUL)
#undef EMIT_SIMD_EXT_MUL
#undef SIMD_EXT_MUL_LIST
#define SIMD_ALL_TRUE_LIST(V) \
V(I64x2AllTrue, 3) \
V(I32x4AllTrue, 2) \
V(I16x8AllTrue, 1) \
V(I8x16AllTrue, 0)
#define EMIT_SIMD_ALL_TRUE(name, mode) \
void MacroAssembler::name(Register dst, Simd128Register src, \
Register scratch1, Simd128Register scratch2) { \
mov(scratch1, Operand(1)); \
xgr(dst, dst); \
vx(scratch2, scratch2, scratch2, Condition(0), Condition(0), \
Condition(2)); \
vceq(scratch2, src, scratch2, Condition(0), Condition(mode)); \
vtm(scratch2, scratch2, Condition(0), Condition(0), Condition(0)); \
locgr(Condition(8), dst, scratch1); \
}
SIMD_ALL_TRUE_LIST(EMIT_SIMD_ALL_TRUE)
#undef EMIT_SIMD_ALL_TRUE
#undef SIMD_ALL_TRUE_LIST
#define SIMD_QFM_LIST(V) \
V(F64x2Qfma, vfma, 3) \
V(F64x2Qfms, vfnms, 3) \
V(F32x4Qfma, vfma, 2) \
V(F32x4Qfms, vfnms, 2)
#define EMIT_SIMD_QFM(name, op, c1) \
void MacroAssembler::name(Simd128Register dst, Simd128Register src1, \
Simd128Register src2, Simd128Register src3) { \
op(dst, src1, src2, src3, Condition(c1), Condition(0)); \
}
SIMD_QFM_LIST(EMIT_SIMD_QFM)
#undef EMIT_SIMD_QFM
#undef SIMD_QFM_LIST
void MacroAssembler::I64x2Mul(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Register scratch1,
Register scratch2, Register scratch3) {
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_3)) {
vml(dst, src1, src2, Condition(0), Condition(0), Condition(3));
} else {
Register scratch_1 = scratch1;
Register scratch_2 = scratch2;
for (int i = 0; i < 2; i++) {
vlgv(scratch_1, src1, MemOperand(r0, i), Condition(3));
vlgv(scratch_2, src2, MemOperand(r0, i), Condition(3));
MulS64(scratch_1, scratch_2);
scratch_1 = scratch2;
scratch_2 = scratch3;
}
vlvgp(dst, scratch1, scratch2);
}
}
void MacroAssembler::F64x2Ne(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vfce(dst, src1, src2, Condition(0), Condition(0), Condition(3));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(3));
}
void MacroAssembler::F64x2Lt(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vfch(dst, src2, src1, Condition(0), Condition(0), Condition(3));
}
void MacroAssembler::F64x2Le(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vfche(dst, src2, src1, Condition(0), Condition(0), Condition(3));
}
void MacroAssembler::F32x4Ne(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vfce(dst, src1, src2, Condition(0), Condition(0), Condition(2));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(2));
}
void MacroAssembler::F32x4Lt(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vfch(dst, src2, src1, Condition(0), Condition(0), Condition(2));
}
void MacroAssembler::F32x4Le(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vfche(dst, src2, src1, Condition(0), Condition(0), Condition(2));
}
void MacroAssembler::I64x2Ne(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vceq(dst, src1, src2, Condition(0), Condition(3));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(3));
}
void MacroAssembler::I64x2GeS(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
// Compute !(B > A) which is equal to A >= B.
vch(dst, src2, src1, Condition(0), Condition(3));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(3));
}
void MacroAssembler::I32x4Ne(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vceq(dst, src1, src2, Condition(0), Condition(2));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(2));
}
void MacroAssembler::I32x4GeS(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
// Compute !(B > A) which is equal to A >= B.
vch(dst, src2, src1, Condition(0), Condition(2));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(2));
}
void MacroAssembler::I32x4GeU(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register scratch) {
vceq(scratch, src1, src2, Condition(0), Condition(2));
vchl(dst, src1, src2, Condition(0), Condition(2));
vo(dst, dst, scratch, Condition(0), Condition(0), Condition(2));
}
void MacroAssembler::I16x8Ne(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vceq(dst, src1, src2, Condition(0), Condition(1));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(1));
}
void MacroAssembler::I16x8GeS(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
// Compute !(B > A) which is equal to A >= B.
vch(dst, src2, src1, Condition(0), Condition(1));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(1));
}
void MacroAssembler::I16x8GeU(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register scratch) {
vceq(scratch, src1, src2, Condition(0), Condition(1));
vchl(dst, src1, src2, Condition(0), Condition(1));
vo(dst, dst, scratch, Condition(0), Condition(0), Condition(1));
}
void MacroAssembler::I8x16Ne(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
vceq(dst, src1, src2, Condition(0), Condition(0));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(0));
}
void MacroAssembler::I8x16GeS(Simd128Register dst, Simd128Register src1,
Simd128Register src2) {
// Compute !(B > A) which is equal to A >= B.
vch(dst, src2, src1, Condition(0), Condition(0));
vno(dst, dst, dst, Condition(0), Condition(0), Condition(0));
}
void MacroAssembler::I8x16GeU(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Simd128Register scratch) {
vceq(scratch, src1, src2, Condition(0), Condition(0));
vchl(dst, src1, src2, Condition(0), Condition(0));
vo(dst, dst, scratch, Condition(0), Condition(0), Condition(0));
}
void MacroAssembler::I64x2BitMask(Register dst, Simd128Register src,
Register scratch1, Simd128Register scratch2) {
mov(scratch1, Operand(0x8080808080800040));
vlvg(scratch2, scratch1, MemOperand(r0, 1), Condition(3));
vbperm(scratch2, src, scratch2, Condition(0), Condition(0), Condition(0));
vlgv(dst, scratch2, MemOperand(r0, 7), Condition(0));
}
void MacroAssembler::I32x4BitMask(Register dst, Simd128Register src,
Register scratch1, Simd128Register scratch2) {
mov(scratch1, Operand(0x8080808000204060));
vlvg(scratch2, scratch1, MemOperand(r0, 1), Condition(3));
vbperm(scratch2, src, scratch2, Condition(0), Condition(0), Condition(0));
vlgv(dst, scratch2, MemOperand(r0, 7), Condition(0));
}
void MacroAssembler::I16x8BitMask(Register dst, Simd128Register src,
Register scratch1, Simd128Register scratch2) {
mov(scratch1, Operand(0x10203040506070));
vlvg(scratch2, scratch1, MemOperand(r0, 1), Condition(3));
vbperm(scratch2, src, scratch2, Condition(0), Condition(0), Condition(0));
vlgv(dst, scratch2, MemOperand(r0, 7), Condition(0));
}
void MacroAssembler::F64x2ConvertLowI32x4S(Simd128Register dst,
Simd128Register src) {
vupl(dst, src, Condition(0), Condition(0), Condition(2));
vcdg(dst, dst, Condition(4), Condition(0), Condition(3));
}
void MacroAssembler::F64x2ConvertLowI32x4U(Simd128Register dst,
Simd128Register src) {
vupll(dst, src, Condition(0), Condition(0), Condition(2));
vcdlg(dst, dst, Condition(4), Condition(0), Condition(3));
}
void MacroAssembler::I8x16BitMask(Register dst, Simd128Register src,
Register scratch1, Register scratch2,
Simd128Register scratch3) {
mov(scratch1, Operand(0x4048505860687078));
mov(scratch2, Operand(0x8101820283038));
vlvgp(scratch3, scratch2, scratch1);
vbperm(scratch3, src, scratch3, Condition(0), Condition(0), Condition(0));
vlgv(dst, scratch3, MemOperand(r0, 3), Condition(1));
}
void MacroAssembler::V128AnyTrue(Register dst, Simd128Register src,
Register scratch) {
mov(dst, Operand(1));
xgr(scratch, scratch);
vtm(src, src, Condition(0), Condition(0), Condition(0));
locgr(Condition(8), dst, scratch);
}
#define CONVERT_FLOAT_TO_INT32(convert, dst, src, scratch1, scratch2) \
for (int index = 0; index < 4; index++) { \
vlgv(scratch2, src, MemOperand(r0, index), Condition(2)); \
MovIntToFloat(scratch1, scratch2); \
convert(scratch2, scratch1, kRoundToZero); \
vlvg(dst, scratch2, MemOperand(r0, index), Condition(2)); \
}
void MacroAssembler::I32x4SConvertF32x4(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Register scratch2) {
// NaN to 0.
vfce(scratch1, src, src, Condition(0), Condition(0), Condition(2));
vn(dst, src, scratch1, Condition(0), Condition(0), Condition(0));
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_2)) {
vcgd(dst, dst, Condition(5), Condition(0), Condition(2));
} else {
CONVERT_FLOAT_TO_INT32(ConvertFloat32ToInt32, dst, dst, scratch1, scratch2)
}
}
void MacroAssembler::I32x4UConvertF32x4(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Register scratch2) {
// vclgd or ConvertFloat32ToUnsignedInt32 will convert NaN to 0, negative to 0
// automatically.
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_2)) {
vclgd(dst, src, Condition(5), Condition(0), Condition(2));
} else {
CONVERT_FLOAT_TO_INT32(ConvertFloat32ToUnsignedInt32, dst, src, scratch1,
scratch2)
}
}
#undef CONVERT_FLOAT_TO_INT32
#define CONVERT_INT32_TO_FLOAT(convert, dst, src, scratch1, scratch2) \
for (int index = 0; index < 4; index++) { \
vlgv(scratch2, src, MemOperand(r0, index), Condition(2)); \
convert(scratch1, scratch2); \
MovFloatToInt(scratch2, scratch1); \
vlvg(dst, scratch2, MemOperand(r0, index), Condition(2)); \
}
void MacroAssembler::F32x4SConvertI32x4(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_2)) {
vcdg(dst, src, Condition(4), Condition(0), Condition(2));
} else {
CONVERT_INT32_TO_FLOAT(ConvertIntToFloat, dst, src, scratch1, scratch2)
}
}
void MacroAssembler::F32x4UConvertI32x4(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_2)) {
vcdlg(dst, src, Condition(4), Condition(0), Condition(2));
} else {
CONVERT_INT32_TO_FLOAT(ConvertUnsignedIntToFloat, dst, src, scratch1,
scratch2)
}
}
#undef CONVERT_INT32_TO_FLOAT
void MacroAssembler::I16x8SConvertI32x4(Simd128Register dst,
Simd128Register src1,
Simd128Register src2) {
vpks(dst, src2, src1, Condition(0), Condition(2));
}
void MacroAssembler::I8x16SConvertI16x8(Simd128Register dst,
Simd128Register src1,
Simd128Register src2) {
vpks(dst, src2, src1, Condition(0), Condition(1));
}
#define VECTOR_PACK_UNSIGNED(dst, src1, src2, scratch, mode) \
vx(kDoubleRegZero, kDoubleRegZero, kDoubleRegZero, Condition(0), \
Condition(0), Condition(mode)); \
vmx(scratch, src1, kDoubleRegZero, Condition(0), Condition(0), \
Condition(mode)); \
vmx(dst, src2, kDoubleRegZero, Condition(0), Condition(0), Condition(mode));
void MacroAssembler::I16x8UConvertI32x4(Simd128Register dst,
Simd128Register src1,
Simd128Register src2,
Simd128Register scratch) {
// treat inputs as signed, and saturate to unsigned (negative to 0).
VECTOR_PACK_UNSIGNED(dst, src1, src2, scratch, 2)
vpkls(dst, dst, scratch, Condition(0), Condition(2));
}
void MacroAssembler::I8x16UConvertI16x8(Simd128Register dst,
Simd128Register src1,
Simd128Register src2,
Simd128Register scratch) {
// treat inputs as signed, and saturate to unsigned (negative to 0).
VECTOR_PACK_UNSIGNED(dst, src1, src2, scratch, 1)
vpkls(dst, dst, scratch, Condition(0), Condition(1));
}
#undef VECTOR_PACK_UNSIGNED
#define BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, op, extract_high, \
extract_low, mode) \
DCHECK(dst != scratch1 && dst != scratch2); \
DCHECK(dst != src1 && dst != src2); \
extract_high(scratch1, src1, Condition(0), Condition(0), Condition(mode)); \
extract_high(scratch2, src2, Condition(0), Condition(0), Condition(mode)); \
op(dst, scratch1, scratch2, Condition(0), Condition(0), \
Condition(mode + 1)); \
extract_low(scratch1, src1, Condition(0), Condition(0), Condition(mode)); \
extract_low(scratch2, src2, Condition(0), Condition(0), Condition(mode)); \
op(scratch1, scratch1, scratch2, Condition(0), Condition(0), \
Condition(mode + 1));
void MacroAssembler::I16x8AddSatS(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2) {
BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, va, vuph, vupl, 1)
vpks(dst, dst, scratch1, Condition(0), Condition(2));
}
void MacroAssembler::I16x8SubSatS(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2) {
BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, vs, vuph, vupl, 1)
vpks(dst, dst, scratch1, Condition(0), Condition(2));
}
void MacroAssembler::I16x8AddSatU(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2) {
BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, va, vuplh, vupll, 1)
vpkls(dst, dst, scratch1, Condition(0), Condition(2));
}
void MacroAssembler::I16x8SubSatU(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2) {
BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, vs, vuplh, vupll, 1)
// negative intermediate values to 0.
vx(kDoubleRegZero, kDoubleRegZero, kDoubleRegZero, Condition(0), Condition(0),
Condition(0));
vmx(dst, kDoubleRegZero, dst, Condition(0), Condition(0), Condition(2));
vmx(scratch1, kDoubleRegZero, scratch1, Condition(0), Condition(0),
Condition(2));
vpkls(dst, dst, scratch1, Condition(0), Condition(2));
}
void MacroAssembler::I8x16AddSatS(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2) {
BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, va, vuph, vupl, 0)
vpks(dst, dst, scratch1, Condition(0), Condition(1));
}
void MacroAssembler::I8x16SubSatS(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2) {
BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, vs, vuph, vupl, 0)
vpks(dst, dst, scratch1, Condition(0), Condition(1));
}
void MacroAssembler::I8x16AddSatU(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2) {
BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, va, vuplh, vupll, 0)
vpkls(dst, dst, scratch1, Condition(0), Condition(1));
}
void MacroAssembler::I8x16SubSatU(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2) {
BINOP_EXTRACT(dst, src1, src2, scratch1, scratch2, vs, vuplh, vupll, 0)
// negative intermediate values to 0.
vx(kDoubleRegZero, kDoubleRegZero, kDoubleRegZero, Condition(0), Condition(0),
Condition(0));
vmx(dst, kDoubleRegZero, dst, Condition(0), Condition(0), Condition(1));
vmx(scratch1, kDoubleRegZero, scratch1, Condition(0), Condition(0),
Condition(1));
vpkls(dst, dst, scratch1, Condition(0), Condition(1));
}
#undef BINOP_EXTRACT
void MacroAssembler::F64x2PromoteLowF32x4(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Register scratch2, Register scratch3,
Register scratch4) {
Register holder = scratch3;
for (int index = 0; index < 2; ++index) {
vlgv(scratch2, src, MemOperand(scratch2, index + 2), Condition(2));
MovIntToFloat(scratch1, scratch2);
ldebr(scratch1, scratch1);
MovDoubleToInt64(holder, scratch1);
holder = scratch4;
}
vlvgp(dst, scratch3, scratch4);
}
void MacroAssembler::F32x4DemoteF64x2Zero(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Register scratch2, Register scratch3,
Register scratch4) {
Register holder = scratch3;
for (int index = 0; index < 2; ++index) {
vlgv(scratch2, src, MemOperand(r0, index), Condition(3));
MovInt64ToDouble(scratch1, scratch2);
ledbr(scratch1, scratch1);
MovFloatToInt(holder, scratch1);
holder = scratch4;
}
vx(dst, dst, dst, Condition(0), Condition(0), Condition(2));
vlvg(dst, scratch3, MemOperand(r0, 2), Condition(2));
vlvg(dst, scratch4, MemOperand(r0, 3), Condition(2));
}
#define EXT_ADD_PAIRWISE(dst, src, scratch1, scratch2, lane_size, mul_even, \
mul_odd) \
CHECK_NE(src, scratch2); \
vrepi(scratch2, Operand(1), Condition(lane_size)); \
mul_even(scratch1, src, scratch2, Condition(0), Condition(0), \
Condition(lane_size)); \
mul_odd(scratch2, src, scratch2, Condition(0), Condition(0), \
Condition(lane_size)); \
va(dst, scratch1, scratch2, Condition(0), Condition(0), \
Condition(lane_size + 1));
void MacroAssembler::I32x4ExtAddPairwiseI16x8S(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Simd128Register scratch2) {
EXT_ADD_PAIRWISE(dst, src, scratch1, scratch2, 1, vme, vmo)
}
void MacroAssembler::I32x4ExtAddPairwiseI16x8U(Simd128Register dst,
Simd128Register src,
Simd128Register /* scratch1 */,
Simd128Register /* scratch2 */) {
// Unnamed scratch parameters are still kept to make this function
// have the same signature as the other ExtAddPairwise functions.
// TF and Liftoff use a uniform Macro for all of them.
// TODO(miladfarca): Add a default argument or separate them in TF and
// Liftoff.
vx(kDoubleRegZero, kDoubleRegZero, kDoubleRegZero, Condition(0), Condition(0),
Condition(3));
vsum(dst, src, kDoubleRegZero, Condition(0), Condition(0), Condition(1));
}
void MacroAssembler::I16x8ExtAddPairwiseI8x16S(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Simd128Register scratch2) {
EXT_ADD_PAIRWISE(dst, src, scratch1, scratch2, 0, vme, vmo)
}
void MacroAssembler::I16x8ExtAddPairwiseI8x16U(Simd128Register dst,
Simd128Register src,
Simd128Register scratch1,
Simd128Register scratch2) {
EXT_ADD_PAIRWISE(dst, src, scratch1, scratch2, 0, vmle, vmlo)
}
#undef EXT_ADD_PAIRWISE
void MacroAssembler::I32x4TruncSatF64x2SZero(Simd128Register dst,
Simd128Register src,
Simd128Register scratch) {
// NaN to 0.
vfce(scratch, src, src, Condition(0), Condition(0), Condition(3));
vn(scratch, src, scratch, Condition(0), Condition(0), Condition(0));
vcgd(scratch, scratch, Condition(5), Condition(0), Condition(3));
vx(dst, dst, dst, Condition(0), Condition(0), Condition(2));
vpks(dst, dst, scratch, Condition(0), Condition(3));
}
void MacroAssembler::I32x4TruncSatF64x2UZero(Simd128Register dst,
Simd128Register src,
Simd128Register scratch) {
vclgd(scratch, src, Condition(5), Condition(0), Condition(3));
vx(dst, dst, dst, Condition(0), Condition(0), Condition(2));
vpkls(dst, dst, scratch, Condition(0), Condition(3));
}
void MacroAssembler::S128Const(Simd128Register dst, uint64_t high, uint64_t low,
Register scratch1, Register scratch2) {
mov(scratch1, Operand(low));
mov(scratch2, Operand(high));
vlvgp(dst, scratch2, scratch1);
}
void MacroAssembler::I8x16Swizzle(Simd128Register dst, Simd128Register src1,
Simd128Register src2, Register scratch1,
Register scratch2, Simd128Register scratch3) {
DCHECK(!AreAliased(src1, scratch3));
DCHECK(!AreAliased(src2, scratch3));
// Saturate the indices to 5 bits. Input indices more than 31 should
// return 0.
vrepi(scratch3, Operand(31), Condition(0));
vmnl(scratch3, src2, scratch3, Condition(0), Condition(0), Condition(0));
// Input needs to be reversed.
vlgv(scratch1, src1, MemOperand(r0, 0), Condition(3));
vlgv(scratch2, src1, MemOperand(r0, 1), Condition(3));
lrvgr(scratch1, scratch1);
lrvgr(scratch2, scratch2);
vlvgp(dst, scratch2, scratch1);
vx(kDoubleRegZero, kDoubleRegZero, kDoubleRegZero, Condition(0), Condition(0),
Condition(0));
vperm(dst, dst, kDoubleRegZero, scratch3, Condition(0), Condition(0));
}
void MacroAssembler::I8x16Shuffle(Simd128Register dst, Simd128Register src1,
Simd128Register src2, uint64_t high,
uint64_t low, Register scratch1,
Register scratch2, Simd128Register scratch3) {
mov(scratch1, Operand(low));
mov(scratch2, Operand(high));
vlvgp(scratch3, scratch2, scratch1);
vperm(dst, src1, src2, scratch3, Condition(0), Condition(0));
}
void MacroAssembler::I32x4DotI16x8S(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch) {
vme(scratch, src1, src2, Condition(0), Condition(0), Condition(1));
vmo(dst, src1, src2, Condition(0), Condition(0), Condition(1));
va(dst, scratch, dst, Condition(0), Condition(0), Condition(2));
}
void MacroAssembler::I32x4DotI8x16AddS(
Simd128Register dst, Simd128Register src1, Simd128Register src2,
Simd128Register src3, Simd128Register scratch1, Simd128Register scratch2) {
DCHECK_NE(dst, src3);
// I8 -> I16.
vme(scratch1, src1, src2, Condition(0), Condition(0), Condition(0));
vmo(dst, src1, src2, Condition(0), Condition(0), Condition(0));
va(dst, scratch1, dst, Condition(0), Condition(0), Condition(1));
// I16 -> I32.
vrepi(scratch2, Operand(1), Condition(1));
vme(scratch1, dst, scratch2, Condition(0), Condition(0), Condition(1));
vmo(dst, dst, scratch2, Condition(0), Condition(0), Condition(1));
va(dst, scratch1, dst, Condition(0), Condition(0), Condition(2));
// Add src3.
va(dst, dst, src3, Condition(0), Condition(0), Condition(2));
}
void MacroAssembler::I16x8DotI8x16S(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch) {
vme(scratch, src1, src2, Condition(0), Condition(0), Condition(0));
vmo(dst, src1, src2, Condition(0), Condition(0), Condition(0));
va(dst, scratch, dst, Condition(0), Condition(0), Condition(1));
}
#define Q15_MUL_ROAUND(accumulator, src1, src2, const_val, scratch, unpack) \
unpack(scratch, src1, Condition(0), Condition(0), Condition(1)); \
unpack(accumulator, src2, Condition(0), Condition(0), Condition(1)); \
vml(accumulator, scratch, accumulator, Condition(0), Condition(0), \
Condition(2)); \
va(accumulator, accumulator, const_val, Condition(0), Condition(0), \
Condition(2)); \
vrepi(scratch, Operand(15), Condition(2)); \
vesrav(accumulator, accumulator, scratch, Condition(0), Condition(0), \
Condition(2));
void MacroAssembler::I16x8Q15MulRSatS(Simd128Register dst, Simd128Register src1,
Simd128Register src2,
Simd128Register scratch1,
Simd128Register scratch2,
Simd128Register scratch3) {
DCHECK(!AreAliased(src1, scratch1, scratch2, scratch3));
DCHECK(!AreAliased(src2, scratch1, scratch2, scratch3));
vrepi(scratch1, Operand(0x4000), Condition(2));
Q15_MUL_ROAUND(scratch2, src1, src2, scratch1, scratch3, vupl)
Q15_MUL_ROAUND(dst, src1, src2, scratch1, scratch3, vuph)
vpks(dst, dst, scratch2, Condition(0), Condition(2));
}
#undef Q15_MUL_ROAUND
// Vector LE Load and Transform instructions.
#ifdef V8_TARGET_BIG_ENDIAN
#define IS_BIG_ENDIAN true
#else
#define IS_BIG_ENDIAN false
#endif
#define CAN_LOAD_STORE_REVERSE \
IS_BIG_ENDIAN&& CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_2)
#define LOAD_SPLAT_LIST(V) \
V(64x2, vlbrrep, LoadU64LE, 3) \
V(32x4, vlbrrep, LoadU32LE, 2) \
V(16x8, vlbrrep, LoadU16LE, 1) \
V(8x16, vlrep, LoadU8, 0)
#define LOAD_SPLAT(name, vector_instr, scalar_instr, condition) \
void MacroAssembler::LoadAndSplat##name##LE( \
Simd128Register dst, const MemOperand& mem, Register scratch) { \
if (CAN_LOAD_STORE_REVERSE && is_uint12(mem.offset())) { \
vector_instr(dst, mem, Condition(condition)); \
return; \
} \
scalar_instr(scratch, mem); \
vlvg(dst, scratch, MemOperand(r0, 0), Condition(condition)); \
vrep(dst, dst, Operand(0), Condition(condition)); \
}
LOAD_SPLAT_LIST(LOAD_SPLAT)
#undef LOAD_SPLAT
#undef LOAD_SPLAT_LIST
#define LOAD_EXTEND_LIST(V) \
V(32x2U, vuplh, 2) \
V(32x2S, vuph, 2) \
V(16x4U, vuplh, 1) \
V(16x4S, vuph, 1) \
V(8x8U, vuplh, 0) \
V(8x8S, vuph, 0)
#define LOAD_EXTEND(name, unpack_instr, condition) \
void MacroAssembler::LoadAndExtend##name##LE( \
Simd128Register dst, const MemOperand& mem, Register scratch) { \
if (CAN_LOAD_STORE_REVERSE && is_uint12(mem.offset())) { \
vlebrg(dst, mem, Condition(0)); \
} else { \
LoadU64LE(scratch, mem); \
vlvg(dst, scratch, MemOperand(r0, 0), Condition(3)); \
} \
unpack_instr(dst, dst, Condition(0), Condition(0), Condition(condition)); \
}
LOAD_EXTEND_LIST(LOAD_EXTEND)
#undef LOAD_EXTEND
#undef LOAD_EXTEND
void MacroAssembler::LoadV32ZeroLE(Simd128Register dst, const MemOperand& mem,
Register scratch) {
vx(dst, dst, dst, Condition(0), Condition(0), Condition(0));
if (CAN_LOAD_STORE_REVERSE && is_uint12(mem.offset())) {
vlebrf(dst, mem, Condition(3));
return;
}
LoadU32LE(scratch, mem);
vlvg(dst, scratch, MemOperand(r0, 3), Condition(2));
}
void MacroAssembler::LoadV64ZeroLE(Simd128Register dst, const MemOperand& mem,
Register scratch) {
vx(dst, dst, dst, Condition(0), Condition(0), Condition(0));
if (CAN_LOAD_STORE_REVERSE && is_uint12(mem.offset())) {
vlebrg(dst, mem, Condition(1));
return;
}
LoadU64LE(scratch, mem);
vlvg(dst, scratch, MemOperand(r0, 1), Condition(3));
}
#define LOAD_LANE_LIST(V) \
V(64, vlebrg, LoadU64LE, 3) \
V(32, vlebrf, LoadU32LE, 2) \
V(16, vlebrh, LoadU16LE, 1) \
V(8, vleb, LoadU8, 0)
#define LOAD_LANE(name, vector_instr, scalar_instr, condition) \
void MacroAssembler::LoadLane##name##LE(Simd128Register dst, \
const MemOperand& mem, int lane, \
Register scratch) { \
if (CAN_LOAD_STORE_REVERSE && is_uint12(mem.offset())) { \
vector_instr(dst, mem, Condition(lane)); \
return; \
} \
scalar_instr(scratch, mem); \
vlvg(dst, scratch, MemOperand(r0, lane), Condition(condition)); \
}
LOAD_LANE_LIST(LOAD_LANE)
#undef LOAD_LANE
#undef LOAD_LANE_LIST
#define STORE_LANE_LIST(V) \
V(64, vstebrg, StoreU64LE, 3) \
V(32, vstebrf, StoreU32LE, 2) \
V(16, vstebrh, StoreU16LE, 1) \
V(8, vsteb, StoreU8, 0)
#define STORE_LANE(name, vector_instr, scalar_instr, condition) \
void MacroAssembler::StoreLane##name##LE(Simd128Register src, \
const MemOperand& mem, int lane, \
Register scratch) { \
if (CAN_LOAD_STORE_REVERSE && is_uint12(mem.offset())) { \
vector_instr(src, mem, Condition(lane)); \
return; \
} \
vlgv(scratch, src, MemOperand(r0, lane), Condition(condition)); \
scalar_instr(scratch, mem); \
}
STORE_LANE_LIST(STORE_LANE)
#undef STORE_LANE
#undef STORE_LANE_LIST
#undef CAN_LOAD_STORE_REVERSE
#undef IS_BIG_ENDIAN
void MacroAssembler::LoadStackLimit(Register destination, StackLimitKind kind) {
ASM_CODE_COMMENT(this);
DCHECK(root_array_available());
intptr_t offset = kind == StackLimitKind::kRealStackLimit
? IsolateData::real_jslimit_offset()
: IsolateData::jslimit_offset();
CHECK(is_int32(offset));
LoadU64(destination, MemOperand(kRootRegister, offset));
}
void MacroAssembler::Switch(Register scratch, Register value,
int case_value_base, Label** labels,
int num_labels) {
Label fallthrough, jump_table;
if (case_value_base != 0) {
SubS64(value, value, Operand(case_value_base));
}
CmpU64(value, Operand(num_labels));
bge(&fallthrough);
int entry_size_log2 = 3;
ShiftLeftU32(value, value, Operand(entry_size_log2));
larl(r1, &jump_table);
lay(r1, MemOperand(value, r1));
b(r1);
bind(&jump_table);
for (int i = 0; i < num_labels; ++i) {
b(labels[i]);
dh(0);
}
bind(&fallthrough);
}
void MacroAssembler::JumpIfCodeIsMarkedForDeoptimization(
Register code, Register scratch, Label* if_marked_for_deoptimization) {
TestCodeIsMarkedForDeoptimization(code, scratch);
bne(if_marked_for_deoptimization);
}
void MacroAssembler::JumpIfCodeIsTurbofanned(Register code, Register scratch,
Label* if_turbofanned) {
LoadU32(scratch, FieldMemOperand(code, Code::kFlagsOffset));
TestBit(scratch, Code::kIsTurbofannedBit, scratch);
bne(if_turbofanned);
}
void MacroAssembler::TryLoadOptimizedOsrCode(Register scratch_and_result,
CodeKind min_opt_level,
Register feedback_vector,
FeedbackSlot slot,
Label* on_result,
Label::Distance) {
Label fallthrough, clear_slot;
LoadTaggedField(
scratch_and_result,
FieldMemOperand(feedback_vector,
FeedbackVector::OffsetOfElementAt(slot.ToInt())));
LoadWeakValue(scratch_and_result, scratch_and_result, &fallthrough);
// Is it marked_for_deoptimization? If yes, clear the slot.
{
// The entry references a CodeWrapper object. Unwrap it now.
LoadTaggedField(
scratch_and_result,
FieldMemOperand(scratch_and_result, CodeWrapper::kCodeOffset));
UseScratchRegisterScope temps(this);
Register temp = temps.Acquire();
JumpIfCodeIsMarkedForDeoptimization(scratch_and_result, temp, &clear_slot);
if (min_opt_level == CodeKind::TURBOFAN_JS) {
JumpIfCodeIsTurbofanned(scratch_and_result, temp, on_result);
b(&fallthrough);
} else {
b(on_result);
}
}
bind(&clear_slot);
mov(scratch_and_result, ClearedValue());
StoreTaggedField(
scratch_and_result,
FieldMemOperand(feedback_vector,
FeedbackVector::OffsetOfElementAt(slot.ToInt())));
bind(&fallthrough);
mov(scratch_and_result, Operand::Zero());
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Clobbers C argument registers
// and C caller-saved registers. Restores context. On return removes
// (*argc_operand + slots_to_drop_on_return) * kSystemPointerSize
// (GCed, includes the call JS arguments space and the additional space
// allocated for the fast call).
void CallApiFunctionAndReturn(MacroAssembler* masm, bool with_profiling,
Register function_address,
ExternalReference thunk_ref, Register thunk_arg,
int slots_to_drop_on_return,
MemOperand* argc_operand,
MemOperand return_value_operand) {
using ER = ExternalReference;
Isolate* isolate = masm->isolate();
MemOperand next_mem_op = __ ExternalReferenceAsOperand(
ER::handle_scope_next_address(isolate), no_reg);
MemOperand limit_mem_op = __ ExternalReferenceAsOperand(
ER::handle_scope_limit_address(isolate), no_reg);
MemOperand level_mem_op = __ ExternalReferenceAsOperand(
ER::handle_scope_level_address(isolate), no_reg);
Register return_value = r2;
#if V8_OS_ZOS
Register scratch = r6;
#else
Register scratch = ip;
#endif
Register scratch2 = r1;
// Allocate HandleScope in callee-saved registers.
// We will need to restore the HandleScope after the call to the API function,
// by allocating it in callee-saved registers it'll be preserved by C code.
#if V8_OS_ZOS
Register prev_next_address_reg = r14;
#else
Register prev_next_address_reg = r6;
#endif
Register prev_limit_reg = r7;
Register prev_level_reg = r8;
// C arguments (kCArgRegs[0/1]) are expected to be initialized outside, so
// this function must not corrupt them (return_value overlaps with
// kCArgRegs[0] but that's ok because we start using it only after the C
// call).
DCHECK(!AreAliased(kCArgRegs[0], kCArgRegs[1], // C args
scratch, scratch2, prev_next_address_reg, prev_limit_reg));
// function_address and thunk_arg might overlap but this function must not
// corrupted them until the call is made (i.e. overlap with return_value is
// fine).
DCHECK(!AreAliased(function_address, // incoming parameters
scratch, scratch2, prev_next_address_reg, prev_limit_reg));
DCHECK(!AreAliased(thunk_arg, // incoming parameters
scratch, scratch2, prev_next_address_reg, prev_limit_reg));
{
ASM_CODE_COMMENT_STRING(masm,
"Allocate HandleScope in callee-save registers.");
__ LoadU64(prev_next_address_reg, next_mem_op);
__ LoadU64(prev_limit_reg, limit_mem_op);
__ LoadU32(prev_level_reg, level_mem_op);
__ AddS64(scratch, prev_level_reg, Operand(1));
__ StoreU32(scratch, level_mem_op);
}
Label profiler_or_side_effects_check_enabled, done_api_call;
if (with_profiling) {
__ RecordComment("Check if profiler or side effects check is enabled");
__ LoadU8(scratch,
__ ExternalReferenceAsOperand(IsolateFieldId::kExecutionMode));
__ CmpS64(scratch, Operand::Zero());
__ bne(&profiler_or_side_effects_check_enabled, Label::kNear);
#ifdef V8_RUNTIME_CALL_STATS
__ RecordComment("Check if RCS is enabled");
__ Move(scratch, ER::address_of_runtime_stats_flag());
__ LoadU32(scratch, MemOperand(scratch, 0));
__ CmpS64(scratch, Operand::Zero());
__ bne(&profiler_or_side_effects_check_enabled, Label::kNear);
#endif // V8_RUNTIME_CALL_STATS
}
__ RecordComment("Call the api function directly.");
#if V8_OS_ZOS
__ mov(scratch, function_address);
__ zosStoreReturnAddressAndCall(function_address, scratch);
#else
__ StoreReturnAddressAndCall(function_address);
#endif
__ bind(&done_api_call);
Label propagate_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
__ RecordComment("Load the value from ReturnValue");
__ LoadU64(r2, return_value_operand);
{
ASM_CODE_COMMENT_STRING(
masm,
"No more valid handles (the result handle was the last one)."
"Restore previous handle scope.");
__ StoreU64(prev_next_address_reg, next_mem_op);
if (v8_flags.debug_code) {
__ LoadU32(scratch, level_mem_op);
__ SubS64(scratch, Operand(1));
__ CmpS64(scratch, prev_level_reg);
__ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
}
__ StoreU32(prev_level_reg, level_mem_op);
__ CmpS64(prev_limit_reg, limit_mem_op);
__ bne(&delete_allocated_handles, Label::kNear);
}
__ RecordComment("Leave the API exit frame.");
__ bind(&leave_exit_frame);
Register argc_reg = prev_limit_reg;
if (argc_operand != nullptr) {
// Load the number of stack slots to drop before LeaveExitFrame modifies sp.
__ LoadU64(argc_reg, *argc_operand);
}
__ LeaveExitFrame(scratch);
// Check if the function scheduled an exception.
{
ASM_CODE_COMMENT_STRING(masm,
"Check if the function scheduled an exception.");
__ LoadU64(scratch2, __ ExternalReferenceAsOperand(
ER::exception_address(isolate), no_reg));
__ CompareRoot(scratch2, RootIndex::kTheHoleValue);
__ bne(&propagate_exception, Label::kNear);
}
__ AssertJSAny(return_value, scratch, scratch2,
AbortReason::kAPICallReturnedInvalidObject);
if (argc_operand == nullptr) {
DCHECK_NE(slots_to_drop_on_return, 0);
__ AddS64(sp, sp, Operand(slots_to_drop_on_return * kSystemPointerSize));
} else {
// {argc_operand} was loaded into {argc_reg} above.
__ AddS64(sp, sp, Operand(slots_to_drop_on_return * kSystemPointerSize));
__ ShiftLeftU64(r0, argc_reg, Operand(kSystemPointerSizeLog2));
__ AddS64(sp, sp, r0);
}
__ b(r14);
if (with_profiling) {
ASM_CODE_COMMENT_STRING(masm, "Call the api function via thunk wrapper.");
__ bind(&profiler_or_side_effects_check_enabled);
// Additional parameter is the address of the actual callback function.
if (thunk_arg.is_valid()) {
MemOperand thunk_arg_mem_op = __ ExternalReferenceAsOperand(
IsolateFieldId::kApiCallbackThunkArgument);
__ StoreU64(thunk_arg, thunk_arg_mem_op);
}
__ Move(scratch, thunk_ref);
#if V8_OS_ZOS
__ zosStoreReturnAddressAndCall(function_address, scratch);
#else
__ StoreReturnAddressAndCall(scratch);
#endif
__ b(&done_api_call);
}
__ RecordComment("An exception was thrown. Propagate it.");
__ bind(&propagate_exception);
__ TailCallRuntime(Runtime::kPropagateException);
// HandleScope limit has changed. Delete allocated extensions.
{
ASM_CODE_COMMENT_STRING(
masm, "HandleScope limit has changed. Delete allocated extensions.");
__ bind(&delete_allocated_handles);
__ StoreU64(prev_limit_reg, limit_mem_op);
// Save the return value in a callee-save register.
Register saved_result = prev_limit_reg;
__ mov(saved_result, return_value);
__ PrepareCallCFunction(1, scratch);
__ Move(kCArgRegs[0], ER::isolate_address());
__ CallCFunction(ER::delete_handle_scope_extensions(), 1);
__ mov(return_value, saved_result);
__ b(&leave_exit_frame, Label::kNear);
}
}
} // namespace internal
} // namespace v8
#undef __
#endif // V8_TARGET_ARCH_S390X