blob: d6a04456f85f58c70edd18b850ae3028975673f5 [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <cstdint>
#include "src/codegen/macro-assembler.h"
#include "src/codegen/x64/assembler-x64-inl.h"
#include "src/codegen/x64/assembler-x64.h"
#include "src/codegen/x64/register-x64.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/simulator.h"
#include "src/heap/factory.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
#include "src/utils/ostreams.h"
#include "test/common/assembler-tester.h"
#include "test/common/value-helper.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
#define __ masm.
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
using MacroAssemblerX64Test = TestWithIsolate;
void PrintCode(Isolate* isolate, CodeDesc desc) {
#ifdef OBJECT_PRINT
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
StdoutStream os;
code->Print(os);
#endif // OBJECT_PRINT
}
TEST_F(MacroAssemblerX64Test, TestHardAbort) {
auto buffer = AllocateAssemblerBuffer();
MacroAssembler masm(isolate(), AssemblerOptions{}, CodeObjectRequired::kNo,
buffer->CreateView());
__ set_root_array_available(false);
__ set_abort_hard(true);
__ Abort(AbortReason::kNoReason);
CodeDesc desc;
masm.GetCode(isolate(), &desc);
buffer->MakeExecutable();
auto f = GeneratedCode<void>::FromBuffer(isolate(), buffer->start());
ASSERT_DEATH_IF_SUPPORTED({ f.Call(); }, "abort: no reason");
}
TEST_F(MacroAssemblerX64Test, TestCheck) {
auto buffer = AllocateAssemblerBuffer();
MacroAssembler masm(isolate(), AssemblerOptions{}, CodeObjectRequired::kNo,
buffer->CreateView());
__ set_root_array_available(false);
__ set_abort_hard(true);
// Fail if the first parameter is 17.
__ movl(rax, Immediate(17));
__ cmpl(rax, arg_reg_1);
__ Check(Condition::not_equal, AbortReason::kNoReason);
__ ret(0);
CodeDesc desc;
masm.GetCode(isolate(), &desc);
buffer->MakeExecutable();
auto f = GeneratedCode<void, int>::FromBuffer(isolate(), buffer->start());
f.Call(0);
f.Call(18);
ASSERT_DEATH_IF_SUPPORTED({ f.Call(17); }, "abort: no reason");
}
#undef __
namespace test_macro_assembler_x64 {
// Test the x64 assembler by compiling some simple functions into
// a buffer and executing them. These tests do not initialize the
// V8 library, create a context, or use any V8 objects.
// The AMD64 calling convention is used, with the first five arguments
// in RSI, RDI, RDX, RCX, R8, and R9, and floating point arguments in
// the XMM registers. The return value is in RAX.
// This calling convention is used on Linux, with GCC, and on Mac OS,
// with GCC. A different convention is used on 64-bit windows.
using F0 = int();
using F1 = int(uint64_t*, uint64_t*, uint64_t*);
using F2 = int(uint64_t*, uint64_t*, uint64_t*, uint64_t*);
using F3 = int(int8_t, int8_t*, int8_t*, int8_t*);
using F4 = int(int16_t, int16_t*, int16_t*, int16_t*);
using F5 = int(int32_t, int32_t*, int32_t*, int32_t*);
using F6 = int(int64_t, int64_t*, int64_t*, int64_t*);
using F7 = int(double*, double*, double*);
using F8 = int(float*, float*, float*);
using F9 = int(int16_t*, int32_t*);
using F10 = int(int8_t*, int16_t*);
using F11 = int(uint16_t*, uint32_t*);
using F12 = int(uint8_t*, uint16_t*);
#define __ masm->
static void EntryCode(MacroAssembler* masm) {
// Smi constant register is callee save.
__ pushq(kRootRegister);
#ifdef V8_COMPRESS_POINTERS
__ pushq(kPtrComprCageBaseRegister);
#endif
__ InitializeRootRegister();
}
static void ExitCode(MacroAssembler* masm) {
#ifdef V8_COMPRESS_POINTERS
__ popq(kPtrComprCageBaseRegister);
#endif
__ popq(kRootRegister);
}
TEST_F(MacroAssemblerX64Test, Smi) {
// clang-format off
// Check that C++ Smi operations work as expected.
int64_t test_numbers[] = {
0, 1, -1, 127, 128, -128, -129, 255, 256, -256, -257,
Smi::kMaxValue, static_cast<int64_t>(Smi::kMaxValue) + 1,
Smi::kMinValue, static_cast<int64_t>(Smi::kMinValue) - 1
};
// clang-format on
int test_number_count = 15;
for (int i = 0; i < test_number_count; i++) {
int64_t number = test_numbers[i];
bool is_valid = Smi::IsValid(number);
bool is_in_range = number >= Smi::kMinValue && number <= Smi::kMaxValue;
CHECK_EQ(is_in_range, is_valid);
if (is_valid) {
Smi smi_from_intptr = Smi::FromIntptr(number);
if (static_cast<int>(number) == number) { // Is a 32-bit int.
Smi smi_from_int = Smi::FromInt(static_cast<int32_t>(number));
CHECK_EQ(smi_from_int, smi_from_intptr);
}
int64_t smi_value = smi_from_intptr.value();
CHECK_EQ(number, smi_value);
}
}
}
static void TestMoveSmi(MacroAssembler* masm, Label* exit, int id, Smi value) {
__ movl(rax, Immediate(id));
__ Move(rcx, value);
__ Move(rdx, static_cast<intptr_t>(value.ptr()));
__ cmp_tagged(rcx, rdx);
__ j(not_equal, exit);
}
// Test that we can move a Smi value literally into a register.
TEST_F(MacroAssemblerX64Test, SmiMove) {
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler; // Create a pointer for the __ macro.
EntryCode(masm);
Label exit;
TestMoveSmi(masm, &exit, 1, Smi::zero());
TestMoveSmi(masm, &exit, 2, Smi::FromInt(127));
TestMoveSmi(masm, &exit, 3, Smi::FromInt(128));
TestMoveSmi(masm, &exit, 4, Smi::FromInt(255));
TestMoveSmi(masm, &exit, 5, Smi::FromInt(256));
TestMoveSmi(masm, &exit, 6, Smi::FromInt(0xFFFF - 1));
TestMoveSmi(masm, &exit, 7, Smi::FromInt(0xFFFF));
TestMoveSmi(masm, &exit, 8, Smi::FromInt(0xFFFF + 1));
TestMoveSmi(masm, &exit, 9, Smi::FromInt(Smi::kMaxValue));
TestMoveSmi(masm, &exit, 10, Smi::FromInt(-1));
TestMoveSmi(masm, &exit, 11, Smi::FromInt(-128));
TestMoveSmi(masm, &exit, 12, Smi::FromInt(-129));
TestMoveSmi(masm, &exit, 13, Smi::FromInt(-256));
TestMoveSmi(masm, &exit, 14, Smi::FromInt(-257));
TestMoveSmi(masm, &exit, 15, Smi::FromInt(-0xFFFF + 1));
TestMoveSmi(masm, &exit, 16, Smi::FromInt(-0xFFFF));
TestMoveSmi(masm, &exit, 17, Smi::FromInt(-0xFFFF - 1));
TestMoveSmi(masm, &exit, 18, Smi::FromInt(Smi::kMinValue));
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestSmiCompare(MacroAssembler* masm, Label* exit, int id, int x, int y) {
__ Move(rcx, Smi::FromInt(x));
__ movq(r8, rcx);
__ Move(rdx, Smi::FromInt(y));
__ movq(r9, rdx);
__ SmiCompare(rcx, rdx);
if (x < y) {
__ movl(rax, Immediate(id + 1));
__ j(greater_equal, exit);
} else if (x > y) {
__ movl(rax, Immediate(id + 2));
__ j(less_equal, exit);
} else {
CHECK_EQ(x, y);
__ movl(rax, Immediate(id + 3));
__ j(not_equal, exit);
}
__ movl(rax, Immediate(id + 4));
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(rdx, r9);
__ j(not_equal, exit);
if (x != y) {
__ SmiCompare(rdx, rcx);
if (y < x) {
__ movl(rax, Immediate(id + 9));
__ j(greater_equal, exit);
} else {
CHECK(y > x);
__ movl(rax, Immediate(id + 10));
__ j(less_equal, exit);
}
} else {
__ cmpq(rcx, rcx);
__ movl(rax, Immediate(id + 11));
__ j(not_equal, exit);
__ incq(rax);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
}
}
// Test that we can compare smis for equality (and more).
TEST_F(MacroAssemblerX64Test, SmiCompare) {
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer(2 * Assembler::kDefaultBufferSize);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiCompare(masm, &exit, 0x10, 0, 0);
TestSmiCompare(masm, &exit, 0x20, 0, 1);
TestSmiCompare(masm, &exit, 0x30, 1, 0);
TestSmiCompare(masm, &exit, 0x40, 1, 1);
TestSmiCompare(masm, &exit, 0x50, 0, -1);
TestSmiCompare(masm, &exit, 0x60, -1, 0);
TestSmiCompare(masm, &exit, 0x70, -1, -1);
TestSmiCompare(masm, &exit, 0x80, 0, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x90, Smi::kMinValue, 0);
TestSmiCompare(masm, &exit, 0xA0, 0, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0xB0, Smi::kMaxValue, 0);
TestSmiCompare(masm, &exit, 0xC0, -1, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0xD0, Smi::kMinValue, -1);
TestSmiCompare(masm, &exit, 0xE0, -1, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0xF0, Smi::kMaxValue, -1);
TestSmiCompare(masm, &exit, 0x100, Smi::kMinValue, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x110, Smi::kMinValue, Smi::kMaxValue);
TestSmiCompare(masm, &exit, 0x120, Smi::kMaxValue, Smi::kMinValue);
TestSmiCompare(masm, &exit, 0x130, Smi::kMaxValue, Smi::kMaxValue);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST_F(MacroAssemblerX64Test, SmiTag) {
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ movq(rax, Immediate(1)); // Test number.
__ movq(rcx, Immediate(0));
__ SmiTag(rcx);
__ Move(rdx, Smi::zero().ptr());
__ cmp_tagged(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(2)); // Test number.
__ movq(rcx, Immediate(1024));
__ SmiTag(rcx);
__ Move(rdx, Smi::FromInt(1024).ptr());
__ cmp_tagged(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(3)); // Test number.
__ movq(rcx, Immediate(-1));
__ SmiTag(rcx);
__ Move(rdx, Smi::FromInt(-1).ptr());
__ cmp_tagged(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(4)); // Test number.
__ movq(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(rcx);
__ Move(rdx, Smi::FromInt(Smi::kMaxValue).ptr());
__ cmp_tagged(rcx, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(5)); // Test number.
__ movq(rcx, Immediate(Smi::kMinValue));
__ SmiTag(rcx);
__ Move(rdx, Smi::FromInt(Smi::kMinValue).ptr());
__ cmp_tagged(rcx, rdx);
__ j(not_equal, &exit);
// Different target register.
__ movq(rax, Immediate(6)); // Test number.
__ movq(rcx, Immediate(0));
__ SmiTag(r8, rcx);
__ Move(rdx, Smi::zero().ptr());
__ cmp_tagged(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(7)); // Test number.
__ movq(rcx, Immediate(1024));
__ SmiTag(r8, rcx);
__ Move(rdx, Smi::FromInt(1024).ptr());
__ cmp_tagged(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(8)); // Test number.
__ movq(rcx, Immediate(-1));
__ SmiTag(r8, rcx);
__ Move(rdx, Smi::FromInt(-1).ptr());
__ cmp_tagged(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(9)); // Test number.
__ movq(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(r8, rcx);
__ Move(rdx, Smi::FromInt(Smi::kMaxValue).ptr());
__ cmp_tagged(r8, rdx);
__ j(not_equal, &exit);
__ movq(rax, Immediate(10)); // Test number.
__ movq(rcx, Immediate(Smi::kMinValue));
__ SmiTag(r8, rcx);
__ Move(rdx, Smi::FromInt(Smi::kMinValue).ptr());
__ cmp_tagged(r8, rdx);
__ j(not_equal, &exit);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST_F(MacroAssemblerX64Test, SmiCheck) {
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
Condition cond;
__ movl(rax, Immediate(1)); // Test number.
// CheckSmi
__ movl(rcx, Immediate(0));
__ SmiTag(rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(-1));
__ SmiTag(rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(Smi::kMaxValue));
__ SmiTag(rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
__ incq(rax);
__ movl(rcx, Immediate(Smi::kMinValue));
__ SmiTag(rcx);
cond = masm->CheckSmi(rcx);
__ j(NegateCondition(cond), &exit);
__ incq(rax);
__ xorq(rcx, Immediate(kSmiTagMask));
cond = masm->CheckSmi(rcx);
__ j(cond, &exit);
// Success
__ xorq(rax, rax);
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestSmiIndex(MacroAssembler* masm, Label* exit, int id, int x) {
__ movl(rax, Immediate(id));
for (int i = 0; i < 8; i++) {
__ Move(rcx, Smi::FromInt(x));
SmiIndex index = masm->SmiToIndex(rdx, rcx, i);
CHECK(index.reg == rcx || index.reg == rdx);
__ shlq(index.reg, Immediate(index.scale));
__ Move(r8, static_cast<intptr_t>(x) << i);
__ cmpq(index.reg, r8);
__ j(not_equal, exit);
__ incq(rax);
__ Move(rcx, Smi::FromInt(x));
index = masm->SmiToIndex(rcx, rcx, i);
CHECK(index.reg == rcx);
__ shlq(rcx, Immediate(index.scale));
__ Move(r8, static_cast<intptr_t>(x) << i);
__ cmpq(rcx, r8);
__ j(not_equal, exit);
__ incq(rax);
}
}
TEST_F(MacroAssemblerX64Test, EmbeddedObj) {
#ifdef V8_COMPRESS_POINTERS
v8_flags.compact_on_every_full_gc = true;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
Handle<HeapObject> old_array = isolate->factory()->NewFixedArray(2000);
Handle<HeapObject> my_array = isolate->factory()->NewFixedArray(1000);
__ Move(rcx, my_array, RelocInfo::COMPRESSED_EMBEDDED_OBJECT);
__ Move(rax, old_array, RelocInfo::FULL_EMBEDDED_OBJECT);
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
StdoutStream os;
code->Print(os);
#endif
using myF0 = Address();
auto f = GeneratedCode<myF0>::FromAddress(isolate, code->instruction_start());
Object result = Object(f.Call());
CHECK_EQ(old_array->ptr(), result.ptr());
// Collect garbage to ensure reloc info can be walked by the heap.
CollectGarbage(OLD_SPACE);
CollectGarbage(OLD_SPACE);
CollectGarbage(OLD_SPACE);
PtrComprCageBase cage_base(isolate);
// Test the user-facing reloc interface.
const int mode_mask = RelocInfo::EmbeddedObjectModeMask();
for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (RelocInfo::IsCompressedEmbeddedObject(mode)) {
CHECK_EQ(*my_array, it.rinfo()->target_object(cage_base));
} else {
CHECK(RelocInfo::IsFullEmbeddedObject(mode));
CHECK_EQ(*old_array, it.rinfo()->target_object(cage_base));
}
}
#endif // V8_COMPRESS_POINTERS
}
TEST_F(MacroAssemblerX64Test, SmiIndex) {
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
TestSmiIndex(masm, &exit, 0x10, 0);
TestSmiIndex(masm, &exit, 0x20, 1);
TestSmiIndex(masm, &exit, 0x30, 100);
TestSmiIndex(masm, &exit, 0x40, 1000);
TestSmiIndex(masm, &exit, 0x50, Smi::kMaxValue);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST_F(MacroAssemblerX64Test, OperandOffset) {
uint32_t data[256];
for (uint32_t i = 0; i < 256; i++) {
data[i] = i * 0x01010101;
}
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
Label exit;
EntryCode(masm);
__ pushq(r13);
__ pushq(r14);
__ pushq(rbx);
__ pushq(rbp);
__ pushq(Immediate(0x100)); // <-- rbp
__ movq(rbp, rsp);
__ pushq(Immediate(0x101));
__ pushq(Immediate(0x102));
__ pushq(Immediate(0x103));
__ pushq(Immediate(0x104));
__ pushq(Immediate(0x105)); // <-- rbx
__ pushq(Immediate(0x106));
__ pushq(Immediate(0x107));
__ pushq(Immediate(0x108));
__ pushq(Immediate(0x109)); // <-- rsp
// rbp = rsp[9]
// r15 = rsp[3]
// rbx = rsp[5]
// r13 = rsp[7]
__ leaq(r14, Operand(rsp, 3 * kSystemPointerSize));
__ leaq(r13, Operand(rbp, -3 * kSystemPointerSize));
__ leaq(rbx, Operand(rbp, -5 * kSystemPointerSize));
__ movl(rcx, Immediate(2));
__ Move(r8, reinterpret_cast<Address>(&data[128]), RelocInfo::NO_INFO);
__ movl(rax, Immediate(1));
Operand sp0 = Operand(rsp, 0);
// Test 1.
__ movl(rdx, sp0); // Sanity check.
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
// Test 2.
// Zero to non-zero displacement.
__ movl(rdx, Operand(sp0, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand sp2 = Operand(rsp, 2 * kSystemPointerSize);
// Test 3.
__ movl(rdx, sp2); // Sanity check.
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(sp2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(sp2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
Operand sp2c2 =
Operand(rsp, rcx, times_system_pointer_size, 2 * kSystemPointerSize);
// Test 6.
__ movl(rdx, sp2c2); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(sp2c2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(sp2c2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp0 = Operand(rbp, 0);
// Test 9.
__ movl(rdx, bp0); // Sanity check.
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
// Zero to non-zero displacement.
__ movl(rdx, Operand(bp0, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp2 = Operand(rbp, -2 * kSystemPointerSize);
// Test 11.
__ movl(rdx, bp2); // Sanity check.
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(bp2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x104));
__ j(not_equal, &exit);
__ incq(rax);
Operand bp2c4 =
Operand(rbp, rcx, times_system_pointer_size, -4 * kSystemPointerSize);
// Test 14:
__ movl(rdx, bp2c4); // Sanity check.
__ cmpl(rdx, Immediate(0x102));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2c4, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bp2c4, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x104));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx0 = Operand(rbx, 0);
// Test 17.
__ movl(rdx, bx0); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx0, 5 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x100));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx0, -4 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x109));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx2 = Operand(rbx, 2 * kSystemPointerSize);
// Test 20.
__ movl(rdx, bx2); // Sanity check.
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x101));
__ j(not_equal, &exit);
__ incq(rax);
// Non-zero to zero displacement.
__ movl(rdx, Operand(bx2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
Operand bx2c2 =
Operand(rbx, rcx, times_system_pointer_size, -2 * kSystemPointerSize);
// Test 23.
__ movl(rdx, bx2c2); // Sanity check.
__ cmpl(rdx, Immediate(0x105));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2c2, 2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x103));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(bx2c2, -2 * kSystemPointerSize));
__ cmpl(rdx, Immediate(0x107));
__ j(not_equal, &exit);
__ incq(rax);
Operand r80 = Operand(r8, 0);
// Test 26.
__ movl(rdx, r80); // Sanity check.
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -8 * kIntSize));
__ cmpl(rdx, Immediate(0x78787878));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 8 * kIntSize));
__ cmpl(rdx, Immediate(0x88888888));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x40404040));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 64 * kIntSize));
__ cmpl(rdx, Immediate(0xC0C0C0C0));
__ j(not_equal, &exit);
__ incq(rax);
Operand r88 = Operand(r8, 8 * kIntSize);
// Test 31.
__ movl(rdx, r88); // Sanity check.
__ cmpl(rdx, Immediate(0x88888888));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, -8 * kIntSize));
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, 8 * kIntSize));
__ cmpl(rdx, Immediate(0x90909090));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x48484848));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r88, 64 * kIntSize));
__ cmpl(rdx, Immediate(0xC8C8C8C8));
__ j(not_equal, &exit);
__ incq(rax);
Operand r864 = Operand(r8, 64 * kIntSize);
// Test 36.
__ movl(rdx, r864); // Sanity check.
__ cmpl(rdx, Immediate(0xC0C0C0C0));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, -8 * kIntSize));
__ cmpl(rdx, Immediate(0xB8B8B8B8));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 8 * kIntSize));
__ cmpl(rdx, Immediate(0xC8C8C8C8));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, -64 * kIntSize));
__ cmpl(rdx, Immediate(0x80808080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 32 * kIntSize));
__ cmpl(rdx, Immediate(0xE0E0E0E0));
__ j(not_equal, &exit);
__ incq(rax);
// 32-bit offset to 8-bit offset.
__ movl(rdx, Operand(r864, -60 * kIntSize));
__ cmpl(rdx, Immediate(0x84848484));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r864, 60 * kIntSize));
__ cmpl(rdx, Immediate(0xFCFCFCFC));
__ j(not_equal, &exit);
__ incq(rax);
// Test unaligned offsets.
// Test 43.
__ movl(rdx, Operand(r80, 2));
__ cmpl(rdx, Immediate(0x81818080));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -2));
__ cmpl(rdx, Immediate(0x80807F7F));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 126));
__ cmpl(rdx, Immediate(0xA0A09F9F));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -126));
__ cmpl(rdx, Immediate(0x61616060));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, 254));
__ cmpl(rdx, Immediate(0xC0C0BFBF));
__ j(not_equal, &exit);
__ incq(rax);
__ movl(rdx, Operand(r80, -254));
__ cmpl(rdx, Immediate(0x41414040));
__ j(not_equal, &exit);
__ incq(rax);
// Success.
__ movl(rax, Immediate(0));
__ bind(&exit);
__ leaq(rsp, Operand(rbp, kSystemPointerSize));
__ popq(rbp);
__ popq(rbx);
__ popq(r14);
__ popq(r13);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
void TestFloat32x4Abs(MacroAssembler* masm, Label* exit, float x, float y,
float z, float w) {
__ AllocateStackSpace(kSimd128Size);
__ Move(xmm1, x);
__ Movss(Operand(rsp, 0 * kFloatSize), xmm1);
__ Move(xmm2, y);
__ Movss(Operand(rsp, 1 * kFloatSize), xmm2);
__ Move(xmm3, z);
__ Movss(Operand(rsp, 2 * kFloatSize), xmm3);
__ Move(xmm4, w);
__ Movss(Operand(rsp, 3 * kFloatSize), xmm4);
__ Movups(xmm0, Operand(rsp, 0));
__ Absps(xmm0, xmm0, kScratchRegister);
__ Movups(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, fabsf(x));
__ Ucomiss(xmm1, Operand(rsp, 0 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, fabsf(y));
__ Ucomiss(xmm2, Operand(rsp, 1 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm3, fabsf(z));
__ Ucomiss(xmm3, Operand(rsp, 2 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm4, fabsf(w));
__ Ucomiss(xmm4, Operand(rsp, 3 * kFloatSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat32x4Neg(MacroAssembler* masm, Label* exit, float x, float y,
float z, float w) {
__ AllocateStackSpace(kSimd128Size);
__ Move(xmm1, x);
__ Movss(Operand(rsp, 0 * kFloatSize), xmm1);
__ Move(xmm2, y);
__ Movss(Operand(rsp, 1 * kFloatSize), xmm2);
__ Move(xmm3, z);
__ Movss(Operand(rsp, 2 * kFloatSize), xmm3);
__ Move(xmm4, w);
__ Movss(Operand(rsp, 3 * kFloatSize), xmm4);
__ Movups(xmm0, Operand(rsp, 0));
__ Negps(xmm0, xmm0, kScratchRegister);
__ Movups(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, -x);
__ Ucomiss(xmm1, Operand(rsp, 0 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, -y);
__ Ucomiss(xmm2, Operand(rsp, 1 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm3, -z);
__ Ucomiss(xmm3, Operand(rsp, 2 * kFloatSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm4, -w);
__ Ucomiss(xmm4, Operand(rsp, 3 * kFloatSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat64x2Abs(MacroAssembler* masm, Label* exit, double x, double y) {
__ AllocateStackSpace(kSimd128Size);
__ Move(xmm1, x);
__ Movsd(Operand(rsp, 0 * kDoubleSize), xmm1);
__ Move(xmm2, y);
__ Movsd(Operand(rsp, 1 * kDoubleSize), xmm2);
__ movupd(xmm0, Operand(rsp, 0));
__ Abspd(xmm0, xmm0, kScratchRegister);
__ movupd(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, fabs(x));
__ Ucomisd(xmm1, Operand(rsp, 0 * kDoubleSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, fabs(y));
__ Ucomisd(xmm2, Operand(rsp, 1 * kDoubleSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
void TestFloat64x2Neg(MacroAssembler* masm, Label* exit, double x, double y) {
__ AllocateStackSpace(kSimd128Size);
__ Move(xmm1, x);
__ Movsd(Operand(rsp, 0 * kDoubleSize), xmm1);
__ Move(xmm2, y);
__ Movsd(Operand(rsp, 1 * kDoubleSize), xmm2);
__ movupd(xmm0, Operand(rsp, 0));
__ Negpd(xmm0, xmm0, kScratchRegister);
__ movupd(Operand(rsp, 0), xmm0);
__ incq(rax);
__ Move(xmm1, -x);
__ Ucomisd(xmm1, Operand(rsp, 0 * kDoubleSize));
__ j(not_equal, exit);
__ incq(rax);
__ Move(xmm2, -y);
__ Ucomisd(xmm2, Operand(rsp, 1 * kDoubleSize));
__ j(not_equal, exit);
__ addq(rsp, Immediate(kSimd128Size));
}
TEST_F(MacroAssemblerX64Test, SIMDMacros) {
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
EntryCode(masm);
Label exit;
__ xorq(rax, rax);
TestFloat32x4Abs(masm, &exit, 1.5, -1.5, 0.5, -0.5);
TestFloat32x4Neg(masm, &exit, 1.5, -1.5, 0.5, -0.5);
TestFloat64x2Abs(masm, &exit, 1.75, -1.75);
TestFloat64x2Neg(masm, &exit, 1.75, -1.75);
__ xorq(rax, rax); // Success.
__ bind(&exit);
ExitCode(masm);
__ ret(0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F0>::FromBuffer(i_isolate(), buffer->start());
int result = f.Call();
CHECK_EQ(0, result);
}
TEST_F(MacroAssemblerX64Test, S256Select) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister mask = ymm1;
const YMMRegister src1 = ymm2;
const YMMRegister src2 = ymm3;
const YMMRegister tmp = ymm4;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load src1, src2, mask
__ vmovdqu(src1, Operand(arg_reg_1, 0));
__ vmovdqu(src2, Operand(arg_reg_2, 0));
__ vmovdqu(mask, Operand(arg_reg_3, 0));
// Bitselect
__ S256Select(dst, mask, src1, src2, tmp);
// Store result
__ vmovdqu(Operand(arg_reg_4, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
PrintCode(isolate, desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F2>::FromBuffer(i_isolate(), buffer->start());
std::vector<std::array<uint64_t, 12>> test_cases = {
{0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA,
0xAAAAAAAAAAAAAAAA, 0xBBBBBBBBBBBBBBBB, 0xBBBBBBBBBBBBBBBB,
0xBBBBBBBBBBBBBBBB, 0xBBBBBBBBBBBBBBBB, 0x00112345F00FFFFF,
0x10112021BBAABBAA, 0x0000000000000000, 0x0000000000000000},
{0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA,
0xAAAAAAAAAAAAAAAA, 0xBBBBBBBBBBBBBBBB, 0xBBBBBBBBBBBBBBBB,
0xBBBBBBBBBBBBBBBB, 0xBBBBBBBBBBBBBBBB, 0x1111111111111111,
0x1111111111111111, 0x0123456789ABCDEF, 0xFEDCBA9876543210},
{0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA, 0xAAAAAAAAAAAAAAAA,
0xAAAAAAAAAAAAAAAA, 0x5555555555555555, 0x5555555555555555,
0x5555555555555555, 0x5555555555555555, 0x0123456789ABCDEF,
0xFEDCBA9876543210, 0x55555555AAAAAAAA, 0x00000000FFFFFFFF},
{0x499602D2499602D2, 0x499602D2499602D2, 0x1234567812345678,
0x1234567812345678, 0xB669FD2EB669FD2E, 0xB669FD2EB669FD2E,
0x90ABCDEF90ABCDEF, 0x90ABCDEF90ABCDEF, 0xCDEFCDEFCDEFCDEF,
0xCDEFCDEFCDEFCDEF, 0xCDEFCDEFCDEFCDEF, 0xCDEFCDEFCDEFCDEF}};
uint64_t v1[4];
uint64_t v2[4];
uint64_t c[4];
uint64_t output[4];
for (const auto& arr : test_cases) {
v1[0] = arr[0];
v1[1] = arr[1];
v1[2] = arr[2];
v1[3] = arr[3];
v2[0] = arr[4];
v2[1] = arr[5];
v2[2] = arr[6];
v2[3] = arr[7];
c[0] = arr[8];
c[1] = arr[9];
c[2] = arr[10];
c[3] = arr[11];
f.Call(v1, v2, c, output);
for (int i = 0; i < 4; i++) {
CHECK_EQ(output[i], (v1[i] & c[i]) | (v2[i] & ~c[i]));
}
}
}
TEST_F(MacroAssemblerX64Test, AreAliased) {
DCHECK(!AreAliased(rax));
DCHECK(!AreAliased(rax, no_reg));
DCHECK(!AreAliased(no_reg, rax, no_reg));
DCHECK(AreAliased(rax, rax));
DCHECK(!AreAliased(no_reg, no_reg));
DCHECK(!AreAliased(rax, rbx, rcx, rdx, no_reg));
DCHECK(AreAliased(rax, rbx, rcx, rdx, rax, no_reg));
// no_regs are allowed in
DCHECK(!AreAliased(rax, no_reg, rbx, no_reg, rcx, no_reg, rdx, no_reg));
DCHECK(AreAliased(rax, no_reg, rbx, no_reg, rcx, no_reg, rdx, rax, no_reg));
}
TEST_F(MacroAssemblerX64Test, DeoptExitSizeIsFixed) {
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
static_assert(static_cast<int>(kFirstDeoptimizeKind) == 0);
for (int i = 0; i < kDeoptimizeKindCount; i++) {
DeoptimizeKind kind = static_cast<DeoptimizeKind>(i);
Label before_exit;
masm.bind(&before_exit);
Builtin target = Deoptimizer::GetDeoptimizationEntry(kind);
masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
nullptr);
CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
kind == DeoptimizeKind::kLazy ? Deoptimizer::kLazyDeoptExitSize
: Deoptimizer::kEagerDeoptExitSize);
}
}
TEST_F(MacroAssemblerX64Test, I64x2Mul) {
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const XMMRegister dst = xmm0;
const XMMRegister lhs = xmm1;
const XMMRegister rhs = xmm2;
const XMMRegister tmp1 = xmm3;
const XMMRegister tmp2 = xmm4;
// Load array
__ movdqu(lhs, Operand(arg_reg_1, 0));
__ movdqu(rhs, Operand(arg_reg_2, 0));
// Calculation
__ I64x2Mul(dst, lhs, rhs, tmp1, tmp2);
// Store result array
__ movdqu(Operand(arg_reg_3, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
PrintCode(isolate, desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F1>::FromBuffer(i_isolate(), buffer->start());
constexpr uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
std::vector<std::array<uint64_t, 4>> test_cases = {
{1, 2, 3, 4},
{324, 25, 124, 62346},
{345, 263, 2346, 3468},
{0, 0, 0, 0},
{uint64_max, uint64_max, uint64_max, uint64_max}};
uint64_t left[2];
uint64_t right[2];
uint64_t output[2];
for (const auto& arr : test_cases) {
left[0] = arr[0];
left[1] = arr[1];
right[0] = arr[2];
right[1] = arr[3];
f.Call(left, right, output);
CHECK_EQ(output[0], left[0] * right[0]);
CHECK_EQ(output[1], left[1] * right[1]);
}
}
TEST_F(MacroAssemblerX64Test, I64x4Mul) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister lhs = ymm1;
const YMMRegister rhs = ymm2;
const YMMRegister tmp1 = ymm3;
const YMMRegister tmp2 = ymm4;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(lhs, Operand(arg_reg_1, 0));
__ vmovdqu(rhs, Operand(arg_reg_2, 0));
// Calculation
__ I64x4Mul(dst, lhs, rhs, tmp1, tmp2);
// Store result array
__ vmovdqu(Operand(arg_reg_3, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
PrintCode(isolate, desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F1>::FromBuffer(i_isolate(), buffer->start());
constexpr uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
std::vector<std::array<uint64_t, 8>> test_cases = {
{1, 2, 3, 4, 5, 6, 7, 8},
{324, 25, 124, 62346, 2356, 236, 12534, 6346},
{345, 263, 2346, 3468, 2346, 1264, 236, 236},
{0, 0, 0, 0, 0, 0, 0, 0},
{uint64_max, uint64_max, uint64_max, uint64_max, uint64_max, uint64_max,
uint64_max, uint64_max}};
uint64_t left[4];
uint64_t right[4];
uint64_t output[4];
for (const auto& arr : test_cases) {
left[0] = arr[0];
left[1] = arr[1];
left[2] = arr[2];
left[3] = arr[3];
right[0] = arr[4];
right[1] = arr[5];
right[2] = arr[6];
right[3] = arr[7];
f.Call(left, right, output);
CHECK_EQ(output[0], left[0] * right[0]);
CHECK_EQ(output[1], left[1] * right[1]);
CHECK_EQ(output[2], left[2] * right[2]);
CHECK_EQ(output[3], left[3] * right[3]);
}
}
#define TEST_ISLPAT(name, lane_size, lane_num, Fn) \
TEST_F(MacroAssemblerX64Test, name) { \
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) \
return; \
Isolate* isolate = i_isolate(); \
HandleScope handles(isolate); \
auto buffer = AllocateAssemblerBuffer(); \
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes, \
buffer->CreateView()); \
MacroAssembler* masm = &assembler; \
CpuFeatureScope avx_scope(masm, AVX); \
CpuFeatureScope avx2_scope(masm, AVX2); \
\
/* src is register */ \
__ name(ymm0, arg_reg_1); \
__ vmovdqu(Operand(arg_reg_3, 0), ymm0); \
\
/* src is address*/ \
__ name(ymm0, Operand(arg_reg_2, 0)); \
__ vmovdqu(Operand(arg_reg_4, 0), ymm0); \
__ ret(0); \
\
CodeDesc desc; \
__ GetCode(i_isolate(), &desc); \
\
PrintCode(isolate, desc); \
buffer->MakeExecutable(); \
/* Call the function from C++. */ \
auto f = GeneratedCode<Fn>::FromBuffer(i_isolate(), buffer->start()); \
int##lane_size##_t input = 123; \
int##lane_size##_t* input_addr = &input; \
int##lane_size##_t output1[lane_num]; \
int##lane_size##_t output2[lane_num]; \
\
f.Call(input, input_addr, output1, output2); \
\
for (int i = 0; i < lane_num; ++i) { \
CHECK_EQ(input, output1[i]); \
CHECK_EQ(input, output2[i]); \
} \
}
TEST_ISLPAT(I8x32Splat, 8, 32, F3)
TEST_ISLPAT(I16x16Splat, 16, 16, F4)
TEST_ISLPAT(I32x8Splat, 32, 8, F5)
TEST_ISLPAT(I64x4Splat, 64, 4, F6)
#undef TEST_ISLPAT
TEST_F(MacroAssemblerX64Test, F64x4Min) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister lhs = ymm1;
const YMMRegister rhs = ymm2;
const YMMRegister tmp = ymm3;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(lhs, Operand(arg_reg_1, 0));
__ vmovdqu(rhs, Operand(arg_reg_2, 0));
// Calculation
__ F64x4Min(dst, lhs, rhs, tmp);
// Store result array
__ vmovdqu(Operand(arg_reg_3, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
#ifdef OBJECT_PRINT
Handle<Code> code =
Factory::CodeBuilder(i_isolate(), desc, CodeKind::FOR_TESTING).Build();
StdoutStream os;
code->Print(os);
#endif
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F7>::FromBuffer(i_isolate(), buffer->start());
constexpr double double_max = std::numeric_limits<double>::max();
constexpr double double_min = std::numeric_limits<double>::min();
std::vector<std::array<double, 8>> test_cases = {
{1, 2, 7, 8, 5, 6, 3, 4},
{32.4, 2.5, 12.4, 62.346, 235.6, 2.36, 1253.4, 63.46},
{34.5, 2.63, 234.6, 34.68, 234.6, 1.264, 23.6, 2.36},
{0, 0, 0, 0, 0, 0, 0, 0},
{double_min, double_min, double_max, double_max, double_max, double_max,
double_min, double_min}};
double left[4];
double right[4];
double output[4];
for (const auto& arr : test_cases) {
for (int i = 0; i < 4; i++) {
left[i] = arr[i];
right[i] = arr[i + 4];
}
f.Call(left, right, output);
for (int i = 0; i < 4; i++) {
CHECK_EQ(output[i], std::min(left[i], right[i]));
}
}
}
TEST_F(MacroAssemblerX64Test, F64x4Max) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister lhs = ymm1;
const YMMRegister rhs = ymm2;
const YMMRegister tmp = ymm3;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(lhs, Operand(arg_reg_1, 0));
__ vmovdqu(rhs, Operand(arg_reg_2, 0));
// Calculation
__ F64x4Max(dst, lhs, rhs, tmp);
// Store result array
__ vmovdqu(Operand(arg_reg_3, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
#ifdef OBJECT_PRINT
Handle<Code> code =
Factory::CodeBuilder(i_isolate(), desc, CodeKind::FOR_TESTING).Build();
StdoutStream os;
code->Print(os);
#endif
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F7>::FromBuffer(i_isolate(), buffer->start());
constexpr double double_max = std::numeric_limits<double>::max();
constexpr double double_min = std::numeric_limits<double>::min();
std::vector<std::array<double, 8>> test_cases = {
{1, 2, 7, 8, 5, 6, 3, 4},
{32.4, 2.5, 12.4, 62.346, 235.6, 2.36, 1253.4, 63.46},
{34.5, 2.63, 234.6, 34.68, 234.6, 1.264, 23.6, 2.36},
{0, 0, 0, 0, 0, 0, 0, 0},
{double_min, double_min, double_max, double_max, double_max, double_max,
double_min, double_min}};
double left[4];
double right[4];
double output[4];
for (const auto& arr : test_cases) {
for (int i = 0; i < 4; i++) {
left[i] = arr[i];
right[i] = arr[i + 4];
}
f.Call(left, right, output);
for (int i = 0; i < 4; i++) {
CHECK_EQ(output[i], std::max(left[i], right[i]));
}
}
}
TEST_F(MacroAssemblerX64Test, F32x8Min) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister lhs = ymm1;
const YMMRegister rhs = ymm2;
const YMMRegister tmp = ymm3;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(lhs, Operand(arg_reg_1, 0));
__ vmovdqu(rhs, Operand(arg_reg_2, 0));
// Calculation
__ F32x8Min(dst, lhs, rhs, tmp);
// Store result array
__ vmovdqu(Operand(arg_reg_3, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
#ifdef OBJECT_PRINT
Handle<Code> code =
Factory::CodeBuilder(i_isolate(), desc, CodeKind::FOR_TESTING).Build();
StdoutStream os;
code->Print(os);
#endif
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F8>::FromBuffer(i_isolate(), buffer->start());
constexpr float float_max = std::numeric_limits<float>::max();
constexpr float float_min = std::numeric_limits<float>::min();
std::vector<std::array<float, 16>> test_cases = {
{1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4},
{32.4, 2.5, 12.4, 62.346, 235.6, 2.36, 1253.4, 63.46, 235.6, 2.36, 1253.4,
63.46, 32.4, 2.5, 12.4, 62.346},
{34.5, 2.63, 234.6, 34.68, 234.6, 1.264, 23.6, 2.36, 234.6, 1.264, 23.6,
2.36, 34.5, 2.63, 234.6, 34.68},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{float_min, float_min, float_max, float_max, float_max, float_max,
float_min, float_min, float_max, float_max, float_min, float_min,
float_min, float_min, float_max, float_max}};
float left[8];
float right[8];
float output[8];
for (const auto& arr : test_cases) {
for (int i = 0; i < 8; i++) {
left[i] = arr[i];
right[i] = arr[i + 8];
}
f.Call(left, right, output);
for (int i = 0; i < 8; i++) {
CHECK_EQ(output[i], std::min(left[i], right[i]));
}
}
}
TEST_F(MacroAssemblerX64Test, F32x8Max) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister lhs = ymm1;
const YMMRegister rhs = ymm2;
const YMMRegister tmp = ymm3;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(lhs, Operand(arg_reg_1, 0));
__ vmovdqu(rhs, Operand(arg_reg_2, 0));
// Calculation
__ F32x8Max(dst, lhs, rhs, tmp);
// Store result array
__ vmovdqu(Operand(arg_reg_3, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
#ifdef OBJECT_PRINT
Handle<Code> code =
Factory::CodeBuilder(i_isolate(), desc, CodeKind::FOR_TESTING).Build();
StdoutStream os;
code->Print(os);
#endif
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F8>::FromBuffer(i_isolate(), buffer->start());
constexpr float float_max = std::numeric_limits<float>::max();
constexpr float float_min = std::numeric_limits<float>::min();
std::vector<std::array<float, 16>> test_cases = {
{1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4},
{32.4, 2.5, 12.4, 62.346, 235.6, 2.36, 1253.4, 63.46, 235.6, 2.36, 1253.4,
63.46, 32.4, 2.5, 12.4, 62.346},
{34.5, 2.63, 234.6, 34.68, 234.6, 1.264, 23.6, 2.36, 234.6, 1.264, 23.6,
2.36, 34.5, 2.63, 234.6, 34.68},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{float_min, float_min, float_max, float_max, float_max, float_max,
float_min, float_min, float_max, float_max, float_min, float_min,
float_min, float_min, float_max, float_max}};
float left[8];
float right[8];
float output[8];
for (const auto& arr : test_cases) {
for (int i = 0; i < 8; i++) {
left[i] = arr[i];
right[i] = arr[i + 8];
}
f.Call(left, right, output);
for (int i = 0; i < 8; i++) {
CHECK_EQ(output[i], std::max(left[i], right[i]));
}
}
}
namespace {
template <typename S, typename T, typename OpType = T (*)(S, S)>
void RunExtMulTest(Isolate* isolate, OpType expected_op) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const XMMRegister lhs = xmm1;
const XMMRegister rhs = xmm2;
const YMMRegister tmp = ymm3;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(lhs, Operand(arg_reg_1, 0));
__ vmovdqu(rhs, Operand(arg_reg_2, 0));
bool is_signed = std::is_signed_v<T>;
// Calculation
switch (sizeof(T)) {
case 8:
__ I64x4ExtMul(dst, lhs, rhs, tmp, is_signed);
break;
case 4:
__ I32x8ExtMul(dst, lhs, rhs, tmp, is_signed);
break;
case 2:
__ I16x16ExtMul(dst, lhs, rhs, tmp, is_signed);
break;
default:
UNREACHABLE();
}
// Store result array
__ vmovdqu(Operand(arg_reg_3, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(isolate, &desc);
PrintCode(isolate, desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F1>::FromBuffer(isolate, buffer->start());
uint64_t left[2];
uint64_t right[2];
uint64_t output[4];
constexpr int lanes = kSimd128Size / sizeof(S);
T* g = reinterpret_cast<T*>(output);
for (S x : compiler::ValueHelper::GetVector<S>()) {
for (S y : compiler::ValueHelper::GetVector<S>()) {
left[0] = 0;
right[0] = 0;
uint64_t mask = (static_cast<uint64_t>(1) << sizeof(S) * 8) - 1;
uint64_t lane_x = static_cast<uint64_t>(x) & mask;
uint64_t lane_y = static_cast<uint64_t>(y) & mask;
for (int i = 0; i < lanes / 2; i++) {
left[0] = left[0] | (lane_x << 8 * sizeof(S) * i);
right[0] = right[0] | (lane_y << 8 * sizeof(S) * i);
}
left[1] = left[0];
right[1] = right[0];
f.Call(left, right, output);
T expected = expected_op(x, y);
for (int i = 0; i < lanes; i++) {
CHECK_EQ(expected, g[i]);
}
}
}
}
} // namespace
TEST_F(MacroAssemblerX64Test, I16x16ExtMulI8x16S) {
Isolate* isolate = i_isolate();
RunExtMulTest<int8_t, int16_t>(isolate, MultiplyLong);
}
TEST_F(MacroAssemblerX64Test, I16x16ExtMulI8x16U) {
Isolate* isolate = i_isolate();
RunExtMulTest<uint8_t, uint16_t>(isolate, MultiplyLong);
}
TEST_F(MacroAssemblerX64Test, I32x8ExtMulI16x8S) {
Isolate* isolate = i_isolate();
RunExtMulTest<int16_t, int32_t>(isolate, MultiplyLong);
}
TEST_F(MacroAssemblerX64Test, I32x8ExtMulI16x8U) {
Isolate* isolate = i_isolate();
RunExtMulTest<uint16_t, uint32_t>(isolate, MultiplyLong);
}
TEST_F(MacroAssemblerX64Test, I64x4ExtMulI32x4S) {
Isolate* isolate = i_isolate();
RunExtMulTest<int32_t, int64_t>(isolate, MultiplyLong);
}
TEST_F(MacroAssemblerX64Test, I64x4ExtMulI32x4U) {
Isolate* isolate = i_isolate();
RunExtMulTest<uint32_t, uint64_t>(isolate, MultiplyLong);
}
TEST_F(MacroAssemblerX64Test, I32x8ExtAddPairwiseI16x16S) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister src = ymm1;
const YMMRegister tmp = ymm2;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(src, Operand(arg_reg_1, 0));
// Calculation
__ I32x8ExtAddPairwiseI16x16S(dst, src, tmp);
// Store result array
__ vmovdqu(Operand(arg_reg_2, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
PrintCode(isolate, desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F9>::FromBuffer(i_isolate(), buffer->start());
constexpr int16_t int16_max = std::numeric_limits<int16_t>::max();
std::vector<std::array<int16_t, 16>> test_cases = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, 112, 113, 114, 115},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{-1, 2, 3, -4, -5, 6, 7, -8, -9, 10, 11, -12, -13, 14, 15, -16},
{int16_max, int16_max, int16_max, int16_max, int16_max, int16_max,
int16_max, int16_max, int16_max, int16_max, int16_max, int16_max,
int16_max, int16_max, int16_max, int16_max}};
int16_t input[16];
int32_t output[8];
for (const auto& arr : test_cases) {
for (int i = 0; i < 16; i++) {
input[i] = arr[i];
}
f.Call(input, output);
for (int i = 0; i < 8; i++) {
CHECK_EQ(output[i], (int32_t)(input[2 * i] + input[2 * i + 1]));
}
}
}
TEST_F(MacroAssemblerX64Test, I16x16ExtAddPairwiseI8x32S) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister src = ymm1;
const YMMRegister tmp = ymm2;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(src, Operand(arg_reg_1, 0));
// Calculation
__ I16x16ExtAddPairwiseI8x32S(dst, src, tmp);
// Store result array
__ vmovdqu(Operand(arg_reg_2, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
PrintCode(isolate, desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F10>::FromBuffer(i_isolate(), buffer->start());
constexpr int8_t int8_max = std::numeric_limits<int8_t>::max();
std::vector<std::array<int8_t, 32>> test_cases = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{-1, 2, 3, -4, -5, 6, 7, -8, -9, 10, 11, -12, -13, 14, 15, -16,
-17, 18, 19, -20, -21, 22, 23, -24, -25, 26, 27, -28, -29, 30, 31},
{int8_max, int8_max, int8_max, int8_max, int8_max, int8_max, int8_max,
int8_max, int8_max, int8_max, int8_max, int8_max, int8_max, int8_max,
int8_max, int8_max, int8_max, int8_max, int8_max, int8_max, int8_max,
int8_max, int8_max, int8_max, int8_max, int8_max, int8_max, int8_max,
int8_max, int8_max, int8_max, int8_max}};
int8_t input[32];
int16_t output[16];
for (const auto& arr : test_cases) {
for (int i = 0; i < 32; i++) {
input[i] = arr[i];
}
f.Call(input, output);
for (int i = 0; i < 16; i++) {
CHECK_EQ(output[i], (int16_t)(input[2 * i] + input[2 * i + 1]));
}
}
}
TEST_F(MacroAssemblerX64Test, I32x8ExtAddPairwiseI16x16U) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister src = ymm1;
const YMMRegister tmp = ymm2;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(src, Operand(arg_reg_1, 0));
// Calculation
__ I32x8ExtAddPairwiseI16x16U(dst, src, tmp);
// Store result array
__ vmovdqu(Operand(arg_reg_2, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
PrintCode(isolate, desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F11>::FromBuffer(i_isolate(), buffer->start());
constexpr uint16_t uint16_max = std::numeric_limits<uint16_t>::max();
std::vector<std::array<uint16_t, 16>> test_cases = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, 112, 113, 114, 115},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{uint16_max, uint16_max, uint16_max, uint16_max, uint16_max, uint16_max,
uint16_max, uint16_max, uint16_max, uint16_max, uint16_max, uint16_max,
uint16_max, uint16_max, uint16_max, uint16_max}};
uint16_t input[16];
uint32_t output[8];
for (const auto& arr : test_cases) {
for (int i = 0; i < 16; i++) {
input[i] = arr[i];
}
f.Call(input, output);
for (int i = 0; i < 8; i++) {
CHECK_EQ(output[i], (uint32_t)(input[2 * i] + input[2 * i + 1]));
}
}
}
TEST_F(MacroAssemblerX64Test, I16x16ExtAddPairwiseI8x32U) {
if (!CpuFeatures::IsSupported(AVX) || !CpuFeatures::IsSupported(AVX2)) return;
Isolate* isolate = i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
MacroAssembler* masm = &assembler;
const YMMRegister dst = ymm0;
const YMMRegister src = ymm1;
const YMMRegister tmp = ymm2;
CpuFeatureScope avx_scope(masm, AVX);
CpuFeatureScope avx2_scope(masm, AVX2);
// Load array
__ vmovdqu(src, Operand(arg_reg_1, 0));
// Calculation
__ I16x16ExtAddPairwiseI8x32U(dst, src, tmp);
// Store result array
__ vmovdqu(Operand(arg_reg_2, 0), dst);
__ ret(0);
CodeDesc desc;
__ GetCode(i_isolate(), &desc);
PrintCode(i_isolate(), desc);
buffer->MakeExecutable();
// Call the function from C++.
auto f = GeneratedCode<F12>::FromBuffer(i_isolate(), buffer->start());
constexpr uint8_t uint8_max = std::numeric_limits<uint8_t>::max();
std::vector<std::array<uint8_t, 32>> test_cases = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{uint8_max, uint8_max, uint8_max, uint8_max, uint8_max, uint8_max,
uint8_max, uint8_max, uint8_max, uint8_max, uint8_max, uint8_max,
uint8_max, uint8_max, uint8_max, uint8_max, uint8_max, uint8_max,
uint8_max, uint8_max, uint8_max, uint8_max, uint8_max, uint8_max,
uint8_max, uint8_max, uint8_max, uint8_max, uint8_max, uint8_max,
uint8_max, uint8_max}};
uint8_t input[32];
uint16_t output[16];
for (const auto& arr : test_cases) {
for (int i = 0; i < 32; i++) {
input[i] = arr[i];
}
f.Call(input, output);
for (int i = 0; i < 16; i++) {
CHECK_EQ(output[i], (uint16_t)(input[2 * i] + input[2 * i + 1]));
}
}
}
#undef __
} // namespace test_macro_assembler_x64
} // namespace internal
} // namespace v8