| // Copyright 2016 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <type_traits> |
| |
| #include "src/wasm/wasm-interpreter.h" |
| |
| #include "src/assembler-inl.h" |
| #include "src/conversions.h" |
| #include "src/identity-map.h" |
| #include "src/objects-inl.h" |
| #include "src/utils.h" |
| #include "src/wasm/decoder.h" |
| #include "src/wasm/function-body-decoder-impl.h" |
| #include "src/wasm/function-body-decoder.h" |
| #include "src/wasm/wasm-external-refs.h" |
| #include "src/wasm/wasm-limits.h" |
| #include "src/wasm/wasm-module.h" |
| #include "src/wasm/wasm-objects.h" |
| |
| #include "src/zone/accounting-allocator.h" |
| #include "src/zone/zone-containers.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace wasm { |
| |
| #if DEBUG |
| #define TRACE(...) \ |
| do { \ |
| if (FLAG_trace_wasm_interpreter) PrintF(__VA_ARGS__); \ |
| } while (false) |
| #else |
| #define TRACE(...) |
| #endif |
| |
| #define FOREACH_INTERNAL_OPCODE(V) V(Breakpoint, 0xFF) |
| |
| #define WASM_CTYPES(V) \ |
| V(I32, int32_t) V(I64, int64_t) V(F32, float) V(F64, double) |
| |
| #define FOREACH_SIMPLE_BINOP(V) \ |
| V(I32Add, uint32_t, +) \ |
| V(I32Sub, uint32_t, -) \ |
| V(I32Mul, uint32_t, *) \ |
| V(I32And, uint32_t, &) \ |
| V(I32Ior, uint32_t, |) \ |
| V(I32Xor, uint32_t, ^) \ |
| V(I32Eq, uint32_t, ==) \ |
| V(I32Ne, uint32_t, !=) \ |
| V(I32LtU, uint32_t, <) \ |
| V(I32LeU, uint32_t, <=) \ |
| V(I32GtU, uint32_t, >) \ |
| V(I32GeU, uint32_t, >=) \ |
| V(I32LtS, int32_t, <) \ |
| V(I32LeS, int32_t, <=) \ |
| V(I32GtS, int32_t, >) \ |
| V(I32GeS, int32_t, >=) \ |
| V(I64Add, uint64_t, +) \ |
| V(I64Sub, uint64_t, -) \ |
| V(I64Mul, uint64_t, *) \ |
| V(I64And, uint64_t, &) \ |
| V(I64Ior, uint64_t, |) \ |
| V(I64Xor, uint64_t, ^) \ |
| V(I64Eq, uint64_t, ==) \ |
| V(I64Ne, uint64_t, !=) \ |
| V(I64LtU, uint64_t, <) \ |
| V(I64LeU, uint64_t, <=) \ |
| V(I64GtU, uint64_t, >) \ |
| V(I64GeU, uint64_t, >=) \ |
| V(I64LtS, int64_t, <) \ |
| V(I64LeS, int64_t, <=) \ |
| V(I64GtS, int64_t, >) \ |
| V(I64GeS, int64_t, >=) \ |
| V(F32Add, float, +) \ |
| V(F32Sub, float, -) \ |
| V(F32Eq, float, ==) \ |
| V(F32Ne, float, !=) \ |
| V(F32Lt, float, <) \ |
| V(F32Le, float, <=) \ |
| V(F32Gt, float, >) \ |
| V(F32Ge, float, >=) \ |
| V(F64Add, double, +) \ |
| V(F64Sub, double, -) \ |
| V(F64Eq, double, ==) \ |
| V(F64Ne, double, !=) \ |
| V(F64Lt, double, <) \ |
| V(F64Le, double, <=) \ |
| V(F64Gt, double, >) \ |
| V(F64Ge, double, >=) \ |
| V(F32Mul, float, *) \ |
| V(F64Mul, double, *) \ |
| V(F32Div, float, /) \ |
| V(F64Div, double, /) |
| |
| #define FOREACH_OTHER_BINOP(V) \ |
| V(I32DivS, int32_t) \ |
| V(I32DivU, uint32_t) \ |
| V(I32RemS, int32_t) \ |
| V(I32RemU, uint32_t) \ |
| V(I32Shl, uint32_t) \ |
| V(I32ShrU, uint32_t) \ |
| V(I32ShrS, int32_t) \ |
| V(I64DivS, int64_t) \ |
| V(I64DivU, uint64_t) \ |
| V(I64RemS, int64_t) \ |
| V(I64RemU, uint64_t) \ |
| V(I64Shl, uint64_t) \ |
| V(I64ShrU, uint64_t) \ |
| V(I64ShrS, int64_t) \ |
| V(I32Ror, int32_t) \ |
| V(I32Rol, int32_t) \ |
| V(I64Ror, int64_t) \ |
| V(I64Rol, int64_t) \ |
| V(F32Min, float) \ |
| V(F32Max, float) \ |
| V(F64Min, double) \ |
| V(F64Max, double) \ |
| V(I32AsmjsDivS, int32_t) \ |
| V(I32AsmjsDivU, uint32_t) \ |
| V(I32AsmjsRemS, int32_t) \ |
| V(I32AsmjsRemU, uint32_t) |
| |
| #define FOREACH_OTHER_UNOP(V) \ |
| V(I32Clz, uint32_t) \ |
| V(I32Ctz, uint32_t) \ |
| V(I32Popcnt, uint32_t) \ |
| V(I32Eqz, uint32_t) \ |
| V(I64Clz, uint64_t) \ |
| V(I64Ctz, uint64_t) \ |
| V(I64Popcnt, uint64_t) \ |
| V(I64Eqz, uint64_t) \ |
| V(F32Abs, float) \ |
| V(F32Neg, float) \ |
| V(F32Ceil, float) \ |
| V(F32Floor, float) \ |
| V(F32Trunc, float) \ |
| V(F32NearestInt, float) \ |
| V(F64Abs, double) \ |
| V(F64Neg, double) \ |
| V(F64Ceil, double) \ |
| V(F64Floor, double) \ |
| V(F64Trunc, double) \ |
| V(F64NearestInt, double) \ |
| V(I32SConvertF32, float) \ |
| V(I32SConvertF64, double) \ |
| V(I32UConvertF32, float) \ |
| V(I32UConvertF64, double) \ |
| V(I32ConvertI64, int64_t) \ |
| V(I64SConvertF32, float) \ |
| V(I64SConvertF64, double) \ |
| V(I64UConvertF32, float) \ |
| V(I64UConvertF64, double) \ |
| V(I64SConvertI32, int32_t) \ |
| V(I64UConvertI32, uint32_t) \ |
| V(F32SConvertI32, int32_t) \ |
| V(F32UConvertI32, uint32_t) \ |
| V(F32SConvertI64, int64_t) \ |
| V(F32UConvertI64, uint64_t) \ |
| V(F32ConvertF64, double) \ |
| V(F32ReinterpretI32, int32_t) \ |
| V(F64SConvertI32, int32_t) \ |
| V(F64UConvertI32, uint32_t) \ |
| V(F64SConvertI64, int64_t) \ |
| V(F64UConvertI64, uint64_t) \ |
| V(F64ConvertF32, float) \ |
| V(F64ReinterpretI64, int64_t) \ |
| V(I32AsmjsSConvertF32, float) \ |
| V(I32AsmjsUConvertF32, float) \ |
| V(I32AsmjsSConvertF64, double) \ |
| V(I32AsmjsUConvertF64, double) \ |
| V(F32Sqrt, float) \ |
| V(F64Sqrt, double) |
| |
| namespace { |
| |
| inline int32_t ExecuteI32DivS(int32_t a, int32_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapDivByZero; |
| return 0; |
| } |
| if (b == -1 && a == std::numeric_limits<int32_t>::min()) { |
| *trap = kTrapDivUnrepresentable; |
| return 0; |
| } |
| return a / b; |
| } |
| |
| inline uint32_t ExecuteI32DivU(uint32_t a, uint32_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapDivByZero; |
| return 0; |
| } |
| return a / b; |
| } |
| |
| inline int32_t ExecuteI32RemS(int32_t a, int32_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapRemByZero; |
| return 0; |
| } |
| if (b == -1) return 0; |
| return a % b; |
| } |
| |
| inline uint32_t ExecuteI32RemU(uint32_t a, uint32_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapRemByZero; |
| return 0; |
| } |
| return a % b; |
| } |
| |
| inline uint32_t ExecuteI32Shl(uint32_t a, uint32_t b, TrapReason* trap) { |
| return a << (b & 0x1f); |
| } |
| |
| inline uint32_t ExecuteI32ShrU(uint32_t a, uint32_t b, TrapReason* trap) { |
| return a >> (b & 0x1f); |
| } |
| |
| inline int32_t ExecuteI32ShrS(int32_t a, int32_t b, TrapReason* trap) { |
| return a >> (b & 0x1f); |
| } |
| |
| inline int64_t ExecuteI64DivS(int64_t a, int64_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapDivByZero; |
| return 0; |
| } |
| if (b == -1 && a == std::numeric_limits<int64_t>::min()) { |
| *trap = kTrapDivUnrepresentable; |
| return 0; |
| } |
| return a / b; |
| } |
| |
| inline uint64_t ExecuteI64DivU(uint64_t a, uint64_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapDivByZero; |
| return 0; |
| } |
| return a / b; |
| } |
| |
| inline int64_t ExecuteI64RemS(int64_t a, int64_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapRemByZero; |
| return 0; |
| } |
| if (b == -1) return 0; |
| return a % b; |
| } |
| |
| inline uint64_t ExecuteI64RemU(uint64_t a, uint64_t b, TrapReason* trap) { |
| if (b == 0) { |
| *trap = kTrapRemByZero; |
| return 0; |
| } |
| return a % b; |
| } |
| |
| inline uint64_t ExecuteI64Shl(uint64_t a, uint64_t b, TrapReason* trap) { |
| return a << (b & 0x3f); |
| } |
| |
| inline uint64_t ExecuteI64ShrU(uint64_t a, uint64_t b, TrapReason* trap) { |
| return a >> (b & 0x3f); |
| } |
| |
| inline int64_t ExecuteI64ShrS(int64_t a, int64_t b, TrapReason* trap) { |
| return a >> (b & 0x3f); |
| } |
| |
| inline uint32_t ExecuteI32Ror(uint32_t a, uint32_t b, TrapReason* trap) { |
| uint32_t shift = (b & 0x1f); |
| return (a >> shift) | (a << (32 - shift)); |
| } |
| |
| inline uint32_t ExecuteI32Rol(uint32_t a, uint32_t b, TrapReason* trap) { |
| uint32_t shift = (b & 0x1f); |
| return (a << shift) | (a >> (32 - shift)); |
| } |
| |
| inline uint64_t ExecuteI64Ror(uint64_t a, uint64_t b, TrapReason* trap) { |
| uint32_t shift = (b & 0x3f); |
| return (a >> shift) | (a << (64 - shift)); |
| } |
| |
| inline uint64_t ExecuteI64Rol(uint64_t a, uint64_t b, TrapReason* trap) { |
| uint32_t shift = (b & 0x3f); |
| return (a << shift) | (a >> (64 - shift)); |
| } |
| |
| inline float ExecuteF32Min(float a, float b, TrapReason* trap) { |
| return JSMin(a, b); |
| } |
| |
| inline float ExecuteF32Max(float a, float b, TrapReason* trap) { |
| return JSMax(a, b); |
| } |
| |
| inline float ExecuteF32CopySign(float a, float b, TrapReason* trap) { |
| return copysignf(a, b); |
| } |
| |
| inline double ExecuteF64Min(double a, double b, TrapReason* trap) { |
| return JSMin(a, b); |
| } |
| |
| inline double ExecuteF64Max(double a, double b, TrapReason* trap) { |
| return JSMax(a, b); |
| } |
| |
| inline double ExecuteF64CopySign(double a, double b, TrapReason* trap) { |
| return copysign(a, b); |
| } |
| |
| inline int32_t ExecuteI32AsmjsDivS(int32_t a, int32_t b, TrapReason* trap) { |
| if (b == 0) return 0; |
| if (b == -1 && a == std::numeric_limits<int32_t>::min()) { |
| return std::numeric_limits<int32_t>::min(); |
| } |
| return a / b; |
| } |
| |
| inline uint32_t ExecuteI32AsmjsDivU(uint32_t a, uint32_t b, TrapReason* trap) { |
| if (b == 0) return 0; |
| return a / b; |
| } |
| |
| inline int32_t ExecuteI32AsmjsRemS(int32_t a, int32_t b, TrapReason* trap) { |
| if (b == 0) return 0; |
| if (b == -1) return 0; |
| return a % b; |
| } |
| |
| inline uint32_t ExecuteI32AsmjsRemU(uint32_t a, uint32_t b, TrapReason* trap) { |
| if (b == 0) return 0; |
| return a % b; |
| } |
| |
| inline int32_t ExecuteI32AsmjsSConvertF32(float a, TrapReason* trap) { |
| return DoubleToInt32(a); |
| } |
| |
| inline uint32_t ExecuteI32AsmjsUConvertF32(float a, TrapReason* trap) { |
| return DoubleToUint32(a); |
| } |
| |
| inline int32_t ExecuteI32AsmjsSConvertF64(double a, TrapReason* trap) { |
| return DoubleToInt32(a); |
| } |
| |
| inline uint32_t ExecuteI32AsmjsUConvertF64(double a, TrapReason* trap) { |
| return DoubleToUint32(a); |
| } |
| |
| int32_t ExecuteI32Clz(uint32_t val, TrapReason* trap) { |
| return base::bits::CountLeadingZeros32(val); |
| } |
| |
| uint32_t ExecuteI32Ctz(uint32_t val, TrapReason* trap) { |
| return base::bits::CountTrailingZeros32(val); |
| } |
| |
| uint32_t ExecuteI32Popcnt(uint32_t val, TrapReason* trap) { |
| return word32_popcnt_wrapper(&val); |
| } |
| |
| inline uint32_t ExecuteI32Eqz(uint32_t val, TrapReason* trap) { |
| return val == 0 ? 1 : 0; |
| } |
| |
| int64_t ExecuteI64Clz(uint64_t val, TrapReason* trap) { |
| return base::bits::CountLeadingZeros64(val); |
| } |
| |
| inline uint64_t ExecuteI64Ctz(uint64_t val, TrapReason* trap) { |
| return base::bits::CountTrailingZeros64(val); |
| } |
| |
| inline int64_t ExecuteI64Popcnt(uint64_t val, TrapReason* trap) { |
| return word64_popcnt_wrapper(&val); |
| } |
| |
| inline int32_t ExecuteI64Eqz(uint64_t val, TrapReason* trap) { |
| return val == 0 ? 1 : 0; |
| } |
| |
| inline float ExecuteF32Abs(float a, TrapReason* trap) { |
| return bit_cast<float>(bit_cast<uint32_t>(a) & 0x7fffffff); |
| } |
| |
| inline float ExecuteF32Neg(float a, TrapReason* trap) { |
| return bit_cast<float>(bit_cast<uint32_t>(a) ^ 0x80000000); |
| } |
| |
| inline float ExecuteF32Ceil(float a, TrapReason* trap) { return ceilf(a); } |
| |
| inline float ExecuteF32Floor(float a, TrapReason* trap) { return floorf(a); } |
| |
| inline float ExecuteF32Trunc(float a, TrapReason* trap) { return truncf(a); } |
| |
| inline float ExecuteF32NearestInt(float a, TrapReason* trap) { |
| return nearbyintf(a); |
| } |
| |
| inline float ExecuteF32Sqrt(float a, TrapReason* trap) { |
| float result = sqrtf(a); |
| return result; |
| } |
| |
| inline double ExecuteF64Abs(double a, TrapReason* trap) { |
| return bit_cast<double>(bit_cast<uint64_t>(a) & 0x7fffffffffffffff); |
| } |
| |
| inline double ExecuteF64Neg(double a, TrapReason* trap) { |
| return bit_cast<double>(bit_cast<uint64_t>(a) ^ 0x8000000000000000); |
| } |
| |
| inline double ExecuteF64Ceil(double a, TrapReason* trap) { return ceil(a); } |
| |
| inline double ExecuteF64Floor(double a, TrapReason* trap) { return floor(a); } |
| |
| inline double ExecuteF64Trunc(double a, TrapReason* trap) { return trunc(a); } |
| |
| inline double ExecuteF64NearestInt(double a, TrapReason* trap) { |
| return nearbyint(a); |
| } |
| |
| inline double ExecuteF64Sqrt(double a, TrapReason* trap) { return sqrt(a); } |
| |
| int32_t ExecuteI32SConvertF32(float a, TrapReason* trap) { |
| // The upper bound is (INT32_MAX + 1), which is the lowest float-representable |
| // number above INT32_MAX which cannot be represented as int32. |
| float upper_bound = 2147483648.0f; |
| // We use INT32_MIN as a lower bound because (INT32_MIN - 1) is not |
| // representable as float, and no number between (INT32_MIN - 1) and INT32_MIN |
| // is. |
| float lower_bound = static_cast<float>(INT32_MIN); |
| if (a < upper_bound && a >= lower_bound) { |
| return static_cast<int32_t>(a); |
| } |
| *trap = kTrapFloatUnrepresentable; |
| return 0; |
| } |
| |
| int32_t ExecuteI32SConvertF64(double a, TrapReason* trap) { |
| // The upper bound is (INT32_MAX + 1), which is the lowest double- |
| // representable number above INT32_MAX which cannot be represented as int32. |
| double upper_bound = 2147483648.0; |
| // The lower bound is (INT32_MIN - 1), which is the greatest double- |
| // representable number below INT32_MIN which cannot be represented as int32. |
| double lower_bound = -2147483649.0; |
| if (a < upper_bound && a > lower_bound) { |
| return static_cast<int32_t>(a); |
| } |
| *trap = kTrapFloatUnrepresentable; |
| return 0; |
| } |
| |
| uint32_t ExecuteI32UConvertF32(float a, TrapReason* trap) { |
| // The upper bound is (UINT32_MAX + 1), which is the lowest |
| // float-representable number above UINT32_MAX which cannot be represented as |
| // uint32. |
| double upper_bound = 4294967296.0f; |
| double lower_bound = -1.0f; |
| if (a < upper_bound && a > lower_bound) { |
| return static_cast<uint32_t>(a); |
| } |
| *trap = kTrapFloatUnrepresentable; |
| return 0; |
| } |
| |
| uint32_t ExecuteI32UConvertF64(double a, TrapReason* trap) { |
| // The upper bound is (UINT32_MAX + 1), which is the lowest |
| // double-representable number above UINT32_MAX which cannot be represented as |
| // uint32. |
| double upper_bound = 4294967296.0; |
| double lower_bound = -1.0; |
| if (a < upper_bound && a > lower_bound) { |
| return static_cast<uint32_t>(a); |
| } |
| *trap = kTrapFloatUnrepresentable; |
| return 0; |
| } |
| |
| inline uint32_t ExecuteI32ConvertI64(int64_t a, TrapReason* trap) { |
| return static_cast<uint32_t>(a & 0xFFFFFFFF); |
| } |
| |
| int64_t ExecuteI64SConvertF32(float a, TrapReason* trap) { |
| int64_t output; |
| if (!float32_to_int64_wrapper(&a, &output)) { |
| *trap = kTrapFloatUnrepresentable; |
| } |
| return output; |
| } |
| |
| int64_t ExecuteI64SConvertF64(double a, TrapReason* trap) { |
| int64_t output; |
| if (!float64_to_int64_wrapper(&a, &output)) { |
| *trap = kTrapFloatUnrepresentable; |
| } |
| return output; |
| } |
| |
| uint64_t ExecuteI64UConvertF32(float a, TrapReason* trap) { |
| uint64_t output; |
| if (!float32_to_uint64_wrapper(&a, &output)) { |
| *trap = kTrapFloatUnrepresentable; |
| } |
| return output; |
| } |
| |
| uint64_t ExecuteI64UConvertF64(double a, TrapReason* trap) { |
| uint64_t output; |
| if (!float64_to_uint64_wrapper(&a, &output)) { |
| *trap = kTrapFloatUnrepresentable; |
| } |
| return output; |
| } |
| |
| inline int64_t ExecuteI64SConvertI32(int32_t a, TrapReason* trap) { |
| return static_cast<int64_t>(a); |
| } |
| |
| inline int64_t ExecuteI64UConvertI32(uint32_t a, TrapReason* trap) { |
| return static_cast<uint64_t>(a); |
| } |
| |
| inline float ExecuteF32SConvertI32(int32_t a, TrapReason* trap) { |
| return static_cast<float>(a); |
| } |
| |
| inline float ExecuteF32UConvertI32(uint32_t a, TrapReason* trap) { |
| return static_cast<float>(a); |
| } |
| |
| inline float ExecuteF32SConvertI64(int64_t a, TrapReason* trap) { |
| float output; |
| int64_to_float32_wrapper(&a, &output); |
| return output; |
| } |
| |
| inline float ExecuteF32UConvertI64(uint64_t a, TrapReason* trap) { |
| float output; |
| uint64_to_float32_wrapper(&a, &output); |
| return output; |
| } |
| |
| inline float ExecuteF32ConvertF64(double a, TrapReason* trap) { |
| return static_cast<float>(a); |
| } |
| |
| inline float ExecuteF32ReinterpretI32(int32_t a, TrapReason* trap) { |
| return bit_cast<float>(a); |
| } |
| |
| inline double ExecuteF64SConvertI32(int32_t a, TrapReason* trap) { |
| return static_cast<double>(a); |
| } |
| |
| inline double ExecuteF64UConvertI32(uint32_t a, TrapReason* trap) { |
| return static_cast<double>(a); |
| } |
| |
| inline double ExecuteF64SConvertI64(int64_t a, TrapReason* trap) { |
| double output; |
| int64_to_float64_wrapper(&a, &output); |
| return output; |
| } |
| |
| inline double ExecuteF64UConvertI64(uint64_t a, TrapReason* trap) { |
| double output; |
| uint64_to_float64_wrapper(&a, &output); |
| return output; |
| } |
| |
| inline double ExecuteF64ConvertF32(float a, TrapReason* trap) { |
| return static_cast<double>(a); |
| } |
| |
| inline double ExecuteF64ReinterpretI64(int64_t a, TrapReason* trap) { |
| return bit_cast<double>(a); |
| } |
| |
| inline int32_t ExecuteI32ReinterpretF32(WasmVal a) { |
| return a.to_unchecked<int32_t>(); |
| } |
| |
| inline int64_t ExecuteI64ReinterpretF64(WasmVal a) { |
| return a.to_unchecked<int64_t>(); |
| } |
| |
| inline int32_t ExecuteGrowMemory(uint32_t delta_pages, |
| MaybeHandle<WasmInstanceObject> instance_obj, |
| WasmInstance* instance) { |
| DCHECK_EQ(0, instance->mem_size % WasmModule::kPageSize); |
| uint32_t old_pages = instance->mem_size / WasmModule::kPageSize; |
| |
| // If an instance is set, execute GrowMemory on the instance. This will also |
| // update the WasmInstance struct used here. |
| if (!instance_obj.is_null()) { |
| Isolate* isolate = instance_obj.ToHandleChecked()->GetIsolate(); |
| int32_t ret = WasmInstanceObject::GrowMemory( |
| isolate, instance_obj.ToHandleChecked(), delta_pages); |
| // Some sanity checks. |
| DCHECK_EQ(ret == -1 ? old_pages : old_pages + delta_pages, |
| instance->mem_size / WasmModule::kPageSize); |
| DCHECK(ret == -1 || static_cast<uint32_t>(ret) == old_pages); |
| return ret; |
| } |
| |
| // TODO(ahaas): Move memory allocation to wasm-module.cc for better |
| // encapsulation. |
| if (delta_pages > FLAG_wasm_max_mem_pages || |
| delta_pages > instance->module->max_mem_pages) { |
| return -1; |
| } |
| |
| uint32_t new_pages = old_pages + delta_pages; |
| if (new_pages > FLAG_wasm_max_mem_pages || |
| new_pages > instance->module->max_mem_pages) { |
| return -1; |
| } |
| |
| byte* new_mem_start; |
| if (instance->mem_size == 0) { |
| // TODO(gdeepti): Fix bounds check to take into account size of memtype. |
| new_mem_start = static_cast<byte*>( |
| calloc(new_pages * WasmModule::kPageSize, sizeof(byte))); |
| if (!new_mem_start) return -1; |
| } else { |
| DCHECK_NOT_NULL(instance->mem_start); |
| if (EnableGuardRegions()) { |
| v8::base::OS::Unprotect(instance->mem_start, |
| new_pages * WasmModule::kPageSize); |
| new_mem_start = instance->mem_start; |
| } else { |
| new_mem_start = static_cast<byte*>( |
| realloc(instance->mem_start, new_pages * WasmModule::kPageSize)); |
| if (!new_mem_start) return -1; |
| } |
| // Zero initializing uninitialized memory from realloc |
| memset(new_mem_start + old_pages * WasmModule::kPageSize, 0, |
| delta_pages * WasmModule::kPageSize); |
| } |
| instance->mem_start = new_mem_start; |
| instance->mem_size = new_pages * WasmModule::kPageSize; |
| return static_cast<int32_t>(old_pages); |
| } |
| |
| enum InternalOpcode { |
| #define DECL_INTERNAL_ENUM(name, value) kInternal##name = value, |
| FOREACH_INTERNAL_OPCODE(DECL_INTERNAL_ENUM) |
| #undef DECL_INTERNAL_ENUM |
| }; |
| |
| const char* OpcodeName(uint32_t val) { |
| switch (val) { |
| #define DECL_INTERNAL_CASE(name, value) \ |
| case kInternal##name: \ |
| return "Internal" #name; |
| FOREACH_INTERNAL_OPCODE(DECL_INTERNAL_CASE) |
| #undef DECL_INTERNAL_CASE |
| } |
| return WasmOpcodes::OpcodeName(static_cast<WasmOpcode>(val)); |
| } |
| |
| constexpr int kRunSteps = 1000; |
| |
| // Unwrap a wasm to js wrapper, return the callable heap object. |
| // If the wrapper would throw a TypeError, return a null handle. |
| Handle<HeapObject> UnwrapWasmToJSWrapper(Isolate* isolate, |
| Handle<Code> js_wrapper) { |
| DCHECK_EQ(Code::WASM_TO_JS_FUNCTION, js_wrapper->kind()); |
| int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); |
| for (RelocIterator it(*js_wrapper, mask); !it.done(); it.next()) { |
| HeapObject* obj = it.rinfo()->target_object(); |
| if (!obj->IsCallable()) continue; |
| #ifdef DEBUG |
| // There should only be this one reference to a callable object. |
| for (it.next(); !it.done(); it.next()) { |
| HeapObject* other = it.rinfo()->target_object(); |
| DCHECK(!other->IsCallable()); |
| } |
| #endif |
| return handle(obj, isolate); |
| } |
| // If we did not find a callable object, then there must be a reference to |
| // the WasmThrowTypeError runtime function. |
| // TODO(clemensh): Check that this is the case. |
| return Handle<HeapObject>::null(); |
| } |
| |
| // A helper class to compute the control transfers for each bytecode offset. |
| // Control transfers allow Br, BrIf, BrTable, If, Else, and End bytecodes to |
| // be directly executed without the need to dynamically track blocks. |
| class ControlTransfers : public ZoneObject { |
| public: |
| ControlTransferMap map_; |
| |
| ControlTransfers(Zone* zone, BodyLocalDecls* locals, const byte* start, |
| const byte* end) |
| : map_(zone) { |
| // Represents a control flow label. |
| struct CLabel : public ZoneObject { |
| const byte* target; |
| ZoneVector<const byte*> refs; |
| |
| explicit CLabel(Zone* zone) : target(nullptr), refs(zone) {} |
| |
| // Bind this label to the given PC. |
| void Bind(ControlTransferMap* map, const byte* start, const byte* pc) { |
| DCHECK_NULL(target); |
| target = pc; |
| for (auto from_pc : refs) { |
| auto pcdiff = static_cast<pcdiff_t>(target - from_pc); |
| size_t offset = static_cast<size_t>(from_pc - start); |
| (*map)[offset] = pcdiff; |
| } |
| } |
| |
| // Reference this label from the given location. |
| void Ref(ControlTransferMap* map, const byte* start, |
| const byte* from_pc) { |
| if (target) { |
| // Target being bound before a reference means this is a loop. |
| DCHECK_EQ(kExprLoop, *target); |
| auto pcdiff = static_cast<pcdiff_t>(target - from_pc); |
| size_t offset = static_cast<size_t>(from_pc - start); |
| (*map)[offset] = pcdiff; |
| } else { |
| refs.push_back(from_pc); |
| } |
| } |
| }; |
| |
| // An entry in the control stack. |
| struct Control { |
| const byte* pc; |
| CLabel* end_label; |
| CLabel* else_label; |
| |
| void Ref(ControlTransferMap* map, const byte* start, |
| const byte* from_pc) { |
| end_label->Ref(map, start, from_pc); |
| } |
| }; |
| |
| // Compute the ControlTransfer map. |
| // This algorithm maintains a stack of control constructs similar to the |
| // AST decoder. The {control_stack} allows matching {br,br_if,br_table} |
| // bytecodes with their target, as well as determining whether the current |
| // bytecodes are within the true or false block of an else. |
| std::vector<Control> control_stack; |
| CLabel* func_label = new (zone) CLabel(zone); |
| control_stack.push_back({start, func_label, nullptr}); |
| for (BytecodeIterator i(start, end, locals); i.has_next(); i.next()) { |
| WasmOpcode opcode = i.current(); |
| TRACE("@%u: control %s\n", i.pc_offset(), |
| WasmOpcodes::OpcodeName(opcode)); |
| switch (opcode) { |
| case kExprBlock: { |
| TRACE("control @%u: Block\n", i.pc_offset()); |
| CLabel* label = new (zone) CLabel(zone); |
| control_stack.push_back({i.pc(), label, nullptr}); |
| break; |
| } |
| case kExprLoop: { |
| TRACE("control @%u: Loop\n", i.pc_offset()); |
| CLabel* label = new (zone) CLabel(zone); |
| control_stack.push_back({i.pc(), label, nullptr}); |
| label->Bind(&map_, start, i.pc()); |
| break; |
| } |
| case kExprIf: { |
| TRACE("control @%u: If\n", i.pc_offset()); |
| CLabel* end_label = new (zone) CLabel(zone); |
| CLabel* else_label = new (zone) CLabel(zone); |
| control_stack.push_back({i.pc(), end_label, else_label}); |
| else_label->Ref(&map_, start, i.pc()); |
| break; |
| } |
| case kExprElse: { |
| Control* c = &control_stack.back(); |
| TRACE("control @%u: Else\n", i.pc_offset()); |
| c->end_label->Ref(&map_, start, i.pc()); |
| DCHECK_NOT_NULL(c->else_label); |
| c->else_label->Bind(&map_, start, i.pc() + 1); |
| c->else_label = nullptr; |
| break; |
| } |
| case kExprEnd: { |
| Control* c = &control_stack.back(); |
| TRACE("control @%u: End\n", i.pc_offset()); |
| if (c->end_label->target) { |
| // only loops have bound labels. |
| DCHECK_EQ(kExprLoop, *c->pc); |
| } else { |
| if (c->else_label) c->else_label->Bind(&map_, start, i.pc()); |
| c->end_label->Bind(&map_, start, i.pc() + 1); |
| } |
| control_stack.pop_back(); |
| break; |
| } |
| case kExprBr: { |
| BreakDepthOperand operand(&i, i.pc()); |
| TRACE("control @%u: Br[depth=%u]\n", i.pc_offset(), operand.depth); |
| Control* c = &control_stack[control_stack.size() - operand.depth - 1]; |
| c->Ref(&map_, start, i.pc()); |
| break; |
| } |
| case kExprBrIf: { |
| BreakDepthOperand operand(&i, i.pc()); |
| TRACE("control @%u: BrIf[depth=%u]\n", i.pc_offset(), operand.depth); |
| Control* c = &control_stack[control_stack.size() - operand.depth - 1]; |
| c->Ref(&map_, start, i.pc()); |
| break; |
| } |
| case kExprBrTable: { |
| BranchTableOperand operand(&i, i.pc()); |
| BranchTableIterator iterator(&i, operand); |
| TRACE("control @%u: BrTable[count=%u]\n", i.pc_offset(), |
| operand.table_count); |
| while (iterator.has_next()) { |
| uint32_t j = iterator.cur_index(); |
| uint32_t target = iterator.next(); |
| Control* c = &control_stack[control_stack.size() - target - 1]; |
| c->Ref(&map_, start, i.pc() + j); |
| } |
| break; |
| } |
| default: { |
| break; |
| } |
| } |
| } |
| if (!func_label->target) func_label->Bind(&map_, start, end); |
| } |
| |
| pcdiff_t Lookup(pc_t from) { |
| auto result = map_.find(from); |
| if (result == map_.end()) { |
| V8_Fatal(__FILE__, __LINE__, "no control target for pc %zu", from); |
| } |
| return result->second; |
| } |
| }; |
| |
| // Code and metadata needed to execute a function. |
| struct InterpreterCode { |
| const WasmFunction* function; // wasm function |
| BodyLocalDecls locals; // local declarations |
| const byte* orig_start; // start of original code |
| const byte* orig_end; // end of original code |
| byte* start; // start of (maybe altered) code |
| byte* end; // end of (maybe altered) code |
| ControlTransfers* targets; // helper for control flow. |
| |
| const byte* at(pc_t pc) { return start + pc; } |
| }; |
| |
| struct ExternalCallResult { |
| enum Type { |
| // The function should be executed inside this interpreter. |
| INTERNAL, |
| // For indirect calls: Table or function does not exist. |
| INVALID_FUNC, |
| // For indirect calls: Signature does not match expected signature. |
| SIGNATURE_MISMATCH, |
| // The function was executed and returned normally. |
| EXTERNAL_RETURNED, |
| // The function was executed, threw an exception, and the stack was unwound. |
| EXTERNAL_UNWOUND |
| }; |
| Type type; |
| // If type is INTERNAL, this field holds the function to call internally. |
| InterpreterCode* interpreter_code; |
| |
| ExternalCallResult(Type type) : type(type) { // NOLINT |
| DCHECK_NE(INTERNAL, type); |
| } |
| ExternalCallResult(Type type, InterpreterCode* code) |
| : type(type), interpreter_code(code) { |
| DCHECK_EQ(INTERNAL, type); |
| } |
| }; |
| |
| // The main storage for interpreter code. It maps {WasmFunction} to the |
| // metadata needed to execute each function. |
| class CodeMap { |
| Zone* zone_; |
| const WasmModule* module_; |
| ZoneVector<InterpreterCode> interpreter_code_; |
| // Global handle to the wasm instance. |
| Handle<WasmInstanceObject> instance_; |
| // Global handle to array of unwrapped imports. |
| Handle<FixedArray> imported_functions_; |
| // Map from WASM_TO_JS wrappers to unwrapped imports (indexes into |
| // imported_functions_). |
| IdentityMap<int, ZoneAllocationPolicy> unwrapped_imports_; |
| |
| public: |
| CodeMap(Isolate* isolate, const WasmModule* module, |
| const uint8_t* module_start, Zone* zone) |
| : zone_(zone), |
| module_(module), |
| interpreter_code_(zone), |
| unwrapped_imports_(isolate->heap(), ZoneAllocationPolicy(zone)) { |
| if (module == nullptr) return; |
| interpreter_code_.reserve(module->functions.size()); |
| for (const WasmFunction& function : module->functions) { |
| if (function.imported) { |
| DCHECK_EQ(function.code_start_offset, function.code_end_offset); |
| AddFunction(&function, nullptr, nullptr); |
| } else { |
| const byte* code_start = module_start + function.code_start_offset; |
| const byte* code_end = module_start + function.code_end_offset; |
| AddFunction(&function, code_start, code_end); |
| } |
| } |
| } |
| |
| ~CodeMap() { |
| // Destroy the global handles (passing nullptr is ok). |
| GlobalHandles::Destroy(Handle<Object>::cast(instance_).location()); |
| GlobalHandles::Destroy( |
| Handle<Object>::cast(imported_functions_).location()); |
| } |
| |
| const WasmModule* module() const { return module_; } |
| bool has_instance() const { return !instance_.is_null(); } |
| Handle<WasmInstanceObject> instance() const { |
| DCHECK(has_instance()); |
| return instance_; |
| } |
| MaybeHandle<WasmInstanceObject> maybe_instance() const { |
| return has_instance() ? instance_ : MaybeHandle<WasmInstanceObject>(); |
| } |
| |
| void SetInstanceObject(WasmInstanceObject* instance) { |
| // Only set the instance once (otherwise we have to destroy the global |
| // handle first). |
| DCHECK(instance_.is_null()); |
| DCHECK_EQ(instance->module(), module_); |
| instance_ = instance->GetIsolate()->global_handles()->Create(instance); |
| } |
| |
| Code* GetImportedFunction(uint32_t function_index) { |
| DCHECK(!instance_.is_null()); |
| DCHECK_GT(module_->num_imported_functions, function_index); |
| FixedArray* code_table = instance_->compiled_module()->ptr_to_code_table(); |
| return Code::cast(code_table->get(static_cast<int>(function_index))); |
| } |
| |
| InterpreterCode* GetCode(const WasmFunction* function) { |
| InterpreterCode* code = GetCode(function->func_index); |
| DCHECK_EQ(function, code->function); |
| return code; |
| } |
| |
| InterpreterCode* GetCode(uint32_t function_index) { |
| DCHECK_LT(function_index, interpreter_code_.size()); |
| return Preprocess(&interpreter_code_[function_index]); |
| } |
| |
| InterpreterCode* GetIndirectCode(uint32_t table_index, uint32_t entry_index) { |
| if (table_index >= module_->function_tables.size()) return nullptr; |
| const WasmIndirectFunctionTable* table = |
| &module_->function_tables[table_index]; |
| if (entry_index >= table->values.size()) return nullptr; |
| uint32_t index = table->values[entry_index]; |
| if (index >= interpreter_code_.size()) return nullptr; |
| return GetCode(index); |
| } |
| |
| InterpreterCode* Preprocess(InterpreterCode* code) { |
| DCHECK_EQ(code->function->imported, code->start == nullptr); |
| if (code->targets == nullptr && code->start != nullptr) { |
| // Compute the control targets map and the local declarations. |
| CHECK(DecodeLocalDecls(&code->locals, code->start, code->end)); |
| code->targets = new (zone_) ControlTransfers( |
| zone_, &code->locals, code->orig_start, code->orig_end); |
| } |
| return code; |
| } |
| |
| void AddFunction(const WasmFunction* function, const byte* code_start, |
| const byte* code_end) { |
| InterpreterCode code = { |
| function, BodyLocalDecls(zone_), code_start, |
| code_end, const_cast<byte*>(code_start), const_cast<byte*>(code_end), |
| nullptr}; |
| |
| DCHECK_EQ(interpreter_code_.size(), function->func_index); |
| interpreter_code_.push_back(code); |
| } |
| |
| void SetFunctionCode(const WasmFunction* function, const byte* start, |
| const byte* end) { |
| DCHECK_LT(function->func_index, interpreter_code_.size()); |
| InterpreterCode* code = &interpreter_code_[function->func_index]; |
| DCHECK_EQ(function, code->function); |
| code->targets = nullptr; |
| code->orig_start = start; |
| code->orig_end = end; |
| code->start = const_cast<byte*>(start); |
| code->end = const_cast<byte*>(end); |
| Preprocess(code); |
| } |
| |
| // Returns a callable object if the imported function has a JS-compatible |
| // signature, or a null handle otherwise. |
| Handle<HeapObject> GetCallableObjectForJSImport(Isolate* isolate, |
| Handle<Code> code) { |
| DCHECK_EQ(Code::WASM_TO_JS_FUNCTION, code->kind()); |
| int* unwrapped_index = unwrapped_imports_.Find(code); |
| if (unwrapped_index) { |
| return handle( |
| HeapObject::cast(imported_functions_->get(*unwrapped_index)), |
| isolate); |
| } |
| Handle<HeapObject> called_obj = UnwrapWasmToJSWrapper(isolate, code); |
| if (!called_obj.is_null()) { |
| // Cache the unwrapped callable object. |
| if (imported_functions_.is_null()) { |
| // This is the first call to an imported function. Allocate the |
| // FixedArray to cache unwrapped objects. |
| constexpr int kInitialCacheSize = 8; |
| Handle<FixedArray> new_imported_functions = |
| isolate->factory()->NewFixedArray(kInitialCacheSize, TENURED); |
| // First entry: Number of occupied slots. |
| new_imported_functions->set(0, Smi::kZero); |
| imported_functions_ = |
| isolate->global_handles()->Create(*new_imported_functions); |
| } |
| int this_idx = Smi::cast(imported_functions_->get(0))->value() + 1; |
| if (this_idx == imported_functions_->length()) { |
| Handle<FixedArray> new_imported_functions = |
| isolate->factory()->CopyFixedArrayAndGrow(imported_functions_, |
| this_idx / 2, TENURED); |
| // Update the existing global handle: |
| *imported_functions_.location() = *new_imported_functions; |
| } |
| DCHECK_GT(imported_functions_->length(), this_idx); |
| DCHECK(imported_functions_->get(this_idx)->IsUndefined(isolate)); |
| imported_functions_->set(0, Smi::FromInt(this_idx)); |
| imported_functions_->set(this_idx, *called_obj); |
| unwrapped_imports_.Set(code, this_idx); |
| } |
| return called_obj; |
| } |
| }; |
| |
| Handle<Object> WasmValToNumber(Factory* factory, WasmVal val, |
| wasm::ValueType type) { |
| switch (type) { |
| case kWasmI32: |
| return factory->NewNumberFromInt(val.to<int32_t>()); |
| case kWasmI64: |
| // wasm->js and js->wasm is illegal for i64 type. |
| UNREACHABLE(); |
| return Handle<Object>::null(); |
| case kWasmF32: |
| return factory->NewNumber(val.to<float>()); |
| case kWasmF64: |
| return factory->NewNumber(val.to<double>()); |
| default: |
| // TODO(wasm): Implement simd. |
| UNIMPLEMENTED(); |
| return Handle<Object>::null(); |
| } |
| } |
| |
| // Convert JS value to WebAssembly, spec here: |
| // https://github.com/WebAssembly/design/blob/master/JS.md#towebassemblyvalue |
| WasmVal ToWebAssemblyValue(Isolate* isolate, Handle<Object> value, |
| wasm::ValueType type) { |
| switch (type) { |
| case kWasmI32: { |
| MaybeHandle<Object> maybe_i32 = Object::ToInt32(isolate, value); |
| // TODO(clemensh): Handle failure here (unwind). |
| int32_t value; |
| CHECK(maybe_i32.ToHandleChecked()->ToInt32(&value)); |
| return WasmVal(value); |
| } |
| case kWasmI64: |
| // If the signature contains i64, a type error was thrown before. |
| UNREACHABLE(); |
| case kWasmF32: { |
| MaybeHandle<Object> maybe_number = Object::ToNumber(value); |
| // TODO(clemensh): Handle failure here (unwind). |
| return WasmVal( |
| static_cast<float>(maybe_number.ToHandleChecked()->Number())); |
| } |
| case kWasmF64: { |
| MaybeHandle<Object> maybe_number = Object::ToNumber(value); |
| // TODO(clemensh): Handle failure here (unwind). |
| return WasmVal(maybe_number.ToHandleChecked()->Number()); |
| } |
| default: |
| // TODO(wasm): Handle simd. |
| UNIMPLEMENTED(); |
| return WasmVal(); |
| } |
| } |
| |
| // Responsible for executing code directly. |
| class ThreadImpl { |
| struct Activation { |
| uint32_t fp; |
| uint32_t sp; |
| Activation(uint32_t fp, uint32_t sp) : fp(fp), sp(sp) {} |
| }; |
| |
| public: |
| ThreadImpl(Zone* zone, CodeMap* codemap, WasmInstance* instance) |
| : codemap_(codemap), |
| instance_(instance), |
| stack_(zone), |
| frames_(zone), |
| blocks_(zone), |
| activations_(zone) {} |
| |
| //========================================================================== |
| // Implementation of public interface for WasmInterpreter::Thread. |
| //========================================================================== |
| |
| WasmInterpreter::State state() { return state_; } |
| |
| void InitFrame(const WasmFunction* function, WasmVal* args) { |
| DCHECK_EQ(current_activation().fp, frames_.size()); |
| InterpreterCode* code = codemap()->GetCode(function); |
| for (size_t i = 0; i < function->sig->parameter_count(); ++i) { |
| stack_.push_back(args[i]); |
| } |
| PushFrame(code); |
| } |
| |
| WasmInterpreter::State Run() { |
| DCHECK(state_ == WasmInterpreter::STOPPED || |
| state_ == WasmInterpreter::PAUSED); |
| // Execute in chunks of {kRunSteps} steps as long as we did not trap or |
| // unwind. |
| do { |
| TRACE(" => Run()\n"); |
| state_ = WasmInterpreter::RUNNING; |
| Execute(frames_.back().code, frames_.back().pc, kRunSteps); |
| } while (state_ == WasmInterpreter::PAUSED && !frames_.empty() && |
| !PausedAtBreakpoint()); |
| return state_; |
| } |
| |
| WasmInterpreter::State Step() { |
| DCHECK(state_ == WasmInterpreter::STOPPED || |
| state_ == WasmInterpreter::PAUSED); |
| TRACE(" => Step()\n"); |
| state_ = WasmInterpreter::RUNNING; |
| Execute(frames_.back().code, frames_.back().pc, 1); |
| return state_; |
| } |
| |
| void Pause() { UNIMPLEMENTED(); } |
| |
| void Reset() { |
| TRACE("----- RESET -----\n"); |
| stack_.clear(); |
| frames_.clear(); |
| state_ = WasmInterpreter::STOPPED; |
| trap_reason_ = kTrapCount; |
| possible_nondeterminism_ = false; |
| } |
| |
| int GetFrameCount() { |
| DCHECK_GE(kMaxInt, frames_.size()); |
| return static_cast<int>(frames_.size()); |
| } |
| |
| template <typename FrameCons> |
| InterpretedFrame GetMutableFrame(int index, FrameCons frame_cons) { |
| DCHECK_LE(0, index); |
| DCHECK_GT(frames_.size(), index); |
| Frame* frame = &frames_[index]; |
| DCHECK_GE(kMaxInt, frame->pc); |
| DCHECK_GE(kMaxInt, frame->sp); |
| DCHECK_GE(kMaxInt, frame->llimit()); |
| return frame_cons(frame->code->function, static_cast<int>(frame->pc), |
| static_cast<int>(frame->sp), |
| static_cast<int>(frame->llimit())); |
| } |
| |
| WasmVal GetReturnValue(uint32_t index) { |
| if (state_ == WasmInterpreter::TRAPPED) return WasmVal(0xdeadbeef); |
| DCHECK_EQ(WasmInterpreter::FINISHED, state_); |
| Activation act = current_activation(); |
| // Current activation must be finished. |
| DCHECK_EQ(act.fp, frames_.size()); |
| DCHECK_GT(stack_.size(), act.sp + index); |
| return stack_[act.sp + index]; |
| } |
| |
| TrapReason GetTrapReason() { return trap_reason_; } |
| |
| pc_t GetBreakpointPc() { return break_pc_; } |
| |
| bool PausedAtBreakpoint() { |
| DCHECK_IMPLIES(break_pc_ != kInvalidPc, |
| !frames_.empty() && break_pc_ == frames_.back().pc); |
| return break_pc_ != kInvalidPc; |
| } |
| |
| bool PossibleNondeterminism() { return possible_nondeterminism_; } |
| |
| uint64_t NumInterpretedCalls() { return num_interpreted_calls_; } |
| |
| void AddBreakFlags(uint8_t flags) { break_flags_ |= flags; } |
| |
| void ClearBreakFlags() { break_flags_ = WasmInterpreter::BreakFlag::None; } |
| |
| uint32_t NumActivations() { |
| return static_cast<uint32_t>(activations_.size()); |
| } |
| |
| uint32_t StartActivation() { |
| TRACE("----- START ACTIVATION %zu -----\n", activations_.size()); |
| // If you use activations, use them consistently: |
| DCHECK_IMPLIES(activations_.empty(), frames_.empty()); |
| DCHECK_IMPLIES(activations_.empty(), stack_.empty()); |
| uint32_t activation_id = static_cast<uint32_t>(activations_.size()); |
| activations_.emplace_back(static_cast<uint32_t>(frames_.size()), |
| static_cast<uint32_t>(stack_.size())); |
| state_ = WasmInterpreter::STOPPED; |
| return activation_id; |
| } |
| |
| void FinishActivation(uint32_t id) { |
| TRACE("----- FINISH ACTIVATION %zu -----\n", activations_.size() - 1); |
| DCHECK_LT(0, activations_.size()); |
| DCHECK_EQ(activations_.size() - 1, id); |
| // Stack height must match the start of this activation (otherwise unwind |
| // first). |
| DCHECK_EQ(activations_.back().fp, frames_.size()); |
| DCHECK_LE(activations_.back().sp, stack_.size()); |
| stack_.resize(activations_.back().sp); |
| activations_.pop_back(); |
| } |
| |
| uint32_t ActivationFrameBase(uint32_t id) { |
| DCHECK_GT(activations_.size(), id); |
| return activations_[id].fp; |
| } |
| |
| // Handle a thrown exception. Returns whether the exception was handled inside |
| // the current activation. Unwinds the interpreted stack accordingly. |
| WasmInterpreter::Thread::ExceptionHandlingResult HandleException( |
| Isolate* isolate) { |
| DCHECK(isolate->has_pending_exception()); |
| // TODO(wasm): Add wasm exception handling (would return true). |
| USE(isolate->pending_exception()); |
| TRACE("----- UNWIND -----\n"); |
| DCHECK_LT(0, activations_.size()); |
| Activation& act = activations_.back(); |
| DCHECK_LE(act.fp, frames_.size()); |
| frames_.resize(act.fp); |
| DCHECK_LE(act.sp, stack_.size()); |
| stack_.resize(act.sp); |
| state_ = WasmInterpreter::STOPPED; |
| return WasmInterpreter::Thread::UNWOUND; |
| } |
| |
| private: |
| // Entries on the stack of functions being evaluated. |
| struct Frame { |
| InterpreterCode* code; |
| pc_t pc; |
| sp_t sp; |
| |
| // Limit of parameters. |
| sp_t plimit() { return sp + code->function->sig->parameter_count(); } |
| // Limit of locals. |
| sp_t llimit() { return plimit() + code->locals.type_list.size(); } |
| }; |
| |
| struct Block { |
| pc_t pc; |
| sp_t sp; |
| size_t fp; |
| unsigned arity; |
| }; |
| |
| CodeMap* codemap_; |
| WasmInstance* instance_; |
| ZoneVector<WasmVal> stack_; |
| ZoneVector<Frame> frames_; |
| ZoneVector<Block> blocks_; |
| WasmInterpreter::State state_ = WasmInterpreter::STOPPED; |
| pc_t break_pc_ = kInvalidPc; |
| TrapReason trap_reason_ = kTrapCount; |
| bool possible_nondeterminism_ = false; |
| uint8_t break_flags_ = 0; // a combination of WasmInterpreter::BreakFlag |
| uint64_t num_interpreted_calls_ = 0; |
| // Store the stack height of each activation (for unwind and frame |
| // inspection). |
| ZoneVector<Activation> activations_; |
| |
| CodeMap* codemap() { return codemap_; } |
| WasmInstance* instance() { return instance_; } |
| const WasmModule* module() { return instance_->module; } |
| |
| void DoTrap(TrapReason trap, pc_t pc) { |
| state_ = WasmInterpreter::TRAPPED; |
| trap_reason_ = trap; |
| CommitPc(pc); |
| } |
| |
| // Push a frame with arguments already on the stack. |
| void PushFrame(InterpreterCode* code) { |
| DCHECK_NOT_NULL(code); |
| ++num_interpreted_calls_; |
| size_t arity = code->function->sig->parameter_count(); |
| // The parameters will overlap the arguments already on the stack. |
| DCHECK_GE(stack_.size(), arity); |
| frames_.push_back({code, 0, stack_.size() - arity}); |
| blocks_.push_back( |
| {0, stack_.size(), frames_.size(), |
| static_cast<uint32_t>(code->function->sig->return_count())}); |
| frames_.back().pc = InitLocals(code); |
| TRACE(" => PushFrame #%zu (#%u @%zu)\n", frames_.size() - 1, |
| code->function->func_index, frames_.back().pc); |
| } |
| |
| pc_t InitLocals(InterpreterCode* code) { |
| for (auto p : code->locals.type_list) { |
| WasmVal val; |
| switch (p) { |
| #define CASE_TYPE(wasm, ctype) \ |
| case kWasm##wasm: \ |
| val = WasmVal(static_cast<ctype>(0)); \ |
| break; |
| WASM_CTYPES(CASE_TYPE) |
| #undef CASE_TYPE |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| stack_.push_back(val); |
| } |
| return code->locals.encoded_size; |
| } |
| |
| void CommitPc(pc_t pc) { |
| DCHECK(!frames_.empty()); |
| frames_.back().pc = pc; |
| } |
| |
| bool SkipBreakpoint(InterpreterCode* code, pc_t pc) { |
| if (pc == break_pc_) { |
| // Skip the previously hit breakpoint when resuming. |
| break_pc_ = kInvalidPc; |
| return true; |
| } |
| return false; |
| } |
| |
| int LookupTarget(InterpreterCode* code, pc_t pc) { |
| return static_cast<int>(code->targets->Lookup(pc)); |
| } |
| |
| int DoBreak(InterpreterCode* code, pc_t pc, size_t depth) { |
| size_t bp = blocks_.size() - depth - 1; |
| Block* target = &blocks_[bp]; |
| DoStackTransfer(target->sp, target->arity); |
| blocks_.resize(bp); |
| return LookupTarget(code, pc); |
| } |
| |
| pc_t ReturnPc(Decoder* decoder, InterpreterCode* code, pc_t pc) { |
| switch (code->orig_start[pc]) { |
| case kExprCallFunction: { |
| CallFunctionOperand operand(decoder, code->at(pc)); |
| return pc + 1 + operand.length; |
| } |
| case kExprCallIndirect: { |
| CallIndirectOperand operand(decoder, code->at(pc)); |
| return pc + 1 + operand.length; |
| } |
| default: |
| UNREACHABLE(); |
| return 0; |
| } |
| } |
| |
| bool DoReturn(Decoder* decoder, InterpreterCode** code, pc_t* pc, pc_t* limit, |
| size_t arity) { |
| DCHECK_GT(frames_.size(), 0); |
| // Pop all blocks for this frame. |
| while (!blocks_.empty() && blocks_.back().fp == frames_.size()) { |
| blocks_.pop_back(); |
| } |
| |
| sp_t dest = frames_.back().sp; |
| frames_.pop_back(); |
| if (frames_.size() == current_activation().fp) { |
| // A return from the last frame terminates the execution. |
| state_ = WasmInterpreter::FINISHED; |
| DoStackTransfer(dest, arity); |
| TRACE(" => finish\n"); |
| return false; |
| } else { |
| // Return to caller frame. |
| Frame* top = &frames_.back(); |
| *code = top->code; |
| decoder->Reset((*code)->start, (*code)->end); |
| *pc = ReturnPc(decoder, *code, top->pc); |
| *limit = top->code->end - top->code->start; |
| TRACE(" => Return to #%zu (#%u @%zu)\n", frames_.size() - 1, |
| (*code)->function->func_index, *pc); |
| DoStackTransfer(dest, arity); |
| return true; |
| } |
| } |
| |
| // Returns true if the call was successful, false if the stack check failed |
| // and the current activation was fully unwound. |
| bool DoCall(Decoder* decoder, InterpreterCode* target, pc_t* pc, |
| pc_t* limit) WARN_UNUSED_RESULT { |
| frames_.back().pc = *pc; |
| PushFrame(target); |
| if (!DoStackCheck()) return false; |
| *pc = frames_.back().pc; |
| *limit = target->end - target->start; |
| decoder->Reset(target->start, target->end); |
| return true; |
| } |
| |
| // Copies {arity} values on the top of the stack down the stack to {dest}, |
| // dropping the values in-between. |
| void DoStackTransfer(sp_t dest, size_t arity) { |
| // before: |---------------| pop_count | arity | |
| // ^ 0 ^ dest ^ stack_.size() |
| // |
| // after: |---------------| arity | |
| // ^ 0 ^ stack_.size() |
| DCHECK_LE(dest, stack_.size()); |
| DCHECK_LE(dest + arity, stack_.size()); |
| size_t pop_count = stack_.size() - dest - arity; |
| for (size_t i = 0; i < arity; i++) { |
| stack_[dest + i] = stack_[dest + pop_count + i]; |
| } |
| stack_.resize(stack_.size() - pop_count); |
| } |
| |
| template <typename ctype, typename mtype> |
| bool ExecuteLoad(Decoder* decoder, InterpreterCode* code, pc_t pc, int& len) { |
| MemoryAccessOperand operand(decoder, code->at(pc), sizeof(ctype)); |
| uint32_t index = Pop().to<uint32_t>(); |
| size_t effective_mem_size = instance()->mem_size - sizeof(mtype); |
| if (operand.offset > effective_mem_size || |
| index > (effective_mem_size - operand.offset)) { |
| DoTrap(kTrapMemOutOfBounds, pc); |
| return false; |
| } |
| byte* addr = instance()->mem_start + operand.offset + index; |
| WasmVal result(static_cast<ctype>(ReadLittleEndianValue<mtype>(addr))); |
| |
| Push(pc, result); |
| len = 1 + operand.length; |
| return true; |
| } |
| |
| template <typename ctype, typename mtype> |
| bool ExecuteStore(Decoder* decoder, InterpreterCode* code, pc_t pc, |
| int& len) { |
| MemoryAccessOperand operand(decoder, code->at(pc), sizeof(ctype)); |
| WasmVal val = Pop(); |
| |
| uint32_t index = Pop().to<uint32_t>(); |
| size_t effective_mem_size = instance()->mem_size - sizeof(mtype); |
| if (operand.offset > effective_mem_size || |
| index > (effective_mem_size - operand.offset)) { |
| DoTrap(kTrapMemOutOfBounds, pc); |
| return false; |
| } |
| byte* addr = instance()->mem_start + operand.offset + index; |
| WriteLittleEndianValue<mtype>(addr, static_cast<mtype>(val.to<ctype>())); |
| len = 1 + operand.length; |
| |
| if (std::is_same<float, ctype>::value) { |
| possible_nondeterminism_ |= std::isnan(val.to<float>()); |
| } else if (std::is_same<double, ctype>::value) { |
| possible_nondeterminism_ |= std::isnan(val.to<double>()); |
| } |
| return true; |
| } |
| |
| // Check if our control stack (frames_) exceeds the limit. Trigger stack |
| // overflow if it does, and unwinding the current frame. |
| // Returns true if execution can continue, false if the current activation was |
| // fully unwound. |
| // Do call this function immediately *after* pushing a new frame. The pc of |
| // the top frame will be reset to 0 if the stack check fails. |
| bool DoStackCheck() WARN_UNUSED_RESULT { |
| // Sum up the size of all dynamically growing structures. |
| if (V8_LIKELY(frames_.size() <= kV8MaxWasmInterpretedStackSize)) { |
| return true; |
| } |
| if (!codemap()->has_instance()) { |
| // In test mode: Just abort. |
| FATAL("wasm interpreter: stack overflow"); |
| } |
| // The pc of the top frame is initialized to the first instruction. We reset |
| // it to 0 here such that we report the same position as in compiled code. |
| frames_.back().pc = 0; |
| Isolate* isolate = codemap()->instance()->GetIsolate(); |
| HandleScope handle_scope(isolate); |
| isolate->StackOverflow(); |
| return HandleException(isolate) == WasmInterpreter::Thread::HANDLED; |
| } |
| |
| void Execute(InterpreterCode* code, pc_t pc, int max) { |
| Decoder decoder(code->start, code->end); |
| pc_t limit = code->end - code->start; |
| bool hit_break = false; |
| |
| while (true) { |
| #define PAUSE_IF_BREAK_FLAG(flag) \ |
| if (V8_UNLIKELY(break_flags_ & WasmInterpreter::BreakFlag::flag)) { \ |
| hit_break = true; \ |
| max = 0; \ |
| } |
| |
| DCHECK_GT(limit, pc); |
| DCHECK_NOT_NULL(code->start); |
| |
| const char* skip = " "; |
| int len = 1; |
| byte opcode = code->start[pc]; |
| byte orig = opcode; |
| if (V8_UNLIKELY(opcode == kInternalBreakpoint)) { |
| orig = code->orig_start[pc]; |
| if (SkipBreakpoint(code, pc)) { |
| // skip breakpoint by switching on original code. |
| skip = "[skip] "; |
| } else { |
| TRACE("@%-3zu: [break] %-24s:", pc, |
| WasmOpcodes::OpcodeName(static_cast<WasmOpcode>(orig))); |
| TraceValueStack(); |
| TRACE("\n"); |
| hit_break = true; |
| break; |
| } |
| } |
| |
| // If max == 0, do only break after setting hit_break correctly. |
| if (--max < 0) break; |
| |
| USE(skip); |
| TRACE("@%-3zu: %s%-24s:", pc, skip, |
| WasmOpcodes::OpcodeName(static_cast<WasmOpcode>(orig))); |
| TraceValueStack(); |
| TRACE("\n"); |
| |
| switch (orig) { |
| case kExprNop: |
| break; |
| case kExprBlock: { |
| BlockTypeOperand operand(&decoder, code->at(pc)); |
| blocks_.push_back({pc, stack_.size(), frames_.size(), operand.arity}); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprLoop: { |
| BlockTypeOperand operand(&decoder, code->at(pc)); |
| blocks_.push_back({pc, stack_.size(), frames_.size(), 0}); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprIf: { |
| BlockTypeOperand operand(&decoder, code->at(pc)); |
| WasmVal cond = Pop(); |
| bool is_true = cond.to<uint32_t>() != 0; |
| blocks_.push_back({pc, stack_.size(), frames_.size(), operand.arity}); |
| if (is_true) { |
| // fall through to the true block. |
| len = 1 + operand.length; |
| TRACE(" true => fallthrough\n"); |
| } else { |
| len = LookupTarget(code, pc); |
| TRACE(" false => @%zu\n", pc + len); |
| } |
| break; |
| } |
| case kExprElse: { |
| blocks_.pop_back(); |
| len = LookupTarget(code, pc); |
| TRACE(" end => @%zu\n", pc + len); |
| break; |
| } |
| case kExprSelect: { |
| WasmVal cond = Pop(); |
| WasmVal fval = Pop(); |
| WasmVal tval = Pop(); |
| Push(pc, cond.to<int32_t>() != 0 ? tval : fval); |
| break; |
| } |
| case kExprBr: { |
| BreakDepthOperand operand(&decoder, code->at(pc)); |
| len = DoBreak(code, pc, operand.depth); |
| TRACE(" br => @%zu\n", pc + len); |
| break; |
| } |
| case kExprBrIf: { |
| BreakDepthOperand operand(&decoder, code->at(pc)); |
| WasmVal cond = Pop(); |
| bool is_true = cond.to<uint32_t>() != 0; |
| if (is_true) { |
| len = DoBreak(code, pc, operand.depth); |
| TRACE(" br_if => @%zu\n", pc + len); |
| } else { |
| TRACE(" false => fallthrough\n"); |
| len = 1 + operand.length; |
| } |
| break; |
| } |
| case kExprBrTable: { |
| BranchTableOperand operand(&decoder, code->at(pc)); |
| BranchTableIterator iterator(&decoder, operand); |
| uint32_t key = Pop().to<uint32_t>(); |
| uint32_t depth = 0; |
| if (key >= operand.table_count) key = operand.table_count; |
| for (uint32_t i = 0; i <= key; i++) { |
| DCHECK(iterator.has_next()); |
| depth = iterator.next(); |
| } |
| len = key + DoBreak(code, pc + key, static_cast<size_t>(depth)); |
| TRACE(" br[%u] => @%zu\n", key, pc + key + len); |
| break; |
| } |
| case kExprReturn: { |
| size_t arity = code->function->sig->return_count(); |
| if (!DoReturn(&decoder, &code, &pc, &limit, arity)) return; |
| PAUSE_IF_BREAK_FLAG(AfterReturn); |
| continue; |
| } |
| case kExprUnreachable: { |
| return DoTrap(kTrapUnreachable, pc); |
| } |
| case kExprEnd: { |
| blocks_.pop_back(); |
| break; |
| } |
| case kExprI32Const: { |
| ImmI32Operand operand(&decoder, code->at(pc)); |
| Push(pc, WasmVal(operand.value)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprI64Const: { |
| ImmI64Operand operand(&decoder, code->at(pc)); |
| Push(pc, WasmVal(operand.value)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprF32Const: { |
| ImmF32Operand operand(&decoder, code->at(pc)); |
| Push(pc, WasmVal(operand.value)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprF64Const: { |
| ImmF64Operand operand(&decoder, code->at(pc)); |
| Push(pc, WasmVal(operand.value)); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprGetLocal: { |
| LocalIndexOperand operand(&decoder, code->at(pc)); |
| Push(pc, stack_[frames_.back().sp + operand.index]); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprSetLocal: { |
| LocalIndexOperand operand(&decoder, code->at(pc)); |
| WasmVal val = Pop(); |
| stack_[frames_.back().sp + operand.index] = val; |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprTeeLocal: { |
| LocalIndexOperand operand(&decoder, code->at(pc)); |
| WasmVal val = Pop(); |
| stack_[frames_.back().sp + operand.index] = val; |
| Push(pc, val); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprDrop: { |
| Pop(); |
| break; |
| } |
| case kExprCallFunction: { |
| CallFunctionOperand operand(&decoder, code->at(pc)); |
| InterpreterCode* target = codemap()->GetCode(operand.index); |
| if (target->function->imported) { |
| CommitPc(pc); |
| ExternalCallResult result = |
| CallImportedFunction(target->function->func_index); |
| switch (result.type) { |
| case ExternalCallResult::INTERNAL: |
| // The import is a function of this instance. Call it directly. |
| target = result.interpreter_code; |
| DCHECK(!target->function->imported); |
| break; |
| case ExternalCallResult::INVALID_FUNC: |
| case ExternalCallResult::SIGNATURE_MISMATCH: |
| // Direct calls are checked statically. |
| UNREACHABLE(); |
| case ExternalCallResult::EXTERNAL_RETURNED: |
| PAUSE_IF_BREAK_FLAG(AfterCall); |
| len = 1 + operand.length; |
| break; |
| case ExternalCallResult::EXTERNAL_UNWOUND: |
| return; |
| } |
| if (result.type != ExternalCallResult::INTERNAL) break; |
| } |
| // Execute an internal call. |
| if (!DoCall(&decoder, target, &pc, &limit)) return; |
| code = target; |
| PAUSE_IF_BREAK_FLAG(AfterCall); |
| continue; // don't bump pc |
| } break; |
| case kExprCallIndirect: { |
| CallIndirectOperand operand(&decoder, code->at(pc)); |
| uint32_t entry_index = Pop().to<uint32_t>(); |
| // Assume only one table for now. |
| DCHECK_LE(module()->function_tables.size(), 1u); |
| ExternalCallResult result = |
| CallIndirectFunction(0, entry_index, operand.index); |
| switch (result.type) { |
| case ExternalCallResult::INTERNAL: |
| // The import is a function of this instance. Call it directly. |
| if (!DoCall(&decoder, result.interpreter_code, &pc, &limit)) |
| return; |
| code = result.interpreter_code; |
| PAUSE_IF_BREAK_FLAG(AfterCall); |
| continue; // don't bump pc |
| case ExternalCallResult::INVALID_FUNC: |
| return DoTrap(kTrapFuncInvalid, pc); |
| case ExternalCallResult::SIGNATURE_MISMATCH: |
| return DoTrap(kTrapFuncSigMismatch, pc); |
| case ExternalCallResult::EXTERNAL_RETURNED: |
| PAUSE_IF_BREAK_FLAG(AfterCall); |
| len = 1 + operand.length; |
| break; |
| case ExternalCallResult::EXTERNAL_UNWOUND: |
| return; |
| } |
| } break; |
| case kExprGetGlobal: { |
| GlobalIndexOperand operand(&decoder, code->at(pc)); |
| const WasmGlobal* global = &module()->globals[operand.index]; |
| byte* ptr = instance()->globals_start + global->offset; |
| WasmVal val; |
| switch (global->type) { |
| #define CASE_TYPE(wasm, ctype) \ |
| case kWasm##wasm: \ |
| val = WasmVal(*reinterpret_cast<ctype*>(ptr)); \ |
| break; |
| WASM_CTYPES(CASE_TYPE) |
| #undef CASE_TYPE |
| default: |
| UNREACHABLE(); |
| } |
| Push(pc, val); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprSetGlobal: { |
| GlobalIndexOperand operand(&decoder, code->at(pc)); |
| const WasmGlobal* global = &module()->globals[operand.index]; |
| byte* ptr = instance()->globals_start + global->offset; |
| WasmVal val = Pop(); |
| switch (global->type) { |
| #define CASE_TYPE(wasm, ctype) \ |
| case kWasm##wasm: \ |
| *reinterpret_cast<ctype*>(ptr) = val.to<ctype>(); \ |
| break; |
| WASM_CTYPES(CASE_TYPE) |
| #undef CASE_TYPE |
| default: |
| UNREACHABLE(); |
| } |
| len = 1 + operand.length; |
| break; |
| } |
| |
| #define LOAD_CASE(name, ctype, mtype) \ |
| case kExpr##name: { \ |
| if (!ExecuteLoad<ctype, mtype>(&decoder, code, pc, len)) return; \ |
| break; \ |
| } |
| |
| LOAD_CASE(I32LoadMem8S, int32_t, int8_t); |
| LOAD_CASE(I32LoadMem8U, int32_t, uint8_t); |
| LOAD_CASE(I32LoadMem16S, int32_t, int16_t); |
| LOAD_CASE(I32LoadMem16U, int32_t, uint16_t); |
| LOAD_CASE(I64LoadMem8S, int64_t, int8_t); |
| LOAD_CASE(I64LoadMem8U, int64_t, uint8_t); |
| LOAD_CASE(I64LoadMem16S, int64_t, int16_t); |
| LOAD_CASE(I64LoadMem16U, int64_t, uint16_t); |
| LOAD_CASE(I64LoadMem32S, int64_t, int32_t); |
| LOAD_CASE(I64LoadMem32U, int64_t, uint32_t); |
| LOAD_CASE(I32LoadMem, int32_t, int32_t); |
| LOAD_CASE(I64LoadMem, int64_t, int64_t); |
| LOAD_CASE(F32LoadMem, float, float); |
| LOAD_CASE(F64LoadMem, double, double); |
| #undef LOAD_CASE |
| |
| #define STORE_CASE(name, ctype, mtype) \ |
| case kExpr##name: { \ |
| if (!ExecuteStore<ctype, mtype>(&decoder, code, pc, len)) return; \ |
| break; \ |
| } |
| |
| STORE_CASE(I32StoreMem8, int32_t, int8_t); |
| STORE_CASE(I32StoreMem16, int32_t, int16_t); |
| STORE_CASE(I64StoreMem8, int64_t, int8_t); |
| STORE_CASE(I64StoreMem16, int64_t, int16_t); |
| STORE_CASE(I64StoreMem32, int64_t, int32_t); |
| STORE_CASE(I32StoreMem, int32_t, int32_t); |
| STORE_CASE(I64StoreMem, int64_t, int64_t); |
| STORE_CASE(F32StoreMem, float, float); |
| STORE_CASE(F64StoreMem, double, double); |
| #undef STORE_CASE |
| |
| #define ASMJS_LOAD_CASE(name, ctype, mtype, defval) \ |
| case kExpr##name: { \ |
| uint32_t index = Pop().to<uint32_t>(); \ |
| ctype result; \ |
| if (index >= (instance()->mem_size - sizeof(mtype))) { \ |
| result = defval; \ |
| } else { \ |
| byte* addr = instance()->mem_start + index; \ |
| /* TODO(titzer): alignment for asmjs load mem? */ \ |
| result = static_cast<ctype>(*reinterpret_cast<mtype*>(addr)); \ |
| } \ |
| Push(pc, WasmVal(result)); \ |
| break; \ |
| } |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem8S, int32_t, int8_t, 0); |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem8U, int32_t, uint8_t, 0); |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem16S, int32_t, int16_t, 0); |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem16U, int32_t, uint16_t, 0); |
| ASMJS_LOAD_CASE(I32AsmjsLoadMem, int32_t, int32_t, 0); |
| ASMJS_LOAD_CASE(F32AsmjsLoadMem, float, float, |
| std::numeric_limits<float>::quiet_NaN()); |
| ASMJS_LOAD_CASE(F64AsmjsLoadMem, double, double, |
| std::numeric_limits<double>::quiet_NaN()); |
| #undef ASMJS_LOAD_CASE |
| |
| #define ASMJS_STORE_CASE(name, ctype, mtype) \ |
| case kExpr##name: { \ |
| WasmVal val = Pop(); \ |
| uint32_t index = Pop().to<uint32_t>(); \ |
| if (index < (instance()->mem_size - sizeof(mtype))) { \ |
| byte* addr = instance()->mem_start + index; \ |
| /* TODO(titzer): alignment for asmjs store mem? */ \ |
| *(reinterpret_cast<mtype*>(addr)) = static_cast<mtype>(val.to<ctype>()); \ |
| } \ |
| Push(pc, val); \ |
| break; \ |
| } |
| |
| ASMJS_STORE_CASE(I32AsmjsStoreMem8, int32_t, int8_t); |
| ASMJS_STORE_CASE(I32AsmjsStoreMem16, int32_t, int16_t); |
| ASMJS_STORE_CASE(I32AsmjsStoreMem, int32_t, int32_t); |
| ASMJS_STORE_CASE(F32AsmjsStoreMem, float, float); |
| ASMJS_STORE_CASE(F64AsmjsStoreMem, double, double); |
| #undef ASMJS_STORE_CASE |
| case kExprGrowMemory: { |
| MemoryIndexOperand operand(&decoder, code->at(pc)); |
| uint32_t delta_pages = Pop().to<uint32_t>(); |
| Push(pc, WasmVal(ExecuteGrowMemory( |
| delta_pages, codemap_->maybe_instance(), instance()))); |
| len = 1 + operand.length; |
| break; |
| } |
| case kExprMemorySize: { |
| MemoryIndexOperand operand(&decoder, code->at(pc)); |
| Push(pc, WasmVal(static_cast<uint32_t>(instance()->mem_size / |
| WasmModule::kPageSize))); |
| len = 1 + operand.length; |
| break; |
| } |
| // We need to treat kExprI32ReinterpretF32 and kExprI64ReinterpretF64 |
| // specially to guarantee that the quiet bit of a NaN is preserved on |
| // ia32 by the reinterpret casts. |
| case kExprI32ReinterpretF32: { |
| WasmVal val = Pop(); |
| WasmVal result(ExecuteI32ReinterpretF32(val)); |
| Push(pc, result); |
| possible_nondeterminism_ |= std::isnan(val.to<float>()); |
| break; |
| } |
| case kExprI64ReinterpretF64: { |
| WasmVal val = Pop(); |
| WasmVal result(ExecuteI64ReinterpretF64(val)); |
| Push(pc, result); |
| possible_nondeterminism_ |= std::isnan(val.to<double>()); |
| break; |
| } |
| #define EXECUTE_SIMPLE_BINOP(name, ctype, op) \ |
| case kExpr##name: { \ |
| WasmVal rval = Pop(); \ |
| WasmVal lval = Pop(); \ |
| WasmVal result(lval.to<ctype>() op rval.to<ctype>()); \ |
| Push(pc, result); \ |
| break; \ |
| } |
| FOREACH_SIMPLE_BINOP(EXECUTE_SIMPLE_BINOP) |
| #undef EXECUTE_SIMPLE_BINOP |
| |
| #define EXECUTE_OTHER_BINOP(name, ctype) \ |
| case kExpr##name: { \ |
| TrapReason trap = kTrapCount; \ |
| volatile ctype rval = Pop().to<ctype>(); \ |
| volatile ctype lval = Pop().to<ctype>(); \ |
| WasmVal result(Execute##name(lval, rval, &trap)); \ |
| if (trap != kTrapCount) return DoTrap(trap, pc); \ |
| Push(pc, result); \ |
| break; \ |
| } |
| FOREACH_OTHER_BINOP(EXECUTE_OTHER_BINOP) |
| #undef EXECUTE_OTHER_BINOP |
| |
| case kExprF32CopySign: { |
| // Handle kExprF32CopySign separately because it may introduce |
| // observable non-determinism. |
| TrapReason trap = kTrapCount; |
| volatile float rval = Pop().to<float>(); |
| volatile float lval = Pop().to<float>(); |
| WasmVal result(ExecuteF32CopySign(lval, rval, &trap)); |
| Push(pc, result); |
| possible_nondeterminism_ |= std::isnan(rval); |
| break; |
| } |
| case kExprF64CopySign: { |
| // Handle kExprF32CopySign separately because it may introduce |
| // observable non-determinism. |
| TrapReason trap = kTrapCount; |
| volatile double rval = Pop().to<double>(); |
| volatile double lval = Pop().to<double>(); |
| WasmVal result(ExecuteF64CopySign(lval, rval, &trap)); |
| Push(pc, result); |
| possible_nondeterminism_ |= std::isnan(rval); |
| break; |
| } |
| #define EXECUTE_OTHER_UNOP(name, ctype) \ |
| case kExpr##name: { \ |
| TrapReason trap = kTrapCount; \ |
| volatile ctype val = Pop().to<ctype>(); \ |
| WasmVal result(Execute##name(val, &trap)); \ |
| if (trap != kTrapCount) return DoTrap(trap, pc); \ |
| Push(pc, result); \ |
| break; \ |
| } |
| FOREACH_OTHER_UNOP(EXECUTE_OTHER_UNOP) |
| #undef EXECUTE_OTHER_UNOP |
| |
| default: |
| V8_Fatal(__FILE__, __LINE__, "Unknown or unimplemented opcode #%d:%s", |
| code->start[pc], OpcodeName(code->start[pc])); |
| UNREACHABLE(); |
| } |
| |
| pc += len; |
| if (pc == limit) { |
| // Fell off end of code; do an implicit return. |
| TRACE("@%-3zu: ImplicitReturn\n", pc); |
| if (!DoReturn(&decoder, &code, &pc, &limit, |
| code->function->sig->return_count())) |
| return; |
| PAUSE_IF_BREAK_FLAG(AfterReturn); |
| } |
| } |
| |
| state_ = WasmInterpreter::PAUSED; |
| break_pc_ = hit_break ? pc : kInvalidPc; |
| CommitPc(pc); |
| } |
| |
| WasmVal Pop() { |
| DCHECK_GT(stack_.size(), 0); |
| DCHECK_GT(frames_.size(), 0); |
| DCHECK_GT(stack_.size(), frames_.back().llimit()); // can't pop into locals |
| WasmVal val = stack_.back(); |
| stack_.pop_back(); |
| return val; |
| } |
| |
| void PopN(int n) { |
| DCHECK_GE(stack_.size(), n); |
| DCHECK_GT(frames_.size(), 0); |
| size_t nsize = stack_.size() - n; |
| DCHECK_GE(nsize, frames_.back().llimit()); // can't pop into locals |
| stack_.resize(nsize); |
| } |
| |
| WasmVal PopArity(size_t arity) { |
| if (arity == 0) return WasmVal(); |
| CHECK_EQ(1, arity); |
| return Pop(); |
| } |
| |
| void Push(pc_t pc, WasmVal val) { |
| // TODO(titzer): store PC as well? |
| DCHECK_NE(kWasmStmt, val.type); |
| stack_.push_back(val); |
| } |
| |
| void TraceStack(const char* phase, pc_t pc) { |
| if (FLAG_trace_wasm_interpreter) { |
| PrintF("%s @%zu", phase, pc); |
| UNIMPLEMENTED(); |
| PrintF("\n"); |
| } |
| } |
| |
| void TraceValueStack() { |
| #ifdef DEBUG |
| Frame* top = frames_.size() > 0 ? &frames_.back() : nullptr; |
| sp_t sp = top ? top->sp : 0; |
| sp_t plimit = top ? top->plimit() : 0; |
| sp_t llimit = top ? top->llimit() : 0; |
| if (FLAG_trace_wasm_interpreter) { |
| for (size_t i = sp; i < stack_.size(); ++i) { |
| if (i < plimit) |
| PrintF(" p%zu:", i); |
| else if (i < llimit) |
| PrintF(" l%zu:", i); |
| else |
| PrintF(" s%zu:", i); |
| WasmVal val = stack_[i]; |
| switch (val.type) { |
| case kWasmI32: |
| PrintF("i32:%d", val.to<int32_t>()); |
| break; |
| case kWasmI64: |
| PrintF("i64:%" PRId64 "", val.to<int64_t>()); |
| break; |
| case kWasmF32: |
| PrintF("f32:%f", val.to<float>()); |
| break; |
| case kWasmF64: |
| PrintF("f64:%lf", val.to<double>()); |
| break; |
| case kWasmStmt: |
| PrintF("void"); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| #endif // DEBUG |
| } |
| |
| ExternalCallResult TryHandleException(Isolate* isolate) { |
| if (HandleException(isolate) == WasmInterpreter::Thread::UNWOUND) { |
| return {ExternalCallResult::EXTERNAL_UNWOUND}; |
| } |
| return {ExternalCallResult::EXTERNAL_RETURNED}; |
| } |
| |
| ExternalCallResult CallCodeObject(Isolate* isolate, Handle<Code> code, |
| FunctionSig* signature) { |
| DCHECK(AllowHandleAllocation::IsAllowed()); |
| DCHECK(AllowHeapAllocation::IsAllowed()); |
| |
| if (code->kind() == Code::WASM_FUNCTION) { |
| FixedArray* deopt_data = code->deoptimization_data(); |
| DCHECK_EQ(2, deopt_data->length()); |
| WasmInstanceObject* target_instance = |
| WasmInstanceObject::cast(WeakCell::cast(deopt_data->get(0))->value()); |
| if (target_instance != *codemap()->instance()) { |
| // TODO(wasm): Implement calling functions of other instances/modules. |
| UNIMPLEMENTED(); |
| } |
| int target_func_idx = Smi::cast(deopt_data->get(1))->value(); |
| DCHECK_LE(0, target_func_idx); |
| return {ExternalCallResult::INTERNAL, |
| codemap()->GetCode(target_func_idx)}; |
| } |
| |
| Handle<HeapObject> target = |
| codemap()->GetCallableObjectForJSImport(isolate, code); |
| |
| if (target.is_null()) { |
| isolate->Throw(*isolate->factory()->NewTypeError( |
| MessageTemplate::kWasmTrapTypeError)); |
| return TryHandleException(isolate); |
| } |
| |
| #if DEBUG |
| std::ostringstream oss; |
| target->HeapObjectShortPrint(oss); |
| TRACE(" => Calling imported function %s\n", oss.str().c_str()); |
| #endif |
| |
| int num_args = static_cast<int>(signature->parameter_count()); |
| |
| // Get all arguments as JS values. |
| std::vector<Handle<Object>> args; |
| args.reserve(num_args); |
| WasmVal* wasm_args = stack_.data() + (stack_.size() - num_args); |
| for (int i = 0; i < num_args; ++i) { |
| args.push_back(WasmValToNumber(isolate->factory(), wasm_args[i], |
| signature->GetParam(i))); |
| } |
| |
| MaybeHandle<Object> maybe_retval = Execution::Call( |
| isolate, target, isolate->global_proxy(), num_args, args.data()); |
| if (maybe_retval.is_null()) return TryHandleException(isolate); |
| |
| Handle<Object> retval = maybe_retval.ToHandleChecked(); |
| // Pop arguments off the stack. |
| stack_.resize(stack_.size() - num_args); |
| if (signature->return_count() > 0) { |
| // TODO(wasm): Handle multiple returns. |
| DCHECK_EQ(1, signature->return_count()); |
| stack_.push_back( |
| ToWebAssemblyValue(isolate, retval, signature->GetReturn())); |
| } |
| return {ExternalCallResult::EXTERNAL_RETURNED}; |
| } |
| |
| ExternalCallResult CallImportedFunction(uint32_t function_index) { |
| // Use a new HandleScope to avoid leaking / accumulating handles in the |
| // outer scope. |
| Isolate* isolate = codemap()->instance()->GetIsolate(); |
| HandleScope handle_scope(isolate); |
| |
| Handle<Code> target(codemap()->GetImportedFunction(function_index), |
| isolate); |
| return CallCodeObject(isolate, target, |
| codemap()->module()->functions[function_index].sig); |
| } |
| |
| ExternalCallResult CallIndirectFunction(uint32_t table_index, |
| uint32_t entry_index, |
| uint32_t sig_index) { |
| if (!codemap()->has_instance()) { |
| // No instance. Rely on the information stored in the WasmModule. |
| // TODO(wasm): This is only needed for testing. Refactor testing to use |
| // the same paths as production. |
| InterpreterCode* code = |
| codemap()->GetIndirectCode(table_index, entry_index); |
| if (!code) return {ExternalCallResult::INVALID_FUNC}; |
| if (code->function->sig_index != sig_index) { |
| // If not an exact match, we have to do a canonical check. |
| // TODO(titzer): make this faster with some kind of caching? |
| const WasmIndirectFunctionTable* table = |
| &module()->function_tables[table_index]; |
| int function_key = table->map.Find(code->function->sig); |
| if (function_key < 0 || |
| (function_key != |
| table->map.Find(module()->signatures[sig_index]))) { |
| return {ExternalCallResult::SIGNATURE_MISMATCH}; |
| } |
| } |
| return {ExternalCallResult::INTERNAL, code}; |
| } |
| |
| WasmCompiledModule* compiled_module = |
| codemap()->instance()->compiled_module(); |
| Isolate* isolate = compiled_module->GetIsolate(); |
| |
| Code* target; |
| { |
| DisallowHeapAllocation no_gc; |
| // Get function to be called directly from the live instance to see latest |
| // changes to the tables. |
| |
| // Canonicalize signature index. |
| // TODO(titzer): make this faster with some kind of caching? |
| const WasmIndirectFunctionTable* table = |
| &module()->function_tables[table_index]; |
| FunctionSig* sig = module()->signatures[sig_index]; |
| uint32_t canonical_sig_index = table->map.Find(sig); |
| |
| // Check signature. |
| FixedArray* sig_tables = compiled_module->ptr_to_signature_tables(); |
| if (table_index >= static_cast<uint32_t>(sig_tables->length())) { |
| return {ExternalCallResult::INVALID_FUNC}; |
| } |
| FixedArray* sig_table = |
| FixedArray::cast(sig_tables->get(static_cast<int>(table_index))); |
| if (entry_index >= static_cast<uint32_t>(sig_table->length())) { |
| return {ExternalCallResult::INVALID_FUNC}; |
| } |
| int found_sig = |
| Smi::cast(sig_table->get(static_cast<int>(entry_index)))->value(); |
| if (static_cast<uint32_t>(found_sig) != canonical_sig_index) { |
| return {ExternalCallResult::SIGNATURE_MISMATCH}; |
| } |
| |
| // Get code object. |
| FixedArray* fun_tables = compiled_module->ptr_to_function_tables(); |
| DCHECK_EQ(sig_tables->length(), fun_tables->length()); |
| FixedArray* fun_table = |
| FixedArray::cast(fun_tables->get(static_cast<int>(table_index))); |
| DCHECK_EQ(sig_table->length(), fun_table->length()); |
| target = Code::cast(fun_table->get(static_cast<int>(entry_index))); |
| } |
| |
| // Call the code object. Use a new HandleScope to avoid leaking / |
| // accumulating handles in the outer scope. |
| HandleScope handle_scope(isolate); |
| FunctionSig* signature = |
| &codemap()->module()->signatures[table_index][sig_index]; |
| return CallCodeObject(isolate, handle(target, isolate), signature); |
| } |
| |
| inline Activation current_activation() { |
| return activations_.empty() ? Activation(0, 0) : activations_.back(); |
| } |
| }; |
| |
| // Converters between WasmInterpreter::Thread and WasmInterpreter::ThreadImpl. |
| // Thread* is the public interface, without knowledge of the object layout. |
| // This cast is potentially risky, but as long as we always cast it back before |
| // accessing any data, it should be fine. UBSan is not complaining. |
| WasmInterpreter::Thread* ToThread(ThreadImpl* impl) { |
| return reinterpret_cast<WasmInterpreter::Thread*>(impl); |
| } |
| ThreadImpl* ToImpl(WasmInterpreter::Thread* thread) { |
| return reinterpret_cast<ThreadImpl*>(thread); |
| } |
| |
| } // namespace |
| |
| //============================================================================ |
| // Implementation of the pimpl idiom for WasmInterpreter::Thread. |
| // Instead of placing a pointer to the ThreadImpl inside of the Thread object, |
| // we just reinterpret_cast them. ThreadImpls are only allocated inside this |
| // translation unit anyway. |
| //============================================================================ |
| WasmInterpreter::State WasmInterpreter::Thread::state() { |
| return ToImpl(this)->state(); |
| } |
| void WasmInterpreter::Thread::InitFrame(const WasmFunction* function, |
| WasmVal* args) { |
| ToImpl(this)->InitFrame(function, args); |
| } |
| WasmInterpreter::State WasmInterpreter::Thread::Run() { |
| return ToImpl(this)->Run(); |
| } |
| WasmInterpreter::State WasmInterpreter::Thread::Step() { |
| return ToImpl(this)->Step(); |
| } |
| void WasmInterpreter::Thread::Pause() { return ToImpl(this)->Pause(); } |
| void WasmInterpreter::Thread::Reset() { return ToImpl(this)->Reset(); } |
| WasmInterpreter::Thread::ExceptionHandlingResult |
| WasmInterpreter::Thread::HandleException(Isolate* isolate) { |
| return ToImpl(this)->HandleException(isolate); |
| } |
| pc_t WasmInterpreter::Thread::GetBreakpointPc() { |
| return ToImpl(this)->GetBreakpointPc(); |
| } |
| int WasmInterpreter::Thread::GetFrameCount() { |
| return ToImpl(this)->GetFrameCount(); |
| } |
| const InterpretedFrame WasmInterpreter::Thread::GetFrame(int index) { |
| return GetMutableFrame(index); |
| } |
| InterpretedFrame WasmInterpreter::Thread::GetMutableFrame(int index) { |
| // We have access to the constructor of InterpretedFrame, but ThreadImpl has |
| // not. So pass it as a lambda (should all get inlined). |
| auto frame_cons = [](const WasmFunction* function, int pc, int fp, int sp) { |
| return InterpretedFrame(function, pc, fp, sp); |
| }; |
| return ToImpl(this)->GetMutableFrame(index, frame_cons); |
| } |
| WasmVal WasmInterpreter::Thread::GetReturnValue(int index) { |
| return ToImpl(this)->GetReturnValue(index); |
| } |
| TrapReason WasmInterpreter::Thread::GetTrapReason() { |
| return ToImpl(this)->GetTrapReason(); |
| } |
| bool WasmInterpreter::Thread::PossibleNondeterminism() { |
| return ToImpl(this)->PossibleNondeterminism(); |
| } |
| uint64_t WasmInterpreter::Thread::NumInterpretedCalls() { |
| return ToImpl(this)->NumInterpretedCalls(); |
| } |
| void WasmInterpreter::Thread::AddBreakFlags(uint8_t flags) { |
| ToImpl(this)->AddBreakFlags(flags); |
| } |
| void WasmInterpreter::Thread::ClearBreakFlags() { |
| ToImpl(this)->ClearBreakFlags(); |
| } |
| uint32_t WasmInterpreter::Thread::NumActivations() { |
| return ToImpl(this)->NumActivations(); |
| } |
| uint32_t WasmInterpreter::Thread::StartActivation() { |
| return ToImpl(this)->StartActivation(); |
| } |
| void WasmInterpreter::Thread::FinishActivation(uint32_t id) { |
| ToImpl(this)->FinishActivation(id); |
| } |
| uint32_t WasmInterpreter::Thread::ActivationFrameBase(uint32_t id) { |
| return ToImpl(this)->ActivationFrameBase(id); |
| } |
| |
| //============================================================================ |
| // The implementation details of the interpreter. |
| //============================================================================ |
| class WasmInterpreterInternals : public ZoneObject { |
| public: |
| WasmInstance* instance_; |
| // Create a copy of the module bytes for the interpreter, since the passed |
| // pointer might be invalidated after constructing the interpreter. |
| const ZoneVector<uint8_t> module_bytes_; |
| CodeMap codemap_; |
| ZoneVector<ThreadImpl> threads_; |
| |
| WasmInterpreterInternals(Isolate* isolate, Zone* zone, |
| const ModuleBytesEnv& env) |
| : instance_(env.module_env.instance), |
| module_bytes_(env.wire_bytes.start(), env.wire_bytes.end(), zone), |
| codemap_( |
| isolate, |
| env.module_env.instance ? env.module_env.instance->module : nullptr, |
| module_bytes_.data(), zone), |
| threads_(zone) { |
| threads_.emplace_back(zone, &codemap_, env.module_env.instance); |
| } |
| |
| void Delete() { threads_.clear(); } |
| }; |
| |
| //============================================================================ |
| // Implementation of the public interface of the interpreter. |
| //============================================================================ |
| WasmInterpreter::WasmInterpreter(Isolate* isolate, const ModuleBytesEnv& env) |
| : zone_(isolate->allocator(), ZONE_NAME), |
| internals_(new (&zone_) WasmInterpreterInternals(isolate, &zone_, env)) {} |
| |
| WasmInterpreter::~WasmInterpreter() { internals_->Delete(); } |
| |
| void WasmInterpreter::Run() { internals_->threads_[0].Run(); } |
| |
| void WasmInterpreter::Pause() { internals_->threads_[0].Pause(); } |
| |
| bool WasmInterpreter::SetBreakpoint(const WasmFunction* function, pc_t pc, |
| bool enabled) { |
| InterpreterCode* code = internals_->codemap_.GetCode(function); |
| size_t size = static_cast<size_t>(code->end - code->start); |
| // Check bounds for {pc}. |
| if (pc < code->locals.encoded_size || pc >= size) return false; |
| // Make a copy of the code before enabling a breakpoint. |
| if (enabled && code->orig_start == code->start) { |
| code->start = reinterpret_cast<byte*>(zone_.New(size)); |
| memcpy(code->start, code->orig_start, size); |
| code->end = code->start + size; |
| } |
| bool prev = code->start[pc] == kInternalBreakpoint; |
| if (enabled) { |
| code->start[pc] = kInternalBreakpoint; |
| } else { |
| code->start[pc] = code->orig_start[pc]; |
| } |
| return prev; |
| } |
| |
| bool WasmInterpreter::GetBreakpoint(const WasmFunction* function, pc_t pc) { |
| InterpreterCode* code = internals_->codemap_.GetCode(function); |
| size_t size = static_cast<size_t>(code->end - code->start); |
| // Check bounds for {pc}. |
| if (pc < code->locals.encoded_size || pc >= size) return false; |
| // Check if a breakpoint is present at that place in the code. |
| return code->start[pc] == kInternalBreakpoint; |
| } |
| |
| bool WasmInterpreter::SetTracing(const WasmFunction* function, bool enabled) { |
| UNIMPLEMENTED(); |
| return false; |
| } |
| |
| void WasmInterpreter::SetInstanceObject(WasmInstanceObject* instance) { |
| internals_->codemap_.SetInstanceObject(instance); |
| } |
| |
| int WasmInterpreter::GetThreadCount() { |
| return 1; // only one thread for now. |
| } |
| |
| WasmInterpreter::Thread* WasmInterpreter::GetThread(int id) { |
| CHECK_EQ(0, id); // only one thread for now. |
| return ToThread(&internals_->threads_[id]); |
| } |
| |
| size_t WasmInterpreter::GetMemorySize() { |
| return internals_->instance_->mem_size; |
| } |
| |
| WasmVal WasmInterpreter::ReadMemory(size_t offset) { |
| UNIMPLEMENTED(); |
| return WasmVal(); |
| } |
| |
| void WasmInterpreter::WriteMemory(size_t offset, WasmVal val) { |
| UNIMPLEMENTED(); |
| } |
| |
| void WasmInterpreter::AddFunctionForTesting(const WasmFunction* function) { |
| internals_->codemap_.AddFunction(function, nullptr, nullptr); |
| } |
| |
| void WasmInterpreter::SetFunctionCodeForTesting(const WasmFunction* function, |
| const byte* start, |
| const byte* end) { |
| internals_->codemap_.SetFunctionCode(function, start, end); |
| } |
| |
| ControlTransferMap WasmInterpreter::ComputeControlTransfersForTesting( |
| Zone* zone, const byte* start, const byte* end) { |
| ControlTransfers targets(zone, nullptr, start, end); |
| return targets.map_; |
| } |
| |
| //============================================================================ |
| // Implementation of the frame inspection interface. |
| //============================================================================ |
| int InterpretedFrame::GetParameterCount() const { |
| USE(fp_); |
| USE(sp_); |
| // TODO(clemensh): Return the correct number of parameters. |
| return 0; |
| } |
| |
| WasmVal InterpretedFrame::GetLocalVal(int index) const { |
| CHECK_GE(index, 0); |
| UNIMPLEMENTED(); |
| WasmVal none; |
| none.type = kWasmStmt; |
| return none; |
| } |
| |
| WasmVal InterpretedFrame::GetExprVal(int pc) const { |
| UNIMPLEMENTED(); |
| WasmVal none; |
| none.type = kWasmStmt; |
| return none; |
| } |
| |
| void InterpretedFrame::SetLocalVal(int index, WasmVal val) { UNIMPLEMENTED(); } |
| |
| void InterpretedFrame::SetExprVal(int pc, WasmVal val) { UNIMPLEMENTED(); } |
| |
| } // namespace wasm |
| } // namespace internal |
| } // namespace v8 |