| // Copyright 2016 the V8 project authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "src/code-stub-assembler.h" | 
 |  | 
 | #include "src/code-factory.h" | 
 | #include "src/frames-inl.h" | 
 | #include "src/frames.h" | 
 | #include "src/objects/api-callbacks.h" | 
 | #include "src/objects/descriptor-array.h" | 
 | #include "src/objects/ordered-hash-table-inl.h" | 
 | #include "src/wasm/wasm-objects.h" | 
 |  | 
 | namespace v8 { | 
 | namespace internal { | 
 |  | 
 | using compiler::Node; | 
 | template <class T> | 
 | using TNode = compiler::TNode<T>; | 
 | template <class T> | 
 | using SloppyTNode = compiler::SloppyTNode<T>; | 
 |  | 
 | CodeStubAssembler::CodeStubAssembler(compiler::CodeAssemblerState* state) | 
 |     : compiler::CodeAssembler(state) { | 
 |   if (DEBUG_BOOL && FLAG_csa_trap_on_node != nullptr) { | 
 |     HandleBreakOnNode(); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::HandleBreakOnNode() { | 
 |   // FLAG_csa_trap_on_node should be in a form "STUB,NODE" where STUB is a | 
 |   // string specifying the name of a stub and NODE is number specifying node id. | 
 |   const char* name = state()->name(); | 
 |   size_t name_length = strlen(name); | 
 |   if (strncmp(FLAG_csa_trap_on_node, name, name_length) != 0) { | 
 |     // Different name. | 
 |     return; | 
 |   } | 
 |   size_t option_length = strlen(FLAG_csa_trap_on_node); | 
 |   if (option_length < name_length + 2 || | 
 |       FLAG_csa_trap_on_node[name_length] != ',') { | 
 |     // Option is too short. | 
 |     return; | 
 |   } | 
 |   const char* start = &FLAG_csa_trap_on_node[name_length + 1]; | 
 |   char* end; | 
 |   int node_id = static_cast<int>(strtol(start, &end, 10)); | 
 |   if (start == end) { | 
 |     // Bad node id. | 
 |     return; | 
 |   } | 
 |   BreakOnNode(node_id); | 
 | } | 
 |  | 
 | void CodeStubAssembler::Assert(const BranchGenerator& branch, | 
 |                                const char* message, const char* file, int line, | 
 |                                Node* extra_node1, const char* extra_node1_name, | 
 |                                Node* extra_node2, const char* extra_node2_name, | 
 |                                Node* extra_node3, const char* extra_node3_name, | 
 |                                Node* extra_node4, const char* extra_node4_name, | 
 |                                Node* extra_node5, | 
 |                                const char* extra_node5_name) { | 
 | #if defined(DEBUG) | 
 |   if (FLAG_debug_code) { | 
 |     Check(branch, message, file, line, extra_node1, extra_node1_name, | 
 |           extra_node2, extra_node2_name, extra_node3, extra_node3_name, | 
 |           extra_node4, extra_node4_name, extra_node5, extra_node5_name); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | void CodeStubAssembler::Assert(const NodeGenerator& condition_body, | 
 |                                const char* message, const char* file, int line, | 
 |                                Node* extra_node1, const char* extra_node1_name, | 
 |                                Node* extra_node2, const char* extra_node2_name, | 
 |                                Node* extra_node3, const char* extra_node3_name, | 
 |                                Node* extra_node4, const char* extra_node4_name, | 
 |                                Node* extra_node5, | 
 |                                const char* extra_node5_name) { | 
 | #if defined(DEBUG) | 
 |   if (FLAG_debug_code) { | 
 |     Check(condition_body, message, file, line, extra_node1, extra_node1_name, | 
 |           extra_node2, extra_node2_name, extra_node3, extra_node3_name, | 
 |           extra_node4, extra_node4_name, extra_node5, extra_node5_name); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef DEBUG | 
 | namespace { | 
 | void MaybePrintNodeWithName(CodeStubAssembler* csa, Node* node, | 
 |                             const char* node_name) { | 
 |   if (node != nullptr) { | 
 |     csa->CallRuntime(Runtime::kPrintWithNameForAssert, csa->SmiConstant(0), | 
 |                      csa->StringConstant(node_name), node); | 
 |   } | 
 | } | 
 | }  // namespace | 
 | #endif | 
 |  | 
 | void CodeStubAssembler::Check(const BranchGenerator& branch, | 
 |                               const char* message, const char* file, int line, | 
 |                               Node* extra_node1, const char* extra_node1_name, | 
 |                               Node* extra_node2, const char* extra_node2_name, | 
 |                               Node* extra_node3, const char* extra_node3_name, | 
 |                               Node* extra_node4, const char* extra_node4_name, | 
 |                               Node* extra_node5, const char* extra_node5_name) { | 
 |   Label ok(this); | 
 |   Label not_ok(this, Label::kDeferred); | 
 |   if (message != nullptr && FLAG_code_comments) { | 
 |     Comment("[ Assert: %s", message); | 
 |   } else { | 
 |     Comment("[ Assert"); | 
 |   } | 
 |   branch(&ok, ¬_ok); | 
 |  | 
 |   BIND(¬_ok); | 
 |   DCHECK_NOT_NULL(message); | 
 |   char chars[1024]; | 
 |   Vector<char> buffer(chars); | 
 |   if (file != nullptr) { | 
 |     SNPrintF(buffer, "CSA_ASSERT failed: %s [%s:%d]\n", message, file, line); | 
 |   } else { | 
 |     SNPrintF(buffer, "CSA_ASSERT failed: %s\n", message); | 
 |   } | 
 |   Node* message_node = StringConstant(&(buffer[0])); | 
 |  | 
 | #ifdef DEBUG | 
 |   // Only print the extra nodes in debug builds. | 
 |   MaybePrintNodeWithName(this, extra_node1, extra_node1_name); | 
 |   MaybePrintNodeWithName(this, extra_node2, extra_node2_name); | 
 |   MaybePrintNodeWithName(this, extra_node3, extra_node3_name); | 
 |   MaybePrintNodeWithName(this, extra_node4, extra_node4_name); | 
 |   MaybePrintNodeWithName(this, extra_node5, extra_node5_name); | 
 | #endif | 
 |  | 
 |   DebugAbort(message_node); | 
 |   Unreachable(); | 
 |  | 
 |   BIND(&ok); | 
 |   Comment("] Assert"); | 
 | } | 
 |  | 
 | void CodeStubAssembler::Check(const NodeGenerator& condition_body, | 
 |                               const char* message, const char* file, int line, | 
 |                               Node* extra_node1, const char* extra_node1_name, | 
 |                               Node* extra_node2, const char* extra_node2_name, | 
 |                               Node* extra_node3, const char* extra_node3_name, | 
 |                               Node* extra_node4, const char* extra_node4_name, | 
 |                               Node* extra_node5, const char* extra_node5_name) { | 
 |   BranchGenerator branch = [=](Label* ok, Label* not_ok) { | 
 |     Node* condition = condition_body(); | 
 |     DCHECK_NOT_NULL(condition); | 
 |     Branch(condition, ok, not_ok); | 
 |   }; | 
 |  | 
 |   Check(branch, message, file, line, extra_node1, extra_node1_name, extra_node2, | 
 |         extra_node2_name, extra_node3, extra_node3_name, extra_node4, | 
 |         extra_node4_name, extra_node5, extra_node5_name); | 
 | } | 
 |  | 
 | void CodeStubAssembler::FastCheck(TNode<BoolT> condition) { | 
 |   Label ok(this); | 
 |   GotoIf(condition, &ok); | 
 |   DebugBreak(); | 
 |   Goto(&ok); | 
 |   BIND(&ok); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::SelectImpl(TNode<BoolT> condition, | 
 |                                     const NodeGenerator& true_body, | 
 |                                     const NodeGenerator& false_body, | 
 |                                     MachineRepresentation rep) { | 
 |   VARIABLE(value, rep); | 
 |   Label vtrue(this), vfalse(this), end(this); | 
 |   Branch(condition, &vtrue, &vfalse); | 
 |  | 
 |   BIND(&vtrue); | 
 |   { | 
 |     value.Bind(true_body()); | 
 |     Goto(&end); | 
 |   } | 
 |   BIND(&vfalse); | 
 |   { | 
 |     value.Bind(false_body()); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return value.value(); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::SelectInt32Constant( | 
 |     SloppyTNode<BoolT> condition, int true_value, int false_value) { | 
 |   return SelectConstant<Int32T>(condition, Int32Constant(true_value), | 
 |                                 Int32Constant(false_value)); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::SelectIntPtrConstant( | 
 |     SloppyTNode<BoolT> condition, int true_value, int false_value) { | 
 |   return SelectConstant<IntPtrT>(condition, IntPtrConstant(true_value), | 
 |                                  IntPtrConstant(false_value)); | 
 | } | 
 |  | 
 | TNode<Oddball> CodeStubAssembler::SelectBooleanConstant( | 
 |     SloppyTNode<BoolT> condition) { | 
 |   return SelectConstant<Oddball>(condition, TrueConstant(), FalseConstant()); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::SelectSmiConstant(SloppyTNode<BoolT> condition, | 
 |                                                 Smi* true_value, | 
 |                                                 Smi* false_value) { | 
 |   return SelectConstant<Smi>(condition, SmiConstant(true_value), | 
 |                              SmiConstant(false_value)); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::NoContextConstant() { | 
 |   return SmiConstant(Context::kNoContext); | 
 | } | 
 |  | 
 | #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \ | 
 |   compiler::TNode<std::remove_reference<decltype(                     \ | 
 |       *std::declval<Heap>().rootAccessorName())>::type>               \ | 
 |       CodeStubAssembler::name##Constant() {                           \ | 
 |     return UncheckedCast<std::remove_reference<decltype(              \ | 
 |         *std::declval<Heap>().rootAccessorName())>::type>(            \ | 
 |         LoadRoot(RootIndex::k##rootIndexName));                       \ | 
 |   } | 
 | HEAP_MUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR); | 
 | #undef HEAP_CONSTANT_ACCESSOR | 
 |  | 
 | #define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \ | 
 |   compiler::TNode<std::remove_reference<decltype(                     \ | 
 |       *std::declval<ReadOnlyRoots>().rootAccessorName())>::type>      \ | 
 |       CodeStubAssembler::name##Constant() {                           \ | 
 |     return UncheckedCast<std::remove_reference<decltype(              \ | 
 |         *std::declval<ReadOnlyRoots>().rootAccessorName())>::type>(   \ | 
 |         LoadRoot(RootIndex::k##rootIndexName));                       \ | 
 |   } | 
 | HEAP_IMMUTABLE_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_ACCESSOR); | 
 | #undef HEAP_CONSTANT_ACCESSOR | 
 |  | 
 | #define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \ | 
 |   compiler::TNode<BoolT> CodeStubAssembler::Is##name(             \ | 
 |       SloppyTNode<Object> value) {                                \ | 
 |     return WordEqual(value, name##Constant());                    \ | 
 |   }                                                               \ | 
 |   compiler::TNode<BoolT> CodeStubAssembler::IsNot##name(          \ | 
 |       SloppyTNode<Object> value) {                                \ | 
 |     return WordNotEqual(value, name##Constant());                 \ | 
 |   } | 
 | HEAP_IMMOVABLE_OBJECT_LIST(HEAP_CONSTANT_TEST); | 
 | #undef HEAP_CONSTANT_TEST | 
 |  | 
 | Node* CodeStubAssembler::IntPtrOrSmiConstant(int value, ParameterMode mode) { | 
 |   if (mode == SMI_PARAMETERS) { | 
 |     return SmiConstant(value); | 
 |   } else { | 
 |     DCHECK_EQ(INTPTR_PARAMETERS, mode); | 
 |     return IntPtrConstant(value); | 
 |   } | 
 | } | 
 |  | 
 | bool CodeStubAssembler::IsIntPtrOrSmiConstantZero(Node* test, | 
 |                                                   ParameterMode mode) { | 
 |   int32_t constant_test; | 
 |   Smi* smi_test; | 
 |   if (mode == INTPTR_PARAMETERS) { | 
 |     if (ToInt32Constant(test, constant_test) && constant_test == 0) { | 
 |       return true; | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(mode, SMI_PARAMETERS); | 
 |     if (ToSmiConstant(test, smi_test) && smi_test->value() == 0) { | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool CodeStubAssembler::TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, | 
 |                                                        int* value, | 
 |                                                        ParameterMode mode) { | 
 |   int32_t int32_constant; | 
 |   if (mode == INTPTR_PARAMETERS) { | 
 |     if (ToInt32Constant(maybe_constant, int32_constant)) { | 
 |       *value = int32_constant; | 
 |       return true; | 
 |     } | 
 |   } else { | 
 |     DCHECK_EQ(mode, SMI_PARAMETERS); | 
 |     Smi* smi_constant; | 
 |     if (ToSmiConstant(maybe_constant, smi_constant)) { | 
 |       *value = Smi::ToInt(smi_constant); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::IntPtrRoundUpToPowerOfTwo32( | 
 |     TNode<IntPtrT> value) { | 
 |   Comment("IntPtrRoundUpToPowerOfTwo32"); | 
 |   CSA_ASSERT(this, UintPtrLessThanOrEqual(value, IntPtrConstant(0x80000000u))); | 
 |   value = Signed(IntPtrSub(value, IntPtrConstant(1))); | 
 |   for (int i = 1; i <= 16; i *= 2) { | 
 |     value = Signed(WordOr(value, WordShr(value, IntPtrConstant(i)))); | 
 |   } | 
 |   return Signed(IntPtrAdd(value, IntPtrConstant(1))); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::MatchesParameterMode(Node* value, ParameterMode mode) { | 
 |   if (mode == SMI_PARAMETERS) { | 
 |     return TaggedIsSmi(value); | 
 |   } else { | 
 |     return Int32Constant(1); | 
 |   } | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::WordIsPowerOfTwo(SloppyTNode<IntPtrT> value) { | 
 |   // value && !(value & (value - 1)) | 
 |   return WordEqual( | 
 |       Select<IntPtrT>( | 
 |           WordEqual(value, IntPtrConstant(0)), | 
 |           [=] { return IntPtrConstant(1); }, | 
 |           [=] { return WordAnd(value, IntPtrSub(value, IntPtrConstant(1))); }), | 
 |       IntPtrConstant(0)); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::Float64Round(SloppyTNode<Float64T> x) { | 
 |   Node* one = Float64Constant(1.0); | 
 |   Node* one_half = Float64Constant(0.5); | 
 |  | 
 |   Label return_x(this); | 
 |  | 
 |   // Round up {x} towards Infinity. | 
 |   VARIABLE(var_x, MachineRepresentation::kFloat64, Float64Ceil(x)); | 
 |  | 
 |   GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x), | 
 |          &return_x); | 
 |   var_x.Bind(Float64Sub(var_x.value(), one)); | 
 |   Goto(&return_x); | 
 |  | 
 |   BIND(&return_x); | 
 |   return TNode<Float64T>::UncheckedCast(var_x.value()); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::Float64Ceil(SloppyTNode<Float64T> x) { | 
 |   if (IsFloat64RoundUpSupported()) { | 
 |     return Float64RoundUp(x); | 
 |   } | 
 |  | 
 |   Node* one = Float64Constant(1.0); | 
 |   Node* zero = Float64Constant(0.0); | 
 |   Node* two_52 = Float64Constant(4503599627370496.0E0); | 
 |   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); | 
 |  | 
 |   VARIABLE(var_x, MachineRepresentation::kFloat64, x); | 
 |   Label return_x(this), return_minus_x(this); | 
 |  | 
 |   // Check if {x} is greater than zero. | 
 |   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); | 
 |   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, | 
 |          &if_xnotgreaterthanzero); | 
 |  | 
 |   BIND(&if_xgreaterthanzero); | 
 |   { | 
 |     // Just return {x} unless it's in the range ]0,2^52[. | 
 |     GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); | 
 |  | 
 |     // Round positive {x} towards Infinity. | 
 |     var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); | 
 |     GotoIfNot(Float64LessThan(var_x.value(), x), &return_x); | 
 |     var_x.Bind(Float64Add(var_x.value(), one)); | 
 |     Goto(&return_x); | 
 |   } | 
 |  | 
 |   BIND(&if_xnotgreaterthanzero); | 
 |   { | 
 |     // Just return {x} unless it's in the range ]-2^52,0[ | 
 |     GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); | 
 |     GotoIfNot(Float64LessThan(x, zero), &return_x); | 
 |  | 
 |     // Round negated {x} towards Infinity and return the result negated. | 
 |     Node* minus_x = Float64Neg(x); | 
 |     var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); | 
 |     GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); | 
 |     var_x.Bind(Float64Sub(var_x.value(), one)); | 
 |     Goto(&return_minus_x); | 
 |   } | 
 |  | 
 |   BIND(&return_minus_x); | 
 |   var_x.Bind(Float64Neg(var_x.value())); | 
 |   Goto(&return_x); | 
 |  | 
 |   BIND(&return_x); | 
 |   return TNode<Float64T>::UncheckedCast(var_x.value()); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::Float64Floor(SloppyTNode<Float64T> x) { | 
 |   if (IsFloat64RoundDownSupported()) { | 
 |     return Float64RoundDown(x); | 
 |   } | 
 |  | 
 |   Node* one = Float64Constant(1.0); | 
 |   Node* zero = Float64Constant(0.0); | 
 |   Node* two_52 = Float64Constant(4503599627370496.0E0); | 
 |   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); | 
 |  | 
 |   VARIABLE(var_x, MachineRepresentation::kFloat64, x); | 
 |   Label return_x(this), return_minus_x(this); | 
 |  | 
 |   // Check if {x} is greater than zero. | 
 |   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); | 
 |   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, | 
 |          &if_xnotgreaterthanzero); | 
 |  | 
 |   BIND(&if_xgreaterthanzero); | 
 |   { | 
 |     // Just return {x} unless it's in the range ]0,2^52[. | 
 |     GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); | 
 |  | 
 |     // Round positive {x} towards -Infinity. | 
 |     var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); | 
 |     GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x); | 
 |     var_x.Bind(Float64Sub(var_x.value(), one)); | 
 |     Goto(&return_x); | 
 |   } | 
 |  | 
 |   BIND(&if_xnotgreaterthanzero); | 
 |   { | 
 |     // Just return {x} unless it's in the range ]-2^52,0[ | 
 |     GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); | 
 |     GotoIfNot(Float64LessThan(x, zero), &return_x); | 
 |  | 
 |     // Round negated {x} towards -Infinity and return the result negated. | 
 |     Node* minus_x = Float64Neg(x); | 
 |     var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); | 
 |     GotoIfNot(Float64LessThan(var_x.value(), minus_x), &return_minus_x); | 
 |     var_x.Bind(Float64Add(var_x.value(), one)); | 
 |     Goto(&return_minus_x); | 
 |   } | 
 |  | 
 |   BIND(&return_minus_x); | 
 |   var_x.Bind(Float64Neg(var_x.value())); | 
 |   Goto(&return_x); | 
 |  | 
 |   BIND(&return_x); | 
 |   return TNode<Float64T>::UncheckedCast(var_x.value()); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::Float64RoundToEven(SloppyTNode<Float64T> x) { | 
 |   if (IsFloat64RoundTiesEvenSupported()) { | 
 |     return Float64RoundTiesEven(x); | 
 |   } | 
 |   // See ES#sec-touint8clamp for details. | 
 |   Node* f = Float64Floor(x); | 
 |   Node* f_and_half = Float64Add(f, Float64Constant(0.5)); | 
 |  | 
 |   VARIABLE(var_result, MachineRepresentation::kFloat64); | 
 |   Label return_f(this), return_f_plus_one(this), done(this); | 
 |  | 
 |   GotoIf(Float64LessThan(f_and_half, x), &return_f_plus_one); | 
 |   GotoIf(Float64LessThan(x, f_and_half), &return_f); | 
 |   { | 
 |     Node* f_mod_2 = Float64Mod(f, Float64Constant(2.0)); | 
 |     Branch(Float64Equal(f_mod_2, Float64Constant(0.0)), &return_f, | 
 |            &return_f_plus_one); | 
 |   } | 
 |  | 
 |   BIND(&return_f); | 
 |   var_result.Bind(f); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&return_f_plus_one); | 
 |   var_result.Bind(Float64Add(f, Float64Constant(1.0))); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |   return TNode<Float64T>::UncheckedCast(var_result.value()); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::Float64Trunc(SloppyTNode<Float64T> x) { | 
 |   if (IsFloat64RoundTruncateSupported()) { | 
 |     return Float64RoundTruncate(x); | 
 |   } | 
 |  | 
 |   Node* one = Float64Constant(1.0); | 
 |   Node* zero = Float64Constant(0.0); | 
 |   Node* two_52 = Float64Constant(4503599627370496.0E0); | 
 |   Node* minus_two_52 = Float64Constant(-4503599627370496.0E0); | 
 |  | 
 |   VARIABLE(var_x, MachineRepresentation::kFloat64, x); | 
 |   Label return_x(this), return_minus_x(this); | 
 |  | 
 |   // Check if {x} is greater than 0. | 
 |   Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this); | 
 |   Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero, | 
 |          &if_xnotgreaterthanzero); | 
 |  | 
 |   BIND(&if_xgreaterthanzero); | 
 |   { | 
 |     if (IsFloat64RoundDownSupported()) { | 
 |       var_x.Bind(Float64RoundDown(x)); | 
 |     } else { | 
 |       // Just return {x} unless it's in the range ]0,2^52[. | 
 |       GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x); | 
 |  | 
 |       // Round positive {x} towards -Infinity. | 
 |       var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52)); | 
 |       GotoIfNot(Float64GreaterThan(var_x.value(), x), &return_x); | 
 |       var_x.Bind(Float64Sub(var_x.value(), one)); | 
 |     } | 
 |     Goto(&return_x); | 
 |   } | 
 |  | 
 |   BIND(&if_xnotgreaterthanzero); | 
 |   { | 
 |     if (IsFloat64RoundUpSupported()) { | 
 |       var_x.Bind(Float64RoundUp(x)); | 
 |       Goto(&return_x); | 
 |     } else { | 
 |       // Just return {x} unless its in the range ]-2^52,0[. | 
 |       GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x); | 
 |       GotoIfNot(Float64LessThan(x, zero), &return_x); | 
 |  | 
 |       // Round negated {x} towards -Infinity and return result negated. | 
 |       Node* minus_x = Float64Neg(x); | 
 |       var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52)); | 
 |       GotoIfNot(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x); | 
 |       var_x.Bind(Float64Sub(var_x.value(), one)); | 
 |       Goto(&return_minus_x); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&return_minus_x); | 
 |   var_x.Bind(Float64Neg(var_x.value())); | 
 |   Goto(&return_x); | 
 |  | 
 |   BIND(&return_x); | 
 |   return TNode<Float64T>::UncheckedCast(var_x.value()); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsValidSmi(TNode<Smi> smi) { | 
 |   if (SmiValuesAre31Bits() && kPointerSize == kInt64Size) { | 
 |     // Check that the Smi value is properly sign-extended. | 
 |     TNode<IntPtrT> value = Signed(BitcastTaggedToWord(smi)); | 
 |     return WordEqual(value, ChangeInt32ToIntPtr(TruncateIntPtrToInt32(value))); | 
 |   } | 
 |   return Int32TrueConstant(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::SmiShiftBitsConstant() { | 
 |   return IntPtrConstant(kSmiShiftSize + kSmiTagSize); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::SmiFromInt32(SloppyTNode<Int32T> value) { | 
 |   TNode<IntPtrT> value_intptr = ChangeInt32ToIntPtr(value); | 
 |   TNode<Smi> smi = | 
 |       BitcastWordToTaggedSigned(WordShl(value_intptr, SmiShiftBitsConstant())); | 
 | #if V8_COMPRESS_POINTERS | 
 |   CSA_ASSERT(this, IsValidSmi(smi)); | 
 | #endif | 
 |   return smi; | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsValidPositiveSmi(TNode<IntPtrT> value) { | 
 |   intptr_t constant_value; | 
 |   if (ToIntPtrConstant(value, constant_value)) { | 
 |     return (static_cast<uintptr_t>(constant_value) <= | 
 |             static_cast<uintptr_t>(Smi::kMaxValue)) | 
 |                ? Int32TrueConstant() | 
 |                : Int32FalseConstant(); | 
 |   } | 
 |  | 
 |   return UintPtrLessThanOrEqual(value, IntPtrConstant(Smi::kMaxValue)); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::SmiTag(SloppyTNode<IntPtrT> value) { | 
 |   int32_t constant_value; | 
 |   if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) { | 
 |     return SmiConstant(constant_value); | 
 |   } | 
 |   TNode<Smi> smi = | 
 |       BitcastWordToTaggedSigned(WordShl(value, SmiShiftBitsConstant())); | 
 | #if V8_COMPRESS_POINTERS | 
 |   CSA_ASSERT(this, IsValidSmi(smi)); | 
 | #endif | 
 |   return smi; | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::SmiUntag(SloppyTNode<Smi> value) { | 
 | #if V8_COMPRESS_POINTERS | 
 |   CSA_ASSERT(this, IsValidSmi(value)); | 
 | #endif | 
 |   intptr_t constant_value; | 
 |   if (ToIntPtrConstant(value, constant_value)) { | 
 |     return IntPtrConstant(constant_value >> (kSmiShiftSize + kSmiTagSize)); | 
 |   } | 
 |   return Signed(WordSar(BitcastTaggedToWord(value), SmiShiftBitsConstant())); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::SmiToInt32(SloppyTNode<Smi> value) { | 
 |   TNode<IntPtrT> result = SmiUntag(value); | 
 |   return TruncateIntPtrToInt32(result); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::SmiToFloat64(SloppyTNode<Smi> value) { | 
 |   return ChangeInt32ToFloat64(SmiToInt32(value)); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::SmiMax(TNode<Smi> a, TNode<Smi> b) { | 
 |   return SelectConstant<Smi>(SmiLessThan(a, b), b, a); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::SmiMin(TNode<Smi> a, TNode<Smi> b) { | 
 |   return SelectConstant<Smi>(SmiLessThan(a, b), a, b); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::TryIntPtrAdd(TNode<IntPtrT> a, | 
 |                                                TNode<IntPtrT> b, | 
 |                                                Label* if_overflow) { | 
 |   TNode<PairT<IntPtrT, BoolT>> pair = IntPtrAddWithOverflow(a, b); | 
 |   TNode<BoolT> overflow = Projection<1>(pair); | 
 |   GotoIf(overflow, if_overflow); | 
 |   return Projection<0>(pair); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::TrySmiAdd(TNode<Smi> lhs, TNode<Smi> rhs, | 
 |                                         Label* if_overflow) { | 
 |   if (SmiValuesAre32Bits()) { | 
 |     return BitcastWordToTaggedSigned(TryIntPtrAdd( | 
 |         BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs), if_overflow)); | 
 |   } else { | 
 |     DCHECK(SmiValuesAre31Bits()); | 
 |     TNode<PairT<Int32T, BoolT>> pair = | 
 |         Int32AddWithOverflow(TruncateIntPtrToInt32(BitcastTaggedToWord(lhs)), | 
 |                              TruncateIntPtrToInt32(BitcastTaggedToWord(rhs))); | 
 |     TNode<BoolT> overflow = Projection<1>(pair); | 
 |     GotoIf(overflow, if_overflow); | 
 |     TNode<Int32T> result = Projection<0>(pair); | 
 |     return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(result)); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::TrySmiSub(TNode<Smi> lhs, TNode<Smi> rhs, | 
 |                                         Label* if_overflow) { | 
 |   if (SmiValuesAre32Bits()) { | 
 |     TNode<PairT<IntPtrT, BoolT>> pair = IntPtrSubWithOverflow( | 
 |         BitcastTaggedToWord(lhs), BitcastTaggedToWord(rhs)); | 
 |     TNode<BoolT> overflow = Projection<1>(pair); | 
 |     GotoIf(overflow, if_overflow); | 
 |     TNode<IntPtrT> result = Projection<0>(pair); | 
 |     return BitcastWordToTaggedSigned(result); | 
 |   } else { | 
 |     DCHECK(SmiValuesAre31Bits()); | 
 |     TNode<PairT<Int32T, BoolT>> pair = | 
 |         Int32SubWithOverflow(TruncateIntPtrToInt32(BitcastTaggedToWord(lhs)), | 
 |                              TruncateIntPtrToInt32(BitcastTaggedToWord(rhs))); | 
 |     TNode<BoolT> overflow = Projection<1>(pair); | 
 |     GotoIf(overflow, if_overflow); | 
 |     TNode<Int32T> result = Projection<0>(pair); | 
 |     return BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(result)); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::NumberMax(SloppyTNode<Object> a, | 
 |                                            SloppyTNode<Object> b) { | 
 |   // TODO(danno): This could be optimized by specifically handling smi cases. | 
 |   VARIABLE(result, MachineRepresentation::kTagged); | 
 |   Label done(this), greater_than_equal_a(this), greater_than_equal_b(this); | 
 |   GotoIfNumberGreaterThanOrEqual(a, b, &greater_than_equal_a); | 
 |   GotoIfNumberGreaterThanOrEqual(b, a, &greater_than_equal_b); | 
 |   result.Bind(NanConstant()); | 
 |   Goto(&done); | 
 |   BIND(&greater_than_equal_a); | 
 |   result.Bind(a); | 
 |   Goto(&done); | 
 |   BIND(&greater_than_equal_b); | 
 |   result.Bind(b); | 
 |   Goto(&done); | 
 |   BIND(&done); | 
 |   return TNode<Object>::UncheckedCast(result.value()); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::NumberMin(SloppyTNode<Object> a, | 
 |                                            SloppyTNode<Object> b) { | 
 |   // TODO(danno): This could be optimized by specifically handling smi cases. | 
 |   VARIABLE(result, MachineRepresentation::kTagged); | 
 |   Label done(this), greater_than_equal_a(this), greater_than_equal_b(this); | 
 |   GotoIfNumberGreaterThanOrEqual(a, b, &greater_than_equal_a); | 
 |   GotoIfNumberGreaterThanOrEqual(b, a, &greater_than_equal_b); | 
 |   result.Bind(NanConstant()); | 
 |   Goto(&done); | 
 |   BIND(&greater_than_equal_a); | 
 |   result.Bind(b); | 
 |   Goto(&done); | 
 |   BIND(&greater_than_equal_b); | 
 |   result.Bind(a); | 
 |   Goto(&done); | 
 |   BIND(&done); | 
 |   return TNode<Object>::UncheckedCast(result.value()); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::ConvertToRelativeIndex( | 
 |     TNode<Context> context, TNode<Object> index, TNode<IntPtrT> length) { | 
 |   TVARIABLE(IntPtrT, result); | 
 |  | 
 |   TNode<Number> const index_int = | 
 |       ToInteger_Inline(context, index, CodeStubAssembler::kTruncateMinusZero); | 
 |   TNode<IntPtrT> zero = IntPtrConstant(0); | 
 |  | 
 |   Label done(this); | 
 |   Label if_issmi(this), if_isheapnumber(this, Label::kDeferred); | 
 |   Branch(TaggedIsSmi(index_int), &if_issmi, &if_isheapnumber); | 
 |  | 
 |   BIND(&if_issmi); | 
 |   { | 
 |     TNode<Smi> const index_smi = CAST(index_int); | 
 |     result = Select<IntPtrT>( | 
 |         IntPtrLessThan(SmiUntag(index_smi), zero), | 
 |         [=] { return IntPtrMax(IntPtrAdd(length, SmiUntag(index_smi)), zero); }, | 
 |         [=] { return IntPtrMin(SmiUntag(index_smi), length); }); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_isheapnumber); | 
 |   { | 
 |     // If {index} is a heap number, it is definitely out of bounds. If it is | 
 |     // negative, {index} = max({length} + {index}),0) = 0'. If it is positive, | 
 |     // set {index} to {length}. | 
 |     TNode<HeapNumber> const index_hn = CAST(index_int); | 
 |     TNode<Float64T> const float_zero = Float64Constant(0.); | 
 |     TNode<Float64T> const index_float = LoadHeapNumberValue(index_hn); | 
 |     result = SelectConstant<IntPtrT>(Float64LessThan(index_float, float_zero), | 
 |                                      zero, length); | 
 |     Goto(&done); | 
 |   } | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::SmiMod(TNode<Smi> a, TNode<Smi> b) { | 
 |   TVARIABLE(Number, var_result); | 
 |   Label return_result(this, &var_result), | 
 |       return_minuszero(this, Label::kDeferred), | 
 |       return_nan(this, Label::kDeferred); | 
 |  | 
 |   // Untag {a} and {b}. | 
 |   TNode<Int32T> int_a = SmiToInt32(a); | 
 |   TNode<Int32T> int_b = SmiToInt32(b); | 
 |  | 
 |   // Return NaN if {b} is zero. | 
 |   GotoIf(Word32Equal(int_b, Int32Constant(0)), &return_nan); | 
 |  | 
 |   // Check if {a} is non-negative. | 
 |   Label if_aisnotnegative(this), if_aisnegative(this, Label::kDeferred); | 
 |   Branch(Int32LessThanOrEqual(Int32Constant(0), int_a), &if_aisnotnegative, | 
 |          &if_aisnegative); | 
 |  | 
 |   BIND(&if_aisnotnegative); | 
 |   { | 
 |     // Fast case, don't need to check any other edge cases. | 
 |     TNode<Int32T> r = Int32Mod(int_a, int_b); | 
 |     var_result = SmiFromInt32(r); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&if_aisnegative); | 
 |   { | 
 |     if (SmiValuesAre32Bits()) { | 
 |       // Check if {a} is kMinInt and {b} is -1 (only relevant if the | 
 |       // kMinInt is actually representable as a Smi). | 
 |       Label join(this); | 
 |       GotoIfNot(Word32Equal(int_a, Int32Constant(kMinInt)), &join); | 
 |       GotoIf(Word32Equal(int_b, Int32Constant(-1)), &return_minuszero); | 
 |       Goto(&join); | 
 |       BIND(&join); | 
 |     } | 
 |  | 
 |     // Perform the integer modulus operation. | 
 |     TNode<Int32T> r = Int32Mod(int_a, int_b); | 
 |  | 
 |     // Check if {r} is zero, and if so return -0, because we have to | 
 |     // take the sign of the left hand side {a}, which is negative. | 
 |     GotoIf(Word32Equal(r, Int32Constant(0)), &return_minuszero); | 
 |  | 
 |     // The remainder {r} can be outside the valid Smi range on 32bit | 
 |     // architectures, so we cannot just say SmiFromInt32(r) here. | 
 |     var_result = ChangeInt32ToTagged(r); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_minuszero); | 
 |   var_result = MinusZeroConstant(); | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_nan); | 
 |   var_result = NanConstant(); | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_result); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::SmiMul(TNode<Smi> a, TNode<Smi> b) { | 
 |   TVARIABLE(Number, var_result); | 
 |   VARIABLE(var_lhs_float64, MachineRepresentation::kFloat64); | 
 |   VARIABLE(var_rhs_float64, MachineRepresentation::kFloat64); | 
 |   Label return_result(this, &var_result); | 
 |  | 
 |   // Both {a} and {b} are Smis. Convert them to integers and multiply. | 
 |   Node* lhs32 = SmiToInt32(a); | 
 |   Node* rhs32 = SmiToInt32(b); | 
 |   Node* pair = Int32MulWithOverflow(lhs32, rhs32); | 
 |  | 
 |   Node* overflow = Projection(1, pair); | 
 |  | 
 |   // Check if the multiplication overflowed. | 
 |   Label if_overflow(this, Label::kDeferred), if_notoverflow(this); | 
 |   Branch(overflow, &if_overflow, &if_notoverflow); | 
 |   BIND(&if_notoverflow); | 
 |   { | 
 |     // If the answer is zero, we may need to return -0.0, depending on the | 
 |     // input. | 
 |     Label answer_zero(this), answer_not_zero(this); | 
 |     Node* answer = Projection(0, pair); | 
 |     Node* zero = Int32Constant(0); | 
 |     Branch(Word32Equal(answer, zero), &answer_zero, &answer_not_zero); | 
 |     BIND(&answer_not_zero); | 
 |     { | 
 |       var_result = ChangeInt32ToTagged(answer); | 
 |       Goto(&return_result); | 
 |     } | 
 |     BIND(&answer_zero); | 
 |     { | 
 |       Node* or_result = Word32Or(lhs32, rhs32); | 
 |       Label if_should_be_negative_zero(this), if_should_be_zero(this); | 
 |       Branch(Int32LessThan(or_result, zero), &if_should_be_negative_zero, | 
 |              &if_should_be_zero); | 
 |       BIND(&if_should_be_negative_zero); | 
 |       { | 
 |         var_result = MinusZeroConstant(); | 
 |         Goto(&return_result); | 
 |       } | 
 |       BIND(&if_should_be_zero); | 
 |       { | 
 |         var_result = SmiConstant(0); | 
 |         Goto(&return_result); | 
 |       } | 
 |     } | 
 |   } | 
 |   BIND(&if_overflow); | 
 |   { | 
 |     var_lhs_float64.Bind(SmiToFloat64(a)); | 
 |     var_rhs_float64.Bind(SmiToFloat64(b)); | 
 |     Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value()); | 
 |     var_result = AllocateHeapNumberWithValue(value); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_result); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::TrySmiDiv(TNode<Smi> dividend, TNode<Smi> divisor, | 
 |                                         Label* bailout) { | 
 |   // Both {a} and {b} are Smis. Bailout to floating point division if {divisor} | 
 |   // is zero. | 
 |   GotoIf(WordEqual(divisor, SmiConstant(0)), bailout); | 
 |  | 
 |   // Do floating point division if {dividend} is zero and {divisor} is | 
 |   // negative. | 
 |   Label dividend_is_zero(this), dividend_is_not_zero(this); | 
 |   Branch(WordEqual(dividend, SmiConstant(0)), ÷nd_is_zero, | 
 |          ÷nd_is_not_zero); | 
 |  | 
 |   BIND(÷nd_is_zero); | 
 |   { | 
 |     GotoIf(SmiLessThan(divisor, SmiConstant(0)), bailout); | 
 |     Goto(÷nd_is_not_zero); | 
 |   } | 
 |   BIND(÷nd_is_not_zero); | 
 |  | 
 |   TNode<Int32T> untagged_divisor = SmiToInt32(divisor); | 
 |   TNode<Int32T> untagged_dividend = SmiToInt32(dividend); | 
 |  | 
 |   // Do floating point division if {dividend} is kMinInt (or kMinInt - 1 | 
 |   // if the Smi size is 31) and {divisor} is -1. | 
 |   Label divisor_is_minus_one(this), divisor_is_not_minus_one(this); | 
 |   Branch(Word32Equal(untagged_divisor, Int32Constant(-1)), | 
 |          &divisor_is_minus_one, &divisor_is_not_minus_one); | 
 |  | 
 |   BIND(&divisor_is_minus_one); | 
 |   { | 
 |     GotoIf(Word32Equal( | 
 |                untagged_dividend, | 
 |                Int32Constant(kSmiValueSize == 32 ? kMinInt : (kMinInt >> 1))), | 
 |            bailout); | 
 |     Goto(&divisor_is_not_minus_one); | 
 |   } | 
 |   BIND(&divisor_is_not_minus_one); | 
 |  | 
 |   TNode<Int32T> untagged_result = Int32Div(untagged_dividend, untagged_divisor); | 
 |   TNode<Int32T> truncated = Signed(Int32Mul(untagged_result, untagged_divisor)); | 
 |  | 
 |   // Do floating point division if the remainder is not 0. | 
 |   GotoIf(Word32NotEqual(untagged_dividend, truncated), bailout); | 
 |  | 
 |   return SmiFromInt32(untagged_result); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::SmiLexicographicCompare(TNode<Smi> x, | 
 |                                                       TNode<Smi> y) { | 
 |   TNode<ExternalReference> smi_lexicographic_compare = | 
 |       ExternalConstant(ExternalReference::smi_lexicographic_compare_function()); | 
 |   TNode<ExternalReference> isolate_ptr = | 
 |       ExternalConstant(ExternalReference::isolate_address(isolate())); | 
 |   return CAST(CallCFunction3(MachineType::AnyTagged(), MachineType::Pointer(), | 
 |                              MachineType::AnyTagged(), MachineType::AnyTagged(), | 
 |                              smi_lexicographic_compare, isolate_ptr, x, y)); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::TruncateIntPtrToInt32( | 
 |     SloppyTNode<IntPtrT> value) { | 
 |   if (Is64()) { | 
 |     return TruncateInt64ToInt32(ReinterpretCast<Int64T>(value)); | 
 |   } | 
 |   return ReinterpretCast<Int32T>(value); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::TaggedIsSmi(SloppyTNode<Object> a) { | 
 |   return WordEqual(WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)), | 
 |                    IntPtrConstant(0)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::TaggedIsSmi(TNode<MaybeObject> a) { | 
 |   return WordEqual( | 
 |       WordAnd(BitcastMaybeObjectToWord(a), IntPtrConstant(kSmiTagMask)), | 
 |       IntPtrConstant(0)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::TaggedIsNotSmi(SloppyTNode<Object> a) { | 
 |   return WordNotEqual( | 
 |       WordAnd(BitcastTaggedToWord(a), IntPtrConstant(kSmiTagMask)), | 
 |       IntPtrConstant(0)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::TaggedIsPositiveSmi(SloppyTNode<Object> a) { | 
 |   return WordEqual(WordAnd(BitcastTaggedToWord(a), | 
 |                            IntPtrConstant(kSmiTagMask | kSmiSignMask)), | 
 |                    IntPtrConstant(0)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::WordIsWordAligned(SloppyTNode<WordT> word) { | 
 |   return WordEqual(IntPtrConstant(0), | 
 |                    WordAnd(word, IntPtrConstant(kPointerSize - 1))); | 
 | } | 
 |  | 
 | #if DEBUG | 
 | void CodeStubAssembler::Bind(Label* label, AssemblerDebugInfo debug_info) { | 
 |   CodeAssembler::Bind(label, debug_info); | 
 | } | 
 | #else | 
 | void CodeStubAssembler::Bind(Label* label) { CodeAssembler::Bind(label); } | 
 | #endif  // DEBUG | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck( | 
 |     TNode<FixedDoubleArray> array, TNode<Smi> index, Label* if_hole) { | 
 |   return LoadFixedDoubleArrayElement(array, index, MachineType::Float64(), 0, | 
 |                                      SMI_PARAMETERS, if_hole); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck( | 
 |     TNode<FixedDoubleArray> array, TNode<IntPtrT> index, Label* if_hole) { | 
 |   return LoadFixedDoubleArrayElement(array, index, MachineType::Float64(), 0, | 
 |                                      INTPTR_PARAMETERS, if_hole); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BranchIfPrototypesHaveNoElements( | 
 |     Node* receiver_map, Label* definitely_no_elements, | 
 |     Label* possibly_elements) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(receiver_map)); | 
 |   VARIABLE(var_map, MachineRepresentation::kTagged, receiver_map); | 
 |   Label loop_body(this, &var_map); | 
 |   Node* empty_fixed_array = LoadRoot(RootIndex::kEmptyFixedArray); | 
 |   Node* empty_slow_element_dictionary = | 
 |       LoadRoot(RootIndex::kEmptySlowElementDictionary); | 
 |   Goto(&loop_body); | 
 |  | 
 |   BIND(&loop_body); | 
 |   { | 
 |     Node* map = var_map.value(); | 
 |     Node* prototype = LoadMapPrototype(map); | 
 |     GotoIf(IsNull(prototype), definitely_no_elements); | 
 |     Node* prototype_map = LoadMap(prototype); | 
 |     TNode<Int32T> prototype_instance_type = LoadMapInstanceType(prototype_map); | 
 |  | 
 |     // Pessimistically assume elements if a Proxy, Special API Object, | 
 |     // or JSValue wrapper is found on the prototype chain. After this | 
 |     // instance type check, it's not necessary to check for interceptors or | 
 |     // access checks. | 
 |     Label if_custom(this, Label::kDeferred), if_notcustom(this); | 
 |     Branch(IsCustomElementsReceiverInstanceType(prototype_instance_type), | 
 |            &if_custom, &if_notcustom); | 
 |  | 
 |     BIND(&if_custom); | 
 |     { | 
 |       // For string JSValue wrappers we still support the checks as long | 
 |       // as they wrap the empty string. | 
 |       GotoIfNot(InstanceTypeEqual(prototype_instance_type, JS_VALUE_TYPE), | 
 |                 possibly_elements); | 
 |       Node* prototype_value = LoadJSValueValue(prototype); | 
 |       Branch(IsEmptyString(prototype_value), &if_notcustom, possibly_elements); | 
 |     } | 
 |  | 
 |     BIND(&if_notcustom); | 
 |     { | 
 |       Node* prototype_elements = LoadElements(prototype); | 
 |       var_map.Bind(prototype_map); | 
 |       GotoIf(WordEqual(prototype_elements, empty_fixed_array), &loop_body); | 
 |       Branch(WordEqual(prototype_elements, empty_slow_element_dictionary), | 
 |              &loop_body, possibly_elements); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::BranchIfJSReceiver(Node* object, Label* if_true, | 
 |                                            Label* if_false) { | 
 |   GotoIf(TaggedIsSmi(object), if_false); | 
 |   STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); | 
 |   Branch(IsJSReceiver(object), if_true, if_false); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFastJSArray(SloppyTNode<Object> object, | 
 |                                               SloppyTNode<Context> context) { | 
 |   Label if_true(this), if_false(this, Label::kDeferred), exit(this); | 
 |   BranchIfFastJSArray(object, context, &if_true, &if_false); | 
 |   TVARIABLE(BoolT, var_result); | 
 |   BIND(&if_true); | 
 |   { | 
 |     var_result = Int32TrueConstant(); | 
 |     Goto(&exit); | 
 |   } | 
 |   BIND(&if_false); | 
 |   { | 
 |     var_result = Int32FalseConstant(); | 
 |     Goto(&exit); | 
 |   } | 
 |   BIND(&exit); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFastJSArrayWithNoCustomIteration( | 
 |     TNode<Object> object, TNode<Context> context) { | 
 |   Label if_false(this, Label::kDeferred), if_fast(this), exit(this); | 
 |   TVARIABLE(BoolT, var_result); | 
 |   BranchIfFastJSArray(object, context, &if_fast, &if_false, true); | 
 |   BIND(&if_fast); | 
 |   { | 
 |     // Check that the Array.prototype hasn't been modified in a way that would | 
 |     // affect iteration. | 
 |     Node* protector_cell = LoadRoot(RootIndex::kArrayIteratorProtector); | 
 |     DCHECK(isolate()->heap()->array_iterator_protector()->IsPropertyCell()); | 
 |     var_result = | 
 |         WordEqual(LoadObjectField(protector_cell, PropertyCell::kValueOffset), | 
 |                   SmiConstant(Isolate::kProtectorValid)); | 
 |     Goto(&exit); | 
 |   } | 
 |   BIND(&if_false); | 
 |   { | 
 |     var_result = Int32FalseConstant(); | 
 |     Goto(&exit); | 
 |   } | 
 |   BIND(&exit); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BranchIfFastJSArray(Node* object, Node* context, | 
 |                                             Label* if_true, Label* if_false, | 
 |                                             bool iteration_only) { | 
 |   GotoIfForceSlowPath(if_false); | 
 |  | 
 |   // Bailout if receiver is a Smi. | 
 |   GotoIf(TaggedIsSmi(object), if_false); | 
 |  | 
 |   Node* map = LoadMap(object); | 
 |   GotoIfNot(IsJSArrayMap(map), if_false); | 
 |  | 
 |   // Bailout if receiver has slow elements. | 
 |   Node* elements_kind = LoadMapElementsKind(map); | 
 |   GotoIfNot(IsFastElementsKind(elements_kind), if_false); | 
 |  | 
 |   // Verify that our prototype is the initial array prototype. | 
 |   GotoIfNot(IsPrototypeInitialArrayPrototype(context, map), if_false); | 
 |  | 
 |   if (iteration_only) { | 
 |     // If we are only iterating over the array, there is no need to check | 
 |     // the NoElements protector if the array is not holey. | 
 |     GotoIfNot(IsHoleyFastElementsKind(elements_kind), if_true); | 
 |   } | 
 |   Branch(IsNoElementsProtectorCellInvalid(), if_false, if_true); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BranchIfFastJSArrayForCopy(Node* object, Node* context, | 
 |                                                    Label* if_true, | 
 |                                                    Label* if_false) { | 
 |   GotoIf(IsArraySpeciesProtectorCellInvalid(), if_false); | 
 |   BranchIfFastJSArray(object, context, if_true, if_false); | 
 | } | 
 |  | 
 | void CodeStubAssembler::GotoIfForceSlowPath(Label* if_true) { | 
 | #ifdef V8_ENABLE_FORCE_SLOW_PATH | 
 |   Node* const force_slow_path_addr = | 
 |       ExternalConstant(ExternalReference::force_slow_path(isolate())); | 
 |   Node* const force_slow = Load(MachineType::Uint8(), force_slow_path_addr); | 
 |  | 
 |   GotoIf(force_slow, if_true); | 
 | #endif | 
 | } | 
 |  | 
 | void CodeStubAssembler::GotoIfDebugExecutionModeChecksSideEffects( | 
 |     Label* if_true) { | 
 |   STATIC_ASSERT(sizeof(DebugInfo::ExecutionMode) >= sizeof(int32_t)); | 
 |  | 
 |   TNode<ExternalReference> execution_mode_address = ExternalConstant( | 
 |       ExternalReference::debug_execution_mode_address(isolate())); | 
 |   TNode<Int32T> execution_mode = | 
 |       UncheckedCast<Int32T>(Load(MachineType::Int32(), execution_mode_address)); | 
 |  | 
 |   GotoIf(Word32Equal(execution_mode, Int32Constant(DebugInfo::kSideEffects)), | 
 |          if_true); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateRaw(Node* size_in_bytes, AllocationFlags flags, | 
 |                                      Node* top_address, Node* limit_address) { | 
 |   // TODO(jgruber, chromium:848672): TNodeify AllocateRaw. | 
 |   // TODO(jgruber, chromium:848672): Call FatalProcessOutOfMemory if this fails. | 
 |   { | 
 |     intptr_t constant_value; | 
 |     if (ToIntPtrConstant(size_in_bytes, constant_value)) { | 
 |       CHECK(Internals::IsValidSmi(constant_value)); | 
 |       CHECK_GT(constant_value, 0); | 
 |     } else { | 
 |       CSA_CHECK(this, | 
 |                 IsValidPositiveSmi(UncheckedCast<IntPtrT>(size_in_bytes))); | 
 |     } | 
 |   } | 
 |  | 
 |   Node* top = Load(MachineType::Pointer(), top_address); | 
 |   Node* limit = Load(MachineType::Pointer(), limit_address); | 
 |  | 
 |   // If there's not enough space, call the runtime. | 
 |   VARIABLE(result, MachineRepresentation::kTagged); | 
 |   Label runtime_call(this, Label::kDeferred), no_runtime_call(this); | 
 |   Label merge_runtime(this, &result); | 
 |  | 
 |   bool needs_double_alignment = flags & kDoubleAlignment; | 
 |  | 
 |   if (flags & kAllowLargeObjectAllocation) { | 
 |     Label next(this); | 
 |     GotoIf(IsRegularHeapObjectSize(size_in_bytes), &next); | 
 |  | 
 |     Node* runtime_flags = SmiConstant( | 
 |         Smi::FromInt(AllocateDoubleAlignFlag::encode(needs_double_alignment) | | 
 |                      AllocateTargetSpace::encode(AllocationSpace::LO_SPACE))); | 
 |     Node* const runtime_result = | 
 |         CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(), | 
 |                     SmiTag(size_in_bytes), runtime_flags); | 
 |     result.Bind(runtime_result); | 
 |     Goto(&merge_runtime); | 
 |  | 
 |     BIND(&next); | 
 |   } | 
 |  | 
 |   VARIABLE(adjusted_size, MachineType::PointerRepresentation(), size_in_bytes); | 
 |  | 
 |   if (needs_double_alignment) { | 
 |     Label not_aligned(this), done_alignment(this, &adjusted_size); | 
 |  | 
 |     Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), ¬_aligned, | 
 |            &done_alignment); | 
 |  | 
 |     BIND(¬_aligned); | 
 |     Node* not_aligned_size = IntPtrAdd(size_in_bytes, IntPtrConstant(4)); | 
 |     adjusted_size.Bind(not_aligned_size); | 
 |     Goto(&done_alignment); | 
 |  | 
 |     BIND(&done_alignment); | 
 |   } | 
 |  | 
 |   Node* new_top = IntPtrAdd(top, adjusted_size.value()); | 
 |  | 
 |   Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call, | 
 |          &no_runtime_call); | 
 |  | 
 |   BIND(&runtime_call); | 
 |   Node* runtime_result; | 
 |   if (flags & kPretenured) { | 
 |     Node* runtime_flags = SmiConstant( | 
 |         Smi::FromInt(AllocateDoubleAlignFlag::encode(needs_double_alignment) | | 
 |                      AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE))); | 
 |     runtime_result = | 
 |         CallRuntime(Runtime::kAllocateInTargetSpace, NoContextConstant(), | 
 |                     SmiTag(size_in_bytes), runtime_flags); | 
 |   } else { | 
 |     runtime_result = CallRuntime(Runtime::kAllocateInNewSpace, | 
 |                                  NoContextConstant(), SmiTag(size_in_bytes)); | 
 |   } | 
 |   result.Bind(runtime_result); | 
 |   Goto(&merge_runtime); | 
 |  | 
 |   // When there is enough space, return `top' and bump it up. | 
 |   BIND(&no_runtime_call); | 
 |   Node* no_runtime_result = top; | 
 |   StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address, | 
 |                       new_top); | 
 |  | 
 |   VARIABLE(address, MachineType::PointerRepresentation(), no_runtime_result); | 
 |  | 
 |   if (needs_double_alignment) { | 
 |     Label needs_filler(this), done_filling(this, &address); | 
 |     Branch(IntPtrEqual(adjusted_size.value(), size_in_bytes), &done_filling, | 
 |            &needs_filler); | 
 |  | 
 |     BIND(&needs_filler); | 
 |     // Store a filler and increase the address by kPointerSize. | 
 |     StoreNoWriteBarrier(MachineRepresentation::kTagged, top, | 
 |                         LoadRoot(RootIndex::kOnePointerFillerMap)); | 
 |     address.Bind(IntPtrAdd(no_runtime_result, IntPtrConstant(4))); | 
 |  | 
 |     Goto(&done_filling); | 
 |  | 
 |     BIND(&done_filling); | 
 |   } | 
 |  | 
 |   no_runtime_result = BitcastWordToTagged( | 
 |       IntPtrAdd(address.value(), IntPtrConstant(kHeapObjectTag))); | 
 |  | 
 |   result.Bind(no_runtime_result); | 
 |   Goto(&merge_runtime); | 
 |  | 
 |   BIND(&merge_runtime); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes, | 
 |                                               AllocationFlags flags, | 
 |                                               Node* top_address, | 
 |                                               Node* limit_address) { | 
 |   DCHECK_EQ(flags & kDoubleAlignment, 0); | 
 |   return AllocateRaw(size_in_bytes, flags, top_address, limit_address); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateRawDoubleAligned(Node* size_in_bytes, | 
 |                                                   AllocationFlags flags, | 
 |                                                   Node* top_address, | 
 |                                                   Node* limit_address) { | 
 | #if defined(V8_HOST_ARCH_32_BIT) | 
 |   return AllocateRaw(size_in_bytes, flags | kDoubleAlignment, top_address, | 
 |                      limit_address); | 
 | #elif defined(V8_HOST_ARCH_64_BIT) | 
 |   // Allocation on 64 bit machine is naturally double aligned | 
 |   return AllocateRaw(size_in_bytes, flags & ~kDoubleAlignment, top_address, | 
 |                      limit_address); | 
 | #else | 
 | #error Architecture not supported | 
 | #endif | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateInNewSpace(Node* size_in_bytes, | 
 |                                             AllocationFlags flags) { | 
 |   DCHECK(flags == kNone || flags == kDoubleAlignment); | 
 |   CSA_ASSERT(this, IsRegularHeapObjectSize(size_in_bytes)); | 
 |   return Allocate(size_in_bytes, flags); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::Allocate(Node* size_in_bytes, AllocationFlags flags) { | 
 |   Comment("Allocate"); | 
 |   bool const new_space = !(flags & kPretenured); | 
 |   Node* top_address = ExternalConstant( | 
 |       new_space | 
 |           ? ExternalReference::new_space_allocation_top_address(isolate()) | 
 |           : ExternalReference::old_space_allocation_top_address(isolate())); | 
 |   DCHECK_EQ(kPointerSize, | 
 |             ExternalReference::new_space_allocation_limit_address(isolate()) | 
 |                     .address() - | 
 |                 ExternalReference::new_space_allocation_top_address(isolate()) | 
 |                     .address()); | 
 |   DCHECK_EQ(kPointerSize, | 
 |             ExternalReference::old_space_allocation_limit_address(isolate()) | 
 |                     .address() - | 
 |                 ExternalReference::old_space_allocation_top_address(isolate()) | 
 |                     .address()); | 
 |   Node* limit_address = IntPtrAdd(top_address, IntPtrConstant(kPointerSize)); | 
 |  | 
 |   if (flags & kDoubleAlignment) { | 
 |     return AllocateRawDoubleAligned(size_in_bytes, flags, top_address, | 
 |                                     limit_address); | 
 |   } else { | 
 |     return AllocateRawUnaligned(size_in_bytes, flags, top_address, | 
 |                                 limit_address); | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateInNewSpace(int size_in_bytes, | 
 |                                             AllocationFlags flags) { | 
 |   CHECK(flags == kNone || flags == kDoubleAlignment); | 
 |   DCHECK_LE(size_in_bytes, kMaxRegularHeapObjectSize); | 
 |   return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) { | 
 |   return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::InnerAllocate(Node* previous, Node* offset) { | 
 |   return BitcastWordToTagged(IntPtrAdd(BitcastTaggedToWord(previous), offset)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) { | 
 |   return InnerAllocate(previous, IntPtrConstant(offset)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsRegularHeapObjectSize(Node* size) { | 
 |   return UintPtrLessThanOrEqual(size, | 
 |                                 IntPtrConstant(kMaxRegularHeapObjectSize)); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BranchIfToBooleanIsTrue(Node* value, Label* if_true, | 
 |                                                 Label* if_false) { | 
 |   Label if_smi(this), if_notsmi(this), if_heapnumber(this, Label::kDeferred), | 
 |       if_bigint(this, Label::kDeferred); | 
 |   // Rule out false {value}. | 
 |   GotoIf(WordEqual(value, FalseConstant()), if_false); | 
 |  | 
 |   // Check if {value} is a Smi or a HeapObject. | 
 |   Branch(TaggedIsSmi(value), &if_smi, &if_notsmi); | 
 |  | 
 |   BIND(&if_smi); | 
 |   { | 
 |     // The {value} is a Smi, only need to check against zero. | 
 |     BranchIfSmiEqual(CAST(value), SmiConstant(0), if_false, if_true); | 
 |   } | 
 |  | 
 |   BIND(&if_notsmi); | 
 |   { | 
 |     // Check if {value} is the empty string. | 
 |     GotoIf(IsEmptyString(value), if_false); | 
 |  | 
 |     // The {value} is a HeapObject, load its map. | 
 |     Node* value_map = LoadMap(value); | 
 |  | 
 |     // Only null, undefined and document.all have the undetectable bit set, | 
 |     // so we can return false immediately when that bit is set. | 
 |     GotoIf(IsUndetectableMap(value_map), if_false); | 
 |  | 
 |     // We still need to handle numbers specially, but all other {value}s | 
 |     // that make it here yield true. | 
 |     GotoIf(IsHeapNumberMap(value_map), &if_heapnumber); | 
 |     Branch(IsBigInt(value), &if_bigint, if_true); | 
 |  | 
 |     BIND(&if_heapnumber); | 
 |     { | 
 |       // Load the floating point value of {value}. | 
 |       Node* value_value = LoadObjectField(value, HeapNumber::kValueOffset, | 
 |                                           MachineType::Float64()); | 
 |  | 
 |       // Check if the floating point {value} is neither 0.0, -0.0 nor NaN. | 
 |       Branch(Float64LessThan(Float64Constant(0.0), Float64Abs(value_value)), | 
 |              if_true, if_false); | 
 |     } | 
 |  | 
 |     BIND(&if_bigint); | 
 |     { | 
 |       Node* result = | 
 |           CallRuntime(Runtime::kBigIntToBoolean, NoContextConstant(), value); | 
 |       CSA_ASSERT(this, IsBoolean(result)); | 
 |       Branch(WordEqual(result, TrueConstant()), if_true, if_false); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadFromFrame(int offset, MachineType rep) { | 
 |   Node* frame_pointer = LoadFramePointer(); | 
 |   return Load(rep, frame_pointer, IntPtrConstant(offset)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadFromParentFrame(int offset, MachineType rep) { | 
 |   Node* frame_pointer = LoadParentFramePointer(); | 
 |   return Load(rep, frame_pointer, IntPtrConstant(offset)); | 
 | } | 
 |  | 
 | TNode<JSFunction> CodeStubAssembler::LoadTargetFromFrame() { | 
 |   DCHECK(IsJSFunctionCall()); | 
 |   return CAST(LoadFromFrame(StandardFrameConstants::kFunctionOffset, | 
 |                             MachineType::TaggedPointer())); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset, | 
 |                                           MachineType rep) { | 
 |   return Load(rep, buffer, IntPtrConstant(offset)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadObjectField(SloppyTNode<HeapObject> object, | 
 |                                          int offset, MachineType rep) { | 
 |   CSA_ASSERT(this, IsStrong(object)); | 
 |   return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadObjectField(SloppyTNode<HeapObject> object, | 
 |                                          SloppyTNode<IntPtrT> offset, | 
 |                                          MachineType rep) { | 
 |   CSA_ASSERT(this, IsStrong(object)); | 
 |   return Load(rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag))); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadAndUntagObjectField( | 
 |     SloppyTNode<HeapObject> object, int offset) { | 
 |   if (SmiValuesAre32Bits()) { | 
 | #if V8_TARGET_LITTLE_ENDIAN | 
 |     offset += kPointerSize / 2; | 
 | #endif | 
 |     return ChangeInt32ToIntPtr( | 
 |         LoadObjectField(object, offset, MachineType::Int32())); | 
 |   } else { | 
 |     return SmiToIntPtr( | 
 |         LoadObjectField(object, offset, MachineType::AnyTagged())); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32ObjectField(Node* object, | 
 |                                                                  int offset) { | 
 |   if (SmiValuesAre32Bits()) { | 
 | #if V8_TARGET_LITTLE_ENDIAN | 
 |     offset += kPointerSize / 2; | 
 | #endif | 
 |     return UncheckedCast<Int32T>( | 
 |         LoadObjectField(object, offset, MachineType::Int32())); | 
 |   } else { | 
 |     return SmiToInt32( | 
 |         LoadObjectField(object, offset, MachineType::AnyTagged())); | 
 |   } | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadAndUntagSmi(Node* base, int index) { | 
 |   if (SmiValuesAre32Bits()) { | 
 | #if V8_TARGET_LITTLE_ENDIAN | 
 |     index += kPointerSize / 2; | 
 | #endif | 
 |     return ChangeInt32ToIntPtr( | 
 |         Load(MachineType::Int32(), base, IntPtrConstant(index))); | 
 |   } else { | 
 |     return SmiToIntPtr( | 
 |         Load(MachineType::AnyTagged(), base, IntPtrConstant(index))); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32Root( | 
 |     RootIndex root_index) { | 
 |   Node* roots_array_start = | 
 |       ExternalConstant(ExternalReference::roots_array_start(isolate())); | 
 |   int offset = static_cast<int>(root_index) * kPointerSize; | 
 |   if (SmiValuesAre32Bits()) { | 
 | #if V8_TARGET_LITTLE_ENDIAN | 
 |     offset += kPointerSize / 2; | 
 | #endif | 
 |     return UncheckedCast<Int32T>( | 
 |         Load(MachineType::Int32(), roots_array_start, IntPtrConstant(offset))); | 
 |   } else { | 
 |     return SmiToInt32(Load(MachineType::AnyTagged(), roots_array_start, | 
 |                            IntPtrConstant(offset))); | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreAndTagSmi(Node* base, int offset, Node* value) { | 
 |   if (SmiValuesAre32Bits()) { | 
 |     int zero_offset = offset + kPointerSize / 2; | 
 |     int payload_offset = offset; | 
 | #if V8_TARGET_LITTLE_ENDIAN | 
 |     std::swap(zero_offset, payload_offset); | 
 | #endif | 
 |     StoreNoWriteBarrier(MachineRepresentation::kWord32, base, | 
 |                         IntPtrConstant(zero_offset), Int32Constant(0)); | 
 |     return StoreNoWriteBarrier(MachineRepresentation::kWord32, base, | 
 |                                IntPtrConstant(payload_offset), | 
 |                                TruncateInt64ToInt32(value)); | 
 |   } else { | 
 |     return StoreNoWriteBarrier(MachineRepresentation::kTaggedSigned, base, | 
 |                                IntPtrConstant(offset), SmiTag(value)); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::LoadHeapNumberValue( | 
 |     SloppyTNode<HeapNumber> object) { | 
 |   return TNode<Float64T>::UncheckedCast(LoadObjectField( | 
 |       object, HeapNumber::kValueOffset, MachineType::Float64())); | 
 | } | 
 |  | 
 | TNode<Map> CodeStubAssembler::LoadMap(SloppyTNode<HeapObject> object) { | 
 |   return UncheckedCast<Map>(LoadObjectField(object, HeapObject::kMapOffset)); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadInstanceType( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return LoadMapInstanceType(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::HasInstanceType(SloppyTNode<HeapObject> object, | 
 |                                                 InstanceType instance_type) { | 
 |   return InstanceTypeEqual(LoadInstanceType(object), instance_type); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::DoesntHaveInstanceType( | 
 |     SloppyTNode<HeapObject> object, InstanceType instance_type) { | 
 |   return Word32NotEqual(LoadInstanceType(object), Int32Constant(instance_type)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::TaggedDoesntHaveInstanceType( | 
 |     SloppyTNode<HeapObject> any_tagged, InstanceType type) { | 
 |   /* return Phi <TaggedIsSmi(val), DoesntHaveInstanceType(val, type)> */ | 
 |   TNode<BoolT> tagged_is_smi = TaggedIsSmi(any_tagged); | 
 |   return Select<BoolT>( | 
 |       tagged_is_smi, [=]() { return tagged_is_smi; }, | 
 |       [=]() { return DoesntHaveInstanceType(any_tagged, type); }); | 
 | } | 
 |  | 
 | TNode<HeapObject> CodeStubAssembler::LoadFastProperties( | 
 |     SloppyTNode<JSObject> object) { | 
 |   CSA_SLOW_ASSERT(this, Word32BinaryNot(IsDictionaryMap(LoadMap(object)))); | 
 |   TNode<Object> properties = | 
 |       LoadObjectField(object, JSObject::kPropertiesOrHashOffset); | 
 |   return Select<HeapObject>(TaggedIsSmi(properties), | 
 |                             [=] { return EmptyFixedArrayConstant(); }, | 
 |                             [=] { return CAST(properties); }); | 
 | } | 
 |  | 
 | TNode<HeapObject> CodeStubAssembler::LoadSlowProperties( | 
 |     SloppyTNode<JSObject> object) { | 
 |   CSA_SLOW_ASSERT(this, IsDictionaryMap(LoadMap(object))); | 
 |   TNode<Object> properties = | 
 |       LoadObjectField(object, JSObject::kPropertiesOrHashOffset); | 
 |   return Select<HeapObject>(TaggedIsSmi(properties), | 
 |                             [=] { return EmptyPropertyDictionaryConstant(); }, | 
 |                             [=] { return CAST(properties); }); | 
 | } | 
 |  | 
 | TNode<FixedArrayBase> CodeStubAssembler::LoadElements( | 
 |     SloppyTNode<JSObject> object) { | 
 |   return CAST(LoadObjectField(object, JSObject::kElementsOffset)); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::LoadJSArrayLength(SloppyTNode<JSArray> array) { | 
 |   CSA_ASSERT(this, IsJSArray(array)); | 
 |   return CAST(LoadObjectField(array, JSArray::kLengthOffset)); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadJSArgumentsObjectWithLength( | 
 |     SloppyTNode<JSArgumentsObjectWithLength> array) { | 
 |   return LoadObjectField(array, JSArgumentsObjectWithLength::kLengthOffset); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::LoadFastJSArrayLength( | 
 |     SloppyTNode<JSArray> array) { | 
 |   TNode<Object> length = LoadJSArrayLength(array); | 
 |   CSA_ASSERT(this, IsFastElementsKind(LoadElementsKind(array))); | 
 |   // JSArray length is always a positive Smi for fast arrays. | 
 |   CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); | 
 |   return UncheckedCast<Smi>(length); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::LoadFixedArrayBaseLength( | 
 |     SloppyTNode<FixedArrayBase> array) { | 
 |   CSA_SLOW_ASSERT(this, IsNotWeakFixedArraySubclass(array)); | 
 |   return CAST(LoadObjectField(array, FixedArrayBase::kLengthOffset)); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadAndUntagFixedArrayBaseLength( | 
 |     SloppyTNode<FixedArrayBase> array) { | 
 |   return LoadAndUntagObjectField(array, FixedArrayBase::kLengthOffset); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadFeedbackVectorLength( | 
 |     TNode<FeedbackVector> vector) { | 
 |   return ChangeInt32ToIntPtr( | 
 |       LoadObjectField<Int32T>(vector, FeedbackVector::kLengthOffset)); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::LoadWeakFixedArrayLength( | 
 |     TNode<WeakFixedArray> array) { | 
 |   return CAST(LoadObjectField(array, WeakFixedArray::kLengthOffset)); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadAndUntagWeakFixedArrayLength( | 
 |     SloppyTNode<WeakFixedArray> array) { | 
 |   return LoadAndUntagObjectField(array, WeakFixedArray::kLengthOffset); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadMapBitField(SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   return UncheckedCast<Int32T>( | 
 |       LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8())); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadMapBitField2(SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   return UncheckedCast<Int32T>( | 
 |       LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8())); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::LoadMapBitField3(SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   return UncheckedCast<Uint32T>( | 
 |       LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32())); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadMapInstanceType(SloppyTNode<Map> map) { | 
 |   return UncheckedCast<Int32T>( | 
 |       LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint16())); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadMapElementsKind(SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   Node* bit_field2 = LoadMapBitField2(map); | 
 |   return Signed(DecodeWord32<Map::ElementsKindBits>(bit_field2)); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadElementsKind( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return LoadMapElementsKind(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<DescriptorArray> CodeStubAssembler::LoadMapDescriptors( | 
 |     SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   return CAST(LoadObjectField(map, Map::kDescriptorsOffset)); | 
 | } | 
 |  | 
 | TNode<HeapObject> CodeStubAssembler::LoadMapPrototype(SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   return CAST(LoadObjectField(map, Map::kPrototypeOffset)); | 
 | } | 
 |  | 
 | TNode<PrototypeInfo> CodeStubAssembler::LoadMapPrototypeInfo( | 
 |     SloppyTNode<Map> map, Label* if_no_proto_info) { | 
 |   Label if_strong_heap_object(this); | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   TNode<MaybeObject> maybe_prototype_info = | 
 |       LoadMaybeWeakObjectField(map, Map::kTransitionsOrPrototypeInfoOffset); | 
 |   TVARIABLE(Object, prototype_info); | 
 |   DispatchMaybeObject(maybe_prototype_info, if_no_proto_info, if_no_proto_info, | 
 |                       if_no_proto_info, &if_strong_heap_object, | 
 |                       &prototype_info); | 
 |  | 
 |   BIND(&if_strong_heap_object); | 
 |   GotoIfNot(WordEqual(LoadMap(CAST(prototype_info.value())), | 
 |                       LoadRoot(RootIndex::kPrototypeInfoMap)), | 
 |             if_no_proto_info); | 
 |   return CAST(prototype_info.value()); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadMapInstanceSizeInWords( | 
 |     SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   return ChangeInt32ToIntPtr(LoadObjectField( | 
 |       map, Map::kInstanceSizeInWordsOffset, MachineType::Uint8())); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadMapInobjectPropertiesStartInWords( | 
 |     SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   // See Map::GetInObjectPropertiesStartInWords() for details. | 
 |   CSA_ASSERT(this, IsJSObjectMap(map)); | 
 |   return ChangeInt32ToIntPtr(LoadObjectField( | 
 |       map, Map::kInObjectPropertiesStartOrConstructorFunctionIndexOffset, | 
 |       MachineType::Uint8())); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadMapConstructorFunctionIndex( | 
 |     SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   // See Map::GetConstructorFunctionIndex() for details. | 
 |   CSA_ASSERT(this, IsPrimitiveInstanceType(LoadMapInstanceType(map))); | 
 |   return ChangeInt32ToIntPtr(LoadObjectField( | 
 |       map, Map::kInObjectPropertiesStartOrConstructorFunctionIndexOffset, | 
 |       MachineType::Uint8())); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadMapConstructor(SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   TVARIABLE(Object, result, | 
 |             LoadObjectField(map, Map::kConstructorOrBackPointerOffset)); | 
 |  | 
 |   Label done(this), loop(this, &result); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     GotoIf(TaggedIsSmi(result.value()), &done); | 
 |     Node* is_map_type = | 
 |         InstanceTypeEqual(LoadInstanceType(CAST(result.value())), MAP_TYPE); | 
 |     GotoIfNot(is_map_type, &done); | 
 |     result = LoadObjectField(CAST(result.value()), | 
 |                              Map::kConstructorOrBackPointerOffset); | 
 |     Goto(&loop); | 
 |   } | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadMapEnumLength(SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   Node* bit_field3 = LoadMapBitField3(map); | 
 |   return DecodeWordFromWord32<Map::EnumLengthBits>(bit_field3); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadMapBackPointer(SloppyTNode<Map> map) { | 
 |   TNode<HeapObject> object = | 
 |       CAST(LoadObjectField(map, Map::kConstructorOrBackPointerOffset)); | 
 |   return Select<Object>(IsMap(object), [=] { return object; }, | 
 |                         [=] { return UndefinedConstant(); }); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::EnsureOnlyHasSimpleProperties( | 
 |     TNode<Map> map, TNode<Int32T> instance_type, Label* bailout) { | 
 |   // This check can have false positives, since it applies to any JSValueType. | 
 |   GotoIf(IsCustomElementsReceiverInstanceType(instance_type), bailout); | 
 |  | 
 |   TNode<Uint32T> bit_field3 = LoadMapBitField3(map); | 
 |   GotoIf(IsSetWord32(bit_field3, Map::IsDictionaryMapBit::kMask | | 
 |                                      Map::HasHiddenPrototypeBit::kMask), | 
 |          bailout); | 
 |  | 
 |   return bit_field3; | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadJSReceiverIdentityHash( | 
 |     SloppyTNode<Object> receiver, Label* if_no_hash) { | 
 |   TVARIABLE(IntPtrT, var_hash); | 
 |   Label done(this), if_smi(this), if_property_array(this), | 
 |       if_property_dictionary(this), if_fixed_array(this); | 
 |  | 
 |   TNode<Object> properties_or_hash = | 
 |       LoadObjectField(TNode<HeapObject>::UncheckedCast(receiver), | 
 |                       JSReceiver::kPropertiesOrHashOffset); | 
 |   GotoIf(TaggedIsSmi(properties_or_hash), &if_smi); | 
 |  | 
 |   TNode<HeapObject> properties = | 
 |       TNode<HeapObject>::UncheckedCast(properties_or_hash); | 
 |   TNode<Int32T> properties_instance_type = LoadInstanceType(properties); | 
 |  | 
 |   GotoIf(InstanceTypeEqual(properties_instance_type, PROPERTY_ARRAY_TYPE), | 
 |          &if_property_array); | 
 |   Branch(InstanceTypeEqual(properties_instance_type, NAME_DICTIONARY_TYPE), | 
 |          &if_property_dictionary, &if_fixed_array); | 
 |  | 
 |   BIND(&if_fixed_array); | 
 |   { | 
 |     var_hash = IntPtrConstant(PropertyArray::kNoHashSentinel); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_smi); | 
 |   { | 
 |     var_hash = SmiUntag(TNode<Smi>::UncheckedCast(properties_or_hash)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_property_array); | 
 |   { | 
 |     TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField( | 
 |         properties, PropertyArray::kLengthAndHashOffset); | 
 |     var_hash = TNode<IntPtrT>::UncheckedCast( | 
 |         DecodeWord<PropertyArray::HashField>(length_and_hash)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_property_dictionary); | 
 |   { | 
 |     var_hash = SmiUntag(CAST(LoadFixedArrayElement( | 
 |         CAST(properties), NameDictionary::kObjectHashIndex))); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   if (if_no_hash != nullptr) { | 
 |     GotoIf(IntPtrEqual(var_hash.value(), | 
 |                        IntPtrConstant(PropertyArray::kNoHashSentinel)), | 
 |            if_no_hash); | 
 |   } | 
 |   return var_hash.value(); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::LoadNameHashField(SloppyTNode<Name> name) { | 
 |   CSA_ASSERT(this, IsName(name)); | 
 |   return LoadObjectField<Uint32T>(name, Name::kHashFieldOffset); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::LoadNameHash(SloppyTNode<Name> name, | 
 |                                                Label* if_hash_not_computed) { | 
 |   TNode<Uint32T> hash_field = LoadNameHashField(name); | 
 |   if (if_hash_not_computed != nullptr) { | 
 |     GotoIf(IsSetWord32(hash_field, Name::kHashNotComputedMask), | 
 |            if_hash_not_computed); | 
 |   } | 
 |   return Unsigned(Word32Shr(hash_field, Int32Constant(Name::kHashShift))); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::LoadStringLengthAsSmi( | 
 |     SloppyTNode<String> string) { | 
 |   return SmiFromIntPtr(LoadStringLengthAsWord(string)); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadStringLengthAsWord( | 
 |     SloppyTNode<String> string) { | 
 |   return Signed(ChangeUint32ToWord(LoadStringLengthAsWord32(string))); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::LoadStringLengthAsWord32( | 
 |     SloppyTNode<String> string) { | 
 |   CSA_ASSERT(this, IsString(string)); | 
 |   return LoadObjectField<Uint32T>(string, String::kLengthOffset); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::PointerToSeqStringData(Node* seq_string) { | 
 |   CSA_ASSERT(this, IsString(seq_string)); | 
 |   CSA_ASSERT(this, | 
 |              IsSequentialStringInstanceType(LoadInstanceType(seq_string))); | 
 |   STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); | 
 |   return IntPtrAdd( | 
 |       BitcastTaggedToWord(seq_string), | 
 |       IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadJSValueValue(Node* object) { | 
 |   CSA_ASSERT(this, IsJSValue(object)); | 
 |   return LoadObjectField(object, JSValue::kValueOffset); | 
 | } | 
 |  | 
 | void CodeStubAssembler::DispatchMaybeObject(TNode<MaybeObject> maybe_object, | 
 |                                             Label* if_smi, Label* if_cleared, | 
 |                                             Label* if_weak, Label* if_strong, | 
 |                                             TVariable<Object>* extracted) { | 
 |   Label inner_if_smi(this), inner_if_strong(this); | 
 |  | 
 |   GotoIf(TaggedIsSmi(maybe_object), &inner_if_smi); | 
 |  | 
 |   GotoIf(WordEqual(BitcastMaybeObjectToWord(maybe_object), | 
 |                    IntPtrConstant(reinterpret_cast<intptr_t>( | 
 |                        HeapObjectReference::ClearedValue()))), | 
 |          if_cleared); | 
 |  | 
 |   GotoIf(WordEqual(WordAnd(BitcastMaybeObjectToWord(maybe_object), | 
 |                            IntPtrConstant(kHeapObjectTagMask)), | 
 |                    IntPtrConstant(kHeapObjectTag)), | 
 |          &inner_if_strong); | 
 |  | 
 |   *extracted = | 
 |       BitcastWordToTagged(WordAnd(BitcastMaybeObjectToWord(maybe_object), | 
 |                                   IntPtrConstant(~kWeakHeapObjectMask))); | 
 |   Goto(if_weak); | 
 |  | 
 |   BIND(&inner_if_smi); | 
 |   *extracted = CAST(maybe_object); | 
 |   Goto(if_smi); | 
 |  | 
 |   BIND(&inner_if_strong); | 
 |   *extracted = CAST(maybe_object); | 
 |   Goto(if_strong); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsStrong(TNode<MaybeObject> value) { | 
 |   return WordEqual(WordAnd(BitcastMaybeObjectToWord(value), | 
 |                            IntPtrConstant(kHeapObjectTagMask)), | 
 |                    IntPtrConstant(kHeapObjectTag)); | 
 | } | 
 |  | 
 | TNode<HeapObject> CodeStubAssembler::GetHeapObjectIfStrong( | 
 |     TNode<MaybeObject> value, Label* if_not_strong) { | 
 |   GotoIfNot(IsStrong(value), if_not_strong); | 
 |   return CAST(value); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsWeakOrCleared(TNode<MaybeObject> value) { | 
 |   return WordEqual(WordAnd(BitcastMaybeObjectToWord(value), | 
 |                            IntPtrConstant(kHeapObjectTagMask)), | 
 |                    IntPtrConstant(kWeakHeapObjectTag)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsCleared(TNode<MaybeObject> value) { | 
 |   return WordEqual(BitcastMaybeObjectToWord(value), | 
 |                    IntPtrConstant(kClearedWeakHeapObject)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNotCleared(TNode<MaybeObject> value) { | 
 |   return WordNotEqual(BitcastMaybeObjectToWord(value), | 
 |                       IntPtrConstant(kClearedWeakHeapObject)); | 
 | } | 
 |  | 
 | TNode<HeapObject> CodeStubAssembler::GetHeapObjectAssumeWeak( | 
 |     TNode<MaybeObject> value) { | 
 |   CSA_ASSERT(this, IsWeakOrCleared(value)); | 
 |   CSA_ASSERT(this, IsNotCleared(value)); | 
 |   return UncheckedCast<HeapObject>(BitcastWordToTagged(WordAnd( | 
 |       BitcastMaybeObjectToWord(value), IntPtrConstant(~kWeakHeapObjectMask)))); | 
 | } | 
 |  | 
 | TNode<HeapObject> CodeStubAssembler::GetHeapObjectAssumeWeak( | 
 |     TNode<MaybeObject> value, Label* if_cleared) { | 
 |   GotoIf(IsCleared(value), if_cleared); | 
 |   return GetHeapObjectAssumeWeak(value); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsWeakReferenceTo(TNode<MaybeObject> object, | 
 |                                                   TNode<Object> value) { | 
 |   return WordEqual(WordAnd(BitcastMaybeObjectToWord(object), | 
 |                            IntPtrConstant(~kWeakHeapObjectMask)), | 
 |                    BitcastTaggedToWord(value)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsStrongReferenceTo(TNode<MaybeObject> object, | 
 |                                                     TNode<Object> value) { | 
 |   return WordEqual(BitcastMaybeObjectToWord(object), | 
 |                    BitcastTaggedToWord(value)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNotWeakReferenceTo(TNode<MaybeObject> object, | 
 |                                                      TNode<Object> value) { | 
 |   return WordNotEqual(WordAnd(BitcastMaybeObjectToWord(object), | 
 |                               IntPtrConstant(~kWeakHeapObjectMask)), | 
 |                       BitcastTaggedToWord(value)); | 
 | } | 
 |  | 
 | TNode<MaybeObject> CodeStubAssembler::MakeWeak(TNode<HeapObject> value) { | 
 |   return ReinterpretCast<MaybeObject>(BitcastWordToTagged( | 
 |       WordOr(BitcastTaggedToWord(value), IntPtrConstant(kWeakHeapObjectTag)))); | 
 | } | 
 |  | 
 | TNode<MaybeObject> CodeStubAssembler::LoadArrayElement( | 
 |     SloppyTNode<HeapObject> array, int array_header_size, Node* index_node, | 
 |     int additional_offset, ParameterMode parameter_mode, | 
 |     LoadSensitivity needs_poisoning) { | 
 |   CSA_ASSERT(this, IntPtrGreaterThanOrEqual( | 
 |                        ParameterToIntPtr(index_node, parameter_mode), | 
 |                        IntPtrConstant(0))); | 
 |   DCHECK_EQ(additional_offset % kPointerSize, 0); | 
 |   int32_t header_size = array_header_size + additional_offset - kHeapObjectTag; | 
 |   TNode<IntPtrT> offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS, | 
 |                                                  parameter_mode, header_size); | 
 |   STATIC_ASSERT(FixedArrayBase::kLengthOffset == WeakFixedArray::kLengthOffset); | 
 |   STATIC_ASSERT(FixedArrayBase::kLengthOffset == | 
 |                 PropertyArray::kLengthAndHashOffset); | 
 |   // Check that index_node + additional_offset <= object.length. | 
 |   // TODO(cbruni): Use proper LoadXXLength helpers | 
 |   CSA_ASSERT( | 
 |       this, | 
 |       IsOffsetInBounds( | 
 |           offset, | 
 |           Select<IntPtrT>( | 
 |               IsPropertyArray(array), | 
 |               [=] { | 
 |                 TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField( | 
 |                     array, PropertyArray::kLengthAndHashOffset); | 
 |                 return TNode<IntPtrT>::UncheckedCast( | 
 |                     DecodeWord<PropertyArray::LengthField>(length_and_hash)); | 
 |               }, | 
 |               [=] { | 
 |                 return LoadAndUntagObjectField(array, | 
 |                                                FixedArrayBase::kLengthOffset); | 
 |               }), | 
 |           FixedArray::kHeaderSize)); | 
 |   return UncheckedCast<MaybeObject>( | 
 |       Load(MachineType::AnyTagged(), array, offset, needs_poisoning)); | 
 | } | 
 |  | 
 | void CodeStubAssembler::FixedArrayBoundsCheck(TNode<FixedArrayBase> array, | 
 |                                               Node* index, | 
 |                                               int additional_offset, | 
 |                                               ParameterMode parameter_mode) { | 
 |   if (!FLAG_fixed_array_bounds_checks) return; | 
 |   DCHECK_EQ(0, additional_offset % kPointerSize); | 
 |   if (parameter_mode == ParameterMode::SMI_PARAMETERS) { | 
 |     TNode<Smi> effective_index; | 
 |     Smi* constant_index; | 
 |     bool index_is_constant = ToSmiConstant(index, constant_index); | 
 |     if (index_is_constant) { | 
 |       effective_index = SmiConstant(Smi::ToInt(constant_index) + | 
 |                                     additional_offset / kPointerSize); | 
 |     } else if (additional_offset != 0) { | 
 |       effective_index = | 
 |           SmiAdd(CAST(index), SmiConstant(additional_offset / kPointerSize)); | 
 |     } else { | 
 |       effective_index = CAST(index); | 
 |     } | 
 |     CSA_CHECK(this, SmiBelow(effective_index, LoadFixedArrayBaseLength(array))); | 
 |   } else { | 
 |     // IntPtrAdd does constant-folding automatically. | 
 |     TNode<IntPtrT> effective_index = | 
 |         IntPtrAdd(UncheckedCast<IntPtrT>(index), | 
 |                   IntPtrConstant(additional_offset / kPointerSize)); | 
 |     CSA_CHECK(this, UintPtrLessThan(effective_index, | 
 |                                     LoadAndUntagFixedArrayBaseLength(array))); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadFixedArrayElement( | 
 |     TNode<FixedArray> object, Node* index_node, int additional_offset, | 
 |     ParameterMode parameter_mode, LoadSensitivity needs_poisoning) { | 
 |   CSA_ASSERT(this, IsFixedArraySubclass(object)); | 
 |   CSA_ASSERT(this, IsNotWeakFixedArraySubclass(object)); | 
 |   FixedArrayBoundsCheck(object, index_node, additional_offset, parameter_mode); | 
 |   TNode<MaybeObject> element = | 
 |       LoadArrayElement(object, FixedArray::kHeaderSize, index_node, | 
 |                        additional_offset, parameter_mode, needs_poisoning); | 
 |   return CAST(element); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadPropertyArrayElement( | 
 |     SloppyTNode<PropertyArray> object, SloppyTNode<IntPtrT> index) { | 
 |   int additional_offset = 0; | 
 |   ParameterMode parameter_mode = INTPTR_PARAMETERS; | 
 |   LoadSensitivity needs_poisoning = LoadSensitivity::kSafe; | 
 |   STATIC_ASSERT(PropertyArray::kHeaderSize == FixedArray::kHeaderSize); | 
 |  | 
 |   return CAST(LoadArrayElement(object, PropertyArray::kHeaderSize, index, | 
 |                                additional_offset, parameter_mode, | 
 |                                needs_poisoning)); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::LoadPropertyArrayLength( | 
 |     TNode<PropertyArray> object) { | 
 |   TNode<IntPtrT> value = | 
 |       LoadAndUntagObjectField(object, PropertyArray::kLengthAndHashOffset); | 
 |   return Signed(DecodeWord<PropertyArray::LengthField>(value)); | 
 | } | 
 |  | 
 | TNode<RawPtrT> CodeStubAssembler::LoadFixedTypedArrayBackingStore( | 
 |     TNode<FixedTypedArrayBase> typed_array) { | 
 |   // Backing store = external_pointer + base_pointer. | 
 |   Node* external_pointer = | 
 |       LoadObjectField(typed_array, FixedTypedArrayBase::kExternalPointerOffset, | 
 |                       MachineType::Pointer()); | 
 |   Node* base_pointer = | 
 |       LoadObjectField(typed_array, FixedTypedArrayBase::kBasePointerOffset); | 
 |   return UncheckedCast<RawPtrT>( | 
 |       IntPtrAdd(external_pointer, BitcastTaggedToWord(base_pointer))); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadFixedBigInt64ArrayElementAsTagged( | 
 |     Node* data_pointer, Node* offset) { | 
 |   if (Is64()) { | 
 |     TNode<IntPtrT> value = UncheckedCast<IntPtrT>( | 
 |         Load(MachineType::IntPtr(), data_pointer, offset)); | 
 |     return BigIntFromInt64(value); | 
 |   } else { | 
 |     DCHECK(!Is64()); | 
 | #if defined(V8_TARGET_BIG_ENDIAN) | 
 |     TNode<IntPtrT> high = UncheckedCast<IntPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, offset)); | 
 |     TNode<IntPtrT> low = UncheckedCast<IntPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, | 
 |              Int32Add(offset, Int32Constant(kPointerSize)))); | 
 | #else | 
 |     TNode<IntPtrT> low = UncheckedCast<IntPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, offset)); | 
 |     TNode<IntPtrT> high = UncheckedCast<IntPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, | 
 |              Int32Add(offset, Int32Constant(kPointerSize)))); | 
 | #endif | 
 |     return BigIntFromInt32Pair(low, high); | 
 |   } | 
 | } | 
 |  | 
 | TNode<BigInt> CodeStubAssembler::BigIntFromInt32Pair(TNode<IntPtrT> low, | 
 |                                                      TNode<IntPtrT> high) { | 
 |   DCHECK(!Is64()); | 
 |   TVARIABLE(BigInt, var_result); | 
 |   TVARIABLE(WordT, var_sign, IntPtrConstant(BigInt::SignBits::encode(false))); | 
 |   TVARIABLE(IntPtrT, var_high, high); | 
 |   TVARIABLE(IntPtrT, var_low, low); | 
 |   Label high_zero(this), negative(this), allocate_one_digit(this), | 
 |       allocate_two_digits(this), if_zero(this), done(this); | 
 |  | 
 |   GotoIf(WordEqual(var_high.value(), IntPtrConstant(0)), &high_zero); | 
 |   Branch(IntPtrLessThan(var_high.value(), IntPtrConstant(0)), &negative, | 
 |          &allocate_two_digits); | 
 |  | 
 |   BIND(&high_zero); | 
 |   Branch(WordEqual(var_low.value(), IntPtrConstant(0)), &if_zero, | 
 |          &allocate_one_digit); | 
 |  | 
 |   BIND(&negative); | 
 |   { | 
 |     var_sign = IntPtrConstant(BigInt::SignBits::encode(true)); | 
 |     // We must negate the value by computing "0 - (high|low)", performing | 
 |     // both parts of the subtraction separately and manually taking care | 
 |     // of the carry bit (which is 1 iff low != 0). | 
 |     var_high = IntPtrSub(IntPtrConstant(0), var_high.value()); | 
 |     Label carry(this), no_carry(this); | 
 |     Branch(WordEqual(var_low.value(), IntPtrConstant(0)), &no_carry, &carry); | 
 |     BIND(&carry); | 
 |     var_high = IntPtrSub(var_high.value(), IntPtrConstant(1)); | 
 |     Goto(&no_carry); | 
 |     BIND(&no_carry); | 
 |     var_low = IntPtrSub(IntPtrConstant(0), var_low.value()); | 
 |     // var_high was non-zero going into this block, but subtracting the | 
 |     // carry bit from it could bring us back onto the "one digit" path. | 
 |     Branch(WordEqual(var_high.value(), IntPtrConstant(0)), &allocate_one_digit, | 
 |            &allocate_two_digits); | 
 |   } | 
 |  | 
 |   BIND(&allocate_one_digit); | 
 |   { | 
 |     var_result = AllocateRawBigInt(IntPtrConstant(1)); | 
 |     StoreBigIntBitfield(var_result.value(), | 
 |                         WordOr(var_sign.value(), | 
 |                                IntPtrConstant(BigInt::LengthBits::encode(1)))); | 
 |     StoreBigIntDigit(var_result.value(), 0, Unsigned(var_low.value())); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&allocate_two_digits); | 
 |   { | 
 |     var_result = AllocateRawBigInt(IntPtrConstant(2)); | 
 |     StoreBigIntBitfield(var_result.value(), | 
 |                         WordOr(var_sign.value(), | 
 |                                IntPtrConstant(BigInt::LengthBits::encode(2)))); | 
 |     StoreBigIntDigit(var_result.value(), 0, Unsigned(var_low.value())); | 
 |     StoreBigIntDigit(var_result.value(), 1, Unsigned(var_high.value())); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_zero); | 
 |   var_result = AllocateBigInt(IntPtrConstant(0)); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<BigInt> CodeStubAssembler::BigIntFromInt64(TNode<IntPtrT> value) { | 
 |   DCHECK(Is64()); | 
 |   TVARIABLE(BigInt, var_result); | 
 |   Label done(this), if_positive(this), if_negative(this), if_zero(this); | 
 |   GotoIf(WordEqual(value, IntPtrConstant(0)), &if_zero); | 
 |   var_result = AllocateRawBigInt(IntPtrConstant(1)); | 
 |   Branch(IntPtrGreaterThan(value, IntPtrConstant(0)), &if_positive, | 
 |          &if_negative); | 
 |  | 
 |   BIND(&if_positive); | 
 |   { | 
 |     StoreBigIntBitfield(var_result.value(), | 
 |                         IntPtrConstant(BigInt::SignBits::encode(false) | | 
 |                                        BigInt::LengthBits::encode(1))); | 
 |     StoreBigIntDigit(var_result.value(), 0, Unsigned(value)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_negative); | 
 |   { | 
 |     StoreBigIntBitfield(var_result.value(), | 
 |                         IntPtrConstant(BigInt::SignBits::encode(true) | | 
 |                                        BigInt::LengthBits::encode(1))); | 
 |     StoreBigIntDigit(var_result.value(), 0, | 
 |                      Unsigned(IntPtrSub(IntPtrConstant(0), value))); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_zero); | 
 |   { | 
 |     var_result = AllocateBigInt(IntPtrConstant(0)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadFixedBigUint64ArrayElementAsTagged( | 
 |     Node* data_pointer, Node* offset) { | 
 |   Label if_zero(this), done(this); | 
 |   if (Is64()) { | 
 |     TNode<UintPtrT> value = UncheckedCast<UintPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, offset)); | 
 |     return BigIntFromUint64(value); | 
 |   } else { | 
 |     DCHECK(!Is64()); | 
 | #if defined(V8_TARGET_BIG_ENDIAN) | 
 |     TNode<UintPtrT> high = UncheckedCast<UintPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, offset)); | 
 |     TNode<UintPtrT> low = UncheckedCast<UintPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, | 
 |              Int32Add(offset, Int32Constant(kPointerSize)))); | 
 | #else | 
 |     TNode<UintPtrT> low = UncheckedCast<UintPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, offset)); | 
 |     TNode<UintPtrT> high = UncheckedCast<UintPtrT>( | 
 |         Load(MachineType::UintPtr(), data_pointer, | 
 |              Int32Add(offset, Int32Constant(kPointerSize)))); | 
 | #endif | 
 |     return BigIntFromUint32Pair(low, high); | 
 |   } | 
 | } | 
 |  | 
 | TNode<BigInt> CodeStubAssembler::BigIntFromUint32Pair(TNode<UintPtrT> low, | 
 |                                                       TNode<UintPtrT> high) { | 
 |   DCHECK(!Is64()); | 
 |   TVARIABLE(BigInt, var_result); | 
 |   Label high_zero(this), if_zero(this), done(this); | 
 |  | 
 |   GotoIf(WordEqual(high, IntPtrConstant(0)), &high_zero); | 
 |   var_result = AllocateBigInt(IntPtrConstant(2)); | 
 |   StoreBigIntDigit(var_result.value(), 0, low); | 
 |   StoreBigIntDigit(var_result.value(), 1, high); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&high_zero); | 
 |   GotoIf(WordEqual(low, IntPtrConstant(0)), &if_zero); | 
 |   var_result = AllocateBigInt(IntPtrConstant(1)); | 
 |   StoreBigIntDigit(var_result.value(), 0, low); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&if_zero); | 
 |   var_result = AllocateBigInt(IntPtrConstant(0)); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<BigInt> CodeStubAssembler::BigIntFromUint64(TNode<UintPtrT> value) { | 
 |   DCHECK(Is64()); | 
 |   TVARIABLE(BigInt, var_result); | 
 |   Label done(this), if_zero(this); | 
 |   GotoIf(WordEqual(value, IntPtrConstant(0)), &if_zero); | 
 |   var_result = AllocateBigInt(IntPtrConstant(1)); | 
 |   StoreBigIntDigit(var_result.value(), 0, value); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&if_zero); | 
 |   var_result = AllocateBigInt(IntPtrConstant(0)); | 
 |   Goto(&done); | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadFixedTypedArrayElementAsTagged( | 
 |     Node* data_pointer, Node* index_node, ElementsKind elements_kind, | 
 |     ParameterMode parameter_mode) { | 
 |   Node* offset = | 
 |       ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0); | 
 |   switch (elements_kind) { | 
 |     case UINT8_ELEMENTS: /* fall through */ | 
 |     case UINT8_CLAMPED_ELEMENTS: | 
 |       return SmiFromInt32(Load(MachineType::Uint8(), data_pointer, offset)); | 
 |     case INT8_ELEMENTS: | 
 |       return SmiFromInt32(Load(MachineType::Int8(), data_pointer, offset)); | 
 |     case UINT16_ELEMENTS: | 
 |       return SmiFromInt32(Load(MachineType::Uint16(), data_pointer, offset)); | 
 |     case INT16_ELEMENTS: | 
 |       return SmiFromInt32(Load(MachineType::Int16(), data_pointer, offset)); | 
 |     case UINT32_ELEMENTS: | 
 |       return ChangeUint32ToTagged( | 
 |           Load(MachineType::Uint32(), data_pointer, offset)); | 
 |     case INT32_ELEMENTS: | 
 |       return ChangeInt32ToTagged( | 
 |           Load(MachineType::Int32(), data_pointer, offset)); | 
 |     case FLOAT32_ELEMENTS: | 
 |       return AllocateHeapNumberWithValue(ChangeFloat32ToFloat64( | 
 |           Load(MachineType::Float32(), data_pointer, offset))); | 
 |     case FLOAT64_ELEMENTS: | 
 |       return AllocateHeapNumberWithValue( | 
 |           Load(MachineType::Float64(), data_pointer, offset)); | 
 |     case BIGINT64_ELEMENTS: | 
 |       return LoadFixedBigInt64ArrayElementAsTagged(data_pointer, offset); | 
 |     case BIGUINT64_ELEMENTS: | 
 |       return LoadFixedBigUint64ArrayElementAsTagged(data_pointer, offset); | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Numeric> CodeStubAssembler::LoadFixedTypedArrayElementAsTagged( | 
 |     TNode<WordT> data_pointer, TNode<Smi> index, TNode<Int32T> elements_kind) { | 
 |   TVARIABLE(Numeric, var_result); | 
 |   Label done(this), if_unknown_type(this, Label::kDeferred); | 
 |   int32_t elements_kinds[] = { | 
 | #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) TYPE##_ELEMENTS, | 
 |       TYPED_ARRAYS(TYPED_ARRAY_CASE) | 
 | #undef TYPED_ARRAY_CASE | 
 |   }; | 
 |  | 
 | #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) Label if_##type##array(this); | 
 |   TYPED_ARRAYS(TYPED_ARRAY_CASE) | 
 | #undef TYPED_ARRAY_CASE | 
 |  | 
 |   Label* elements_kind_labels[] = { | 
 | #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) &if_##type##array, | 
 |       TYPED_ARRAYS(TYPED_ARRAY_CASE) | 
 | #undef TYPED_ARRAY_CASE | 
 |   }; | 
 |   STATIC_ASSERT(arraysize(elements_kinds) == arraysize(elements_kind_labels)); | 
 |  | 
 |   Switch(elements_kind, &if_unknown_type, elements_kinds, elements_kind_labels, | 
 |          arraysize(elements_kinds)); | 
 |  | 
 |   BIND(&if_unknown_type); | 
 |   Unreachable(); | 
 |  | 
 | #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype)               \ | 
 |   BIND(&if_##type##array);                                      \ | 
 |   {                                                             \ | 
 |     var_result = CAST(LoadFixedTypedArrayElementAsTagged(       \ | 
 |         data_pointer, index, TYPE##_ELEMENTS, SMI_PARAMETERS)); \ | 
 |     Goto(&done);                                                \ | 
 |   } | 
 |   TYPED_ARRAYS(TYPED_ARRAY_CASE) | 
 | #undef TYPED_ARRAY_CASE | 
 |  | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreFixedTypedArrayElementFromTagged( | 
 |     TNode<Context> context, TNode<FixedTypedArrayBase> elements, | 
 |     TNode<Object> index_node, TNode<Object> value, ElementsKind elements_kind, | 
 |     ParameterMode parameter_mode) { | 
 |   TNode<RawPtrT> data_pointer = LoadFixedTypedArrayBackingStore(elements); | 
 |   switch (elements_kind) { | 
 |     case UINT8_ELEMENTS: | 
 |     case UINT8_CLAMPED_ELEMENTS: | 
 |     case INT8_ELEMENTS: | 
 |     case UINT16_ELEMENTS: | 
 |     case INT16_ELEMENTS: | 
 |       StoreElement(data_pointer, elements_kind, index_node, | 
 |                    SmiToInt32(CAST(value)), parameter_mode); | 
 |       break; | 
 |     case UINT32_ELEMENTS: | 
 |     case INT32_ELEMENTS: | 
 |       StoreElement(data_pointer, elements_kind, index_node, | 
 |                    TruncateTaggedToWord32(context, value), parameter_mode); | 
 |       break; | 
 |     case FLOAT32_ELEMENTS: | 
 |       StoreElement(data_pointer, elements_kind, index_node, | 
 |                    TruncateFloat64ToFloat32(LoadHeapNumberValue(CAST(value))), | 
 |                    parameter_mode); | 
 |       break; | 
 |     case FLOAT64_ELEMENTS: | 
 |       StoreElement(data_pointer, elements_kind, index_node, | 
 |                    LoadHeapNumberValue(CAST(value)), parameter_mode); | 
 |       break; | 
 |     case BIGUINT64_ELEMENTS: | 
 |     case BIGINT64_ELEMENTS: { | 
 |       TNode<IntPtrT> offset = | 
 |           ElementOffsetFromIndex(index_node, elements_kind, parameter_mode, 0); | 
 |       EmitBigTypedArrayElementStore(elements, data_pointer, offset, | 
 |                                     CAST(value)); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | TNode<MaybeObject> CodeStubAssembler::LoadFeedbackVectorSlot( | 
 |     Node* object, Node* slot_index_node, int additional_offset, | 
 |     ParameterMode parameter_mode) { | 
 |   CSA_SLOW_ASSERT(this, IsFeedbackVector(object)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(slot_index_node, parameter_mode)); | 
 |   int32_t header_size = | 
 |       FeedbackVector::kFeedbackSlotsOffset + additional_offset - kHeapObjectTag; | 
 |   Node* offset = ElementOffsetFromIndex(slot_index_node, HOLEY_ELEMENTS, | 
 |                                         parameter_mode, header_size); | 
 |   CSA_SLOW_ASSERT( | 
 |       this, IsOffsetInBounds(offset, LoadFeedbackVectorLength(CAST(object)), | 
 |                              FeedbackVector::kHeaderSize)); | 
 |   return UncheckedCast<MaybeObject>( | 
 |       Load(MachineType::AnyTagged(), object, offset)); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32ArrayElement( | 
 |     SloppyTNode<HeapObject> object, int array_header_size, Node* index_node, | 
 |     int additional_offset, ParameterMode parameter_mode) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode)); | 
 |   DCHECK_EQ(additional_offset % kPointerSize, 0); | 
 |   int endian_correction = 0; | 
 | #if V8_TARGET_LITTLE_ENDIAN | 
 |   if (SmiValuesAre32Bits()) endian_correction = kPointerSize / 2; | 
 | #endif | 
 |   int32_t header_size = array_header_size + additional_offset - kHeapObjectTag + | 
 |                         endian_correction; | 
 |   Node* offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS, | 
 |                                         parameter_mode, header_size); | 
 |   STATIC_ASSERT(FixedArrayBase::kLengthOffset == WeakFixedArray::kLengthOffset); | 
 |   // Check that index_node + additional_offset <= object.length. | 
 |   // TODO(cbruni): Use proper LoadXXLength helpers | 
 |   CSA_ASSERT(this, | 
 |              IsOffsetInBounds( | 
 |                  offset, | 
 |                  LoadAndUntagObjectField(object, FixedArrayBase::kLengthOffset), | 
 |                  FixedArray::kHeaderSize + endian_correction)); | 
 |   if (SmiValuesAre32Bits()) { | 
 |     return UncheckedCast<Int32T>(Load(MachineType::Int32(), object, offset)); | 
 |   } else { | 
 |     return SmiToInt32(Load(MachineType::AnyTagged(), object, offset)); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadAndUntagToWord32FixedArrayElement( | 
 |     SloppyTNode<HeapObject> object, Node* index_node, int additional_offset, | 
 |     ParameterMode parameter_mode) { | 
 |   CSA_SLOW_ASSERT(this, IsFixedArraySubclass(object)); | 
 |   return LoadAndUntagToWord32ArrayElement(object, FixedArray::kHeaderSize, | 
 |                                           index_node, additional_offset, | 
 |                                           parameter_mode); | 
 | } | 
 |  | 
 | TNode<MaybeObject> CodeStubAssembler::LoadWeakFixedArrayElement( | 
 |     TNode<WeakFixedArray> object, Node* index, int additional_offset, | 
 |     ParameterMode parameter_mode, LoadSensitivity needs_poisoning) { | 
 |   return LoadArrayElement(object, WeakFixedArray::kHeaderSize, index, | 
 |                           additional_offset, parameter_mode, needs_poisoning); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::LoadFixedDoubleArrayElement( | 
 |     SloppyTNode<FixedDoubleArray> object, Node* index_node, | 
 |     MachineType machine_type, int additional_offset, | 
 |     ParameterMode parameter_mode, Label* if_hole) { | 
 |   CSA_ASSERT(this, IsFixedDoubleArray(object)); | 
 |   DCHECK_EQ(additional_offset % kPointerSize, 0); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode)); | 
 |   int32_t header_size = | 
 |       FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag; | 
 |   TNode<IntPtrT> offset = ElementOffsetFromIndex( | 
 |       index_node, HOLEY_DOUBLE_ELEMENTS, parameter_mode, header_size); | 
 |   CSA_ASSERT(this, IsOffsetInBounds( | 
 |                        offset, LoadAndUntagFixedArrayBaseLength(object), | 
 |                        FixedDoubleArray::kHeaderSize, HOLEY_DOUBLE_ELEMENTS)); | 
 |   return LoadDoubleWithHoleCheck(object, offset, if_hole, machine_type); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadFixedArrayBaseElementAsTagged( | 
 |     TNode<FixedArrayBase> elements, TNode<IntPtrT> index, | 
 |     TNode<Int32T> elements_kind, Label* if_accessor, Label* if_hole) { | 
 |   TVARIABLE(Object, var_result); | 
 |   Label done(this), if_packed(this), if_holey(this), if_packed_double(this), | 
 |       if_holey_double(this), if_dictionary(this, Label::kDeferred); | 
 |  | 
 |   int32_t kinds[] = {// Handled by if_packed. | 
 |                      PACKED_SMI_ELEMENTS, PACKED_ELEMENTS, | 
 |                      // Handled by if_holey. | 
 |                      HOLEY_SMI_ELEMENTS, HOLEY_ELEMENTS, | 
 |                      // Handled by if_packed_double. | 
 |                      PACKED_DOUBLE_ELEMENTS, | 
 |                      // Handled by if_holey_double. | 
 |                      HOLEY_DOUBLE_ELEMENTS}; | 
 |   Label* labels[] = {// PACKED_{SMI,}_ELEMENTS | 
 |                      &if_packed, &if_packed, | 
 |                      // HOLEY_{SMI,}_ELEMENTS | 
 |                      &if_holey, &if_holey, | 
 |                      // PACKED_DOUBLE_ELEMENTS | 
 |                      &if_packed_double, | 
 |                      // HOLEY_DOUBLE_ELEMENTS | 
 |                      &if_holey_double}; | 
 |   Switch(elements_kind, &if_dictionary, kinds, labels, arraysize(kinds)); | 
 |  | 
 |   BIND(&if_packed); | 
 |   { | 
 |     var_result = LoadFixedArrayElement(CAST(elements), index, 0); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_holey); | 
 |   { | 
 |     var_result = LoadFixedArrayElement(CAST(elements), index); | 
 |     Branch(WordEqual(var_result.value(), TheHoleConstant()), if_hole, &done); | 
 |   } | 
 |  | 
 |   BIND(&if_packed_double); | 
 |   { | 
 |     var_result = AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement( | 
 |         CAST(elements), index, MachineType::Float64())); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_holey_double); | 
 |   { | 
 |     var_result = AllocateHeapNumberWithValue(LoadFixedDoubleArrayElement( | 
 |         CAST(elements), index, MachineType::Float64(), 0, INTPTR_PARAMETERS, | 
 |         if_hole)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_dictionary); | 
 |   { | 
 |     CSA_ASSERT(this, IsDictionaryElementsKind(elements_kind)); | 
 |     var_result = BasicLoadNumberDictionaryElement(CAST(elements), index, | 
 |                                                   if_accessor, if_hole); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::LoadDoubleWithHoleCheck( | 
 |     SloppyTNode<Object> base, SloppyTNode<IntPtrT> offset, Label* if_hole, | 
 |     MachineType machine_type) { | 
 |   if (if_hole) { | 
 |     // TODO(ishell): Compare only the upper part for the hole once the | 
 |     // compiler is able to fold addition of already complex |offset| with | 
 |     // |kIeeeDoubleExponentWordOffset| into one addressing mode. | 
 |     if (Is64()) { | 
 |       Node* element = Load(MachineType::Uint64(), base, offset); | 
 |       GotoIf(Word64Equal(element, Int64Constant(kHoleNanInt64)), if_hole); | 
 |     } else { | 
 |       Node* element_upper = Load( | 
 |           MachineType::Uint32(), base, | 
 |           IntPtrAdd(offset, IntPtrConstant(kIeeeDoubleExponentWordOffset))); | 
 |       GotoIf(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)), | 
 |              if_hole); | 
 |     } | 
 |   } | 
 |   if (machine_type.IsNone()) { | 
 |     // This means the actual value is not needed. | 
 |     return TNode<Float64T>(); | 
 |   } | 
 |   return UncheckedCast<Float64T>(Load(machine_type, base, offset)); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadContextElement( | 
 |     SloppyTNode<Context> context, int slot_index) { | 
 |   int offset = Context::SlotOffset(slot_index); | 
 |   return UncheckedCast<Object>( | 
 |       Load(MachineType::AnyTagged(), context, IntPtrConstant(offset))); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadContextElement( | 
 |     SloppyTNode<Context> context, SloppyTNode<IntPtrT> slot_index) { | 
 |   Node* offset = | 
 |       ElementOffsetFromIndex(slot_index, PACKED_ELEMENTS, INTPTR_PARAMETERS, | 
 |                              Context::kHeaderSize - kHeapObjectTag); | 
 |   return UncheckedCast<Object>(Load(MachineType::AnyTagged(), context, offset)); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadContextElement(TNode<Context> context, | 
 |                                                     TNode<Smi> slot_index) { | 
 |   Node* offset = | 
 |       ElementOffsetFromIndex(slot_index, PACKED_ELEMENTS, SMI_PARAMETERS, | 
 |                              Context::kHeaderSize - kHeapObjectTag); | 
 |   return UncheckedCast<Object>(Load(MachineType::AnyTagged(), context, offset)); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreContextElement(SloppyTNode<Context> context, | 
 |                                             int slot_index, | 
 |                                             SloppyTNode<Object> value) { | 
 |   int offset = Context::SlotOffset(slot_index); | 
 |   Store(context, IntPtrConstant(offset), value); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreContextElement(SloppyTNode<Context> context, | 
 |                                             SloppyTNode<IntPtrT> slot_index, | 
 |                                             SloppyTNode<Object> value) { | 
 |   Node* offset = | 
 |       IntPtrAdd(TimesPointerSize(slot_index), | 
 |                 IntPtrConstant(Context::kHeaderSize - kHeapObjectTag)); | 
 |   Store(context, offset, value); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreContextElementNoWriteBarrier( | 
 |     SloppyTNode<Context> context, int slot_index, SloppyTNode<Object> value) { | 
 |   int offset = Context::SlotOffset(slot_index); | 
 |   StoreNoWriteBarrier(MachineRepresentation::kTagged, context, | 
 |                       IntPtrConstant(offset), value); | 
 | } | 
 |  | 
 | TNode<Context> CodeStubAssembler::LoadNativeContext( | 
 |     SloppyTNode<Context> context) { | 
 |   return UncheckedCast<Context>( | 
 |       LoadContextElement(context, Context::NATIVE_CONTEXT_INDEX)); | 
 | } | 
 |  | 
 | TNode<Context> CodeStubAssembler::LoadModuleContext( | 
 |     SloppyTNode<Context> context) { | 
 |   Node* module_map = LoadRoot(RootIndex::kModuleContextMap); | 
 |   Variable cur_context(this, MachineRepresentation::kTaggedPointer); | 
 |   cur_context.Bind(context); | 
 |  | 
 |   Label context_found(this); | 
 |  | 
 |   Variable* context_search_loop_variables[1] = {&cur_context}; | 
 |   Label context_search(this, 1, context_search_loop_variables); | 
 |  | 
 |   // Loop until cur_context->map() is module_map. | 
 |   Goto(&context_search); | 
 |   BIND(&context_search); | 
 |   { | 
 |     CSA_ASSERT(this, Word32BinaryNot(IsNativeContext(cur_context.value()))); | 
 |     GotoIf(WordEqual(LoadMap(cur_context.value()), module_map), &context_found); | 
 |  | 
 |     cur_context.Bind( | 
 |         LoadContextElement(cur_context.value(), Context::PREVIOUS_INDEX)); | 
 |     Goto(&context_search); | 
 |   } | 
 |  | 
 |   BIND(&context_found); | 
 |   return UncheckedCast<Context>(cur_context.value()); | 
 | } | 
 |  | 
 | TNode<Map> CodeStubAssembler::LoadJSArrayElementsMap( | 
 |     SloppyTNode<Int32T> kind, SloppyTNode<Context> native_context) { | 
 |   CSA_ASSERT(this, IsFastElementsKind(kind)); | 
 |   CSA_ASSERT(this, IsNativeContext(native_context)); | 
 |   Node* offset = IntPtrAdd(IntPtrConstant(Context::FIRST_JS_ARRAY_MAP_SLOT), | 
 |                            ChangeInt32ToIntPtr(kind)); | 
 |   return UncheckedCast<Map>(LoadContextElement(native_context, offset)); | 
 | } | 
 |  | 
 | TNode<Map> CodeStubAssembler::LoadJSArrayElementsMap( | 
 |     ElementsKind kind, SloppyTNode<Context> native_context) { | 
 |   CSA_ASSERT(this, IsNativeContext(native_context)); | 
 |   return UncheckedCast<Map>( | 
 |       LoadContextElement(native_context, Context::ArrayMapIndex(kind))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsGeneratorFunction( | 
 |     TNode<JSFunction> function) { | 
 |   TNode<SharedFunctionInfo> const shared_function_info = | 
 |       CAST(LoadObjectField(function, JSFunction::kSharedFunctionInfoOffset)); | 
 |  | 
 |   TNode<Uint32T> const function_kind = | 
 |       DecodeWord32<SharedFunctionInfo::FunctionKindBits>(LoadObjectField( | 
 |           shared_function_info, SharedFunctionInfo::kFlagsOffset, | 
 |           MachineType::Uint32())); | 
 |  | 
 |   return TNode<BoolT>::UncheckedCast(Word32Or( | 
 |       Word32Or( | 
 |           Word32Or( | 
 |               Word32Equal(function_kind, | 
 |                           Int32Constant(FunctionKind::kAsyncGeneratorFunction)), | 
 |               Word32Equal( | 
 |                   function_kind, | 
 |                   Int32Constant(FunctionKind::kAsyncConciseGeneratorMethod))), | 
 |           Word32Equal(function_kind, | 
 |                       Int32Constant(FunctionKind::kGeneratorFunction))), | 
 |       Word32Equal(function_kind, | 
 |                   Int32Constant(FunctionKind::kConciseGeneratorMethod)))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::HasPrototypeProperty(TNode<JSFunction> function, | 
 |                                                      TNode<Map> map) { | 
 |   // (has_prototype_slot() && IsConstructor()) || | 
 |   // IsGeneratorFunction(shared()->kind()) | 
 |   uint32_t mask = | 
 |       Map::HasPrototypeSlotBit::kMask | Map::IsConstructorBit::kMask; | 
 |   return TNode<BoolT>::UncheckedCast( | 
 |       Word32Or(IsAllSetWord32(LoadMapBitField(map), mask), | 
 |                IsGeneratorFunction(function))); | 
 | } | 
 |  | 
 | void CodeStubAssembler::GotoIfPrototypeRequiresRuntimeLookup( | 
 |     TNode<JSFunction> function, TNode<Map> map, Label* runtime) { | 
 |   // !has_prototype_property() || has_non_instance_prototype() | 
 |   GotoIfNot(HasPrototypeProperty(function, map), runtime); | 
 |   GotoIf(IsSetWord32<Map::HasNonInstancePrototypeBit>(LoadMapBitField(map)), | 
 |          runtime); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadJSFunctionPrototype(Node* function, | 
 |                                                  Label* if_bailout) { | 
 |   CSA_ASSERT(this, TaggedIsNotSmi(function)); | 
 |   CSA_ASSERT(this, IsJSFunction(function)); | 
 |   CSA_ASSERT(this, IsFunctionWithPrototypeSlotMap(LoadMap(function))); | 
 |   CSA_ASSERT(this, IsClearWord32<Map::HasNonInstancePrototypeBit>( | 
 |                        LoadMapBitField(LoadMap(function)))); | 
 |   Node* proto_or_map = | 
 |       LoadObjectField(function, JSFunction::kPrototypeOrInitialMapOffset); | 
 |   GotoIf(IsTheHole(proto_or_map), if_bailout); | 
 |  | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged, proto_or_map); | 
 |   Label done(this, &var_result); | 
 |   GotoIfNot(IsMap(proto_or_map), &done); | 
 |  | 
 |   var_result.Bind(LoadMapPrototype(proto_or_map)); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<BytecodeArray> CodeStubAssembler::LoadSharedFunctionInfoBytecodeArray( | 
 |     SloppyTNode<SharedFunctionInfo> shared) { | 
 |   Node* function_data = | 
 |       LoadObjectField(shared, SharedFunctionInfo::kFunctionDataOffset); | 
 |  | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged, function_data); | 
 |   Label done(this, &var_result); | 
 |  | 
 |   GotoIfNot(HasInstanceType(function_data, INTERPRETER_DATA_TYPE), &done); | 
 |   Node* bytecode_array = | 
 |       LoadObjectField(function_data, InterpreterData::kBytecodeArrayOffset); | 
 |   var_result.Bind(bytecode_array); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |   return CAST(var_result.value()); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreObjectByteNoWriteBarrier(TNode<HeapObject> object, | 
 |                                                       int offset, | 
 |                                                       TNode<Word32T> value) { | 
 |   StoreNoWriteBarrier(MachineRepresentation::kWord8, object, | 
 |                       IntPtrConstant(offset - kHeapObjectTag), value); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreHeapNumberValue(SloppyTNode<HeapNumber> object, | 
 |                                              SloppyTNode<Float64T> value) { | 
 |   StoreObjectFieldNoWriteBarrier(object, HeapNumber::kValueOffset, value, | 
 |                                  MachineRepresentation::kFloat64); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreMutableHeapNumberValue( | 
 |     SloppyTNode<MutableHeapNumber> object, SloppyTNode<Float64T> value) { | 
 |   StoreObjectFieldNoWriteBarrier(object, MutableHeapNumber::kValueOffset, value, | 
 |                                  MachineRepresentation::kFloat64); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreObjectField( | 
 |     Node* object, int offset, Node* value) { | 
 |   DCHECK_NE(HeapObject::kMapOffset, offset);  // Use StoreMap instead. | 
 |   return Store(object, IntPtrConstant(offset - kHeapObjectTag), value); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreObjectField(Node* object, Node* offset, | 
 |                                           Node* value) { | 
 |   int const_offset; | 
 |   if (ToInt32Constant(offset, const_offset)) { | 
 |     return StoreObjectField(object, const_offset, value); | 
 |   } | 
 |   return Store(object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), | 
 |                value); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( | 
 |     Node* object, int offset, Node* value, MachineRepresentation rep) { | 
 |   return StoreNoWriteBarrier(rep, object, | 
 |                              IntPtrConstant(offset - kHeapObjectTag), value); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier( | 
 |     Node* object, Node* offset, Node* value, MachineRepresentation rep) { | 
 |   int const_offset; | 
 |   if (ToInt32Constant(offset, const_offset)) { | 
 |     return StoreObjectFieldNoWriteBarrier(object, const_offset, value, rep); | 
 |   } | 
 |   return StoreNoWriteBarrier( | 
 |       rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)), value); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreMap(Node* object, Node* map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   return StoreWithMapWriteBarrier( | 
 |       object, IntPtrConstant(HeapObject::kMapOffset - kHeapObjectTag), map); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, | 
 |                                                 RootIndex map_root_index) { | 
 |   return StoreMapNoWriteBarrier(object, LoadRoot(map_root_index)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   return StoreNoWriteBarrier( | 
 |       MachineRepresentation::kTagged, object, | 
 |       IntPtrConstant(HeapObject::kMapOffset - kHeapObjectTag), map); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreObjectFieldRoot(Node* object, int offset, | 
 |                                               RootIndex root_index) { | 
 |   if (RootsTable::IsImmortalImmovable(root_index)) { | 
 |     return StoreObjectFieldNoWriteBarrier(object, offset, LoadRoot(root_index)); | 
 |   } else { | 
 |     return StoreObjectField(object, offset, LoadRoot(root_index)); | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreJSArrayLength(TNode<JSArray> array, | 
 |                                             TNode<Smi> length) { | 
 |   return StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreElements(TNode<Object> object, | 
 |                                        TNode<FixedArrayBase> elements) { | 
 |   return StoreObjectField(object, JSObject::kElementsOffset, elements); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreFixedArrayOrPropertyArrayElement( | 
 |     Node* object, Node* index_node, Node* value, WriteBarrierMode barrier_mode, | 
 |     int additional_offset, ParameterMode parameter_mode) { | 
 |   CSA_SLOW_ASSERT( | 
 |       this, Word32Or(IsFixedArraySubclass(object), IsPropertyArray(object))); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode)); | 
 |   DCHECK(barrier_mode == SKIP_WRITE_BARRIER || | 
 |          barrier_mode == UPDATE_WRITE_BARRIER); | 
 |   DCHECK_EQ(additional_offset % kPointerSize, 0); | 
 |   STATIC_ASSERT(FixedArray::kHeaderSize == PropertyArray::kHeaderSize); | 
 |   int header_size = | 
 |       FixedArray::kHeaderSize + additional_offset - kHeapObjectTag; | 
 |   Node* offset = ElementOffsetFromIndex(index_node, HOLEY_ELEMENTS, | 
 |                                         parameter_mode, header_size); | 
 |   STATIC_ASSERT(FixedArrayBase::kLengthOffset == WeakFixedArray::kLengthOffset); | 
 |   STATIC_ASSERT(FixedArrayBase::kLengthOffset == | 
 |                 PropertyArray::kLengthAndHashOffset); | 
 |   // Check that index_node + additional_offset <= object.length. | 
 |   // TODO(cbruni): Use proper LoadXXLength helpers | 
 |   CSA_ASSERT( | 
 |       this, | 
 |       IsOffsetInBounds( | 
 |           offset, | 
 |           Select<IntPtrT>( | 
 |               IsPropertyArray(object), | 
 |               [=] { | 
 |                 TNode<IntPtrT> length_and_hash = LoadAndUntagObjectField( | 
 |                     object, PropertyArray::kLengthAndHashOffset); | 
 |                 return TNode<IntPtrT>::UncheckedCast( | 
 |                     DecodeWord<PropertyArray::LengthField>(length_and_hash)); | 
 |               }, | 
 |               [=] { | 
 |                 return LoadAndUntagObjectField(object, | 
 |                                                FixedArrayBase::kLengthOffset); | 
 |               }), | 
 |           FixedArray::kHeaderSize)); | 
 |   if (barrier_mode == SKIP_WRITE_BARRIER) { | 
 |     StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, value); | 
 |   } else { | 
 |     Store(object, offset, value); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreFixedDoubleArrayElement( | 
 |     TNode<FixedDoubleArray> object, Node* index_node, TNode<Float64T> value, | 
 |     ParameterMode parameter_mode) { | 
 |   CSA_ASSERT(this, IsFixedDoubleArray(object)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, parameter_mode)); | 
 |   FixedArrayBoundsCheck(object, index_node, 0, parameter_mode); | 
 |   Node* offset = | 
 |       ElementOffsetFromIndex(index_node, PACKED_DOUBLE_ELEMENTS, parameter_mode, | 
 |                              FixedArray::kHeaderSize - kHeapObjectTag); | 
 |   MachineRepresentation rep = MachineRepresentation::kFloat64; | 
 |   StoreNoWriteBarrier(rep, object, offset, value); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreFeedbackVectorSlot(Node* object, | 
 |                                                  Node* slot_index_node, | 
 |                                                  Node* value, | 
 |                                                  WriteBarrierMode barrier_mode, | 
 |                                                  int additional_offset, | 
 |                                                  ParameterMode parameter_mode) { | 
 |   CSA_SLOW_ASSERT(this, IsFeedbackVector(object)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(slot_index_node, parameter_mode)); | 
 |   DCHECK_EQ(additional_offset % kPointerSize, 0); | 
 |   DCHECK(barrier_mode == SKIP_WRITE_BARRIER || | 
 |          barrier_mode == UPDATE_WRITE_BARRIER); | 
 |   int header_size = | 
 |       FeedbackVector::kFeedbackSlotsOffset + additional_offset - kHeapObjectTag; | 
 |   Node* offset = ElementOffsetFromIndex(slot_index_node, HOLEY_ELEMENTS, | 
 |                                         parameter_mode, header_size); | 
 |   // Check that slot_index_node <= object.length. | 
 |   CSA_ASSERT(this, | 
 |              IsOffsetInBounds(offset, LoadFeedbackVectorLength(CAST(object)), | 
 |                               FeedbackVector::kHeaderSize)); | 
 |   if (barrier_mode == SKIP_WRITE_BARRIER) { | 
 |     return StoreNoWriteBarrier(MachineRepresentation::kTagged, object, offset, | 
 |                                value); | 
 |   } else { | 
 |     return Store(object, offset, value); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::EnsureArrayLengthWritable(TNode<Map> map, | 
 |                                                   Label* bailout) { | 
 |   // Don't support arrays in dictionary named property mode. | 
 |   GotoIf(IsDictionaryMap(map), bailout); | 
 |  | 
 |   // Check whether the length property is writable. The length property is the | 
 |   // only default named property on arrays. It's nonconfigurable, hence is | 
 |   // guaranteed to stay the first property. | 
 |   TNode<DescriptorArray> descriptors = LoadMapDescriptors(map); | 
 |  | 
 |   int length_index = JSArray::kLengthDescriptorIndex; | 
 | #ifdef DEBUG | 
 |   TNode<Name> maybe_length = CAST(LoadWeakFixedArrayElement( | 
 |       descriptors, DescriptorArray::ToKeyIndex(length_index))); | 
 |   CSA_ASSERT(this, | 
 |              WordEqual(maybe_length, LoadRoot(RootIndex::klength_string))); | 
 | #endif | 
 |  | 
 |   TNode<Uint32T> details = LoadDetailsByKeyIndex( | 
 |       descriptors, IntPtrConstant(DescriptorArray::ToKeyIndex(length_index))); | 
 |   GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask), | 
 |          bailout); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::EnsureArrayPushable(TNode<Map> map, | 
 |                                                      Label* bailout) { | 
 |   // Disallow pushing onto prototypes. It might be the JSArray prototype. | 
 |   // Disallow pushing onto non-extensible objects. | 
 |   Comment("Disallow pushing onto prototypes"); | 
 |   Node* bit_field2 = LoadMapBitField2(map); | 
 |   int mask = Map::IsPrototypeMapBit::kMask | Map::IsExtensibleBit::kMask; | 
 |   Node* test = Word32And(bit_field2, Int32Constant(mask)); | 
 |   GotoIf(Word32NotEqual(test, Int32Constant(Map::IsExtensibleBit::kMask)), | 
 |          bailout); | 
 |  | 
 |   EnsureArrayLengthWritable(map, bailout); | 
 |  | 
 |   TNode<Uint32T> kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); | 
 |   return Signed(kind); | 
 | } | 
 |  | 
 | void CodeStubAssembler::PossiblyGrowElementsCapacity( | 
 |     ParameterMode mode, ElementsKind kind, Node* array, Node* length, | 
 |     Variable* var_elements, Node* growth, Label* bailout) { | 
 |   Label fits(this, var_elements); | 
 |   Node* capacity = | 
 |       TaggedToParameter(LoadFixedArrayBaseLength(var_elements->value()), mode); | 
 |   // length and growth nodes are already in a ParameterMode appropriate | 
 |   // representation. | 
 |   Node* new_length = IntPtrOrSmiAdd(growth, length, mode); | 
 |   GotoIfNot(IntPtrOrSmiGreaterThan(new_length, capacity, mode), &fits); | 
 |   Node* new_capacity = CalculateNewElementsCapacity(new_length, mode); | 
 |   var_elements->Bind(GrowElementsCapacity(array, var_elements->value(), kind, | 
 |                                           kind, capacity, new_capacity, mode, | 
 |                                           bailout)); | 
 |   Goto(&fits); | 
 |   BIND(&fits); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::BuildAppendJSArray(ElementsKind kind, | 
 |                                                  SloppyTNode<JSArray> array, | 
 |                                                  CodeStubArguments* args, | 
 |                                                  TVariable<IntPtrT>* arg_index, | 
 |                                                  Label* bailout) { | 
 |   CSA_SLOW_ASSERT(this, IsJSArray(array)); | 
 |   Comment("BuildAppendJSArray: %s", ElementsKindToString(kind)); | 
 |   Label pre_bailout(this); | 
 |   Label success(this); | 
 |   TVARIABLE(Smi, var_tagged_length); | 
 |   ParameterMode mode = OptimalParameterMode(); | 
 |   VARIABLE(var_length, OptimalParameterRepresentation(), | 
 |            TaggedToParameter(LoadFastJSArrayLength(array), mode)); | 
 |   VARIABLE(var_elements, MachineRepresentation::kTagged, LoadElements(array)); | 
 |  | 
 |   // Resize the capacity of the fixed array if it doesn't fit. | 
 |   TNode<IntPtrT> first = arg_index->value(); | 
 |   Node* growth = IntPtrToParameter( | 
 |       IntPtrSub(UncheckedCast<IntPtrT>(args->GetLength(INTPTR_PARAMETERS)), | 
 |                 first), | 
 |       mode); | 
 |   PossiblyGrowElementsCapacity(mode, kind, array, var_length.value(), | 
 |                                &var_elements, growth, &pre_bailout); | 
 |  | 
 |   // Push each argument onto the end of the array now that there is enough | 
 |   // capacity. | 
 |   CodeStubAssembler::VariableList push_vars({&var_length}, zone()); | 
 |   Node* elements = var_elements.value(); | 
 |   args->ForEach( | 
 |       push_vars, | 
 |       [this, kind, mode, elements, &var_length, &pre_bailout](Node* arg) { | 
 |         TryStoreArrayElement(kind, mode, &pre_bailout, elements, | 
 |                              var_length.value(), arg); | 
 |         Increment(&var_length, 1, mode); | 
 |       }, | 
 |       first, nullptr); | 
 |   { | 
 |     TNode<Smi> length = ParameterToTagged(var_length.value(), mode); | 
 |     var_tagged_length = length; | 
 |     StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); | 
 |     Goto(&success); | 
 |   } | 
 |  | 
 |   BIND(&pre_bailout); | 
 |   { | 
 |     TNode<Smi> length = ParameterToTagged(var_length.value(), mode); | 
 |     var_tagged_length = length; | 
 |     Node* diff = SmiSub(length, LoadFastJSArrayLength(array)); | 
 |     StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); | 
 |     *arg_index = IntPtrAdd(arg_index->value(), SmiUntag(diff)); | 
 |     Goto(bailout); | 
 |   } | 
 |  | 
 |   BIND(&success); | 
 |   return var_tagged_length.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryStoreArrayElement(ElementsKind kind, | 
 |                                              ParameterMode mode, Label* bailout, | 
 |                                              Node* elements, Node* index, | 
 |                                              Node* value) { | 
 |   if (IsSmiElementsKind(kind)) { | 
 |     GotoIf(TaggedIsNotSmi(value), bailout); | 
 |   } else if (IsDoubleElementsKind(kind)) { | 
 |     GotoIfNotNumber(value, bailout); | 
 |   } | 
 |   if (IsDoubleElementsKind(kind)) value = ChangeNumberToFloat64(value); | 
 |   StoreElement(elements, kind, index, value, mode); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BuildAppendJSArray(ElementsKind kind, Node* array, | 
 |                                            Node* value, Label* bailout) { | 
 |   CSA_SLOW_ASSERT(this, IsJSArray(array)); | 
 |   Comment("BuildAppendJSArray: %s", ElementsKindToString(kind)); | 
 |   ParameterMode mode = OptimalParameterMode(); | 
 |   VARIABLE(var_length, OptimalParameterRepresentation(), | 
 |            TaggedToParameter(LoadFastJSArrayLength(array), mode)); | 
 |   VARIABLE(var_elements, MachineRepresentation::kTagged, LoadElements(array)); | 
 |  | 
 |   // Resize the capacity of the fixed array if it doesn't fit. | 
 |   Node* growth = IntPtrOrSmiConstant(1, mode); | 
 |   PossiblyGrowElementsCapacity(mode, kind, array, var_length.value(), | 
 |                                &var_elements, growth, bailout); | 
 |  | 
 |   // Push each argument onto the end of the array now that there is enough | 
 |   // capacity. | 
 |   TryStoreArrayElement(kind, mode, bailout, var_elements.value(), | 
 |                        var_length.value(), value); | 
 |   Increment(&var_length, 1, mode); | 
 |  | 
 |   Node* length = ParameterToTagged(var_length.value(), mode); | 
 |   StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateCellWithValue(Node* value, | 
 |                                                WriteBarrierMode mode) { | 
 |   Node* result = Allocate(Cell::kSize, kNone); | 
 |   StoreMapNoWriteBarrier(result, RootIndex::kCellMap); | 
 |   StoreCellValue(result, value, mode); | 
 |   return result; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadCellValue(Node* cell) { | 
 |   CSA_SLOW_ASSERT(this, HasInstanceType(cell, CELL_TYPE)); | 
 |   return LoadObjectField(cell, Cell::kValueOffset); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StoreCellValue(Node* cell, Node* value, | 
 |                                         WriteBarrierMode mode) { | 
 |   CSA_SLOW_ASSERT(this, HasInstanceType(cell, CELL_TYPE)); | 
 |   DCHECK(mode == SKIP_WRITE_BARRIER || mode == UPDATE_WRITE_BARRIER); | 
 |  | 
 |   if (mode == UPDATE_WRITE_BARRIER) { | 
 |     return StoreObjectField(cell, Cell::kValueOffset, value); | 
 |   } else { | 
 |     return StoreObjectFieldNoWriteBarrier(cell, Cell::kValueOffset, value); | 
 |   } | 
 | } | 
 |  | 
 | TNode<HeapNumber> CodeStubAssembler::AllocateHeapNumber() { | 
 |   Node* result = Allocate(HeapNumber::kSize, kNone); | 
 |   RootIndex heap_map_index = RootIndex::kHeapNumberMap; | 
 |   StoreMapNoWriteBarrier(result, heap_map_index); | 
 |   return UncheckedCast<HeapNumber>(result); | 
 | } | 
 |  | 
 | TNode<HeapNumber> CodeStubAssembler::AllocateHeapNumberWithValue( | 
 |     SloppyTNode<Float64T> value) { | 
 |   TNode<HeapNumber> result = AllocateHeapNumber(); | 
 |   StoreHeapNumberValue(result, value); | 
 |   return result; | 
 | } | 
 |  | 
 | TNode<MutableHeapNumber> CodeStubAssembler::AllocateMutableHeapNumber() { | 
 |   Node* result = Allocate(MutableHeapNumber::kSize, kNone); | 
 |   RootIndex heap_map_index = RootIndex::kMutableHeapNumberMap; | 
 |   StoreMapNoWriteBarrier(result, heap_map_index); | 
 |   return UncheckedCast<MutableHeapNumber>(result); | 
 | } | 
 |  | 
 | TNode<MutableHeapNumber> CodeStubAssembler::AllocateMutableHeapNumberWithValue( | 
 |     SloppyTNode<Float64T> value) { | 
 |   TNode<MutableHeapNumber> result = AllocateMutableHeapNumber(); | 
 |   StoreMutableHeapNumberValue(result, value); | 
 |   return result; | 
 | } | 
 |  | 
 | TNode<BigInt> CodeStubAssembler::AllocateBigInt(TNode<IntPtrT> length) { | 
 |   TNode<BigInt> result = AllocateRawBigInt(length); | 
 |   StoreBigIntBitfield(result, WordShl(length, BigInt::LengthBits::kShift)); | 
 |   return result; | 
 | } | 
 |  | 
 | TNode<BigInt> CodeStubAssembler::AllocateRawBigInt(TNode<IntPtrT> length) { | 
 |   // This is currently used only for 64-bit wide BigInts. If more general | 
 |   // applicability is required, a large-object check must be added. | 
 |   CSA_ASSERT(this, UintPtrLessThan(length, IntPtrConstant(3))); | 
 |  | 
 |   TNode<IntPtrT> size = IntPtrAdd(IntPtrConstant(BigInt::kHeaderSize), | 
 |                                   Signed(WordShl(length, kPointerSizeLog2))); | 
 |   Node* raw_result = Allocate(size, kNone); | 
 |   StoreMapNoWriteBarrier(raw_result, RootIndex::kBigIntMap); | 
 |   return UncheckedCast<BigInt>(raw_result); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreBigIntBitfield(TNode<BigInt> bigint, | 
 |                                             TNode<WordT> bitfield) { | 
 |   StoreObjectFieldNoWriteBarrier(bigint, BigInt::kBitfieldOffset, bitfield, | 
 |                                  MachineType::PointerRepresentation()); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreBigIntDigit(TNode<BigInt> bigint, int digit_index, | 
 |                                          TNode<UintPtrT> digit) { | 
 |   StoreObjectFieldNoWriteBarrier( | 
 |       bigint, BigInt::kDigitsOffset + digit_index * kPointerSize, digit, | 
 |       UintPtrT::kMachineRepresentation); | 
 | } | 
 |  | 
 | TNode<WordT> CodeStubAssembler::LoadBigIntBitfield(TNode<BigInt> bigint) { | 
 |   return UncheckedCast<WordT>( | 
 |       LoadObjectField(bigint, BigInt::kBitfieldOffset, MachineType::UintPtr())); | 
 | } | 
 |  | 
 | TNode<UintPtrT> CodeStubAssembler::LoadBigIntDigit(TNode<BigInt> bigint, | 
 |                                                    int digit_index) { | 
 |   return UncheckedCast<UintPtrT>(LoadObjectField( | 
 |       bigint, BigInt::kDigitsOffset + digit_index * kPointerSize, | 
 |       MachineType::UintPtr())); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateSeqOneByteString( | 
 |     uint32_t length, AllocationFlags flags) { | 
 |   Comment("AllocateSeqOneByteString"); | 
 |   if (length == 0) { | 
 |     return CAST(LoadRoot(RootIndex::kempty_string)); | 
 |   } | 
 |   Node* result = Allocate(SeqOneByteString::SizeFor(length), flags); | 
 |   DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kOneByteStringMap)); | 
 |   StoreMapNoWriteBarrier(result, RootIndex::kOneByteStringMap); | 
 |   StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, | 
 |                                  Uint32Constant(length), | 
 |                                  MachineRepresentation::kWord32); | 
 |   StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset, | 
 |                                  Int32Constant(String::kEmptyHashField), | 
 |                                  MachineRepresentation::kWord32); | 
 |   return CAST(result); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsZeroOrContext(SloppyTNode<Object> object) { | 
 |   return Select<BoolT>(WordEqual(object, SmiConstant(0)), | 
 |                        [=] { return Int32TrueConstant(); }, | 
 |                        [=] { return IsContext(CAST(object)); }); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateSeqOneByteString( | 
 |     Node* context, TNode<Uint32T> length, AllocationFlags flags) { | 
 |   Comment("AllocateSeqOneByteString"); | 
 |   CSA_SLOW_ASSERT(this, IsZeroOrContext(context)); | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |  | 
 |   // Compute the SeqOneByteString size and check if it fits into new space. | 
 |   Label if_lengthiszero(this), if_sizeissmall(this), | 
 |       if_notsizeissmall(this, Label::kDeferred), if_join(this); | 
 |   GotoIf(Word32Equal(length, Uint32Constant(0)), &if_lengthiszero); | 
 |  | 
 |   Node* raw_size = GetArrayAllocationSize( | 
 |       Signed(ChangeUint32ToWord(length)), UINT8_ELEMENTS, INTPTR_PARAMETERS, | 
 |       SeqOneByteString::kHeaderSize + kObjectAlignmentMask); | 
 |   Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask)); | 
 |   Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)), | 
 |          &if_sizeissmall, &if_notsizeissmall); | 
 |  | 
 |   BIND(&if_sizeissmall); | 
 |   { | 
 |     // Just allocate the SeqOneByteString in new space. | 
 |     Node* result = AllocateInNewSpace(size, flags); | 
 |     DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kOneByteStringMap)); | 
 |     StoreMapNoWriteBarrier(result, RootIndex::kOneByteStringMap); | 
 |     StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset, | 
 |                                    length, MachineRepresentation::kWord32); | 
 |     StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset, | 
 |                                    Int32Constant(String::kEmptyHashField), | 
 |                                    MachineRepresentation::kWord32); | 
 |     var_result.Bind(result); | 
 |     Goto(&if_join); | 
 |   } | 
 |  | 
 |   BIND(&if_notsizeissmall); | 
 |   { | 
 |     // We might need to allocate in large object space, go to the runtime. | 
 |     Node* result = CallRuntime(Runtime::kAllocateSeqOneByteString, context, | 
 |                                ChangeUint32ToTagged(length)); | 
 |     var_result.Bind(result); | 
 |     Goto(&if_join); | 
 |   } | 
 |  | 
 |   BIND(&if_lengthiszero); | 
 |   { | 
 |     var_result.Bind(LoadRoot(RootIndex::kempty_string)); | 
 |     Goto(&if_join); | 
 |   } | 
 |  | 
 |   BIND(&if_join); | 
 |   return CAST(var_result.value()); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateSeqTwoByteString( | 
 |     uint32_t length, AllocationFlags flags) { | 
 |   Comment("AllocateSeqTwoByteString"); | 
 |   if (length == 0) { | 
 |     return CAST(LoadRoot(RootIndex::kempty_string)); | 
 |   } | 
 |   Node* result = Allocate(SeqTwoByteString::SizeFor(length), flags); | 
 |   DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kStringMap)); | 
 |   StoreMapNoWriteBarrier(result, RootIndex::kStringMap); | 
 |   StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset, | 
 |                                  Uint32Constant(length), | 
 |                                  MachineRepresentation::kWord32); | 
 |   StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset, | 
 |                                  Int32Constant(String::kEmptyHashField), | 
 |                                  MachineRepresentation::kWord32); | 
 |   return CAST(result); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateSeqTwoByteString( | 
 |     Node* context, TNode<Uint32T> length, AllocationFlags flags) { | 
 |   CSA_SLOW_ASSERT(this, IsZeroOrContext(context)); | 
 |   Comment("AllocateSeqTwoByteString"); | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |  | 
 |   // Compute the SeqTwoByteString size and check if it fits into new space. | 
 |   Label if_lengthiszero(this), if_sizeissmall(this), | 
 |       if_notsizeissmall(this, Label::kDeferred), if_join(this); | 
 |   GotoIf(Word32Equal(length, Uint32Constant(0)), &if_lengthiszero); | 
 |  | 
 |   Node* raw_size = GetArrayAllocationSize( | 
 |       Signed(ChangeUint32ToWord(length)), UINT16_ELEMENTS, INTPTR_PARAMETERS, | 
 |       SeqOneByteString::kHeaderSize + kObjectAlignmentMask); | 
 |   Node* size = WordAnd(raw_size, IntPtrConstant(~kObjectAlignmentMask)); | 
 |   Branch(IntPtrLessThanOrEqual(size, IntPtrConstant(kMaxRegularHeapObjectSize)), | 
 |          &if_sizeissmall, &if_notsizeissmall); | 
 |  | 
 |   BIND(&if_sizeissmall); | 
 |   { | 
 |     // Just allocate the SeqTwoByteString in new space. | 
 |     Node* result = AllocateInNewSpace(size, flags); | 
 |     DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kStringMap)); | 
 |     StoreMapNoWriteBarrier(result, RootIndex::kStringMap); | 
 |     StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset, | 
 |                                    length, MachineRepresentation::kWord32); | 
 |     StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset, | 
 |                                    Int32Constant(String::kEmptyHashField), | 
 |                                    MachineRepresentation::kWord32); | 
 |     var_result.Bind(result); | 
 |     Goto(&if_join); | 
 |   } | 
 |  | 
 |   BIND(&if_notsizeissmall); | 
 |   { | 
 |     // We might need to allocate in large object space, go to the runtime. | 
 |     Node* result = CallRuntime(Runtime::kAllocateSeqTwoByteString, context, | 
 |                                ChangeUint32ToTagged(length)); | 
 |     var_result.Bind(result); | 
 |     Goto(&if_join); | 
 |   } | 
 |  | 
 |   BIND(&if_lengthiszero); | 
 |   { | 
 |     var_result.Bind(LoadRoot(RootIndex::kempty_string)); | 
 |     Goto(&if_join); | 
 |   } | 
 |  | 
 |   BIND(&if_join); | 
 |   return CAST(var_result.value()); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateSlicedString(RootIndex map_root_index, | 
 |                                                       TNode<Uint32T> length, | 
 |                                                       TNode<String> parent, | 
 |                                                       TNode<Smi> offset) { | 
 |   DCHECK(map_root_index == RootIndex::kSlicedOneByteStringMap || | 
 |          map_root_index == RootIndex::kSlicedStringMap); | 
 |   Node* result = Allocate(SlicedString::kSize); | 
 |   DCHECK(RootsTable::IsImmortalImmovable(map_root_index)); | 
 |   StoreMapNoWriteBarrier(result, map_root_index); | 
 |   StoreObjectFieldNoWriteBarrier(result, SlicedString::kHashFieldOffset, | 
 |                                  Int32Constant(String::kEmptyHashField), | 
 |                                  MachineRepresentation::kWord32); | 
 |   StoreObjectFieldNoWriteBarrier(result, SlicedString::kLengthOffset, length, | 
 |                                  MachineRepresentation::kWord32); | 
 |   StoreObjectFieldNoWriteBarrier(result, SlicedString::kParentOffset, parent, | 
 |                                  MachineRepresentation::kTagged); | 
 |   StoreObjectFieldNoWriteBarrier(result, SlicedString::kOffsetOffset, offset, | 
 |                                  MachineRepresentation::kTagged); | 
 |   return CAST(result); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateSlicedOneByteString( | 
 |     TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) { | 
 |   return AllocateSlicedString(RootIndex::kSlicedOneByteStringMap, length, | 
 |                               parent, offset); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateSlicedTwoByteString( | 
 |     TNode<Uint32T> length, TNode<String> parent, TNode<Smi> offset) { | 
 |   return AllocateSlicedString(RootIndex::kSlicedStringMap, length, parent, | 
 |                               offset); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateConsString(RootIndex map_root_index, | 
 |                                                     TNode<Uint32T> length, | 
 |                                                     TNode<String> first, | 
 |                                                     TNode<String> second, | 
 |                                                     AllocationFlags flags) { | 
 |   DCHECK(map_root_index == RootIndex::kConsOneByteStringMap || | 
 |          map_root_index == RootIndex::kConsStringMap); | 
 |   Node* result = Allocate(ConsString::kSize, flags); | 
 |   DCHECK(RootsTable::IsImmortalImmovable(map_root_index)); | 
 |   StoreMapNoWriteBarrier(result, map_root_index); | 
 |   StoreObjectFieldNoWriteBarrier(result, ConsString::kLengthOffset, length, | 
 |                                  MachineRepresentation::kWord32); | 
 |   StoreObjectFieldNoWriteBarrier(result, ConsString::kHashFieldOffset, | 
 |                                  Int32Constant(String::kEmptyHashField), | 
 |                                  MachineRepresentation::kWord32); | 
 |   bool const new_space = !(flags & kPretenured); | 
 |   if (new_space) { | 
 |     StoreObjectFieldNoWriteBarrier(result, ConsString::kFirstOffset, first, | 
 |                                    MachineRepresentation::kTagged); | 
 |     StoreObjectFieldNoWriteBarrier(result, ConsString::kSecondOffset, second, | 
 |                                    MachineRepresentation::kTagged); | 
 |   } else { | 
 |     StoreObjectField(result, ConsString::kFirstOffset, first); | 
 |     StoreObjectField(result, ConsString::kSecondOffset, second); | 
 |   } | 
 |   return CAST(result); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateOneByteConsString( | 
 |     TNode<Uint32T> length, TNode<String> first, TNode<String> second, | 
 |     AllocationFlags flags) { | 
 |   return AllocateConsString(RootIndex::kConsOneByteStringMap, length, first, | 
 |                             second, flags); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::AllocateTwoByteConsString( | 
 |     TNode<Uint32T> length, TNode<String> first, TNode<String> second, | 
 |     AllocationFlags flags) { | 
 |   return AllocateConsString(RootIndex::kConsStringMap, length, first, second, | 
 |                             flags); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::NewConsString(TNode<Uint32T> length, | 
 |                                                TNode<String> left, | 
 |                                                TNode<String> right, | 
 |                                                AllocationFlags flags) { | 
 |   // Added string can be a cons string. | 
 |   Comment("Allocating ConsString"); | 
 |   Node* left_instance_type = LoadInstanceType(left); | 
 |   Node* right_instance_type = LoadInstanceType(right); | 
 |  | 
 |   // Compute intersection and difference of instance types. | 
 |   Node* anded_instance_types = | 
 |       Word32And(left_instance_type, right_instance_type); | 
 |   Node* xored_instance_types = | 
 |       Word32Xor(left_instance_type, right_instance_type); | 
 |  | 
 |   // We create a one-byte cons string if | 
 |   // 1. both strings are one-byte, or | 
 |   // 2. at least one of the strings is two-byte, but happens to contain only | 
 |   //    one-byte characters. | 
 |   // To do this, we check | 
 |   // 1. if both strings are one-byte, or if the one-byte data hint is set in | 
 |   //    both strings, or | 
 |   // 2. if one of the strings has the one-byte data hint set and the other | 
 |   //    string is one-byte. | 
 |   STATIC_ASSERT(kOneByteStringTag != 0); | 
 |   STATIC_ASSERT(kOneByteDataHintTag != 0); | 
 |   Label one_byte_map(this); | 
 |   Label two_byte_map(this); | 
 |   TVARIABLE(String, result); | 
 |   Label done(this, &result); | 
 |   GotoIf(IsSetWord32(anded_instance_types, | 
 |                      kStringEncodingMask | kOneByteDataHintTag), | 
 |          &one_byte_map); | 
 |   Branch(Word32NotEqual(Word32And(xored_instance_types, | 
 |                                   Int32Constant(kStringEncodingMask | | 
 |                                                 kOneByteDataHintMask)), | 
 |                         Int32Constant(kOneByteStringTag | kOneByteDataHintTag)), | 
 |          &two_byte_map, &one_byte_map); | 
 |  | 
 |   BIND(&one_byte_map); | 
 |   Comment("One-byte ConsString"); | 
 |   result = AllocateOneByteConsString(length, left, right, flags); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&two_byte_map); | 
 |   Comment("Two-byte ConsString"); | 
 |   result = AllocateTwoByteConsString(length, left, right, flags); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |  | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionary( | 
 |     int at_least_space_for) { | 
 |   return AllocateNameDictionary(IntPtrConstant(at_least_space_for)); | 
 | } | 
 |  | 
 | TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionary( | 
 |     TNode<IntPtrT> at_least_space_for) { | 
 |   CSA_ASSERT(this, UintPtrLessThanOrEqual( | 
 |                        at_least_space_for, | 
 |                        IntPtrConstant(NameDictionary::kMaxCapacity))); | 
 |   TNode<IntPtrT> capacity = HashTableComputeCapacity(at_least_space_for); | 
 |   return AllocateNameDictionaryWithCapacity(capacity); | 
 | } | 
 |  | 
 | TNode<NameDictionary> CodeStubAssembler::AllocateNameDictionaryWithCapacity( | 
 |     TNode<IntPtrT> capacity) { | 
 |   CSA_ASSERT(this, WordIsPowerOfTwo(capacity)); | 
 |   CSA_ASSERT(this, IntPtrGreaterThan(capacity, IntPtrConstant(0))); | 
 |   TNode<IntPtrT> length = EntryToIndex<NameDictionary>(capacity); | 
 |   TNode<WordT> store_size = IntPtrAdd( | 
 |       TimesPointerSize(length), IntPtrConstant(NameDictionary::kHeaderSize)); | 
 |  | 
 |   TNode<NameDictionary> result = | 
 |       UncheckedCast<NameDictionary>(AllocateInNewSpace(store_size)); | 
 |   Comment("Initialize NameDictionary"); | 
 |   // Initialize FixedArray fields. | 
 |   DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kNameDictionaryMap)); | 
 |   StoreMapNoWriteBarrier(result, RootIndex::kNameDictionaryMap); | 
 |   StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset, | 
 |                                  SmiFromIntPtr(length)); | 
 |   // Initialized HashTable fields. | 
 |   TNode<Smi> zero = SmiConstant(0); | 
 |   StoreFixedArrayElement(result, NameDictionary::kNumberOfElementsIndex, zero, | 
 |                          SKIP_WRITE_BARRIER); | 
 |   StoreFixedArrayElement(result, NameDictionary::kNumberOfDeletedElementsIndex, | 
 |                          zero, SKIP_WRITE_BARRIER); | 
 |   StoreFixedArrayElement(result, NameDictionary::kCapacityIndex, | 
 |                          SmiTag(capacity), SKIP_WRITE_BARRIER); | 
 |   // Initialize Dictionary fields. | 
 |   TNode<HeapObject> filler = UndefinedConstant(); | 
 |   StoreFixedArrayElement(result, NameDictionary::kNextEnumerationIndexIndex, | 
 |                          SmiConstant(PropertyDetails::kInitialIndex), | 
 |                          SKIP_WRITE_BARRIER); | 
 |   StoreFixedArrayElement(result, NameDictionary::kObjectHashIndex, | 
 |                          SmiConstant(PropertyArray::kNoHashSentinel), | 
 |                          SKIP_WRITE_BARRIER); | 
 |  | 
 |   // Initialize NameDictionary elements. | 
 |   TNode<WordT> result_word = BitcastTaggedToWord(result); | 
 |   TNode<WordT> start_address = IntPtrAdd( | 
 |       result_word, IntPtrConstant(NameDictionary::OffsetOfElementAt( | 
 |                                       NameDictionary::kElementsStartIndex) - | 
 |                                   kHeapObjectTag)); | 
 |   TNode<WordT> end_address = IntPtrAdd( | 
 |       result_word, IntPtrSub(store_size, IntPtrConstant(kHeapObjectTag))); | 
 |   StoreFieldsNoWriteBarrier(start_address, end_address, filler); | 
 |   return result; | 
 | } | 
 |  | 
 | TNode<NameDictionary> CodeStubAssembler::CopyNameDictionary( | 
 |     TNode<NameDictionary> dictionary, Label* large_object_fallback) { | 
 |   Comment("Copy boilerplate property dict"); | 
 |   TNode<IntPtrT> capacity = SmiUntag(GetCapacity<NameDictionary>(dictionary)); | 
 |   CSA_ASSERT(this, IntPtrGreaterThanOrEqual(capacity, IntPtrConstant(0))); | 
 |   GotoIf(UintPtrGreaterThan( | 
 |              capacity, IntPtrConstant(NameDictionary::kMaxRegularCapacity)), | 
 |          large_object_fallback); | 
 |   TNode<NameDictionary> properties = | 
 |       AllocateNameDictionaryWithCapacity(capacity); | 
 |   TNode<IntPtrT> length = SmiUntag(LoadFixedArrayBaseLength(dictionary)); | 
 |   CopyFixedArrayElements(PACKED_ELEMENTS, dictionary, properties, length, | 
 |                          SKIP_WRITE_BARRIER, INTPTR_PARAMETERS); | 
 |   return properties; | 
 | } | 
 |  | 
 | template <typename CollectionType> | 
 | Node* CodeStubAssembler::AllocateOrderedHashTable() { | 
 |   static const int kCapacity = CollectionType::kMinCapacity; | 
 |   static const int kBucketCount = kCapacity / CollectionType::kLoadFactor; | 
 |   static const int kDataTableLength = kCapacity * CollectionType::kEntrySize; | 
 |   static const int kFixedArrayLength = | 
 |       CollectionType::kHashTableStartIndex + kBucketCount + kDataTableLength; | 
 |   static const int kDataTableStartIndex = | 
 |       CollectionType::kHashTableStartIndex + kBucketCount; | 
 |  | 
 |   STATIC_ASSERT(base::bits::IsPowerOfTwo(kCapacity)); | 
 |   STATIC_ASSERT(kCapacity <= CollectionType::kMaxCapacity); | 
 |  | 
 |   // Allocate the table and add the proper map. | 
 |   const ElementsKind elements_kind = HOLEY_ELEMENTS; | 
 |   TNode<IntPtrT> length_intptr = IntPtrConstant(kFixedArrayLength); | 
 |   TNode<Map> fixed_array_map = | 
 |       CAST(LoadRoot(CollectionType::GetMapRootIndex())); | 
 |   TNode<FixedArray> table = | 
 |       CAST(AllocateFixedArray(elements_kind, length_intptr, | 
 |                               kAllowLargeObjectAllocation, fixed_array_map)); | 
 |  | 
 |   // Initialize the OrderedHashTable fields. | 
 |   const WriteBarrierMode barrier_mode = SKIP_WRITE_BARRIER; | 
 |   StoreFixedArrayElement(table, CollectionType::kNumberOfElementsIndex, | 
 |                          SmiConstant(0), barrier_mode); | 
 |   StoreFixedArrayElement(table, CollectionType::kNumberOfDeletedElementsIndex, | 
 |                          SmiConstant(0), barrier_mode); | 
 |   StoreFixedArrayElement(table, CollectionType::kNumberOfBucketsIndex, | 
 |                          SmiConstant(kBucketCount), barrier_mode); | 
 |  | 
 |   // Fill the buckets with kNotFound. | 
 |   TNode<Smi> not_found = SmiConstant(CollectionType::kNotFound); | 
 |   STATIC_ASSERT(CollectionType::kHashTableStartIndex == | 
 |                 CollectionType::kNumberOfBucketsIndex + 1); | 
 |   STATIC_ASSERT((CollectionType::kHashTableStartIndex + kBucketCount) == | 
 |                 kDataTableStartIndex); | 
 |   for (int i = 0; i < kBucketCount; i++) { | 
 |     StoreFixedArrayElement(table, CollectionType::kHashTableStartIndex + i, | 
 |                            not_found, barrier_mode); | 
 |   } | 
 |  | 
 |   // Fill the data table with undefined. | 
 |   STATIC_ASSERT(kDataTableStartIndex + kDataTableLength == kFixedArrayLength); | 
 |   for (int i = 0; i < kDataTableLength; i++) { | 
 |     StoreFixedArrayElement(table, kDataTableStartIndex + i, UndefinedConstant(), | 
 |                            barrier_mode); | 
 |   } | 
 |  | 
 |   return table; | 
 | } | 
 |  | 
 | template Node* CodeStubAssembler::AllocateOrderedHashTable<OrderedHashMap>(); | 
 | template Node* CodeStubAssembler::AllocateOrderedHashTable<OrderedHashSet>(); | 
 |  | 
 | template <typename CollectionType> | 
 | TNode<CollectionType> CodeStubAssembler::AllocateSmallOrderedHashTable( | 
 |     TNode<IntPtrT> capacity) { | 
 |   CSA_ASSERT(this, WordIsPowerOfTwo(capacity)); | 
 |   CSA_ASSERT(this, IntPtrLessThan( | 
 |                        capacity, IntPtrConstant(CollectionType::kMaxCapacity))); | 
 |  | 
 |   TNode<IntPtrT> data_table_start_offset = | 
 |       IntPtrConstant(CollectionType::kDataTableStartOffset); | 
 |  | 
 |   TNode<IntPtrT> data_table_size = IntPtrMul( | 
 |       capacity, IntPtrConstant(CollectionType::kEntrySize * kPointerSize)); | 
 |  | 
 |   TNode<Int32T> hash_table_size = | 
 |       Int32Div(TruncateIntPtrToInt32(capacity), | 
 |                Int32Constant(CollectionType::kLoadFactor)); | 
 |  | 
 |   TNode<IntPtrT> hash_table_start_offset = | 
 |       IntPtrAdd(data_table_start_offset, data_table_size); | 
 |  | 
 |   TNode<IntPtrT> hash_table_and_chain_table_size = | 
 |       IntPtrAdd(ChangeInt32ToIntPtr(hash_table_size), capacity); | 
 |  | 
 |   TNode<IntPtrT> total_size = | 
 |       IntPtrAdd(hash_table_start_offset, hash_table_and_chain_table_size); | 
 |  | 
 |   TNode<IntPtrT> total_size_word_aligned = | 
 |       IntPtrAdd(total_size, IntPtrConstant(kPointerSize - 1)); | 
 |   total_size_word_aligned = ChangeInt32ToIntPtr( | 
 |       Int32Div(TruncateIntPtrToInt32(total_size_word_aligned), | 
 |                Int32Constant(kPointerSize))); | 
 |   total_size_word_aligned = | 
 |       UncheckedCast<IntPtrT>(TimesPointerSize(total_size_word_aligned)); | 
 |  | 
 |   // Allocate the table and add the proper map. | 
 |   TNode<Map> small_ordered_hash_map = | 
 |       CAST(LoadRoot(CollectionType::GetMapRootIndex())); | 
 |   TNode<Object> table_obj = CAST(AllocateInNewSpace(total_size_word_aligned)); | 
 |   StoreMapNoWriteBarrier(table_obj, small_ordered_hash_map); | 
 |   TNode<CollectionType> table = UncheckedCast<CollectionType>(table_obj); | 
 |  | 
 |   // Initialize the SmallOrderedHashTable fields. | 
 |   StoreObjectByteNoWriteBarrier( | 
 |       table, CollectionType::kNumberOfBucketsOffset, | 
 |       Word32And(Int32Constant(0xFF), hash_table_size)); | 
 |   StoreObjectByteNoWriteBarrier(table, CollectionType::kNumberOfElementsOffset, | 
 |                                 Int32Constant(0)); | 
 |   StoreObjectByteNoWriteBarrier( | 
 |       table, CollectionType::kNumberOfDeletedElementsOffset, Int32Constant(0)); | 
 |  | 
 |   TNode<IntPtrT> table_address = | 
 |       IntPtrSub(BitcastTaggedToWord(table), IntPtrConstant(kHeapObjectTag)); | 
 |   TNode<IntPtrT> hash_table_start_address = | 
 |       IntPtrAdd(table_address, hash_table_start_offset); | 
 |  | 
 |   // Initialize the HashTable part. | 
 |   Node* memset = ExternalConstant(ExternalReference::libc_memset_function()); | 
 |   CallCFunction3(MachineType::AnyTagged(), MachineType::Pointer(), | 
 |                  MachineType::IntPtr(), MachineType::UintPtr(), memset, | 
 |                  hash_table_start_address, IntPtrConstant(0xFF), | 
 |                  hash_table_and_chain_table_size); | 
 |  | 
 |   // Initialize the DataTable part. | 
 |   TNode<HeapObject> filler = TheHoleConstant(); | 
 |   TNode<WordT> data_table_start_address = | 
 |       IntPtrAdd(table_address, data_table_start_offset); | 
 |   TNode<WordT> data_table_end_address = | 
 |       IntPtrAdd(data_table_start_address, data_table_size); | 
 |   StoreFieldsNoWriteBarrier(data_table_start_address, data_table_end_address, | 
 |                             filler); | 
 |  | 
 |   return table; | 
 | } | 
 |  | 
 | template TNode<SmallOrderedHashMap> | 
 | CodeStubAssembler::AllocateSmallOrderedHashTable<SmallOrderedHashMap>( | 
 |     TNode<IntPtrT> capacity); | 
 | template TNode<SmallOrderedHashSet> | 
 | CodeStubAssembler::AllocateSmallOrderedHashTable<SmallOrderedHashSet>( | 
 |     TNode<IntPtrT> capacity); | 
 |  | 
 | template <typename CollectionType> | 
 | void CodeStubAssembler::FindOrderedHashTableEntry( | 
 |     Node* table, Node* hash, | 
 |     const std::function<void(Node*, Label*, Label*)>& key_compare, | 
 |     Variable* entry_start_position, Label* entry_found, Label* not_found) { | 
 |   // Get the index of the bucket. | 
 |   Node* const number_of_buckets = SmiUntag(CAST(LoadFixedArrayElement( | 
 |       CAST(table), CollectionType::kNumberOfBucketsIndex))); | 
 |   Node* const bucket = | 
 |       WordAnd(hash, IntPtrSub(number_of_buckets, IntPtrConstant(1))); | 
 |   Node* const first_entry = SmiUntag(CAST(LoadFixedArrayElement( | 
 |       CAST(table), bucket, | 
 |       CollectionType::kHashTableStartIndex * kPointerSize))); | 
 |  | 
 |   // Walk the bucket chain. | 
 |   Node* entry_start; | 
 |   Label if_key_found(this); | 
 |   { | 
 |     VARIABLE(var_entry, MachineType::PointerRepresentation(), first_entry); | 
 |     Label loop(this, {&var_entry, entry_start_position}), | 
 |         continue_next_entry(this); | 
 |     Goto(&loop); | 
 |     BIND(&loop); | 
 |  | 
 |     // If the entry index is the not-found sentinel, we are done. | 
 |     GotoIf( | 
 |         WordEqual(var_entry.value(), IntPtrConstant(CollectionType::kNotFound)), | 
 |         not_found); | 
 |  | 
 |     // Make sure the entry index is within range. | 
 |     CSA_ASSERT( | 
 |         this, UintPtrLessThan( | 
 |                   var_entry.value(), | 
 |                   SmiUntag(SmiAdd( | 
 |                       CAST(LoadFixedArrayElement( | 
 |                           CAST(table), CollectionType::kNumberOfElementsIndex)), | 
 |                       CAST(LoadFixedArrayElement( | 
 |                           CAST(table), | 
 |                           CollectionType::kNumberOfDeletedElementsIndex)))))); | 
 |  | 
 |     // Compute the index of the entry relative to kHashTableStartIndex. | 
 |     entry_start = | 
 |         IntPtrAdd(IntPtrMul(var_entry.value(), | 
 |                             IntPtrConstant(CollectionType::kEntrySize)), | 
 |                   number_of_buckets); | 
 |  | 
 |     // Load the key from the entry. | 
 |     Node* const candidate_key = LoadFixedArrayElement( | 
 |         CAST(table), entry_start, | 
 |         CollectionType::kHashTableStartIndex * kPointerSize); | 
 |  | 
 |     key_compare(candidate_key, &if_key_found, &continue_next_entry); | 
 |  | 
 |     BIND(&continue_next_entry); | 
 |     // Load the index of the next entry in the bucket chain. | 
 |     var_entry.Bind(SmiUntag(CAST(LoadFixedArrayElement( | 
 |         CAST(table), entry_start, | 
 |         (CollectionType::kHashTableStartIndex + CollectionType::kChainOffset) * | 
 |             kPointerSize)))); | 
 |  | 
 |     Goto(&loop); | 
 |   } | 
 |  | 
 |   BIND(&if_key_found); | 
 |   entry_start_position->Bind(entry_start); | 
 |   Goto(entry_found); | 
 | } | 
 |  | 
 | template void CodeStubAssembler::FindOrderedHashTableEntry<OrderedHashMap>( | 
 |     Node* table, Node* hash, | 
 |     const std::function<void(Node*, Label*, Label*)>& key_compare, | 
 |     Variable* entry_start_position, Label* entry_found, Label* not_found); | 
 | template void CodeStubAssembler::FindOrderedHashTableEntry<OrderedHashSet>( | 
 |     Node* table, Node* hash, | 
 |     const std::function<void(Node*, Label*, Label*)>& key_compare, | 
 |     Variable* entry_start_position, Label* entry_found, Label* not_found); | 
 |  | 
 | Node* CodeStubAssembler::AllocateStruct(Node* map, AllocationFlags flags) { | 
 |   Comment("AllocateStruct"); | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   Node* size = TimesPointerSize(LoadMapInstanceSizeInWords(map)); | 
 |   Node* object = Allocate(size, flags); | 
 |   StoreMapNoWriteBarrier(object, map); | 
 |   InitializeStructBody(object, map, size, Struct::kHeaderSize); | 
 |   return object; | 
 | } | 
 |  | 
 | void CodeStubAssembler::InitializeStructBody(Node* object, Node* map, | 
 |                                              Node* size, int start_offset) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   Comment("InitializeStructBody"); | 
 |   Node* filler = UndefinedConstant(); | 
 |   // Calculate the untagged field addresses. | 
 |   object = BitcastTaggedToWord(object); | 
 |   Node* start_address = | 
 |       IntPtrAdd(object, IntPtrConstant(start_offset - kHeapObjectTag)); | 
 |   Node* end_address = | 
 |       IntPtrSub(IntPtrAdd(object, size), IntPtrConstant(kHeapObjectTag)); | 
 |   StoreFieldsNoWriteBarrier(start_address, end_address, filler); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateJSObjectFromMap( | 
 |     Node* map, Node* properties, Node* elements, AllocationFlags flags, | 
 |     SlackTrackingMode slack_tracking_mode) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   CSA_ASSERT(this, Word32BinaryNot(IsJSFunctionMap(map))); | 
 |   CSA_ASSERT(this, Word32BinaryNot(InstanceTypeEqual(LoadMapInstanceType(map), | 
 |                                                      JS_GLOBAL_OBJECT_TYPE))); | 
 |   Node* instance_size = TimesPointerSize(LoadMapInstanceSizeInWords(map)); | 
 |   Node* object = AllocateInNewSpace(instance_size, flags); | 
 |   StoreMapNoWriteBarrier(object, map); | 
 |   InitializeJSObjectFromMap(object, map, instance_size, properties, elements, | 
 |                             slack_tracking_mode); | 
 |   return object; | 
 | } | 
 |  | 
 | void CodeStubAssembler::InitializeJSObjectFromMap( | 
 |     Node* object, Node* map, Node* instance_size, Node* properties, | 
 |     Node* elements, SlackTrackingMode slack_tracking_mode) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   // This helper assumes that the object is in new-space, as guarded by the | 
 |   // check in AllocatedJSObjectFromMap. | 
 |   if (properties == nullptr) { | 
 |     CSA_ASSERT(this, Word32BinaryNot(IsDictionaryMap((map)))); | 
 |     StoreObjectFieldRoot(object, JSObject::kPropertiesOrHashOffset, | 
 |                          RootIndex::kEmptyFixedArray); | 
 |   } else { | 
 |     CSA_ASSERT(this, Word32Or(Word32Or(IsPropertyArray(properties), | 
 |                                        IsNameDictionary(properties)), | 
 |                               IsEmptyFixedArray(properties))); | 
 |     StoreObjectFieldNoWriteBarrier(object, JSObject::kPropertiesOrHashOffset, | 
 |                                    properties); | 
 |   } | 
 |   if (elements == nullptr) { | 
 |     StoreObjectFieldRoot(object, JSObject::kElementsOffset, | 
 |                          RootIndex::kEmptyFixedArray); | 
 |   } else { | 
 |     CSA_ASSERT(this, IsFixedArray(elements)); | 
 |     StoreObjectFieldNoWriteBarrier(object, JSObject::kElementsOffset, elements); | 
 |   } | 
 |   if (slack_tracking_mode == kNoSlackTracking) { | 
 |     InitializeJSObjectBodyNoSlackTracking(object, map, instance_size); | 
 |   } else { | 
 |     DCHECK_EQ(slack_tracking_mode, kWithSlackTracking); | 
 |     InitializeJSObjectBodyWithSlackTracking(object, map, instance_size); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::InitializeJSObjectBodyNoSlackTracking( | 
 |     Node* object, Node* map, Node* instance_size, int start_offset) { | 
 |   STATIC_ASSERT(Map::kNoSlackTracking == 0); | 
 |   CSA_ASSERT( | 
 |       this, IsClearWord32<Map::ConstructionCounterBits>(LoadMapBitField3(map))); | 
 |   InitializeFieldsWithRoot(object, IntPtrConstant(start_offset), instance_size, | 
 |                            RootIndex::kUndefinedValue); | 
 | } | 
 |  | 
 | void CodeStubAssembler::InitializeJSObjectBodyWithSlackTracking( | 
 |     Node* object, Node* map, Node* instance_size) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   Comment("InitializeJSObjectBodyNoSlackTracking"); | 
 |  | 
 |   // Perform in-object slack tracking if requested. | 
 |   int start_offset = JSObject::kHeaderSize; | 
 |   Node* bit_field3 = LoadMapBitField3(map); | 
 |   Label end(this), slack_tracking(this), complete(this, Label::kDeferred); | 
 |   STATIC_ASSERT(Map::kNoSlackTracking == 0); | 
 |   GotoIf(IsSetWord32<Map::ConstructionCounterBits>(bit_field3), | 
 |          &slack_tracking); | 
 |   Comment("No slack tracking"); | 
 |   InitializeJSObjectBodyNoSlackTracking(object, map, instance_size); | 
 |   Goto(&end); | 
 |  | 
 |   BIND(&slack_tracking); | 
 |   { | 
 |     Comment("Decrease construction counter"); | 
 |     // Slack tracking is only done on initial maps. | 
 |     CSA_ASSERT(this, IsUndefined(LoadMapBackPointer(map))); | 
 |     STATIC_ASSERT(Map::ConstructionCounterBits::kNext == 32); | 
 |     Node* new_bit_field3 = Int32Sub( | 
 |         bit_field3, Int32Constant(1 << Map::ConstructionCounterBits::kShift)); | 
 |     StoreObjectFieldNoWriteBarrier(map, Map::kBitField3Offset, new_bit_field3, | 
 |                                    MachineRepresentation::kWord32); | 
 |     STATIC_ASSERT(Map::kSlackTrackingCounterEnd == 1); | 
 |  | 
 |     // The object still has in-object slack therefore the |unsed_or_unused| | 
 |     // field contain the "used" value. | 
 |     Node* used_size = TimesPointerSize(ChangeUint32ToWord( | 
 |         LoadObjectField(map, Map::kUsedOrUnusedInstanceSizeInWordsOffset, | 
 |                         MachineType::Uint8()))); | 
 |  | 
 |     Comment("iInitialize filler fields"); | 
 |     InitializeFieldsWithRoot(object, used_size, instance_size, | 
 |                              RootIndex::kOnePointerFillerMap); | 
 |  | 
 |     Comment("Initialize undefined fields"); | 
 |     InitializeFieldsWithRoot(object, IntPtrConstant(start_offset), used_size, | 
 |                              RootIndex::kUndefinedValue); | 
 |  | 
 |     STATIC_ASSERT(Map::kNoSlackTracking == 0); | 
 |     GotoIf(IsClearWord32<Map::ConstructionCounterBits>(new_bit_field3), | 
 |            &complete); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   // Finalize the instance size. | 
 |   BIND(&complete); | 
 |   { | 
 |     // ComplextInobjectSlackTracking doesn't allocate and thus doesn't need a | 
 |     // context. | 
 |     CallRuntime(Runtime::kCompleteInobjectSlackTrackingForMap, | 
 |                 NoContextConstant(), map); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreFieldsNoWriteBarrier(Node* start_address, | 
 |                                                   Node* end_address, | 
 |                                                   Node* value) { | 
 |   Comment("StoreFieldsNoWriteBarrier"); | 
 |   CSA_ASSERT(this, WordIsWordAligned(start_address)); | 
 |   CSA_ASSERT(this, WordIsWordAligned(end_address)); | 
 |   BuildFastLoop(start_address, end_address, | 
 |                 [this, value](Node* current) { | 
 |                   StoreNoWriteBarrier(MachineRepresentation::kTagged, current, | 
 |                                       value); | 
 |                 }, | 
 |                 kPointerSize, INTPTR_PARAMETERS, IndexAdvanceMode::kPost); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateUninitializedJSArrayWithoutElements( | 
 |     Node* array_map, Node* length, Node* allocation_site) { | 
 |   Comment("begin allocation of JSArray without elements"); | 
 |   CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); | 
 |   CSA_SLOW_ASSERT(this, IsMap(array_map)); | 
 |   int base_size = JSArray::kSize; | 
 |   if (allocation_site != nullptr) { | 
 |     base_size += AllocationMemento::kSize; | 
 |   } | 
 |  | 
 |   Node* size = IntPtrConstant(base_size); | 
 |   Node* array = | 
 |       AllocateUninitializedJSArray(array_map, length, allocation_site, size); | 
 |   return array; | 
 | } | 
 |  | 
 | std::pair<Node*, Node*> | 
 | CodeStubAssembler::AllocateUninitializedJSArrayWithElements( | 
 |     ElementsKind kind, Node* array_map, Node* length, Node* allocation_site, | 
 |     Node* capacity, ParameterMode capacity_mode) { | 
 |   Comment("begin allocation of JSArray with elements"); | 
 |   CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); | 
 |   CSA_SLOW_ASSERT(this, IsMap(array_map)); | 
 |   int base_size = JSArray::kSize; | 
 |  | 
 |   if (allocation_site != nullptr) { | 
 |     base_size += AllocationMemento::kSize; | 
 |   } | 
 |  | 
 |   int elements_offset = base_size; | 
 |  | 
 |   // Compute space for elements | 
 |   base_size += FixedArray::kHeaderSize; | 
 |   Node* size = ElementOffsetFromIndex(capacity, kind, capacity_mode, base_size); | 
 |  | 
 |   Node* array = | 
 |       AllocateUninitializedJSArray(array_map, length, allocation_site, size); | 
 |  | 
 |   Node* elements = InnerAllocate(array, elements_offset); | 
 |   StoreObjectFieldNoWriteBarrier(array, JSObject::kElementsOffset, elements); | 
 |   // Setup elements object. | 
 |   STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize); | 
 |   RootIndex elements_map_index = IsDoubleElementsKind(kind) | 
 |                                      ? RootIndex::kFixedDoubleArrayMap | 
 |                                      : RootIndex::kFixedArrayMap; | 
 |   DCHECK(RootsTable::IsImmortalImmovable(elements_map_index)); | 
 |   StoreMapNoWriteBarrier(elements, elements_map_index); | 
 |   TNode<Smi> capacity_smi = ParameterToTagged(capacity, capacity_mode); | 
 |   CSA_ASSERT(this, SmiGreaterThan(capacity_smi, SmiConstant(0))); | 
 |   StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, | 
 |                                  capacity_smi); | 
 |   return {array, elements}; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateUninitializedJSArray(Node* array_map, | 
 |                                                       Node* length, | 
 |                                                       Node* allocation_site, | 
 |                                                       Node* size_in_bytes) { | 
 |   CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); | 
 |   CSA_SLOW_ASSERT(this, IsMap(array_map)); | 
 |  | 
 |   // Allocate space for the JSArray and the elements FixedArray in one go. | 
 |   Node* array = AllocateInNewSpace(size_in_bytes); | 
 |  | 
 |   Comment("write JSArray headers"); | 
 |   StoreMapNoWriteBarrier(array, array_map); | 
 |  | 
 |   StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); | 
 |  | 
 |   StoreObjectFieldRoot(array, JSArray::kPropertiesOrHashOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |  | 
 |   if (allocation_site != nullptr) { | 
 |     InitializeAllocationMemento(array, IntPtrConstant(JSArray::kSize), | 
 |                                 allocation_site); | 
 |   } | 
 |   return array; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateJSArray(ElementsKind kind, Node* array_map, | 
 |                                          Node* capacity, Node* length, | 
 |                                          Node* allocation_site, | 
 |                                          ParameterMode capacity_mode) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(array_map)); | 
 |   CSA_SLOW_ASSERT(this, TaggedIsPositiveSmi(length)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, capacity_mode)); | 
 |  | 
 |   int capacity_as_constant; | 
 |   Node *array = nullptr, *elements = nullptr; | 
 |   if (IsIntPtrOrSmiConstantZero(capacity, capacity_mode)) { | 
 |     // Array is empty. Use the shared empty fixed array instead of allocating a | 
 |     // new one. | 
 |     array = AllocateUninitializedJSArrayWithoutElements(array_map, length, | 
 |                                                         allocation_site); | 
 |     StoreObjectFieldRoot(array, JSArray::kElementsOffset, | 
 |                          RootIndex::kEmptyFixedArray); | 
 |   } else if (TryGetIntPtrOrSmiConstantValue(capacity, &capacity_as_constant, | 
 |                                             capacity_mode) && | 
 |              capacity_as_constant > 0) { | 
 |     // Allocate both array and elements object, and initialize the JSArray. | 
 |     std::tie(array, elements) = AllocateUninitializedJSArrayWithElements( | 
 |         kind, array_map, length, allocation_site, capacity, capacity_mode); | 
 |     // Fill in the elements with holes. | 
 |     FillFixedArrayWithValue(kind, elements, | 
 |                             IntPtrOrSmiConstant(0, capacity_mode), capacity, | 
 |                             RootIndex::kTheHoleValue, capacity_mode); | 
 |   } else { | 
 |     Label out(this), empty(this), nonempty(this); | 
 |     VARIABLE(var_array, MachineRepresentation::kTagged); | 
 |  | 
 |     Branch(SmiEqual(ParameterToTagged(capacity, capacity_mode), SmiConstant(0)), | 
 |            &empty, &nonempty); | 
 |  | 
 |     BIND(&empty); | 
 |     { | 
 |       // Array is empty. Use the shared empty fixed array instead of allocating | 
 |       // a new one. | 
 |       var_array.Bind(AllocateUninitializedJSArrayWithoutElements( | 
 |           array_map, length, allocation_site)); | 
 |       StoreObjectFieldRoot(var_array.value(), JSArray::kElementsOffset, | 
 |                            RootIndex::kEmptyFixedArray); | 
 |       Goto(&out); | 
 |     } | 
 |  | 
 |     BIND(&nonempty); | 
 |     { | 
 |       // Allocate both array and elements object, and initialize the JSArray. | 
 |       Node* array; | 
 |       std::tie(array, elements) = AllocateUninitializedJSArrayWithElements( | 
 |           kind, array_map, length, allocation_site, capacity, capacity_mode); | 
 |       var_array.Bind(array); | 
 |       // Fill in the elements with holes. | 
 |       FillFixedArrayWithValue(kind, elements, | 
 |                               IntPtrOrSmiConstant(0, capacity_mode), capacity, | 
 |                               RootIndex::kTheHoleValue, capacity_mode); | 
 |       Goto(&out); | 
 |     } | 
 |  | 
 |     BIND(&out); | 
 |     array = var_array.value(); | 
 |   } | 
 |  | 
 |   return array; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::ExtractFastJSArray(Node* context, Node* array, | 
 |                                             Node* begin, Node* count, | 
 |                                             ParameterMode mode, Node* capacity, | 
 |                                             Node* allocation_site) { | 
 |   Node* original_array_map = LoadMap(array); | 
 |   Node* elements_kind = LoadMapElementsKind(original_array_map); | 
 |  | 
 |   // Use the cannonical map for the Array's ElementsKind | 
 |   Node* native_context = LoadNativeContext(context); | 
 |   Node* array_map = LoadJSArrayElementsMap(elements_kind, native_context); | 
 |  | 
 |   Node* new_elements = | 
 |       ExtractFixedArray(LoadElements(array), begin, count, capacity, | 
 |                         ExtractFixedArrayFlag::kAllFixedArrays, mode); | 
 |  | 
 |   Node* result = AllocateUninitializedJSArrayWithoutElements( | 
 |       array_map, ParameterToTagged(count, mode), allocation_site); | 
 |   StoreObjectField(result, JSObject::kElementsOffset, new_elements); | 
 |   return result; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::CloneFastJSArray(Node* context, Node* array, | 
 |                                           ParameterMode mode, | 
 |                                           Node* allocation_site, | 
 |                                           HoleConversionMode convert_holes) { | 
 |   // TODO(dhai): we should be able to assert IsFastJSArray(array) here, but this | 
 |   // function is also used to copy boilerplates even when the no-elements | 
 |   // protector is invalid. This function should be renamed to reflect its uses. | 
 |   CSA_ASSERT(this, IsJSArray(array)); | 
 |  | 
 |   Node* length = LoadJSArrayLength(array); | 
 |   Node* new_elements = nullptr; | 
 |   VARIABLE(var_new_elements, MachineRepresentation::kTagged); | 
 |   TVARIABLE(Int32T, var_elements_kind, LoadMapElementsKind(LoadMap(array))); | 
 |  | 
 |   Label allocate_jsarray(this), holey_extract(this); | 
 |  | 
 |   bool need_conversion = | 
 |       convert_holes == HoleConversionMode::kConvertToUndefined; | 
 |   if (need_conversion) { | 
 |     // We need to take care of holes, if the array is of holey elements kind. | 
 |     GotoIf(IsHoleyFastElementsKind(var_elements_kind.value()), &holey_extract); | 
 |   } | 
 |  | 
 |   // Simple extraction that preserves holes. | 
 |   new_elements = ExtractFixedArray( | 
 |       LoadElements(array), IntPtrOrSmiConstant(0, mode), | 
 |       TaggedToParameter(length, mode), nullptr, | 
 |       ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW, mode); | 
 |   var_new_elements.Bind(new_elements); | 
 |   Goto(&allocate_jsarray); | 
 |  | 
 |   if (need_conversion) { | 
 |     BIND(&holey_extract); | 
 |     // Convert holes to undefined. | 
 |     TVARIABLE(BoolT, var_holes_converted, Int32FalseConstant()); | 
 |     // Copy |array|'s elements store. The copy will be compatible with the | 
 |     // original elements kind unless there are holes in the source. Any holes | 
 |     // get converted to undefined, hence in that case the copy is compatible | 
 |     // only with PACKED_ELEMENTS and HOLEY_ELEMENTS, and we will choose | 
 |     // PACKED_ELEMENTS. Also, if we want to replace holes, we must not use | 
 |     // ExtractFixedArrayFlag::kDontCopyCOW. | 
 |     new_elements = ExtractFixedArray( | 
 |         LoadElements(array), IntPtrOrSmiConstant(0, mode), | 
 |         TaggedToParameter(length, mode), nullptr, | 
 |         ExtractFixedArrayFlag::kAllFixedArrays, mode, &var_holes_converted); | 
 |     var_new_elements.Bind(new_elements); | 
 |     // If the array type didn't change, use the original elements kind. | 
 |     GotoIfNot(var_holes_converted.value(), &allocate_jsarray); | 
 |     // Otherwise use PACKED_ELEMENTS for the target's elements kind. | 
 |     var_elements_kind = Int32Constant(PACKED_ELEMENTS); | 
 |     Goto(&allocate_jsarray); | 
 |   } | 
 |  | 
 |   BIND(&allocate_jsarray); | 
 |   // Use the cannonical map for the chosen elements kind. | 
 |   Node* native_context = LoadNativeContext(context); | 
 |   Node* array_map = | 
 |       LoadJSArrayElementsMap(var_elements_kind.value(), native_context); | 
 |  | 
 |   Node* result = AllocateUninitializedJSArrayWithoutElements(array_map, length, | 
 |                                                              allocation_site); | 
 |   StoreObjectField(result, JSObject::kElementsOffset, var_new_elements.value()); | 
 |   return result; | 
 | } | 
 |  | 
 | TNode<FixedArrayBase> CodeStubAssembler::AllocateFixedArray( | 
 |     ElementsKind kind, Node* capacity, ParameterMode mode, | 
 |     AllocationFlags flags, SloppyTNode<Map> fixed_array_map) { | 
 |   Comment("AllocateFixedArray"); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); | 
 |   CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity, | 
 |                                           IntPtrOrSmiConstant(0, mode), mode)); | 
 |   TNode<IntPtrT> total_size = GetFixedArrayAllocationSize(capacity, kind, mode); | 
 |  | 
 |   if (IsDoubleElementsKind(kind)) flags |= kDoubleAlignment; | 
 |   // Allocate both array and elements object, and initialize the JSArray. | 
 |   Node* array = Allocate(total_size, flags); | 
 |   if (fixed_array_map != nullptr) { | 
 |     // Conservatively only skip the write barrier if there are no allocation | 
 |     // flags, this ensures that the object hasn't ended up in LOS. Note that the | 
 |     // fixed array map is currently always immortal and technically wouldn't | 
 |     // need the write barrier even in LOS, but it's better to not take chances | 
 |     // in case this invariant changes later, since it's difficult to enforce | 
 |     // locally here. | 
 |     if (flags == CodeStubAssembler::kNone) { | 
 |       StoreMapNoWriteBarrier(array, fixed_array_map); | 
 |     } else { | 
 |       StoreMap(array, fixed_array_map); | 
 |     } | 
 |   } else { | 
 |     RootIndex map_index = IsDoubleElementsKind(kind) | 
 |                               ? RootIndex::kFixedDoubleArrayMap | 
 |                               : RootIndex::kFixedArrayMap; | 
 |     DCHECK(RootsTable::IsImmortalImmovable(map_index)); | 
 |     StoreMapNoWriteBarrier(array, map_index); | 
 |   } | 
 |   StoreObjectFieldNoWriteBarrier(array, FixedArray::kLengthOffset, | 
 |                                  ParameterToTagged(capacity, mode)); | 
 |   return UncheckedCast<FixedArray>(array); | 
 | } | 
 |  | 
 | TNode<FixedArray> CodeStubAssembler::ExtractToFixedArray( | 
 |     Node* source, Node* first, Node* count, Node* capacity, Node* source_map, | 
 |     ElementsKind from_kind, AllocationFlags allocation_flags, | 
 |     ExtractFixedArrayFlags extract_flags, ParameterMode parameter_mode, | 
 |     HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted) { | 
 |   DCHECK_NE(first, nullptr); | 
 |   DCHECK_NE(count, nullptr); | 
 |   DCHECK_NE(capacity, nullptr); | 
 |   DCHECK(extract_flags & ExtractFixedArrayFlag::kFixedArrays); | 
 |   CSA_ASSERT(this, | 
 |              WordNotEqual(IntPtrOrSmiConstant(0, parameter_mode), capacity)); | 
 |   CSA_ASSERT(this, WordEqual(source_map, LoadMap(source))); | 
 |  | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |   VARIABLE(var_target_map, MachineRepresentation::kTagged, source_map); | 
 |  | 
 |   Label done(this, {&var_result}), is_cow(this), | 
 |       new_space_check(this, {&var_target_map}); | 
 |  | 
 |   // If source_map is either FixedDoubleArrayMap, or FixedCOWArrayMap but | 
 |   // we can't just use COW, use FixedArrayMap as the target map. Otherwise, use | 
 |   // source_map as the target map. | 
 |   if (IsDoubleElementsKind(from_kind)) { | 
 |     CSA_ASSERT(this, IsFixedDoubleArrayMap(source_map)); | 
 |     var_target_map.Bind(LoadRoot(RootIndex::kFixedArrayMap)); | 
 |     Goto(&new_space_check); | 
 |   } else { | 
 |     CSA_ASSERT(this, Word32BinaryNot(IsFixedDoubleArrayMap(source_map))); | 
 |     Branch(WordEqual(var_target_map.value(), | 
 |                      LoadRoot(RootIndex::kFixedCOWArrayMap)), | 
 |            &is_cow, &new_space_check); | 
 |  | 
 |     BIND(&is_cow); | 
 |     { | 
 |       // |source| is a COW array, so we don't actually need to allocate a new | 
 |       // array unless: | 
 |       // 1) |extract_flags| forces us to, or | 
 |       // 2) we're asked to extract only part of the |source| (|first| != 0). | 
 |       if (extract_flags & ExtractFixedArrayFlag::kDontCopyCOW) { | 
 |         Branch(WordNotEqual(IntPtrOrSmiConstant(0, parameter_mode), first), | 
 |                &new_space_check, [&] { | 
 |                  var_result.Bind(source); | 
 |                  Goto(&done); | 
 |                }); | 
 |       } else { | 
 |         var_target_map.Bind(LoadRoot(RootIndex::kFixedArrayMap)); | 
 |         Goto(&new_space_check); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&new_space_check); | 
 |   { | 
 |     bool handle_old_space = true; | 
 |     if (extract_flags & ExtractFixedArrayFlag::kNewSpaceAllocationOnly) { | 
 |       handle_old_space = false; | 
 |       CSA_ASSERT(this, Word32BinaryNot(FixedArraySizeDoesntFitInNewSpace( | 
 |                            count, FixedArray::kHeaderSize, parameter_mode))); | 
 |     } else { | 
 |       int constant_count; | 
 |       handle_old_space = | 
 |           !TryGetIntPtrOrSmiConstantValue(count, &constant_count, | 
 |                                           parameter_mode) || | 
 |           (constant_count > | 
 |            FixedArray::GetMaxLengthForNewSpaceAllocation(PACKED_ELEMENTS)); | 
 |     } | 
 |  | 
 |     Label old_space(this, Label::kDeferred); | 
 |     if (handle_old_space) { | 
 |       GotoIfFixedArraySizeDoesntFitInNewSpace( | 
 |           capacity, &old_space, FixedArray::kHeaderSize, parameter_mode); | 
 |     } | 
 |  | 
 |     Comment("Copy FixedArray new space"); | 
 |     // We use PACKED_ELEMENTS to tell AllocateFixedArray and | 
 |     // CopyFixedArrayElements that we want a FixedArray. | 
 |     const ElementsKind to_kind = PACKED_ELEMENTS; | 
 |     TNode<FixedArrayBase> to_elements = | 
 |         AllocateFixedArray(to_kind, capacity, parameter_mode, | 
 |                            AllocationFlag::kNone, var_target_map.value()); | 
 |     var_result.Bind(to_elements); | 
 |  | 
 |     if (convert_holes == HoleConversionMode::kDontConvert && | 
 |         !IsDoubleElementsKind(from_kind)) { | 
 |       // We can use CopyElements (memcpy) because we don't need to replace or | 
 |       // convert any values. Since {to_elements} is in new-space, CopyElements | 
 |       // will efficiently use memcpy. | 
 |       FillFixedArrayWithValue(to_kind, to_elements, count, capacity, | 
 |                               RootIndex::kTheHoleValue, parameter_mode); | 
 |       CopyElements(to_kind, to_elements, IntPtrConstant(0), CAST(source), | 
 |                    ParameterToIntPtr(first, parameter_mode), | 
 |                    ParameterToIntPtr(count, parameter_mode)); | 
 |     } else { | 
 |       CopyFixedArrayElements(from_kind, source, to_kind, to_elements, first, | 
 |                              count, capacity, SKIP_WRITE_BARRIER, | 
 |                              parameter_mode, convert_holes, | 
 |                              var_holes_converted); | 
 |     } | 
 |     Goto(&done); | 
 |  | 
 |     if (handle_old_space) { | 
 |       BIND(&old_space); | 
 |       { | 
 |         Comment("Copy FixedArray old space"); | 
 |  | 
 |         to_elements = | 
 |             AllocateFixedArray(to_kind, capacity, parameter_mode, | 
 |                                allocation_flags, var_target_map.value()); | 
 |         var_result.Bind(to_elements); | 
 |         CopyFixedArrayElements(from_kind, source, to_kind, to_elements, first, | 
 |                                count, capacity, UPDATE_WRITE_BARRIER, | 
 |                                parameter_mode, convert_holes, | 
 |                                var_holes_converted); | 
 |         Goto(&done); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return UncheckedCast<FixedArray>(var_result.value()); | 
 | } | 
 |  | 
 | TNode<FixedArrayBase> CodeStubAssembler::ExtractFixedDoubleArrayFillingHoles( | 
 |     Node* from_array, Node* first, Node* count, Node* capacity, | 
 |     Node* fixed_array_map, TVariable<BoolT>* var_holes_converted, | 
 |     AllocationFlags allocation_flags, ExtractFixedArrayFlags extract_flags, | 
 |     ParameterMode mode) { | 
 |   DCHECK_NE(first, nullptr); | 
 |   DCHECK_NE(count, nullptr); | 
 |   DCHECK_NE(capacity, nullptr); | 
 |   DCHECK_NE(var_holes_converted, nullptr); | 
 |   CSA_ASSERT(this, IsFixedDoubleArrayMap(fixed_array_map)); | 
 |  | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |   const ElementsKind kind = PACKED_DOUBLE_ELEMENTS; | 
 |   Node* to_elements = AllocateFixedArray(kind, capacity, mode, allocation_flags, | 
 |                                          fixed_array_map); | 
 |   var_result.Bind(to_elements); | 
 |   // We first try to copy the FixedDoubleArray to a new FixedDoubleArray. | 
 |   // |var_holes_converted| is set to False preliminarily. | 
 |   *var_holes_converted = Int32FalseConstant(); | 
 |  | 
 |   // The construction of the loop and the offsets for double elements is | 
 |   // extracted from CopyFixedArrayElements. | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(count, mode)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); | 
 |   CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(from_array, kind)); | 
 |   STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); | 
 |  | 
 |   Comment("[ ExtractFixedDoubleArrayFillingHoles"); | 
 |  | 
 |   // This copy can trigger GC, so we pre-initialize the array with holes. | 
 |   FillFixedArrayWithValue(kind, to_elements, IntPtrOrSmiConstant(0, mode), | 
 |                           capacity, RootIndex::kTheHoleValue, mode); | 
 |  | 
 |   const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag; | 
 |   Node* first_from_element_offset = | 
 |       ElementOffsetFromIndex(first, kind, mode, 0); | 
 |   Node* limit_offset = IntPtrAdd(first_from_element_offset, | 
 |                                  IntPtrConstant(first_element_offset)); | 
 |   VARIABLE(var_from_offset, MachineType::PointerRepresentation(), | 
 |            ElementOffsetFromIndex(IntPtrOrSmiAdd(first, count, mode), kind, | 
 |                                   mode, first_element_offset)); | 
 |  | 
 |   Label decrement(this, {&var_from_offset}), done(this); | 
 |   Node* to_array_adjusted = | 
 |       IntPtrSub(BitcastTaggedToWord(to_elements), first_from_element_offset); | 
 |  | 
 |   Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement); | 
 |  | 
 |   BIND(&decrement); | 
 |   { | 
 |     Node* from_offset = | 
 |         IntPtrSub(var_from_offset.value(), IntPtrConstant(kDoubleSize)); | 
 |     var_from_offset.Bind(from_offset); | 
 |  | 
 |     Node* to_offset = from_offset; | 
 |  | 
 |     Label if_hole(this); | 
 |  | 
 |     Node* value = LoadElementAndPrepareForStore( | 
 |         from_array, var_from_offset.value(), kind, kind, &if_hole); | 
 |  | 
 |     StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array_adjusted, | 
 |                         to_offset, value); | 
 |  | 
 |     Node* compare = WordNotEqual(from_offset, limit_offset); | 
 |     Branch(compare, &decrement, &done); | 
 |  | 
 |     BIND(&if_hole); | 
 |     // We are unlucky: there are holes! We need to restart the copy, this time | 
 |     // we will copy the FixedDoubleArray to a new FixedArray with undefined | 
 |     // replacing holes. We signal this to the caller through | 
 |     // |var_holes_converted|. | 
 |     *var_holes_converted = Int32TrueConstant(); | 
 |     to_elements = | 
 |         ExtractToFixedArray(from_array, first, count, capacity, fixed_array_map, | 
 |                             kind, allocation_flags, extract_flags, mode, | 
 |                             HoleConversionMode::kConvertToUndefined); | 
 |     var_result.Bind(to_elements); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   Comment("] ExtractFixedDoubleArrayFillingHoles"); | 
 |   return UncheckedCast<FixedArrayBase>(var_result.value()); | 
 | } | 
 |  | 
 | TNode<FixedArrayBase> CodeStubAssembler::ExtractFixedArray( | 
 |     Node* source, Node* first, Node* count, Node* capacity, | 
 |     ExtractFixedArrayFlags extract_flags, ParameterMode parameter_mode, | 
 |     TVariable<BoolT>* var_holes_converted) { | 
 |   DCHECK(extract_flags & ExtractFixedArrayFlag::kFixedArrays || | 
 |          extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays); | 
 |   // If we want to replace holes, ExtractFixedArrayFlag::kDontCopyCOW should not | 
 |   // be used, because that disables the iteration which detects holes. | 
 |   DCHECK_IMPLIES(var_holes_converted != nullptr, | 
 |                  !(extract_flags & ExtractFixedArrayFlag::kDontCopyCOW)); | 
 |   HoleConversionMode convert_holes = | 
 |       var_holes_converted != nullptr ? HoleConversionMode::kConvertToUndefined | 
 |                                      : HoleConversionMode::kDontConvert; | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |   const AllocationFlags allocation_flags = | 
 |       (extract_flags & ExtractFixedArrayFlag::kNewSpaceAllocationOnly) | 
 |           ? CodeStubAssembler::kNone | 
 |           : CodeStubAssembler::kAllowLargeObjectAllocation; | 
 |   if (first == nullptr) { | 
 |     first = IntPtrOrSmiConstant(0, parameter_mode); | 
 |   } | 
 |   if (count == nullptr) { | 
 |     count = IntPtrOrSmiSub( | 
 |         TaggedToParameter(LoadFixedArrayBaseLength(source), parameter_mode), | 
 |         first, parameter_mode); | 
 |  | 
 |     CSA_ASSERT( | 
 |         this, IntPtrOrSmiLessThanOrEqual(IntPtrOrSmiConstant(0, parameter_mode), | 
 |                                          count, parameter_mode)); | 
 |   } | 
 |   if (capacity == nullptr) { | 
 |     capacity = count; | 
 |   } else { | 
 |     CSA_ASSERT(this, Word32BinaryNot(IntPtrOrSmiGreaterThan( | 
 |                          IntPtrOrSmiAdd(first, count, parameter_mode), capacity, | 
 |                          parameter_mode))); | 
 |   } | 
 |  | 
 |   Label if_fixed_double_array(this), empty(this), done(this, {&var_result}); | 
 |   Node* source_map = LoadMap(source); | 
 |   GotoIf(WordEqual(IntPtrOrSmiConstant(0, parameter_mode), capacity), &empty); | 
 |  | 
 |   if (extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays) { | 
 |     if (extract_flags & ExtractFixedArrayFlag::kFixedArrays) { | 
 |       GotoIf(IsFixedDoubleArrayMap(source_map), &if_fixed_double_array); | 
 |     } else { | 
 |       CSA_ASSERT(this, IsFixedDoubleArrayMap(source_map)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (extract_flags & ExtractFixedArrayFlag::kFixedArrays) { | 
 |     // Here we can only get |source| as FixedArray, never FixedDoubleArray. | 
 |     // PACKED_ELEMENTS is used to signify that the source is a FixedArray. | 
 |     Node* to_elements = | 
 |         ExtractToFixedArray(source, first, count, capacity, source_map, | 
 |                             PACKED_ELEMENTS, allocation_flags, extract_flags, | 
 |                             parameter_mode, convert_holes, var_holes_converted); | 
 |     var_result.Bind(to_elements); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   if (extract_flags & ExtractFixedArrayFlag::kFixedDoubleArrays) { | 
 |     BIND(&if_fixed_double_array); | 
 |     Comment("Copy FixedDoubleArray"); | 
 |  | 
 |     if (convert_holes == HoleConversionMode::kConvertToUndefined) { | 
 |       Node* to_elements = ExtractFixedDoubleArrayFillingHoles( | 
 |           source, first, count, capacity, source_map, var_holes_converted, | 
 |           allocation_flags, extract_flags, parameter_mode); | 
 |       var_result.Bind(to_elements); | 
 |     } else { | 
 |       // We use PACKED_DOUBLE_ELEMENTS to signify that both the source and | 
 |       // the target are FixedDoubleArray. That it is PACKED or HOLEY does not | 
 |       // matter. | 
 |       ElementsKind kind = PACKED_DOUBLE_ELEMENTS; | 
 |       TNode<FixedArrayBase> to_elements = AllocateFixedArray( | 
 |           kind, capacity, parameter_mode, allocation_flags, source_map); | 
 |       var_result.Bind(to_elements); | 
 |       CopyElements(kind, to_elements, IntPtrConstant(0), CAST(source), | 
 |                    ParameterToIntPtr(first, parameter_mode), | 
 |                    ParameterToIntPtr(count, parameter_mode)); | 
 |     } | 
 |  | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&empty); | 
 |   { | 
 |     Comment("Copy empty array"); | 
 |  | 
 |     var_result.Bind(EmptyFixedArrayConstant()); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return UncheckedCast<FixedArray>(var_result.value()); | 
 | } | 
 |  | 
 | void CodeStubAssembler::InitializePropertyArrayLength(Node* property_array, | 
 |                                                       Node* length, | 
 |                                                       ParameterMode mode) { | 
 |   CSA_SLOW_ASSERT(this, IsPropertyArray(property_array)); | 
 |   CSA_ASSERT( | 
 |       this, IntPtrOrSmiGreaterThan(length, IntPtrOrSmiConstant(0, mode), mode)); | 
 |   CSA_ASSERT( | 
 |       this, | 
 |       IntPtrOrSmiLessThanOrEqual( | 
 |           length, IntPtrOrSmiConstant(PropertyArray::LengthField::kMax, mode), | 
 |           mode)); | 
 |   StoreObjectFieldNoWriteBarrier( | 
 |       property_array, PropertyArray::kLengthAndHashOffset, | 
 |       ParameterToTagged(length, mode), MachineRepresentation::kTaggedSigned); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocatePropertyArray(Node* capacity_node, | 
 |                                                ParameterMode mode, | 
 |                                                AllocationFlags flags) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity_node, mode)); | 
 |   CSA_ASSERT(this, IntPtrOrSmiGreaterThan(capacity_node, | 
 |                                           IntPtrOrSmiConstant(0, mode), mode)); | 
 |   Node* total_size = GetPropertyArrayAllocationSize(capacity_node, mode); | 
 |  | 
 |   Node* array = Allocate(total_size, flags); | 
 |   RootIndex map_index = RootIndex::kPropertyArrayMap; | 
 |   DCHECK(RootsTable::IsImmortalImmovable(map_index)); | 
 |   StoreMapNoWriteBarrier(array, map_index); | 
 |   InitializePropertyArrayLength(array, capacity_node, mode); | 
 |   return array; | 
 | } | 
 |  | 
 | void CodeStubAssembler::FillPropertyArrayWithUndefined(Node* array, | 
 |                                                        Node* from_node, | 
 |                                                        Node* to_node, | 
 |                                                        ParameterMode mode) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(from_node, mode)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(to_node, mode)); | 
 |   CSA_SLOW_ASSERT(this, IsPropertyArray(array)); | 
 |   ElementsKind kind = PACKED_ELEMENTS; | 
 |   Node* value = UndefinedConstant(); | 
 |   BuildFastFixedArrayForEach(array, kind, from_node, to_node, | 
 |                              [this, value](Node* array, Node* offset) { | 
 |                                StoreNoWriteBarrier( | 
 |                                    MachineRepresentation::kTagged, array, | 
 |                                    offset, value); | 
 |                              }, | 
 |                              mode); | 
 | } | 
 |  | 
 | void CodeStubAssembler::FillFixedArrayWithValue(ElementsKind kind, Node* array, | 
 |                                                 Node* from_node, Node* to_node, | 
 |                                                 RootIndex value_root_index, | 
 |                                                 ParameterMode mode) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(from_node, mode)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(to_node, mode)); | 
 |   CSA_SLOW_ASSERT(this, IsFixedArrayWithKind(array, kind)); | 
 |   DCHECK(value_root_index == RootIndex::kTheHoleValue || | 
 |          value_root_index == RootIndex::kUndefinedValue); | 
 |  | 
 |   // Determine the value to initialize the {array} based | 
 |   // on the {value_root_index} and the elements {kind}. | 
 |   Node* value = LoadRoot(value_root_index); | 
 |   if (IsDoubleElementsKind(kind)) { | 
 |     value = LoadHeapNumberValue(value); | 
 |   } | 
 |  | 
 |   BuildFastFixedArrayForEach( | 
 |       array, kind, from_node, to_node, | 
 |       [this, value, kind](Node* array, Node* offset) { | 
 |         if (IsDoubleElementsKind(kind)) { | 
 |           StoreNoWriteBarrier(MachineRepresentation::kFloat64, array, offset, | 
 |                               value); | 
 |         } else { | 
 |           StoreNoWriteBarrier(MachineRepresentation::kTagged, array, offset, | 
 |                               value); | 
 |         } | 
 |       }, | 
 |       mode); | 
 | } | 
 |  | 
 | void CodeStubAssembler::StoreFixedDoubleArrayHole( | 
 |     TNode<FixedDoubleArray> array, Node* index, ParameterMode parameter_mode) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(index, parameter_mode)); | 
 |   Node* offset = | 
 |       ElementOffsetFromIndex(index, PACKED_DOUBLE_ELEMENTS, parameter_mode, | 
 |                              FixedArray::kHeaderSize - kHeapObjectTag); | 
 |   CSA_ASSERT(this, IsOffsetInBounds( | 
 |                        offset, LoadAndUntagFixedArrayBaseLength(array), | 
 |                        FixedDoubleArray::kHeaderSize, PACKED_DOUBLE_ELEMENTS)); | 
 |   Node* double_hole = | 
 |       Is64() ? ReinterpretCast<UintPtrT>(Int64Constant(kHoleNanInt64)) | 
 |              : ReinterpretCast<UintPtrT>(Int32Constant(kHoleNanLower32)); | 
 |   // TODO(danno): When we have a Float32/Float64 wrapper class that | 
 |   // preserves double bits during manipulation, remove this code/change | 
 |   // this to an indexed Float64 store. | 
 |   if (Is64()) { | 
 |     StoreNoWriteBarrier(MachineRepresentation::kWord64, array, offset, | 
 |                         double_hole); | 
 |   } else { | 
 |     StoreNoWriteBarrier(MachineRepresentation::kWord32, array, offset, | 
 |                         double_hole); | 
 |     StoreNoWriteBarrier(MachineRepresentation::kWord32, array, | 
 |                         IntPtrAdd(offset, IntPtrConstant(kPointerSize)), | 
 |                         double_hole); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::FillFixedArrayWithSmiZero(TNode<FixedArray> array, | 
 |                                                   TNode<IntPtrT> length) { | 
 |   CSA_ASSERT(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array))); | 
 |  | 
 |   TNode<IntPtrT> byte_length = TimesPointerSize(length); | 
 |   CSA_ASSERT(this, UintPtrLessThan(length, byte_length)); | 
 |  | 
 |   static const int32_t fa_base_data_offset = | 
 |       FixedArray::kHeaderSize - kHeapObjectTag; | 
 |   TNode<IntPtrT> backing_store = IntPtrAdd(BitcastTaggedToWord(array), | 
 |                                            IntPtrConstant(fa_base_data_offset)); | 
 |  | 
 |   // Call out to memset to perform initialization. | 
 |   TNode<ExternalReference> memset = | 
 |       ExternalConstant(ExternalReference::libc_memset_function()); | 
 |   STATIC_ASSERT(kSizetSize == kIntptrSize); | 
 |   CallCFunction3(MachineType::Pointer(), MachineType::Pointer(), | 
 |                  MachineType::IntPtr(), MachineType::UintPtr(), memset, | 
 |                  backing_store, IntPtrConstant(0), byte_length); | 
 | } | 
 |  | 
 | void CodeStubAssembler::FillFixedDoubleArrayWithZero( | 
 |     TNode<FixedDoubleArray> array, TNode<IntPtrT> length) { | 
 |   CSA_ASSERT(this, WordEqual(length, LoadAndUntagFixedArrayBaseLength(array))); | 
 |  | 
 |   TNode<IntPtrT> byte_length = TimesDoubleSize(length); | 
 |   CSA_ASSERT(this, UintPtrLessThan(length, byte_length)); | 
 |  | 
 |   static const int32_t fa_base_data_offset = | 
 |       FixedDoubleArray::kHeaderSize - kHeapObjectTag; | 
 |   TNode<IntPtrT> backing_store = IntPtrAdd(BitcastTaggedToWord(array), | 
 |                                            IntPtrConstant(fa_base_data_offset)); | 
 |  | 
 |   // Call out to memset to perform initialization. | 
 |   TNode<ExternalReference> memset = | 
 |       ExternalConstant(ExternalReference::libc_memset_function()); | 
 |   STATIC_ASSERT(kSizetSize == kIntptrSize); | 
 |   CallCFunction3(MachineType::Pointer(), MachineType::Pointer(), | 
 |                  MachineType::IntPtr(), MachineType::UintPtr(), memset, | 
 |                  backing_store, IntPtrConstant(0), byte_length); | 
 | } | 
 |  | 
 | void CodeStubAssembler::JumpIfPointersFromHereAreInteresting( | 
 |     TNode<Object> object, Label* interesting) { | 
 |   Label finished(this); | 
 |   TNode<IntPtrT> object_word = BitcastTaggedToWord(object); | 
 |   TNode<IntPtrT> object_page = PageFromAddress(object_word); | 
 |   TNode<IntPtrT> page_flags = UncheckedCast<IntPtrT>(Load( | 
 |       MachineType::IntPtr(), object_page, IntPtrConstant(Page::kFlagsOffset))); | 
 |   Branch( | 
 |       WordEqual(WordAnd(page_flags, | 
 |                         IntPtrConstant( | 
 |                             MemoryChunk::kPointersFromHereAreInterestingMask)), | 
 |                 IntPtrConstant(0)), | 
 |       &finished, interesting); | 
 |   BIND(&finished); | 
 | } | 
 |  | 
 | void CodeStubAssembler::MoveElements(ElementsKind kind, | 
 |                                      TNode<FixedArrayBase> elements, | 
 |                                      TNode<IntPtrT> dst_index, | 
 |                                      TNode<IntPtrT> src_index, | 
 |                                      TNode<IntPtrT> length) { | 
 |   Label finished(this); | 
 |   Label needs_barrier(this); | 
 |   const bool needs_barrier_check = !IsDoubleElementsKind(kind); | 
 |  | 
 |   DCHECK(IsFastElementsKind(kind)); | 
 |   CSA_ASSERT(this, IsFixedArrayWithKind(elements, kind)); | 
 |   CSA_ASSERT(this, | 
 |              IntPtrLessThanOrEqual(IntPtrAdd(dst_index, length), | 
 |                                    LoadAndUntagFixedArrayBaseLength(elements))); | 
 |   CSA_ASSERT(this, | 
 |              IntPtrLessThanOrEqual(IntPtrAdd(src_index, length), | 
 |                                    LoadAndUntagFixedArrayBaseLength(elements))); | 
 |  | 
 |   // The write barrier can be ignored if {dst_elements} is in new space, or if | 
 |   // the elements pointer is FixedDoubleArray. | 
 |   if (needs_barrier_check) { | 
 |     JumpIfPointersFromHereAreInteresting(elements, &needs_barrier); | 
 |   } | 
 |  | 
 |   const TNode<IntPtrT> source_byte_length = | 
 |       IntPtrMul(length, IntPtrConstant(ElementsKindToByteSize(kind))); | 
 |   static const int32_t fa_base_data_offset = | 
 |       FixedArrayBase::kHeaderSize - kHeapObjectTag; | 
 |   TNode<IntPtrT> elements_intptr = BitcastTaggedToWord(elements); | 
 |   TNode<IntPtrT> target_data_ptr = | 
 |       IntPtrAdd(elements_intptr, | 
 |                 ElementOffsetFromIndex(dst_index, kind, INTPTR_PARAMETERS, | 
 |                                        fa_base_data_offset)); | 
 |   TNode<IntPtrT> source_data_ptr = | 
 |       IntPtrAdd(elements_intptr, | 
 |                 ElementOffsetFromIndex(src_index, kind, INTPTR_PARAMETERS, | 
 |                                        fa_base_data_offset)); | 
 |   TNode<ExternalReference> memmove = | 
 |       ExternalConstant(ExternalReference::libc_memmove_function()); | 
 |   CallCFunction3(MachineType::Pointer(), MachineType::Pointer(), | 
 |                  MachineType::Pointer(), MachineType::UintPtr(), memmove, | 
 |                  target_data_ptr, source_data_ptr, source_byte_length); | 
 |  | 
 |   if (needs_barrier_check) { | 
 |     Goto(&finished); | 
 |  | 
 |     BIND(&needs_barrier); | 
 |     { | 
 |       const TNode<IntPtrT> begin = src_index; | 
 |       const TNode<IntPtrT> end = IntPtrAdd(begin, length); | 
 |  | 
 |       // If dst_index is less than src_index, then walk forward. | 
 |       const TNode<IntPtrT> delta = | 
 |           IntPtrMul(IntPtrSub(dst_index, begin), | 
 |                     IntPtrConstant(ElementsKindToByteSize(kind))); | 
 |       auto loop_body = [&](Node* array, Node* offset) { | 
 |         Node* const element = Load(MachineType::AnyTagged(), array, offset); | 
 |         Node* const delta_offset = IntPtrAdd(offset, delta); | 
 |         Store(array, delta_offset, element); | 
 |       }; | 
 |  | 
 |       Label iterate_forward(this); | 
 |       Label iterate_backward(this); | 
 |       Branch(IntPtrLessThan(delta, IntPtrConstant(0)), &iterate_forward, | 
 |              &iterate_backward); | 
 |       BIND(&iterate_forward); | 
 |       { | 
 |         // Make a loop for the stores. | 
 |         BuildFastFixedArrayForEach(elements, kind, begin, end, loop_body, | 
 |                                    INTPTR_PARAMETERS, | 
 |                                    ForEachDirection::kForward); | 
 |         Goto(&finished); | 
 |       } | 
 |  | 
 |       BIND(&iterate_backward); | 
 |       { | 
 |         BuildFastFixedArrayForEach(elements, kind, begin, end, loop_body, | 
 |                                    INTPTR_PARAMETERS, | 
 |                                    ForEachDirection::kReverse); | 
 |         Goto(&finished); | 
 |       } | 
 |     } | 
 |     BIND(&finished); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::CopyElements(ElementsKind kind, | 
 |                                      TNode<FixedArrayBase> dst_elements, | 
 |                                      TNode<IntPtrT> dst_index, | 
 |                                      TNode<FixedArrayBase> src_elements, | 
 |                                      TNode<IntPtrT> src_index, | 
 |                                      TNode<IntPtrT> length) { | 
 |   Label finished(this); | 
 |   Label needs_barrier(this); | 
 |   const bool needs_barrier_check = !IsDoubleElementsKind(kind); | 
 |  | 
 |   DCHECK(IsFastElementsKind(kind)); | 
 |   CSA_ASSERT(this, IsFixedArrayWithKind(dst_elements, kind)); | 
 |   CSA_ASSERT(this, IsFixedArrayWithKind(src_elements, kind)); | 
 |   CSA_ASSERT(this, IntPtrLessThanOrEqual( | 
 |                        IntPtrAdd(dst_index, length), | 
 |                        LoadAndUntagFixedArrayBaseLength(dst_elements))); | 
 |   CSA_ASSERT(this, IntPtrLessThanOrEqual( | 
 |                        IntPtrAdd(src_index, length), | 
 |                        LoadAndUntagFixedArrayBaseLength(src_elements))); | 
 |   CSA_ASSERT(this, Word32Or(WordNotEqual(dst_elements, src_elements), | 
 |                             WordEqual(length, IntPtrConstant(0)))); | 
 |  | 
 |   // The write barrier can be ignored if {dst_elements} is in new space, or if | 
 |   // the elements pointer is FixedDoubleArray. | 
 |   if (needs_barrier_check) { | 
 |     JumpIfPointersFromHereAreInteresting(dst_elements, &needs_barrier); | 
 |   } | 
 |  | 
 |   TNode<IntPtrT> source_byte_length = | 
 |       IntPtrMul(length, IntPtrConstant(ElementsKindToByteSize(kind))); | 
 |   static const int32_t fa_base_data_offset = | 
 |       FixedArrayBase::kHeaderSize - kHeapObjectTag; | 
 |   TNode<IntPtrT> src_offset_start = ElementOffsetFromIndex( | 
 |       src_index, kind, INTPTR_PARAMETERS, fa_base_data_offset); | 
 |   TNode<IntPtrT> dst_offset_start = ElementOffsetFromIndex( | 
 |       dst_index, kind, INTPTR_PARAMETERS, fa_base_data_offset); | 
 |   TNode<IntPtrT> src_elements_intptr = BitcastTaggedToWord(src_elements); | 
 |   TNode<IntPtrT> source_data_ptr = | 
 |       IntPtrAdd(src_elements_intptr, src_offset_start); | 
 |   TNode<IntPtrT> dst_elements_intptr = BitcastTaggedToWord(dst_elements); | 
 |   TNode<IntPtrT> dst_data_ptr = | 
 |       IntPtrAdd(dst_elements_intptr, dst_offset_start); | 
 |   TNode<ExternalReference> memcpy = | 
 |       ExternalConstant(ExternalReference::libc_memcpy_function()); | 
 |   CallCFunction3(MachineType::Pointer(), MachineType::Pointer(), | 
 |                  MachineType::Pointer(), MachineType::UintPtr(), memcpy, | 
 |                  dst_data_ptr, source_data_ptr, source_byte_length); | 
 |  | 
 |   if (needs_barrier_check) { | 
 |     Goto(&finished); | 
 |  | 
 |     BIND(&needs_barrier); | 
 |     { | 
 |       const TNode<IntPtrT> begin = src_index; | 
 |       const TNode<IntPtrT> end = IntPtrAdd(begin, length); | 
 |       const TNode<IntPtrT> delta = | 
 |           IntPtrMul(IntPtrSub(dst_index, src_index), | 
 |                     IntPtrConstant(ElementsKindToByteSize(kind))); | 
 |       BuildFastFixedArrayForEach( | 
 |           src_elements, kind, begin, end, | 
 |           [&](Node* array, Node* offset) { | 
 |             Node* const element = Load(MachineType::AnyTagged(), array, offset); | 
 |             Node* const delta_offset = IntPtrAdd(offset, delta); | 
 |             Store(dst_elements, delta_offset, element); | 
 |           }, | 
 |           INTPTR_PARAMETERS, ForEachDirection::kForward); | 
 |       Goto(&finished); | 
 |     } | 
 |     BIND(&finished); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::CopyFixedArrayElements( | 
 |     ElementsKind from_kind, Node* from_array, ElementsKind to_kind, | 
 |     Node* to_array, Node* first_element, Node* element_count, Node* capacity, | 
 |     WriteBarrierMode barrier_mode, ParameterMode mode, | 
 |     HoleConversionMode convert_holes, TVariable<BoolT>* var_holes_converted) { | 
 |   DCHECK_IMPLIES(var_holes_converted != nullptr, | 
 |                  convert_holes == HoleConversionMode::kConvertToUndefined); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(element_count, mode)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); | 
 |   CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(from_array, from_kind)); | 
 |   CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(to_array, to_kind)); | 
 |   STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); | 
 |   const int first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag; | 
 |   Comment("[ CopyFixedArrayElements"); | 
 |  | 
 |   // Typed array elements are not supported. | 
 |   DCHECK(!IsFixedTypedArrayElementsKind(from_kind)); | 
 |   DCHECK(!IsFixedTypedArrayElementsKind(to_kind)); | 
 |  | 
 |   Label done(this); | 
 |   bool from_double_elements = IsDoubleElementsKind(from_kind); | 
 |   bool to_double_elements = IsDoubleElementsKind(to_kind); | 
 |   bool doubles_to_objects_conversion = | 
 |       IsDoubleElementsKind(from_kind) && IsObjectElementsKind(to_kind); | 
 |   bool needs_write_barrier = | 
 |       doubles_to_objects_conversion || | 
 |       (barrier_mode == UPDATE_WRITE_BARRIER && IsObjectElementsKind(to_kind)); | 
 |   bool element_offset_matches = | 
 |       !needs_write_barrier && (Is64() || IsDoubleElementsKind(from_kind) == | 
 |                                              IsDoubleElementsKind(to_kind)); | 
 |   Node* double_hole = | 
 |       Is64() ? ReinterpretCast<UintPtrT>(Int64Constant(kHoleNanInt64)) | 
 |              : ReinterpretCast<UintPtrT>(Int32Constant(kHoleNanLower32)); | 
 |  | 
 |   // If copying might trigger a GC, we pre-initialize the FixedArray such that | 
 |   // it's always in a consistent state. | 
 |   if (convert_holes == HoleConversionMode::kConvertToUndefined) { | 
 |     DCHECK(IsObjectElementsKind(to_kind)); | 
 |     // Use undefined for the part that we copy and holes for the rest. | 
 |     // Later if we run into a hole in the source we can just skip the writing | 
 |     // to the target and are still guaranteed that we get an undefined. | 
 |     FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode), | 
 |                             element_count, RootIndex::kUndefinedValue, mode); | 
 |     FillFixedArrayWithValue(to_kind, to_array, element_count, capacity, | 
 |                             RootIndex::kTheHoleValue, mode); | 
 |   } else if (doubles_to_objects_conversion) { | 
 |     // Pre-initialized the target with holes so later if we run into a hole in | 
 |     // the source we can just skip the writing to the target. | 
 |     FillFixedArrayWithValue(to_kind, to_array, IntPtrOrSmiConstant(0, mode), | 
 |                             capacity, RootIndex::kTheHoleValue, mode); | 
 |   } else if (element_count != capacity) { | 
 |     FillFixedArrayWithValue(to_kind, to_array, element_count, capacity, | 
 |                             RootIndex::kTheHoleValue, mode); | 
 |   } | 
 |  | 
 |   Node* first_from_element_offset = | 
 |       ElementOffsetFromIndex(first_element, from_kind, mode, 0); | 
 |   Node* limit_offset = IntPtrAdd(first_from_element_offset, | 
 |                                  IntPtrConstant(first_element_offset)); | 
 |   VARIABLE( | 
 |       var_from_offset, MachineType::PointerRepresentation(), | 
 |       ElementOffsetFromIndex(IntPtrOrSmiAdd(first_element, element_count, mode), | 
 |                              from_kind, mode, first_element_offset)); | 
 |   // This second variable is used only when the element sizes of source and | 
 |   // destination arrays do not match. | 
 |   VARIABLE(var_to_offset, MachineType::PointerRepresentation()); | 
 |   if (element_offset_matches) { | 
 |     var_to_offset.Bind(var_from_offset.value()); | 
 |   } else { | 
 |     var_to_offset.Bind(ElementOffsetFromIndex(element_count, to_kind, mode, | 
 |                                               first_element_offset)); | 
 |   } | 
 |  | 
 |   Variable* vars[] = {&var_from_offset, &var_to_offset, var_holes_converted}; | 
 |   int num_vars = | 
 |       var_holes_converted != nullptr ? arraysize(vars) : arraysize(vars) - 1; | 
 |   Label decrement(this, num_vars, vars); | 
 |  | 
 |   Node* to_array_adjusted = | 
 |       element_offset_matches | 
 |           ? IntPtrSub(BitcastTaggedToWord(to_array), first_from_element_offset) | 
 |           : to_array; | 
 |  | 
 |   Branch(WordEqual(var_from_offset.value(), limit_offset), &done, &decrement); | 
 |  | 
 |   BIND(&decrement); | 
 |   { | 
 |     Node* from_offset = IntPtrSub( | 
 |         var_from_offset.value(), | 
 |         IntPtrConstant(from_double_elements ? kDoubleSize : kPointerSize)); | 
 |     var_from_offset.Bind(from_offset); | 
 |  | 
 |     Node* to_offset; | 
 |     if (element_offset_matches) { | 
 |       to_offset = from_offset; | 
 |     } else { | 
 |       to_offset = IntPtrSub( | 
 |           var_to_offset.value(), | 
 |           IntPtrConstant(to_double_elements ? kDoubleSize : kPointerSize)); | 
 |       var_to_offset.Bind(to_offset); | 
 |     } | 
 |  | 
 |     Label next_iter(this), store_double_hole(this), signal_hole(this); | 
 |     Label* if_hole; | 
 |     if (convert_holes == HoleConversionMode::kConvertToUndefined) { | 
 |       // The target elements array is already preinitialized with undefined | 
 |       // so we only need to signal that a hole was found and continue the loop. | 
 |       if_hole = &signal_hole; | 
 |     } else if (doubles_to_objects_conversion) { | 
 |       // The target elements array is already preinitialized with holes, so we | 
 |       // can just proceed with the next iteration. | 
 |       if_hole = &next_iter; | 
 |     } else if (IsDoubleElementsKind(to_kind)) { | 
 |       if_hole = &store_double_hole; | 
 |     } else { | 
 |       // In all the other cases don't check for holes and copy the data as is. | 
 |       if_hole = nullptr; | 
 |     } | 
 |  | 
 |     Node* value = LoadElementAndPrepareForStore( | 
 |         from_array, var_from_offset.value(), from_kind, to_kind, if_hole); | 
 |  | 
 |     if (needs_write_barrier) { | 
 |       CHECK_EQ(to_array, to_array_adjusted); | 
 |       Store(to_array_adjusted, to_offset, value); | 
 |     } else if (to_double_elements) { | 
 |       StoreNoWriteBarrier(MachineRepresentation::kFloat64, to_array_adjusted, | 
 |                           to_offset, value); | 
 |     } else { | 
 |       StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array_adjusted, | 
 |                           to_offset, value); | 
 |     } | 
 |     Goto(&next_iter); | 
 |  | 
 |     if (if_hole == &store_double_hole) { | 
 |       BIND(&store_double_hole); | 
 |       // Don't use doubles to store the hole double, since manipulating the | 
 |       // signaling NaN used for the hole in C++, e.g. with bit_cast, will | 
 |       // change its value on ia32 (the x87 stack is used to return values | 
 |       // and stores to the stack silently clear the signalling bit). | 
 |       // | 
 |       // TODO(danno): When we have a Float32/Float64 wrapper class that | 
 |       // preserves double bits during manipulation, remove this code/change | 
 |       // this to an indexed Float64 store. | 
 |       if (Is64()) { | 
 |         StoreNoWriteBarrier(MachineRepresentation::kWord64, to_array_adjusted, | 
 |                             to_offset, double_hole); | 
 |       } else { | 
 |         StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array_adjusted, | 
 |                             to_offset, double_hole); | 
 |         StoreNoWriteBarrier(MachineRepresentation::kWord32, to_array_adjusted, | 
 |                             IntPtrAdd(to_offset, IntPtrConstant(kPointerSize)), | 
 |                             double_hole); | 
 |       } | 
 |       Goto(&next_iter); | 
 |     } else if (if_hole == &signal_hole) { | 
 |       // This case happens only when IsObjectElementsKind(to_kind). | 
 |       BIND(&signal_hole); | 
 |       if (var_holes_converted != nullptr) { | 
 |         *var_holes_converted = Int32TrueConstant(); | 
 |       } | 
 |       Goto(&next_iter); | 
 |     } | 
 |  | 
 |     BIND(&next_iter); | 
 |     Node* compare = WordNotEqual(from_offset, limit_offset); | 
 |     Branch(compare, &decrement, &done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   Comment("] CopyFixedArrayElements"); | 
 | } | 
 |  | 
 | TNode<FixedArray> CodeStubAssembler::HeapObjectToFixedArray( | 
 |     TNode<HeapObject> base, Label* cast_fail) { | 
 |   Label fixed_array(this); | 
 |   TNode<Map> map = LoadMap(base); | 
 |   GotoIf(WordEqual(map, LoadRoot(RootIndex::kFixedArrayMap)), &fixed_array); | 
 |   GotoIf(WordNotEqual(map, LoadRoot(RootIndex::kFixedCOWArrayMap)), cast_fail); | 
 |   Goto(&fixed_array); | 
 |   BIND(&fixed_array); | 
 |   return UncheckedCast<FixedArray>(base); | 
 | } | 
 |  | 
 | void CodeStubAssembler::CopyPropertyArrayValues(Node* from_array, | 
 |                                                 Node* to_array, | 
 |                                                 Node* property_count, | 
 |                                                 WriteBarrierMode barrier_mode, | 
 |                                                 ParameterMode mode) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(property_count, mode)); | 
 |   CSA_SLOW_ASSERT(this, Word32Or(IsPropertyArray(from_array), | 
 |                                  IsEmptyFixedArray(from_array))); | 
 |   CSA_SLOW_ASSERT(this, IsPropertyArray(to_array)); | 
 |   Comment("[ CopyPropertyArrayValues"); | 
 |  | 
 |   bool needs_write_barrier = barrier_mode == UPDATE_WRITE_BARRIER; | 
 |   Node* start = IntPtrOrSmiConstant(0, mode); | 
 |   ElementsKind kind = PACKED_ELEMENTS; | 
 |   BuildFastFixedArrayForEach( | 
 |       from_array, kind, start, property_count, | 
 |       [this, to_array, needs_write_barrier](Node* array, Node* offset) { | 
 |         Node* value = Load(MachineType::AnyTagged(), array, offset); | 
 |  | 
 |         if (needs_write_barrier) { | 
 |           Store(to_array, offset, value); | 
 |         } else { | 
 |           StoreNoWriteBarrier(MachineRepresentation::kTagged, to_array, offset, | 
 |                               value); | 
 |         } | 
 |       }, | 
 |       mode); | 
 |   Comment("] CopyPropertyArrayValues"); | 
 | } | 
 |  | 
 | void CodeStubAssembler::CopyStringCharacters(Node* from_string, Node* to_string, | 
 |                                              TNode<IntPtrT> from_index, | 
 |                                              TNode<IntPtrT> to_index, | 
 |                                              TNode<IntPtrT> character_count, | 
 |                                              String::Encoding from_encoding, | 
 |                                              String::Encoding to_encoding) { | 
 |   // Cannot assert IsString(from_string) and IsString(to_string) here because | 
 |   // CSA::SubString can pass in faked sequential strings when handling external | 
 |   // subject strings. | 
 |   bool from_one_byte = from_encoding == String::ONE_BYTE_ENCODING; | 
 |   bool to_one_byte = to_encoding == String::ONE_BYTE_ENCODING; | 
 |   DCHECK_IMPLIES(to_one_byte, from_one_byte); | 
 |   Comment("CopyStringCharacters %s -> %s", | 
 |           from_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING", | 
 |           to_one_byte ? "ONE_BYTE_ENCODING" : "TWO_BYTE_ENCODING"); | 
 |  | 
 |   ElementsKind from_kind = from_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS; | 
 |   ElementsKind to_kind = to_one_byte ? UINT8_ELEMENTS : UINT16_ELEMENTS; | 
 |   STATIC_ASSERT(SeqOneByteString::kHeaderSize == SeqTwoByteString::kHeaderSize); | 
 |   int header_size = SeqOneByteString::kHeaderSize - kHeapObjectTag; | 
 |   Node* from_offset = ElementOffsetFromIndex(from_index, from_kind, | 
 |                                              INTPTR_PARAMETERS, header_size); | 
 |   Node* to_offset = | 
 |       ElementOffsetFromIndex(to_index, to_kind, INTPTR_PARAMETERS, header_size); | 
 |   Node* byte_count = | 
 |       ElementOffsetFromIndex(character_count, from_kind, INTPTR_PARAMETERS); | 
 |   Node* limit_offset = IntPtrAdd(from_offset, byte_count); | 
 |  | 
 |   // Prepare the fast loop | 
 |   MachineType type = | 
 |       from_one_byte ? MachineType::Uint8() : MachineType::Uint16(); | 
 |   MachineRepresentation rep = to_one_byte ? MachineRepresentation::kWord8 | 
 |                                           : MachineRepresentation::kWord16; | 
 |   int from_increment = 1 << ElementsKindToShiftSize(from_kind); | 
 |   int to_increment = 1 << ElementsKindToShiftSize(to_kind); | 
 |  | 
 |   VARIABLE(current_to_offset, MachineType::PointerRepresentation(), to_offset); | 
 |   VariableList vars({¤t_to_offset}, zone()); | 
 |   int to_index_constant = 0, from_index_constant = 0; | 
 |   bool index_same = (from_encoding == to_encoding) && | 
 |                     (from_index == to_index || | 
 |                      (ToInt32Constant(from_index, from_index_constant) && | 
 |                       ToInt32Constant(to_index, to_index_constant) && | 
 |                       from_index_constant == to_index_constant)); | 
 |   BuildFastLoop(vars, from_offset, limit_offset, | 
 |                 [this, from_string, to_string, ¤t_to_offset, to_increment, | 
 |                  type, rep, index_same](Node* offset) { | 
 |                   Node* value = Load(type, from_string, offset); | 
 |                   StoreNoWriteBarrier( | 
 |                       rep, to_string, | 
 |                       index_same ? offset : current_to_offset.value(), value); | 
 |                   if (!index_same) { | 
 |                     Increment(¤t_to_offset, to_increment); | 
 |                   } | 
 |                 }, | 
 |                 from_increment, INTPTR_PARAMETERS, IndexAdvanceMode::kPost); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::LoadElementAndPrepareForStore(Node* array, | 
 |                                                        Node* offset, | 
 |                                                        ElementsKind from_kind, | 
 |                                                        ElementsKind to_kind, | 
 |                                                        Label* if_hole) { | 
 |   CSA_ASSERT(this, IsFixedArrayWithKind(array, from_kind)); | 
 |   if (IsDoubleElementsKind(from_kind)) { | 
 |     Node* value = | 
 |         LoadDoubleWithHoleCheck(array, offset, if_hole, MachineType::Float64()); | 
 |     if (!IsDoubleElementsKind(to_kind)) { | 
 |       value = AllocateHeapNumberWithValue(value); | 
 |     } | 
 |     return value; | 
 |  | 
 |   } else { | 
 |     Node* value = Load(MachineType::AnyTagged(), array, offset); | 
 |     if (if_hole) { | 
 |       GotoIf(WordEqual(value, TheHoleConstant()), if_hole); | 
 |     } | 
 |     if (IsDoubleElementsKind(to_kind)) { | 
 |       if (IsSmiElementsKind(from_kind)) { | 
 |         value = SmiToFloat64(value); | 
 |       } else { | 
 |         value = LoadHeapNumberValue(value); | 
 |       } | 
 |     } | 
 |     return value; | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::CalculateNewElementsCapacity(Node* old_capacity, | 
 |                                                       ParameterMode mode) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(old_capacity, mode)); | 
 |   Node* half_old_capacity = WordOrSmiShr(old_capacity, 1, mode); | 
 |   Node* new_capacity = IntPtrOrSmiAdd(half_old_capacity, old_capacity, mode); | 
 |   Node* padding = | 
 |       IntPtrOrSmiConstant(JSObject::kMinAddedElementsCapacity, mode); | 
 |   return IntPtrOrSmiAdd(new_capacity, padding, mode); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements, | 
 |                                                  ElementsKind kind, Node* key, | 
 |                                                  Label* bailout) { | 
 |   CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object)); | 
 |   CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, kind)); | 
 |   CSA_SLOW_ASSERT(this, TaggedIsSmi(key)); | 
 |   Node* capacity = LoadFixedArrayBaseLength(elements); | 
 |  | 
 |   ParameterMode mode = OptimalParameterMode(); | 
 |   capacity = TaggedToParameter(capacity, mode); | 
 |   key = TaggedToParameter(key, mode); | 
 |  | 
 |   return TryGrowElementsCapacity(object, elements, kind, key, capacity, mode, | 
 |                                  bailout); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::TryGrowElementsCapacity(Node* object, Node* elements, | 
 |                                                  ElementsKind kind, Node* key, | 
 |                                                  Node* capacity, | 
 |                                                  ParameterMode mode, | 
 |                                                  Label* bailout) { | 
 |   Comment("TryGrowElementsCapacity"); | 
 |   CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object)); | 
 |   CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, kind)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(key, mode)); | 
 |  | 
 |   // If the gap growth is too big, fall back to the runtime. | 
 |   Node* max_gap = IntPtrOrSmiConstant(JSObject::kMaxGap, mode); | 
 |   Node* max_capacity = IntPtrOrSmiAdd(capacity, max_gap, mode); | 
 |   GotoIf(UintPtrOrSmiGreaterThanOrEqual(key, max_capacity, mode), bailout); | 
 |  | 
 |   // Calculate the capacity of the new backing store. | 
 |   Node* new_capacity = CalculateNewElementsCapacity( | 
 |       IntPtrOrSmiAdd(key, IntPtrOrSmiConstant(1, mode), mode), mode); | 
 |   return GrowElementsCapacity(object, elements, kind, kind, capacity, | 
 |                               new_capacity, mode, bailout); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::GrowElementsCapacity( | 
 |     Node* object, Node* elements, ElementsKind from_kind, ElementsKind to_kind, | 
 |     Node* capacity, Node* new_capacity, ParameterMode mode, Label* bailout) { | 
 |   Comment("[ GrowElementsCapacity"); | 
 |   CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object)); | 
 |   CSA_SLOW_ASSERT(this, IsFixedArrayWithKindOrEmpty(elements, from_kind)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(capacity, mode)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(new_capacity, mode)); | 
 |  | 
 |   // If size of the allocation for the new capacity doesn't fit in a page | 
 |   // that we can bump-pointer allocate from, fall back to the runtime. | 
 |   int max_size = FixedArrayBase::GetMaxLengthForNewSpaceAllocation(to_kind); | 
 |   GotoIf(UintPtrOrSmiGreaterThanOrEqual( | 
 |              new_capacity, IntPtrOrSmiConstant(max_size, mode), mode), | 
 |          bailout); | 
 |  | 
 |   // Allocate the new backing store. | 
 |   Node* new_elements = AllocateFixedArray(to_kind, new_capacity, mode); | 
 |  | 
 |   // Copy the elements from the old elements store to the new. | 
 |   // The size-check above guarantees that the |new_elements| is allocated | 
 |   // in new space so we can skip the write barrier. | 
 |   CopyFixedArrayElements(from_kind, elements, to_kind, new_elements, capacity, | 
 |                          new_capacity, SKIP_WRITE_BARRIER, mode); | 
 |  | 
 |   StoreObjectField(object, JSObject::kElementsOffset, new_elements); | 
 |   Comment("] GrowElementsCapacity"); | 
 |   return new_elements; | 
 | } | 
 |  | 
 | void CodeStubAssembler::InitializeAllocationMemento(Node* base, | 
 |                                                     Node* base_allocation_size, | 
 |                                                     Node* allocation_site) { | 
 |   Comment("[Initialize AllocationMemento"); | 
 |   Node* memento = InnerAllocate(base, base_allocation_size); | 
 |   StoreMapNoWriteBarrier(memento, RootIndex::kAllocationMementoMap); | 
 |   StoreObjectFieldNoWriteBarrier( | 
 |       memento, AllocationMemento::kAllocationSiteOffset, allocation_site); | 
 |   if (FLAG_allocation_site_pretenuring) { | 
 |     TNode<Int32T> count = UncheckedCast<Int32T>(LoadObjectField( | 
 |         allocation_site, AllocationSite::kPretenureCreateCountOffset, | 
 |         MachineType::Int32())); | 
 |  | 
 |     TNode<Int32T> incremented_count = Int32Add(count, Int32Constant(1)); | 
 |     StoreObjectFieldNoWriteBarrier( | 
 |         allocation_site, AllocationSite::kPretenureCreateCountOffset, | 
 |         incremented_count, MachineRepresentation::kWord32); | 
 |   } | 
 |   Comment("]"); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::TryTaggedToFloat64(Node* value, | 
 |                                             Label* if_valueisnotnumber) { | 
 |   Label out(this); | 
 |   VARIABLE(var_result, MachineRepresentation::kFloat64); | 
 |  | 
 |   // Check if the {value} is a Smi or a HeapObject. | 
 |   Label if_valueissmi(this), if_valueisnotsmi(this); | 
 |   Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); | 
 |  | 
 |   BIND(&if_valueissmi); | 
 |   { | 
 |     // Convert the Smi {value}. | 
 |     var_result.Bind(SmiToFloat64(value)); | 
 |     Goto(&out); | 
 |   } | 
 |  | 
 |   BIND(&if_valueisnotsmi); | 
 |   { | 
 |     // Check if {value} is a HeapNumber. | 
 |     Label if_valueisheapnumber(this); | 
 |     Branch(IsHeapNumber(value), &if_valueisheapnumber, if_valueisnotnumber); | 
 |  | 
 |     BIND(&if_valueisheapnumber); | 
 |     { | 
 |       // Load the floating point value. | 
 |       var_result.Bind(LoadHeapNumberValue(value)); | 
 |       Goto(&out); | 
 |     } | 
 |   } | 
 |   BIND(&out); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) { | 
 |   // We might need to loop once due to ToNumber conversion. | 
 |   VARIABLE(var_value, MachineRepresentation::kTagged); | 
 |   VARIABLE(var_result, MachineRepresentation::kFloat64); | 
 |   Label loop(this, &var_value), done_loop(this, &var_result); | 
 |   var_value.Bind(value); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     Label if_valueisnotnumber(this, Label::kDeferred); | 
 |  | 
 |     // Load the current {value}. | 
 |     value = var_value.value(); | 
 |  | 
 |     // Convert {value} to Float64 if it is a number and convert it to a number | 
 |     // otherwise. | 
 |     Node* const result = TryTaggedToFloat64(value, &if_valueisnotnumber); | 
 |     var_result.Bind(result); | 
 |     Goto(&done_loop); | 
 |  | 
 |     BIND(&if_valueisnotnumber); | 
 |     { | 
 |       // Convert the {value} to a Number first. | 
 |       var_value.Bind(CallBuiltin(Builtins::kNonNumberToNumber, context, value)); | 
 |       Goto(&loop); | 
 |     } | 
 |   } | 
 |   BIND(&done_loop); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) { | 
 |   VARIABLE(var_result, MachineRepresentation::kWord32); | 
 |   Label done(this); | 
 |   TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumber>(context, value, | 
 |                                                             &done, &var_result); | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | // Truncate {value} to word32 and jump to {if_number} if it is a Number, | 
 | // or find that it is a BigInt and jump to {if_bigint}. | 
 | void CodeStubAssembler::TaggedToWord32OrBigInt(Node* context, Node* value, | 
 |                                                Label* if_number, | 
 |                                                Variable* var_word32, | 
 |                                                Label* if_bigint, | 
 |                                                Variable* var_bigint) { | 
 |   TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumeric>( | 
 |       context, value, if_number, var_word32, if_bigint, var_bigint); | 
 | } | 
 |  | 
 | // Truncate {value} to word32 and jump to {if_number} if it is a Number, | 
 | // or find that it is a BigInt and jump to {if_bigint}. In either case, | 
 | // store the type feedback in {var_feedback}. | 
 | void CodeStubAssembler::TaggedToWord32OrBigIntWithFeedback( | 
 |     Node* context, Node* value, Label* if_number, Variable* var_word32, | 
 |     Label* if_bigint, Variable* var_bigint, Variable* var_feedback) { | 
 |   TaggedToWord32OrBigIntImpl<Object::Conversion::kToNumeric>( | 
 |       context, value, if_number, var_word32, if_bigint, var_bigint, | 
 |       var_feedback); | 
 | } | 
 |  | 
 | template <Object::Conversion conversion> | 
 | void CodeStubAssembler::TaggedToWord32OrBigIntImpl( | 
 |     Node* context, Node* value, Label* if_number, Variable* var_word32, | 
 |     Label* if_bigint, Variable* var_bigint, Variable* var_feedback) { | 
 |   DCHECK(var_word32->rep() == MachineRepresentation::kWord32); | 
 |   DCHECK(var_bigint == nullptr || | 
 |          var_bigint->rep() == MachineRepresentation::kTagged); | 
 |   DCHECK(var_feedback == nullptr || | 
 |          var_feedback->rep() == MachineRepresentation::kTaggedSigned); | 
 |  | 
 |   // We might need to loop after conversion. | 
 |   VARIABLE(var_value, MachineRepresentation::kTagged, value); | 
 |   OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNone); | 
 |   Variable* loop_vars[] = {&var_value, var_feedback}; | 
 |   int num_vars = | 
 |       var_feedback != nullptr ? arraysize(loop_vars) : arraysize(loop_vars) - 1; | 
 |   Label loop(this, num_vars, loop_vars); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     value = var_value.value(); | 
 |     Label not_smi(this), is_heap_number(this), is_oddball(this), | 
 |         is_bigint(this); | 
 |     GotoIf(TaggedIsNotSmi(value), ¬_smi); | 
 |  | 
 |     // {value} is a Smi. | 
 |     var_word32->Bind(SmiToInt32(value)); | 
 |     CombineFeedback(var_feedback, BinaryOperationFeedback::kSignedSmall); | 
 |     Goto(if_number); | 
 |  | 
 |     BIND(¬_smi); | 
 |     Node* map = LoadMap(value); | 
 |     GotoIf(IsHeapNumberMap(map), &is_heap_number); | 
 |     Node* instance_type = LoadMapInstanceType(map); | 
 |     if (conversion == Object::Conversion::kToNumeric) { | 
 |       GotoIf(IsBigIntInstanceType(instance_type), &is_bigint); | 
 |     } | 
 |  | 
 |     // Not HeapNumber (or BigInt if conversion == kToNumeric). | 
 |     { | 
 |       if (var_feedback != nullptr) { | 
 |         // We do not require an Or with earlier feedback here because once we | 
 |         // convert the value to a Numeric, we cannot reach this path. We can | 
 |         // only reach this path on the first pass when the feedback is kNone. | 
 |         CSA_ASSERT(this, SmiEqual(CAST(var_feedback->value()), | 
 |                                   SmiConstant(BinaryOperationFeedback::kNone))); | 
 |       } | 
 |       GotoIf(InstanceTypeEqual(instance_type, ODDBALL_TYPE), &is_oddball); | 
 |       // Not an oddball either -> convert. | 
 |       auto builtin = conversion == Object::Conversion::kToNumeric | 
 |                          ? Builtins::kNonNumberToNumeric | 
 |                          : Builtins::kNonNumberToNumber; | 
 |       var_value.Bind(CallBuiltin(builtin, context, value)); | 
 |       OverwriteFeedback(var_feedback, BinaryOperationFeedback::kAny); | 
 |       Goto(&loop); | 
 |  | 
 |       BIND(&is_oddball); | 
 |       var_value.Bind(LoadObjectField(value, Oddball::kToNumberOffset)); | 
 |       OverwriteFeedback(var_feedback, | 
 |                         BinaryOperationFeedback::kNumberOrOddball); | 
 |       Goto(&loop); | 
 |     } | 
 |  | 
 |     BIND(&is_heap_number); | 
 |     var_word32->Bind(TruncateHeapNumberValueToWord32(value)); | 
 |     CombineFeedback(var_feedback, BinaryOperationFeedback::kNumber); | 
 |     Goto(if_number); | 
 |  | 
 |     if (conversion == Object::Conversion::kToNumeric) { | 
 |       BIND(&is_bigint); | 
 |       var_bigint->Bind(value); | 
 |       CombineFeedback(var_feedback, BinaryOperationFeedback::kBigInt); | 
 |       Goto(if_bigint); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) { | 
 |   Node* value = LoadHeapNumberValue(object); | 
 |   return TruncateFloat64ToWord32(value); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryHeapNumberToSmi(TNode<HeapNumber> number, | 
 |                                            TVariable<Smi>& var_result_smi, | 
 |                                            Label* if_smi) { | 
 |   TNode<Float64T> value = LoadHeapNumberValue(number); | 
 |   TryFloat64ToSmi(value, var_result_smi, if_smi); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryFloat64ToSmi(TNode<Float64T> value, | 
 |                                         TVariable<Smi>& var_result_smi, | 
 |                                         Label* if_smi) { | 
 |   TNode<Int32T> value32 = RoundFloat64ToInt32(value); | 
 |   TNode<Float64T> value64 = ChangeInt32ToFloat64(value32); | 
 |  | 
 |   Label if_int32(this), if_heap_number(this, Label::kDeferred); | 
 |  | 
 |   GotoIfNot(Float64Equal(value, value64), &if_heap_number); | 
 |   GotoIfNot(Word32Equal(value32, Int32Constant(0)), &if_int32); | 
 |   Branch(Int32LessThan(UncheckedCast<Int32T>(Float64ExtractHighWord32(value)), | 
 |                        Int32Constant(0)), | 
 |          &if_heap_number, &if_int32); | 
 |  | 
 |   TVARIABLE(Number, var_result); | 
 |   BIND(&if_int32); | 
 |   { | 
 |     if (SmiValuesAre32Bits()) { | 
 |       var_result_smi = SmiTag(ChangeInt32ToIntPtr(value32)); | 
 |     } else { | 
 |       DCHECK(SmiValuesAre31Bits()); | 
 |       TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(value32, value32); | 
 |       TNode<BoolT> overflow = Projection<1>(pair); | 
 |       GotoIf(overflow, &if_heap_number); | 
 |       var_result_smi = | 
 |           BitcastWordToTaggedSigned(ChangeInt32ToIntPtr(Projection<0>(pair))); | 
 |     } | 
 |     Goto(if_smi); | 
 |   } | 
 |   BIND(&if_heap_number); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ChangeFloat64ToTagged( | 
 |     SloppyTNode<Float64T> value) { | 
 |   Label if_smi(this), done(this); | 
 |   TVARIABLE(Smi, var_smi_result); | 
 |   TVARIABLE(Number, var_result); | 
 |   TryFloat64ToSmi(value, var_smi_result, &if_smi); | 
 |  | 
 |   var_result = AllocateHeapNumberWithValue(value); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&if_smi); | 
 |   { | 
 |     var_result = var_smi_result.value(); | 
 |     Goto(&done); | 
 |   } | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ChangeInt32ToTagged( | 
 |     SloppyTNode<Int32T> value) { | 
 |   if (SmiValuesAre32Bits()) { | 
 |     return SmiTag(ChangeInt32ToIntPtr(value)); | 
 |   } | 
 |   DCHECK(SmiValuesAre31Bits()); | 
 |   TVARIABLE(Number, var_result); | 
 |   TNode<PairT<Int32T, BoolT>> pair = Int32AddWithOverflow(value, value); | 
 |   TNode<BoolT> overflow = Projection<1>(pair); | 
 |   Label if_overflow(this, Label::kDeferred), if_notoverflow(this), | 
 |       if_join(this); | 
 |   Branch(overflow, &if_overflow, &if_notoverflow); | 
 |   BIND(&if_overflow); | 
 |   { | 
 |     TNode<Float64T> value64 = ChangeInt32ToFloat64(value); | 
 |     TNode<HeapNumber> result = AllocateHeapNumberWithValue(value64); | 
 |     var_result = result; | 
 |     Goto(&if_join); | 
 |   } | 
 |   BIND(&if_notoverflow); | 
 |   { | 
 |     TNode<IntPtrT> almost_tagged_value = | 
 |         ChangeInt32ToIntPtr(Projection<0>(pair)); | 
 |     TNode<Smi> result = BitcastWordToTaggedSigned(almost_tagged_value); | 
 |     var_result = result; | 
 |     Goto(&if_join); | 
 |   } | 
 |   BIND(&if_join); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ChangeUint32ToTagged( | 
 |     SloppyTNode<Uint32T> value) { | 
 |   Label if_overflow(this, Label::kDeferred), if_not_overflow(this), | 
 |       if_join(this); | 
 |   TVARIABLE(Number, var_result); | 
 |   // If {value} > 2^31 - 1, we need to store it in a HeapNumber. | 
 |   Branch(Uint32LessThan(Uint32Constant(Smi::kMaxValue), value), &if_overflow, | 
 |          &if_not_overflow); | 
 |  | 
 |   BIND(&if_not_overflow); | 
 |   { | 
 |     // The {value} is definitely in valid Smi range. | 
 |     var_result = SmiTag(Signed(ChangeUint32ToWord(value))); | 
 |   } | 
 |   Goto(&if_join); | 
 |  | 
 |   BIND(&if_overflow); | 
 |   { | 
 |     TNode<Float64T> float64_value = ChangeUint32ToFloat64(value); | 
 |     var_result = AllocateHeapNumberWithValue(float64_value); | 
 |   } | 
 |   Goto(&if_join); | 
 |  | 
 |   BIND(&if_join); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ChangeUintPtrToTagged(TNode<UintPtrT> value) { | 
 |   Label if_overflow(this, Label::kDeferred), if_not_overflow(this), | 
 |       if_join(this); | 
 |   TVARIABLE(Number, var_result); | 
 |   // If {value} > 2^31 - 1, we need to store it in a HeapNumber. | 
 |   Branch(UintPtrLessThan(UintPtrConstant(Smi::kMaxValue), value), &if_overflow, | 
 |          &if_not_overflow); | 
 |  | 
 |   BIND(&if_not_overflow); | 
 |   { | 
 |     // The {value} is definitely in valid Smi range. | 
 |     var_result = SmiTag(Signed(value)); | 
 |   } | 
 |   Goto(&if_join); | 
 |  | 
 |   BIND(&if_overflow); | 
 |   { | 
 |     TNode<Float64T> float64_value = ChangeUintPtrToFloat64(value); | 
 |     var_result = AllocateHeapNumberWithValue(float64_value); | 
 |   } | 
 |   Goto(&if_join); | 
 |  | 
 |   BIND(&if_join); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::ToThisString(Node* context, Node* value, | 
 |                                               char const* method_name) { | 
 |   VARIABLE(var_value, MachineRepresentation::kTagged, value); | 
 |  | 
 |   // Check if the {value} is a Smi or a HeapObject. | 
 |   Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this), | 
 |       if_valueisstring(this); | 
 |   Branch(TaggedIsSmi(value), &if_valueissmi, &if_valueisnotsmi); | 
 |   BIND(&if_valueisnotsmi); | 
 |   { | 
 |     // Load the instance type of the {value}. | 
 |     Node* value_instance_type = LoadInstanceType(value); | 
 |  | 
 |     // Check if the {value} is already String. | 
 |     Label if_valueisnotstring(this, Label::kDeferred); | 
 |     Branch(IsStringInstanceType(value_instance_type), &if_valueisstring, | 
 |            &if_valueisnotstring); | 
 |     BIND(&if_valueisnotstring); | 
 |     { | 
 |       // Check if the {value} is null. | 
 |       Label if_valueisnullorundefined(this, Label::kDeferred); | 
 |       GotoIf(IsNullOrUndefined(value), &if_valueisnullorundefined); | 
 |       // Convert the {value} to a String. | 
 |       var_value.Bind(CallBuiltin(Builtins::kToString, context, value)); | 
 |       Goto(&if_valueisstring); | 
 |  | 
 |       BIND(&if_valueisnullorundefined); | 
 |       { | 
 |         // The {value} is either null or undefined. | 
 |         ThrowTypeError(context, MessageTemplate::kCalledOnNullOrUndefined, | 
 |                        method_name); | 
 |       } | 
 |     } | 
 |   } | 
 |   BIND(&if_valueissmi); | 
 |   { | 
 |     // The {value} is a Smi, convert it to a String. | 
 |     var_value.Bind(CallBuiltin(Builtins::kNumberToString, context, value)); | 
 |     Goto(&if_valueisstring); | 
 |   } | 
 |   BIND(&if_valueisstring); | 
 |   return CAST(var_value.value()); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::ChangeNumberToUint32(TNode<Number> value) { | 
 |   TVARIABLE(Uint32T, var_result); | 
 |   Label if_smi(this), if_heapnumber(this, Label::kDeferred), done(this); | 
 |   Branch(TaggedIsSmi(value), &if_smi, &if_heapnumber); | 
 |   BIND(&if_smi); | 
 |   { | 
 |     var_result = Unsigned(SmiToInt32(CAST(value))); | 
 |     Goto(&done); | 
 |   } | 
 |   BIND(&if_heapnumber); | 
 |   { | 
 |     var_result = ChangeFloat64ToUint32(LoadHeapNumberValue(CAST(value))); | 
 |     Goto(&done); | 
 |   } | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Float64T> CodeStubAssembler::ChangeNumberToFloat64( | 
 |     SloppyTNode<Number> value) { | 
 |   // TODO(tebbi): Remove assert once argument is TNode instead of SloppyTNode. | 
 |   CSA_SLOW_ASSERT(this, IsNumber(value)); | 
 |   TVARIABLE(Float64T, result); | 
 |   Label smi(this); | 
 |   Label done(this, &result); | 
 |   GotoIf(TaggedIsSmi(value), &smi); | 
 |   result = LoadHeapNumberValue(CAST(value)); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&smi); | 
 |   { | 
 |     result = SmiToFloat64(CAST(value)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<UintPtrT> CodeStubAssembler::ChangeNonnegativeNumberToUintPtr( | 
 |     TNode<Number> value) { | 
 |   TVARIABLE(UintPtrT, result); | 
 |   Label done(this, &result); | 
 |   Branch(TaggedIsSmi(value), | 
 |          [&] { | 
 |            TNode<Smi> value_smi = CAST(value); | 
 |            CSA_SLOW_ASSERT(this, SmiLessThan(SmiConstant(-1), value_smi)); | 
 |            result = UncheckedCast<UintPtrT>(SmiToIntPtr(value_smi)); | 
 |            Goto(&done); | 
 |          }, | 
 |          [&] { | 
 |            TNode<HeapNumber> value_hn = CAST(value); | 
 |            result = ChangeFloat64ToUintPtr(LoadHeapNumberValue(value_hn)); | 
 |            Goto(&done); | 
 |          }); | 
 |  | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<WordT> CodeStubAssembler::TimesPointerSize(SloppyTNode<WordT> value) { | 
 |   return WordShl(value, kPointerSizeLog2); | 
 | } | 
 |  | 
 | TNode<WordT> CodeStubAssembler::TimesDoubleSize(SloppyTNode<WordT> value) { | 
 |   return WordShl(value, kDoubleSizeLog2); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::ToThisValue(Node* context, Node* value, | 
 |                                      PrimitiveType primitive_type, | 
 |                                      char const* method_name) { | 
 |   // We might need to loop once due to JSValue unboxing. | 
 |   VARIABLE(var_value, MachineRepresentation::kTagged, value); | 
 |   Label loop(this, &var_value), done_loop(this), | 
 |       done_throw(this, Label::kDeferred); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     // Load the current {value}. | 
 |     value = var_value.value(); | 
 |  | 
 |     // Check if the {value} is a Smi or a HeapObject. | 
 |     GotoIf(TaggedIsSmi(value), (primitive_type == PrimitiveType::kNumber) | 
 |                                    ? &done_loop | 
 |                                    : &done_throw); | 
 |  | 
 |     // Load the map of the {value}. | 
 |     Node* value_map = LoadMap(value); | 
 |  | 
 |     // Load the instance type of the {value}. | 
 |     Node* value_instance_type = LoadMapInstanceType(value_map); | 
 |  | 
 |     // Check if {value} is a JSValue. | 
 |     Label if_valueisvalue(this, Label::kDeferred), if_valueisnotvalue(this); | 
 |     Branch(InstanceTypeEqual(value_instance_type, JS_VALUE_TYPE), | 
 |            &if_valueisvalue, &if_valueisnotvalue); | 
 |  | 
 |     BIND(&if_valueisvalue); | 
 |     { | 
 |       // Load the actual value from the {value}. | 
 |       var_value.Bind(LoadObjectField(value, JSValue::kValueOffset)); | 
 |       Goto(&loop); | 
 |     } | 
 |  | 
 |     BIND(&if_valueisnotvalue); | 
 |     { | 
 |       switch (primitive_type) { | 
 |         case PrimitiveType::kBoolean: | 
 |           GotoIf(WordEqual(value_map, BooleanMapConstant()), &done_loop); | 
 |           break; | 
 |         case PrimitiveType::kNumber: | 
 |           GotoIf(WordEqual(value_map, HeapNumberMapConstant()), &done_loop); | 
 |           break; | 
 |         case PrimitiveType::kString: | 
 |           GotoIf(IsStringInstanceType(value_instance_type), &done_loop); | 
 |           break; | 
 |         case PrimitiveType::kSymbol: | 
 |           GotoIf(WordEqual(value_map, SymbolMapConstant()), &done_loop); | 
 |           break; | 
 |       } | 
 |       Goto(&done_throw); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&done_throw); | 
 |   { | 
 |     const char* primitive_name = nullptr; | 
 |     switch (primitive_type) { | 
 |       case PrimitiveType::kBoolean: | 
 |         primitive_name = "Boolean"; | 
 |         break; | 
 |       case PrimitiveType::kNumber: | 
 |         primitive_name = "Number"; | 
 |         break; | 
 |       case PrimitiveType::kString: | 
 |         primitive_name = "String"; | 
 |         break; | 
 |       case PrimitiveType::kSymbol: | 
 |         primitive_name = "Symbol"; | 
 |         break; | 
 |     } | 
 |     CHECK_NOT_NULL(primitive_name); | 
 |  | 
 |     // The {value} is not a compatible receiver for this method. | 
 |     ThrowTypeError(context, MessageTemplate::kNotGeneric, method_name, | 
 |                    primitive_name); | 
 |   } | 
 |  | 
 |   BIND(&done_loop); | 
 |   return var_value.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::ThrowIfNotInstanceType(Node* context, Node* value, | 
 |                                                 InstanceType instance_type, | 
 |                                                 char const* method_name) { | 
 |   Label out(this), throw_exception(this, Label::kDeferred); | 
 |   VARIABLE(var_value_map, MachineRepresentation::kTagged); | 
 |  | 
 |   GotoIf(TaggedIsSmi(value), &throw_exception); | 
 |  | 
 |   // Load the instance type of the {value}. | 
 |   var_value_map.Bind(LoadMap(value)); | 
 |   Node* const value_instance_type = LoadMapInstanceType(var_value_map.value()); | 
 |  | 
 |   Branch(Word32Equal(value_instance_type, Int32Constant(instance_type)), &out, | 
 |          &throw_exception); | 
 |  | 
 |   // The {value} is not a compatible receiver for this method. | 
 |   BIND(&throw_exception); | 
 |   ThrowTypeError(context, MessageTemplate::kIncompatibleMethodReceiver, | 
 |                  StringConstant(method_name), value); | 
 |  | 
 |   BIND(&out); | 
 |   return var_value_map.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::ThrowIfNotJSReceiver(Node* context, Node* value, | 
 |                                               MessageTemplate msg_template, | 
 |                                               const char* method_name) { | 
 |   Label out(this), throw_exception(this, Label::kDeferred); | 
 |   VARIABLE(var_value_map, MachineRepresentation::kTagged); | 
 |  | 
 |   GotoIf(TaggedIsSmi(value), &throw_exception); | 
 |  | 
 |   // Load the instance type of the {value}. | 
 |   var_value_map.Bind(LoadMap(value)); | 
 |   Node* const value_instance_type = LoadMapInstanceType(var_value_map.value()); | 
 |  | 
 |   Branch(IsJSReceiverInstanceType(value_instance_type), &out, &throw_exception); | 
 |  | 
 |   // The {value} is not a compatible receiver for this method. | 
 |   BIND(&throw_exception); | 
 |   ThrowTypeError(context, msg_template, method_name); | 
 |  | 
 |   BIND(&out); | 
 |   return var_value_map.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::ThrowRangeError(Node* context, MessageTemplate message, | 
 |                                         Node* arg0, Node* arg1, Node* arg2) { | 
 |   Node* template_index = SmiConstant(static_cast<int>(message)); | 
 |   if (arg0 == nullptr) { | 
 |     CallRuntime(Runtime::kThrowRangeError, context, template_index); | 
 |   } else if (arg1 == nullptr) { | 
 |     CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0); | 
 |   } else if (arg2 == nullptr) { | 
 |     CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0, arg1); | 
 |   } else { | 
 |     CallRuntime(Runtime::kThrowRangeError, context, template_index, arg0, arg1, | 
 |                 arg2); | 
 |   } | 
 |   Unreachable(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::ThrowTypeError(Node* context, MessageTemplate message, | 
 |                                        char const* arg0, char const* arg1) { | 
 |   Node* arg0_node = nullptr; | 
 |   if (arg0) arg0_node = StringConstant(arg0); | 
 |   Node* arg1_node = nullptr; | 
 |   if (arg1) arg1_node = StringConstant(arg1); | 
 |   ThrowTypeError(context, message, arg0_node, arg1_node); | 
 | } | 
 |  | 
 | void CodeStubAssembler::ThrowTypeError(Node* context, MessageTemplate message, | 
 |                                        Node* arg0, Node* arg1, Node* arg2) { | 
 |   Node* template_index = SmiConstant(static_cast<int>(message)); | 
 |   if (arg0 == nullptr) { | 
 |     CallRuntime(Runtime::kThrowTypeError, context, template_index); | 
 |   } else if (arg1 == nullptr) { | 
 |     CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0); | 
 |   } else if (arg2 == nullptr) { | 
 |     CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0, arg1); | 
 |   } else { | 
 |     CallRuntime(Runtime::kThrowTypeError, context, template_index, arg0, arg1, | 
 |                 arg2); | 
 |   } | 
 |   Unreachable(); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::InstanceTypeEqual( | 
 |     SloppyTNode<Int32T> instance_type, int type) { | 
 |   return Word32Equal(instance_type, Int32Constant(type)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsDictionaryMap(SloppyTNode<Map> map) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |   Node* bit_field3 = LoadMapBitField3(map); | 
 |   return IsSetWord32<Map::IsDictionaryMapBit>(bit_field3); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsExtensibleMap(SloppyTNode<Map> map) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   return IsSetWord32<Map::IsExtensibleBit>(LoadMapBitField2(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsExtensibleNonPrototypeMap(TNode<Map> map) { | 
 |   int kMask = Map::IsExtensibleBit::kMask | Map::IsPrototypeMapBit::kMask; | 
 |   int kExpected = Map::IsExtensibleBit::kMask; | 
 |   return Word32Equal(Word32And(LoadMapBitField2(map), Int32Constant(kMask)), | 
 |                      Int32Constant(kExpected)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsCallableMap(SloppyTNode<Map> map) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   return IsSetWord32<Map::IsCallableBit>(LoadMapBitField(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsDeprecatedMap(SloppyTNode<Map> map) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   return IsSetWord32<Map::IsDeprecatedBit>(LoadMapBitField3(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsUndetectableMap(SloppyTNode<Map> map) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   return IsSetWord32<Map::IsUndetectableBit>(LoadMapBitField(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNoElementsProtectorCellInvalid() { | 
 |   Node* invalid = SmiConstant(Isolate::kProtectorInvalid); | 
 |   Node* cell = LoadRoot(RootIndex::kNoElementsProtector); | 
 |   Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); | 
 |   return WordEqual(cell_value, invalid); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPromiseResolveProtectorCellInvalid() { | 
 |   Node* invalid = SmiConstant(Isolate::kProtectorInvalid); | 
 |   Node* cell = LoadRoot(RootIndex::kPromiseResolveProtector); | 
 |   Node* cell_value = LoadObjectField(cell, Cell::kValueOffset); | 
 |   return WordEqual(cell_value, invalid); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPromiseThenProtectorCellInvalid() { | 
 |   Node* invalid = SmiConstant(Isolate::kProtectorInvalid); | 
 |   Node* cell = LoadRoot(RootIndex::kPromiseThenProtector); | 
 |   Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); | 
 |   return WordEqual(cell_value, invalid); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsArraySpeciesProtectorCellInvalid() { | 
 |   Node* invalid = SmiConstant(Isolate::kProtectorInvalid); | 
 |   Node* cell = LoadRoot(RootIndex::kArraySpeciesProtector); | 
 |   Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); | 
 |   return WordEqual(cell_value, invalid); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsTypedArraySpeciesProtectorCellInvalid() { | 
 |   Node* invalid = SmiConstant(Isolate::kProtectorInvalid); | 
 |   Node* cell = LoadRoot(RootIndex::kTypedArraySpeciesProtector); | 
 |   Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); | 
 |   return WordEqual(cell_value, invalid); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPromiseSpeciesProtectorCellInvalid() { | 
 |   Node* invalid = SmiConstant(Isolate::kProtectorInvalid); | 
 |   Node* cell = LoadRoot(RootIndex::kPromiseSpeciesProtector); | 
 |   Node* cell_value = LoadObjectField(cell, PropertyCell::kValueOffset); | 
 |   return WordEqual(cell_value, invalid); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPrototypeInitialArrayPrototype( | 
 |     SloppyTNode<Context> context, SloppyTNode<Map> map) { | 
 |   Node* const native_context = LoadNativeContext(context); | 
 |   Node* const initial_array_prototype = LoadContextElement( | 
 |       native_context, Context::INITIAL_ARRAY_PROTOTYPE_INDEX); | 
 |   Node* proto = LoadMapPrototype(map); | 
 |   return WordEqual(proto, initial_array_prototype); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPrototypeTypedArrayPrototype( | 
 |     SloppyTNode<Context> context, SloppyTNode<Map> map) { | 
 |   TNode<Context> const native_context = LoadNativeContext(context); | 
 |   TNode<Object> const typed_array_prototype = | 
 |       LoadContextElement(native_context, Context::TYPED_ARRAY_PROTOTYPE_INDEX); | 
 |   TNode<HeapObject> proto = LoadMapPrototype(map); | 
 |   TNode<HeapObject> proto_of_proto = Select<HeapObject>( | 
 |       IsJSObject(proto), [=] { return LoadMapPrototype(LoadMap(proto)); }, | 
 |       [=] { return NullConstant(); }); | 
 |   return WordEqual(proto_of_proto, typed_array_prototype); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFastAliasedArgumentsMap( | 
 |     TNode<Context> context, TNode<Map> map) { | 
 |   TNode<Context> const native_context = LoadNativeContext(context); | 
 |   TNode<Object> const arguments_map = LoadContextElement( | 
 |       native_context, Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX); | 
 |   return WordEqual(arguments_map, map); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSlowAliasedArgumentsMap( | 
 |     TNode<Context> context, TNode<Map> map) { | 
 |   TNode<Context> const native_context = LoadNativeContext(context); | 
 |   TNode<Object> const arguments_map = LoadContextElement( | 
 |       native_context, Context::SLOW_ALIASED_ARGUMENTS_MAP_INDEX); | 
 |   return WordEqual(arguments_map, map); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSloppyArgumentsMap(TNode<Context> context, | 
 |                                                      TNode<Map> map) { | 
 |   TNode<Context> const native_context = LoadNativeContext(context); | 
 |   TNode<Object> const arguments_map = | 
 |       LoadContextElement(native_context, Context::SLOPPY_ARGUMENTS_MAP_INDEX); | 
 |   return WordEqual(arguments_map, map); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsStrictArgumentsMap(TNode<Context> context, | 
 |                                                      TNode<Map> map) { | 
 |   TNode<Context> const native_context = LoadNativeContext(context); | 
 |   TNode<Object> const arguments_map = | 
 |       LoadContextElement(native_context, Context::STRICT_ARGUMENTS_MAP_INDEX); | 
 |   return WordEqual(arguments_map, map); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::TaggedIsCallable(TNode<Object> object) { | 
 |   return Select<BoolT>( | 
 |       TaggedIsSmi(object), [=] { return Int32FalseConstant(); }, | 
 |       [=] { | 
 |         return IsCallableMap(LoadMap(UncheckedCast<HeapObject>(object))); | 
 |       }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsCallable(SloppyTNode<HeapObject> object) { | 
 |   return IsCallableMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsCell(SloppyTNode<HeapObject> object) { | 
 |   return WordEqual(LoadMap(object), LoadRoot(RootIndex::kCellMap)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsCode(SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, CODE_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsConstructorMap(SloppyTNode<Map> map) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   return IsSetWord32<Map::IsConstructorBit>(LoadMapBitField(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsConstructor(SloppyTNode<HeapObject> object) { | 
 |   return IsConstructorMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFunctionWithPrototypeSlotMap( | 
 |     SloppyTNode<Map> map) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   return IsSetWord32<Map::HasPrototypeSlotBit>(LoadMapBitField(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSpecialReceiverInstanceType( | 
 |     TNode<Int32T> instance_type) { | 
 |   STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE); | 
 |   return Int32LessThanOrEqual(instance_type, | 
 |                               Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsCustomElementsReceiverInstanceType( | 
 |     TNode<Int32T> instance_type) { | 
 |   return Int32LessThanOrEqual(instance_type, | 
 |                               Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsStringInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   STATIC_ASSERT(INTERNALIZED_STRING_TYPE == FIRST_TYPE); | 
 |   return Int32LessThan(instance_type, Int32Constant(FIRST_NONSTRING_TYPE)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsOneByteStringInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   CSA_ASSERT(this, IsStringInstanceType(instance_type)); | 
 |   return Word32Equal( | 
 |       Word32And(instance_type, Int32Constant(kStringEncodingMask)), | 
 |       Int32Constant(kOneByteStringTag)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::HasOnlyOneByteChars( | 
 |     TNode<Int32T> instance_type) { | 
 |   CSA_ASSERT(this, IsStringInstanceType(instance_type)); | 
 |   return IsSetWord32(instance_type, kStringEncodingMask | kOneByteDataHintMask); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSequentialStringInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   CSA_ASSERT(this, IsStringInstanceType(instance_type)); | 
 |   return Word32Equal( | 
 |       Word32And(instance_type, Int32Constant(kStringRepresentationMask)), | 
 |       Int32Constant(kSeqStringTag)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsConsStringInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   CSA_ASSERT(this, IsStringInstanceType(instance_type)); | 
 |   return Word32Equal( | 
 |       Word32And(instance_type, Int32Constant(kStringRepresentationMask)), | 
 |       Int32Constant(kConsStringTag)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsIndirectStringInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   CSA_ASSERT(this, IsStringInstanceType(instance_type)); | 
 |   STATIC_ASSERT(kIsIndirectStringMask == 0x1); | 
 |   STATIC_ASSERT(kIsIndirectStringTag == 0x1); | 
 |   return UncheckedCast<BoolT>( | 
 |       Word32And(instance_type, Int32Constant(kIsIndirectStringMask))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsExternalStringInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   CSA_ASSERT(this, IsStringInstanceType(instance_type)); | 
 |   return Word32Equal( | 
 |       Word32And(instance_type, Int32Constant(kStringRepresentationMask)), | 
 |       Int32Constant(kExternalStringTag)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsUncachedExternalStringInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   CSA_ASSERT(this, IsStringInstanceType(instance_type)); | 
 |   STATIC_ASSERT(kUncachedExternalStringTag != 0); | 
 |   return IsSetWord32(instance_type, kUncachedExternalStringMask); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSReceiverInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); | 
 |   return Int32GreaterThanOrEqual(instance_type, | 
 |                                  Int32Constant(FIRST_JS_RECEIVER_TYPE)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSReceiverMap(SloppyTNode<Map> map) { | 
 |   return IsJSReceiverInstanceType(LoadMapInstanceType(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSReceiver(SloppyTNode<HeapObject> object) { | 
 |   return IsJSReceiverMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNullOrJSReceiver( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return UncheckedCast<BoolT>(Word32Or(IsJSReceiver(object), IsNull(object))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNullOrUndefined(SloppyTNode<Object> value) { | 
 |   return UncheckedCast<BoolT>(Word32Or(IsUndefined(value), IsNull(value))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSGlobalProxyInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, JS_GLOBAL_PROXY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSObjectInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE); | 
 |   return Int32GreaterThanOrEqual(instance_type, | 
 |                                  Int32Constant(FIRST_JS_OBJECT_TYPE)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSObjectMap(SloppyTNode<Map> map) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   return IsJSObjectInstanceType(LoadMapInstanceType(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSObject(SloppyTNode<HeapObject> object) { | 
 |   return IsJSObjectMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSPromiseMap(SloppyTNode<Map> map) { | 
 |   CSA_ASSERT(this, IsMap(map)); | 
 |   return InstanceTypeEqual(LoadMapInstanceType(map), JS_PROMISE_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSPromise(SloppyTNode<HeapObject> object) { | 
 |   return IsJSPromiseMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSProxy(SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_PROXY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSGlobalProxy( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_GLOBAL_PROXY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsMap(SloppyTNode<HeapObject> map) { | 
 |   return IsMetaMap(LoadMap(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSValueInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, JS_VALUE_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSValue(SloppyTNode<HeapObject> object) { | 
 |   return IsJSValueMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSValueMap(SloppyTNode<Map> map) { | 
 |   return IsJSValueInstanceType(LoadMapInstanceType(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSArrayInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, JS_ARRAY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSArray(SloppyTNode<HeapObject> object) { | 
 |   return IsJSArrayMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSArrayMap(SloppyTNode<Map> map) { | 
 |   return IsJSArrayInstanceType(LoadMapInstanceType(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSArrayIterator( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_ARRAY_ITERATOR_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSAsyncGeneratorObject( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_ASYNC_GENERATOR_OBJECT_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsContext(SloppyTNode<HeapObject> object) { | 
 |   Node* instance_type = LoadInstanceType(object); | 
 |   return UncheckedCast<BoolT>(Word32And( | 
 |       Int32GreaterThanOrEqual(instance_type, Int32Constant(FIRST_CONTEXT_TYPE)), | 
 |       Int32LessThanOrEqual(instance_type, Int32Constant(LAST_CONTEXT_TYPE)))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFixedArray(SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, FIXED_ARRAY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFixedArraySubclass( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   Node* instance_type = LoadInstanceType(object); | 
 |   return UncheckedCast<BoolT>( | 
 |       Word32And(Int32GreaterThanOrEqual(instance_type, | 
 |                                         Int32Constant(FIRST_FIXED_ARRAY_TYPE)), | 
 |                 Int32LessThanOrEqual(instance_type, | 
 |                                      Int32Constant(LAST_FIXED_ARRAY_TYPE)))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNotWeakFixedArraySubclass( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   Node* instance_type = LoadInstanceType(object); | 
 |   return UncheckedCast<BoolT>(Word32Or( | 
 |       Int32LessThan(instance_type, Int32Constant(FIRST_WEAK_FIXED_ARRAY_TYPE)), | 
 |       Int32GreaterThan(instance_type, | 
 |                        Int32Constant(LAST_WEAK_FIXED_ARRAY_TYPE)))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPromiseCapability( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, PROMISE_CAPABILITY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPropertyArray( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, PROPERTY_ARRAY_TYPE); | 
 | } | 
 |  | 
 | // This complicated check is due to elements oddities. If a smi array is empty | 
 | // after Array.p.shift, it is replaced by the empty array constant. If it is | 
 | // later filled with a double element, we try to grow it but pass in a double | 
 | // elements kind. Usually this would cause a size mismatch (since the source | 
 | // fixed array has HOLEY_ELEMENTS and destination has | 
 | // HOLEY_DOUBLE_ELEMENTS), but we don't have to worry about it when the | 
 | // source array is empty. | 
 | // TODO(jgruber): It might we worth creating an empty_double_array constant to | 
 | // simplify this case. | 
 | TNode<BoolT> CodeStubAssembler::IsFixedArrayWithKindOrEmpty( | 
 |     SloppyTNode<HeapObject> object, ElementsKind kind) { | 
 |   Label out(this); | 
 |   TVARIABLE(BoolT, var_result, Int32TrueConstant()); | 
 |  | 
 |   GotoIf(IsFixedArrayWithKind(object, kind), &out); | 
 |  | 
 |   TNode<Smi> const length = LoadFixedArrayBaseLength(CAST(object)); | 
 |   GotoIf(SmiEqual(length, SmiConstant(0)), &out); | 
 |  | 
 |   var_result = Int32FalseConstant(); | 
 |   Goto(&out); | 
 |  | 
 |   BIND(&out); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFixedArrayWithKind( | 
 |     SloppyTNode<HeapObject> object, ElementsKind kind) { | 
 |   if (IsDoubleElementsKind(kind)) { | 
 |     return IsFixedDoubleArray(object); | 
 |   } else { | 
 |     DCHECK(IsSmiOrObjectElementsKind(kind)); | 
 |     return IsFixedArraySubclass(object); | 
 |   } | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsBoolean(SloppyTNode<HeapObject> object) { | 
 |   return IsBooleanMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPropertyCell(SloppyTNode<HeapObject> object) { | 
 |   return IsPropertyCellMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsAccessorInfo(SloppyTNode<HeapObject> object) { | 
 |   return IsAccessorInfoMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsAccessorPair(SloppyTNode<HeapObject> object) { | 
 |   return IsAccessorPairMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsAllocationSite( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return IsAllocationSiteInstanceType(LoadInstanceType(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsAnyHeapNumber( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return UncheckedCast<BoolT>( | 
 |       Word32Or(IsMutableHeapNumber(object), IsHeapNumber(object))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsHeapNumber(SloppyTNode<HeapObject> object) { | 
 |   return IsHeapNumberMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsHeapNumberInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, HEAP_NUMBER_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsOddballInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, ODDBALL_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsMutableHeapNumber( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return IsMutableHeapNumberMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFeedbackCell(SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, FEEDBACK_CELL_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFeedbackVector( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return IsFeedbackVectorMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsName(SloppyTNode<HeapObject> object) { | 
 |   return IsNameInstanceType(LoadInstanceType(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNameInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return Int32LessThanOrEqual(instance_type, Int32Constant(LAST_NAME_TYPE)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsString(SloppyTNode<HeapObject> object) { | 
 |   return IsStringInstanceType(LoadInstanceType(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSymbolInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, SYMBOL_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSymbol(SloppyTNode<HeapObject> object) { | 
 |   return IsSymbolMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsBigIntInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, BIGINT_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsBigInt(SloppyTNode<HeapObject> object) { | 
 |   return IsBigIntInstanceType(LoadInstanceType(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPrimitiveInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return Int32LessThanOrEqual(instance_type, | 
 |                               Int32Constant(LAST_PRIMITIVE_TYPE)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsPrivateSymbol( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return Select<BoolT>(IsSymbol(object), | 
 |                        [=] { | 
 |                          TNode<Symbol> symbol = CAST(object); | 
 |                          TNode<Uint32T> flags = LoadObjectField<Uint32T>( | 
 |                              symbol, Symbol::kFlagsOffset); | 
 |                          return IsSetWord32<Symbol::IsPrivateBit>(flags); | 
 |                        }, | 
 |                        [=] { return Int32FalseConstant(); }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNativeContext( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return WordEqual(LoadMap(object), LoadRoot(RootIndex::kNativeContextMap)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFixedDoubleArray( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return WordEqual(LoadMap(object), FixedDoubleArrayMapConstant()); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsHashTable(SloppyTNode<HeapObject> object) { | 
 |   Node* instance_type = LoadInstanceType(object); | 
 |   return UncheckedCast<BoolT>( | 
 |       Word32And(Int32GreaterThanOrEqual(instance_type, | 
 |                                         Int32Constant(FIRST_HASH_TABLE_TYPE)), | 
 |                 Int32LessThanOrEqual(instance_type, | 
 |                                      Int32Constant(LAST_HASH_TABLE_TYPE)))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsEphemeronHashTable( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, EPHEMERON_HASH_TABLE_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNameDictionary( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, NAME_DICTIONARY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsGlobalDictionary( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, GLOBAL_DICTIONARY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNumberDictionary( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, NUMBER_DICTIONARY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSGeneratorObject( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_GENERATOR_OBJECT_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSFunctionInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, JS_FUNCTION_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsAllocationSiteInstanceType( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   return InstanceTypeEqual(instance_type, ALLOCATION_SITE_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSFunction(SloppyTNode<HeapObject> object) { | 
 |   return IsJSFunctionMap(LoadMap(object)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSFunctionMap(SloppyTNode<Map> map) { | 
 |   return IsJSFunctionInstanceType(LoadMapInstanceType(map)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSTypedArray(SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_TYPED_ARRAY_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSArrayBuffer( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_ARRAY_BUFFER_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSDataView(TNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_DATA_VIEW_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsFixedTypedArray( | 
 |     SloppyTNode<HeapObject> object) { | 
 |   TNode<Int32T> instance_type = LoadInstanceType(object); | 
 |   return UncheckedCast<BoolT>(Word32And( | 
 |       Int32GreaterThanOrEqual(instance_type, | 
 |                               Int32Constant(FIRST_FIXED_TYPED_ARRAY_TYPE)), | 
 |       Int32LessThanOrEqual(instance_type, | 
 |                            Int32Constant(LAST_FIXED_TYPED_ARRAY_TYPE)))); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsJSRegExp(SloppyTNode<HeapObject> object) { | 
 |   return HasInstanceType(object, JS_REGEXP_TYPE); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNumber(SloppyTNode<Object> object) { | 
 |   return Select<BoolT>(TaggedIsSmi(object), [=] { return Int32TrueConstant(); }, | 
 |                        [=] { return IsHeapNumber(CAST(object)); }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNumeric(SloppyTNode<Object> object) { | 
 |   return Select<BoolT>( | 
 |       TaggedIsSmi(object), [=] { return Int32TrueConstant(); }, | 
 |       [=] { | 
 |         return UncheckedCast<BoolT>( | 
 |             Word32Or(IsHeapNumber(CAST(object)), IsBigInt(CAST(object)))); | 
 |       }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNumberNormalized(SloppyTNode<Number> number) { | 
 |   TVARIABLE(BoolT, var_result, Int32TrueConstant()); | 
 |   Label out(this); | 
 |  | 
 |   GotoIf(TaggedIsSmi(number), &out); | 
 |  | 
 |   TNode<Float64T> value = LoadHeapNumberValue(CAST(number)); | 
 |   TNode<Float64T> smi_min = | 
 |       Float64Constant(static_cast<double>(Smi::kMinValue)); | 
 |   TNode<Float64T> smi_max = | 
 |       Float64Constant(static_cast<double>(Smi::kMaxValue)); | 
 |  | 
 |   GotoIf(Float64LessThan(value, smi_min), &out); | 
 |   GotoIf(Float64GreaterThan(value, smi_max), &out); | 
 |   GotoIfNot(Float64Equal(value, value), &out);  // NaN. | 
 |  | 
 |   var_result = Int32FalseConstant(); | 
 |   Goto(&out); | 
 |  | 
 |   BIND(&out); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNumberPositive(SloppyTNode<Number> number) { | 
 |   return Select<BoolT>(TaggedIsSmi(number), | 
 |                        [=] { return TaggedIsPositiveSmi(number); }, | 
 |                        [=] { return IsHeapNumberPositive(CAST(number)); }); | 
 | } | 
 |  | 
 | // TODO(cbruni): Use TNode<HeapNumber> instead of custom name. | 
 | TNode<BoolT> CodeStubAssembler::IsHeapNumberPositive(TNode<HeapNumber> number) { | 
 |   TNode<Float64T> value = LoadHeapNumberValue(number); | 
 |   TNode<Float64T> float_zero = Float64Constant(0.); | 
 |   return Float64GreaterThanOrEqual(value, float_zero); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNumberNonNegativeSafeInteger( | 
 |     TNode<Number> number) { | 
 |   return Select<BoolT>( | 
 |       // TODO(cbruni): Introduce TaggedIsNonNegateSmi to avoid confusion. | 
 |       TaggedIsSmi(number), [=] { return TaggedIsPositiveSmi(number); }, | 
 |       [=] { | 
 |         TNode<HeapNumber> heap_number = CAST(number); | 
 |         return Select<BoolT>(IsInteger(heap_number), | 
 |                              [=] { return IsHeapNumberPositive(heap_number); }, | 
 |                              [=] { return Int32FalseConstant(); }); | 
 |       }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSafeInteger(TNode<Object> number) { | 
 |   return Select<BoolT>( | 
 |       TaggedIsSmi(number), [=] { return Int32TrueConstant(); }, | 
 |       [=] { | 
 |         return Select<BoolT>( | 
 |             IsHeapNumber(CAST(number)), | 
 |             [=] { return IsSafeInteger(UncheckedCast<HeapNumber>(number)); }, | 
 |             [=] { return Int32FalseConstant(); }); | 
 |       }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSafeInteger(TNode<HeapNumber> number) { | 
 |   // Load the actual value of {number}. | 
 |   TNode<Float64T> number_value = LoadHeapNumberValue(number); | 
 |   // Truncate the value of {number} to an integer (or an infinity). | 
 |   TNode<Float64T> integer = Float64Trunc(number_value); | 
 |  | 
 |   return Select<BoolT>( | 
 |       // Check if {number}s value matches the integer (ruling out the | 
 |       // infinities). | 
 |       Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)), | 
 |       [=] { | 
 |         // Check if the {integer} value is in safe integer range. | 
 |         return Float64LessThanOrEqual(Float64Abs(integer), | 
 |                                       Float64Constant(kMaxSafeInteger)); | 
 |       }, | 
 |       [=] { return Int32FalseConstant(); }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsInteger(TNode<Object> number) { | 
 |   return Select<BoolT>( | 
 |       TaggedIsSmi(number), [=] { return Int32TrueConstant(); }, | 
 |       [=] { | 
 |         return Select<BoolT>( | 
 |             IsHeapNumber(CAST(number)), | 
 |             [=] { return IsInteger(UncheckedCast<HeapNumber>(number)); }, | 
 |             [=] { return Int32FalseConstant(); }); | 
 |       }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsInteger(TNode<HeapNumber> number) { | 
 |   TNode<Float64T> number_value = LoadHeapNumberValue(number); | 
 |   // Truncate the value of {number} to an integer (or an infinity). | 
 |   TNode<Float64T> integer = Float64Trunc(number_value); | 
 |   // Check if {number}s value matches the integer (ruling out the infinities). | 
 |   return Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsHeapNumberUint32(TNode<HeapNumber> number) { | 
 |   // Check that the HeapNumber is a valid uint32 | 
 |   return Select<BoolT>( | 
 |       IsHeapNumberPositive(number), | 
 |       [=] { | 
 |         TNode<Float64T> value = LoadHeapNumberValue(number); | 
 |         TNode<Uint32T> int_value = Unsigned(TruncateFloat64ToWord32(value)); | 
 |         return Float64Equal(value, ChangeUint32ToFloat64(int_value)); | 
 |       }, | 
 |       [=] { return Int32FalseConstant(); }); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsNumberArrayIndex(TNode<Number> number) { | 
 |   return Select<BoolT>(TaggedIsSmi(number), | 
 |                        [=] { return TaggedIsPositiveSmi(number); }, | 
 |                        [=] { return IsHeapNumberUint32(CAST(number)); }); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::FixedArraySizeDoesntFitInNewSpace(Node* element_count, | 
 |                                                            int base_size, | 
 |                                                            ParameterMode mode) { | 
 |   int max_newspace_elements = | 
 |       (kMaxRegularHeapObjectSize - base_size) / kPointerSize; | 
 |   return IntPtrOrSmiGreaterThan( | 
 |       element_count, IntPtrOrSmiConstant(max_newspace_elements, mode), mode); | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::StringCharCodeAt(SloppyTNode<String> string, | 
 |                                                   SloppyTNode<IntPtrT> index) { | 
 |   CSA_ASSERT(this, IsString(string)); | 
 |  | 
 |   CSA_ASSERT(this, IntPtrGreaterThanOrEqual(index, IntPtrConstant(0))); | 
 |   CSA_ASSERT(this, IntPtrLessThan(index, LoadStringLengthAsWord(string))); | 
 |  | 
 |   TVARIABLE(Int32T, var_result); | 
 |  | 
 |   Label return_result(this), if_runtime(this, Label::kDeferred), | 
 |       if_stringistwobyte(this), if_stringisonebyte(this); | 
 |  | 
 |   ToDirectStringAssembler to_direct(state(), string); | 
 |   to_direct.TryToDirect(&if_runtime); | 
 |   Node* const offset = IntPtrAdd(index, to_direct.offset()); | 
 |   Node* const instance_type = to_direct.instance_type(); | 
 |  | 
 |   Node* const string_data = to_direct.PointerToData(&if_runtime); | 
 |  | 
 |   // Check if the {string} is a TwoByteSeqString or a OneByteSeqString. | 
 |   Branch(IsOneByteStringInstanceType(instance_type), &if_stringisonebyte, | 
 |          &if_stringistwobyte); | 
 |  | 
 |   BIND(&if_stringisonebyte); | 
 |   { | 
 |     var_result = | 
 |         UncheckedCast<Int32T>(Load(MachineType::Uint8(), string_data, offset)); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&if_stringistwobyte); | 
 |   { | 
 |     var_result = | 
 |         UncheckedCast<Int32T>(Load(MachineType::Uint16(), string_data, | 
 |                                    WordShl(offset, IntPtrConstant(1)))); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&if_runtime); | 
 |   { | 
 |     Node* result = CallRuntime(Runtime::kStringCharCodeAt, NoContextConstant(), | 
 |                                string, SmiTag(index)); | 
 |     var_result = SmiToInt32(result); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_result); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::StringFromSingleCharCode(TNode<Int32T> code) { | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |  | 
 |   // Check if the {code} is a one-byte char code. | 
 |   Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred), | 
 |       if_done(this); | 
 |   Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)), | 
 |          &if_codeisonebyte, &if_codeistwobyte); | 
 |   BIND(&if_codeisonebyte); | 
 |   { | 
 |     // Load the isolate wide single character string cache. | 
 |     TNode<FixedArray> cache = | 
 |         CAST(LoadRoot(RootIndex::kSingleCharacterStringCache)); | 
 |     TNode<IntPtrT> code_index = Signed(ChangeUint32ToWord(code)); | 
 |  | 
 |     // Check if we have an entry for the {code} in the single character string | 
 |     // cache already. | 
 |     Label if_entryisundefined(this, Label::kDeferred), | 
 |         if_entryisnotundefined(this); | 
 |     Node* entry = LoadFixedArrayElement(cache, code_index); | 
 |     Branch(IsUndefined(entry), &if_entryisundefined, &if_entryisnotundefined); | 
 |  | 
 |     BIND(&if_entryisundefined); | 
 |     { | 
 |       // Allocate a new SeqOneByteString for {code} and store it in the {cache}. | 
 |       TNode<String> result = AllocateSeqOneByteString(1); | 
 |       StoreNoWriteBarrier( | 
 |           MachineRepresentation::kWord8, result, | 
 |           IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code); | 
 |       StoreFixedArrayElement(cache, code_index, result); | 
 |       var_result.Bind(result); | 
 |       Goto(&if_done); | 
 |     } | 
 |  | 
 |     BIND(&if_entryisnotundefined); | 
 |     { | 
 |       // Return the entry from the {cache}. | 
 |       var_result.Bind(entry); | 
 |       Goto(&if_done); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&if_codeistwobyte); | 
 |   { | 
 |     // Allocate a new SeqTwoByteString for {code}. | 
 |     Node* result = AllocateSeqTwoByteString(1); | 
 |     StoreNoWriteBarrier( | 
 |         MachineRepresentation::kWord16, result, | 
 |         IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code); | 
 |     var_result.Bind(result); | 
 |     Goto(&if_done); | 
 |   } | 
 |  | 
 |   BIND(&if_done); | 
 |   CSA_ASSERT(this, IsString(var_result.value())); | 
 |   return CAST(var_result.value()); | 
 | } | 
 |  | 
 | // A wrapper around CopyStringCharacters which determines the correct string | 
 | // encoding, allocates a corresponding sequential string, and then copies the | 
 | // given character range using CopyStringCharacters. | 
 | // |from_string| must be a sequential string. | 
 | // 0 <= |from_index| <= |from_index| + |character_count| < from_string.length. | 
 | TNode<String> CodeStubAssembler::AllocAndCopyStringCharacters( | 
 |     Node* from, Node* from_instance_type, TNode<IntPtrT> from_index, | 
 |     TNode<IntPtrT> character_count) { | 
 |   Label end(this), one_byte_sequential(this), two_byte_sequential(this); | 
 |   TVARIABLE(String, var_result); | 
 |  | 
 |   Branch(IsOneByteStringInstanceType(from_instance_type), &one_byte_sequential, | 
 |          &two_byte_sequential); | 
 |  | 
 |   // The subject string is a sequential one-byte string. | 
 |   BIND(&one_byte_sequential); | 
 |   { | 
 |     TNode<String> result = AllocateSeqOneByteString( | 
 |         NoContextConstant(), Unsigned(TruncateIntPtrToInt32(character_count))); | 
 |     CopyStringCharacters(from, result, from_index, IntPtrConstant(0), | 
 |                          character_count, String::ONE_BYTE_ENCODING, | 
 |                          String::ONE_BYTE_ENCODING); | 
 |     var_result = result; | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   // The subject string is a sequential two-byte string. | 
 |   BIND(&two_byte_sequential); | 
 |   { | 
 |     TNode<String> result = AllocateSeqTwoByteString( | 
 |         NoContextConstant(), Unsigned(TruncateIntPtrToInt32(character_count))); | 
 |     CopyStringCharacters(from, result, from_index, IntPtrConstant(0), | 
 |                          character_count, String::TWO_BYTE_ENCODING, | 
 |                          String::TWO_BYTE_ENCODING); | 
 |     var_result = result; | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::SubString(TNode<String> string, | 
 |                                            TNode<IntPtrT> from, | 
 |                                            TNode<IntPtrT> to) { | 
 |   TVARIABLE(String, var_result); | 
 |   ToDirectStringAssembler to_direct(state(), string); | 
 |   Label end(this), runtime(this); | 
 |  | 
 |   TNode<IntPtrT> const substr_length = IntPtrSub(to, from); | 
 |   TNode<IntPtrT> const string_length = LoadStringLengthAsWord(string); | 
 |  | 
 |   // Begin dispatching based on substring length. | 
 |  | 
 |   Label original_string_or_invalid_length(this); | 
 |   GotoIf(UintPtrGreaterThanOrEqual(substr_length, string_length), | 
 |          &original_string_or_invalid_length); | 
 |  | 
 |   // A real substring (substr_length < string_length). | 
 |  | 
 |   Label single_char(this); | 
 |   GotoIf(IntPtrEqual(substr_length, IntPtrConstant(1)), &single_char); | 
 |  | 
 |   // TODO(jgruber): Add an additional case for substring of length == 0? | 
 |  | 
 |   // Deal with different string types: update the index if necessary | 
 |   // and extract the underlying string. | 
 |  | 
 |   TNode<String> direct_string = to_direct.TryToDirect(&runtime); | 
 |   TNode<IntPtrT> offset = IntPtrAdd(from, to_direct.offset()); | 
 |   Node* const instance_type = to_direct.instance_type(); | 
 |  | 
 |   // The subject string can only be external or sequential string of either | 
 |   // encoding at this point. | 
 |   Label external_string(this); | 
 |   { | 
 |     if (FLAG_string_slices) { | 
 |       Label next(this); | 
 |  | 
 |       // Short slice.  Copy instead of slicing. | 
 |       GotoIf(IntPtrLessThan(substr_length, | 
 |                             IntPtrConstant(SlicedString::kMinLength)), | 
 |              &next); | 
 |  | 
 |       // Allocate new sliced string. | 
 |  | 
 |       Counters* counters = isolate()->counters(); | 
 |       IncrementCounter(counters->sub_string_native(), 1); | 
 |  | 
 |       Label one_byte_slice(this), two_byte_slice(this); | 
 |       Branch(IsOneByteStringInstanceType(to_direct.instance_type()), | 
 |              &one_byte_slice, &two_byte_slice); | 
 |  | 
 |       BIND(&one_byte_slice); | 
 |       { | 
 |         var_result = AllocateSlicedOneByteString( | 
 |             Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string, | 
 |             SmiTag(offset)); | 
 |         Goto(&end); | 
 |       } | 
 |  | 
 |       BIND(&two_byte_slice); | 
 |       { | 
 |         var_result = AllocateSlicedTwoByteString( | 
 |             Unsigned(TruncateIntPtrToInt32(substr_length)), direct_string, | 
 |             SmiTag(offset)); | 
 |         Goto(&end); | 
 |       } | 
 |  | 
 |       BIND(&next); | 
 |     } | 
 |  | 
 |     // The subject string can only be external or sequential string of either | 
 |     // encoding at this point. | 
 |     GotoIf(to_direct.is_external(), &external_string); | 
 |  | 
 |     var_result = AllocAndCopyStringCharacters(direct_string, instance_type, | 
 |                                               offset, substr_length); | 
 |  | 
 |     Counters* counters = isolate()->counters(); | 
 |     IncrementCounter(counters->sub_string_native(), 1); | 
 |  | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   // Handle external string. | 
 |   BIND(&external_string); | 
 |   { | 
 |     Node* const fake_sequential_string = to_direct.PointerToString(&runtime); | 
 |  | 
 |     var_result = AllocAndCopyStringCharacters( | 
 |         fake_sequential_string, instance_type, offset, substr_length); | 
 |  | 
 |     Counters* counters = isolate()->counters(); | 
 |     IncrementCounter(counters->sub_string_native(), 1); | 
 |  | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   // Substrings of length 1 are generated through CharCodeAt and FromCharCode. | 
 |   BIND(&single_char); | 
 |   { | 
 |     TNode<Int32T> char_code = StringCharCodeAt(string, from); | 
 |     var_result = StringFromSingleCharCode(char_code); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&original_string_or_invalid_length); | 
 |   { | 
 |     CSA_ASSERT(this, IntPtrEqual(substr_length, string_length)); | 
 |  | 
 |     // Equal length - check if {from, to} == {0, str.length}. | 
 |     GotoIf(UintPtrGreaterThan(from, IntPtrConstant(0)), &runtime); | 
 |  | 
 |     // Return the original string (substr_length == string_length). | 
 |  | 
 |     Counters* counters = isolate()->counters(); | 
 |     IncrementCounter(counters->sub_string_native(), 1); | 
 |  | 
 |     var_result = string; | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   // Fall back to a runtime call. | 
 |   BIND(&runtime); | 
 |   { | 
 |     var_result = | 
 |         CAST(CallRuntime(Runtime::kStringSubstring, NoContextConstant(), string, | 
 |                          SmiTag(from), SmiTag(to))); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | ToDirectStringAssembler::ToDirectStringAssembler( | 
 |     compiler::CodeAssemblerState* state, Node* string, Flags flags) | 
 |     : CodeStubAssembler(state), | 
 |       var_string_(this, MachineRepresentation::kTagged, string), | 
 |       var_instance_type_(this, MachineRepresentation::kWord32), | 
 |       var_offset_(this, MachineType::PointerRepresentation()), | 
 |       var_is_external_(this, MachineRepresentation::kWord32), | 
 |       flags_(flags) { | 
 |   CSA_ASSERT(this, TaggedIsNotSmi(string)); | 
 |   CSA_ASSERT(this, IsString(string)); | 
 |  | 
 |   var_string_.Bind(string); | 
 |   var_offset_.Bind(IntPtrConstant(0)); | 
 |   var_instance_type_.Bind(LoadInstanceType(string)); | 
 |   var_is_external_.Bind(Int32Constant(0)); | 
 | } | 
 |  | 
 | TNode<String> ToDirectStringAssembler::TryToDirect(Label* if_bailout) { | 
 |   VariableList vars({&var_string_, &var_offset_, &var_instance_type_}, zone()); | 
 |   Label dispatch(this, vars); | 
 |   Label if_iscons(this); | 
 |   Label if_isexternal(this); | 
 |   Label if_issliced(this); | 
 |   Label if_isthin(this); | 
 |   Label out(this); | 
 |  | 
 |   Branch(IsSequentialStringInstanceType(var_instance_type_.value()), &out, | 
 |          &dispatch); | 
 |  | 
 |   // Dispatch based on string representation. | 
 |   BIND(&dispatch); | 
 |   { | 
 |     int32_t values[] = { | 
 |         kSeqStringTag,    kConsStringTag, kExternalStringTag, | 
 |         kSlicedStringTag, kThinStringTag, | 
 |     }; | 
 |     Label* labels[] = { | 
 |         &out, &if_iscons, &if_isexternal, &if_issliced, &if_isthin, | 
 |     }; | 
 |     STATIC_ASSERT(arraysize(values) == arraysize(labels)); | 
 |  | 
 |     Node* const representation = Word32And( | 
 |         var_instance_type_.value(), Int32Constant(kStringRepresentationMask)); | 
 |     Switch(representation, if_bailout, values, labels, arraysize(values)); | 
 |   } | 
 |  | 
 |   // Cons string.  Check whether it is flat, then fetch first part. | 
 |   // Flat cons strings have an empty second part. | 
 |   BIND(&if_iscons); | 
 |   { | 
 |     Node* const string = var_string_.value(); | 
 |     GotoIfNot(IsEmptyString(LoadObjectField(string, ConsString::kSecondOffset)), | 
 |               if_bailout); | 
 |  | 
 |     Node* const lhs = LoadObjectField(string, ConsString::kFirstOffset); | 
 |     var_string_.Bind(lhs); | 
 |     var_instance_type_.Bind(LoadInstanceType(lhs)); | 
 |  | 
 |     Goto(&dispatch); | 
 |   } | 
 |  | 
 |   // Sliced string. Fetch parent and correct start index by offset. | 
 |   BIND(&if_issliced); | 
 |   { | 
 |     if (!FLAG_string_slices || (flags_ & kDontUnpackSlicedStrings)) { | 
 |       Goto(if_bailout); | 
 |     } else { | 
 |       Node* const string = var_string_.value(); | 
 |       Node* const sliced_offset = | 
 |           LoadAndUntagObjectField(string, SlicedString::kOffsetOffset); | 
 |       var_offset_.Bind(IntPtrAdd(var_offset_.value(), sliced_offset)); | 
 |  | 
 |       Node* const parent = LoadObjectField(string, SlicedString::kParentOffset); | 
 |       var_string_.Bind(parent); | 
 |       var_instance_type_.Bind(LoadInstanceType(parent)); | 
 |  | 
 |       Goto(&dispatch); | 
 |     } | 
 |   } | 
 |  | 
 |   // Thin string. Fetch the actual string. | 
 |   BIND(&if_isthin); | 
 |   { | 
 |     Node* const string = var_string_.value(); | 
 |     Node* const actual_string = | 
 |         LoadObjectField(string, ThinString::kActualOffset); | 
 |     Node* const actual_instance_type = LoadInstanceType(actual_string); | 
 |  | 
 |     var_string_.Bind(actual_string); | 
 |     var_instance_type_.Bind(actual_instance_type); | 
 |  | 
 |     Goto(&dispatch); | 
 |   } | 
 |  | 
 |   // External string. | 
 |   BIND(&if_isexternal); | 
 |   var_is_external_.Bind(Int32Constant(1)); | 
 |   Goto(&out); | 
 |  | 
 |   BIND(&out); | 
 |   return CAST(var_string_.value()); | 
 | } | 
 |  | 
 | TNode<RawPtrT> ToDirectStringAssembler::TryToSequential( | 
 |     StringPointerKind ptr_kind, Label* if_bailout) { | 
 |   CHECK(ptr_kind == PTR_TO_DATA || ptr_kind == PTR_TO_STRING); | 
 |  | 
 |   TVARIABLE(RawPtrT, var_result); | 
 |   Label out(this), if_issequential(this), if_isexternal(this, Label::kDeferred); | 
 |   Branch(is_external(), &if_isexternal, &if_issequential); | 
 |  | 
 |   BIND(&if_issequential); | 
 |   { | 
 |     STATIC_ASSERT(SeqOneByteString::kHeaderSize == | 
 |                   SeqTwoByteString::kHeaderSize); | 
 |     TNode<IntPtrT> result = BitcastTaggedToWord(var_string_.value()); | 
 |     if (ptr_kind == PTR_TO_DATA) { | 
 |       result = IntPtrAdd(result, IntPtrConstant(SeqOneByteString::kHeaderSize - | 
 |                                                 kHeapObjectTag)); | 
 |     } | 
 |     var_result = ReinterpretCast<RawPtrT>(result); | 
 |     Goto(&out); | 
 |   } | 
 |  | 
 |   BIND(&if_isexternal); | 
 |   { | 
 |     GotoIf(IsUncachedExternalStringInstanceType(var_instance_type_.value()), | 
 |            if_bailout); | 
 |  | 
 |     TNode<String> string = CAST(var_string_.value()); | 
 |     TNode<IntPtrT> result = | 
 |         LoadObjectField<IntPtrT>(string, ExternalString::kResourceDataOffset); | 
 |     if (ptr_kind == PTR_TO_STRING) { | 
 |       result = IntPtrSub(result, IntPtrConstant(SeqOneByteString::kHeaderSize - | 
 |                                                 kHeapObjectTag)); | 
 |     } | 
 |     var_result = ReinterpretCast<RawPtrT>(result); | 
 |     Goto(&out); | 
 |   } | 
 |  | 
 |   BIND(&out); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BranchIfCanDerefIndirectString(Node* string, | 
 |                                                        Node* instance_type, | 
 |                                                        Label* can_deref, | 
 |                                                        Label* cannot_deref) { | 
 |   CSA_ASSERT(this, IsString(string)); | 
 |   Node* representation = | 
 |       Word32And(instance_type, Int32Constant(kStringRepresentationMask)); | 
 |   GotoIf(Word32Equal(representation, Int32Constant(kThinStringTag)), can_deref); | 
 |   GotoIf(Word32NotEqual(representation, Int32Constant(kConsStringTag)), | 
 |          cannot_deref); | 
 |   // Cons string. | 
 |   Node* rhs = LoadObjectField(string, ConsString::kSecondOffset); | 
 |   GotoIf(IsEmptyString(rhs), can_deref); | 
 |   Goto(cannot_deref); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::DerefIndirectString(TNode<String> string, | 
 |                                              TNode<Int32T> instance_type, | 
 |                                              Label* cannot_deref) { | 
 |   Label deref(this); | 
 |   BranchIfCanDerefIndirectString(string, instance_type, &deref, cannot_deref); | 
 |   BIND(&deref); | 
 |   STATIC_ASSERT(ThinString::kActualOffset == ConsString::kFirstOffset); | 
 |   return LoadObjectField(string, ThinString::kActualOffset); | 
 | } | 
 |  | 
 | void CodeStubAssembler::DerefIndirectString(Variable* var_string, | 
 |                                             Node* instance_type) { | 
 | #ifdef DEBUG | 
 |   Label can_deref(this), cannot_deref(this); | 
 |   BranchIfCanDerefIndirectString(var_string->value(), instance_type, &can_deref, | 
 |                                  &cannot_deref); | 
 |   BIND(&cannot_deref); | 
 |   DebugBreak();  // Should be able to dereference string. | 
 |   Goto(&can_deref); | 
 |   BIND(&can_deref); | 
 | #endif  // DEBUG | 
 |  | 
 |   STATIC_ASSERT(ThinString::kActualOffset == ConsString::kFirstOffset); | 
 |   var_string->Bind( | 
 |       LoadObjectField(var_string->value(), ThinString::kActualOffset)); | 
 | } | 
 |  | 
 | void CodeStubAssembler::MaybeDerefIndirectString(Variable* var_string, | 
 |                                                  Node* instance_type, | 
 |                                                  Label* did_deref, | 
 |                                                  Label* cannot_deref) { | 
 |   Label deref(this); | 
 |   BranchIfCanDerefIndirectString(var_string->value(), instance_type, &deref, | 
 |                                  cannot_deref); | 
 |  | 
 |   BIND(&deref); | 
 |   { | 
 |     DerefIndirectString(var_string, instance_type); | 
 |     Goto(did_deref); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::MaybeDerefIndirectStrings(Variable* var_left, | 
 |                                                   Node* left_instance_type, | 
 |                                                   Variable* var_right, | 
 |                                                   Node* right_instance_type, | 
 |                                                   Label* did_something) { | 
 |   Label did_nothing_left(this), did_something_left(this), | 
 |       didnt_do_anything(this); | 
 |   MaybeDerefIndirectString(var_left, left_instance_type, &did_something_left, | 
 |                            &did_nothing_left); | 
 |  | 
 |   BIND(&did_something_left); | 
 |   { | 
 |     MaybeDerefIndirectString(var_right, right_instance_type, did_something, | 
 |                              did_something); | 
 |   } | 
 |  | 
 |   BIND(&did_nothing_left); | 
 |   { | 
 |     MaybeDerefIndirectString(var_right, right_instance_type, did_something, | 
 |                              &didnt_do_anything); | 
 |   } | 
 |  | 
 |   BIND(&didnt_do_anything); | 
 |   // Fall through if neither string was an indirect string. | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::StringAdd(Node* context, TNode<String> left, | 
 |                                            TNode<String> right, | 
 |                                            AllocationFlags flags) { | 
 |   TVARIABLE(String, result); | 
 |   Label check_right(this), runtime(this, Label::kDeferred), cons(this), | 
 |       done(this, &result), done_native(this, &result); | 
 |   Counters* counters = isolate()->counters(); | 
 |  | 
 |   TNode<Uint32T> left_length = LoadStringLengthAsWord32(left); | 
 |   GotoIfNot(Word32Equal(left_length, Uint32Constant(0)), &check_right); | 
 |   result = right; | 
 |   Goto(&done_native); | 
 |  | 
 |   BIND(&check_right); | 
 |   TNode<Uint32T> right_length = LoadStringLengthAsWord32(right); | 
 |   GotoIfNot(Word32Equal(right_length, Uint32Constant(0)), &cons); | 
 |   result = left; | 
 |   Goto(&done_native); | 
 |  | 
 |   BIND(&cons); | 
 |   { | 
 |     TNode<Uint32T> new_length = Uint32Add(left_length, right_length); | 
 |  | 
 |     // If new length is greater than String::kMaxLength, goto runtime to | 
 |     // throw. Note: we also need to invalidate the string length protector, so | 
 |     // can't just throw here directly. | 
 |     GotoIf(Uint32GreaterThan(new_length, Uint32Constant(String::kMaxLength)), | 
 |            &runtime); | 
 |  | 
 |     TVARIABLE(String, var_left, left); | 
 |     TVARIABLE(String, var_right, right); | 
 |     Variable* input_vars[2] = {&var_left, &var_right}; | 
 |     Label non_cons(this, 2, input_vars); | 
 |     Label slow(this, Label::kDeferred); | 
 |     GotoIf(Uint32LessThan(new_length, Uint32Constant(ConsString::kMinLength)), | 
 |            &non_cons); | 
 |  | 
 |     result = | 
 |         NewConsString(new_length, var_left.value(), var_right.value(), flags); | 
 |     Goto(&done_native); | 
 |  | 
 |     BIND(&non_cons); | 
 |  | 
 |     Comment("Full string concatenate"); | 
 |     Node* left_instance_type = LoadInstanceType(var_left.value()); | 
 |     Node* right_instance_type = LoadInstanceType(var_right.value()); | 
 |     // Compute intersection and difference of instance types. | 
 |  | 
 |     Node* ored_instance_types = | 
 |         Word32Or(left_instance_type, right_instance_type); | 
 |     Node* xored_instance_types = | 
 |         Word32Xor(left_instance_type, right_instance_type); | 
 |  | 
 |     // Check if both strings have the same encoding and both are sequential. | 
 |     GotoIf(IsSetWord32(xored_instance_types, kStringEncodingMask), &runtime); | 
 |     GotoIf(IsSetWord32(ored_instance_types, kStringRepresentationMask), &slow); | 
 |  | 
 |     TNode<IntPtrT> word_left_length = Signed(ChangeUint32ToWord(left_length)); | 
 |     TNode<IntPtrT> word_right_length = Signed(ChangeUint32ToWord(right_length)); | 
 |  | 
 |     Label two_byte(this); | 
 |     GotoIf(Word32Equal(Word32And(ored_instance_types, | 
 |                                  Int32Constant(kStringEncodingMask)), | 
 |                        Int32Constant(kTwoByteStringTag)), | 
 |            &two_byte); | 
 |     // One-byte sequential string case | 
 |     result = AllocateSeqOneByteString(context, new_length); | 
 |     CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0), | 
 |                          IntPtrConstant(0), word_left_length, | 
 |                          String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING); | 
 |     CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0), | 
 |                          word_left_length, word_right_length, | 
 |                          String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING); | 
 |     Goto(&done_native); | 
 |  | 
 |     BIND(&two_byte); | 
 |     { | 
 |       // Two-byte sequential string case | 
 |       result = AllocateSeqTwoByteString(context, new_length); | 
 |       CopyStringCharacters(var_left.value(), result.value(), IntPtrConstant(0), | 
 |                            IntPtrConstant(0), word_left_length, | 
 |                            String::TWO_BYTE_ENCODING, | 
 |                            String::TWO_BYTE_ENCODING); | 
 |       CopyStringCharacters(var_right.value(), result.value(), IntPtrConstant(0), | 
 |                            word_left_length, word_right_length, | 
 |                            String::TWO_BYTE_ENCODING, | 
 |                            String::TWO_BYTE_ENCODING); | 
 |       Goto(&done_native); | 
 |     } | 
 |  | 
 |     BIND(&slow); | 
 |     { | 
 |       // Try to unwrap indirect strings, restart the above attempt on success. | 
 |       MaybeDerefIndirectStrings(&var_left, left_instance_type, &var_right, | 
 |                                 right_instance_type, &non_cons); | 
 |       Goto(&runtime); | 
 |     } | 
 |   } | 
 |   BIND(&runtime); | 
 |   { | 
 |     result = CAST(CallRuntime(Runtime::kStringAdd, context, left, right)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done_native); | 
 |   { | 
 |     IncrementCounter(counters->string_add_native(), 1); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::StringFromSingleCodePoint( | 
 |     TNode<Int32T> codepoint, UnicodeEncoding encoding) { | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged, EmptyStringConstant()); | 
 |  | 
 |   Label if_isword16(this), if_isword32(this), return_result(this); | 
 |  | 
 |   Branch(Uint32LessThan(codepoint, Int32Constant(0x10000)), &if_isword16, | 
 |          &if_isword32); | 
 |  | 
 |   BIND(&if_isword16); | 
 |   { | 
 |     var_result.Bind(StringFromSingleCharCode(codepoint)); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&if_isword32); | 
 |   { | 
 |     switch (encoding) { | 
 |       case UnicodeEncoding::UTF16: | 
 |         break; | 
 |       case UnicodeEncoding::UTF32: { | 
 |         // Convert UTF32 to UTF16 code units, and store as a 32 bit word. | 
 |         Node* lead_offset = Int32Constant(0xD800 - (0x10000 >> 10)); | 
 |  | 
 |         // lead = (codepoint >> 10) + LEAD_OFFSET | 
 |         Node* lead = | 
 |             Int32Add(Word32Shr(codepoint, Int32Constant(10)), lead_offset); | 
 |  | 
 |         // trail = (codepoint & 0x3FF) + 0xDC00; | 
 |         Node* trail = Int32Add(Word32And(codepoint, Int32Constant(0x3FF)), | 
 |                                Int32Constant(0xDC00)); | 
 |  | 
 |         // codpoint = (trail << 16) | lead; | 
 |         codepoint = Signed(Word32Or(Word32Shl(trail, Int32Constant(16)), lead)); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     Node* value = AllocateSeqTwoByteString(2); | 
 |     StoreNoWriteBarrier( | 
 |         MachineRepresentation::kWord32, value, | 
 |         IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), | 
 |         codepoint); | 
 |     var_result.Bind(value); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_result); | 
 |   return CAST(var_result.value()); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::StringToNumber(TNode<String> input) { | 
 |   Label runtime(this, Label::kDeferred); | 
 |   Label end(this); | 
 |  | 
 |   TVARIABLE(Number, var_result); | 
 |  | 
 |   // Check if string has a cached array index. | 
 |   TNode<Uint32T> hash = LoadNameHashField(input); | 
 |   GotoIf(IsSetWord32(hash, Name::kDoesNotContainCachedArrayIndexMask), | 
 |          &runtime); | 
 |  | 
 |   var_result = | 
 |       SmiTag(Signed(DecodeWordFromWord32<String::ArrayIndexValueBits>(hash))); | 
 |   Goto(&end); | 
 |  | 
 |   BIND(&runtime); | 
 |   { | 
 |     var_result = | 
 |         CAST(CallRuntime(Runtime::kStringToNumber, NoContextConstant(), input)); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::NumberToString(TNode<Number> input) { | 
 |   TVARIABLE(String, result); | 
 |   TVARIABLE(Smi, smi_input); | 
 |   Label runtime(this, Label::kDeferred), if_smi(this), if_heap_number(this), | 
 |       done(this, &result); | 
 |  | 
 |   // Load the number string cache. | 
 |   Node* number_string_cache = LoadRoot(RootIndex::kNumberStringCache); | 
 |  | 
 |   // Make the hash mask from the length of the number string cache. It | 
 |   // contains two elements (number and string) for each cache entry. | 
 |   // TODO(ishell): cleanup mask handling. | 
 |   Node* mask = | 
 |       BitcastTaggedToWord(LoadFixedArrayBaseLength(number_string_cache)); | 
 |   TNode<IntPtrT> one = IntPtrConstant(1); | 
 |   mask = IntPtrSub(mask, one); | 
 |  | 
 |   GotoIfNot(TaggedIsSmi(input), &if_heap_number); | 
 |   smi_input = CAST(input); | 
 |   Goto(&if_smi); | 
 |  | 
 |   BIND(&if_heap_number); | 
 |   { | 
 |     TNode<HeapNumber> heap_number_input = CAST(input); | 
 |     // Try normalizing the HeapNumber. | 
 |     TryHeapNumberToSmi(heap_number_input, smi_input, &if_smi); | 
 |  | 
 |     // Make a hash from the two 32-bit values of the double. | 
 |     TNode<Int32T> low = | 
 |         LoadObjectField<Int32T>(heap_number_input, HeapNumber::kValueOffset); | 
 |     TNode<Int32T> high = LoadObjectField<Int32T>( | 
 |         heap_number_input, HeapNumber::kValueOffset + kIntSize); | 
 |     TNode<Word32T> hash = Word32Xor(low, high); | 
 |     TNode<WordT> word_hash = WordShl(ChangeInt32ToIntPtr(hash), one); | 
 |     TNode<WordT> index = | 
 |         WordAnd(word_hash, WordSar(mask, SmiShiftBitsConstant())); | 
 |  | 
 |     // Cache entry's key must be a heap number | 
 |     Node* number_key = LoadFixedArrayElement(CAST(number_string_cache), index); | 
 |     GotoIf(TaggedIsSmi(number_key), &runtime); | 
 |     GotoIfNot(IsHeapNumber(number_key), &runtime); | 
 |  | 
 |     // Cache entry's key must match the heap number value we're looking for. | 
 |     Node* low_compare = LoadObjectField(number_key, HeapNumber::kValueOffset, | 
 |                                         MachineType::Int32()); | 
 |     Node* high_compare = LoadObjectField( | 
 |         number_key, HeapNumber::kValueOffset + kIntSize, MachineType::Int32()); | 
 |     GotoIfNot(Word32Equal(low, low_compare), &runtime); | 
 |     GotoIfNot(Word32Equal(high, high_compare), &runtime); | 
 |  | 
 |     // Heap number match, return value from cache entry. | 
 |     result = CAST( | 
 |         LoadFixedArrayElement(CAST(number_string_cache), index, kPointerSize)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_smi); | 
 |   { | 
 |     // Load the smi key, make sure it matches the smi we're looking for. | 
 |     Node* smi_index = BitcastWordToTagged( | 
 |         WordAnd(WordShl(BitcastTaggedToWord(smi_input.value()), one), mask)); | 
 |     Node* smi_key = LoadFixedArrayElement(CAST(number_string_cache), smi_index, | 
 |                                           0, SMI_PARAMETERS); | 
 |     GotoIf(WordNotEqual(smi_key, smi_input.value()), &runtime); | 
 |  | 
 |     // Smi match, return value from cache entry. | 
 |     result = CAST(LoadFixedArrayElement(CAST(number_string_cache), smi_index, | 
 |                                         kPointerSize, SMI_PARAMETERS)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&runtime); | 
 |   { | 
 |     // No cache entry, go to the runtime. | 
 |     result = | 
 |         CAST(CallRuntime(Runtime::kNumberToString, NoContextConstant(), input)); | 
 |     Goto(&done); | 
 |   } | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::NonNumberToNumberOrNumeric( | 
 |     Node* context, Node* input, Object::Conversion mode, | 
 |     BigIntHandling bigint_handling) { | 
 |   CSA_ASSERT(this, Word32BinaryNot(TaggedIsSmi(input))); | 
 |   CSA_ASSERT(this, Word32BinaryNot(IsHeapNumber(input))); | 
 |  | 
 |   // We might need to loop once here due to ToPrimitive conversions. | 
 |   VARIABLE(var_input, MachineRepresentation::kTagged, input); | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |   Label loop(this, &var_input); | 
 |   Label end(this); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     // Load the current {input} value (known to be a HeapObject). | 
 |     Node* input = var_input.value(); | 
 |  | 
 |     // Dispatch on the {input} instance type. | 
 |     Node* input_instance_type = LoadInstanceType(input); | 
 |     Label if_inputisstring(this), if_inputisoddball(this), | 
 |         if_inputisbigint(this), if_inputisreceiver(this, Label::kDeferred), | 
 |         if_inputisother(this, Label::kDeferred); | 
 |     GotoIf(IsStringInstanceType(input_instance_type), &if_inputisstring); | 
 |     GotoIf(IsBigIntInstanceType(input_instance_type), &if_inputisbigint); | 
 |     GotoIf(InstanceTypeEqual(input_instance_type, ODDBALL_TYPE), | 
 |            &if_inputisoddball); | 
 |     Branch(IsJSReceiverInstanceType(input_instance_type), &if_inputisreceiver, | 
 |            &if_inputisother); | 
 |  | 
 |     BIND(&if_inputisstring); | 
 |     { | 
 |       // The {input} is a String, use the fast stub to convert it to a Number. | 
 |       TNode<String> string_input = CAST(input); | 
 |       var_result.Bind(StringToNumber(string_input)); | 
 |       Goto(&end); | 
 |     } | 
 |  | 
 |     BIND(&if_inputisbigint); | 
 |     if (mode == Object::Conversion::kToNumeric) { | 
 |       var_result.Bind(input); | 
 |       Goto(&end); | 
 |     } else { | 
 |       DCHECK_EQ(mode, Object::Conversion::kToNumber); | 
 |       if (bigint_handling == BigIntHandling::kThrow) { | 
 |         Goto(&if_inputisother); | 
 |       } else { | 
 |         DCHECK_EQ(bigint_handling, BigIntHandling::kConvertToNumber); | 
 |         var_result.Bind(CallRuntime(Runtime::kBigIntToNumber, context, input)); | 
 |         Goto(&end); | 
 |       } | 
 |     } | 
 |  | 
 |     BIND(&if_inputisoddball); | 
 |     { | 
 |       // The {input} is an Oddball, we just need to load the Number value of it. | 
 |       var_result.Bind(LoadObjectField(input, Oddball::kToNumberOffset)); | 
 |       Goto(&end); | 
 |     } | 
 |  | 
 |     BIND(&if_inputisreceiver); | 
 |     { | 
 |       // The {input} is a JSReceiver, we need to convert it to a Primitive first | 
 |       // using the ToPrimitive type conversion, preferably yielding a Number. | 
 |       Callable callable = CodeFactory::NonPrimitiveToPrimitive( | 
 |           isolate(), ToPrimitiveHint::kNumber); | 
 |       Node* result = CallStub(callable, context, input); | 
 |  | 
 |       // Check if the {result} is already a Number/Numeric. | 
 |       Label if_done(this), if_notdone(this); | 
 |       Branch(mode == Object::Conversion::kToNumber ? IsNumber(result) | 
 |                                                    : IsNumeric(result), | 
 |              &if_done, &if_notdone); | 
 |  | 
 |       BIND(&if_done); | 
 |       { | 
 |         // The ToPrimitive conversion already gave us a Number/Numeric, so we're | 
 |         // done. | 
 |         var_result.Bind(result); | 
 |         Goto(&end); | 
 |       } | 
 |  | 
 |       BIND(&if_notdone); | 
 |       { | 
 |         // We now have a Primitive {result}, but it's not yet a Number/Numeric. | 
 |         var_input.Bind(result); | 
 |         Goto(&loop); | 
 |       } | 
 |     } | 
 |  | 
 |     BIND(&if_inputisother); | 
 |     { | 
 |       // The {input} is something else (e.g. Symbol), let the runtime figure | 
 |       // out the correct exception. | 
 |       // Note: We cannot tail call to the runtime here, as js-to-wasm | 
 |       // trampolines also use this code currently, and they declare all | 
 |       // outgoing parameters as untagged, while we would push a tagged | 
 |       // object here. | 
 |       auto function_id = mode == Object::Conversion::kToNumber | 
 |                              ? Runtime::kToNumber | 
 |                              : Runtime::kToNumeric; | 
 |       var_result.Bind(CallRuntime(function_id, context, input)); | 
 |       Goto(&end); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   if (mode == Object::Conversion::kToNumeric) { | 
 |     CSA_ASSERT(this, IsNumeric(var_result.value())); | 
 |   } else { | 
 |     DCHECK_EQ(mode, Object::Conversion::kToNumber); | 
 |     CSA_ASSERT(this, IsNumber(var_result.value())); | 
 |   } | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::NonNumberToNumber( | 
 |     SloppyTNode<Context> context, SloppyTNode<HeapObject> input, | 
 |     BigIntHandling bigint_handling) { | 
 |   return CAST(NonNumberToNumberOrNumeric( | 
 |       context, input, Object::Conversion::kToNumber, bigint_handling)); | 
 | } | 
 |  | 
 | TNode<Numeric> CodeStubAssembler::NonNumberToNumeric( | 
 |     SloppyTNode<Context> context, SloppyTNode<HeapObject> input) { | 
 |   Node* result = NonNumberToNumberOrNumeric(context, input, | 
 |                                             Object::Conversion::kToNumeric); | 
 |   CSA_SLOW_ASSERT(this, IsNumeric(result)); | 
 |   return UncheckedCast<Numeric>(result); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ToNumber_Inline(SloppyTNode<Context> context, | 
 |                                                  SloppyTNode<Object> input) { | 
 |   TVARIABLE(Number, var_result); | 
 |   Label end(this), not_smi(this, Label::kDeferred); | 
 |  | 
 |   GotoIfNot(TaggedIsSmi(input), ¬_smi); | 
 |   var_result = CAST(input); | 
 |   Goto(&end); | 
 |  | 
 |   BIND(¬_smi); | 
 |   { | 
 |     var_result = | 
 |         Select<Number>(IsHeapNumber(CAST(input)), [=] { return CAST(input); }, | 
 |                        [=] { | 
 |                          return CAST(CallBuiltin(Builtins::kNonNumberToNumber, | 
 |                                                  context, input)); | 
 |                        }); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ToNumber(SloppyTNode<Context> context, | 
 |                                           SloppyTNode<Object> input, | 
 |                                           BigIntHandling bigint_handling) { | 
 |   TVARIABLE(Number, var_result); | 
 |   Label end(this); | 
 |  | 
 |   Label not_smi(this, Label::kDeferred); | 
 |   GotoIfNot(TaggedIsSmi(input), ¬_smi); | 
 |   TNode<Smi> input_smi = CAST(input); | 
 |   var_result = input_smi; | 
 |   Goto(&end); | 
 |  | 
 |   BIND(¬_smi); | 
 |   { | 
 |     Label not_heap_number(this, Label::kDeferred); | 
 |     TNode<HeapObject> input_ho = CAST(input); | 
 |     GotoIfNot(IsHeapNumber(input_ho), ¬_heap_number); | 
 |  | 
 |     TNode<HeapNumber> input_hn = CAST(input_ho); | 
 |     var_result = input_hn; | 
 |     Goto(&end); | 
 |  | 
 |     BIND(¬_heap_number); | 
 |     { | 
 |       var_result = NonNumberToNumber(context, input_ho, bigint_handling); | 
 |       Goto(&end); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<BigInt> CodeStubAssembler::ToBigInt(SloppyTNode<Context> context, | 
 |                                           SloppyTNode<Object> input) { | 
 |   TVARIABLE(BigInt, var_result); | 
 |   Label if_bigint(this), done(this), if_throw(this); | 
 |  | 
 |   GotoIf(TaggedIsSmi(input), &if_throw); | 
 |   GotoIf(IsBigInt(CAST(input)), &if_bigint); | 
 |   var_result = CAST(CallRuntime(Runtime::kToBigInt, context, input)); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&if_bigint); | 
 |   var_result = CAST(input); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&if_throw); | 
 |   ThrowTypeError(context, MessageTemplate::kBigIntFromObject, input); | 
 |  | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TaggedToNumeric(Node* context, Node* value, Label* done, | 
 |                                         Variable* var_numeric) { | 
 |   TaggedToNumeric(context, value, done, var_numeric, nullptr); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TaggedToNumericWithFeedback(Node* context, Node* value, | 
 |                                                     Label* done, | 
 |                                                     Variable* var_numeric, | 
 |                                                     Variable* var_feedback) { | 
 |   DCHECK_NOT_NULL(var_feedback); | 
 |   TaggedToNumeric(context, value, done, var_numeric, var_feedback); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TaggedToNumeric(Node* context, Node* value, Label* done, | 
 |                                         Variable* var_numeric, | 
 |                                         Variable* var_feedback) { | 
 |   var_numeric->Bind(value); | 
 |   Label if_smi(this), if_heapnumber(this), if_bigint(this), if_oddball(this); | 
 |   GotoIf(TaggedIsSmi(value), &if_smi); | 
 |   Node* map = LoadMap(value); | 
 |   GotoIf(IsHeapNumberMap(map), &if_heapnumber); | 
 |   Node* instance_type = LoadMapInstanceType(map); | 
 |   GotoIf(IsBigIntInstanceType(instance_type), &if_bigint); | 
 |  | 
 |   // {value} is not a Numeric yet. | 
 |   GotoIf(Word32Equal(instance_type, Int32Constant(ODDBALL_TYPE)), &if_oddball); | 
 |   var_numeric->Bind(CallBuiltin(Builtins::kNonNumberToNumeric, context, value)); | 
 |   OverwriteFeedback(var_feedback, BinaryOperationFeedback::kAny); | 
 |   Goto(done); | 
 |  | 
 |   BIND(&if_smi); | 
 |   OverwriteFeedback(var_feedback, BinaryOperationFeedback::kSignedSmall); | 
 |   Goto(done); | 
 |  | 
 |   BIND(&if_heapnumber); | 
 |   OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumber); | 
 |   Goto(done); | 
 |  | 
 |   BIND(&if_bigint); | 
 |   OverwriteFeedback(var_feedback, BinaryOperationFeedback::kBigInt); | 
 |   Goto(done); | 
 |  | 
 |   BIND(&if_oddball); | 
 |   OverwriteFeedback(var_feedback, BinaryOperationFeedback::kNumberOrOddball); | 
 |   var_numeric->Bind(LoadObjectField(value, Oddball::kToNumberOffset)); | 
 |   Goto(done); | 
 | } | 
 |  | 
 | // ES#sec-touint32 | 
 | TNode<Number> CodeStubAssembler::ToUint32(SloppyTNode<Context> context, | 
 |                                           SloppyTNode<Object> input) { | 
 |   Node* const float_zero = Float64Constant(0.0); | 
 |   Node* const float_two_32 = Float64Constant(static_cast<double>(1ULL << 32)); | 
 |  | 
 |   Label out(this); | 
 |  | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged, input); | 
 |  | 
 |   // Early exit for positive smis. | 
 |   { | 
 |     // TODO(jgruber): This branch and the recheck below can be removed once we | 
 |     // have a ToNumber with multiple exits. | 
 |     Label next(this, Label::kDeferred); | 
 |     Branch(TaggedIsPositiveSmi(input), &out, &next); | 
 |     BIND(&next); | 
 |   } | 
 |  | 
 |   Node* const number = ToNumber(context, input); | 
 |   var_result.Bind(number); | 
 |  | 
 |   // Perhaps we have a positive smi now. | 
 |   { | 
 |     Label next(this, Label::kDeferred); | 
 |     Branch(TaggedIsPositiveSmi(number), &out, &next); | 
 |     BIND(&next); | 
 |   } | 
 |  | 
 |   Label if_isnegativesmi(this), if_isheapnumber(this); | 
 |   Branch(TaggedIsSmi(number), &if_isnegativesmi, &if_isheapnumber); | 
 |  | 
 |   BIND(&if_isnegativesmi); | 
 |   { | 
 |     Node* const uint32_value = SmiToInt32(number); | 
 |     Node* float64_value = ChangeUint32ToFloat64(uint32_value); | 
 |     var_result.Bind(AllocateHeapNumberWithValue(float64_value)); | 
 |     Goto(&out); | 
 |   } | 
 |  | 
 |   BIND(&if_isheapnumber); | 
 |   { | 
 |     Label return_zero(this); | 
 |     Node* const value = LoadHeapNumberValue(number); | 
 |  | 
 |     { | 
 |       // +-0. | 
 |       Label next(this); | 
 |       Branch(Float64Equal(value, float_zero), &return_zero, &next); | 
 |       BIND(&next); | 
 |     } | 
 |  | 
 |     { | 
 |       // NaN. | 
 |       Label next(this); | 
 |       Branch(Float64Equal(value, value), &next, &return_zero); | 
 |       BIND(&next); | 
 |     } | 
 |  | 
 |     { | 
 |       // +Infinity. | 
 |       Label next(this); | 
 |       Node* const positive_infinity = | 
 |           Float64Constant(std::numeric_limits<double>::infinity()); | 
 |       Branch(Float64Equal(value, positive_infinity), &return_zero, &next); | 
 |       BIND(&next); | 
 |     } | 
 |  | 
 |     { | 
 |       // -Infinity. | 
 |       Label next(this); | 
 |       Node* const negative_infinity = | 
 |           Float64Constant(-1.0 * std::numeric_limits<double>::infinity()); | 
 |       Branch(Float64Equal(value, negative_infinity), &return_zero, &next); | 
 |       BIND(&next); | 
 |     } | 
 |  | 
 |     // * Let int be the mathematical value that is the same sign as number and | 
 |     //   whose magnitude is floor(abs(number)). | 
 |     // * Let int32bit be int modulo 2^32. | 
 |     // * Return int32bit. | 
 |     { | 
 |       Node* x = Float64Trunc(value); | 
 |       x = Float64Mod(x, float_two_32); | 
 |       x = Float64Add(x, float_two_32); | 
 |       x = Float64Mod(x, float_two_32); | 
 |  | 
 |       Node* const result = ChangeFloat64ToTagged(x); | 
 |       var_result.Bind(result); | 
 |       Goto(&out); | 
 |     } | 
 |  | 
 |     BIND(&return_zero); | 
 |     { | 
 |       var_result.Bind(SmiConstant(0)); | 
 |       Goto(&out); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&out); | 
 |   return CAST(var_result.value()); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::ToString(SloppyTNode<Context> context, | 
 |                                           SloppyTNode<Object> input) { | 
 |   Label is_number(this); | 
 |   Label runtime(this, Label::kDeferred), done(this); | 
 |   VARIABLE(result, MachineRepresentation::kTagged); | 
 |   GotoIf(TaggedIsSmi(input), &is_number); | 
 |  | 
 |   TNode<Map> input_map = LoadMap(CAST(input)); | 
 |   TNode<Int32T> input_instance_type = LoadMapInstanceType(input_map); | 
 |  | 
 |   result.Bind(input); | 
 |   GotoIf(IsStringInstanceType(input_instance_type), &done); | 
 |  | 
 |   Label not_heap_number(this); | 
 |   Branch(IsHeapNumberMap(input_map), &is_number, ¬_heap_number); | 
 |  | 
 |   BIND(&is_number); | 
 |   TNode<Number> number_input = CAST(input); | 
 |   result.Bind(NumberToString(number_input)); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(¬_heap_number); | 
 |   { | 
 |     GotoIfNot(InstanceTypeEqual(input_instance_type, ODDBALL_TYPE), &runtime); | 
 |     result.Bind(LoadObjectField(CAST(input), Oddball::kToStringOffset)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&runtime); | 
 |   { | 
 |     result.Bind(CallRuntime(Runtime::kToString, context, input)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return CAST(result.value()); | 
 | } | 
 |  | 
 | TNode<String> CodeStubAssembler::ToString_Inline(SloppyTNode<Context> context, | 
 |                                                  SloppyTNode<Object> input) { | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged, input); | 
 |   Label stub_call(this, Label::kDeferred), out(this); | 
 |  | 
 |   GotoIf(TaggedIsSmi(input), &stub_call); | 
 |   Branch(IsString(CAST(input)), &out, &stub_call); | 
 |  | 
 |   BIND(&stub_call); | 
 |   var_result.Bind(CallBuiltin(Builtins::kToString, context, input)); | 
 |   Goto(&out); | 
 |  | 
 |   BIND(&out); | 
 |   return CAST(var_result.value()); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::JSReceiverToPrimitive(Node* context, Node* input) { | 
 |   Label if_isreceiver(this, Label::kDeferred), if_isnotreceiver(this); | 
 |   VARIABLE(result, MachineRepresentation::kTagged); | 
 |   Label done(this, &result); | 
 |  | 
 |   BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver); | 
 |  | 
 |   BIND(&if_isreceiver); | 
 |   { | 
 |     // Convert {input} to a primitive first passing Number hint. | 
 |     Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); | 
 |     result.Bind(CallStub(callable, context, input)); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_isnotreceiver); | 
 |   { | 
 |     result.Bind(input); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<JSReceiver> CodeStubAssembler::ToObject(SloppyTNode<Context> context, | 
 |                                               SloppyTNode<Object> input) { | 
 |   return CAST(CallBuiltin(Builtins::kToObject, context, input)); | 
 | } | 
 |  | 
 | TNode<JSReceiver> CodeStubAssembler::ToObject_Inline(TNode<Context> context, | 
 |                                                      TNode<Object> input) { | 
 |   TVARIABLE(JSReceiver, result); | 
 |   Label if_isreceiver(this), if_isnotreceiver(this, Label::kDeferred); | 
 |   Label done(this); | 
 |  | 
 |   BranchIfJSReceiver(input, &if_isreceiver, &if_isnotreceiver); | 
 |  | 
 |   BIND(&if_isreceiver); | 
 |   { | 
 |     result = CAST(input); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_isnotreceiver); | 
 |   { | 
 |     result = ToObject(context, input); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::ToSmiIndex(TNode<Object> input, | 
 |                                          TNode<Context> context, | 
 |                                          Label* range_error) { | 
 |   TVARIABLE(Smi, result); | 
 |   Label check_undefined(this), return_zero(this), defined(this), | 
 |       negative_check(this), done(this); | 
 |  | 
 |   GotoIfNot(TaggedIsSmi(input), &check_undefined); | 
 |   result = CAST(input); | 
 |   Goto(&negative_check); | 
 |  | 
 |   BIND(&check_undefined); | 
 |   Branch(IsUndefined(input), &return_zero, &defined); | 
 |  | 
 |   BIND(&defined); | 
 |   TNode<Number> integer_input = | 
 |       CAST(CallBuiltin(Builtins::kToInteger_TruncateMinusZero, context, input)); | 
 |   GotoIfNot(TaggedIsSmi(integer_input), range_error); | 
 |   result = CAST(integer_input); | 
 |   Goto(&negative_check); | 
 |  | 
 |   BIND(&negative_check); | 
 |   Branch(SmiLessThan(result.value(), SmiConstant(0)), range_error, &done); | 
 |  | 
 |   BIND(&return_zero); | 
 |   result = SmiConstant(0); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::ToSmiLength(TNode<Object> input, | 
 |                                           TNode<Context> context, | 
 |                                           Label* range_error) { | 
 |   TVARIABLE(Smi, result); | 
 |   Label to_integer(this), negative_check(this), | 
 |       heap_number_negative_check(this), return_zero(this), done(this); | 
 |  | 
 |   GotoIfNot(TaggedIsSmi(input), &to_integer); | 
 |   result = CAST(input); | 
 |   Goto(&negative_check); | 
 |  | 
 |   BIND(&to_integer); | 
 |   { | 
 |     TNode<Number> integer_input = CAST( | 
 |         CallBuiltin(Builtins::kToInteger_TruncateMinusZero, context, input)); | 
 |     GotoIfNot(TaggedIsSmi(integer_input), &heap_number_negative_check); | 
 |     result = CAST(integer_input); | 
 |     Goto(&negative_check); | 
 |  | 
 |     // integer_input can still be a negative HeapNumber here. | 
 |     BIND(&heap_number_negative_check); | 
 |     TNode<HeapNumber> heap_number_input = CAST(integer_input); | 
 |     Branch(IsTrue(CallBuiltin(Builtins::kLessThan, context, heap_number_input, | 
 |                               SmiConstant(0))), | 
 |            &return_zero, range_error); | 
 |   } | 
 |  | 
 |   BIND(&negative_check); | 
 |   Branch(SmiLessThan(result.value(), SmiConstant(0)), &return_zero, &done); | 
 |  | 
 |   BIND(&return_zero); | 
 |   result = SmiConstant(0); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ToLength_Inline(SloppyTNode<Context> context, | 
 |                                                  SloppyTNode<Object> input) { | 
 |   TNode<Smi> smi_zero = SmiConstant(0); | 
 |   return Select<Number>( | 
 |       TaggedIsSmi(input), [=] { return SmiMax(CAST(input), smi_zero); }, | 
 |       [=] { return CAST(CallBuiltin(Builtins::kToLength, context, input)); }); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ToInteger_Inline( | 
 |     SloppyTNode<Context> context, SloppyTNode<Object> input, | 
 |     ToIntegerTruncationMode mode) { | 
 |   Builtins::Name builtin = (mode == kNoTruncation) | 
 |                                ? Builtins::kToInteger | 
 |                                : Builtins::kToInteger_TruncateMinusZero; | 
 |   return Select<Number>( | 
 |       TaggedIsSmi(input), [=] { return CAST(input); }, | 
 |       [=] { return CAST(CallBuiltin(builtin, context, input)); }); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::ToInteger(SloppyTNode<Context> context, | 
 |                                            SloppyTNode<Object> input, | 
 |                                            ToIntegerTruncationMode mode) { | 
 |   // We might need to loop once for ToNumber conversion. | 
 |   TVARIABLE(Object, var_arg, input); | 
 |   Label loop(this, &var_arg), out(this); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     // Shared entry points. | 
 |     Label return_zero(this, Label::kDeferred); | 
 |  | 
 |     // Load the current {arg} value. | 
 |     TNode<Object> arg = var_arg.value(); | 
 |  | 
 |     // Check if {arg} is a Smi. | 
 |     GotoIf(TaggedIsSmi(arg), &out); | 
 |  | 
 |     // Check if {arg} is a HeapNumber. | 
 |     Label if_argisheapnumber(this), | 
 |         if_argisnotheapnumber(this, Label::kDeferred); | 
 |     Branch(IsHeapNumber(CAST(arg)), &if_argisheapnumber, | 
 |            &if_argisnotheapnumber); | 
 |  | 
 |     BIND(&if_argisheapnumber); | 
 |     { | 
 |       TNode<HeapNumber> arg_hn = CAST(arg); | 
 |       // Load the floating-point value of {arg}. | 
 |       Node* arg_value = LoadHeapNumberValue(arg_hn); | 
 |  | 
 |       // Check if {arg} is NaN. | 
 |       GotoIfNot(Float64Equal(arg_value, arg_value), &return_zero); | 
 |  | 
 |       // Truncate {arg} towards zero. | 
 |       TNode<Float64T> value = Float64Trunc(arg_value); | 
 |  | 
 |       if (mode == kTruncateMinusZero) { | 
 |         // Truncate -0.0 to 0. | 
 |         GotoIf(Float64Equal(value, Float64Constant(0.0)), &return_zero); | 
 |       } | 
 |  | 
 |       var_arg = ChangeFloat64ToTagged(value); | 
 |       Goto(&out); | 
 |     } | 
 |  | 
 |     BIND(&if_argisnotheapnumber); | 
 |     { | 
 |       // Need to convert {arg} to a Number first. | 
 |       var_arg = UncheckedCast<Object>( | 
 |           CallBuiltin(Builtins::kNonNumberToNumber, context, arg)); | 
 |       Goto(&loop); | 
 |     } | 
 |  | 
 |     BIND(&return_zero); | 
 |     var_arg = SmiConstant(0); | 
 |     Goto(&out); | 
 |   } | 
 |  | 
 |   BIND(&out); | 
 |   if (mode == kTruncateMinusZero) { | 
 |     CSA_ASSERT(this, IsNumberNormalized(CAST(var_arg.value()))); | 
 |   } | 
 |   return CAST(var_arg.value()); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::DecodeWord32(SloppyTNode<Word32T> word32, | 
 |                                                uint32_t shift, uint32_t mask) { | 
 |   return UncheckedCast<Uint32T>(Word32Shr( | 
 |       Word32And(word32, Int32Constant(mask)), static_cast<int>(shift))); | 
 | } | 
 |  | 
 | TNode<UintPtrT> CodeStubAssembler::DecodeWord(SloppyTNode<WordT> word, | 
 |                                               uint32_t shift, uint32_t mask) { | 
 |   return Unsigned( | 
 |       WordShr(WordAnd(word, IntPtrConstant(mask)), static_cast<int>(shift))); | 
 | } | 
 |  | 
 | TNode<WordT> CodeStubAssembler::UpdateWord(TNode<WordT> word, | 
 |                                            TNode<WordT> value, uint32_t shift, | 
 |                                            uint32_t mask) { | 
 |   TNode<WordT> encoded_value = WordShl(value, static_cast<int>(shift)); | 
 |   TNode<IntPtrT> inverted_mask = IntPtrConstant(~static_cast<intptr_t>(mask)); | 
 |   // Ensure the {value} fits fully in the mask. | 
 |   CSA_ASSERT(this, WordEqual(WordAnd(encoded_value, inverted_mask), | 
 |                              IntPtrConstant(0))); | 
 |   return WordOr(WordAnd(word, inverted_mask), encoded_value); | 
 | } | 
 |  | 
 | void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) { | 
 |   if (FLAG_native_code_counters && counter->Enabled()) { | 
 |     Node* counter_address = | 
 |         ExternalConstant(ExternalReference::Create(counter)); | 
 |     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, | 
 |                         Int32Constant(value)); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) { | 
 |   DCHECK_GT(delta, 0); | 
 |   if (FLAG_native_code_counters && counter->Enabled()) { | 
 |     Node* counter_address = | 
 |         ExternalConstant(ExternalReference::Create(counter)); | 
 |     Node* value = Load(MachineType::Int32(), counter_address); | 
 |     value = Int32Add(value, Int32Constant(delta)); | 
 |     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) { | 
 |   DCHECK_GT(delta, 0); | 
 |   if (FLAG_native_code_counters && counter->Enabled()) { | 
 |     Node* counter_address = | 
 |         ExternalConstant(ExternalReference::Create(counter)); | 
 |     Node* value = Load(MachineType::Int32(), counter_address); | 
 |     value = Int32Sub(value, Int32Constant(delta)); | 
 |     StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::Increment(Variable* variable, int value, | 
 |                                   ParameterMode mode) { | 
 |   DCHECK_IMPLIES(mode == INTPTR_PARAMETERS, | 
 |                  variable->rep() == MachineType::PointerRepresentation()); | 
 |   DCHECK_IMPLIES(mode == SMI_PARAMETERS, | 
 |                  variable->rep() == MachineRepresentation::kTagged || | 
 |                      variable->rep() == MachineRepresentation::kTaggedSigned); | 
 |   variable->Bind(IntPtrOrSmiAdd(variable->value(), | 
 |                                 IntPtrOrSmiConstant(value, mode), mode)); | 
 | } | 
 |  | 
 | void CodeStubAssembler::Use(Label* label) { | 
 |   GotoIf(Word32Equal(Int32Constant(0), Int32Constant(1)), label); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex, | 
 |                                   Variable* var_index, Label* if_keyisunique, | 
 |                                   Variable* var_unique, Label* if_bailout, | 
 |                                   Label* if_notinternalized) { | 
 |   DCHECK_EQ(MachineType::PointerRepresentation(), var_index->rep()); | 
 |   DCHECK_EQ(MachineRepresentation::kTagged, var_unique->rep()); | 
 |   Comment("TryToName"); | 
 |  | 
 |   Label if_hascachedindex(this), if_keyisnotindex(this), if_thinstring(this), | 
 |       if_keyisother(this, Label::kDeferred); | 
 |   // Handle Smi and HeapNumber keys. | 
 |   var_index->Bind(TryToIntptr(key, &if_keyisnotindex)); | 
 |   Goto(if_keyisindex); | 
 |  | 
 |   BIND(&if_keyisnotindex); | 
 |   Node* key_map = LoadMap(key); | 
 |   var_unique->Bind(key); | 
 |   // Symbols are unique. | 
 |   GotoIf(IsSymbolMap(key_map), if_keyisunique); | 
 |   Node* key_instance_type = LoadMapInstanceType(key_map); | 
 |   // Miss if |key| is not a String. | 
 |   STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); | 
 |   GotoIfNot(IsStringInstanceType(key_instance_type), &if_keyisother); | 
 |  | 
 |   // |key| is a String. Check if it has a cached array index. | 
 |   Node* hash = LoadNameHashField(key); | 
 |   GotoIf(IsClearWord32(hash, Name::kDoesNotContainCachedArrayIndexMask), | 
 |          &if_hascachedindex); | 
 |   // No cached array index. If the string knows that it contains an index, | 
 |   // then it must be an uncacheable index. Handle this case in the runtime. | 
 |   GotoIf(IsClearWord32(hash, Name::kIsNotArrayIndexMask), if_bailout); | 
 |   // Check if we have a ThinString. | 
 |   GotoIf(InstanceTypeEqual(key_instance_type, THIN_STRING_TYPE), | 
 |          &if_thinstring); | 
 |   GotoIf(InstanceTypeEqual(key_instance_type, THIN_ONE_BYTE_STRING_TYPE), | 
 |          &if_thinstring); | 
 |   // Finally, check if |key| is internalized. | 
 |   STATIC_ASSERT(kNotInternalizedTag != 0); | 
 |   GotoIf(IsSetWord32(key_instance_type, kIsNotInternalizedMask), | 
 |          if_notinternalized != nullptr ? if_notinternalized : if_bailout); | 
 |   Goto(if_keyisunique); | 
 |  | 
 |   BIND(&if_thinstring); | 
 |   var_unique->Bind(LoadObjectField(key, ThinString::kActualOffset)); | 
 |   Goto(if_keyisunique); | 
 |  | 
 |   BIND(&if_hascachedindex); | 
 |   var_index->Bind(DecodeWordFromWord32<Name::ArrayIndexValueBits>(hash)); | 
 |   Goto(if_keyisindex); | 
 |  | 
 |   BIND(&if_keyisother); | 
 |   GotoIfNot(InstanceTypeEqual(key_instance_type, ODDBALL_TYPE), if_bailout); | 
 |   var_unique->Bind(LoadObjectField(key, Oddball::kToStringOffset)); | 
 |   Goto(if_keyisunique); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryInternalizeString( | 
 |     Node* string, Label* if_index, Variable* var_index, Label* if_internalized, | 
 |     Variable* var_internalized, Label* if_not_internalized, Label* if_bailout) { | 
 |   DCHECK(var_index->rep() == MachineType::PointerRepresentation()); | 
 |   DCHECK_EQ(var_internalized->rep(), MachineRepresentation::kTagged); | 
 |   CSA_SLOW_ASSERT(this, IsString(string)); | 
 |   Node* function = | 
 |       ExternalConstant(ExternalReference::try_internalize_string_function()); | 
 |   Node* const isolate_ptr = | 
 |       ExternalConstant(ExternalReference::isolate_address(isolate())); | 
 |   Node* result = | 
 |       CallCFunction2(MachineType::AnyTagged(), MachineType::Pointer(), | 
 |                      MachineType::AnyTagged(), function, isolate_ptr, string); | 
 |   Label internalized(this); | 
 |   GotoIf(TaggedIsNotSmi(result), &internalized); | 
 |   Node* word_result = SmiUntag(result); | 
 |   GotoIf(WordEqual(word_result, IntPtrConstant(ResultSentinel::kNotFound)), | 
 |          if_not_internalized); | 
 |   GotoIf(WordEqual(word_result, IntPtrConstant(ResultSentinel::kUnsupported)), | 
 |          if_bailout); | 
 |   var_index->Bind(word_result); | 
 |   Goto(if_index); | 
 |  | 
 |   BIND(&internalized); | 
 |   var_internalized->Bind(result); | 
 |   Goto(if_internalized); | 
 | } | 
 |  | 
 | template <typename Dictionary> | 
 | TNode<IntPtrT> CodeStubAssembler::EntryToIndex(TNode<IntPtrT> entry, | 
 |                                                int field_index) { | 
 |   TNode<IntPtrT> entry_index = | 
 |       IntPtrMul(entry, IntPtrConstant(Dictionary::kEntrySize)); | 
 |   return IntPtrAdd(entry_index, IntPtrConstant(Dictionary::kElementsStartIndex + | 
 |                                                field_index)); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::LoadDetailsByKeyIndex( | 
 |     TNode<DescriptorArray> container, TNode<IntPtrT> key_index) { | 
 |   const int kKeyToDetailsOffset = | 
 |       (DescriptorArray::kEntryDetailsIndex - DescriptorArray::kEntryKeyIndex) * | 
 |       kPointerSize; | 
 |   return Unsigned(LoadAndUntagToWord32ArrayElement( | 
 |       container, WeakFixedArray::kHeaderSize, key_index, kKeyToDetailsOffset)); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::LoadValueByKeyIndex( | 
 |     TNode<DescriptorArray> container, TNode<IntPtrT> key_index) { | 
 |   const int kKeyToValueOffset = | 
 |       (DescriptorArray::kEntryValueIndex - DescriptorArray::kEntryKeyIndex) * | 
 |       kPointerSize; | 
 |   return CAST( | 
 |       LoadWeakFixedArrayElement(container, key_index, kKeyToValueOffset)); | 
 | } | 
 |  | 
 | TNode<MaybeObject> CodeStubAssembler::LoadFieldTypeByKeyIndex( | 
 |     TNode<DescriptorArray> container, TNode<IntPtrT> key_index) { | 
 |   const int kKeyToValueOffset = | 
 |       (DescriptorArray::kEntryValueIndex - DescriptorArray::kEntryKeyIndex) * | 
 |       kPointerSize; | 
 |   return LoadWeakFixedArrayElement(container, key_index, kKeyToValueOffset); | 
 | } | 
 |  | 
 | template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<NameDictionary>( | 
 |     TNode<IntPtrT>, int); | 
 | template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<GlobalDictionary>( | 
 |     TNode<IntPtrT>, int); | 
 | template TNode<IntPtrT> CodeStubAssembler::EntryToIndex<NumberDictionary>( | 
 |     TNode<IntPtrT>, int); | 
 |  | 
 | // This must be kept in sync with HashTableBase::ComputeCapacity(). | 
 | TNode<IntPtrT> CodeStubAssembler::HashTableComputeCapacity( | 
 |     TNode<IntPtrT> at_least_space_for) { | 
 |   TNode<IntPtrT> capacity = IntPtrRoundUpToPowerOfTwo32( | 
 |       IntPtrAdd(at_least_space_for, WordShr(at_least_space_for, 1))); | 
 |   return IntPtrMax(capacity, IntPtrConstant(HashTableBase::kMinCapacity)); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::IntPtrMax(SloppyTNode<IntPtrT> left, | 
 |                                             SloppyTNode<IntPtrT> right) { | 
 |   intptr_t left_constant; | 
 |   intptr_t right_constant; | 
 |   if (ToIntPtrConstant(left, left_constant) && | 
 |       ToIntPtrConstant(right, right_constant)) { | 
 |     return IntPtrConstant(std::max(left_constant, right_constant)); | 
 |   } | 
 |   return SelectConstant<IntPtrT>(IntPtrGreaterThanOrEqual(left, right), left, | 
 |                                  right); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::IntPtrMin(SloppyTNode<IntPtrT> left, | 
 |                                             SloppyTNode<IntPtrT> right) { | 
 |   intptr_t left_constant; | 
 |   intptr_t right_constant; | 
 |   if (ToIntPtrConstant(left, left_constant) && | 
 |       ToIntPtrConstant(right, right_constant)) { | 
 |     return IntPtrConstant(std::min(left_constant, right_constant)); | 
 |   } | 
 |   return SelectConstant<IntPtrT>(IntPtrLessThanOrEqual(left, right), left, | 
 |                                  right); | 
 | } | 
 |  | 
 | template <> | 
 | TNode<HeapObject> CodeStubAssembler::LoadName<NameDictionary>( | 
 |     TNode<HeapObject> key) { | 
 |   CSA_ASSERT(this, Word32Or(IsTheHole(key), IsName(key))); | 
 |   return key; | 
 | } | 
 |  | 
 | template <> | 
 | TNode<HeapObject> CodeStubAssembler::LoadName<GlobalDictionary>( | 
 |     TNode<HeapObject> key) { | 
 |   TNode<PropertyCell> property_cell = CAST(key); | 
 |   return CAST(LoadObjectField(property_cell, PropertyCell::kNameOffset)); | 
 | } | 
 |  | 
 | template <typename Dictionary> | 
 | void CodeStubAssembler::NameDictionaryLookup( | 
 |     TNode<Dictionary> dictionary, TNode<Name> unique_name, Label* if_found, | 
 |     TVariable<IntPtrT>* var_name_index, Label* if_not_found, int inlined_probes, | 
 |     LookupMode mode) { | 
 |   static_assert(std::is_same<Dictionary, NameDictionary>::value || | 
 |                     std::is_same<Dictionary, GlobalDictionary>::value, | 
 |                 "Unexpected NameDictionary"); | 
 |   DCHECK_EQ(MachineType::PointerRepresentation(), var_name_index->rep()); | 
 |   DCHECK_IMPLIES(mode == kFindInsertionIndex, | 
 |                  inlined_probes == 0 && if_found == nullptr); | 
 |   Comment("NameDictionaryLookup"); | 
 |  | 
 |   TNode<IntPtrT> capacity = SmiUntag(GetCapacity<Dictionary>(dictionary)); | 
 |   TNode<WordT> mask = IntPtrSub(capacity, IntPtrConstant(1)); | 
 |   TNode<WordT> hash = ChangeUint32ToWord(LoadNameHash(unique_name)); | 
 |  | 
 |   // See Dictionary::FirstProbe(). | 
 |   TNode<IntPtrT> count = IntPtrConstant(0); | 
 |   TNode<IntPtrT> entry = Signed(WordAnd(hash, mask)); | 
 |   Node* undefined = UndefinedConstant(); | 
 |  | 
 |   for (int i = 0; i < inlined_probes; i++) { | 
 |     TNode<IntPtrT> index = EntryToIndex<Dictionary>(entry); | 
 |     *var_name_index = index; | 
 |  | 
 |     TNode<HeapObject> current = CAST(LoadFixedArrayElement(dictionary, index)); | 
 |     GotoIf(WordEqual(current, undefined), if_not_found); | 
 |     current = LoadName<Dictionary>(current); | 
 |     GotoIf(WordEqual(current, unique_name), if_found); | 
 |  | 
 |     // See Dictionary::NextProbe(). | 
 |     count = IntPtrConstant(i + 1); | 
 |     entry = Signed(WordAnd(IntPtrAdd(entry, count), mask)); | 
 |   } | 
 |   if (mode == kFindInsertionIndex) { | 
 |     // Appease the variable merging algorithm for "Goto(&loop)" below. | 
 |     *var_name_index = IntPtrConstant(0); | 
 |   } | 
 |  | 
 |   TVARIABLE(IntPtrT, var_count, count); | 
 |   TVARIABLE(IntPtrT, var_entry, entry); | 
 |   Variable* loop_vars[] = {&var_count, &var_entry, var_name_index}; | 
 |   Label loop(this, 3, loop_vars); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     TNode<IntPtrT> entry = var_entry.value(); | 
 |  | 
 |     TNode<IntPtrT> index = EntryToIndex<Dictionary>(entry); | 
 |     *var_name_index = index; | 
 |  | 
 |     TNode<HeapObject> current = CAST(LoadFixedArrayElement(dictionary, index)); | 
 |     GotoIf(WordEqual(current, undefined), if_not_found); | 
 |     if (mode == kFindExisting) { | 
 |       current = LoadName<Dictionary>(current); | 
 |       GotoIf(WordEqual(current, unique_name), if_found); | 
 |     } else { | 
 |       DCHECK_EQ(kFindInsertionIndex, mode); | 
 |       GotoIf(WordEqual(current, TheHoleConstant()), if_not_found); | 
 |     } | 
 |  | 
 |     // See Dictionary::NextProbe(). | 
 |     Increment(&var_count); | 
 |     entry = Signed(WordAnd(IntPtrAdd(entry, var_count.value()), mask)); | 
 |  | 
 |     var_entry = entry; | 
 |     Goto(&loop); | 
 |   } | 
 | } | 
 |  | 
 | // Instantiate template methods to workaround GCC compilation issue. | 
 | template void CodeStubAssembler::NameDictionaryLookup<NameDictionary>( | 
 |     TNode<NameDictionary>, TNode<Name>, Label*, TVariable<IntPtrT>*, Label*, | 
 |     int, LookupMode); | 
 | template void CodeStubAssembler::NameDictionaryLookup<GlobalDictionary>( | 
 |     TNode<GlobalDictionary>, TNode<Name>, Label*, TVariable<IntPtrT>*, Label*, | 
 |     int, LookupMode); | 
 |  | 
 | Node* CodeStubAssembler::ComputeUnseededHash(Node* key) { | 
 |   // See v8::internal::ComputeUnseededHash() | 
 |   Node* hash = TruncateIntPtrToInt32(key); | 
 |   hash = Int32Add(Word32Xor(hash, Int32Constant(0xFFFFFFFF)), | 
 |                   Word32Shl(hash, Int32Constant(15))); | 
 |   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12))); | 
 |   hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2))); | 
 |   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4))); | 
 |   hash = Int32Mul(hash, Int32Constant(2057)); | 
 |   hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16))); | 
 |   return Word32And(hash, Int32Constant(0x3FFFFFFF)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::ComputeSeededHash(Node* key) { | 
 |   Node* const function_addr = | 
 |       ExternalConstant(ExternalReference::compute_integer_hash()); | 
 |   Node* const isolate_ptr = | 
 |       ExternalConstant(ExternalReference::isolate_address(isolate())); | 
 |  | 
 |   MachineType type_ptr = MachineType::Pointer(); | 
 |   MachineType type_uint32 = MachineType::Uint32(); | 
 |  | 
 |   Node* const result = | 
 |       CallCFunction2(type_uint32, type_ptr, type_uint32, function_addr, | 
 |                      isolate_ptr, TruncateIntPtrToInt32(key)); | 
 |   return result; | 
 | } | 
 |  | 
 | void CodeStubAssembler::NumberDictionaryLookup( | 
 |     TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index, | 
 |     Label* if_found, TVariable<IntPtrT>* var_entry, Label* if_not_found) { | 
 |   CSA_ASSERT(this, IsNumberDictionary(dictionary)); | 
 |   DCHECK_EQ(MachineType::PointerRepresentation(), var_entry->rep()); | 
 |   Comment("NumberDictionaryLookup"); | 
 |  | 
 |   TNode<IntPtrT> capacity = SmiUntag(GetCapacity<NumberDictionary>(dictionary)); | 
 |   TNode<WordT> mask = IntPtrSub(capacity, IntPtrConstant(1)); | 
 |  | 
 |   TNode<WordT> hash = ChangeUint32ToWord(ComputeSeededHash(intptr_index)); | 
 |   Node* key_as_float64 = RoundIntPtrToFloat64(intptr_index); | 
 |  | 
 |   // See Dictionary::FirstProbe(). | 
 |   TNode<IntPtrT> count = IntPtrConstant(0); | 
 |   TNode<IntPtrT> entry = Signed(WordAnd(hash, mask)); | 
 |  | 
 |   Node* undefined = UndefinedConstant(); | 
 |   Node* the_hole = TheHoleConstant(); | 
 |  | 
 |   TVARIABLE(IntPtrT, var_count, count); | 
 |   Variable* loop_vars[] = {&var_count, var_entry}; | 
 |   Label loop(this, 2, loop_vars); | 
 |   *var_entry = entry; | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     TNode<IntPtrT> entry = var_entry->value(); | 
 |  | 
 |     TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(entry); | 
 |     Node* current = LoadFixedArrayElement(dictionary, index); | 
 |     GotoIf(WordEqual(current, undefined), if_not_found); | 
 |     Label next_probe(this); | 
 |     { | 
 |       Label if_currentissmi(this), if_currentisnotsmi(this); | 
 |       Branch(TaggedIsSmi(current), &if_currentissmi, &if_currentisnotsmi); | 
 |       BIND(&if_currentissmi); | 
 |       { | 
 |         Node* current_value = SmiUntag(current); | 
 |         Branch(WordEqual(current_value, intptr_index), if_found, &next_probe); | 
 |       } | 
 |       BIND(&if_currentisnotsmi); | 
 |       { | 
 |         GotoIf(WordEqual(current, the_hole), &next_probe); | 
 |         // Current must be the Number. | 
 |         Node* current_value = LoadHeapNumberValue(current); | 
 |         Branch(Float64Equal(current_value, key_as_float64), if_found, | 
 |                &next_probe); | 
 |       } | 
 |     } | 
 |  | 
 |     BIND(&next_probe); | 
 |     // See Dictionary::NextProbe(). | 
 |     Increment(&var_count); | 
 |     entry = Signed(WordAnd(IntPtrAdd(entry, var_count.value()), mask)); | 
 |  | 
 |     *var_entry = entry; | 
 |     Goto(&loop); | 
 |   } | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::BasicLoadNumberDictionaryElement( | 
 |     TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index, | 
 |     Label* not_data, Label* if_hole) { | 
 |   TVARIABLE(IntPtrT, var_entry); | 
 |   Label if_found(this); | 
 |   NumberDictionaryLookup(dictionary, intptr_index, &if_found, &var_entry, | 
 |                          if_hole); | 
 |   BIND(&if_found); | 
 |  | 
 |   // Check that the value is a data property. | 
 |   TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(var_entry.value()); | 
 |   TNode<Uint32T> details = | 
 |       LoadDetailsByKeyIndex<NumberDictionary>(dictionary, index); | 
 |   TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details); | 
 |   // TODO(jkummerow): Support accessors without missing? | 
 |   GotoIfNot(Word32Equal(kind, Int32Constant(kData)), not_data); | 
 |   // Finally, load the value. | 
 |   return LoadValueByKeyIndex<NumberDictionary>(dictionary, index); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BasicStoreNumberDictionaryElement( | 
 |     TNode<NumberDictionary> dictionary, TNode<IntPtrT> intptr_index, | 
 |     TNode<Object> value, Label* not_data, Label* if_hole, Label* read_only) { | 
 |   TVARIABLE(IntPtrT, var_entry); | 
 |   Label if_found(this); | 
 |   NumberDictionaryLookup(dictionary, intptr_index, &if_found, &var_entry, | 
 |                          if_hole); | 
 |   BIND(&if_found); | 
 |  | 
 |   // Check that the value is a data property. | 
 |   TNode<IntPtrT> index = EntryToIndex<NumberDictionary>(var_entry.value()); | 
 |   TNode<Uint32T> details = | 
 |       LoadDetailsByKeyIndex<NumberDictionary>(dictionary, index); | 
 |   TNode<Uint32T> kind = DecodeWord32<PropertyDetails::KindField>(details); | 
 |   // TODO(jkummerow): Support accessors without missing? | 
 |   GotoIfNot(Word32Equal(kind, Int32Constant(kData)), not_data); | 
 |  | 
 |   // Check that the property is writeable. | 
 |   GotoIf(IsSetWord32(details, PropertyDetails::kAttributesReadOnlyMask), | 
 |          read_only); | 
 |  | 
 |   // Finally, store the value. | 
 |   StoreValueByKeyIndex<NumberDictionary>(dictionary, index, value); | 
 | } | 
 |  | 
 | template <class Dictionary> | 
 | void CodeStubAssembler::FindInsertionEntry(TNode<Dictionary> dictionary, | 
 |                                            TNode<Name> key, | 
 |                                            TVariable<IntPtrT>* var_key_index) { | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | template <> | 
 | void CodeStubAssembler::FindInsertionEntry<NameDictionary>( | 
 |     TNode<NameDictionary> dictionary, TNode<Name> key, | 
 |     TVariable<IntPtrT>* var_key_index) { | 
 |   Label done(this); | 
 |   NameDictionaryLookup<NameDictionary>(dictionary, key, nullptr, var_key_index, | 
 |                                        &done, 0, kFindInsertionIndex); | 
 |   BIND(&done); | 
 | } | 
 |  | 
 | template <class Dictionary> | 
 | void CodeStubAssembler::InsertEntry(TNode<Dictionary> dictionary, | 
 |                                     TNode<Name> key, TNode<Object> value, | 
 |                                     TNode<IntPtrT> index, | 
 |                                     TNode<Smi> enum_index) { | 
 |   UNREACHABLE();  // Use specializations instead. | 
 | } | 
 |  | 
 | template <> | 
 | void CodeStubAssembler::InsertEntry<NameDictionary>( | 
 |     TNode<NameDictionary> dictionary, TNode<Name> name, TNode<Object> value, | 
 |     TNode<IntPtrT> index, TNode<Smi> enum_index) { | 
 |   // Store name and value. | 
 |   StoreFixedArrayElement(dictionary, index, name); | 
 |   StoreValueByKeyIndex<NameDictionary>(dictionary, index, value); | 
 |  | 
 |   // Prepare details of the new property. | 
 |   PropertyDetails d(kData, NONE, PropertyCellType::kNoCell); | 
 |   enum_index = | 
 |       SmiShl(enum_index, PropertyDetails::DictionaryStorageField::kShift); | 
 |   // We OR over the actual index below, so we expect the initial value to be 0. | 
 |   DCHECK_EQ(0, d.dictionary_index()); | 
 |   TVARIABLE(Smi, var_details, SmiOr(SmiConstant(d.AsSmi()), enum_index)); | 
 |  | 
 |   // Private names must be marked non-enumerable. | 
 |   Label not_private(this, &var_details); | 
 |   GotoIfNot(IsPrivateSymbol(name), ¬_private); | 
 |   TNode<Smi> dont_enum = | 
 |       SmiShl(SmiConstant(DONT_ENUM), PropertyDetails::AttributesField::kShift); | 
 |   var_details = SmiOr(var_details.value(), dont_enum); | 
 |   Goto(¬_private); | 
 |   BIND(¬_private); | 
 |  | 
 |   // Finally, store the details. | 
 |   StoreDetailsByKeyIndex<NameDictionary>(dictionary, index, | 
 |                                          var_details.value()); | 
 | } | 
 |  | 
 | template <> | 
 | void CodeStubAssembler::InsertEntry<GlobalDictionary>( | 
 |     TNode<GlobalDictionary> dictionary, TNode<Name> key, TNode<Object> value, | 
 |     TNode<IntPtrT> index, TNode<Smi> enum_index) { | 
 |   UNIMPLEMENTED(); | 
 | } | 
 |  | 
 | template <class Dictionary> | 
 | void CodeStubAssembler::Add(TNode<Dictionary> dictionary, TNode<Name> key, | 
 |                             TNode<Object> value, Label* bailout) { | 
 |   CSA_ASSERT(this, Word32BinaryNot(IsEmptyPropertyDictionary(dictionary))); | 
 |   TNode<Smi> capacity = GetCapacity<Dictionary>(dictionary); | 
 |   TNode<Smi> nof = GetNumberOfElements<Dictionary>(dictionary); | 
 |   TNode<Smi> new_nof = SmiAdd(nof, SmiConstant(1)); | 
 |   // Require 33% to still be free after adding additional_elements. | 
 |   // Computing "x + (x >> 1)" on a Smi x does not return a valid Smi! | 
 |   // But that's OK here because it's only used for a comparison. | 
 |   TNode<Smi> required_capacity_pseudo_smi = SmiAdd(new_nof, SmiShr(new_nof, 1)); | 
 |   GotoIf(SmiBelow(capacity, required_capacity_pseudo_smi), bailout); | 
 |   // Require rehashing if more than 50% of free elements are deleted elements. | 
 |   TNode<Smi> deleted = GetNumberOfDeletedElements<Dictionary>(dictionary); | 
 |   CSA_ASSERT(this, SmiAbove(capacity, new_nof)); | 
 |   TNode<Smi> half_of_free_elements = SmiShr(SmiSub(capacity, new_nof), 1); | 
 |   GotoIf(SmiAbove(deleted, half_of_free_elements), bailout); | 
 |  | 
 |   TNode<Smi> enum_index = GetNextEnumerationIndex<Dictionary>(dictionary); | 
 |   TNode<Smi> new_enum_index = SmiAdd(enum_index, SmiConstant(1)); | 
 |   TNode<Smi> max_enum_index = | 
 |       SmiConstant(PropertyDetails::DictionaryStorageField::kMax); | 
 |   GotoIf(SmiAbove(new_enum_index, max_enum_index), bailout); | 
 |  | 
 |   // No more bailouts after this point. | 
 |   // Operations from here on can have side effects. | 
 |  | 
 |   SetNextEnumerationIndex<Dictionary>(dictionary, new_enum_index); | 
 |   SetNumberOfElements<Dictionary>(dictionary, new_nof); | 
 |  | 
 |   TVARIABLE(IntPtrT, var_key_index); | 
 |   FindInsertionEntry<Dictionary>(dictionary, key, &var_key_index); | 
 |   InsertEntry<Dictionary>(dictionary, key, value, var_key_index.value(), | 
 |                           enum_index); | 
 | } | 
 |  | 
 | template void CodeStubAssembler::Add<NameDictionary>(TNode<NameDictionary>, | 
 |                                                      TNode<Name>, TNode<Object>, | 
 |                                                      Label*); | 
 |  | 
 | template <typename Array> | 
 | void CodeStubAssembler::LookupLinear(TNode<Name> unique_name, | 
 |                                      TNode<Array> array, | 
 |                                      TNode<Uint32T> number_of_valid_entries, | 
 |                                      Label* if_found, | 
 |                                      TVariable<IntPtrT>* var_name_index, | 
 |                                      Label* if_not_found) { | 
 |   static_assert(std::is_base_of<FixedArray, Array>::value || | 
 |                     std::is_base_of<WeakFixedArray, Array>::value, | 
 |                 "T must be a descendant of FixedArray or a WeakFixedArray"); | 
 |   Comment("LookupLinear"); | 
 |   TNode<IntPtrT> first_inclusive = IntPtrConstant(Array::ToKeyIndex(0)); | 
 |   TNode<IntPtrT> factor = IntPtrConstant(Array::kEntrySize); | 
 |   TNode<IntPtrT> last_exclusive = IntPtrAdd( | 
 |       first_inclusive, | 
 |       IntPtrMul(ChangeInt32ToIntPtr(number_of_valid_entries), factor)); | 
 |  | 
 |   BuildFastLoop(last_exclusive, first_inclusive, | 
 |                 [=](SloppyTNode<IntPtrT> name_index) { | 
 |                   TNode<MaybeObject> element = | 
 |                       LoadArrayElement(array, Array::kHeaderSize, name_index); | 
 |                   TNode<Name> candidate_name = CAST(element); | 
 |                   *var_name_index = name_index; | 
 |                   GotoIf(WordEqual(candidate_name, unique_name), if_found); | 
 |                 }, | 
 |                 -Array::kEntrySize, INTPTR_PARAMETERS, IndexAdvanceMode::kPre); | 
 |   Goto(if_not_found); | 
 | } | 
 |  | 
 | template <> | 
 | TNode<Uint32T> CodeStubAssembler::NumberOfEntries<DescriptorArray>( | 
 |     TNode<DescriptorArray> descriptors) { | 
 |   return Unsigned(LoadAndUntagToWord32ArrayElement( | 
 |       descriptors, WeakFixedArray::kHeaderSize, | 
 |       IntPtrConstant(DescriptorArray::kDescriptorLengthIndex))); | 
 | } | 
 |  | 
 | template <> | 
 | TNode<Uint32T> CodeStubAssembler::NumberOfEntries<TransitionArray>( | 
 |     TNode<TransitionArray> transitions) { | 
 |   TNode<IntPtrT> length = LoadAndUntagWeakFixedArrayLength(transitions); | 
 |   return Select<Uint32T>( | 
 |       UintPtrLessThan(length, IntPtrConstant(TransitionArray::kFirstIndex)), | 
 |       [=] { return Unsigned(Int32Constant(0)); }, | 
 |       [=] { | 
 |         return Unsigned(LoadAndUntagToWord32ArrayElement( | 
 |             transitions, WeakFixedArray::kHeaderSize, | 
 |             IntPtrConstant(TransitionArray::kTransitionLengthIndex))); | 
 |       }); | 
 | } | 
 |  | 
 | template <typename Array> | 
 | TNode<IntPtrT> CodeStubAssembler::EntryIndexToIndex( | 
 |     TNode<Uint32T> entry_index) { | 
 |   TNode<Int32T> entry_size = Int32Constant(Array::kEntrySize); | 
 |   TNode<Word32T> index = Int32Mul(entry_index, entry_size); | 
 |   return ChangeInt32ToIntPtr(index); | 
 | } | 
 |  | 
 | template <typename Array> | 
 | TNode<IntPtrT> CodeStubAssembler::ToKeyIndex(TNode<Uint32T> entry_index) { | 
 |   return IntPtrAdd(IntPtrConstant(Array::ToKeyIndex(0)), | 
 |                    EntryIndexToIndex<Array>(entry_index)); | 
 | } | 
 |  | 
 | template TNode<IntPtrT> CodeStubAssembler::ToKeyIndex<DescriptorArray>( | 
 |     TNode<Uint32T>); | 
 | template TNode<IntPtrT> CodeStubAssembler::ToKeyIndex<TransitionArray>( | 
 |     TNode<Uint32T>); | 
 |  | 
 | template <> | 
 | TNode<Uint32T> CodeStubAssembler::GetSortedKeyIndex<DescriptorArray>( | 
 |     TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number) { | 
 |   TNode<Uint32T> details = | 
 |       DescriptorArrayGetDetails(descriptors, descriptor_number); | 
 |   return DecodeWord32<PropertyDetails::DescriptorPointer>(details); | 
 | } | 
 |  | 
 | template <> | 
 | TNode<Uint32T> CodeStubAssembler::GetSortedKeyIndex<TransitionArray>( | 
 |     TNode<TransitionArray> transitions, TNode<Uint32T> transition_number) { | 
 |   return transition_number; | 
 | } | 
 |  | 
 | template <typename Array> | 
 | TNode<Name> CodeStubAssembler::GetKey(TNode<Array> array, | 
 |                                       TNode<Uint32T> entry_index) { | 
 |   static_assert(std::is_base_of<FixedArray, Array>::value || | 
 |                     std::is_base_of<WeakFixedArray, Array>::value, | 
 |                 "T must be a descendant of FixedArray or a TransitionArray"); | 
 |   const int key_offset = Array::ToKeyIndex(0) * kPointerSize; | 
 |   TNode<MaybeObject> element = | 
 |       LoadArrayElement(array, Array::kHeaderSize, | 
 |                        EntryIndexToIndex<Array>(entry_index), key_offset); | 
 |   return CAST(element); | 
 | } | 
 |  | 
 | template TNode<Name> CodeStubAssembler::GetKey<DescriptorArray>( | 
 |     TNode<DescriptorArray>, TNode<Uint32T>); | 
 | template TNode<Name> CodeStubAssembler::GetKey<TransitionArray>( | 
 |     TNode<TransitionArray>, TNode<Uint32T>); | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::DescriptorArrayGetDetails( | 
 |     TNode<DescriptorArray> descriptors, TNode<Uint32T> descriptor_number) { | 
 |   const int details_offset = DescriptorArray::ToDetailsIndex(0) * kPointerSize; | 
 |   return Unsigned(LoadAndUntagToWord32ArrayElement( | 
 |       descriptors, WeakFixedArray::kHeaderSize, | 
 |       EntryIndexToIndex<DescriptorArray>(descriptor_number), details_offset)); | 
 | } | 
 |  | 
 | template <typename Array> | 
 | void CodeStubAssembler::LookupBinary(TNode<Name> unique_name, | 
 |                                      TNode<Array> array, | 
 |                                      TNode<Uint32T> number_of_valid_entries, | 
 |                                      Label* if_found, | 
 |                                      TVariable<IntPtrT>* var_name_index, | 
 |                                      Label* if_not_found) { | 
 |   Comment("LookupBinary"); | 
 |   TVARIABLE(Uint32T, var_low, Unsigned(Int32Constant(0))); | 
 |   TNode<Uint32T> limit = | 
 |       Unsigned(Int32Sub(NumberOfEntries<Array>(array), Int32Constant(1))); | 
 |   TVARIABLE(Uint32T, var_high, limit); | 
 |   TNode<Uint32T> hash = LoadNameHashField(unique_name); | 
 |   CSA_ASSERT(this, Word32NotEqual(hash, Int32Constant(0))); | 
 |  | 
 |   // Assume non-empty array. | 
 |   CSA_ASSERT(this, Uint32LessThanOrEqual(var_low.value(), var_high.value())); | 
 |  | 
 |   Label binary_loop(this, {&var_high, &var_low}); | 
 |   Goto(&binary_loop); | 
 |   BIND(&binary_loop); | 
 |   { | 
 |     // mid = low + (high - low) / 2 (to avoid overflow in "(low + high) / 2"). | 
 |     TNode<Uint32T> mid = Unsigned( | 
 |         Int32Add(var_low.value(), | 
 |                  Word32Shr(Int32Sub(var_high.value(), var_low.value()), 1))); | 
 |     // mid_name = array->GetSortedKey(mid). | 
 |     TNode<Uint32T> sorted_key_index = GetSortedKeyIndex<Array>(array, mid); | 
 |     TNode<Name> mid_name = GetKey<Array>(array, sorted_key_index); | 
 |  | 
 |     TNode<Uint32T> mid_hash = LoadNameHashField(mid_name); | 
 |  | 
 |     Label mid_greater(this), mid_less(this), merge(this); | 
 |     Branch(Uint32GreaterThanOrEqual(mid_hash, hash), &mid_greater, &mid_less); | 
 |     BIND(&mid_greater); | 
 |     { | 
 |       var_high = mid; | 
 |       Goto(&merge); | 
 |     } | 
 |     BIND(&mid_less); | 
 |     { | 
 |       var_low = Unsigned(Int32Add(mid, Int32Constant(1))); | 
 |       Goto(&merge); | 
 |     } | 
 |     BIND(&merge); | 
 |     GotoIf(Word32NotEqual(var_low.value(), var_high.value()), &binary_loop); | 
 |   } | 
 |  | 
 |   Label scan_loop(this, &var_low); | 
 |   Goto(&scan_loop); | 
 |   BIND(&scan_loop); | 
 |   { | 
 |     GotoIf(Int32GreaterThan(var_low.value(), limit), if_not_found); | 
 |  | 
 |     TNode<Uint32T> sort_index = | 
 |         GetSortedKeyIndex<Array>(array, var_low.value()); | 
 |     TNode<Name> current_name = GetKey<Array>(array, sort_index); | 
 |     TNode<Uint32T> current_hash = LoadNameHashField(current_name); | 
 |     GotoIf(Word32NotEqual(current_hash, hash), if_not_found); | 
 |     Label next(this); | 
 |     GotoIf(WordNotEqual(current_name, unique_name), &next); | 
 |     GotoIf(Uint32GreaterThanOrEqual(sort_index, number_of_valid_entries), | 
 |            if_not_found); | 
 |     *var_name_index = ToKeyIndex<Array>(sort_index); | 
 |     Goto(if_found); | 
 |  | 
 |     BIND(&next); | 
 |     var_low = Unsigned(Int32Add(var_low.value(), Int32Constant(1))); | 
 |     Goto(&scan_loop); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::DescriptorArrayForEach( | 
 |     VariableList& variable_list, TNode<Uint32T> start_descriptor, | 
 |     TNode<Uint32T> end_descriptor, const ForEachDescriptorBodyFunction& body) { | 
 |   TNode<IntPtrT> start_index = | 
 |       IntPtrAdd(IntPtrConstant(DescriptorArray::ToKeyIndex(0)), | 
 |                 EntryIndexToIndex<DescriptorArray>(start_descriptor)); | 
 |  | 
 |   TNode<IntPtrT> end_index = | 
 |       IntPtrAdd(IntPtrConstant(DescriptorArray::ToKeyIndex(0)), | 
 |                 EntryIndexToIndex<DescriptorArray>(end_descriptor)); | 
 |  | 
 |   BuildFastLoop(variable_list, start_index, end_index, | 
 |                 [=](Node* index) { | 
 |                   TNode<UintPtrT> descriptor_key_index = | 
 |                       TNode<UintPtrT>::UncheckedCast(index); | 
 |                   body(descriptor_key_index); | 
 |                 }, | 
 |                 DescriptorArray::kEntrySize, INTPTR_PARAMETERS, | 
 |                 IndexAdvanceMode::kPost); | 
 | } | 
 |  | 
 | void CodeStubAssembler::ForEachEnumerableOwnProperty( | 
 |     TNode<Context> context, TNode<Map> map, TNode<JSObject> object, | 
 |     const ForEachKeyValueFunction& body, Label* bailout) { | 
 |   TNode<Int32T> type = LoadMapInstanceType(map); | 
 |   TNode<Uint32T> bit_field3 = EnsureOnlyHasSimpleProperties(map, type, bailout); | 
 |  | 
 |   TNode<DescriptorArray> descriptors = LoadMapDescriptors(map); | 
 |   TNode<Uint32T> nof_descriptors = | 
 |       DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bit_field3); | 
 |  | 
 |   TVARIABLE(BoolT, var_stable, Int32TrueConstant()); | 
 |   VariableList list({&var_stable}, zone()); | 
 |  | 
 |   DescriptorArrayForEach( | 
 |       list, Unsigned(Int32Constant(0)), nof_descriptors, | 
 |       [=, &var_stable](TNode<UintPtrT> descriptor_key_index) { | 
 |         TNode<Name> next_key = | 
 |             CAST(LoadWeakFixedArrayElement(descriptors, descriptor_key_index)); | 
 |  | 
 |         TVARIABLE(Object, var_value, SmiConstant(0)); | 
 |         Label callback(this), next_iteration(this); | 
 |  | 
 |         { | 
 |           TVARIABLE(Map, var_map); | 
 |           TVARIABLE(HeapObject, var_meta_storage); | 
 |           TVARIABLE(IntPtrT, var_entry); | 
 |           TVARIABLE(Uint32T, var_details); | 
 |           Label if_found(this); | 
 |  | 
 |           Label if_found_fast(this), if_found_dict(this); | 
 |  | 
 |           Label if_stable(this), if_not_stable(this); | 
 |           Branch(var_stable.value(), &if_stable, &if_not_stable); | 
 |           BIND(&if_stable); | 
 |           { | 
 |             // Directly decode from the descriptor array if |object| did not | 
 |             // change shape. | 
 |             var_map = map; | 
 |             var_meta_storage = descriptors; | 
 |             var_entry = Signed(descriptor_key_index); | 
 |             Goto(&if_found_fast); | 
 |           } | 
 |           BIND(&if_not_stable); | 
 |           { | 
 |             // If the map did change, do a slower lookup. We are still | 
 |             // guaranteed that the object has a simple shape, and that the key | 
 |             // is a name. | 
 |             var_map = LoadMap(object); | 
 |             TryLookupPropertyInSimpleObject( | 
 |                 object, var_map.value(), next_key, &if_found_fast, | 
 |                 &if_found_dict, &var_meta_storage, &var_entry, &next_iteration); | 
 |           } | 
 |  | 
 |           BIND(&if_found_fast); | 
 |           { | 
 |             TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value()); | 
 |             TNode<IntPtrT> name_index = var_entry.value(); | 
 |  | 
 |             // Skip non-enumerable properties. | 
 |             var_details = LoadDetailsByKeyIndex(descriptors, name_index); | 
 |             GotoIf(IsSetWord32(var_details.value(), | 
 |                                PropertyDetails::kAttributesDontEnumMask), | 
 |                    &next_iteration); | 
 |  | 
 |             LoadPropertyFromFastObject(object, var_map.value(), descriptors, | 
 |                                        name_index, var_details.value(), | 
 |                                        &var_value); | 
 |             Goto(&if_found); | 
 |           } | 
 |           BIND(&if_found_dict); | 
 |           { | 
 |             TNode<NameDictionary> dictionary = CAST(var_meta_storage.value()); | 
 |             TNode<IntPtrT> entry = var_entry.value(); | 
 |  | 
 |             TNode<Uint32T> details = | 
 |                 LoadDetailsByKeyIndex<NameDictionary>(dictionary, entry); | 
 |             // Skip non-enumerable properties. | 
 |             GotoIf( | 
 |                 IsSetWord32(details, PropertyDetails::kAttributesDontEnumMask), | 
 |                 &next_iteration); | 
 |  | 
 |             var_details = details; | 
 |             var_value = LoadValueByKeyIndex<NameDictionary>(dictionary, entry); | 
 |             Goto(&if_found); | 
 |           } | 
 |  | 
 |           // Here we have details and value which could be an accessor. | 
 |           BIND(&if_found); | 
 |           { | 
 |             Label slow_load(this, Label::kDeferred); | 
 |  | 
 |             var_value = CallGetterIfAccessor(var_value.value(), | 
 |                                              var_details.value(), context, | 
 |                                              object, &slow_load, kCallJSGetter); | 
 |             Goto(&callback); | 
 |  | 
 |             BIND(&slow_load); | 
 |             var_value = | 
 |                 CallRuntime(Runtime::kGetProperty, context, object, next_key); | 
 |             Goto(&callback); | 
 |  | 
 |             BIND(&callback); | 
 |             body(next_key, var_value.value()); | 
 |  | 
 |             // Check if |object| is still stable, i.e. we can proceed using | 
 |             // property details from preloaded |descriptors|. | 
 |             var_stable = | 
 |                 Select<BoolT>(var_stable.value(), | 
 |                               [=] { return WordEqual(LoadMap(object), map); }, | 
 |                               [=] { return Int32FalseConstant(); }); | 
 |  | 
 |             Goto(&next_iteration); | 
 |           } | 
 |         } | 
 |  | 
 |         BIND(&next_iteration); | 
 |       }); | 
 | } | 
 |  | 
 | void CodeStubAssembler::DescriptorLookup( | 
 |     SloppyTNode<Name> unique_name, SloppyTNode<DescriptorArray> descriptors, | 
 |     SloppyTNode<Uint32T> bitfield3, Label* if_found, | 
 |     TVariable<IntPtrT>* var_name_index, Label* if_not_found) { | 
 |   Comment("DescriptorArrayLookup"); | 
 |   TNode<Uint32T> nof = DecodeWord32<Map::NumberOfOwnDescriptorsBits>(bitfield3); | 
 |   Lookup<DescriptorArray>(unique_name, descriptors, nof, if_found, | 
 |                           var_name_index, if_not_found); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TransitionLookup( | 
 |     SloppyTNode<Name> unique_name, SloppyTNode<TransitionArray> transitions, | 
 |     Label* if_found, TVariable<IntPtrT>* var_name_index, Label* if_not_found) { | 
 |   Comment("TransitionArrayLookup"); | 
 |   TNode<Uint32T> number_of_valid_transitions = | 
 |       NumberOfEntries<TransitionArray>(transitions); | 
 |   Lookup<TransitionArray>(unique_name, transitions, number_of_valid_transitions, | 
 |                           if_found, var_name_index, if_not_found); | 
 | } | 
 |  | 
 | template <typename Array> | 
 | void CodeStubAssembler::Lookup(TNode<Name> unique_name, TNode<Array> array, | 
 |                                TNode<Uint32T> number_of_valid_entries, | 
 |                                Label* if_found, | 
 |                                TVariable<IntPtrT>* var_name_index, | 
 |                                Label* if_not_found) { | 
 |   Comment("ArrayLookup"); | 
 |   if (!number_of_valid_entries) { | 
 |     number_of_valid_entries = NumberOfEntries(array); | 
 |   } | 
 |   GotoIf(Word32Equal(number_of_valid_entries, Int32Constant(0)), if_not_found); | 
 |   Label linear_search(this), binary_search(this); | 
 |   const int kMaxElementsForLinearSearch = 32; | 
 |   Branch(Uint32LessThanOrEqual(number_of_valid_entries, | 
 |                                Int32Constant(kMaxElementsForLinearSearch)), | 
 |          &linear_search, &binary_search); | 
 |   BIND(&linear_search); | 
 |   { | 
 |     LookupLinear<Array>(unique_name, array, number_of_valid_entries, if_found, | 
 |                         var_name_index, if_not_found); | 
 |   } | 
 |   BIND(&binary_search); | 
 |   { | 
 |     LookupBinary<Array>(unique_name, array, number_of_valid_entries, if_found, | 
 |                         var_name_index, if_not_found); | 
 |   } | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsSimpleObjectMap(TNode<Map> map) { | 
 |   uint32_t mask = | 
 |       Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask; | 
 |   // !IsSpecialReceiverType && !IsNamedInterceptor && !IsAccessCheckNeeded | 
 |   return Select<BoolT>( | 
 |       IsSpecialReceiverInstanceType(LoadMapInstanceType(map)), | 
 |       [=] { return Int32FalseConstant(); }, | 
 |       [=] { return IsClearWord32(LoadMapBitField(map), mask); }); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryLookupPropertyInSimpleObject( | 
 |     TNode<JSObject> object, TNode<Map> map, TNode<Name> unique_name, | 
 |     Label* if_found_fast, Label* if_found_dict, | 
 |     TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index, | 
 |     Label* if_not_found) { | 
 |   CSA_ASSERT(this, IsSimpleObjectMap(map)); | 
 |  | 
 |   TNode<Uint32T> bit_field3 = LoadMapBitField3(map); | 
 |   Label if_isfastmap(this), if_isslowmap(this); | 
 |   Branch(IsSetWord32<Map::IsDictionaryMapBit>(bit_field3), &if_isslowmap, | 
 |          &if_isfastmap); | 
 |   BIND(&if_isfastmap); | 
 |   { | 
 |     TNode<DescriptorArray> descriptors = LoadMapDescriptors(map); | 
 |     *var_meta_storage = descriptors; | 
 |  | 
 |     DescriptorLookup(unique_name, descriptors, bit_field3, if_found_fast, | 
 |                      var_name_index, if_not_found); | 
 |   } | 
 |   BIND(&if_isslowmap); | 
 |   { | 
 |     TNode<NameDictionary> dictionary = CAST(LoadSlowProperties(object)); | 
 |     *var_meta_storage = dictionary; | 
 |  | 
 |     NameDictionaryLookup<NameDictionary>(dictionary, unique_name, if_found_dict, | 
 |                                          var_name_index, if_not_found); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryLookupProperty( | 
 |     SloppyTNode<JSObject> object, SloppyTNode<Map> map, | 
 |     SloppyTNode<Int32T> instance_type, SloppyTNode<Name> unique_name, | 
 |     Label* if_found_fast, Label* if_found_dict, Label* if_found_global, | 
 |     TVariable<HeapObject>* var_meta_storage, TVariable<IntPtrT>* var_name_index, | 
 |     Label* if_not_found, Label* if_bailout) { | 
 |   Label if_objectisspecial(this); | 
 |   GotoIf(IsSpecialReceiverInstanceType(instance_type), &if_objectisspecial); | 
 |  | 
 |   TryLookupPropertyInSimpleObject(object, map, unique_name, if_found_fast, | 
 |                                   if_found_dict, var_meta_storage, | 
 |                                   var_name_index, if_not_found); | 
 |  | 
 |   BIND(&if_objectisspecial); | 
 |   { | 
 |     // Handle global object here and bailout for other special objects. | 
 |     GotoIfNot(InstanceTypeEqual(instance_type, JS_GLOBAL_OBJECT_TYPE), | 
 |               if_bailout); | 
 |  | 
 |     // Handle interceptors and access checks in runtime. | 
 |     TNode<Int32T> bit_field = LoadMapBitField(map); | 
 |     int mask = | 
 |         Map::HasNamedInterceptorBit::kMask | Map::IsAccessCheckNeededBit::kMask; | 
 |     GotoIf(IsSetWord32(bit_field, mask), if_bailout); | 
 |  | 
 |     TNode<GlobalDictionary> dictionary = CAST(LoadSlowProperties(object)); | 
 |     *var_meta_storage = dictionary; | 
 |  | 
 |     NameDictionaryLookup<GlobalDictionary>( | 
 |         dictionary, unique_name, if_found_global, var_name_index, if_not_found); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryHasOwnProperty(Node* object, Node* map, | 
 |                                           Node* instance_type, | 
 |                                           Node* unique_name, Label* if_found, | 
 |                                           Label* if_not_found, | 
 |                                           Label* if_bailout) { | 
 |   Comment("TryHasOwnProperty"); | 
 |   TVARIABLE(HeapObject, var_meta_storage); | 
 |   TVARIABLE(IntPtrT, var_name_index); | 
 |  | 
 |   Label if_found_global(this); | 
 |   TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found, | 
 |                     &if_found_global, &var_meta_storage, &var_name_index, | 
 |                     if_not_found, if_bailout); | 
 |  | 
 |   BIND(&if_found_global); | 
 |   { | 
 |     VARIABLE(var_value, MachineRepresentation::kTagged); | 
 |     VARIABLE(var_details, MachineRepresentation::kWord32); | 
 |     // Check if the property cell is not deleted. | 
 |     LoadPropertyFromGlobalDictionary(var_meta_storage.value(), | 
 |                                      var_name_index.value(), &var_value, | 
 |                                      &var_details, if_not_found); | 
 |     Goto(if_found); | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::GetMethod(Node* context, Node* object, | 
 |                                    Handle<Name> name, | 
 |                                    Label* if_null_or_undefined) { | 
 |   Node* method = GetProperty(context, object, name); | 
 |  | 
 |   GotoIf(IsUndefined(method), if_null_or_undefined); | 
 |   GotoIf(IsNull(method), if_null_or_undefined); | 
 |  | 
 |   return method; | 
 | } | 
 |  | 
 | void CodeStubAssembler::LoadPropertyFromFastObject( | 
 |     Node* object, Node* map, TNode<DescriptorArray> descriptors, | 
 |     Node* name_index, Variable* var_details, Variable* var_value) { | 
 |   DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep()); | 
 |   DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); | 
 |  | 
 |   Node* details = | 
 |       LoadDetailsByKeyIndex(descriptors, UncheckedCast<IntPtrT>(name_index)); | 
 |   var_details->Bind(details); | 
 |  | 
 |   LoadPropertyFromFastObject(object, map, descriptors, name_index, details, | 
 |                              var_value); | 
 | } | 
 |  | 
 | void CodeStubAssembler::LoadPropertyFromFastObject( | 
 |     Node* object, Node* map, TNode<DescriptorArray> descriptors, | 
 |     Node* name_index, Node* details, Variable* var_value) { | 
 |   Comment("[ LoadPropertyFromFastObject"); | 
 |  | 
 |   Node* location = DecodeWord32<PropertyDetails::LocationField>(details); | 
 |  | 
 |   Label if_in_field(this), if_in_descriptor(this), done(this); | 
 |   Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field, | 
 |          &if_in_descriptor); | 
 |   BIND(&if_in_field); | 
 |   { | 
 |     Node* field_index = | 
 |         DecodeWordFromWord32<PropertyDetails::FieldIndexField>(details); | 
 |     Node* representation = | 
 |         DecodeWord32<PropertyDetails::RepresentationField>(details); | 
 |  | 
 |     field_index = | 
 |         IntPtrAdd(field_index, LoadMapInobjectPropertiesStartInWords(map)); | 
 |     Node* instance_size_in_words = LoadMapInstanceSizeInWords(map); | 
 |  | 
 |     Label if_inobject(this), if_backing_store(this); | 
 |     VARIABLE(var_double_value, MachineRepresentation::kFloat64); | 
 |     Label rebox_double(this, &var_double_value); | 
 |     Branch(UintPtrLessThan(field_index, instance_size_in_words), &if_inobject, | 
 |            &if_backing_store); | 
 |     BIND(&if_inobject); | 
 |     { | 
 |       Comment("if_inobject"); | 
 |       Node* field_offset = TimesPointerSize(field_index); | 
 |  | 
 |       Label if_double(this), if_tagged(this); | 
 |       Branch(Word32NotEqual(representation, | 
 |                             Int32Constant(Representation::kDouble)), | 
 |              &if_tagged, &if_double); | 
 |       BIND(&if_tagged); | 
 |       { | 
 |         var_value->Bind(LoadObjectField(object, field_offset)); | 
 |         Goto(&done); | 
 |       } | 
 |       BIND(&if_double); | 
 |       { | 
 |         if (FLAG_unbox_double_fields) { | 
 |           var_double_value.Bind( | 
 |               LoadObjectField(object, field_offset, MachineType::Float64())); | 
 |         } else { | 
 |           Node* mutable_heap_number = LoadObjectField(object, field_offset); | 
 |           var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number)); | 
 |         } | 
 |         Goto(&rebox_double); | 
 |       } | 
 |     } | 
 |     BIND(&if_backing_store); | 
 |     { | 
 |       Comment("if_backing_store"); | 
 |       Node* properties = LoadFastProperties(object); | 
 |       field_index = IntPtrSub(field_index, instance_size_in_words); | 
 |       Node* value = LoadPropertyArrayElement(properties, field_index); | 
 |  | 
 |       Label if_double(this), if_tagged(this); | 
 |       Branch(Word32NotEqual(representation, | 
 |                             Int32Constant(Representation::kDouble)), | 
 |              &if_tagged, &if_double); | 
 |       BIND(&if_tagged); | 
 |       { | 
 |         var_value->Bind(value); | 
 |         Goto(&done); | 
 |       } | 
 |       BIND(&if_double); | 
 |       { | 
 |         var_double_value.Bind(LoadHeapNumberValue(value)); | 
 |         Goto(&rebox_double); | 
 |       } | 
 |     } | 
 |     BIND(&rebox_double); | 
 |     { | 
 |       Comment("rebox_double"); | 
 |       Node* heap_number = AllocateHeapNumberWithValue(var_double_value.value()); | 
 |       var_value->Bind(heap_number); | 
 |       Goto(&done); | 
 |     } | 
 |   } | 
 |   BIND(&if_in_descriptor); | 
 |   { | 
 |     var_value->Bind( | 
 |         LoadValueByKeyIndex(descriptors, UncheckedCast<IntPtrT>(name_index))); | 
 |     Goto(&done); | 
 |   } | 
 |   BIND(&done); | 
 |  | 
 |   Comment("] LoadPropertyFromFastObject"); | 
 | } | 
 |  | 
 | void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary, | 
 |                                                        Node* name_index, | 
 |                                                        Variable* var_details, | 
 |                                                        Variable* var_value) { | 
 |   Comment("LoadPropertyFromNameDictionary"); | 
 |   CSA_ASSERT(this, IsNameDictionary(dictionary)); | 
 |  | 
 |   var_details->Bind( | 
 |       LoadDetailsByKeyIndex<NameDictionary>(dictionary, name_index)); | 
 |   var_value->Bind(LoadValueByKeyIndex<NameDictionary>(dictionary, name_index)); | 
 |  | 
 |   Comment("] LoadPropertyFromNameDictionary"); | 
 | } | 
 |  | 
 | void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary, | 
 |                                                          Node* name_index, | 
 |                                                          Variable* var_details, | 
 |                                                          Variable* var_value, | 
 |                                                          Label* if_deleted) { | 
 |   Comment("[ LoadPropertyFromGlobalDictionary"); | 
 |   CSA_ASSERT(this, IsGlobalDictionary(dictionary)); | 
 |  | 
 |   Node* property_cell = LoadFixedArrayElement(CAST(dictionary), name_index); | 
 |   CSA_ASSERT(this, IsPropertyCell(property_cell)); | 
 |  | 
 |   Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset); | 
 |   GotoIf(WordEqual(value, TheHoleConstant()), if_deleted); | 
 |  | 
 |   var_value->Bind(value); | 
 |  | 
 |   Node* details = LoadAndUntagToWord32ObjectField(property_cell, | 
 |                                                   PropertyCell::kDetailsOffset); | 
 |   var_details->Bind(details); | 
 |  | 
 |   Comment("] LoadPropertyFromGlobalDictionary"); | 
 | } | 
 |  | 
 | // |value| is the property backing store's contents, which is either a value | 
 | // or an accessor pair, as specified by |details|. | 
 | // Returns either the original value, or the result of the getter call. | 
 | TNode<Object> CodeStubAssembler::CallGetterIfAccessor( | 
 |     Node* value, Node* details, Node* context, Node* receiver, | 
 |     Label* if_bailout, GetOwnPropertyMode mode) { | 
 |   VARIABLE(var_value, MachineRepresentation::kTagged, value); | 
 |   Label done(this), if_accessor_info(this, Label::kDeferred); | 
 |  | 
 |   Node* kind = DecodeWord32<PropertyDetails::KindField>(details); | 
 |   GotoIf(Word32Equal(kind, Int32Constant(kData)), &done); | 
 |  | 
 |   // Accessor case. | 
 |   GotoIfNot(IsAccessorPair(value), &if_accessor_info); | 
 |  | 
 |   // AccessorPair case. | 
 |   { | 
 |     if (mode == kCallJSGetter) { | 
 |       Node* accessor_pair = value; | 
 |       Node* getter = | 
 |           LoadObjectField(accessor_pair, AccessorPair::kGetterOffset); | 
 |       Node* getter_map = LoadMap(getter); | 
 |       Node* instance_type = LoadMapInstanceType(getter_map); | 
 |       // FunctionTemplateInfo getters are not supported yet. | 
 |       GotoIf(InstanceTypeEqual(instance_type, FUNCTION_TEMPLATE_INFO_TYPE), | 
 |              if_bailout); | 
 |  | 
 |       // Return undefined if the {getter} is not callable. | 
 |       var_value.Bind(UndefinedConstant()); | 
 |       GotoIfNot(IsCallableMap(getter_map), &done); | 
 |  | 
 |       // Call the accessor. | 
 |       Callable callable = CodeFactory::Call(isolate()); | 
 |       Node* result = CallJS(callable, context, getter, receiver); | 
 |       var_value.Bind(result); | 
 |     } | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   // AccessorInfo case. | 
 |   BIND(&if_accessor_info); | 
 |   { | 
 |     Node* accessor_info = value; | 
 |     CSA_ASSERT(this, IsAccessorInfo(value)); | 
 |     CSA_ASSERT(this, TaggedIsNotSmi(receiver)); | 
 |     Label if_array(this), if_function(this), if_value(this); | 
 |  | 
 |     // Dispatch based on {receiver} instance type. | 
 |     Node* receiver_map = LoadMap(receiver); | 
 |     Node* receiver_instance_type = LoadMapInstanceType(receiver_map); | 
 |     GotoIf(IsJSArrayInstanceType(receiver_instance_type), &if_array); | 
 |     GotoIf(IsJSFunctionInstanceType(receiver_instance_type), &if_function); | 
 |     Branch(IsJSValueInstanceType(receiver_instance_type), &if_value, | 
 |            if_bailout); | 
 |  | 
 |     // JSArray AccessorInfo case. | 
 |     BIND(&if_array); | 
 |     { | 
 |       // We only deal with the "length" accessor on JSArray. | 
 |       GotoIfNot(IsLengthString( | 
 |                     LoadObjectField(accessor_info, AccessorInfo::kNameOffset)), | 
 |                 if_bailout); | 
 |       var_value.Bind(LoadJSArrayLength(receiver)); | 
 |       Goto(&done); | 
 |     } | 
 |  | 
 |     // JSFunction AccessorInfo case. | 
 |     BIND(&if_function); | 
 |     { | 
 |       // We only deal with the "prototype" accessor on JSFunction here. | 
 |       GotoIfNot(IsPrototypeString( | 
 |                     LoadObjectField(accessor_info, AccessorInfo::kNameOffset)), | 
 |                 if_bailout); | 
 |  | 
 |       GotoIfPrototypeRequiresRuntimeLookup(CAST(receiver), CAST(receiver_map), | 
 |                                            if_bailout); | 
 |       var_value.Bind(LoadJSFunctionPrototype(receiver, if_bailout)); | 
 |       Goto(&done); | 
 |     } | 
 |  | 
 |     // JSValue AccessorInfo case. | 
 |     BIND(&if_value); | 
 |     { | 
 |       // We only deal with the "length" accessor on JSValue string wrappers. | 
 |       GotoIfNot(IsLengthString( | 
 |                     LoadObjectField(accessor_info, AccessorInfo::kNameOffset)), | 
 |                 if_bailout); | 
 |       Node* receiver_value = LoadJSValueValue(receiver); | 
 |       GotoIfNot(TaggedIsNotSmi(receiver_value), if_bailout); | 
 |       GotoIfNot(IsString(receiver_value), if_bailout); | 
 |       var_value.Bind(LoadStringLengthAsSmi(receiver_value)); | 
 |       Goto(&done); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return UncheckedCast<Object>(var_value.value()); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryGetOwnProperty( | 
 |     Node* context, Node* receiver, Node* object, Node* map, Node* instance_type, | 
 |     Node* unique_name, Label* if_found_value, Variable* var_value, | 
 |     Label* if_not_found, Label* if_bailout) { | 
 |   TryGetOwnProperty(context, receiver, object, map, instance_type, unique_name, | 
 |                     if_found_value, var_value, nullptr, nullptr, if_not_found, | 
 |                     if_bailout, kCallJSGetter); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryGetOwnProperty( | 
 |     Node* context, Node* receiver, Node* object, Node* map, Node* instance_type, | 
 |     Node* unique_name, Label* if_found_value, Variable* var_value, | 
 |     Variable* var_details, Variable* var_raw_value, Label* if_not_found, | 
 |     Label* if_bailout, GetOwnPropertyMode mode) { | 
 |   DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep()); | 
 |   Comment("TryGetOwnProperty"); | 
 |  | 
 |   TVARIABLE(HeapObject, var_meta_storage); | 
 |   TVARIABLE(IntPtrT, var_entry); | 
 |  | 
 |   Label if_found_fast(this), if_found_dict(this), if_found_global(this); | 
 |  | 
 |   VARIABLE(local_var_details, MachineRepresentation::kWord32); | 
 |   if (!var_details) { | 
 |     var_details = &local_var_details; | 
 |   } | 
 |   Label if_found(this); | 
 |  | 
 |   TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast, | 
 |                     &if_found_dict, &if_found_global, &var_meta_storage, | 
 |                     &var_entry, if_not_found, if_bailout); | 
 |   BIND(&if_found_fast); | 
 |   { | 
 |     TNode<DescriptorArray> descriptors = CAST(var_meta_storage.value()); | 
 |     Node* name_index = var_entry.value(); | 
 |  | 
 |     LoadPropertyFromFastObject(object, map, descriptors, name_index, | 
 |                                var_details, var_value); | 
 |     Goto(&if_found); | 
 |   } | 
 |   BIND(&if_found_dict); | 
 |   { | 
 |     Node* dictionary = var_meta_storage.value(); | 
 |     Node* entry = var_entry.value(); | 
 |     LoadPropertyFromNameDictionary(dictionary, entry, var_details, var_value); | 
 |     Goto(&if_found); | 
 |   } | 
 |   BIND(&if_found_global); | 
 |   { | 
 |     Node* dictionary = var_meta_storage.value(); | 
 |     Node* entry = var_entry.value(); | 
 |  | 
 |     LoadPropertyFromGlobalDictionary(dictionary, entry, var_details, var_value, | 
 |                                      if_not_found); | 
 |     Goto(&if_found); | 
 |   } | 
 |   // Here we have details and value which could be an accessor. | 
 |   BIND(&if_found); | 
 |   { | 
 |     // TODO(ishell): Execute C++ accessor in case of accessor info | 
 |     if (var_raw_value) { | 
 |       var_raw_value->Bind(var_value->value()); | 
 |     } | 
 |     Node* value = CallGetterIfAccessor(var_value->value(), var_details->value(), | 
 |                                        context, receiver, if_bailout, mode); | 
 |     var_value->Bind(value); | 
 |     Goto(if_found_value); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryLookupElement(Node* object, Node* map, | 
 |                                          SloppyTNode<Int32T> instance_type, | 
 |                                          SloppyTNode<IntPtrT> intptr_index, | 
 |                                          Label* if_found, Label* if_absent, | 
 |                                          Label* if_not_found, | 
 |                                          Label* if_bailout) { | 
 |   // Handle special objects in runtime. | 
 |   GotoIf(IsSpecialReceiverInstanceType(instance_type), if_bailout); | 
 |  | 
 |   Node* elements_kind = LoadMapElementsKind(map); | 
 |  | 
 |   // TODO(verwaest): Support other elements kinds as well. | 
 |   Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this), | 
 |       if_isfaststringwrapper(this), if_isslowstringwrapper(this), if_oob(this), | 
 |       if_typedarray(this); | 
 |   // clang-format off | 
 |   int32_t values[] = { | 
 |       // Handled by {if_isobjectorsmi}. | 
 |       PACKED_SMI_ELEMENTS, HOLEY_SMI_ELEMENTS, PACKED_ELEMENTS, | 
 |           HOLEY_ELEMENTS, | 
 |       // Handled by {if_isdouble}. | 
 |       PACKED_DOUBLE_ELEMENTS, HOLEY_DOUBLE_ELEMENTS, | 
 |       // Handled by {if_isdictionary}. | 
 |       DICTIONARY_ELEMENTS, | 
 |       // Handled by {if_isfaststringwrapper}. | 
 |       FAST_STRING_WRAPPER_ELEMENTS, | 
 |       // Handled by {if_isslowstringwrapper}. | 
 |       SLOW_STRING_WRAPPER_ELEMENTS, | 
 |       // Handled by {if_not_found}. | 
 |       NO_ELEMENTS, | 
 |       // Handled by {if_typed_array}. | 
 |       UINT8_ELEMENTS, | 
 |       INT8_ELEMENTS, | 
 |       UINT16_ELEMENTS, | 
 |       INT16_ELEMENTS, | 
 |       UINT32_ELEMENTS, | 
 |       INT32_ELEMENTS, | 
 |       FLOAT32_ELEMENTS, | 
 |       FLOAT64_ELEMENTS, | 
 |       UINT8_CLAMPED_ELEMENTS, | 
 |       BIGUINT64_ELEMENTS, | 
 |       BIGINT64_ELEMENTS, | 
 |   }; | 
 |   Label* labels[] = { | 
 |       &if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi, | 
 |           &if_isobjectorsmi, | 
 |       &if_isdouble, &if_isdouble, | 
 |       &if_isdictionary, | 
 |       &if_isfaststringwrapper, | 
 |       &if_isslowstringwrapper, | 
 |       if_not_found, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |       &if_typedarray, | 
 |   }; | 
 |   // clang-format on | 
 |   STATIC_ASSERT(arraysize(values) == arraysize(labels)); | 
 |   Switch(elements_kind, if_bailout, values, labels, arraysize(values)); | 
 |  | 
 |   BIND(&if_isobjectorsmi); | 
 |   { | 
 |     TNode<FixedArray> elements = CAST(LoadElements(object)); | 
 |     TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(elements); | 
 |  | 
 |     GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob); | 
 |  | 
 |     TNode<Object> element = LoadFixedArrayElement(elements, intptr_index); | 
 |     TNode<Oddball> the_hole = TheHoleConstant(); | 
 |     Branch(WordEqual(element, the_hole), if_not_found, if_found); | 
 |   } | 
 |   BIND(&if_isdouble); | 
 |   { | 
 |     TNode<FixedArrayBase> elements = LoadElements(object); | 
 |     TNode<IntPtrT> length = LoadAndUntagFixedArrayBaseLength(elements); | 
 |  | 
 |     GotoIfNot(UintPtrLessThan(intptr_index, length), &if_oob); | 
 |  | 
 |     // Check if the element is a double hole, but don't load it. | 
 |     LoadFixedDoubleArrayElement(CAST(elements), intptr_index, | 
 |                                 MachineType::None(), 0, INTPTR_PARAMETERS, | 
 |                                 if_not_found); | 
 |     Goto(if_found); | 
 |   } | 
 |   BIND(&if_isdictionary); | 
 |   { | 
 |     // Negative keys must be converted to property names. | 
 |     GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout); | 
 |  | 
 |     TVARIABLE(IntPtrT, var_entry); | 
 |     TNode<NumberDictionary> elements = CAST(LoadElements(object)); | 
 |     NumberDictionaryLookup(elements, intptr_index, if_found, &var_entry, | 
 |                            if_not_found); | 
 |   } | 
 |   BIND(&if_isfaststringwrapper); | 
 |   { | 
 |     CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE)); | 
 |     Node* string = LoadJSValueValue(object); | 
 |     CSA_ASSERT(this, IsString(string)); | 
 |     Node* length = LoadStringLengthAsWord(string); | 
 |     GotoIf(UintPtrLessThan(intptr_index, length), if_found); | 
 |     Goto(&if_isobjectorsmi); | 
 |   } | 
 |   BIND(&if_isslowstringwrapper); | 
 |   { | 
 |     CSA_ASSERT(this, HasInstanceType(object, JS_VALUE_TYPE)); | 
 |     Node* string = LoadJSValueValue(object); | 
 |     CSA_ASSERT(this, IsString(string)); | 
 |     Node* length = LoadStringLengthAsWord(string); | 
 |     GotoIf(UintPtrLessThan(intptr_index, length), if_found); | 
 |     Goto(&if_isdictionary); | 
 |   } | 
 |   BIND(&if_typedarray); | 
 |   { | 
 |     Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset); | 
 |     GotoIf(IsDetachedBuffer(buffer), if_absent); | 
 |  | 
 |     Node* length = SmiUntag(LoadJSTypedArrayLength(CAST(object))); | 
 |     Branch(UintPtrLessThan(intptr_index, length), if_found, if_absent); | 
 |   } | 
 |   BIND(&if_oob); | 
 |   { | 
 |     // Positive OOB indices mean "not found", negative indices must be | 
 |     // converted to property names. | 
 |     GotoIf(IntPtrLessThan(intptr_index, IntPtrConstant(0)), if_bailout); | 
 |     Goto(if_not_found); | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::BranchIfMaybeSpecialIndex(TNode<String> name_string, | 
 |                                                   Label* if_maybe_special_index, | 
 |                                                   Label* if_not_special_index) { | 
 |   // TODO(cwhan.tunz): Implement fast cases more. | 
 |  | 
 |   // If a name is empty or too long, it's not a special index | 
 |   // Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX | 
 |   const int kBufferSize = 24; | 
 |   TNode<Smi> string_length = LoadStringLengthAsSmi(name_string); | 
 |   GotoIf(SmiEqual(string_length, SmiConstant(0)), if_not_special_index); | 
 |   GotoIf(SmiGreaterThan(string_length, SmiConstant(kBufferSize)), | 
 |          if_not_special_index); | 
 |  | 
 |   // If the first character of name is not a digit or '-', or we can't match it | 
 |   // to Infinity or NaN, then this is not a special index. | 
 |   TNode<Int32T> first_char = StringCharCodeAt(name_string, IntPtrConstant(0)); | 
 |   // If the name starts with '-', it can be a negative index. | 
 |   GotoIf(Word32Equal(first_char, Int32Constant('-')), if_maybe_special_index); | 
 |   // If the name starts with 'I', it can be "Infinity". | 
 |   GotoIf(Word32Equal(first_char, Int32Constant('I')), if_maybe_special_index); | 
 |   // If the name starts with 'N', it can be "NaN". | 
 |   GotoIf(Word32Equal(first_char, Int32Constant('N')), if_maybe_special_index); | 
 |   // Finally, if the first character is not a digit either, then we are sure | 
 |   // that the name is not a special index. | 
 |   GotoIf(Uint32LessThan(first_char, Int32Constant('0')), if_not_special_index); | 
 |   GotoIf(Uint32LessThan(Int32Constant('9'), first_char), if_not_special_index); | 
 |   Goto(if_maybe_special_index); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TryPrototypeChainLookup( | 
 |     Node* receiver, Node* key, const LookupInHolder& lookup_property_in_holder, | 
 |     const LookupInHolder& lookup_element_in_holder, Label* if_end, | 
 |     Label* if_bailout, Label* if_proxy) { | 
 |   // Ensure receiver is JSReceiver, otherwise bailout. | 
 |   Label if_objectisnotsmi(this); | 
 |   Branch(TaggedIsSmi(receiver), if_bailout, &if_objectisnotsmi); | 
 |   BIND(&if_objectisnotsmi); | 
 |  | 
 |   Node* map = LoadMap(receiver); | 
 |   Node* instance_type = LoadMapInstanceType(map); | 
 |   { | 
 |     Label if_objectisreceiver(this); | 
 |     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); | 
 |     STATIC_ASSERT(FIRST_JS_RECEIVER_TYPE == JS_PROXY_TYPE); | 
 |     Branch(IsJSReceiverInstanceType(instance_type), &if_objectisreceiver, | 
 |            if_bailout); | 
 |     BIND(&if_objectisreceiver); | 
 |  | 
 |     if (if_proxy) { | 
 |       GotoIf(InstanceTypeEqual(instance_type, JS_PROXY_TYPE), if_proxy); | 
 |     } | 
 |   } | 
 |  | 
 |   VARIABLE(var_index, MachineType::PointerRepresentation()); | 
 |   VARIABLE(var_unique, MachineRepresentation::kTagged); | 
 |  | 
 |   Label if_keyisindex(this), if_iskeyunique(this); | 
 |   TryToName(key, &if_keyisindex, &var_index, &if_iskeyunique, &var_unique, | 
 |             if_bailout); | 
 |  | 
 |   BIND(&if_iskeyunique); | 
 |   { | 
 |     VARIABLE(var_holder, MachineRepresentation::kTagged, receiver); | 
 |     VARIABLE(var_holder_map, MachineRepresentation::kTagged, map); | 
 |     VARIABLE(var_holder_instance_type, MachineRepresentation::kWord32, | 
 |              instance_type); | 
 |  | 
 |     Variable* merged_variables[] = {&var_holder, &var_holder_map, | 
 |                                     &var_holder_instance_type}; | 
 |     Label loop(this, arraysize(merged_variables), merged_variables); | 
 |     Goto(&loop); | 
 |     BIND(&loop); | 
 |     { | 
 |       Node* holder_map = var_holder_map.value(); | 
 |       Node* holder_instance_type = var_holder_instance_type.value(); | 
 |  | 
 |       Label next_proto(this), check_integer_indexed_exotic(this); | 
 |       lookup_property_in_holder(receiver, var_holder.value(), holder_map, | 
 |                                 holder_instance_type, var_unique.value(), | 
 |                                 &check_integer_indexed_exotic, if_bailout); | 
 |  | 
 |       BIND(&check_integer_indexed_exotic); | 
 |       { | 
 |         // Bailout if it can be an integer indexed exotic case. | 
 |         GotoIfNot(InstanceTypeEqual(holder_instance_type, JS_TYPED_ARRAY_TYPE), | 
 |                   &next_proto); | 
 |         GotoIfNot(IsString(var_unique.value()), &next_proto); | 
 |         BranchIfMaybeSpecialIndex(CAST(var_unique.value()), if_bailout, | 
 |                                   &next_proto); | 
 |       } | 
 |  | 
 |       BIND(&next_proto); | 
 |  | 
 |       Node* proto = LoadMapPrototype(holder_map); | 
 |  | 
 |       GotoIf(IsNull(proto), if_end); | 
 |  | 
 |       Node* map = LoadMap(proto); | 
 |       Node* instance_type = LoadMapInstanceType(map); | 
 |  | 
 |       var_holder.Bind(proto); | 
 |       var_holder_map.Bind(map); | 
 |       var_holder_instance_type.Bind(instance_type); | 
 |       Goto(&loop); | 
 |     } | 
 |   } | 
 |   BIND(&if_keyisindex); | 
 |   { | 
 |     VARIABLE(var_holder, MachineRepresentation::kTagged, receiver); | 
 |     VARIABLE(var_holder_map, MachineRepresentation::kTagged, map); | 
 |     VARIABLE(var_holder_instance_type, MachineRepresentation::kWord32, | 
 |              instance_type); | 
 |  | 
 |     Variable* merged_variables[] = {&var_holder, &var_holder_map, | 
 |                                     &var_holder_instance_type}; | 
 |     Label loop(this, arraysize(merged_variables), merged_variables); | 
 |     Goto(&loop); | 
 |     BIND(&loop); | 
 |     { | 
 |       Label next_proto(this); | 
 |       lookup_element_in_holder(receiver, var_holder.value(), | 
 |                                var_holder_map.value(), | 
 |                                var_holder_instance_type.value(), | 
 |                                var_index.value(), &next_proto, if_bailout); | 
 |       BIND(&next_proto); | 
 |  | 
 |       Node* proto = LoadMapPrototype(var_holder_map.value()); | 
 |  | 
 |       GotoIf(IsNull(proto), if_end); | 
 |  | 
 |       Node* map = LoadMap(proto); | 
 |       Node* instance_type = LoadMapInstanceType(map); | 
 |  | 
 |       var_holder.Bind(proto); | 
 |       var_holder_map.Bind(map); | 
 |       var_holder_instance_type.Bind(instance_type); | 
 |       Goto(&loop); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::HasInPrototypeChain(Node* context, Node* object, | 
 |                                              Node* prototype) { | 
 |   CSA_ASSERT(this, TaggedIsNotSmi(object)); | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |   Label return_false(this), return_true(this), | 
 |       return_runtime(this, Label::kDeferred), return_result(this); | 
 |  | 
 |   // Loop through the prototype chain looking for the {prototype}. | 
 |   VARIABLE(var_object_map, MachineRepresentation::kTagged, LoadMap(object)); | 
 |   Label loop(this, &var_object_map); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     // Check if we can determine the prototype directly from the {object_map}. | 
 |     Label if_objectisdirect(this), if_objectisspecial(this, Label::kDeferred); | 
 |     Node* object_map = var_object_map.value(); | 
 |     TNode<Int32T> object_instance_type = LoadMapInstanceType(object_map); | 
 |     Branch(IsSpecialReceiverInstanceType(object_instance_type), | 
 |            &if_objectisspecial, &if_objectisdirect); | 
 |     BIND(&if_objectisspecial); | 
 |     { | 
 |       // The {object_map} is a special receiver map or a primitive map, check | 
 |       // if we need to use the if_objectisspecial path in the runtime. | 
 |       GotoIf(InstanceTypeEqual(object_instance_type, JS_PROXY_TYPE), | 
 |              &return_runtime); | 
 |       Node* object_bitfield = LoadMapBitField(object_map); | 
 |       int mask = Map::HasNamedInterceptorBit::kMask | | 
 |                  Map::IsAccessCheckNeededBit::kMask; | 
 |       Branch(IsSetWord32(object_bitfield, mask), &return_runtime, | 
 |              &if_objectisdirect); | 
 |     } | 
 |     BIND(&if_objectisdirect); | 
 |  | 
 |     // Check the current {object} prototype. | 
 |     Node* object_prototype = LoadMapPrototype(object_map); | 
 |     GotoIf(IsNull(object_prototype), &return_false); | 
 |     GotoIf(WordEqual(object_prototype, prototype), &return_true); | 
 |  | 
 |     // Continue with the prototype. | 
 |     CSA_ASSERT(this, TaggedIsNotSmi(object_prototype)); | 
 |     var_object_map.Bind(LoadMap(object_prototype)); | 
 |     Goto(&loop); | 
 |   } | 
 |  | 
 |   BIND(&return_true); | 
 |   var_result.Bind(TrueConstant()); | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_false); | 
 |   var_result.Bind(FalseConstant()); | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_runtime); | 
 |   { | 
 |     // Fallback to the runtime implementation. | 
 |     var_result.Bind( | 
 |         CallRuntime(Runtime::kHasInPrototypeChain, context, object, prototype)); | 
 |   } | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_result); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable, | 
 |                                              Node* object) { | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |   Label return_runtime(this, Label::kDeferred), return_result(this); | 
 |  | 
 |   // Goto runtime if {object} is a Smi. | 
 |   GotoIf(TaggedIsSmi(object), &return_runtime); | 
 |  | 
 |   // Goto runtime if {callable} is a Smi. | 
 |   GotoIf(TaggedIsSmi(callable), &return_runtime); | 
 |  | 
 |   // Load map of {callable}. | 
 |   Node* callable_map = LoadMap(callable); | 
 |  | 
 |   // Goto runtime if {callable} is not a JSFunction. | 
 |   Node* callable_instance_type = LoadMapInstanceType(callable_map); | 
 |   GotoIfNot(InstanceTypeEqual(callable_instance_type, JS_FUNCTION_TYPE), | 
 |             &return_runtime); | 
 |  | 
 |   GotoIfPrototypeRequiresRuntimeLookup(CAST(callable), CAST(callable_map), | 
 |                                        &return_runtime); | 
 |  | 
 |   // Get the "prototype" (or initial map) of the {callable}. | 
 |   Node* callable_prototype = | 
 |       LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset); | 
 |   { | 
 |     Label callable_prototype_valid(this); | 
 |     VARIABLE(var_callable_prototype, MachineRepresentation::kTagged, | 
 |              callable_prototype); | 
 |  | 
 |     // Resolve the "prototype" if the {callable} has an initial map.  Afterwards | 
 |     // the {callable_prototype} will be either the JSReceiver prototype object | 
 |     // or the hole value, which means that no instances of the {callable} were | 
 |     // created so far and hence we should return false. | 
 |     Node* callable_prototype_instance_type = | 
 |         LoadInstanceType(callable_prototype); | 
 |     GotoIfNot(InstanceTypeEqual(callable_prototype_instance_type, MAP_TYPE), | 
 |               &callable_prototype_valid); | 
 |     var_callable_prototype.Bind( | 
 |         LoadObjectField(callable_prototype, Map::kPrototypeOffset)); | 
 |     Goto(&callable_prototype_valid); | 
 |     BIND(&callable_prototype_valid); | 
 |     callable_prototype = var_callable_prototype.value(); | 
 |   } | 
 |  | 
 |   // Loop through the prototype chain looking for the {callable} prototype. | 
 |   var_result.Bind(HasInPrototypeChain(context, object, callable_prototype)); | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_runtime); | 
 |   { | 
 |     // Fallback to the runtime implementation. | 
 |     var_result.Bind( | 
 |         CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object)); | 
 |   } | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_result); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::ElementOffsetFromIndex(Node* index_node, | 
 |                                                          ElementsKind kind, | 
 |                                                          ParameterMode mode, | 
 |                                                          int base_size) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(index_node, mode)); | 
 |   int element_size_shift = ElementsKindToShiftSize(kind); | 
 |   int element_size = 1 << element_size_shift; | 
 |   int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize; | 
 |   intptr_t index = 0; | 
 |   bool constant_index = false; | 
 |   if (mode == SMI_PARAMETERS) { | 
 |     element_size_shift -= kSmiShiftBits; | 
 |     Smi* smi_index; | 
 |     constant_index = ToSmiConstant(index_node, smi_index); | 
 |     if (constant_index) index = smi_index->value(); | 
 |     index_node = BitcastTaggedToWord(index_node); | 
 |   } else { | 
 |     DCHECK(mode == INTPTR_PARAMETERS); | 
 |     constant_index = ToIntPtrConstant(index_node, index); | 
 |   } | 
 |   if (constant_index) { | 
 |     return IntPtrConstant(base_size + element_size * index); | 
 |   } | 
 |  | 
 |   TNode<WordT> shifted_index = | 
 |       (element_size_shift == 0) | 
 |           ? UncheckedCast<WordT>(index_node) | 
 |           : ((element_size_shift > 0) | 
 |                  ? WordShl(index_node, IntPtrConstant(element_size_shift)) | 
 |                  : WordSar(index_node, IntPtrConstant(-element_size_shift))); | 
 |   return IntPtrAdd(IntPtrConstant(base_size), Signed(shifted_index)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsOffsetInBounds(SloppyTNode<IntPtrT> offset, | 
 |                                                  SloppyTNode<IntPtrT> length, | 
 |                                                  int header_size, | 
 |                                                  ElementsKind kind) { | 
 |   // Make sure we point to the last field. | 
 |   int element_size = 1 << ElementsKindToShiftSize(kind); | 
 |   int correction = header_size - kHeapObjectTag - element_size; | 
 |   TNode<IntPtrT> last_offset = | 
 |       ElementOffsetFromIndex(length, kind, INTPTR_PARAMETERS, correction); | 
 |   return IntPtrLessThanOrEqual(offset, last_offset); | 
 | } | 
 |  | 
 | TNode<FeedbackVector> CodeStubAssembler::LoadFeedbackVector( | 
 |     SloppyTNode<JSFunction> closure, Label* if_undefined) { | 
 |   TNode<FeedbackCell> feedback_cell = | 
 |       CAST(LoadObjectField(closure, JSFunction::kFeedbackCellOffset)); | 
 |   TNode<Object> maybe_vector = | 
 |       LoadObjectField(feedback_cell, FeedbackCell::kValueOffset); | 
 |   if (if_undefined) { | 
 |     GotoIf(IsUndefined(maybe_vector), if_undefined); | 
 |   } | 
 |   return CAST(maybe_vector); | 
 | } | 
 |  | 
 | TNode<FeedbackVector> CodeStubAssembler::LoadFeedbackVectorForStub() { | 
 |   TNode<JSFunction> function = | 
 |       CAST(LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset)); | 
 |   return LoadFeedbackVector(function); | 
 | } | 
 |  | 
 | void CodeStubAssembler::UpdateFeedback(Node* feedback, Node* feedback_vector, | 
 |                                        Node* slot_id) { | 
 |   // This method is used for binary op and compare feedback. These | 
 |   // vector nodes are initialized with a smi 0, so we can simply OR | 
 |   // our new feedback in place. | 
 |   TNode<MaybeObject> feedback_element = | 
 |       LoadFeedbackVectorSlot(feedback_vector, slot_id); | 
 |   TNode<Smi> previous_feedback = CAST(feedback_element); | 
 |   TNode<Smi> combined_feedback = SmiOr(previous_feedback, CAST(feedback)); | 
 |   Label end(this); | 
 |  | 
 |   GotoIf(SmiEqual(previous_feedback, combined_feedback), &end); | 
 |   { | 
 |     StoreFeedbackVectorSlot(feedback_vector, slot_id, combined_feedback, | 
 |                             SKIP_WRITE_BARRIER); | 
 |     ReportFeedbackUpdate(feedback_vector, slot_id, "UpdateFeedback"); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 | } | 
 |  | 
 | void CodeStubAssembler::ReportFeedbackUpdate( | 
 |     SloppyTNode<FeedbackVector> feedback_vector, SloppyTNode<IntPtrT> slot_id, | 
 |     const char* reason) { | 
 |   // Reset profiler ticks. | 
 |   StoreObjectFieldNoWriteBarrier( | 
 |       feedback_vector, FeedbackVector::kProfilerTicksOffset, Int32Constant(0), | 
 |       MachineRepresentation::kWord32); | 
 |  | 
 | #ifdef V8_TRACE_FEEDBACK_UPDATES | 
 |   // Trace the update. | 
 |   CallRuntime(Runtime::kInterpreterTraceUpdateFeedback, NoContextConstant(), | 
 |               LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset), | 
 |               SmiTag(slot_id), StringConstant(reason)); | 
 | #endif  // V8_TRACE_FEEDBACK_UPDATES | 
 | } | 
 |  | 
 | void CodeStubAssembler::OverwriteFeedback(Variable* existing_feedback, | 
 |                                           int new_feedback) { | 
 |   if (existing_feedback == nullptr) return; | 
 |   existing_feedback->Bind(SmiConstant(new_feedback)); | 
 | } | 
 |  | 
 | void CodeStubAssembler::CombineFeedback(Variable* existing_feedback, | 
 |                                         int feedback) { | 
 |   if (existing_feedback == nullptr) return; | 
 |   existing_feedback->Bind( | 
 |       SmiOr(CAST(existing_feedback->value()), SmiConstant(feedback))); | 
 | } | 
 |  | 
 | void CodeStubAssembler::CombineFeedback(Variable* existing_feedback, | 
 |                                         Node* feedback) { | 
 |   if (existing_feedback == nullptr) return; | 
 |   existing_feedback->Bind( | 
 |       SmiOr(CAST(existing_feedback->value()), CAST(feedback))); | 
 | } | 
 |  | 
 | void CodeStubAssembler::CheckForAssociatedProtector(Node* name, | 
 |                                                     Label* if_protector) { | 
 |   // This list must be kept in sync with LookupIterator::UpdateProtector! | 
 |   // TODO(jkummerow): Would it be faster to have a bit in Symbol::flags()? | 
 |   GotoIf(WordEqual(name, LoadRoot(RootIndex::kconstructor_string)), | 
 |          if_protector); | 
 |   GotoIf(WordEqual(name, LoadRoot(RootIndex::kiterator_symbol)), if_protector); | 
 |   GotoIf(WordEqual(name, LoadRoot(RootIndex::knext_string)), if_protector); | 
 |   GotoIf(WordEqual(name, LoadRoot(RootIndex::kspecies_symbol)), if_protector); | 
 |   GotoIf(WordEqual(name, LoadRoot(RootIndex::kis_concat_spreadable_symbol)), | 
 |          if_protector); | 
 |   GotoIf(WordEqual(name, LoadRoot(RootIndex::kresolve_string)), if_protector); | 
 |   GotoIf(WordEqual(name, LoadRoot(RootIndex::kthen_string)), if_protector); | 
 |   // Fall through if no case matched. | 
 | } | 
 |  | 
 | TNode<Map> CodeStubAssembler::LoadReceiverMap(SloppyTNode<Object> receiver) { | 
 |   return Select<Map>( | 
 |       TaggedIsSmi(receiver), | 
 |       [=] { return CAST(LoadRoot(RootIndex::kHeapNumberMap)); }, | 
 |       [=] { return LoadMap(UncheckedCast<HeapObject>(receiver)); }); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::TryToIntptr(Node* key, Label* miss) { | 
 |   TVARIABLE(IntPtrT, var_intptr_key); | 
 |   Label done(this, &var_intptr_key), key_is_smi(this); | 
 |   GotoIf(TaggedIsSmi(key), &key_is_smi); | 
 |   // Try to convert a heap number to a Smi. | 
 |   GotoIfNot(IsHeapNumber(key), miss); | 
 |   { | 
 |     TNode<Float64T> value = LoadHeapNumberValue(key); | 
 |     TNode<Int32T> int_value = RoundFloat64ToInt32(value); | 
 |     GotoIfNot(Float64Equal(value, ChangeInt32ToFloat64(int_value)), miss); | 
 |     var_intptr_key = ChangeInt32ToIntPtr(int_value); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&key_is_smi); | 
 |   { | 
 |     var_intptr_key = SmiUntag(key); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return var_intptr_key.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::EmitKeyedSloppyArguments(Node* receiver, Node* key, | 
 |                                                   Node* value, Label* bailout) { | 
 |   // Mapped arguments are actual arguments. Unmapped arguments are values added | 
 |   // to the arguments object after it was created for the call. Mapped arguments | 
 |   // are stored in the context at indexes given by elements[key + 2]. Unmapped | 
 |   // arguments are stored as regular indexed properties in the arguments array, | 
 |   // held at elements[1]. See NewSloppyArguments() in runtime.cc for a detailed | 
 |   // look at argument object construction. | 
 |   // | 
 |   // The sloppy arguments elements array has a special format: | 
 |   // | 
 |   // 0: context | 
 |   // 1: unmapped arguments array | 
 |   // 2: mapped_index0, | 
 |   // 3: mapped_index1, | 
 |   // ... | 
 |   // | 
 |   // length is 2 + min(number_of_actual_arguments, number_of_formal_arguments). | 
 |   // If key + 2 >= elements.length then attempt to look in the unmapped | 
 |   // arguments array (given by elements[1]) and return the value at key, missing | 
 |   // to the runtime if the unmapped arguments array is not a fixed array or if | 
 |   // key >= unmapped_arguments_array.length. | 
 |   // | 
 |   // Otherwise, t = elements[key + 2]. If t is the hole, then look up the value | 
 |   // in the unmapped arguments array, as described above. Otherwise, t is a Smi | 
 |   // index into the context array given at elements[0]. Return the value at | 
 |   // context[t]. | 
 |  | 
 |   bool is_load = value == nullptr; | 
 |  | 
 |   GotoIfNot(TaggedIsSmi(key), bailout); | 
 |   key = SmiUntag(key); | 
 |   GotoIf(IntPtrLessThan(key, IntPtrConstant(0)), bailout); | 
 |  | 
 |   TNode<FixedArray> elements = CAST(LoadElements(receiver)); | 
 |   TNode<IntPtrT> elements_length = LoadAndUntagFixedArrayBaseLength(elements); | 
 |  | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |   if (!is_load) { | 
 |     var_result.Bind(value); | 
 |   } | 
 |   Label if_mapped(this), if_unmapped(this), end(this, &var_result); | 
 |   Node* intptr_two = IntPtrConstant(2); | 
 |   Node* adjusted_length = IntPtrSub(elements_length, intptr_two); | 
 |  | 
 |   GotoIf(UintPtrGreaterThanOrEqual(key, adjusted_length), &if_unmapped); | 
 |  | 
 |   TNode<Object> mapped_index = | 
 |       LoadFixedArrayElement(elements, IntPtrAdd(key, intptr_two)); | 
 |   Branch(WordEqual(mapped_index, TheHoleConstant()), &if_unmapped, &if_mapped); | 
 |  | 
 |   BIND(&if_mapped); | 
 |   { | 
 |     TNode<IntPtrT> mapped_index_intptr = SmiUntag(CAST(mapped_index)); | 
 |     TNode<Context> the_context = CAST(LoadFixedArrayElement(elements, 0)); | 
 |     // Assert that we can use LoadFixedArrayElement/StoreFixedArrayElement | 
 |     // methods for accessing Context. | 
 |     STATIC_ASSERT(Context::kHeaderSize == FixedArray::kHeaderSize); | 
 |     DCHECK_EQ(Context::SlotOffset(0) + kHeapObjectTag, | 
 |               FixedArray::OffsetOfElementAt(0)); | 
 |     if (is_load) { | 
 |       Node* result = LoadFixedArrayElement(the_context, mapped_index_intptr); | 
 |       CSA_ASSERT(this, WordNotEqual(result, TheHoleConstant())); | 
 |       var_result.Bind(result); | 
 |     } else { | 
 |       StoreFixedArrayElement(the_context, mapped_index_intptr, value); | 
 |     } | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&if_unmapped); | 
 |   { | 
 |     TNode<HeapObject> backing_store_ho = | 
 |         CAST(LoadFixedArrayElement(elements, 1)); | 
 |     GotoIf(WordNotEqual(LoadMap(backing_store_ho), FixedArrayMapConstant()), | 
 |            bailout); | 
 |     TNode<FixedArray> backing_store = CAST(backing_store_ho); | 
 |  | 
 |     TNode<IntPtrT> backing_store_length = | 
 |         LoadAndUntagFixedArrayBaseLength(backing_store); | 
 |     GotoIf(UintPtrGreaterThanOrEqual(key, backing_store_length), bailout); | 
 |  | 
 |     // The key falls into unmapped range. | 
 |     if (is_load) { | 
 |       Node* result = LoadFixedArrayElement(backing_store, key); | 
 |       GotoIf(WordEqual(result, TheHoleConstant()), bailout); | 
 |       var_result.Bind(result); | 
 |     } else { | 
 |       StoreFixedArrayElement(backing_store, key, value); | 
 |     } | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Context> CodeStubAssembler::LoadScriptContext( | 
 |     TNode<Context> context, TNode<IntPtrT> context_index) { | 
 |   TNode<Context> native_context = LoadNativeContext(context); | 
 |   TNode<ScriptContextTable> script_context_table = CAST( | 
 |       LoadContextElement(native_context, Context::SCRIPT_CONTEXT_TABLE_INDEX)); | 
 |  | 
 |   TNode<Context> script_context = CAST(LoadFixedArrayElement( | 
 |       script_context_table, context_index, | 
 |       ScriptContextTable::kFirstContextSlotIndex * kPointerSize)); | 
 |   return script_context; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // Converts typed array elements kind to a machine representations. | 
 | MachineRepresentation ElementsKindToMachineRepresentation(ElementsKind kind) { | 
 |   switch (kind) { | 
 |     case UINT8_CLAMPED_ELEMENTS: | 
 |     case UINT8_ELEMENTS: | 
 |     case INT8_ELEMENTS: | 
 |       return MachineRepresentation::kWord8; | 
 |     case UINT16_ELEMENTS: | 
 |     case INT16_ELEMENTS: | 
 |       return MachineRepresentation::kWord16; | 
 |     case UINT32_ELEMENTS: | 
 |     case INT32_ELEMENTS: | 
 |       return MachineRepresentation::kWord32; | 
 |     case FLOAT32_ELEMENTS: | 
 |       return MachineRepresentation::kFloat32; | 
 |     case FLOAT64_ELEMENTS: | 
 |       return MachineRepresentation::kFloat64; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | void CodeStubAssembler::StoreElement(Node* elements, ElementsKind kind, | 
 |                                      Node* index, Node* value, | 
 |                                      ParameterMode mode) { | 
 |   if (IsFixedTypedArrayElementsKind(kind)) { | 
 |     if (kind == UINT8_CLAMPED_ELEMENTS) { | 
 |       CSA_ASSERT(this, | 
 |                  Word32Equal(value, Word32And(Int32Constant(0xFF), value))); | 
 |     } | 
 |     Node* offset = ElementOffsetFromIndex(index, kind, mode, 0); | 
 |     // TODO(cbruni): Add OOB check once typed. | 
 |     MachineRepresentation rep = ElementsKindToMachineRepresentation(kind); | 
 |     StoreNoWriteBarrier(rep, elements, offset, value); | 
 |     return; | 
 |   } else if (IsDoubleElementsKind(kind)) { | 
 |     // Make sure we do not store signalling NaNs into double arrays. | 
 |     TNode<Float64T> value_silenced = Float64SilenceNaN(value); | 
 |     StoreFixedDoubleArrayElement(CAST(elements), index, value_silenced, mode); | 
 |   } else { | 
 |     WriteBarrierMode barrier_mode = | 
 |         IsSmiElementsKind(kind) ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; | 
 |     StoreFixedArrayElement(CAST(elements), index, value, barrier_mode, 0, mode); | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::Int32ToUint8Clamped(Node* int32_value) { | 
 |   Label done(this); | 
 |   Node* int32_zero = Int32Constant(0); | 
 |   Node* int32_255 = Int32Constant(255); | 
 |   VARIABLE(var_value, MachineRepresentation::kWord32, int32_value); | 
 |   GotoIf(Uint32LessThanOrEqual(int32_value, int32_255), &done); | 
 |   var_value.Bind(int32_zero); | 
 |   GotoIf(Int32LessThan(int32_value, int32_zero), &done); | 
 |   var_value.Bind(int32_255); | 
 |   Goto(&done); | 
 |   BIND(&done); | 
 |   return var_value.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::Float64ToUint8Clamped(Node* float64_value) { | 
 |   Label done(this); | 
 |   VARIABLE(var_value, MachineRepresentation::kWord32, Int32Constant(0)); | 
 |   GotoIf(Float64LessThanOrEqual(float64_value, Float64Constant(0.0)), &done); | 
 |   var_value.Bind(Int32Constant(255)); | 
 |   GotoIf(Float64LessThanOrEqual(Float64Constant(255.0), float64_value), &done); | 
 |   { | 
 |     Node* rounded_value = Float64RoundToEven(float64_value); | 
 |     var_value.Bind(TruncateFloat64ToWord32(rounded_value)); | 
 |     Goto(&done); | 
 |   } | 
 |   BIND(&done); | 
 |   return var_value.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::PrepareValueForWriteToTypedArray( | 
 |     TNode<Object> input, ElementsKind elements_kind, TNode<Context> context) { | 
 |   DCHECK(IsFixedTypedArrayElementsKind(elements_kind)); | 
 |  | 
 |   MachineRepresentation rep; | 
 |   switch (elements_kind) { | 
 |     case UINT8_ELEMENTS: | 
 |     case INT8_ELEMENTS: | 
 |     case UINT16_ELEMENTS: | 
 |     case INT16_ELEMENTS: | 
 |     case UINT32_ELEMENTS: | 
 |     case INT32_ELEMENTS: | 
 |     case UINT8_CLAMPED_ELEMENTS: | 
 |       rep = MachineRepresentation::kWord32; | 
 |       break; | 
 |     case FLOAT32_ELEMENTS: | 
 |       rep = MachineRepresentation::kFloat32; | 
 |       break; | 
 |     case FLOAT64_ELEMENTS: | 
 |       rep = MachineRepresentation::kFloat64; | 
 |       break; | 
 |     case BIGINT64_ELEMENTS: | 
 |     case BIGUINT64_ELEMENTS: | 
 |       return ToBigInt(context, input); | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 |  | 
 |   VARIABLE(var_result, rep); | 
 |   VARIABLE(var_input, MachineRepresentation::kTagged, input); | 
 |   Label done(this, &var_result), if_smi(this), if_heapnumber_or_oddball(this), | 
 |       convert(this), loop(this, &var_input); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   GotoIf(TaggedIsSmi(var_input.value()), &if_smi); | 
 |   // We can handle both HeapNumber and Oddball here, since Oddball has the | 
 |   // same layout as the HeapNumber for the HeapNumber::value field. This | 
 |   // way we can also properly optimize stores of oddballs to typed arrays. | 
 |   GotoIf(IsHeapNumber(var_input.value()), &if_heapnumber_or_oddball); | 
 |   STATIC_ASSERT(HeapNumber::kValueOffset == Oddball::kToNumberRawOffset); | 
 |   Branch(HasInstanceType(var_input.value(), ODDBALL_TYPE), | 
 |          &if_heapnumber_or_oddball, &convert); | 
 |  | 
 |   BIND(&if_heapnumber_or_oddball); | 
 |   { | 
 |     Node* value = UncheckedCast<Float64T>(LoadObjectField( | 
 |         var_input.value(), HeapNumber::kValueOffset, MachineType::Float64())); | 
 |     if (rep == MachineRepresentation::kWord32) { | 
 |       if (elements_kind == UINT8_CLAMPED_ELEMENTS) { | 
 |         value = Float64ToUint8Clamped(value); | 
 |       } else { | 
 |         value = TruncateFloat64ToWord32(value); | 
 |       } | 
 |     } else if (rep == MachineRepresentation::kFloat32) { | 
 |       value = TruncateFloat64ToFloat32(value); | 
 |     } else { | 
 |       DCHECK_EQ(MachineRepresentation::kFloat64, rep); | 
 |     } | 
 |     var_result.Bind(value); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&if_smi); | 
 |   { | 
 |     Node* value = SmiToInt32(var_input.value()); | 
 |     if (rep == MachineRepresentation::kFloat32) { | 
 |       value = RoundInt32ToFloat32(value); | 
 |     } else if (rep == MachineRepresentation::kFloat64) { | 
 |       value = ChangeInt32ToFloat64(value); | 
 |     } else { | 
 |       DCHECK_EQ(MachineRepresentation::kWord32, rep); | 
 |       if (elements_kind == UINT8_CLAMPED_ELEMENTS) { | 
 |         value = Int32ToUint8Clamped(value); | 
 |       } | 
 |     } | 
 |     var_result.Bind(value); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&convert); | 
 |   { | 
 |     var_input.Bind(CallBuiltin(Builtins::kNonNumberToNumber, context, input)); | 
 |     Goto(&loop); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::EmitBigTypedArrayElementStore( | 
 |     TNode<JSTypedArray> object, TNode<FixedTypedArrayBase> elements, | 
 |     TNode<IntPtrT> intptr_key, TNode<Object> value, TNode<Context> context, | 
 |     Label* opt_if_neutered) { | 
 |   TNode<BigInt> bigint_value = ToBigInt(context, value); | 
 |  | 
 |   if (opt_if_neutered != nullptr) { | 
 |     // Check if buffer has been neutered. Must happen after {ToBigInt}! | 
 |     Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset); | 
 |     GotoIf(IsDetachedBuffer(buffer), opt_if_neutered); | 
 |   } | 
 |  | 
 |   TNode<RawPtrT> backing_store = LoadFixedTypedArrayBackingStore(elements); | 
 |   TNode<IntPtrT> offset = ElementOffsetFromIndex(intptr_key, BIGINT64_ELEMENTS, | 
 |                                                  INTPTR_PARAMETERS, 0); | 
 |   EmitBigTypedArrayElementStore(elements, backing_store, offset, bigint_value); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BigIntToRawBytes(TNode<BigInt> bigint, | 
 |                                          TVariable<UintPtrT>* var_low, | 
 |                                          TVariable<UintPtrT>* var_high) { | 
 |   Label done(this); | 
 |   *var_low = Unsigned(IntPtrConstant(0)); | 
 |   *var_high = Unsigned(IntPtrConstant(0)); | 
 |   TNode<WordT> bitfield = LoadBigIntBitfield(bigint); | 
 |   TNode<UintPtrT> length = DecodeWord<BigIntBase::LengthBits>(bitfield); | 
 |   TNode<UintPtrT> sign = DecodeWord<BigIntBase::SignBits>(bitfield); | 
 |   GotoIf(WordEqual(length, IntPtrConstant(0)), &done); | 
 |   *var_low = LoadBigIntDigit(bigint, 0); | 
 |   if (!Is64()) { | 
 |     Label load_done(this); | 
 |     GotoIf(WordEqual(length, IntPtrConstant(1)), &load_done); | 
 |     *var_high = LoadBigIntDigit(bigint, 1); | 
 |     Goto(&load_done); | 
 |     BIND(&load_done); | 
 |   } | 
 |   GotoIf(WordEqual(sign, IntPtrConstant(0)), &done); | 
 |   // Negative value. Simulate two's complement. | 
 |   if (!Is64()) { | 
 |     *var_high = Unsigned(IntPtrSub(IntPtrConstant(0), var_high->value())); | 
 |     Label no_carry(this); | 
 |     GotoIf(WordEqual(var_low->value(), IntPtrConstant(0)), &no_carry); | 
 |     *var_high = Unsigned(IntPtrSub(var_high->value(), IntPtrConstant(1))); | 
 |     Goto(&no_carry); | 
 |     BIND(&no_carry); | 
 |   } | 
 |   *var_low = Unsigned(IntPtrSub(IntPtrConstant(0), var_low->value())); | 
 |   Goto(&done); | 
 |   BIND(&done); | 
 | } | 
 |  | 
 | void CodeStubAssembler::EmitBigTypedArrayElementStore( | 
 |     TNode<FixedTypedArrayBase> elements, TNode<RawPtrT> backing_store, | 
 |     TNode<IntPtrT> offset, TNode<BigInt> bigint_value) { | 
 |   TVARIABLE(UintPtrT, var_low); | 
 |   // Only used on 32-bit platforms. | 
 |   TVARIABLE(UintPtrT, var_high); | 
 |   BigIntToRawBytes(bigint_value, &var_low, &var_high); | 
 |  | 
 |   // Assert that offset < elements.length. Given that it's an offset for a raw | 
 |   // pointer we correct it by the usual kHeapObjectTag offset. | 
 |   CSA_ASSERT( | 
 |       this, IsOffsetInBounds(offset, LoadAndUntagFixedArrayBaseLength(elements), | 
 |                              kHeapObjectTag, BIGINT64_ELEMENTS)); | 
 |  | 
 |   MachineRepresentation rep = WordT::kMachineRepresentation; | 
 | #if defined(V8_TARGET_BIG_ENDIAN) | 
 |   if (!Is64()) { | 
 |     StoreNoWriteBarrier(rep, backing_store, offset, var_high.value()); | 
 |     StoreNoWriteBarrier(rep, backing_store, | 
 |                         IntPtrAdd(offset, IntPtrConstant(kPointerSize)), | 
 |                         var_low.value()); | 
 |   } else { | 
 |     StoreNoWriteBarrier(rep, backing_store, offset, var_low.value()); | 
 |   } | 
 | #else | 
 |   StoreNoWriteBarrier(rep, backing_store, offset, var_low.value()); | 
 |   if (!Is64()) { | 
 |     StoreNoWriteBarrier(rep, backing_store, | 
 |                         IntPtrAdd(offset, IntPtrConstant(kPointerSize)), | 
 |                         var_high.value()); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | void CodeStubAssembler::EmitElementStore(Node* object, Node* key, Node* value, | 
 |                                          bool is_jsarray, | 
 |                                          ElementsKind elements_kind, | 
 |                                          KeyedAccessStoreMode store_mode, | 
 |                                          Label* bailout, Node* context) { | 
 |   CSA_ASSERT(this, Word32BinaryNot(IsJSProxy(object))); | 
 |  | 
 |   Node* elements = LoadElements(object); | 
 |   if (!IsSmiOrObjectElementsKind(elements_kind)) { | 
 |     CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements)))); | 
 |   } else if (!IsCOWHandlingStoreMode(store_mode)) { | 
 |     GotoIf(IsFixedCOWArrayMap(LoadMap(elements)), bailout); | 
 |   } | 
 |  | 
 |   // TODO(ishell): introduce TryToIntPtrOrSmi() and use OptimalParameterMode(). | 
 |   ParameterMode parameter_mode = INTPTR_PARAMETERS; | 
 |   TNode<IntPtrT> intptr_key = TryToIntptr(key, bailout); | 
 |  | 
 |   if (IsFixedTypedArrayElementsKind(elements_kind)) { | 
 |     Label done(this); | 
 |  | 
 |     // IntegerIndexedElementSet converts value to a Number/BigInt prior to the | 
 |     // bounds check. | 
 |     value = PrepareValueForWriteToTypedArray(CAST(value), elements_kind, | 
 |                                              CAST(context)); | 
 |  | 
 |     // There must be no allocations between the buffer load and | 
 |     // and the actual store to backing store, because GC may decide that | 
 |     // the buffer is not alive or move the elements. | 
 |     // TODO(ishell): introduce DisallowHeapAllocationCode scope here. | 
 |  | 
 |     // Check if buffer has been neutered. | 
 |     Node* buffer = LoadObjectField(object, JSArrayBufferView::kBufferOffset); | 
 |     GotoIf(IsDetachedBuffer(buffer), bailout); | 
 |  | 
 |     // Bounds check. | 
 |     Node* length = | 
 |         TaggedToParameter(LoadJSTypedArrayLength(CAST(object)), parameter_mode); | 
 |  | 
 |     if (store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { | 
 |       // Skip the store if we write beyond the length or | 
 |       // to a property with a negative integer index. | 
 |       GotoIfNot(UintPtrLessThan(intptr_key, length), &done); | 
 |     } else { | 
 |       DCHECK_EQ(STANDARD_STORE, store_mode); | 
 |       GotoIfNot(UintPtrLessThan(intptr_key, length), bailout); | 
 |     } | 
 |  | 
 |     if (elements_kind == BIGINT64_ELEMENTS || | 
 |         elements_kind == BIGUINT64_ELEMENTS) { | 
 |       TNode<BigInt> bigint_value = UncheckedCast<BigInt>(value); | 
 |  | 
 |       TNode<RawPtrT> backing_store = | 
 |           LoadFixedTypedArrayBackingStore(CAST(elements)); | 
 |       TNode<IntPtrT> offset = ElementOffsetFromIndex( | 
 |           intptr_key, BIGINT64_ELEMENTS, INTPTR_PARAMETERS, 0); | 
 |       EmitBigTypedArrayElementStore(CAST(elements), backing_store, offset, | 
 |                                     bigint_value); | 
 |     } else { | 
 |       Node* backing_store = LoadFixedTypedArrayBackingStore(CAST(elements)); | 
 |       StoreElement(backing_store, elements_kind, intptr_key, value, | 
 |                    parameter_mode); | 
 |     } | 
 |     Goto(&done); | 
 |  | 
 |     BIND(&done); | 
 |     return; | 
 |   } | 
 |   DCHECK(IsSmiOrObjectElementsKind(elements_kind) || | 
 |          IsDoubleElementsKind(elements_kind)); | 
 |  | 
 |   Node* length = is_jsarray ? LoadJSArrayLength(object) | 
 |                             : LoadFixedArrayBaseLength(elements); | 
 |   length = TaggedToParameter(length, parameter_mode); | 
 |  | 
 |   // In case value is stored into a fast smi array, assure that the value is | 
 |   // a smi before manipulating the backing store. Otherwise the backing store | 
 |   // may be left in an invalid state. | 
 |   if (IsSmiElementsKind(elements_kind)) { | 
 |     GotoIfNot(TaggedIsSmi(value), bailout); | 
 |   } else if (IsDoubleElementsKind(elements_kind)) { | 
 |     value = TryTaggedToFloat64(value, bailout); | 
 |   } | 
 |  | 
 |   if (IsGrowStoreMode(store_mode)) { | 
 |     elements = CheckForCapacityGrow(object, elements, elements_kind, store_mode, | 
 |                                     length, intptr_key, parameter_mode, | 
 |                                     is_jsarray, bailout); | 
 |   } else { | 
 |     GotoIfNot(UintPtrLessThan(intptr_key, length), bailout); | 
 |   } | 
 |  | 
 |   // If we didn't grow {elements}, it might still be COW, in which case we | 
 |   // copy it now. | 
 |   if (!IsSmiOrObjectElementsKind(elements_kind)) { | 
 |     CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements)))); | 
 |   } else if (IsCOWHandlingStoreMode(store_mode)) { | 
 |     elements = CopyElementsOnWrite(object, elements, elements_kind, length, | 
 |                                    parameter_mode, bailout); | 
 |   } | 
 |  | 
 |   CSA_ASSERT(this, Word32BinaryNot(IsFixedCOWArrayMap(LoadMap(elements)))); | 
 |   StoreElement(elements, elements_kind, intptr_key, value, parameter_mode); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::CheckForCapacityGrow( | 
 |     Node* object, Node* elements, ElementsKind kind, | 
 |     KeyedAccessStoreMode store_mode, Node* length, Node* key, | 
 |     ParameterMode mode, bool is_js_array, Label* bailout) { | 
 |   DCHECK(IsFastElementsKind(kind)); | 
 |   VARIABLE(checked_elements, MachineRepresentation::kTagged); | 
 |   Label grow_case(this), no_grow_case(this), done(this), | 
 |       grow_bailout(this, Label::kDeferred); | 
 |  | 
 |   Node* condition; | 
 |   if (IsHoleyElementsKind(kind)) { | 
 |     condition = UintPtrGreaterThanOrEqual(key, length); | 
 |   } else { | 
 |     // We don't support growing here unless the value is being appended. | 
 |     condition = WordEqual(key, length); | 
 |   } | 
 |   Branch(condition, &grow_case, &no_grow_case); | 
 |  | 
 |   BIND(&grow_case); | 
 |   { | 
 |     Node* current_capacity = | 
 |         TaggedToParameter(LoadFixedArrayBaseLength(elements), mode); | 
 |     checked_elements.Bind(elements); | 
 |     Label fits_capacity(this); | 
 |     // If key is negative, we will notice in Runtime::kGrowArrayElements. | 
 |     GotoIf(UintPtrLessThan(key, current_capacity), &fits_capacity); | 
 |  | 
 |     { | 
 |       Node* new_elements = TryGrowElementsCapacity( | 
 |           object, elements, kind, key, current_capacity, mode, &grow_bailout); | 
 |       checked_elements.Bind(new_elements); | 
 |       Goto(&fits_capacity); | 
 |     } | 
 |  | 
 |     BIND(&grow_bailout); | 
 |     { | 
 |       Node* tagged_key = mode == SMI_PARAMETERS | 
 |                              ? key | 
 |                              : ChangeInt32ToTagged(TruncateIntPtrToInt32(key)); | 
 |       Node* maybe_elements = CallRuntime( | 
 |           Runtime::kGrowArrayElements, NoContextConstant(), object, tagged_key); | 
 |       GotoIf(TaggedIsSmi(maybe_elements), bailout); | 
 |       CSA_ASSERT(this, IsFixedArrayWithKind(maybe_elements, kind)); | 
 |       checked_elements.Bind(maybe_elements); | 
 |       Goto(&fits_capacity); | 
 |     } | 
 |  | 
 |     BIND(&fits_capacity); | 
 |     if (is_js_array) { | 
 |       Node* new_length = IntPtrAdd(key, IntPtrOrSmiConstant(1, mode)); | 
 |       StoreObjectFieldNoWriteBarrier(object, JSArray::kLengthOffset, | 
 |                                      ParameterToTagged(new_length, mode)); | 
 |     } | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&no_grow_case); | 
 |   { | 
 |     GotoIfNot(UintPtrLessThan(key, length), bailout); | 
 |     checked_elements.Bind(elements); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return checked_elements.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::CopyElementsOnWrite(Node* object, Node* elements, | 
 |                                              ElementsKind kind, Node* length, | 
 |                                              ParameterMode mode, | 
 |                                              Label* bailout) { | 
 |   VARIABLE(new_elements_var, MachineRepresentation::kTagged, elements); | 
 |   Label done(this); | 
 |  | 
 |   GotoIfNot(IsFixedCOWArrayMap(LoadMap(elements)), &done); | 
 |   { | 
 |     Node* capacity = | 
 |         TaggedToParameter(LoadFixedArrayBaseLength(elements), mode); | 
 |     Node* new_elements = GrowElementsCapacity(object, elements, kind, kind, | 
 |                                               length, capacity, mode, bailout); | 
 |     new_elements_var.Bind(new_elements); | 
 |     Goto(&done); | 
 |   } | 
 |  | 
 |   BIND(&done); | 
 |   return new_elements_var.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TransitionElementsKind(Node* object, Node* map, | 
 |                                                ElementsKind from_kind, | 
 |                                                ElementsKind to_kind, | 
 |                                                bool is_jsarray, | 
 |                                                Label* bailout) { | 
 |   DCHECK(!IsHoleyElementsKind(from_kind) || IsHoleyElementsKind(to_kind)); | 
 |   if (AllocationSite::ShouldTrack(from_kind, to_kind)) { | 
 |     TrapAllocationMemento(object, bailout); | 
 |   } | 
 |  | 
 |   if (!IsSimpleMapChangeTransition(from_kind, to_kind)) { | 
 |     Comment("Non-simple map transition"); | 
 |     Node* elements = LoadElements(object); | 
 |  | 
 |     Label done(this); | 
 |     GotoIf(WordEqual(elements, EmptyFixedArrayConstant()), &done); | 
 |  | 
 |     // TODO(ishell): Use OptimalParameterMode(). | 
 |     ParameterMode mode = INTPTR_PARAMETERS; | 
 |     Node* elements_length = SmiUntag(LoadFixedArrayBaseLength(elements)); | 
 |     Node* array_length = | 
 |         is_jsarray ? SmiUntag(LoadFastJSArrayLength(object)) : elements_length; | 
 |  | 
 |     CSA_ASSERT(this, WordNotEqual(elements_length, IntPtrConstant(0))); | 
 |  | 
 |     GrowElementsCapacity(object, elements, from_kind, to_kind, array_length, | 
 |                          elements_length, mode, bailout); | 
 |     Goto(&done); | 
 |     BIND(&done); | 
 |   } | 
 |  | 
 |   StoreMap(object, map); | 
 | } | 
 |  | 
 | void CodeStubAssembler::TrapAllocationMemento(Node* object, | 
 |                                               Label* memento_found) { | 
 |   Comment("[ TrapAllocationMemento"); | 
 |   Label no_memento_found(this); | 
 |   Label top_check(this), map_check(this); | 
 |  | 
 |   TNode<ExternalReference> new_space_top_address = ExternalConstant( | 
 |       ExternalReference::new_space_allocation_top_address(isolate())); | 
 |   const int kMementoMapOffset = JSArray::kSize; | 
 |   const int kMementoLastWordOffset = | 
 |       kMementoMapOffset + AllocationMemento::kSize - kPointerSize; | 
 |  | 
 |   // Bail out if the object is not in new space. | 
 |   TNode<IntPtrT> object_word = BitcastTaggedToWord(object); | 
 |   TNode<IntPtrT> object_page = PageFromAddress(object_word); | 
 |   { | 
 |     TNode<IntPtrT> page_flags = | 
 |         UncheckedCast<IntPtrT>(Load(MachineType::IntPtr(), object_page, | 
 |                                     IntPtrConstant(Page::kFlagsOffset))); | 
 |     GotoIf(WordEqual(WordAnd(page_flags, | 
 |                              IntPtrConstant(MemoryChunk::kIsInNewSpaceMask)), | 
 |                      IntPtrConstant(0)), | 
 |            &no_memento_found); | 
 |   } | 
 |  | 
 |   TNode<IntPtrT> memento_last_word = IntPtrAdd( | 
 |       object_word, IntPtrConstant(kMementoLastWordOffset - kHeapObjectTag)); | 
 |   TNode<IntPtrT> memento_last_word_page = PageFromAddress(memento_last_word); | 
 |  | 
 |   TNode<IntPtrT> new_space_top = UncheckedCast<IntPtrT>( | 
 |       Load(MachineType::Pointer(), new_space_top_address)); | 
 |   TNode<IntPtrT> new_space_top_page = PageFromAddress(new_space_top); | 
 |  | 
 |   // If the object is in new space, we need to check whether respective | 
 |   // potential memento object is on the same page as the current top. | 
 |   GotoIf(WordEqual(memento_last_word_page, new_space_top_page), &top_check); | 
 |  | 
 |   // The object is on a different page than allocation top. Bail out if the | 
 |   // object sits on the page boundary as no memento can follow and we cannot | 
 |   // touch the memory following it. | 
 |   Branch(WordEqual(object_page, memento_last_word_page), &map_check, | 
 |          &no_memento_found); | 
 |  | 
 |   // If top is on the same page as the current object, we need to check whether | 
 |   // we are below top. | 
 |   BIND(&top_check); | 
 |   { | 
 |     Branch(UintPtrGreaterThanOrEqual(memento_last_word, new_space_top), | 
 |            &no_memento_found, &map_check); | 
 |   } | 
 |  | 
 |   // Memento map check. | 
 |   BIND(&map_check); | 
 |   { | 
 |     TNode<Object> memento_map = LoadObjectField(object, kMementoMapOffset); | 
 |     Branch(WordEqual(memento_map, LoadRoot(RootIndex::kAllocationMementoMap)), | 
 |            memento_found, &no_memento_found); | 
 |   } | 
 |   BIND(&no_memento_found); | 
 |   Comment("] TrapAllocationMemento"); | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::PageFromAddress(TNode<IntPtrT> address) { | 
 |   return WordAnd(address, IntPtrConstant(~kPageAlignmentMask)); | 
 | } | 
 |  | 
 | TNode<AllocationSite> CodeStubAssembler::CreateAllocationSiteInFeedbackVector( | 
 |     SloppyTNode<FeedbackVector> feedback_vector, TNode<Smi> slot) { | 
 |   TNode<IntPtrT> size = IntPtrConstant(AllocationSite::kSizeWithWeakNext); | 
 |   Node* site = Allocate(size, CodeStubAssembler::kPretenured); | 
 |   StoreMapNoWriteBarrier(site, RootIndex::kAllocationSiteWithWeakNextMap); | 
 |   // Should match AllocationSite::Initialize. | 
 |   TNode<WordT> field = UpdateWord<AllocationSite::ElementsKindBits>( | 
 |       IntPtrConstant(0), IntPtrConstant(GetInitialFastElementsKind())); | 
 |   StoreObjectFieldNoWriteBarrier( | 
 |       site, AllocationSite::kTransitionInfoOrBoilerplateOffset, | 
 |       SmiTag(Signed(field))); | 
 |  | 
 |   // Unlike literals, constructed arrays don't have nested sites | 
 |   TNode<Smi> zero = SmiConstant(0); | 
 |   StoreObjectFieldNoWriteBarrier(site, AllocationSite::kNestedSiteOffset, zero); | 
 |  | 
 |   // Pretenuring calculation field. | 
 |   StoreObjectFieldNoWriteBarrier(site, AllocationSite::kPretenureDataOffset, | 
 |                                  Int32Constant(0), | 
 |                                  MachineRepresentation::kWord32); | 
 |  | 
 |   // Pretenuring memento creation count field. | 
 |   StoreObjectFieldNoWriteBarrier( | 
 |       site, AllocationSite::kPretenureCreateCountOffset, Int32Constant(0), | 
 |       MachineRepresentation::kWord32); | 
 |  | 
 |   // Store an empty fixed array for the code dependency. | 
 |   StoreObjectFieldRoot(site, AllocationSite::kDependentCodeOffset, | 
 |                        RootIndex::kEmptyWeakFixedArray); | 
 |  | 
 |   // Link the object to the allocation site list | 
 |   TNode<ExternalReference> site_list = ExternalConstant( | 
 |       ExternalReference::allocation_sites_list_address(isolate())); | 
 |   TNode<Object> next_site = CAST(LoadBufferObject(site_list, 0)); | 
 |  | 
 |   // TODO(mvstanton): This is a store to a weak pointer, which we may want to | 
 |   // mark as such in order to skip the write barrier, once we have a unified | 
 |   // system for weakness. For now we decided to keep it like this because having | 
 |   // an initial write barrier backed store makes this pointer strong until the | 
 |   // next GC, and allocation sites are designed to survive several GCs anyway. | 
 |   StoreObjectField(site, AllocationSite::kWeakNextOffset, next_site); | 
 |   StoreNoWriteBarrier(MachineRepresentation::kTagged, site_list, site); | 
 |  | 
 |   StoreFeedbackVectorSlot(feedback_vector, slot, site, UPDATE_WRITE_BARRIER, 0, | 
 |                           SMI_PARAMETERS); | 
 |   return CAST(site); | 
 | } | 
 |  | 
 | TNode<MaybeObject> CodeStubAssembler::StoreWeakReferenceInFeedbackVector( | 
 |     SloppyTNode<FeedbackVector> feedback_vector, Node* slot, | 
 |     SloppyTNode<HeapObject> value, int additional_offset, | 
 |     ParameterMode parameter_mode) { | 
 |   TNode<MaybeObject> weak_value = MakeWeak(value); | 
 |   StoreFeedbackVectorSlot(feedback_vector, slot, weak_value, | 
 |                           UPDATE_WRITE_BARRIER, additional_offset, | 
 |                           parameter_mode); | 
 |   return weak_value; | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::NotHasBoilerplate( | 
 |     TNode<Object> maybe_literal_site) { | 
 |   return TaggedIsSmi(maybe_literal_site); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::LoadTransitionInfo( | 
 |     TNode<AllocationSite> allocation_site) { | 
 |   TNode<Smi> transition_info = CAST(LoadObjectField( | 
 |       allocation_site, AllocationSite::kTransitionInfoOrBoilerplateOffset)); | 
 |   return transition_info; | 
 | } | 
 |  | 
 | TNode<JSObject> CodeStubAssembler::LoadBoilerplate( | 
 |     TNode<AllocationSite> allocation_site) { | 
 |   TNode<JSObject> boilerplate = CAST(LoadObjectField( | 
 |       allocation_site, AllocationSite::kTransitionInfoOrBoilerplateOffset)); | 
 |   return boilerplate; | 
 | } | 
 |  | 
 | TNode<Int32T> CodeStubAssembler::LoadElementsKind( | 
 |     TNode<AllocationSite> allocation_site) { | 
 |   TNode<Smi> transition_info = LoadTransitionInfo(allocation_site); | 
 |   TNode<Int32T> elements_kind = | 
 |       Signed(DecodeWord32<AllocationSite::ElementsKindBits>( | 
 |           SmiToInt32(transition_info))); | 
 |   CSA_ASSERT(this, IsFastElementsKind(elements_kind)); | 
 |   return elements_kind; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::BuildFastLoop( | 
 |     const CodeStubAssembler::VariableList& vars, Node* start_index, | 
 |     Node* end_index, const FastLoopBody& body, int increment, | 
 |     ParameterMode parameter_mode, IndexAdvanceMode advance_mode) { | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(start_index, parameter_mode)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(end_index, parameter_mode)); | 
 |   MachineRepresentation index_rep = (parameter_mode == INTPTR_PARAMETERS) | 
 |                                         ? MachineType::PointerRepresentation() | 
 |                                         : MachineRepresentation::kTaggedSigned; | 
 |   VARIABLE(var, index_rep, start_index); | 
 |   VariableList vars_copy(vars.begin(), vars.end(), zone()); | 
 |   vars_copy.push_back(&var); | 
 |   Label loop(this, vars_copy); | 
 |   Label after_loop(this); | 
 |   // Introduce an explicit second check of the termination condition before the | 
 |   // loop that helps turbofan generate better code. If there's only a single | 
 |   // check, then the CodeStubAssembler forces it to be at the beginning of the | 
 |   // loop requiring a backwards branch at the end of the loop (it's not possible | 
 |   // to force the loop header check at the end of the loop and branch forward to | 
 |   // it from the pre-header). The extra branch is slower in the case that the | 
 |   // loop actually iterates. | 
 |   Node* first_check = WordEqual(var.value(), end_index); | 
 |   int32_t first_check_val; | 
 |   if (ToInt32Constant(first_check, first_check_val)) { | 
 |     if (first_check_val) return var.value(); | 
 |     Goto(&loop); | 
 |   } else { | 
 |     Branch(first_check, &after_loop, &loop); | 
 |   } | 
 |  | 
 |   BIND(&loop); | 
 |   { | 
 |     if (advance_mode == IndexAdvanceMode::kPre) { | 
 |       Increment(&var, increment, parameter_mode); | 
 |     } | 
 |     body(var.value()); | 
 |     if (advance_mode == IndexAdvanceMode::kPost) { | 
 |       Increment(&var, increment, parameter_mode); | 
 |     } | 
 |     Branch(WordNotEqual(var.value(), end_index), &loop, &after_loop); | 
 |   } | 
 |   BIND(&after_loop); | 
 |   return var.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BuildFastFixedArrayForEach( | 
 |     const CodeStubAssembler::VariableList& vars, Node* fixed_array, | 
 |     ElementsKind kind, Node* first_element_inclusive, | 
 |     Node* last_element_exclusive, const FastFixedArrayForEachBody& body, | 
 |     ParameterMode mode, ForEachDirection direction) { | 
 |   STATIC_ASSERT(FixedArray::kHeaderSize == FixedDoubleArray::kHeaderSize); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(first_element_inclusive, mode)); | 
 |   CSA_SLOW_ASSERT(this, MatchesParameterMode(last_element_exclusive, mode)); | 
 |   CSA_SLOW_ASSERT(this, Word32Or(IsFixedArrayWithKind(fixed_array, kind), | 
 |                                  IsPropertyArray(fixed_array))); | 
 |   int32_t first_val; | 
 |   bool constant_first = ToInt32Constant(first_element_inclusive, first_val); | 
 |   int32_t last_val; | 
 |   bool constent_last = ToInt32Constant(last_element_exclusive, last_val); | 
 |   if (constant_first && constent_last) { | 
 |     int delta = last_val - first_val; | 
 |     DCHECK_GE(delta, 0); | 
 |     if (delta <= kElementLoopUnrollThreshold) { | 
 |       if (direction == ForEachDirection::kForward) { | 
 |         for (int i = first_val; i < last_val; ++i) { | 
 |           Node* index = IntPtrConstant(i); | 
 |           Node* offset = | 
 |               ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS, | 
 |                                      FixedArray::kHeaderSize - kHeapObjectTag); | 
 |           body(fixed_array, offset); | 
 |         } | 
 |       } else { | 
 |         for (int i = last_val - 1; i >= first_val; --i) { | 
 |           Node* index = IntPtrConstant(i); | 
 |           Node* offset = | 
 |               ElementOffsetFromIndex(index, kind, INTPTR_PARAMETERS, | 
 |                                      FixedArray::kHeaderSize - kHeapObjectTag); | 
 |           body(fixed_array, offset); | 
 |         } | 
 |       } | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   Node* start = | 
 |       ElementOffsetFromIndex(first_element_inclusive, kind, mode, | 
 |                              FixedArray::kHeaderSize - kHeapObjectTag); | 
 |   Node* limit = | 
 |       ElementOffsetFromIndex(last_element_exclusive, kind, mode, | 
 |                              FixedArray::kHeaderSize - kHeapObjectTag); | 
 |   if (direction == ForEachDirection::kReverse) std::swap(start, limit); | 
 |  | 
 |   int increment = IsDoubleElementsKind(kind) ? kDoubleSize : kPointerSize; | 
 |   BuildFastLoop( | 
 |       vars, start, limit, | 
 |       [fixed_array, &body](Node* offset) { body(fixed_array, offset); }, | 
 |       direction == ForEachDirection::kReverse ? -increment : increment, | 
 |       INTPTR_PARAMETERS, | 
 |       direction == ForEachDirection::kReverse ? IndexAdvanceMode::kPre | 
 |                                               : IndexAdvanceMode::kPost); | 
 | } | 
 |  | 
 | void CodeStubAssembler::GotoIfFixedArraySizeDoesntFitInNewSpace( | 
 |     Node* element_count, Label* doesnt_fit, int base_size, ParameterMode mode) { | 
 |   GotoIf(FixedArraySizeDoesntFitInNewSpace(element_count, base_size, mode), | 
 |          doesnt_fit); | 
 | } | 
 |  | 
 | void CodeStubAssembler::InitializeFieldsWithRoot(Node* object, | 
 |                                                  Node* start_offset, | 
 |                                                  Node* end_offset, | 
 |                                                  RootIndex root_index) { | 
 |   CSA_SLOW_ASSERT(this, TaggedIsNotSmi(object)); | 
 |   start_offset = IntPtrAdd(start_offset, IntPtrConstant(-kHeapObjectTag)); | 
 |   end_offset = IntPtrAdd(end_offset, IntPtrConstant(-kHeapObjectTag)); | 
 |   Node* root_value = LoadRoot(root_index); | 
 |   BuildFastLoop(end_offset, start_offset, | 
 |                 [this, object, root_value](Node* current) { | 
 |                   StoreNoWriteBarrier(MachineRepresentation::kTagged, object, | 
 |                                       current, root_value); | 
 |                 }, | 
 |                 -kPointerSize, INTPTR_PARAMETERS, | 
 |                 CodeStubAssembler::IndexAdvanceMode::kPre); | 
 | } | 
 |  | 
 | void CodeStubAssembler::BranchIfNumberRelationalComparison( | 
 |     Operation op, Node* left, Node* right, Label* if_true, Label* if_false) { | 
 |   CSA_SLOW_ASSERT(this, IsNumber(left)); | 
 |   CSA_SLOW_ASSERT(this, IsNumber(right)); | 
 |  | 
 |   Label do_float_comparison(this); | 
 |   TVARIABLE(Float64T, var_left_float); | 
 |   TVARIABLE(Float64T, var_right_float); | 
 |  | 
 |   Branch(TaggedIsSmi(left), | 
 |          [&] { | 
 |            TNode<Smi> smi_left = CAST(left); | 
 |  | 
 |            Branch(TaggedIsSmi(right), | 
 |                   [&] { | 
 |                     TNode<Smi> smi_right = CAST(right); | 
 |  | 
 |                     // Both {left} and {right} are Smi, so just perform a fast | 
 |                     // Smi comparison. | 
 |                     switch (op) { | 
 |                       case Operation::kEqual: | 
 |                         BranchIfSmiEqual(smi_left, smi_right, if_true, | 
 |                                          if_false); | 
 |                         break; | 
 |                       case Operation::kLessThan: | 
 |                         BranchIfSmiLessThan(smi_left, smi_right, if_true, | 
 |                                             if_false); | 
 |                         break; | 
 |                       case Operation::kLessThanOrEqual: | 
 |                         BranchIfSmiLessThanOrEqual(smi_left, smi_right, if_true, | 
 |                                                    if_false); | 
 |                         break; | 
 |                       case Operation::kGreaterThan: | 
 |                         BranchIfSmiLessThan(smi_right, smi_left, if_true, | 
 |                                             if_false); | 
 |                         break; | 
 |                       case Operation::kGreaterThanOrEqual: | 
 |                         BranchIfSmiLessThanOrEqual(smi_right, smi_left, if_true, | 
 |                                                    if_false); | 
 |                         break; | 
 |                       default: | 
 |                         UNREACHABLE(); | 
 |                     } | 
 |                   }, | 
 |                   [&] { | 
 |                     CSA_ASSERT(this, IsHeapNumber(right)); | 
 |                     var_left_float = SmiToFloat64(smi_left); | 
 |                     var_right_float = LoadHeapNumberValue(right); | 
 |                     Goto(&do_float_comparison); | 
 |                   }); | 
 |          }, | 
 |          [&] { | 
 |            CSA_ASSERT(this, IsHeapNumber(left)); | 
 |            var_left_float = LoadHeapNumberValue(left); | 
 |  | 
 |            Branch(TaggedIsSmi(right), | 
 |                   [&] { | 
 |                     var_right_float = SmiToFloat64(right); | 
 |                     Goto(&do_float_comparison); | 
 |                   }, | 
 |                   [&] { | 
 |                     CSA_ASSERT(this, IsHeapNumber(right)); | 
 |                     var_right_float = LoadHeapNumberValue(right); | 
 |                     Goto(&do_float_comparison); | 
 |                   }); | 
 |          }); | 
 |  | 
 |   BIND(&do_float_comparison); | 
 |   { | 
 |     switch (op) { | 
 |       case Operation::kEqual: | 
 |         Branch(Float64Equal(var_left_float.value(), var_right_float.value()), | 
 |                if_true, if_false); | 
 |         break; | 
 |       case Operation::kLessThan: | 
 |         Branch(Float64LessThan(var_left_float.value(), var_right_float.value()), | 
 |                if_true, if_false); | 
 |         break; | 
 |       case Operation::kLessThanOrEqual: | 
 |         Branch(Float64LessThanOrEqual(var_left_float.value(), | 
 |                                       var_right_float.value()), | 
 |                if_true, if_false); | 
 |         break; | 
 |       case Operation::kGreaterThan: | 
 |         Branch( | 
 |             Float64GreaterThan(var_left_float.value(), var_right_float.value()), | 
 |             if_true, if_false); | 
 |         break; | 
 |       case Operation::kGreaterThanOrEqual: | 
 |         Branch(Float64GreaterThanOrEqual(var_left_float.value(), | 
 |                                          var_right_float.value()), | 
 |                if_true, if_false); | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeStubAssembler::GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, | 
 |                                                        Label* if_true) { | 
 |   Label if_false(this); | 
 |   BranchIfNumberRelationalComparison(Operation::kGreaterThanOrEqual, left, | 
 |                                      right, if_true, &if_false); | 
 |   BIND(&if_false); | 
 | } | 
 |  | 
 | namespace { | 
 | Operation Reverse(Operation op) { | 
 |   switch (op) { | 
 |     case Operation::kLessThan: | 
 |       return Operation::kGreaterThan; | 
 |     case Operation::kLessThanOrEqual: | 
 |       return Operation::kGreaterThanOrEqual; | 
 |     case Operation::kGreaterThan: | 
 |       return Operation::kLessThan; | 
 |     case Operation::kGreaterThanOrEqual: | 
 |       return Operation::kLessThanOrEqual; | 
 |     default: | 
 |       break; | 
 |   } | 
 |   UNREACHABLE(); | 
 | } | 
 | }  // anonymous namespace | 
 |  | 
 | Node* CodeStubAssembler::RelationalComparison(Operation op, Node* left, | 
 |                                               Node* right, Node* context, | 
 |                                               Variable* var_type_feedback) { | 
 |   Label return_true(this), return_false(this), do_float_comparison(this), | 
 |       end(this); | 
 |   TVARIABLE(Oddball, var_result);  // Actually only "true" or "false". | 
 |   TVARIABLE(Float64T, var_left_float); | 
 |   TVARIABLE(Float64T, var_right_float); | 
 |  | 
 |   // We might need to loop several times due to ToPrimitive and/or ToNumeric | 
 |   // conversions. | 
 |   VARIABLE(var_left, MachineRepresentation::kTagged, left); | 
 |   VARIABLE(var_right, MachineRepresentation::kTagged, right); | 
 |   VariableList loop_variable_list({&var_left, &var_right}, zone()); | 
 |   if (var_type_feedback != nullptr) { | 
 |     // Initialize the type feedback to None. The current feedback is combined | 
 |     // with the previous feedback. | 
 |     var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kNone)); | 
 |     loop_variable_list.push_back(var_type_feedback); | 
 |   } | 
 |   Label loop(this, loop_variable_list); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     left = var_left.value(); | 
 |     right = var_right.value(); | 
 |  | 
 |     Label if_left_smi(this), if_left_not_smi(this); | 
 |     Branch(TaggedIsSmi(left), &if_left_smi, &if_left_not_smi); | 
 |  | 
 |     BIND(&if_left_smi); | 
 |     { | 
 |       TNode<Smi> smi_left = CAST(left); | 
 |       Label if_right_smi(this), if_right_heapnumber(this), | 
 |           if_right_bigint(this, Label::kDeferred), | 
 |           if_right_not_numeric(this, Label::kDeferred); | 
 |       GotoIf(TaggedIsSmi(right), &if_right_smi); | 
 |       Node* right_map = LoadMap(right); | 
 |       GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber); | 
 |       Node* right_instance_type = LoadMapInstanceType(right_map); | 
 |       Branch(IsBigIntInstanceType(right_instance_type), &if_right_bigint, | 
 |              &if_right_not_numeric); | 
 |  | 
 |       BIND(&if_right_smi); | 
 |       { | 
 |         TNode<Smi> smi_right = CAST(right); | 
 |         CombineFeedback(var_type_feedback, | 
 |                         CompareOperationFeedback::kSignedSmall); | 
 |         switch (op) { | 
 |           case Operation::kLessThan: | 
 |             BranchIfSmiLessThan(smi_left, smi_right, &return_true, | 
 |                                 &return_false); | 
 |             break; | 
 |           case Operation::kLessThanOrEqual: | 
 |             BranchIfSmiLessThanOrEqual(smi_left, smi_right, &return_true, | 
 |                                        &return_false); | 
 |             break; | 
 |           case Operation::kGreaterThan: | 
 |             BranchIfSmiLessThan(smi_right, smi_left, &return_true, | 
 |                                 &return_false); | 
 |             break; | 
 |           case Operation::kGreaterThanOrEqual: | 
 |             BranchIfSmiLessThanOrEqual(smi_right, smi_left, &return_true, | 
 |                                        &return_false); | 
 |             break; | 
 |           default: | 
 |             UNREACHABLE(); | 
 |         } | 
 |       } | 
 |  | 
 |       BIND(&if_right_heapnumber); | 
 |       { | 
 |         CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); | 
 |         var_left_float = SmiToFloat64(smi_left); | 
 |         var_right_float = LoadHeapNumberValue(right); | 
 |         Goto(&do_float_comparison); | 
 |       } | 
 |  | 
 |       BIND(&if_right_bigint); | 
 |       { | 
 |         OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); | 
 |         var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber, | 
 |                                       NoContextConstant(), | 
 |                                       SmiConstant(Reverse(op)), right, left)); | 
 |         Goto(&end); | 
 |       } | 
 |  | 
 |       BIND(&if_right_not_numeric); | 
 |       { | 
 |         OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); | 
 |         // Convert {right} to a Numeric; we don't need to perform the | 
 |         // dedicated ToPrimitive(right, hint Number) operation, as the | 
 |         // ToNumeric(right) will by itself already invoke ToPrimitive with | 
 |         // a Number hint. | 
 |         var_right.Bind( | 
 |             CallBuiltin(Builtins::kNonNumberToNumeric, context, right)); | 
 |         Goto(&loop); | 
 |       } | 
 |     } | 
 |  | 
 |     BIND(&if_left_not_smi); | 
 |     { | 
 |       Node* left_map = LoadMap(left); | 
 |  | 
 |       Label if_right_smi(this), if_right_not_smi(this); | 
 |       Branch(TaggedIsSmi(right), &if_right_smi, &if_right_not_smi); | 
 |  | 
 |       BIND(&if_right_smi); | 
 |       { | 
 |         Label if_left_heapnumber(this), if_left_bigint(this, Label::kDeferred), | 
 |             if_left_not_numeric(this, Label::kDeferred); | 
 |         GotoIf(IsHeapNumberMap(left_map), &if_left_heapnumber); | 
 |         Node* left_instance_type = LoadMapInstanceType(left_map); | 
 |         Branch(IsBigIntInstanceType(left_instance_type), &if_left_bigint, | 
 |                &if_left_not_numeric); | 
 |  | 
 |         BIND(&if_left_heapnumber); | 
 |         { | 
 |           CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); | 
 |           var_left_float = LoadHeapNumberValue(left); | 
 |           var_right_float = SmiToFloat64(right); | 
 |           Goto(&do_float_comparison); | 
 |         } | 
 |  | 
 |         BIND(&if_left_bigint); | 
 |         { | 
 |           OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); | 
 |           var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber, | 
 |                                         NoContextConstant(), SmiConstant(op), | 
 |                                         left, right)); | 
 |           Goto(&end); | 
 |         } | 
 |  | 
 |         BIND(&if_left_not_numeric); | 
 |         { | 
 |           OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kAny); | 
 |           // Convert {left} to a Numeric; we don't need to perform the | 
 |           // dedicated ToPrimitive(left, hint Number) operation, as the | 
 |           // ToNumeric(left) will by itself already invoke ToPrimitive with | 
 |           // a Number hint. | 
 |           var_left.Bind( | 
 |               CallBuiltin(Builtins::kNonNumberToNumeric, context, left)); | 
 |           Goto(&loop); | 
 |         } | 
 |       } | 
 |  | 
 |       BIND(&if_right_not_smi); | 
 |       { | 
 |         Node* right_map = LoadMap(right); | 
 |  | 
 |         Label if_left_heapnumber(this), if_left_bigint(this, Label::kDeferred), | 
 |             if_left_string(this), if_left_other(this, Label::kDeferred); | 
 |         GotoIf(IsHeapNumberMap(left_map), &if_left_heapnumber); | 
 |         Node* left_instance_type = LoadMapInstanceType(left_map); | 
 |         GotoIf(IsBigIntInstanceType(left_instance_type), &if_left_bigint); | 
 |         Branch(IsStringInstanceType(left_instance_type), &if_left_string, | 
 |                &if_left_other); | 
 |  | 
 |         BIND(&if_left_heapnumber); | 
 |         { | 
 |           Label if_right_heapnumber(this), | 
 |               if_right_bigint(this, Label::kDeferred), | 
 |               if_right_not_numeric(this, Label::kDeferred); | 
 |           GotoIf(WordEqual(right_map, left_map), &if_right_heapnumber); | 
 |           Node* right_instance_type = LoadMapInstanceType(right_map); | 
 |           Branch(IsBigIntInstanceType(right_instance_type), &if_right_bigint, | 
 |                  &if_right_not_numeric); | 
 |  | 
 |           BIND(&if_right_heapnumber); | 
 |           { | 
 |             CombineFeedback(var_type_feedback, | 
 |                             CompareOperationFeedback::kNumber); | 
 |             var_left_float = LoadHeapNumberValue(left); | 
 |             var_right_float = LoadHeapNumberValue(right); | 
 |             Goto(&do_float_comparison); | 
 |           } | 
 |  | 
 |           BIND(&if_right_bigint); | 
 |           { | 
 |             OverwriteFeedback(var_type_feedback, | 
 |                               CompareOperationFeedback::kAny); | 
 |             var_result = CAST(CallRuntime( | 
 |                 Runtime::kBigIntCompareToNumber, NoContextConstant(), | 
 |                 SmiConstant(Reverse(op)), right, left)); | 
 |             Goto(&end); | 
 |           } | 
 |  | 
 |           BIND(&if_right_not_numeric); | 
 |           { | 
 |             OverwriteFeedback(var_type_feedback, | 
 |                               CompareOperationFeedback::kAny); | 
 |             // Convert {right} to a Numeric; we don't need to perform | 
 |             // dedicated ToPrimitive(right, hint Number) operation, as the | 
 |             // ToNumeric(right) will by itself already invoke ToPrimitive with | 
 |             // a Number hint. | 
 |             var_right.Bind( | 
 |                 CallBuiltin(Builtins::kNonNumberToNumeric, context, right)); | 
 |             Goto(&loop); | 
 |           } | 
 |         } | 
 |  | 
 |         BIND(&if_left_bigint); | 
 |         { | 
 |           Label if_right_heapnumber(this), if_right_bigint(this), | 
 |               if_right_string(this), if_right_other(this); | 
 |           GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber); | 
 |           Node* right_instance_type = LoadMapInstanceType(right_map); | 
 |           GotoIf(IsBigIntInstanceType(right_instance_type), &if_right_bigint); | 
 |           Branch(IsStringInstanceType(right_instance_type), &if_right_string, | 
 |                  &if_right_other); | 
 |  | 
 |           BIND(&if_right_heapnumber); | 
 |           { | 
 |             OverwriteFeedback(var_type_feedback, | 
 |                               CompareOperationFeedback::kAny); | 
 |             var_result = CAST(CallRuntime(Runtime::kBigIntCompareToNumber, | 
 |                                           NoContextConstant(), SmiConstant(op), | 
 |                                           left, right)); | 
 |             Goto(&end); | 
 |           } | 
 |  | 
 |           BIND(&if_right_bigint); | 
 |           { | 
 |             CombineFeedback(var_type_feedback, | 
 |                             CompareOperationFeedback::kBigInt); | 
 |             var_result = CAST(CallRuntime(Runtime::kBigIntCompareToBigInt, | 
 |                                           NoContextConstant(), SmiConstant(op), | 
 |                                           left, right)); | 
 |             Goto(&end); | 
 |           } | 
 |  | 
 |           BIND(&if_right_string); | 
 |           { | 
 |             OverwriteFeedback(var_type_feedback, | 
 |                               CompareOperationFeedback::kAny); | 
 |             var_result = CAST(CallRuntime(Runtime::kBigIntCompareToString, | 
 |                                           NoContextConstant(), SmiConstant(op), | 
 |                                           left, right)); | 
 |             Goto(&end); | 
 |           } | 
 |  | 
 |           // {right} is not a Number, BigInt, or String. | 
 |           BIND(&if_right_other); | 
 |           { | 
 |             OverwriteFeedback(var_type_feedback, | 
 |                               CompareOperationFeedback::kAny); | 
 |             // Convert {right} to a Numeric; we don't need to perform | 
 |             // dedicated ToPrimitive(right, hint Number) operation, as the | 
 |             // ToNumeric(right) will by itself already invoke ToPrimitive with | 
 |             // a Number hint. | 
 |             var_right.Bind( | 
 |                 CallBuiltin(Builtins::kNonNumberToNumeric, context, right)); | 
 |             Goto(&loop); | 
 |           } | 
 |         } | 
 |  | 
 |         BIND(&if_left_string); | 
 |         { | 
 |           Node* right_instance_type = LoadMapInstanceType(right_map); | 
 |  | 
 |           Label if_right_not_string(this, Label::kDeferred); | 
 |           GotoIfNot(IsStringInstanceType(right_instance_type), | 
 |                     &if_right_not_string); | 
 |  | 
 |           // Both {left} and {right} are strings. | 
 |           CombineFeedback(var_type_feedback, CompareOperationFeedback::kString); | 
 |           Builtins::Name builtin; | 
 |           switch (op) { | 
 |             case Operation::kLessThan: | 
 |               builtin = Builtins::kStringLessThan; | 
 |               break; | 
 |             case Operation::kLessThanOrEqual: | 
 |               builtin = Builtins::kStringLessThanOrEqual; | 
 |               break; | 
 |             case Operation::kGreaterThan: | 
 |               builtin = Builtins::kStringGreaterThan; | 
 |               break; | 
 |             case Operation::kGreaterThanOrEqual: | 
 |               builtin = Builtins::kStringGreaterThanOrEqual; | 
 |               break; | 
 |             default: | 
 |               UNREACHABLE(); | 
 |           } | 
 |           var_result = CAST(CallBuiltin(builtin, context, left, right)); | 
 |           Goto(&end); | 
 |  | 
 |           BIND(&if_right_not_string); | 
 |           { | 
 |             OverwriteFeedback(var_type_feedback, | 
 |                               CompareOperationFeedback::kAny); | 
 |             // {left} is a String, while {right} isn't. Check if {right} is | 
 |             // a BigInt, otherwise call ToPrimitive(right, hint Number) if | 
 |             // {right} is a receiver, or ToNumeric(left) and then | 
 |             // ToNumeric(right) in the other cases. | 
 |             STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); | 
 |             Label if_right_bigint(this), | 
 |                 if_right_receiver(this, Label::kDeferred); | 
 |             GotoIf(IsBigIntInstanceType(right_instance_type), &if_right_bigint); | 
 |             GotoIf(IsJSReceiverInstanceType(right_instance_type), | 
 |                    &if_right_receiver); | 
 |  | 
 |             var_left.Bind( | 
 |                 CallBuiltin(Builtins::kNonNumberToNumeric, context, left)); | 
 |             var_right.Bind(CallBuiltin(Builtins::kToNumeric, context, right)); | 
 |             Goto(&loop); | 
 |  | 
 |             BIND(&if_right_bigint); | 
 |             { | 
 |               var_result = CAST(CallRuntime( | 
 |                   Runtime::kBigIntCompareToString, NoContextConstant(), | 
 |                   SmiConstant(Reverse(op)), right, left)); | 
 |               Goto(&end); | 
 |             } | 
 |  | 
 |             BIND(&if_right_receiver); | 
 |             { | 
 |               Callable callable = CodeFactory::NonPrimitiveToPrimitive( | 
 |                   isolate(), ToPrimitiveHint::kNumber); | 
 |               var_right.Bind(CallStub(callable, context, right)); | 
 |               Goto(&loop); | 
 |             } | 
 |           } | 
 |         } | 
 |  | 
 |         BIND(&if_left_other); | 
 |         { | 
 |           // {left} is neither a Numeric nor a String, and {right} is not a Smi. | 
 |           if (var_type_feedback != nullptr) { | 
 |             // Collect NumberOrOddball feedback if {left} is an Oddball | 
 |             // and {right} is either a HeapNumber or Oddball. Otherwise collect | 
 |             // Any feedback. | 
 |             Label collect_any_feedback(this), collect_oddball_feedback(this), | 
 |                 collect_feedback_done(this); | 
 |             GotoIfNot(InstanceTypeEqual(left_instance_type, ODDBALL_TYPE), | 
 |                       &collect_any_feedback); | 
 |  | 
 |             GotoIf(IsHeapNumberMap(right_map), &collect_oddball_feedback); | 
 |             Node* right_instance_type = LoadMapInstanceType(right_map); | 
 |             Branch(InstanceTypeEqual(right_instance_type, ODDBALL_TYPE), | 
 |                    &collect_oddball_feedback, &collect_any_feedback); | 
 |  | 
 |             BIND(&collect_oddball_feedback); | 
 |             { | 
 |               CombineFeedback(var_type_feedback, | 
 |                               CompareOperationFeedback::kNumberOrOddball); | 
 |               Goto(&collect_feedback_done); | 
 |             } | 
 |  | 
 |             BIND(&collect_any_feedback); | 
 |             { | 
 |               OverwriteFeedback(var_type_feedback, | 
 |                                 CompareOperationFeedback::kAny); | 
 |               Goto(&collect_feedback_done); | 
 |             } | 
 |  | 
 |             BIND(&collect_feedback_done); | 
 |           } | 
 |  | 
 |           // If {left} is a receiver, call ToPrimitive(left, hint Number). | 
 |           // Otherwise call ToNumeric(right) and then ToNumeric(left), the | 
 |           // order here is important as it's observable by user code. | 
 |           STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); | 
 |           Label if_left_receiver(this, Label::kDeferred); | 
 |           GotoIf(IsJSReceiverInstanceType(left_instance_type), | 
 |                  &if_left_receiver); | 
 |  | 
 |           var_right.Bind(CallBuiltin(Builtins::kToNumeric, context, right)); | 
 |           var_left.Bind( | 
 |               CallBuiltin(Builtins::kNonNumberToNumeric, context, left)); | 
 |           Goto(&loop); | 
 |  | 
 |           BIND(&if_left_receiver); | 
 |           { | 
 |             Callable callable = CodeFactory::NonPrimitiveToPrimitive( | 
 |                 isolate(), ToPrimitiveHint::kNumber); | 
 |             var_left.Bind(CallStub(callable, context, left)); | 
 |             Goto(&loop); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&do_float_comparison); | 
 |   { | 
 |     switch (op) { | 
 |       case Operation::kLessThan: | 
 |         Branch(Float64LessThan(var_left_float.value(), var_right_float.value()), | 
 |                &return_true, &return_false); | 
 |         break; | 
 |       case Operation::kLessThanOrEqual: | 
 |         Branch(Float64LessThanOrEqual(var_left_float.value(), | 
 |                                       var_right_float.value()), | 
 |                &return_true, &return_false); | 
 |         break; | 
 |       case Operation::kGreaterThan: | 
 |         Branch( | 
 |             Float64GreaterThan(var_left_float.value(), var_right_float.value()), | 
 |             &return_true, &return_false); | 
 |         break; | 
 |       case Operation::kGreaterThanOrEqual: | 
 |         Branch(Float64GreaterThanOrEqual(var_left_float.value(), | 
 |                                          var_right_float.value()), | 
 |                &return_true, &return_false); | 
 |         break; | 
 |       default: | 
 |         UNREACHABLE(); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&return_true); | 
 |   { | 
 |     var_result = TrueConstant(); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&return_false); | 
 |   { | 
 |     var_result = FalseConstant(); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::CollectFeedbackForString( | 
 |     SloppyTNode<Int32T> instance_type) { | 
 |   TNode<Smi> feedback = SelectSmiConstant( | 
 |       Word32Equal( | 
 |           Word32And(instance_type, Int32Constant(kIsNotInternalizedMask)), | 
 |           Int32Constant(kInternalizedTag)), | 
 |       CompareOperationFeedback::kInternalizedString, | 
 |       CompareOperationFeedback::kString); | 
 |   return feedback; | 
 | } | 
 |  | 
 | void CodeStubAssembler::GenerateEqual_Same(Node* value, Label* if_equal, | 
 |                                            Label* if_notequal, | 
 |                                            Variable* var_type_feedback) { | 
 |   // In case of abstract or strict equality checks, we need additional checks | 
 |   // for NaN values because they are not considered equal, even if both the | 
 |   // left and the right hand side reference exactly the same value. | 
 |  | 
 |   Label if_smi(this), if_heapnumber(this); | 
 |   GotoIf(TaggedIsSmi(value), &if_smi); | 
 |  | 
 |   Node* value_map = LoadMap(value); | 
 |   GotoIf(IsHeapNumberMap(value_map), &if_heapnumber); | 
 |  | 
 |   // For non-HeapNumbers, all we do is collect type feedback. | 
 |   if (var_type_feedback != nullptr) { | 
 |     Node* instance_type = LoadMapInstanceType(value_map); | 
 |  | 
 |     Label if_string(this), if_receiver(this), if_symbol(this), if_bigint(this), | 
 |         if_other(this, Label::kDeferred); | 
 |     GotoIf(IsStringInstanceType(instance_type), &if_string); | 
 |     GotoIf(IsJSReceiverInstanceType(instance_type), &if_receiver); | 
 |     GotoIf(IsBigIntInstanceType(instance_type), &if_bigint); | 
 |     Branch(IsSymbolInstanceType(instance_type), &if_symbol, &if_other); | 
 |  | 
 |     BIND(&if_string); | 
 |     { | 
 |       CombineFeedback(var_type_feedback, | 
 |                       CollectFeedbackForString(instance_type)); | 
 |       Goto(if_equal); | 
 |     } | 
 |  | 
 |     BIND(&if_symbol); | 
 |     { | 
 |       CombineFeedback(var_type_feedback, CompareOperationFeedback::kSymbol); | 
 |       Goto(if_equal); | 
 |     } | 
 |  | 
 |     BIND(&if_receiver); | 
 |     { | 
 |       CombineFeedback(var_type_feedback, CompareOperationFeedback::kReceiver); | 
 |       Goto(if_equal); | 
 |     } | 
 |  | 
 |     BIND(&if_bigint); | 
 |     { | 
 |       CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt); | 
 |       Goto(if_equal); | 
 |     } | 
 |  | 
 |     BIND(&if_other); | 
 |     { | 
 |       CombineFeedback(var_type_feedback, CompareOperationFeedback::kAny); | 
 |       Goto(if_equal); | 
 |     } | 
 |   } else { | 
 |     Goto(if_equal); | 
 |   } | 
 |  | 
 |   BIND(&if_heapnumber); | 
 |   { | 
 |     CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); | 
 |     Node* number_value = LoadHeapNumberValue(value); | 
 |     BranchIfFloat64IsNaN(number_value, if_notequal, if_equal); | 
 |   } | 
 |  | 
 |   BIND(&if_smi); | 
 |   { | 
 |     CombineFeedback(var_type_feedback, CompareOperationFeedback::kSignedSmall); | 
 |     Goto(if_equal); | 
 |   } | 
 | } | 
 |  | 
 | // ES6 section 7.2.12 Abstract Equality Comparison | 
 | Node* CodeStubAssembler::Equal(Node* left, Node* right, Node* context, | 
 |                                Variable* var_type_feedback) { | 
 |   // This is a slightly optimized version of Object::Equals. Whenever you | 
 |   // change something functionality wise in here, remember to update the | 
 |   // Object::Equals method as well. | 
 |  | 
 |   Label if_equal(this), if_notequal(this), do_float_comparison(this), | 
 |       do_right_stringtonumber(this, Label::kDeferred), end(this); | 
 |   VARIABLE(result, MachineRepresentation::kTagged); | 
 |   TVARIABLE(Float64T, var_left_float); | 
 |   TVARIABLE(Float64T, var_right_float); | 
 |  | 
 |   // We can avoid code duplication by exploiting the fact that abstract equality | 
 |   // is symmetric. | 
 |   Label use_symmetry(this); | 
 |  | 
 |   // We might need to loop several times due to ToPrimitive and/or ToNumber | 
 |   // conversions. | 
 |   VARIABLE(var_left, MachineRepresentation::kTagged, left); | 
 |   VARIABLE(var_right, MachineRepresentation::kTagged, right); | 
 |   VariableList loop_variable_list({&var_left, &var_right}, zone()); | 
 |   if (var_type_feedback != nullptr) { | 
 |     // Initialize the type feedback to None. The current feedback will be | 
 |     // combined with the previous feedback. | 
 |     OverwriteFeedback(var_type_feedback, CompareOperationFeedback::kNone); | 
 |     loop_variable_list.push_back(var_type_feedback); | 
 |   } | 
 |   Label loop(this, loop_variable_list); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     left = var_left.value(); | 
 |     right = var_right.value(); | 
 |  | 
 |     Label if_notsame(this); | 
 |     GotoIf(WordNotEqual(left, right), &if_notsame); | 
 |     { | 
 |       // {left} and {right} reference the exact same value, yet we need special | 
 |       // treatment for HeapNumber, as NaN is not equal to NaN. | 
 |       GenerateEqual_Same(left, &if_equal, &if_notequal, var_type_feedback); | 
 |     } | 
 |  | 
 |     BIND(&if_notsame); | 
 |     Label if_left_smi(this), if_left_not_smi(this); | 
 |     Branch(TaggedIsSmi(left), &if_left_smi, &if_left_not_smi); | 
 |  | 
 |     BIND(&if_left_smi); | 
 |     { | 
 |       Label if_right_smi(this), if_right_not_smi(this); | 
 |       Branch(TaggedIsSmi(right), &if_right_smi, &if_right_not_smi); | 
 |  | 
 |       BIND(&if_right_smi); | 
 |       { | 
 |         // We have already checked for {left} and {right} being the same value, | 
 |         // so when we get here they must be different Smis. | 
 |         CombineFeedback(var_type_feedback, | 
 |                         CompareOperationFeedback::kSignedSmall); | 
 |         Goto(&if_notequal); | 
 |       } | 
 |  | 
 |       BIND(&if_right_not_smi); | 
 |       Node* right_map = LoadMap(right); | 
 |       Label if_right_heapnumber(this), if_right_boolean(this), | 
 |           if_right_bigint(this, Label::kDeferred), | 
 |           if_right_receiver(this, Label::kDeferred); | 
 |       GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber); | 
 |       // {left} is Smi and {right} is not HeapNumber or Smi. | 
 |       if (var_type_feedback != nullptr) { | 
 |         var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny)); | 
 |       } | 
 |       GotoIf(IsBooleanMap(right_map), &if_right_boolean); | 
 |       Node* right_type = LoadMapInstanceType(right_map); | 
 |       GotoIf(IsStringInstanceType(right_type), &do_right_stringtonumber); | 
 |       GotoIf(IsBigIntInstanceType(right_type), &if_right_bigint); | 
 |       Branch(IsJSReceiverInstanceType(right_type), &if_right_receiver, | 
 |              &if_notequal); | 
 |  | 
 |       BIND(&if_right_heapnumber); | 
 |       { | 
 |         var_left_float = SmiToFloat64(left); | 
 |         var_right_float = LoadHeapNumberValue(right); | 
 |         CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); | 
 |         Goto(&do_float_comparison); | 
 |       } | 
 |  | 
 |       BIND(&if_right_boolean); | 
 |       { | 
 |         var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset)); | 
 |         Goto(&loop); | 
 |       } | 
 |  | 
 |       BIND(&if_right_bigint); | 
 |       { | 
 |         result.Bind(CallRuntime(Runtime::kBigIntEqualToNumber, | 
 |                                 NoContextConstant(), right, left)); | 
 |         Goto(&end); | 
 |       } | 
 |  | 
 |       BIND(&if_right_receiver); | 
 |       { | 
 |         Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); | 
 |         var_right.Bind(CallStub(callable, context, right)); | 
 |         Goto(&loop); | 
 |       } | 
 |     } | 
 |  | 
 |     BIND(&if_left_not_smi); | 
 |     { | 
 |       GotoIf(TaggedIsSmi(right), &use_symmetry); | 
 |  | 
 |       Label if_left_symbol(this), if_left_number(this), if_left_string(this), | 
 |           if_left_bigint(this, Label::kDeferred), if_left_oddball(this), | 
 |           if_left_receiver(this); | 
 |  | 
 |       Node* left_map = LoadMap(left); | 
 |       Node* right_map = LoadMap(right); | 
 |       Node* left_type = LoadMapInstanceType(left_map); | 
 |       Node* right_type = LoadMapInstanceType(right_map); | 
 |  | 
 |       GotoIf(Int32LessThan(left_type, Int32Constant(FIRST_NONSTRING_TYPE)), | 
 |              &if_left_string); | 
 |       GotoIf(InstanceTypeEqual(left_type, SYMBOL_TYPE), &if_left_symbol); | 
 |       GotoIf(InstanceTypeEqual(left_type, HEAP_NUMBER_TYPE), &if_left_number); | 
 |       GotoIf(InstanceTypeEqual(left_type, ODDBALL_TYPE), &if_left_oddball); | 
 |       GotoIf(InstanceTypeEqual(left_type, BIGINT_TYPE), &if_left_bigint); | 
 |       Goto(&if_left_receiver); | 
 |  | 
 |       BIND(&if_left_string); | 
 |       { | 
 |         GotoIfNot(IsStringInstanceType(right_type), &use_symmetry); | 
 |         result.Bind(CallBuiltin(Builtins::kStringEqual, context, left, right)); | 
 |         CombineFeedback(var_type_feedback, | 
 |                         SmiOr(CollectFeedbackForString(left_type), | 
 |                               CollectFeedbackForString(right_type))); | 
 |         Goto(&end); | 
 |       } | 
 |  | 
 |       BIND(&if_left_number); | 
 |       { | 
 |         Label if_right_not_number(this); | 
 |         GotoIf(Word32NotEqual(left_type, right_type), &if_right_not_number); | 
 |  | 
 |         var_left_float = LoadHeapNumberValue(left); | 
 |         var_right_float = LoadHeapNumberValue(right); | 
 |         CombineFeedback(var_type_feedback, CompareOperationFeedback::kNumber); | 
 |         Goto(&do_float_comparison); | 
 |  | 
 |         BIND(&if_right_not_number); | 
 |         { | 
 |           Label if_right_boolean(this); | 
 |           if (var_type_feedback != nullptr) { | 
 |             var_type_feedback->Bind( | 
 |                 SmiConstant(CompareOperationFeedback::kAny)); | 
 |           } | 
 |           GotoIf(IsStringInstanceType(right_type), &do_right_stringtonumber); | 
 |           GotoIf(IsBooleanMap(right_map), &if_right_boolean); | 
 |           GotoIf(IsBigIntInstanceType(right_type), &use_symmetry); | 
 |           Branch(IsJSReceiverInstanceType(right_type), &use_symmetry, | 
 |                  &if_notequal); | 
 |  | 
 |           BIND(&if_right_boolean); | 
 |           { | 
 |             var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset)); | 
 |             Goto(&loop); | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       BIND(&if_left_bigint); | 
 |       { | 
 |         Label if_right_heapnumber(this), if_right_bigint(this), | 
 |             if_right_string(this), if_right_boolean(this); | 
 |         GotoIf(IsHeapNumberMap(right_map), &if_right_heapnumber); | 
 |         GotoIf(IsBigIntInstanceType(right_type), &if_right_bigint); | 
 |         GotoIf(IsStringInstanceType(right_type), &if_right_string); | 
 |         GotoIf(IsBooleanMap(right_map), &if_right_boolean); | 
 |         Branch(IsJSReceiverInstanceType(right_type), &use_symmetry, | 
 |                &if_notequal); | 
 |  | 
 |         BIND(&if_right_heapnumber); | 
 |         { | 
 |           if (var_type_feedback != nullptr) { | 
 |             var_type_feedback->Bind( | 
 |                 SmiConstant(CompareOperationFeedback::kAny)); | 
 |           } | 
 |           result.Bind(CallRuntime(Runtime::kBigIntEqualToNumber, | 
 |                                   NoContextConstant(), left, right)); | 
 |           Goto(&end); | 
 |         } | 
 |  | 
 |         BIND(&if_right_bigint); | 
 |         { | 
 |           CombineFeedback(var_type_feedback, CompareOperationFeedback::kBigInt); | 
 |           result.Bind(CallRuntime(Runtime::kBigIntEqualToBigInt, | 
 |                                   NoContextConstant(), left, right)); | 
 |           Goto(&end); | 
 |         } | 
 |  | 
 |         BIND(&if_right_string); | 
 |         { | 
 |           if (var_type_feedback != nullptr) { | 
 |             var_type_feedback->Bind( | 
 |                 SmiConstant(CompareOperationFeedback::kAny)); | 
 |           } | 
 |           result.Bind(CallRuntime(Runtime::kBigIntEqualToString, | 
 |                                   NoContextConstant(), left, right)); | 
 |           Goto(&end); | 
 |         } | 
 |  | 
 |         BIND(&if_right_boolean); | 
 |         { | 
 |           if (var_type_feedback != nullptr) { | 
 |             var_type_feedback->Bind( | 
 |                 SmiConstant(CompareOperationFeedback::kAny)); | 
 |           } | 
 |           var_right.Bind(LoadObjectField(right, Oddball::kToNumberOffset)); | 
 |           Goto(&loop); | 
 |         } | 
 |       } | 
 |  | 
 |       BIND(&if_left_oddball); | 
 |       { | 
 |         if (var_type_feedback != nullptr) { | 
 |           var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny)); | 
 |         } | 
 |  | 
 |         Label if_left_boolean(this); | 
 |         GotoIf(IsBooleanMap(left_map), &if_left_boolean); | 
 |         // {left} is either Null or Undefined. Check if {right} is | 
 |         // undetectable (which includes Null and Undefined). | 
 |         Branch(IsUndetectableMap(right_map), &if_equal, &if_notequal); | 
 |  | 
 |         BIND(&if_left_boolean); | 
 |         { | 
 |           // If {right} is a Boolean too, it must be a different Boolean. | 
 |           GotoIf(WordEqual(right_map, left_map), &if_notequal); | 
 |           // Otherwise, convert {left} to number and try again. | 
 |           var_left.Bind(LoadObjectField(left, Oddball::kToNumberOffset)); | 
 |           Goto(&loop); | 
 |         } | 
 |       } | 
 |  | 
 |       BIND(&if_left_symbol); | 
 |       { | 
 |         Label if_right_receiver(this); | 
 |         GotoIf(IsJSReceiverInstanceType(right_type), &if_right_receiver); | 
 |         // {right} is not a JSReceiver and also not the same Symbol as {left}, | 
 |         // so the result is "not equal". | 
 |         if (var_type_feedback != nullptr) { | 
 |           Label if_right_symbol(this); | 
 |           GotoIf(IsSymbolInstanceType(right_type), &if_right_symbol); | 
 |           var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny)); | 
 |           Goto(&if_notequal); | 
 |  | 
 |           BIND(&if_right_symbol); | 
 |           { | 
 |             CombineFeedback(var_type_feedback, | 
 |                             CompareOperationFeedback::kSymbol); | 
 |             Goto(&if_notequal); | 
 |           } | 
 |         } else { | 
 |           Goto(&if_notequal); | 
 |         } | 
 |  | 
 |         BIND(&if_right_receiver); | 
 |         { | 
 |           // {left} is a Primitive and {right} is a JSReceiver, so swapping | 
 |           // the order is not observable. | 
 |           if (var_type_feedback != nullptr) { | 
 |             var_type_feedback->Bind( | 
 |                 SmiConstant(CompareOperationFeedback::kAny)); | 
 |           } | 
 |           Goto(&use_symmetry); | 
 |         } | 
 |       } | 
 |  | 
 |       BIND(&if_left_receiver); | 
 |       { | 
 |         CSA_ASSERT(this, IsJSReceiverInstanceType(left_type)); | 
 |         Label if_right_not_receiver(this); | 
 |         GotoIfNot(IsJSReceiverInstanceType(right_type), &if_right_not_receiver); | 
 |  | 
 |         // {left} and {right} are different JSReceiver references. | 
 |         CombineFeedback(var_type_feedback, CompareOperationFeedback::kReceiver); | 
 |         Goto(&if_notequal); | 
 |  | 
 |         BIND(&if_right_not_receiver); | 
 |         { | 
 |           if (var_type_feedback != nullptr) { | 
 |             var_type_feedback->Bind( | 
 |                 SmiConstant(CompareOperationFeedback::kAny)); | 
 |           } | 
 |           Label if_right_null_or_undefined(this); | 
 |           GotoIf(IsUndetectableMap(right_map), &if_right_null_or_undefined); | 
 |  | 
 |           // {right} is a Primitive; convert {left} to Primitive too. | 
 |           Callable callable = CodeFactory::NonPrimitiveToPrimitive(isolate()); | 
 |           var_left.Bind(CallStub(callable, context, left)); | 
 |           Goto(&loop); | 
 |  | 
 |           BIND(&if_right_null_or_undefined); | 
 |           Branch(IsUndetectableMap(left_map), &if_equal, &if_notequal); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     BIND(&do_right_stringtonumber); | 
 |     { | 
 |       var_right.Bind(CallBuiltin(Builtins::kStringToNumber, context, right)); | 
 |       Goto(&loop); | 
 |     } | 
 |  | 
 |     BIND(&use_symmetry); | 
 |     { | 
 |       var_left.Bind(right); | 
 |       var_right.Bind(left); | 
 |       Goto(&loop); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&do_float_comparison); | 
 |   { | 
 |     Branch(Float64Equal(var_left_float.value(), var_right_float.value()), | 
 |            &if_equal, &if_notequal); | 
 |   } | 
 |  | 
 |   BIND(&if_equal); | 
 |   { | 
 |     result.Bind(TrueConstant()); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&if_notequal); | 
 |   { | 
 |     result.Bind(FalseConstant()); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::StrictEqual(Node* lhs, Node* rhs, | 
 |                                      Variable* var_type_feedback) { | 
 |   // Pseudo-code for the algorithm below: | 
 |   // | 
 |   // if (lhs == rhs) { | 
 |   //   if (lhs->IsHeapNumber()) return HeapNumber::cast(lhs)->value() != NaN; | 
 |   //   return true; | 
 |   // } | 
 |   // if (!lhs->IsSmi()) { | 
 |   //   if (lhs->IsHeapNumber()) { | 
 |   //     if (rhs->IsSmi()) { | 
 |   //       return Smi::ToInt(rhs) == HeapNumber::cast(lhs)->value(); | 
 |   //     } else if (rhs->IsHeapNumber()) { | 
 |   //       return HeapNumber::cast(rhs)->value() == | 
 |   //       HeapNumber::cast(lhs)->value(); | 
 |   //     } else { | 
 |   //       return false; | 
 |   //     } | 
 |   //   } else { | 
 |   //     if (rhs->IsSmi()) { | 
 |   //       return false; | 
 |   //     } else { | 
 |   //       if (lhs->IsString()) { | 
 |   //         if (rhs->IsString()) { | 
 |   //           return %StringEqual(lhs, rhs); | 
 |   //         } else { | 
 |   //           return false; | 
 |   //         } | 
 |   //       } else if (lhs->IsBigInt()) { | 
 |   //         if (rhs->IsBigInt()) { | 
 |   //           return %BigIntEqualToBigInt(lhs, rhs); | 
 |   //         } else { | 
 |   //           return false; | 
 |   //         } | 
 |   //       } else { | 
 |   //         return false; | 
 |   //       } | 
 |   //     } | 
 |   //   } | 
 |   // } else { | 
 |   //   if (rhs->IsSmi()) { | 
 |   //     return false; | 
 |   //   } else { | 
 |   //     if (rhs->IsHeapNumber()) { | 
 |   //       return Smi::ToInt(lhs) == HeapNumber::cast(rhs)->value(); | 
 |   //     } else { | 
 |   //       return false; | 
 |   //     } | 
 |   //   } | 
 |   // } | 
 |  | 
 |   Label if_equal(this), if_notequal(this), end(this); | 
 |   VARIABLE(result, MachineRepresentation::kTagged); | 
 |  | 
 |   // Check if {lhs} and {rhs} refer to the same object. | 
 |   Label if_same(this), if_notsame(this); | 
 |   Branch(WordEqual(lhs, rhs), &if_same, &if_notsame); | 
 |  | 
 |   BIND(&if_same); | 
 |   { | 
 |     // The {lhs} and {rhs} reference the exact same value, yet we need special | 
 |     // treatment for HeapNumber, as NaN is not equal to NaN. | 
 |     if (var_type_feedback != nullptr) { | 
 |       var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kNone)); | 
 |     } | 
 |     GenerateEqual_Same(lhs, &if_equal, &if_notequal, var_type_feedback); | 
 |   } | 
 |  | 
 |   BIND(&if_notsame); | 
 |   { | 
 |     // The {lhs} and {rhs} reference different objects, yet for Smi, HeapNumber, | 
 |     // BigInt and String they can still be considered equal. | 
 |  | 
 |     if (var_type_feedback != nullptr) { | 
 |       var_type_feedback->Bind(SmiConstant(CompareOperationFeedback::kAny)); | 
 |     } | 
 |  | 
 |     // Check if {lhs} is a Smi or a HeapObject. | 
 |     Label if_lhsissmi(this), if_lhsisnotsmi(this); | 
 |     Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); | 
 |  | 
 |     BIND(&if_lhsisnotsmi); | 
 |     { | 
 |       // Load the map of {lhs}. | 
 |       Node* lhs_map = LoadMap(lhs); | 
 |  | 
 |       // Check if {lhs} is a HeapNumber. | 
 |       Label if_lhsisnumber(this), if_lhsisnotnumber(this); | 
 |       Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber); | 
 |  | 
 |       BIND(&if_lhsisnumber); | 
 |       { | 
 |         // Check if {rhs} is a Smi or a HeapObject. | 
 |         Label if_rhsissmi(this), if_rhsisnotsmi(this); | 
 |         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); | 
 |  | 
 |         BIND(&if_rhsissmi); | 
 |         { | 
 |           // Convert {lhs} and {rhs} to floating point values. | 
 |           Node* lhs_value = LoadHeapNumberValue(lhs); | 
 |           Node* rhs_value = SmiToFloat64(rhs); | 
 |  | 
 |           if (var_type_feedback != nullptr) { | 
 |             var_type_feedback->Bind( | 
 |                 SmiConstant(CompareOperationFeedback::kNumber)); | 
 |           } | 
 |  | 
 |           // Perform a floating point comparison of {lhs} and {rhs}. | 
 |           Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); | 
 |         } | 
 |  | 
 |         BIND(&if_rhsisnotsmi); | 
 |         { | 
 |           // Load the map of {rhs}. | 
 |           Node* rhs_map = LoadMap(rhs); | 
 |  | 
 |           // Check if {rhs} is also a HeapNumber. | 
 |           Label if_rhsisnumber(this), if_rhsisnotnumber(this); | 
 |           Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); | 
 |  | 
 |           BIND(&if_rhsisnumber); | 
 |           { | 
 |             // Convert {lhs} and {rhs} to floating point values. | 
 |             Node* lhs_value = LoadHeapNumberValue(lhs); | 
 |             Node* rhs_value = LoadHeapNumberValue(rhs); | 
 |  | 
 |             if (var_type_feedback != nullptr) { | 
 |               var_type_feedback->Bind( | 
 |                   SmiConstant(CompareOperationFeedback::kNumber)); | 
 |             } | 
 |  | 
 |             // Perform a floating point comparison of {lhs} and {rhs}. | 
 |             Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); | 
 |           } | 
 |  | 
 |           BIND(&if_rhsisnotnumber); | 
 |           Goto(&if_notequal); | 
 |         } | 
 |       } | 
 |  | 
 |       BIND(&if_lhsisnotnumber); | 
 |       { | 
 |         // Check if {rhs} is a Smi or a HeapObject. | 
 |         Label if_rhsissmi(this), if_rhsisnotsmi(this); | 
 |         Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); | 
 |  | 
 |         BIND(&if_rhsissmi); | 
 |         Goto(&if_notequal); | 
 |  | 
 |         BIND(&if_rhsisnotsmi); | 
 |         { | 
 |           // Load the instance type of {lhs}. | 
 |           Node* lhs_instance_type = LoadMapInstanceType(lhs_map); | 
 |  | 
 |           // Check if {lhs} is a String. | 
 |           Label if_lhsisstring(this), if_lhsisnotstring(this); | 
 |           Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring, | 
 |                  &if_lhsisnotstring); | 
 |  | 
 |           BIND(&if_lhsisstring); | 
 |           { | 
 |             // Load the instance type of {rhs}. | 
 |             Node* rhs_instance_type = LoadInstanceType(rhs); | 
 |  | 
 |             // Check if {rhs} is also a String. | 
 |             Label if_rhsisstring(this, Label::kDeferred), | 
 |                 if_rhsisnotstring(this); | 
 |             Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, | 
 |                    &if_rhsisnotstring); | 
 |  | 
 |             BIND(&if_rhsisstring); | 
 |             { | 
 |               if (var_type_feedback != nullptr) { | 
 |                 TNode<Smi> lhs_feedback = | 
 |                     CollectFeedbackForString(lhs_instance_type); | 
 |                 TNode<Smi> rhs_feedback = | 
 |                     CollectFeedbackForString(rhs_instance_type); | 
 |                 var_type_feedback->Bind(SmiOr(lhs_feedback, rhs_feedback)); | 
 |               } | 
 |               result.Bind(CallBuiltin(Builtins::kStringEqual, | 
 |                                       NoContextConstant(), lhs, rhs)); | 
 |               Goto(&end); | 
 |             } | 
 |  | 
 |             BIND(&if_rhsisnotstring); | 
 |             Goto(&if_notequal); | 
 |           } | 
 |  | 
 |           BIND(&if_lhsisnotstring); | 
 |  | 
 |           // Check if {lhs} is a BigInt. | 
 |           Label if_lhsisbigint(this), if_lhsisnotbigint(this); | 
 |           Branch(IsBigIntInstanceType(lhs_instance_type), &if_lhsisbigint, | 
 |                  &if_lhsisnotbigint); | 
 |  | 
 |           BIND(&if_lhsisbigint); | 
 |           { | 
 |             // Load the instance type of {rhs}. | 
 |             Node* rhs_instance_type = LoadInstanceType(rhs); | 
 |  | 
 |             // Check if {rhs} is also a BigInt. | 
 |             Label if_rhsisbigint(this, Label::kDeferred), | 
 |                 if_rhsisnotbigint(this); | 
 |             Branch(IsBigIntInstanceType(rhs_instance_type), &if_rhsisbigint, | 
 |                    &if_rhsisnotbigint); | 
 |  | 
 |             BIND(&if_rhsisbigint); | 
 |             { | 
 |               if (var_type_feedback != nullptr) { | 
 |                 var_type_feedback->Bind( | 
 |                     SmiConstant(CompareOperationFeedback::kBigInt)); | 
 |               } | 
 |               result.Bind(CallRuntime(Runtime::kBigIntEqualToBigInt, | 
 |                                       NoContextConstant(), lhs, rhs)); | 
 |               Goto(&end); | 
 |             } | 
 |  | 
 |             BIND(&if_rhsisnotbigint); | 
 |             Goto(&if_notequal); | 
 |           } | 
 |  | 
 |           BIND(&if_lhsisnotbigint); | 
 |           if (var_type_feedback != nullptr) { | 
 |             // Load the instance type of {rhs}. | 
 |             Node* rhs_instance_type = LoadInstanceType(rhs); | 
 |  | 
 |             Label if_lhsissymbol(this), if_lhsisreceiver(this); | 
 |             GotoIf(IsJSReceiverInstanceType(lhs_instance_type), | 
 |                    &if_lhsisreceiver); | 
 |             Branch(IsSymbolInstanceType(lhs_instance_type), &if_lhsissymbol, | 
 |                    &if_notequal); | 
 |  | 
 |             BIND(&if_lhsisreceiver); | 
 |             { | 
 |               GotoIfNot(IsJSReceiverInstanceType(rhs_instance_type), | 
 |                         &if_notequal); | 
 |               var_type_feedback->Bind( | 
 |                   SmiConstant(CompareOperationFeedback::kReceiver)); | 
 |               Goto(&if_notequal); | 
 |             } | 
 |  | 
 |             BIND(&if_lhsissymbol); | 
 |             { | 
 |               GotoIfNot(IsSymbolInstanceType(rhs_instance_type), &if_notequal); | 
 |               var_type_feedback->Bind( | 
 |                   SmiConstant(CompareOperationFeedback::kSymbol)); | 
 |               Goto(&if_notequal); | 
 |             } | 
 |           } else { | 
 |             Goto(&if_notequal); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     BIND(&if_lhsissmi); | 
 |     { | 
 |       // We already know that {lhs} and {rhs} are not reference equal, and {lhs} | 
 |       // is a Smi; so {lhs} and {rhs} can only be strictly equal if {rhs} is a | 
 |       // HeapNumber with an equal floating point value. | 
 |  | 
 |       // Check if {rhs} is a Smi or a HeapObject. | 
 |       Label if_rhsissmi(this), if_rhsisnotsmi(this); | 
 |       Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); | 
 |  | 
 |       BIND(&if_rhsissmi); | 
 |       if (var_type_feedback != nullptr) { | 
 |         var_type_feedback->Bind( | 
 |             SmiConstant(CompareOperationFeedback::kSignedSmall)); | 
 |       } | 
 |       Goto(&if_notequal); | 
 |  | 
 |       BIND(&if_rhsisnotsmi); | 
 |       { | 
 |         // Load the map of the {rhs}. | 
 |         Node* rhs_map = LoadMap(rhs); | 
 |  | 
 |         // The {rhs} could be a HeapNumber with the same value as {lhs}. | 
 |         Label if_rhsisnumber(this), if_rhsisnotnumber(this); | 
 |         Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); | 
 |  | 
 |         BIND(&if_rhsisnumber); | 
 |         { | 
 |           // Convert {lhs} and {rhs} to floating point values. | 
 |           Node* lhs_value = SmiToFloat64(lhs); | 
 |           Node* rhs_value = LoadHeapNumberValue(rhs); | 
 |  | 
 |           if (var_type_feedback != nullptr) { | 
 |             var_type_feedback->Bind( | 
 |                 SmiConstant(CompareOperationFeedback::kNumber)); | 
 |           } | 
 |  | 
 |           // Perform a floating point comparison of {lhs} and {rhs}. | 
 |           Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); | 
 |         } | 
 |  | 
 |         BIND(&if_rhsisnotnumber); | 
 |         Goto(&if_notequal); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&if_equal); | 
 |   { | 
 |     result.Bind(TrueConstant()); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&if_notequal); | 
 |   { | 
 |     result.Bind(FalseConstant()); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | // ECMA#sec-samevalue | 
 | // This algorithm differs from the Strict Equality Comparison Algorithm in its | 
 | // treatment of signed zeroes and NaNs. | 
 | void CodeStubAssembler::BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, | 
 |                                           Label* if_false) { | 
 |   VARIABLE(var_lhs_value, MachineRepresentation::kFloat64); | 
 |   VARIABLE(var_rhs_value, MachineRepresentation::kFloat64); | 
 |   Label do_fcmp(this); | 
 |  | 
 |   // Immediately jump to {if_true} if {lhs} == {rhs}, because - unlike | 
 |   // StrictEqual - SameValue considers two NaNs to be equal. | 
 |   GotoIf(WordEqual(lhs, rhs), if_true); | 
 |  | 
 |   // Check if the {lhs} is a Smi. | 
 |   Label if_lhsissmi(this), if_lhsisheapobject(this); | 
 |   Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisheapobject); | 
 |  | 
 |   BIND(&if_lhsissmi); | 
 |   { | 
 |     // Since {lhs} is a Smi, the comparison can only yield true | 
 |     // iff the {rhs} is a HeapNumber with the same float64 value. | 
 |     Branch(TaggedIsSmi(rhs), if_false, [&] { | 
 |       GotoIfNot(IsHeapNumber(rhs), if_false); | 
 |       var_lhs_value.Bind(SmiToFloat64(lhs)); | 
 |       var_rhs_value.Bind(LoadHeapNumberValue(rhs)); | 
 |       Goto(&do_fcmp); | 
 |     }); | 
 |   } | 
 |  | 
 |   BIND(&if_lhsisheapobject); | 
 |   { | 
 |     // Check if the {rhs} is a Smi. | 
 |     Branch(TaggedIsSmi(rhs), | 
 |            [&] { | 
 |              // Since {rhs} is a Smi, the comparison can only yield true | 
 |              // iff the {lhs} is a HeapNumber with the same float64 value. | 
 |              GotoIfNot(IsHeapNumber(lhs), if_false); | 
 |              var_lhs_value.Bind(LoadHeapNumberValue(lhs)); | 
 |              var_rhs_value.Bind(SmiToFloat64(rhs)); | 
 |              Goto(&do_fcmp); | 
 |            }, | 
 |            [&] { | 
 |              // Now this can only yield true if either both {lhs} and {rhs} are | 
 |              // HeapNumbers with the same value, or both are Strings with the | 
 |              // same character sequence, or both are BigInts with the same | 
 |              // value. | 
 |              Label if_lhsisheapnumber(this), if_lhsisstring(this), | 
 |                  if_lhsisbigint(this); | 
 |              Node* const lhs_map = LoadMap(lhs); | 
 |              GotoIf(IsHeapNumberMap(lhs_map), &if_lhsisheapnumber); | 
 |              Node* const lhs_instance_type = LoadMapInstanceType(lhs_map); | 
 |              GotoIf(IsStringInstanceType(lhs_instance_type), &if_lhsisstring); | 
 |              Branch(IsBigIntInstanceType(lhs_instance_type), &if_lhsisbigint, | 
 |                     if_false); | 
 |  | 
 |              BIND(&if_lhsisheapnumber); | 
 |              { | 
 |                GotoIfNot(IsHeapNumber(rhs), if_false); | 
 |                var_lhs_value.Bind(LoadHeapNumberValue(lhs)); | 
 |                var_rhs_value.Bind(LoadHeapNumberValue(rhs)); | 
 |                Goto(&do_fcmp); | 
 |              } | 
 |  | 
 |              BIND(&if_lhsisstring); | 
 |              { | 
 |                // Now we can only yield true if {rhs} is also a String | 
 |                // with the same sequence of characters. | 
 |                GotoIfNot(IsString(rhs), if_false); | 
 |                Node* const result = CallBuiltin(Builtins::kStringEqual, | 
 |                                                 NoContextConstant(), lhs, rhs); | 
 |                Branch(IsTrue(result), if_true, if_false); | 
 |              } | 
 |  | 
 |              BIND(&if_lhsisbigint); | 
 |              { | 
 |                GotoIfNot(IsBigInt(rhs), if_false); | 
 |                Node* const result = CallRuntime(Runtime::kBigIntEqualToBigInt, | 
 |                                                 NoContextConstant(), lhs, rhs); | 
 |                Branch(IsTrue(result), if_true, if_false); | 
 |              } | 
 |            }); | 
 |   } | 
 |  | 
 |   BIND(&do_fcmp); | 
 |   { | 
 |     Node* const lhs_value = var_lhs_value.value(); | 
 |     Node* const rhs_value = var_rhs_value.value(); | 
 |  | 
 |     Label if_equal(this), if_notequal(this); | 
 |     Branch(Float64Equal(lhs_value, rhs_value), &if_equal, &if_notequal); | 
 |  | 
 |     BIND(&if_equal); | 
 |     { | 
 |       // We still need to handle the case when {lhs} and {rhs} are -0.0 and | 
 |       // 0.0 (or vice versa). Compare the high word to | 
 |       // distinguish between the two. | 
 |       Node* const lhs_hi_word = Float64ExtractHighWord32(lhs_value); | 
 |       Node* const rhs_hi_word = Float64ExtractHighWord32(rhs_value); | 
 |  | 
 |       // If x is +0 and y is -0, return false. | 
 |       // If x is -0 and y is +0, return false. | 
 |       Branch(Word32Equal(lhs_hi_word, rhs_hi_word), if_true, if_false); | 
 |     } | 
 |  | 
 |     BIND(&if_notequal); | 
 |     { | 
 |       // Return true iff both {rhs} and {lhs} are NaN. | 
 |       GotoIf(Float64Equal(lhs_value, lhs_value), if_false); | 
 |       Branch(Float64Equal(rhs_value, rhs_value), if_false, if_true); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TNode<Oddball> CodeStubAssembler::HasProperty(SloppyTNode<Context> context, | 
 |                                               SloppyTNode<Object> object, | 
 |                                               SloppyTNode<Object> key, | 
 |                                               HasPropertyLookupMode mode) { | 
 |   Label call_runtime(this, Label::kDeferred), return_true(this), | 
 |       return_false(this), end(this), if_proxy(this, Label::kDeferred); | 
 |  | 
 |   CodeStubAssembler::LookupInHolder lookup_property_in_holder = | 
 |       [this, &return_true](Node* receiver, Node* holder, Node* holder_map, | 
 |                            Node* holder_instance_type, Node* unique_name, | 
 |                            Label* next_holder, Label* if_bailout) { | 
 |         TryHasOwnProperty(holder, holder_map, holder_instance_type, unique_name, | 
 |                           &return_true, next_holder, if_bailout); | 
 |       }; | 
 |  | 
 |   CodeStubAssembler::LookupInHolder lookup_element_in_holder = | 
 |       [this, &return_true, &return_false]( | 
 |           Node* receiver, Node* holder, Node* holder_map, | 
 |           Node* holder_instance_type, Node* index, Label* next_holder, | 
 |           Label* if_bailout) { | 
 |         TryLookupElement(holder, holder_map, holder_instance_type, index, | 
 |                          &return_true, &return_false, next_holder, if_bailout); | 
 |       }; | 
 |  | 
 |   TryPrototypeChainLookup(object, key, lookup_property_in_holder, | 
 |                           lookup_element_in_holder, &return_false, | 
 |                           &call_runtime, &if_proxy); | 
 |  | 
 |   TVARIABLE(Oddball, result); | 
 |  | 
 |   BIND(&if_proxy); | 
 |   { | 
 |     TNode<Name> name = CAST(CallBuiltin(Builtins::kToName, context, key)); | 
 |     switch (mode) { | 
 |       case kHasProperty: | 
 |         GotoIf(IsPrivateSymbol(name), &return_false); | 
 |  | 
 |         result = CAST( | 
 |             CallBuiltin(Builtins::kProxyHasProperty, context, object, name)); | 
 |         Goto(&end); | 
 |         break; | 
 |       case kForInHasProperty: | 
 |         Goto(&call_runtime); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&return_true); | 
 |   { | 
 |     result = TrueConstant(); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&return_false); | 
 |   { | 
 |     result = FalseConstant(); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&call_runtime); | 
 |   { | 
 |     Runtime::FunctionId fallback_runtime_function_id; | 
 |     switch (mode) { | 
 |       case kHasProperty: | 
 |         fallback_runtime_function_id = Runtime::kHasProperty; | 
 |         break; | 
 |       case kForInHasProperty: | 
 |         fallback_runtime_function_id = Runtime::kForInHasProperty; | 
 |         break; | 
 |     } | 
 |  | 
 |     result = | 
 |         CAST(CallRuntime(fallback_runtime_function_id, context, object, key)); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   CSA_ASSERT(this, IsBoolean(result.value())); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::Typeof(Node* value) { | 
 |   VARIABLE(result_var, MachineRepresentation::kTagged); | 
 |  | 
 |   Label return_number(this, Label::kDeferred), if_oddball(this), | 
 |       return_function(this), return_undefined(this), return_object(this), | 
 |       return_string(this), return_bigint(this), return_result(this); | 
 |  | 
 |   GotoIf(TaggedIsSmi(value), &return_number); | 
 |  | 
 |   Node* map = LoadMap(value); | 
 |  | 
 |   GotoIf(IsHeapNumberMap(map), &return_number); | 
 |  | 
 |   Node* instance_type = LoadMapInstanceType(map); | 
 |  | 
 |   GotoIf(InstanceTypeEqual(instance_type, ODDBALL_TYPE), &if_oddball); | 
 |  | 
 |   Node* callable_or_undetectable_mask = Word32And( | 
 |       LoadMapBitField(map), | 
 |       Int32Constant(Map::IsCallableBit::kMask | Map::IsUndetectableBit::kMask)); | 
 |  | 
 |   GotoIf(Word32Equal(callable_or_undetectable_mask, | 
 |                      Int32Constant(Map::IsCallableBit::kMask)), | 
 |          &return_function); | 
 |  | 
 |   GotoIfNot(Word32Equal(callable_or_undetectable_mask, Int32Constant(0)), | 
 |             &return_undefined); | 
 |  | 
 |   GotoIf(IsJSReceiverInstanceType(instance_type), &return_object); | 
 |  | 
 |   GotoIf(IsStringInstanceType(instance_type), &return_string); | 
 |  | 
 |   GotoIf(IsBigIntInstanceType(instance_type), &return_bigint); | 
 |  | 
 |   CSA_ASSERT(this, InstanceTypeEqual(instance_type, SYMBOL_TYPE)); | 
 |   result_var.Bind(HeapConstant(isolate()->factory()->symbol_string())); | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_number); | 
 |   { | 
 |     result_var.Bind(HeapConstant(isolate()->factory()->number_string())); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&if_oddball); | 
 |   { | 
 |     Node* type = LoadObjectField(value, Oddball::kTypeOfOffset); | 
 |     result_var.Bind(type); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_function); | 
 |   { | 
 |     result_var.Bind(HeapConstant(isolate()->factory()->function_string())); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_undefined); | 
 |   { | 
 |     result_var.Bind(HeapConstant(isolate()->factory()->undefined_string())); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_object); | 
 |   { | 
 |     result_var.Bind(HeapConstant(isolate()->factory()->object_string())); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_string); | 
 |   { | 
 |     result_var.Bind(HeapConstant(isolate()->factory()->string_string())); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_bigint); | 
 |   { | 
 |     result_var.Bind(HeapConstant(isolate()->factory()->bigint_string())); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&return_result); | 
 |   return result_var.value(); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::GetSuperConstructor( | 
 |     SloppyTNode<Context> context, SloppyTNode<JSFunction> active_function) { | 
 |   Label is_not_constructor(this, Label::kDeferred), out(this); | 
 |   TVARIABLE(Object, result); | 
 |  | 
 |   TNode<Map> map = LoadMap(active_function); | 
 |   TNode<Object> prototype = LoadMapPrototype(map); | 
 |   TNode<Map> prototype_map = LoadMap(CAST(prototype)); | 
 |   GotoIfNot(IsConstructorMap(prototype_map), &is_not_constructor); | 
 |  | 
 |   result = prototype; | 
 |   Goto(&out); | 
 |  | 
 |   BIND(&is_not_constructor); | 
 |   { | 
 |     CallRuntime(Runtime::kThrowNotSuperConstructor, context, prototype, | 
 |                 active_function); | 
 |     Unreachable(); | 
 |   } | 
 |  | 
 |   BIND(&out); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::SpeciesConstructor( | 
 |     SloppyTNode<Context> context, SloppyTNode<Object> object, | 
 |     SloppyTNode<Object> default_constructor) { | 
 |   Isolate* isolate = this->isolate(); | 
 |   TVARIABLE(Object, var_result, default_constructor); | 
 |  | 
 |   // 2. Let C be ? Get(O, "constructor"). | 
 |   TNode<Object> constructor = | 
 |       GetProperty(context, object, isolate->factory()->constructor_string()); | 
 |  | 
 |   // 3. If C is undefined, return defaultConstructor. | 
 |   Label out(this); | 
 |   GotoIf(IsUndefined(constructor), &out); | 
 |  | 
 |   // 4. If Type(C) is not Object, throw a TypeError exception. | 
 |   ThrowIfNotJSReceiver(context, constructor, | 
 |                        MessageTemplate::kConstructorNotReceiver); | 
 |  | 
 |   // 5. Let S be ? Get(C, @@species). | 
 |   TNode<Object> species = | 
 |       GetProperty(context, constructor, isolate->factory()->species_symbol()); | 
 |  | 
 |   // 6. If S is either undefined or null, return defaultConstructor. | 
 |   GotoIf(IsNullOrUndefined(species), &out); | 
 |  | 
 |   // 7. If IsConstructor(S) is true, return S. | 
 |   Label throw_error(this); | 
 |   GotoIf(TaggedIsSmi(species), &throw_error); | 
 |   GotoIfNot(IsConstructorMap(LoadMap(CAST(species))), &throw_error); | 
 |   var_result = species; | 
 |   Goto(&out); | 
 |  | 
 |   // 8. Throw a TypeError exception. | 
 |   BIND(&throw_error); | 
 |   ThrowTypeError(context, MessageTemplate::kSpeciesNotConstructor); | 
 |  | 
 |   BIND(&out); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::InstanceOf(Node* object, Node* callable, | 
 |                                     Node* context) { | 
 |   VARIABLE(var_result, MachineRepresentation::kTagged); | 
 |   Label if_notcallable(this, Label::kDeferred), | 
 |       if_notreceiver(this, Label::kDeferred), if_otherhandler(this), | 
 |       if_nohandler(this, Label::kDeferred), return_true(this), | 
 |       return_false(this), return_result(this, &var_result); | 
 |  | 
 |   // Ensure that the {callable} is actually a JSReceiver. | 
 |   GotoIf(TaggedIsSmi(callable), &if_notreceiver); | 
 |   GotoIfNot(IsJSReceiver(callable), &if_notreceiver); | 
 |  | 
 |   // Load the @@hasInstance property from {callable}. | 
 |   Node* inst_of_handler = | 
 |       GetProperty(context, callable, HasInstanceSymbolConstant()); | 
 |  | 
 |   // Optimize for the likely case where {inst_of_handler} is the builtin | 
 |   // Function.prototype[@@hasInstance] method, and emit a direct call in | 
 |   // that case without any additional checking. | 
 |   Node* native_context = LoadNativeContext(context); | 
 |   Node* function_has_instance = | 
 |       LoadContextElement(native_context, Context::FUNCTION_HAS_INSTANCE_INDEX); | 
 |   GotoIfNot(WordEqual(inst_of_handler, function_has_instance), | 
 |             &if_otherhandler); | 
 |   { | 
 |     // TODO(6786): A direct call to a TFJ builtin breaks the lazy | 
 |     // deserialization mechanism in two ways: first, we always pass in a | 
 |     // callable containing the DeserializeLazy code object (assuming that | 
 |     // FunctionPrototypeHasInstance is lazy). Second, a direct call (without | 
 |     // going through CodeFactory::Call) to DeserializeLazy will not initialize | 
 |     // new_target properly. For now we can avoid this by marking | 
 |     // FunctionPrototypeHasInstance as eager, but this should be fixed at some | 
 |     // point. | 
 |     // | 
 |     // Call to Function.prototype[@@hasInstance] directly. | 
 |     Callable builtin(BUILTIN_CODE(isolate(), FunctionPrototypeHasInstance), | 
 |                      CallTrampolineDescriptor{}); | 
 |     Node* result = CallJS(builtin, context, inst_of_handler, callable, object); | 
 |     var_result.Bind(result); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&if_otherhandler); | 
 |   { | 
 |     // Check if there's actually an {inst_of_handler}. | 
 |     GotoIf(IsNull(inst_of_handler), &if_nohandler); | 
 |     GotoIf(IsUndefined(inst_of_handler), &if_nohandler); | 
 |  | 
 |     // Call the {inst_of_handler} for {callable} and {object}. | 
 |     Node* result = CallJS( | 
 |         CodeFactory::Call(isolate(), ConvertReceiverMode::kNotNullOrUndefined), | 
 |         context, inst_of_handler, callable, object); | 
 |  | 
 |     // Convert the {result} to a Boolean. | 
 |     BranchIfToBooleanIsTrue(result, &return_true, &return_false); | 
 |   } | 
 |  | 
 |   BIND(&if_nohandler); | 
 |   { | 
 |     // Ensure that the {callable} is actually Callable. | 
 |     GotoIfNot(IsCallable(callable), &if_notcallable); | 
 |  | 
 |     // Use the OrdinaryHasInstance algorithm. | 
 |     Node* result = | 
 |         CallBuiltin(Builtins::kOrdinaryHasInstance, context, callable, object); | 
 |     var_result.Bind(result); | 
 |     Goto(&return_result); | 
 |   } | 
 |  | 
 |   BIND(&if_notcallable); | 
 |   { ThrowTypeError(context, MessageTemplate::kNonCallableInInstanceOfCheck); } | 
 |  | 
 |   BIND(&if_notreceiver); | 
 |   { ThrowTypeError(context, MessageTemplate::kNonObjectInInstanceOfCheck); } | 
 |  | 
 |   BIND(&return_true); | 
 |   var_result.Bind(TrueConstant()); | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_false); | 
 |   var_result.Bind(FalseConstant()); | 
 |   Goto(&return_result); | 
 |  | 
 |   BIND(&return_result); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::NumberInc(SloppyTNode<Number> value) { | 
 |   TVARIABLE(Number, var_result); | 
 |   TVARIABLE(Float64T, var_finc_value); | 
 |   Label if_issmi(this), if_isnotsmi(this), do_finc(this), end(this); | 
 |   Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi); | 
 |  | 
 |   BIND(&if_issmi); | 
 |   { | 
 |     Label if_overflow(this); | 
 |     TNode<Smi> smi_value = CAST(value); | 
 |     TNode<Smi> one = SmiConstant(1); | 
 |     var_result = TrySmiAdd(smi_value, one, &if_overflow); | 
 |     Goto(&end); | 
 |  | 
 |     BIND(&if_overflow); | 
 |     { | 
 |       var_finc_value = SmiToFloat64(smi_value); | 
 |       Goto(&do_finc); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&if_isnotsmi); | 
 |   { | 
 |     TNode<HeapNumber> heap_number_value = CAST(value); | 
 |  | 
 |     // Load the HeapNumber value. | 
 |     var_finc_value = LoadHeapNumberValue(heap_number_value); | 
 |     Goto(&do_finc); | 
 |   } | 
 |  | 
 |   BIND(&do_finc); | 
 |   { | 
 |     TNode<Float64T> finc_value = var_finc_value.value(); | 
 |     TNode<Float64T> one = Float64Constant(1.0); | 
 |     TNode<Float64T> finc_result = Float64Add(finc_value, one); | 
 |     var_result = AllocateHeapNumberWithValue(finc_result); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::NumberDec(SloppyTNode<Number> value) { | 
 |   TVARIABLE(Number, var_result); | 
 |   TVARIABLE(Float64T, var_fdec_value); | 
 |   Label if_issmi(this), if_isnotsmi(this), do_fdec(this), end(this); | 
 |   Branch(TaggedIsSmi(value), &if_issmi, &if_isnotsmi); | 
 |  | 
 |   BIND(&if_issmi); | 
 |   { | 
 |     TNode<Smi> smi_value = CAST(value); | 
 |     TNode<Smi> one = SmiConstant(1); | 
 |     Label if_overflow(this); | 
 |     var_result = TrySmiSub(smi_value, one, &if_overflow); | 
 |     Goto(&end); | 
 |  | 
 |     BIND(&if_overflow); | 
 |     { | 
 |       var_fdec_value = SmiToFloat64(smi_value); | 
 |       Goto(&do_fdec); | 
 |     } | 
 |   } | 
 |  | 
 |   BIND(&if_isnotsmi); | 
 |   { | 
 |     TNode<HeapNumber> heap_number_value = CAST(value); | 
 |  | 
 |     // Load the HeapNumber value. | 
 |     var_fdec_value = LoadHeapNumberValue(heap_number_value); | 
 |     Goto(&do_fdec); | 
 |   } | 
 |  | 
 |   BIND(&do_fdec); | 
 |   { | 
 |     TNode<Float64T> fdec_value = var_fdec_value.value(); | 
 |     TNode<Float64T> minus_one = Float64Constant(-1.0); | 
 |     TNode<Float64T> fdec_result = Float64Add(fdec_value, minus_one); | 
 |     var_result = AllocateHeapNumberWithValue(fdec_result); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::NumberAdd(SloppyTNode<Number> a, | 
 |                                            SloppyTNode<Number> b) { | 
 |   TVARIABLE(Number, var_result); | 
 |   Label float_add(this, Label::kDeferred), end(this); | 
 |   GotoIf(TaggedIsNotSmi(a), &float_add); | 
 |   GotoIf(TaggedIsNotSmi(b), &float_add); | 
 |  | 
 |   // Try fast Smi addition first. | 
 |   var_result = TrySmiAdd(CAST(a), CAST(b), &float_add); | 
 |   Goto(&end); | 
 |  | 
 |   BIND(&float_add); | 
 |   { | 
 |     var_result = ChangeFloat64ToTagged( | 
 |         Float64Add(ChangeNumberToFloat64(a), ChangeNumberToFloat64(b))); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::NumberSub(SloppyTNode<Number> a, | 
 |                                            SloppyTNode<Number> b) { | 
 |   TVARIABLE(Number, var_result); | 
 |   Label float_sub(this, Label::kDeferred), end(this); | 
 |   GotoIf(TaggedIsNotSmi(a), &float_sub); | 
 |   GotoIf(TaggedIsNotSmi(b), &float_sub); | 
 |  | 
 |   // Try fast Smi subtraction first. | 
 |   var_result = TrySmiSub(CAST(a), CAST(b), &float_sub); | 
 |   Goto(&end); | 
 |  | 
 |   BIND(&float_sub); | 
 |   { | 
 |     var_result = ChangeFloat64ToTagged( | 
 |         Float64Sub(ChangeNumberToFloat64(a), ChangeNumberToFloat64(b))); | 
 |     Goto(&end); | 
 |   } | 
 |  | 
 |   BIND(&end); | 
 |   return var_result.value(); | 
 | } | 
 |  | 
 | void CodeStubAssembler::GotoIfNotNumber(Node* input, Label* is_not_number) { | 
 |   Label is_number(this); | 
 |   GotoIf(TaggedIsSmi(input), &is_number); | 
 |   Branch(IsHeapNumber(input), &is_number, is_not_number); | 
 |   BIND(&is_number); | 
 | } | 
 |  | 
 | void CodeStubAssembler::GotoIfNumber(Node* input, Label* is_number) { | 
 |   GotoIf(TaggedIsSmi(input), is_number); | 
 |   GotoIf(IsHeapNumber(input), is_number); | 
 | } | 
 |  | 
 | TNode<Number> CodeStubAssembler::BitwiseOp(Node* left32, Node* right32, | 
 |                                            Operation bitwise_op) { | 
 |   switch (bitwise_op) { | 
 |     case Operation::kBitwiseAnd: | 
 |       return ChangeInt32ToTagged(Signed(Word32And(left32, right32))); | 
 |     case Operation::kBitwiseOr: | 
 |       return ChangeInt32ToTagged(Signed(Word32Or(left32, right32))); | 
 |     case Operation::kBitwiseXor: | 
 |       return ChangeInt32ToTagged(Signed(Word32Xor(left32, right32))); | 
 |     case Operation::kShiftLeft: | 
 |       if (!Word32ShiftIsSafe()) { | 
 |         right32 = Word32And(right32, Int32Constant(0x1F)); | 
 |       } | 
 |       return ChangeInt32ToTagged(Signed(Word32Shl(left32, right32))); | 
 |     case Operation::kShiftRight: | 
 |       if (!Word32ShiftIsSafe()) { | 
 |         right32 = Word32And(right32, Int32Constant(0x1F)); | 
 |       } | 
 |       return ChangeInt32ToTagged(Signed(Word32Sar(left32, right32))); | 
 |     case Operation::kShiftRightLogical: | 
 |       if (!Word32ShiftIsSafe()) { | 
 |         right32 = Word32And(right32, Int32Constant(0x1F)); | 
 |       } | 
 |       return ChangeUint32ToTagged(Unsigned(Word32Shr(left32, right32))); | 
 |     default: | 
 |       break; | 
 |   } | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | // ES #sec-createarrayiterator | 
 | TNode<JSArrayIterator> CodeStubAssembler::CreateArrayIterator( | 
 |     TNode<Context> context, TNode<Object> object, IterationKind kind) { | 
 |   TNode<Context> native_context = LoadNativeContext(context); | 
 |   TNode<Map> iterator_map = CAST(LoadContextElement( | 
 |       native_context, Context::INITIAL_ARRAY_ITERATOR_MAP_INDEX)); | 
 |   Node* iterator = Allocate(JSArrayIterator::kSize); | 
 |   StoreMapNoWriteBarrier(iterator, iterator_map); | 
 |   StoreObjectFieldRoot(iterator, JSArrayIterator::kPropertiesOrHashOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldRoot(iterator, JSArrayIterator::kElementsOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldNoWriteBarrier( | 
 |       iterator, JSArrayIterator::kIteratedObjectOffset, object); | 
 |   StoreObjectFieldNoWriteBarrier(iterator, JSArrayIterator::kNextIndexOffset, | 
 |                                  SmiConstant(0)); | 
 |   StoreObjectFieldNoWriteBarrier( | 
 |       iterator, JSArrayIterator::kKindOffset, | 
 |       SmiConstant(Smi::FromInt(static_cast<int>(kind)))); | 
 |   return CAST(iterator); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateJSIteratorResult(Node* context, Node* value, | 
 |                                                   Node* done) { | 
 |   CSA_ASSERT(this, IsBoolean(done)); | 
 |   Node* native_context = LoadNativeContext(context); | 
 |   Node* map = | 
 |       LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX); | 
 |   Node* result = Allocate(JSIteratorResult::kSize); | 
 |   StoreMapNoWriteBarrier(result, map); | 
 |   StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOrHashOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kValueOffset, value); | 
 |   StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kDoneOffset, done); | 
 |   return result; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateJSIteratorResultForEntry(Node* context, | 
 |                                                           Node* key, | 
 |                                                           Node* value) { | 
 |   Node* native_context = LoadNativeContext(context); | 
 |   Node* length = SmiConstant(2); | 
 |   int const elements_size = FixedArray::SizeFor(2); | 
 |   TNode<FixedArray> elements = UncheckedCast<FixedArray>( | 
 |       Allocate(elements_size + JSArray::kSize + JSIteratorResult::kSize)); | 
 |   StoreObjectFieldRoot(elements, FixedArray::kMapOffset, | 
 |                        RootIndex::kFixedArrayMap); | 
 |   StoreObjectFieldNoWriteBarrier(elements, FixedArray::kLengthOffset, length); | 
 |   StoreFixedArrayElement(elements, 0, key); | 
 |   StoreFixedArrayElement(elements, 1, value); | 
 |   Node* array_map = LoadContextElement( | 
 |       native_context, Context::JS_ARRAY_PACKED_ELEMENTS_MAP_INDEX); | 
 |   Node* array = InnerAllocate(elements, elements_size); | 
 |   StoreMapNoWriteBarrier(array, array_map); | 
 |   StoreObjectFieldRoot(array, JSArray::kPropertiesOrHashOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldNoWriteBarrier(array, JSArray::kElementsOffset, elements); | 
 |   StoreObjectFieldNoWriteBarrier(array, JSArray::kLengthOffset, length); | 
 |   Node* iterator_map = | 
 |       LoadContextElement(native_context, Context::ITERATOR_RESULT_MAP_INDEX); | 
 |   Node* result = InnerAllocate(array, JSArray::kSize); | 
 |   StoreMapNoWriteBarrier(result, iterator_map); | 
 |   StoreObjectFieldRoot(result, JSIteratorResult::kPropertiesOrHashOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldRoot(result, JSIteratorResult::kElementsOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldNoWriteBarrier(result, JSIteratorResult::kValueOffset, array); | 
 |   StoreObjectFieldRoot(result, JSIteratorResult::kDoneOffset, | 
 |                        RootIndex::kFalseValue); | 
 |   return result; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::ArraySpeciesCreate(TNode<Context> context, | 
 |                                             TNode<Object> o, | 
 |                                             TNode<Number> len) { | 
 |   Node* constructor = | 
 |       CallRuntime(Runtime::kArraySpeciesConstructor, context, o); | 
 |   return ConstructJS(CodeFactory::Construct(isolate()), context, constructor, | 
 |                      len); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::InternalArrayCreate(TNode<Context> context, | 
 |                                              TNode<Number> len) { | 
 |   Node* native_context = LoadNativeContext(context); | 
 |   Node* const constructor = LoadContextElement( | 
 |       native_context, Context::INTERNAL_ARRAY_FUNCTION_INDEX); | 
 |   return ConstructJS(CodeFactory::Construct(isolate()), context, constructor, | 
 |                      len); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsDetachedBuffer(Node* buffer) { | 
 |   CSA_ASSERT(this, HasInstanceType(buffer, JS_ARRAY_BUFFER_TYPE)); | 
 |   TNode<Uint32T> buffer_bit_field = LoadJSArrayBufferBitField(CAST(buffer)); | 
 |   return IsSetWord32<JSArrayBuffer::WasNeuteredBit>(buffer_bit_field); | 
 | } | 
 |  | 
 | void CodeStubAssembler::ThrowIfArrayBufferIsDetached( | 
 |     SloppyTNode<Context> context, TNode<JSArrayBuffer> array_buffer, | 
 |     const char* method_name) { | 
 |   Label if_detached(this, Label::kDeferred), if_not_detached(this); | 
 |   Branch(IsDetachedBuffer(array_buffer), &if_detached, &if_not_detached); | 
 |   BIND(&if_detached); | 
 |   ThrowTypeError(context, MessageTemplate::kDetachedOperation, method_name); | 
 |   BIND(&if_not_detached); | 
 | } | 
 |  | 
 | void CodeStubAssembler::ThrowIfArrayBufferViewBufferIsDetached( | 
 |     SloppyTNode<Context> context, TNode<JSArrayBufferView> array_buffer_view, | 
 |     const char* method_name) { | 
 |   TNode<JSArrayBuffer> buffer = LoadJSArrayBufferViewBuffer(array_buffer_view); | 
 |   ThrowIfArrayBufferIsDetached(context, buffer, method_name); | 
 | } | 
 |  | 
 | TNode<Uint32T> CodeStubAssembler::LoadJSArrayBufferBitField( | 
 |     TNode<JSArrayBuffer> array_buffer) { | 
 |   return LoadObjectField<Uint32T>(array_buffer, JSArrayBuffer::kBitFieldOffset); | 
 | } | 
 |  | 
 | TNode<RawPtrT> CodeStubAssembler::LoadJSArrayBufferBackingStore( | 
 |     TNode<JSArrayBuffer> array_buffer) { | 
 |   return LoadObjectField<RawPtrT>(array_buffer, | 
 |                                   JSArrayBuffer::kBackingStoreOffset); | 
 | } | 
 |  | 
 | TNode<JSArrayBuffer> CodeStubAssembler::LoadJSArrayBufferViewBuffer( | 
 |     TNode<JSArrayBufferView> array_buffer_view) { | 
 |   return LoadObjectField<JSArrayBuffer>(array_buffer_view, | 
 |                                         JSArrayBufferView::kBufferOffset); | 
 | } | 
 |  | 
 | TNode<UintPtrT> CodeStubAssembler::LoadJSArrayBufferViewByteLength( | 
 |     TNode<JSArrayBufferView> array_buffer_view) { | 
 |   return LoadObjectField<UintPtrT>(array_buffer_view, | 
 |                                    JSArrayBufferView::kByteLengthOffset); | 
 | } | 
 |  | 
 | TNode<UintPtrT> CodeStubAssembler::LoadJSArrayBufferViewByteOffset( | 
 |     TNode<JSArrayBufferView> array_buffer_view) { | 
 |   return LoadObjectField<UintPtrT>(array_buffer_view, | 
 |                                    JSArrayBufferView::kByteOffsetOffset); | 
 | } | 
 |  | 
 | TNode<Smi> CodeStubAssembler::LoadJSTypedArrayLength( | 
 |     TNode<JSTypedArray> typed_array) { | 
 |   return LoadObjectField<Smi>(typed_array, JSTypedArray::kLengthOffset); | 
 | } | 
 |  | 
 | CodeStubArguments::CodeStubArguments( | 
 |     CodeStubAssembler* assembler, Node* argc, Node* fp, | 
 |     CodeStubAssembler::ParameterMode param_mode, ReceiverMode receiver_mode) | 
 |     : assembler_(assembler), | 
 |       argc_mode_(param_mode), | 
 |       receiver_mode_(receiver_mode), | 
 |       argc_(argc), | 
 |       arguments_(), | 
 |       fp_(fp != nullptr ? fp : assembler_->LoadFramePointer()) { | 
 |   Node* offset = assembler_->ElementOffsetFromIndex( | 
 |       argc_, PACKED_ELEMENTS, param_mode, | 
 |       (StandardFrameConstants::kFixedSlotCountAboveFp - 1) * kPointerSize); | 
 |   arguments_ = assembler_->UncheckedCast<RawPtr<Object>>( | 
 |       assembler_->IntPtrAdd(fp_, offset)); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubArguments::GetReceiver() const { | 
 |   DCHECK_EQ(receiver_mode_, ReceiverMode::kHasReceiver); | 
 |   return assembler_->UncheckedCast<Object>( | 
 |       assembler_->Load(MachineType::AnyTagged(), arguments_, | 
 |                        assembler_->IntPtrConstant(kPointerSize))); | 
 | } | 
 |  | 
 | void CodeStubArguments::SetReceiver(TNode<Object> object) const { | 
 |   DCHECK_EQ(receiver_mode_, ReceiverMode::kHasReceiver); | 
 |   assembler_->StoreNoWriteBarrier(MachineRepresentation::kTagged, arguments_, | 
 |                                   assembler_->IntPtrConstant(kPointerSize), | 
 |                                   object); | 
 | } | 
 |  | 
 | TNode<RawPtr<Object>> CodeStubArguments::AtIndexPtr( | 
 |     Node* index, CodeStubAssembler::ParameterMode mode) const { | 
 |   typedef compiler::Node Node; | 
 |   Node* negated_index = assembler_->IntPtrOrSmiSub( | 
 |       assembler_->IntPtrOrSmiConstant(0, mode), index, mode); | 
 |   Node* offset = assembler_->ElementOffsetFromIndex(negated_index, | 
 |                                                     PACKED_ELEMENTS, mode, 0); | 
 |   return assembler_->UncheckedCast<RawPtr<Object>>(assembler_->IntPtrAdd( | 
 |       assembler_->UncheckedCast<IntPtrT>(arguments_), offset)); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubArguments::AtIndex( | 
 |     Node* index, CodeStubAssembler::ParameterMode mode) const { | 
 |   DCHECK_EQ(argc_mode_, mode); | 
 |   CSA_ASSERT(assembler_, | 
 |              assembler_->UintPtrOrSmiLessThan(index, GetLength(mode), mode)); | 
 |   return assembler_->UncheckedCast<Object>( | 
 |       assembler_->Load(MachineType::AnyTagged(), AtIndexPtr(index, mode))); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubArguments::AtIndex(int index) const { | 
 |   return AtIndex(assembler_->IntPtrConstant(index)); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubArguments::GetOptionalArgumentValue( | 
 |     int index, TNode<Object> default_value) { | 
 |   CodeStubAssembler::TVariable<Object> result(assembler_); | 
 |   CodeStubAssembler::Label argument_missing(assembler_), | 
 |       argument_done(assembler_, &result); | 
 |  | 
 |   assembler_->GotoIf(assembler_->UintPtrOrSmiGreaterThanOrEqual( | 
 |                          assembler_->IntPtrOrSmiConstant(index, argc_mode_), | 
 |                          argc_, argc_mode_), | 
 |                      &argument_missing); | 
 |   result = AtIndex(index); | 
 |   assembler_->Goto(&argument_done); | 
 |  | 
 |   assembler_->BIND(&argument_missing); | 
 |   result = default_value; | 
 |   assembler_->Goto(&argument_done); | 
 |  | 
 |   assembler_->BIND(&argument_done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubArguments::GetOptionalArgumentValue( | 
 |     TNode<IntPtrT> index, TNode<Object> default_value) { | 
 |   CodeStubAssembler::TVariable<Object> result(assembler_); | 
 |   CodeStubAssembler::Label argument_missing(assembler_), | 
 |       argument_done(assembler_, &result); | 
 |  | 
 |   assembler_->GotoIf( | 
 |       assembler_->UintPtrOrSmiGreaterThanOrEqual( | 
 |           assembler_->IntPtrToParameter(index, argc_mode_), argc_, argc_mode_), | 
 |       &argument_missing); | 
 |   result = AtIndex(index); | 
 |   assembler_->Goto(&argument_done); | 
 |  | 
 |   assembler_->BIND(&argument_missing); | 
 |   result = default_value; | 
 |   assembler_->Goto(&argument_done); | 
 |  | 
 |   assembler_->BIND(&argument_done); | 
 |   return result.value(); | 
 | } | 
 |  | 
 | void CodeStubArguments::ForEach( | 
 |     const CodeStubAssembler::VariableList& vars, | 
 |     const CodeStubArguments::ForEachBodyFunction& body, Node* first, Node* last, | 
 |     CodeStubAssembler::ParameterMode mode) { | 
 |   assembler_->Comment("CodeStubArguments::ForEach"); | 
 |   if (first == nullptr) { | 
 |     first = assembler_->IntPtrOrSmiConstant(0, mode); | 
 |   } | 
 |   if (last == nullptr) { | 
 |     DCHECK_EQ(mode, argc_mode_); | 
 |     last = argc_; | 
 |   } | 
 |   Node* start = assembler_->IntPtrSub( | 
 |       assembler_->UncheckedCast<IntPtrT>(arguments_), | 
 |       assembler_->ElementOffsetFromIndex(first, PACKED_ELEMENTS, mode)); | 
 |   Node* end = assembler_->IntPtrSub( | 
 |       assembler_->UncheckedCast<IntPtrT>(arguments_), | 
 |       assembler_->ElementOffsetFromIndex(last, PACKED_ELEMENTS, mode)); | 
 |   assembler_->BuildFastLoop(vars, start, end, | 
 |                             [this, &body](Node* current) { | 
 |                               Node* arg = assembler_->Load( | 
 |                                   MachineType::AnyTagged(), current); | 
 |                               body(arg); | 
 |                             }, | 
 |                             -kPointerSize, CodeStubAssembler::INTPTR_PARAMETERS, | 
 |                             CodeStubAssembler::IndexAdvanceMode::kPost); | 
 | } | 
 |  | 
 | void CodeStubArguments::PopAndReturn(Node* value) { | 
 |   Node* pop_count; | 
 |   if (receiver_mode_ == ReceiverMode::kHasReceiver) { | 
 |     pop_count = assembler_->IntPtrOrSmiAdd( | 
 |         argc_, assembler_->IntPtrOrSmiConstant(1, argc_mode_), argc_mode_); | 
 |   } else { | 
 |     pop_count = argc_; | 
 |   } | 
 |  | 
 |   assembler_->PopAndReturn(assembler_->ParameterToIntPtr(pop_count, argc_mode_), | 
 |                            value); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsFastElementsKind(Node* elements_kind) { | 
 |   STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND); | 
 |   return Uint32LessThanOrEqual(elements_kind, | 
 |                                Int32Constant(LAST_FAST_ELEMENTS_KIND)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsDoubleElementsKind( | 
 |     TNode<Int32T> elements_kind) { | 
 |   STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND); | 
 |   STATIC_ASSERT((PACKED_DOUBLE_ELEMENTS & 1) == 0); | 
 |   STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS + 1 == HOLEY_DOUBLE_ELEMENTS); | 
 |   return Word32Equal(Word32Shr(elements_kind, Int32Constant(1)), | 
 |                      Int32Constant(PACKED_DOUBLE_ELEMENTS / 2)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsFastSmiOrTaggedElementsKind(Node* elements_kind) { | 
 |   STATIC_ASSERT(FIRST_ELEMENTS_KIND == FIRST_FAST_ELEMENTS_KIND); | 
 |   STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS > TERMINAL_FAST_ELEMENTS_KIND); | 
 |   STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS > TERMINAL_FAST_ELEMENTS_KIND); | 
 |   return Uint32LessThanOrEqual(elements_kind, | 
 |                                Int32Constant(TERMINAL_FAST_ELEMENTS_KIND)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsFastSmiElementsKind(Node* elements_kind) { | 
 |   return Uint32LessThanOrEqual(elements_kind, | 
 |                                Int32Constant(HOLEY_SMI_ELEMENTS)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsHoleyFastElementsKind(Node* elements_kind) { | 
 |   CSA_ASSERT(this, IsFastElementsKind(elements_kind)); | 
 |  | 
 |   STATIC_ASSERT(HOLEY_SMI_ELEMENTS == (PACKED_SMI_ELEMENTS | 1)); | 
 |   STATIC_ASSERT(HOLEY_ELEMENTS == (PACKED_ELEMENTS | 1)); | 
 |   STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == (PACKED_DOUBLE_ELEMENTS | 1)); | 
 |   return IsSetWord32(elements_kind, 1); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsElementsKindGreaterThan( | 
 |     Node* target_kind, ElementsKind reference_kind) { | 
 |   return Int32GreaterThan(target_kind, Int32Constant(reference_kind)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsElementsKindLessThanOrEqual( | 
 |     TNode<Int32T> target_kind, ElementsKind reference_kind) { | 
 |   return Int32LessThanOrEqual(target_kind, Int32Constant(reference_kind)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsDebugActive() { | 
 |   Node* is_debug_active = Load( | 
 |       MachineType::Uint8(), | 
 |       ExternalConstant(ExternalReference::debug_is_active_address(isolate()))); | 
 |   return Word32NotEqual(is_debug_active, Int32Constant(0)); | 
 | } | 
 |  | 
 | TNode<BoolT> CodeStubAssembler::IsRuntimeCallStatsEnabled() { | 
 |   TNode<Word32T> flag_value = UncheckedCast<Word32T>(Load( | 
 |       MachineType::Int32(), | 
 |       ExternalConstant(ExternalReference::address_of_runtime_stats_flag()))); | 
 |   return Word32NotEqual(flag_value, Int32Constant(0)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsPromiseHookEnabled() { | 
 |   Node* const promise_hook = Load( | 
 |       MachineType::Pointer(), | 
 |       ExternalConstant(ExternalReference::promise_hook_address(isolate()))); | 
 |   return WordNotEqual(promise_hook, IntPtrConstant(0)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::HasAsyncEventDelegate() { | 
 |   Node* const async_event_delegate = | 
 |       Load(MachineType::Pointer(), | 
 |            ExternalConstant( | 
 |                ExternalReference::async_event_delegate_address(isolate()))); | 
 |   return WordNotEqual(async_event_delegate, IntPtrConstant(0)); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::IsPromiseHookEnabledOrHasAsyncEventDelegate() { | 
 |   Node* const promise_hook_or_async_event_delegate = | 
 |       Load(MachineType::Uint8(), | 
 |            ExternalConstant( | 
 |                ExternalReference::promise_hook_or_async_event_delegate_address( | 
 |                    isolate()))); | 
 |   return Word32NotEqual(promise_hook_or_async_event_delegate, Int32Constant(0)); | 
 | } | 
 |  | 
 | TNode<Code> CodeStubAssembler::LoadBuiltin(TNode<Smi> builtin_id) { | 
 |   CSA_ASSERT(this, SmiGreaterThanOrEqual(builtin_id, SmiConstant(0))); | 
 |   CSA_ASSERT(this, | 
 |              SmiLessThan(builtin_id, SmiConstant(Builtins::builtin_count))); | 
 |  | 
 |   int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize; | 
 |   int index_shift = kPointerSizeLog2 - kSmiShiftBits; | 
 |   TNode<WordT> table_index = | 
 |       index_shift >= 0 ? WordShl(BitcastTaggedToWord(builtin_id), index_shift) | 
 |                        : WordSar(BitcastTaggedToWord(builtin_id), -index_shift); | 
 |  | 
 |   return CAST( | 
 |       Load(MachineType::TaggedPointer(), | 
 |            ExternalConstant(ExternalReference::builtins_address(isolate())), | 
 |            table_index)); | 
 | } | 
 |  | 
 | TNode<Code> CodeStubAssembler::GetSharedFunctionInfoCode( | 
 |     SloppyTNode<SharedFunctionInfo> shared_info, Label* if_compile_lazy) { | 
 |   TNode<Object> sfi_data = | 
 |       LoadObjectField(shared_info, SharedFunctionInfo::kFunctionDataOffset); | 
 |  | 
 |   TVARIABLE(Code, sfi_code); | 
 |  | 
 |   Label done(this); | 
 |   Label check_instance_type(this); | 
 |  | 
 |   // IsSmi: Is builtin | 
 |   GotoIf(TaggedIsNotSmi(sfi_data), &check_instance_type); | 
 |   if (if_compile_lazy) { | 
 |     GotoIf(SmiEqual(CAST(sfi_data), SmiConstant(Builtins::kCompileLazy)), | 
 |            if_compile_lazy); | 
 |   } | 
 |   sfi_code = LoadBuiltin(CAST(sfi_data)); | 
 |   Goto(&done); | 
 |  | 
 |   // Switch on data's instance type. | 
 |   BIND(&check_instance_type); | 
 |   TNode<Int32T> data_type = LoadInstanceType(CAST(sfi_data)); | 
 |  | 
 |   int32_t case_values[] = {BYTECODE_ARRAY_TYPE, | 
 |                            WASM_EXPORTED_FUNCTION_DATA_TYPE, | 
 |                            FIXED_ARRAY_TYPE, | 
 |                            UNCOMPILED_DATA_WITHOUT_PRE_PARSED_SCOPE_TYPE, | 
 |                            UNCOMPILED_DATA_WITH_PRE_PARSED_SCOPE_TYPE, | 
 |                            FUNCTION_TEMPLATE_INFO_TYPE}; | 
 |   Label check_is_bytecode_array(this); | 
 |   Label check_is_exported_function_data(this); | 
 |   Label check_is_fixed_array(this); | 
 |   Label check_is_uncompiled_data_without_pre_parsed_scope(this); | 
 |   Label check_is_uncompiled_data_with_pre_parsed_scope(this); | 
 |   Label check_is_function_template_info(this); | 
 |   Label check_is_interpreter_data(this); | 
 |   Label* case_labels[] = {&check_is_bytecode_array, | 
 |                           &check_is_exported_function_data, | 
 |                           &check_is_fixed_array, | 
 |                           &check_is_uncompiled_data_without_pre_parsed_scope, | 
 |                           &check_is_uncompiled_data_with_pre_parsed_scope, | 
 |                           &check_is_function_template_info}; | 
 |   STATIC_ASSERT(arraysize(case_values) == arraysize(case_labels)); | 
 |   Switch(data_type, &check_is_interpreter_data, case_values, case_labels, | 
 |          arraysize(case_labels)); | 
 |  | 
 |   // IsBytecodeArray: Interpret bytecode | 
 |   BIND(&check_is_bytecode_array); | 
 |   DCHECK(!Builtins::IsLazy(Builtins::kInterpreterEntryTrampoline)); | 
 |   sfi_code = HeapConstant(BUILTIN_CODE(isolate(), InterpreterEntryTrampoline)); | 
 |   Goto(&done); | 
 |  | 
 |   // IsWasmExportedFunctionData: Use the wrapper code | 
 |   BIND(&check_is_exported_function_data); | 
 |   sfi_code = CAST(LoadObjectField( | 
 |       CAST(sfi_data), WasmExportedFunctionData::kWrapperCodeOffset)); | 
 |   Goto(&done); | 
 |  | 
 |   // IsFixedArray: Instantiate using AsmWasmData | 
 |   BIND(&check_is_fixed_array); | 
 |   DCHECK(!Builtins::IsLazy(Builtins::kInstantiateAsmJs)); | 
 |   sfi_code = HeapConstant(BUILTIN_CODE(isolate(), InstantiateAsmJs)); | 
 |   Goto(&done); | 
 |  | 
 |   // IsUncompiledDataWithPreParsedScope | IsUncompiledDataWithoutPreParsedScope: | 
 |   // Compile lazy | 
 |   BIND(&check_is_uncompiled_data_with_pre_parsed_scope); | 
 |   Goto(&check_is_uncompiled_data_without_pre_parsed_scope); | 
 |   BIND(&check_is_uncompiled_data_without_pre_parsed_scope); | 
 |   DCHECK(!Builtins::IsLazy(Builtins::kCompileLazy)); | 
 |   sfi_code = HeapConstant(BUILTIN_CODE(isolate(), CompileLazy)); | 
 |   Goto(if_compile_lazy ? if_compile_lazy : &done); | 
 |  | 
 |   // IsFunctionTemplateInfo: API call | 
 |   BIND(&check_is_function_template_info); | 
 |   DCHECK(!Builtins::IsLazy(Builtins::kHandleApiCall)); | 
 |   sfi_code = HeapConstant(BUILTIN_CODE(isolate(), HandleApiCall)); | 
 |   Goto(&done); | 
 |  | 
 |   // IsInterpreterData: Interpret bytecode | 
 |   BIND(&check_is_interpreter_data); | 
 |   // This is the default branch, so assert that we have the expected data type. | 
 |   CSA_ASSERT(this, | 
 |              Word32Equal(data_type, Int32Constant(INTERPRETER_DATA_TYPE))); | 
 |   sfi_code = CAST(LoadObjectField( | 
 |       CAST(sfi_data), InterpreterData::kInterpreterTrampolineOffset)); | 
 |   Goto(&done); | 
 |  | 
 |   BIND(&done); | 
 |   return sfi_code.value(); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::AllocateFunctionWithMapAndContext(Node* map, | 
 |                                                            Node* shared_info, | 
 |                                                            Node* context) { | 
 |   CSA_SLOW_ASSERT(this, IsMap(map)); | 
 |  | 
 |   Node* const code = GetSharedFunctionInfoCode(shared_info); | 
 |  | 
 |   // TODO(ishell): All the callers of this function pass map loaded from | 
 |   // Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX. So we can remove | 
 |   // map parameter. | 
 |   CSA_ASSERT(this, Word32BinaryNot(IsConstructorMap(map))); | 
 |   CSA_ASSERT(this, Word32BinaryNot(IsFunctionWithPrototypeSlotMap(map))); | 
 |   Node* const fun = Allocate(JSFunction::kSizeWithoutPrototype); | 
 |   STATIC_ASSERT(JSFunction::kSizeWithoutPrototype == 7 * kPointerSize); | 
 |   StoreMapNoWriteBarrier(fun, map); | 
 |   StoreObjectFieldRoot(fun, JSObject::kPropertiesOrHashOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldRoot(fun, JSObject::kElementsOffset, | 
 |                        RootIndex::kEmptyFixedArray); | 
 |   StoreObjectFieldRoot(fun, JSFunction::kFeedbackCellOffset, | 
 |                        RootIndex::kManyClosuresCell); | 
 |   StoreObjectFieldNoWriteBarrier(fun, JSFunction::kSharedFunctionInfoOffset, | 
 |                                  shared_info); | 
 |   StoreObjectFieldNoWriteBarrier(fun, JSFunction::kContextOffset, context); | 
 |   StoreObjectFieldNoWriteBarrier(fun, JSFunction::kCodeOffset, code); | 
 |   return fun; | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::MarkerIsFrameType(Node* marker_or_function, | 
 |                                            StackFrame::Type frame_type) { | 
 |   return WordEqual(marker_or_function, | 
 |                    IntPtrConstant(StackFrame::TypeToMarker(frame_type))); | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::MarkerIsNotFrameType(Node* marker_or_function, | 
 |                                               StackFrame::Type frame_type) { | 
 |   return WordNotEqual(marker_or_function, | 
 |                       IntPtrConstant(StackFrame::TypeToMarker(frame_type))); | 
 | } | 
 |  | 
 | void CodeStubAssembler::CheckPrototypeEnumCache(Node* receiver, | 
 |                                                 Node* receiver_map, | 
 |                                                 Label* if_fast, | 
 |                                                 Label* if_slow) { | 
 |   VARIABLE(var_object, MachineRepresentation::kTagged, receiver); | 
 |   VARIABLE(var_object_map, MachineRepresentation::kTagged, receiver_map); | 
 |  | 
 |   Label loop(this, {&var_object, &var_object_map}), done_loop(this); | 
 |   Goto(&loop); | 
 |   BIND(&loop); | 
 |   { | 
 |     // Check that there are no elements on the current {object}. | 
 |     Label if_no_elements(this); | 
 |     Node* object = var_object.value(); | 
 |     Node* object_map = var_object_map.value(); | 
 |  | 
 |     // The following relies on the elements only aliasing with JSProxy::target, | 
 |     // which is a Javascript value and hence cannot be confused with an elements | 
 |     // backing store. | 
 |     STATIC_ASSERT(JSObject::kElementsOffset == JSProxy::kTargetOffset); | 
 |     Node* object_elements = LoadObjectField(object, JSObject::kElementsOffset); | 
 |     GotoIf(IsEmptyFixedArray(object_elements), &if_no_elements); | 
 |     GotoIf(IsEmptySlowElementDictionary(object_elements), &if_no_elements); | 
 |  | 
 |     // It might still be an empty JSArray. | 
 |     GotoIfNot(IsJSArrayMap(object_map), if_slow); | 
 |     Node* object_length = LoadJSArrayLength(object); | 
 |     Branch(WordEqual(object_length, SmiConstant(0)), &if_no_elements, if_slow); | 
 |  | 
 |     // Continue with the {object}s prototype. | 
 |     BIND(&if_no_elements); | 
 |     object = LoadMapPrototype(object_map); | 
 |     GotoIf(IsNull(object), if_fast); | 
 |  | 
 |     // For all {object}s but the {receiver}, check that the cache is empty. | 
 |     var_object.Bind(object); | 
 |     object_map = LoadMap(object); | 
 |     var_object_map.Bind(object_map); | 
 |     Node* object_enum_length = LoadMapEnumLength(object_map); | 
 |     Branch(WordEqual(object_enum_length, IntPtrConstant(0)), &loop, if_slow); | 
 |   } | 
 | } | 
 |  | 
 | Node* CodeStubAssembler::CheckEnumCache(Node* receiver, Label* if_empty, | 
 |                                         Label* if_runtime) { | 
 |   Label if_fast(this), if_cache(this), if_no_cache(this, Label::kDeferred); | 
 |   Node* receiver_map = LoadMap(receiver); | 
 |  | 
 |   // Check if the enum length field of the {receiver} is properly initialized, | 
 |   // indicating that there is an enum cache. | 
 |   Node* receiver_enum_length = LoadMapEnumLength(receiver_map); | 
 |   Branch(WordEqual(receiver_enum_length, | 
 |                    IntPtrConstant(kInvalidEnumCacheSentinel)), | 
 |          &if_no_cache, &if_cache); | 
 |  | 
 |   BIND(&if_no_cache); | 
 |   { | 
 |     // Avoid runtime-call for empty dictionary receivers. | 
 |     GotoIfNot(IsDictionaryMap(receiver_map), if_runtime); | 
 |     TNode<NameDictionary> properties = CAST(LoadSlowProperties(receiver)); | 
 |     TNode<Smi> length = GetNumberOfElements(properties); | 
 |     GotoIfNot(WordEqual(length, SmiConstant(0)), if_runtime); | 
 |     // Check that there are no elements on the {receiver} and its prototype | 
 |     // chain. Given that we do not create an EnumCache for dict-mode objects, | 
 |     // directly jump to {if_empty} if there are no elements and no properties | 
 |     // on the {receiver}. | 
 |     CheckPrototypeEnumCache(receiver, receiver_map, if_empty, if_runtime); | 
 |   } | 
 |  | 
 |   // Check that there are no elements on the fast {receiver} and its | 
 |   // prototype chain. | 
 |   BIND(&if_cache); | 
 |   CheckPrototypeEnumCache(receiver, receiver_map, &if_fast, if_runtime); | 
 |  | 
 |   BIND(&if_fast); | 
 |   return receiver_map; | 
 | } | 
 |  | 
 | TNode<IntPtrT> CodeStubAssembler::GetArgumentsLength(CodeStubArguments* args) { | 
 |   return args->GetLength(); | 
 | } | 
 |  | 
 | TNode<Object> CodeStubAssembler::GetArgumentValue(CodeStubArguments* args, | 
 |                                                   TNode<IntPtrT> index) { | 
 |   return args->GetOptionalArgumentValue(index); | 
 | } | 
 |  | 
 | void CodeStubAssembler::Print(const char* s) { | 
 |   std::string formatted(s); | 
 |   formatted += "\n"; | 
 |   CallRuntime(Runtime::kGlobalPrint, NoContextConstant(), | 
 |               StringConstant(formatted.c_str())); | 
 | } | 
 |  | 
 | void CodeStubAssembler::Print(const char* prefix, Node* tagged_value) { | 
 |   if (prefix != nullptr) { | 
 |     std::string formatted(prefix); | 
 |     formatted += ": "; | 
 |     Handle<String> string = isolate()->factory()->NewStringFromAsciiChecked( | 
 |         formatted.c_str(), TENURED); | 
 |     CallRuntime(Runtime::kGlobalPrint, NoContextConstant(), | 
 |                 HeapConstant(string)); | 
 |   } | 
 |   CallRuntime(Runtime::kDebugPrint, NoContextConstant(), tagged_value); | 
 | } | 
 |  | 
 | void CodeStubAssembler::PerformStackCheck(TNode<Context> context) { | 
 |   Label ok(this), stack_check_interrupt(this, Label::kDeferred); | 
 |  | 
 |   // The instruction sequence below is carefully crafted to hit our pattern | 
 |   // matcher for stack checks within instruction selection. | 
 |   // See StackCheckMatcher::Matched and JSGenericLowering::LowerJSStackCheck. | 
 |  | 
 |   TNode<UintPtrT> sp = UncheckedCast<UintPtrT>(LoadStackPointer()); | 
 |   TNode<UintPtrT> stack_limit = UncheckedCast<UintPtrT>(Load( | 
 |       MachineType::Pointer(), | 
 |       ExternalConstant(ExternalReference::address_of_stack_limit(isolate())))); | 
 |   TNode<BoolT> sp_within_limit = UintPtrLessThan(stack_limit, sp); | 
 |  | 
 |   Branch(sp_within_limit, &ok, &stack_check_interrupt); | 
 |  | 
 |   BIND(&stack_check_interrupt); | 
 |   CallRuntime(Runtime::kStackGuard, context); | 
 |   Goto(&ok); | 
 |  | 
 |   BIND(&ok); | 
 | } | 
 |  | 
 | void CodeStubAssembler::InitializeFunctionContext(Node* native_context, | 
 |                                                   Node* context, int slots) { | 
 |   DCHECK_GE(slots, Context::MIN_CONTEXT_SLOTS); | 
 |   StoreMapNoWriteBarrier(context, RootIndex::kFunctionContextMap); | 
 |   StoreObjectFieldNoWriteBarrier(context, FixedArray::kLengthOffset, | 
 |                                  SmiConstant(slots)); | 
 |  | 
 |   Node* const empty_scope_info = | 
 |       LoadContextElement(native_context, Context::SCOPE_INFO_INDEX); | 
 |   StoreContextElementNoWriteBarrier(context, Context::SCOPE_INFO_INDEX, | 
 |                                     empty_scope_info); | 
 |   StoreContextElementNoWriteBarrier(context, Context::PREVIOUS_INDEX, | 
 |                                     UndefinedConstant()); | 
 |   StoreContextElementNoWriteBarrier(context, Context::EXTENSION_INDEX, | 
 |                                     TheHoleConstant()); | 
 |   StoreContextElementNoWriteBarrier(context, Context::NATIVE_CONTEXT_INDEX, | 
 |                                     native_context); | 
 | } | 
 |  | 
 | }  // namespace internal | 
 | }  // namespace v8 |