blob: 0d0b0ee16e79e260a1393549585a03173ceeaeda [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h> // For LONG_MIN, LONG_MAX.
#include "src/v8.h"
#if V8_TARGET_ARCH_ARM
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/cpu-profiler.h"
#include "src/debug.h"
#include "src/isolate-inl.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false) {
if (isolate() != NULL) {
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
isolate());
}
}
void MacroAssembler::Jump(Register target, Condition cond) {
bx(target, cond);
}
void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
mov(pc, Operand(target, rmode), LeaveCC, cond);
}
void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(!RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
}
void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
// 'code' is always generated ARM code, never THUMB code
AllowDeferredHandleDereference embedding_raw_address;
Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
}
int MacroAssembler::CallSize(Register target, Condition cond) {
return kInstrSize;
}
void MacroAssembler::Call(Register target, Condition cond) {
// Block constant pool for the call instruction sequence.
BlockConstPoolScope block_const_pool(this);
Label start;
bind(&start);
blx(target, cond);
DCHECK_EQ(CallSize(target, cond), SizeOfCodeGeneratedSince(&start));
}
int MacroAssembler::CallSize(
Address target, RelocInfo::Mode rmode, Condition cond) {
Instr mov_instr = cond | MOV | LeaveCC;
Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode);
return kInstrSize +
mov_operand.instructions_required(this, mov_instr) * kInstrSize;
}
int MacroAssembler::CallStubSize(
CodeStub* stub, TypeFeedbackId ast_id, Condition cond) {
return CallSize(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
}
int MacroAssembler::CallSizeNotPredictableCodeSize(Isolate* isolate,
Address target,
RelocInfo::Mode rmode,
Condition cond) {
Instr mov_instr = cond | MOV | LeaveCC;
Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode);
return kInstrSize +
mov_operand.instructions_required(NULL, mov_instr) * kInstrSize;
}
void MacroAssembler::Call(Address target,
RelocInfo::Mode rmode,
Condition cond,
TargetAddressStorageMode mode) {
// Block constant pool for the call instruction sequence.
BlockConstPoolScope block_const_pool(this);
Label start;
bind(&start);
bool old_predictable_code_size = predictable_code_size();
if (mode == NEVER_INLINE_TARGET_ADDRESS) {
set_predictable_code_size(true);
}
#ifdef DEBUG
// Check the expected size before generating code to ensure we assume the same
// constant pool availability (e.g., whether constant pool is full or not).
int expected_size = CallSize(target, rmode, cond);
#endif
// Call sequence on V7 or later may be :
// movw ip, #... @ call address low 16
// movt ip, #... @ call address high 16
// blx ip
// @ return address
// Or for pre-V7 or values that may be back-patched
// to avoid ICache flushes:
// ldr ip, [pc, #...] @ call address
// blx ip
// @ return address
// Statement positions are expected to be recorded when the target
// address is loaded. The mov method will automatically record
// positions when pc is the target, since this is not the case here
// we have to do it explicitly.
positions_recorder()->WriteRecordedPositions();
mov(ip, Operand(reinterpret_cast<int32_t>(target), rmode));
blx(ip, cond);
DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
if (mode == NEVER_INLINE_TARGET_ADDRESS) {
set_predictable_code_size(old_predictable_code_size);
}
}
int MacroAssembler::CallSize(Handle<Code> code,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id,
Condition cond) {
AllowDeferredHandleDereference using_raw_address;
return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
}
void MacroAssembler::Call(Handle<Code> code,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id,
Condition cond,
TargetAddressStorageMode mode) {
Label start;
bind(&start);
DCHECK(RelocInfo::IsCodeTarget(rmode));
if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
SetRecordedAstId(ast_id);
rmode = RelocInfo::CODE_TARGET_WITH_ID;
}
// 'code' is always generated ARM code, never THUMB code
AllowDeferredHandleDereference embedding_raw_address;
Call(reinterpret_cast<Address>(code.location()), rmode, cond, mode);
}
void MacroAssembler::Ret(Condition cond) {
bx(lr, cond);
}
void MacroAssembler::Drop(int count, Condition cond) {
if (count > 0) {
add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
}
}
void MacroAssembler::Ret(int drop, Condition cond) {
Drop(drop, cond);
Ret(cond);
}
void MacroAssembler::Swap(Register reg1,
Register reg2,
Register scratch,
Condition cond) {
if (scratch.is(no_reg)) {
eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
eor(reg2, reg2, Operand(reg1), LeaveCC, cond);
eor(reg1, reg1, Operand(reg2), LeaveCC, cond);
} else {
mov(scratch, reg1, LeaveCC, cond);
mov(reg1, reg2, LeaveCC, cond);
mov(reg2, scratch, LeaveCC, cond);
}
}
void MacroAssembler::Call(Label* target) {
bl(target);
}
void MacroAssembler::Push(Handle<Object> handle) {
mov(ip, Operand(handle));
push(ip);
}
void MacroAssembler::Move(Register dst, Handle<Object> value) {
AllowDeferredHandleDereference smi_check;
if (value->IsSmi()) {
mov(dst, Operand(value));
} else {
DCHECK(value->IsHeapObject());
if (isolate()->heap()->InNewSpace(*value)) {
Handle<Cell> cell = isolate()->factory()->NewCell(value);
mov(dst, Operand(cell));
ldr(dst, FieldMemOperand(dst, Cell::kValueOffset));
} else {
mov(dst, Operand(value));
}
}
}
void MacroAssembler::Move(Register dst, Register src, Condition cond) {
if (!dst.is(src)) {
mov(dst, src, LeaveCC, cond);
}
}
void MacroAssembler::Move(DwVfpRegister dst, DwVfpRegister src) {
if (!dst.is(src)) {
vmov(dst, src);
}
}
void MacroAssembler::Mls(Register dst, Register src1, Register src2,
Register srcA, Condition cond) {
if (CpuFeatures::IsSupported(MLS)) {
CpuFeatureScope scope(this, MLS);
mls(dst, src1, src2, srcA, cond);
} else {
DCHECK(!srcA.is(ip));
mul(ip, src1, src2, LeaveCC, cond);
sub(dst, srcA, ip, LeaveCC, cond);
}
}
void MacroAssembler::And(Register dst, Register src1, const Operand& src2,
Condition cond) {
if (!src2.is_reg() &&
!src2.must_output_reloc_info(this) &&
src2.immediate() == 0) {
mov(dst, Operand::Zero(), LeaveCC, cond);
} else if (!(src2.instructions_required(this) == 1) &&
!src2.must_output_reloc_info(this) &&
CpuFeatures::IsSupported(ARMv7) &&
base::bits::IsPowerOfTwo32(src2.immediate() + 1)) {
ubfx(dst, src1, 0,
WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond);
} else {
and_(dst, src1, src2, LeaveCC, cond);
}
}
void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width,
Condition cond) {
DCHECK(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
and_(dst, src1, Operand(mask), LeaveCC, cond);
if (lsb != 0) {
mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond);
}
} else {
ubfx(dst, src1, lsb, width, cond);
}
}
void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width,
Condition cond) {
DCHECK(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
and_(dst, src1, Operand(mask), LeaveCC, cond);
int shift_up = 32 - lsb - width;
int shift_down = lsb + shift_up;
if (shift_up != 0) {
mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond);
}
if (shift_down != 0) {
mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond);
}
} else {
sbfx(dst, src1, lsb, width, cond);
}
}
void MacroAssembler::Bfi(Register dst,
Register src,
Register scratch,
int lsb,
int width,
Condition cond) {
DCHECK(0 <= lsb && lsb < 32);
DCHECK(0 <= width && width < 32);
DCHECK(lsb + width < 32);
DCHECK(!scratch.is(dst));
if (width == 0) return;
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
bic(dst, dst, Operand(mask));
and_(scratch, src, Operand((1 << width) - 1));
mov(scratch, Operand(scratch, LSL, lsb));
orr(dst, dst, scratch);
} else {
bfi(dst, src, lsb, width, cond);
}
}
void MacroAssembler::Bfc(Register dst, Register src, int lsb, int width,
Condition cond) {
DCHECK(lsb < 32);
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1);
bic(dst, src, Operand(mask));
} else {
Move(dst, src, cond);
bfc(dst, lsb, width, cond);
}
}
void MacroAssembler::Usat(Register dst, int satpos, const Operand& src,
Condition cond) {
if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) {
DCHECK(!dst.is(pc) && !src.rm().is(pc));
DCHECK((satpos >= 0) && (satpos <= 31));
// These asserts are required to ensure compatibility with the ARMv7
// implementation.
DCHECK((src.shift_op() == ASR) || (src.shift_op() == LSL));
DCHECK(src.rs().is(no_reg));
Label done;
int satval = (1 << satpos) - 1;
if (cond != al) {
b(NegateCondition(cond), &done); // Skip saturate if !condition.
}
if (!(src.is_reg() && dst.is(src.rm()))) {
mov(dst, src);
}
tst(dst, Operand(~satval));
b(eq, &done);
mov(dst, Operand::Zero(), LeaveCC, mi); // 0 if negative.
mov(dst, Operand(satval), LeaveCC, pl); // satval if positive.
bind(&done);
} else {
usat(dst, satpos, src, cond);
}
}
void MacroAssembler::Load(Register dst,
const MemOperand& src,
Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8()) {
ldrsb(dst, src);
} else if (r.IsUInteger8()) {
ldrb(dst, src);
} else if (r.IsInteger16()) {
ldrsh(dst, src);
} else if (r.IsUInteger16()) {
ldrh(dst, src);
} else {
ldr(dst, src);
}
}
void MacroAssembler::Store(Register src,
const MemOperand& dst,
Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
strb(src, dst);
} else if (r.IsInteger16() || r.IsUInteger16()) {
strh(src, dst);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
str(src, dst);
}
}
void MacroAssembler::LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond) {
if (CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS) &&
isolate()->heap()->RootCanBeTreatedAsConstant(index) &&
!predictable_code_size()) {
// The CPU supports fast immediate values, and this root will never
// change. We will load it as a relocatable immediate value.
Handle<Object> root(&isolate()->heap()->roots_array_start()[index]);
mov(destination, Operand(root), LeaveCC, cond);
return;
}
ldr(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
}
void MacroAssembler::StoreRoot(Register source,
Heap::RootListIndex index,
Condition cond) {
str(source, MemOperand(kRootRegister, index << kPointerSizeLog2), cond);
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cond,
Label* branch) {
DCHECK(cond == eq || cond == ne);
and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
cmp(scratch, Operand(ExternalReference::new_space_start(isolate())));
b(cond, branch);
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
LinkRegisterStatus lr_status,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
add(dst, object, Operand(offset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
tst(dst, Operand((1 << kPointerSizeLog2) - 1));
b(eq, &ok);
stop("Unaligned cell in write barrier");
bind(&ok);
}
RecordWrite(object,
dst,
value,
lr_status,
save_fp,
remembered_set_action,
OMIT_SMI_CHECK,
pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Operand(bit_cast<int32_t>(kZapValue + 4)));
mov(dst, Operand(bit_cast<int32_t>(kZapValue + 8)));
}
}
// Will clobber 4 registers: object, map, dst, ip. The
// register 'object' contains a heap object pointer.
void MacroAssembler::RecordWriteForMap(Register object,
Register map,
Register dst,
LinkRegisterStatus lr_status,
SaveFPRegsMode fp_mode) {
if (emit_debug_code()) {
ldr(dst, FieldMemOperand(map, HeapObject::kMapOffset));
cmp(dst, Operand(isolate()->factory()->meta_map()));
Check(eq, kWrongAddressOrValuePassedToRecordWrite);
}
if (!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
ldr(ip, FieldMemOperand(object, HeapObject::kMapOffset));
cmp(ip, map);
Check(eq, kWrongAddressOrValuePassedToRecordWrite);
}
Label done;
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
CheckPageFlag(map,
map, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
add(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
tst(dst, Operand((1 << kPointerSizeLog2) - 1));
b(eq, &ok);
stop("Unaligned cell in write barrier");
bind(&ok);
}
// Record the actual write.
if (lr_status == kLRHasNotBeenSaved) {
push(lr);
}
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
fp_mode);
CallStub(&stub);
if (lr_status == kLRHasNotBeenSaved) {
pop(lr);
}
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(dst, Operand(bit_cast<int32_t>(kZapValue + 12)));
mov(map, Operand(bit_cast<int32_t>(kZapValue + 16)));
}
}
// Will clobber 4 registers: object, address, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
LinkRegisterStatus lr_status,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!object.is(value));
if (emit_debug_code()) {
ldr(ip, MemOperand(address));
cmp(ip, value);
Check(eq, kWrongAddressOrValuePassedToRecordWrite);
}
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
eq,
&done);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
eq,
&done);
// Record the actual write.
if (lr_status == kLRHasNotBeenSaved) {
push(lr);
}
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
if (lr_status == kLRHasNotBeenSaved) {
pop(lr);
}
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip,
value);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(address, Operand(bit_cast<int32_t>(kZapValue + 12)));
mov(value, Operand(bit_cast<int32_t>(kZapValue + 16)));
}
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register address,
Register scratch,
SaveFPRegsMode fp_mode,
RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok);
stop("Remembered set pointer is in new space");
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
mov(ip, Operand(store_buffer));
ldr(scratch, MemOperand(ip));
// Store pointer to buffer and increment buffer top.
str(address, MemOperand(scratch, kPointerSize, PostIndex));
// Write back new top of buffer.
str(scratch, MemOperand(ip));
// Call stub on end of buffer.
// Check for end of buffer.
tst(scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
if (and_then == kFallThroughAtEnd) {
b(eq, &done);
} else {
DCHECK(and_then == kReturnAtEnd);
Ret(eq);
}
push(lr);
StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
CallStub(&store_buffer_overflow);
pop(lr);
bind(&done);
if (and_then == kReturnAtEnd) {
Ret();
}
}
void MacroAssembler::PushFixedFrame(Register marker_reg) {
DCHECK(!marker_reg.is_valid() || marker_reg.code() < cp.code());
stm(db_w, sp, (marker_reg.is_valid() ? marker_reg.bit() : 0) |
cp.bit() |
(FLAG_enable_ool_constant_pool ? pp.bit() : 0) |
fp.bit() |
lr.bit());
}
void MacroAssembler::PopFixedFrame(Register marker_reg) {
DCHECK(!marker_reg.is_valid() || marker_reg.code() < cp.code());
ldm(ia_w, sp, (marker_reg.is_valid() ? marker_reg.bit() : 0) |
cp.bit() |
(FLAG_enable_ool_constant_pool ? pp.bit() : 0) |
fp.bit() |
lr.bit());
}
// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
// Safepoints expect a block of contiguous register values starting with r0:
DCHECK(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters);
// Safepoints expect a block of kNumSafepointRegisters values on the
// stack, so adjust the stack for unsaved registers.
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
DCHECK(num_unsaved >= 0);
sub(sp, sp, Operand(num_unsaved * kPointerSize));
stm(db_w, sp, kSafepointSavedRegisters);
}
void MacroAssembler::PopSafepointRegisters() {
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
ldm(ia_w, sp, kSafepointSavedRegisters);
add(sp, sp, Operand(num_unsaved * kPointerSize));
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
str(src, SafepointRegisterSlot(dst));
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
ldr(dst, SafepointRegisterSlot(src));
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the highest encoding,
// which means that lowest encodings are closest to the stack pointer.
DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters);
return reg_code;
}
MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
// Number of d-regs not known at snapshot time.
DCHECK(!serializer_enabled());
// General purpose registers are pushed last on the stack.
int doubles_size = DwVfpRegister::NumAllocatableRegisters() * kDoubleSize;
int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
return MemOperand(sp, doubles_size + register_offset);
}
void MacroAssembler::Ldrd(Register dst1, Register dst2,
const MemOperand& src, Condition cond) {
DCHECK(src.rm().is(no_reg));
DCHECK(!dst1.is(lr)); // r14.
// V8 does not use this addressing mode, so the fallback code
// below doesn't support it yet.
DCHECK((src.am() != PreIndex) && (src.am() != NegPreIndex));
// Generate two ldr instructions if ldrd is not available.
if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size() &&
(dst1.code() % 2 == 0) && (dst1.code() + 1 == dst2.code())) {
CpuFeatureScope scope(this, ARMv7);
ldrd(dst1, dst2, src, cond);
} else {
if ((src.am() == Offset) || (src.am() == NegOffset)) {
MemOperand src2(src);
src2.set_offset(src2.offset() + 4);
if (dst1.is(src.rn())) {
ldr(dst2, src2, cond);
ldr(dst1, src, cond);
} else {
ldr(dst1, src, cond);
ldr(dst2, src2, cond);
}
} else { // PostIndex or NegPostIndex.
DCHECK((src.am() == PostIndex) || (src.am() == NegPostIndex));
if (dst1.is(src.rn())) {
ldr(dst2, MemOperand(src.rn(), 4, Offset), cond);
ldr(dst1, src, cond);
} else {
MemOperand src2(src);
src2.set_offset(src2.offset() - 4);
ldr(dst1, MemOperand(src.rn(), 4, PostIndex), cond);
ldr(dst2, src2, cond);
}
}
}
}
void MacroAssembler::Strd(Register src1, Register src2,
const MemOperand& dst, Condition cond) {
DCHECK(dst.rm().is(no_reg));
DCHECK(!src1.is(lr)); // r14.
// V8 does not use this addressing mode, so the fallback code
// below doesn't support it yet.
DCHECK((dst.am() != PreIndex) && (dst.am() != NegPreIndex));
// Generate two str instructions if strd is not available.
if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size() &&
(src1.code() % 2 == 0) && (src1.code() + 1 == src2.code())) {
CpuFeatureScope scope(this, ARMv7);
strd(src1, src2, dst, cond);
} else {
MemOperand dst2(dst);
if ((dst.am() == Offset) || (dst.am() == NegOffset)) {
dst2.set_offset(dst2.offset() + 4);
str(src1, dst, cond);
str(src2, dst2, cond);
} else { // PostIndex or NegPostIndex.
DCHECK((dst.am() == PostIndex) || (dst.am() == NegPostIndex));
dst2.set_offset(dst2.offset() - 4);
str(src1, MemOperand(dst.rn(), 4, PostIndex), cond);
str(src2, dst2, cond);
}
}
}
void MacroAssembler::VFPEnsureFPSCRState(Register scratch) {
// If needed, restore wanted bits of FPSCR.
Label fpscr_done;
vmrs(scratch);
if (emit_debug_code()) {
Label rounding_mode_correct;
tst(scratch, Operand(kVFPRoundingModeMask));
b(eq, &rounding_mode_correct);
// Don't call Assert here, since Runtime_Abort could re-enter here.
stop("Default rounding mode not set");
bind(&rounding_mode_correct);
}
tst(scratch, Operand(kVFPDefaultNaNModeControlBit));
b(ne, &fpscr_done);
orr(scratch, scratch, Operand(kVFPDefaultNaNModeControlBit));
vmsr(scratch);
bind(&fpscr_done);
}
void MacroAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond) {
vsub(dst, src, kDoubleRegZero, cond);
}
void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond) {
// Compare and move FPSCR flags to the normal condition flags.
VFPCompareAndLoadFlags(src1, src2, pc, cond);
}
void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1,
const double src2,
const Condition cond) {
// Compare and move FPSCR flags to the normal condition flags.
VFPCompareAndLoadFlags(src1, src2, pc, cond);
}
void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
const DwVfpRegister src2,
const Register fpscr_flags,
const Condition cond) {
// Compare and load FPSCR.
vcmp(src1, src2, cond);
vmrs(fpscr_flags, cond);
}
void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1,
const double src2,
const Register fpscr_flags,
const Condition cond) {
// Compare and load FPSCR.
vcmp(src1, src2, cond);
vmrs(fpscr_flags, cond);
}
void MacroAssembler::Vmov(const DwVfpRegister dst,
const double imm,
const Register scratch) {
static const DoubleRepresentation minus_zero(-0.0);
static const DoubleRepresentation zero(0.0);
DoubleRepresentation value_rep(imm);
// Handle special values first.
if (value_rep == zero) {
vmov(dst, kDoubleRegZero);
} else if (value_rep == minus_zero) {
vneg(dst, kDoubleRegZero);
} else {
vmov(dst, imm, scratch);
}
}
void MacroAssembler::VmovHigh(Register dst, DwVfpRegister src) {
if (src.code() < 16) {
const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
vmov(dst, loc.high());
} else {
vmov(dst, VmovIndexHi, src);
}
}
void MacroAssembler::VmovHigh(DwVfpRegister dst, Register src) {
if (dst.code() < 16) {
const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
vmov(loc.high(), src);
} else {
vmov(dst, VmovIndexHi, src);
}
}
void MacroAssembler::VmovLow(Register dst, DwVfpRegister src) {
if (src.code() < 16) {
const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code());
vmov(dst, loc.low());
} else {
vmov(dst, VmovIndexLo, src);
}
}
void MacroAssembler::VmovLow(DwVfpRegister dst, Register src) {
if (dst.code() < 16) {
const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
vmov(loc.low(), src);
} else {
vmov(dst, VmovIndexLo, src);
}
}
void MacroAssembler::LoadConstantPoolPointerRegister() {
if (FLAG_enable_ool_constant_pool) {
int constant_pool_offset = Code::kConstantPoolOffset - Code::kHeaderSize -
pc_offset() - Instruction::kPCReadOffset;
DCHECK(ImmediateFitsAddrMode2Instruction(constant_pool_offset));
ldr(pp, MemOperand(pc, constant_pool_offset));
}
}
void MacroAssembler::StubPrologue() {
PushFixedFrame();
Push(Smi::FromInt(StackFrame::STUB));
// Adjust FP to point to saved FP.
add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
if (FLAG_enable_ool_constant_pool) {
LoadConstantPoolPointerRegister();
set_constant_pool_available(true);
}
}
void MacroAssembler::Prologue(bool code_pre_aging) {
{ PredictableCodeSizeScope predictible_code_size_scope(
this, kNoCodeAgeSequenceLength);
// The following three instructions must remain together and unmodified
// for code aging to work properly.
if (code_pre_aging) {
// Pre-age the code.
Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
add(r0, pc, Operand(-8));
ldr(pc, MemOperand(pc, -4));
emit_code_stub_address(stub);
} else {
PushFixedFrame(r1);
nop(ip.code());
// Adjust FP to point to saved FP.
add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
}
}
if (FLAG_enable_ool_constant_pool) {
LoadConstantPoolPointerRegister();
set_constant_pool_available(true);
}
}
void MacroAssembler::EnterFrame(StackFrame::Type type,
bool load_constant_pool) {
// r0-r3: preserved
PushFixedFrame();
if (FLAG_enable_ool_constant_pool && load_constant_pool) {
LoadConstantPoolPointerRegister();
}
mov(ip, Operand(Smi::FromInt(type)));
push(ip);
mov(ip, Operand(CodeObject()));
push(ip);
// Adjust FP to point to saved FP.
add(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
}
int MacroAssembler::LeaveFrame(StackFrame::Type type) {
// r0: preserved
// r1: preserved
// r2: preserved
// Drop the execution stack down to the frame pointer and restore
// the caller frame pointer, return address and constant pool pointer
// (if FLAG_enable_ool_constant_pool).
int frame_ends;
if (FLAG_enable_ool_constant_pool) {
add(sp, fp, Operand(StandardFrameConstants::kConstantPoolOffset));
frame_ends = pc_offset();
ldm(ia_w, sp, pp.bit() | fp.bit() | lr.bit());
} else {
mov(sp, fp);
frame_ends = pc_offset();
ldm(ia_w, sp, fp.bit() | lr.bit());
}
return frame_ends;
}
void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
// Set up the frame structure on the stack.
DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
Push(lr, fp);
mov(fp, Operand(sp)); // Set up new frame pointer.
// Reserve room for saved entry sp and code object.
sub(sp, sp, Operand(ExitFrameConstants::kFrameSize));
if (emit_debug_code()) {
mov(ip, Operand::Zero());
str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
if (FLAG_enable_ool_constant_pool) {
str(pp, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
}
mov(ip, Operand(CodeObject()));
str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset));
// Save the frame pointer and the context in top.
mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
str(fp, MemOperand(ip));
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
str(cp, MemOperand(ip));
// Optionally save all double registers.
if (save_doubles) {
SaveFPRegs(sp, ip);
// Note that d0 will be accessible at
// fp - ExitFrameConstants::kFrameSize -
// DwVfpRegister::kMaxNumRegisters * kDoubleSize,
// since the sp slot, code slot and constant pool slot (if
// FLAG_enable_ool_constant_pool) were pushed after the fp.
}
// Reserve place for the return address and stack space and align the frame
// preparing for calling the runtime function.
const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
sub(sp, sp, Operand((stack_space + 1) * kPointerSize));
if (frame_alignment > 0) {
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
and_(sp, sp, Operand(-frame_alignment));
}
// Set the exit frame sp value to point just before the return address
// location.
add(ip, sp, Operand(kPointerSize));
str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
void MacroAssembler::InitializeNewString(Register string,
Register length,
Heap::RootListIndex map_index,
Register scratch1,
Register scratch2) {
SmiTag(scratch1, length);
LoadRoot(scratch2, map_index);
str(scratch1, FieldMemOperand(string, String::kLengthOffset));
mov(scratch1, Operand(String::kEmptyHashField));
str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
str(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
}
int MacroAssembler::ActivationFrameAlignment() {
#if V8_HOST_ARCH_ARM
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one ARM
// platform for another ARM platform with a different alignment.
return base::OS::ActivationFrameAlignment();
#else // V8_HOST_ARCH_ARM
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return FLAG_sim_stack_alignment;
#endif // V8_HOST_ARCH_ARM
}
void MacroAssembler::LeaveExitFrame(bool save_doubles,
Register argument_count,
bool restore_context) {
ConstantPoolUnavailableScope constant_pool_unavailable(this);
// Optionally restore all double registers.
if (save_doubles) {
// Calculate the stack location of the saved doubles and restore them.
const int offset = ExitFrameConstants::kFrameSize;
sub(r3, fp,
Operand(offset + DwVfpRegister::kMaxNumRegisters * kDoubleSize));
RestoreFPRegs(r3, ip);
}
// Clear top frame.
mov(r3, Operand::Zero());
mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
str(r3, MemOperand(ip));
// Restore current context from top and clear it in debug mode.
if (restore_context) {
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
ldr(cp, MemOperand(ip));
}
#ifdef DEBUG
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
str(r3, MemOperand(ip));
#endif
// Tear down the exit frame, pop the arguments, and return.
if (FLAG_enable_ool_constant_pool) {
ldr(pp, MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
}
mov(sp, Operand(fp));
ldm(ia_w, sp, fp.bit() | lr.bit());
if (argument_count.is_valid()) {
add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2));
}
}
void MacroAssembler::MovFromFloatResult(const DwVfpRegister dst) {
if (use_eabi_hardfloat()) {
Move(dst, d0);
} else {
vmov(dst, r0, r1);
}
}
// On ARM this is just a synonym to make the purpose clear.
void MacroAssembler::MovFromFloatParameter(DwVfpRegister dst) {
MovFromFloatResult(dst);
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// r0: actual arguments count
// r1: function (passed through to callee)
// r2: expected arguments count
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
DCHECK(actual.is_immediate() || actual.reg().is(r0));
DCHECK(expected.is_immediate() || expected.reg().is(r2));
DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
if (expected.is_immediate()) {
DCHECK(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
mov(r0, Operand(actual.immediate()));
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
mov(r2, Operand(expected.immediate()));
}
}
} else {
if (actual.is_immediate()) {
cmp(expected.reg(), Operand(actual.immediate()));
b(eq, &regular_invoke);
mov(r0, Operand(actual.immediate()));
} else {
cmp(expected.reg(), Operand(actual.reg()));
b(eq, &regular_invoke);
}
}
if (!definitely_matches) {
if (!code_constant.is_null()) {
mov(r3, Operand(code_constant));
add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
}
Handle<Code> adaptor =
isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
Call(adaptor);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
b(done);
}
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&regular_invoke);
}
}
void MacroAssembler::InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, Handle<Code>::null(), code,
&done, &definitely_mismatches, flag,
call_wrapper);
if (!definitely_mismatches) {
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
Call(code);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
Jump(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register fun,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in r1.
DCHECK(fun.is(r1));
Register expected_reg = r2;
Register code_reg = r3;
ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
ldr(expected_reg,
FieldMemOperand(code_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
SmiUntag(expected_reg);
ldr(code_reg,
FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
ParameterCount expected(expected_reg);
InvokeCode(code_reg, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in r1.
DCHECK(function.is(r1));
// Get the function and setup the context.
ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
InvokeCode(r3, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
Move(r1, function);
InvokeFunction(r1, expected, actual, flag, call_wrapper);
}
void MacroAssembler::IsObjectJSObjectType(Register heap_object,
Register map,
Register scratch,
Label* fail) {
ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
IsInstanceJSObjectType(map, scratch, fail);
}
void MacroAssembler::IsInstanceJSObjectType(Register map,
Register scratch,
Label* fail) {
ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
cmp(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
b(lt, fail);
cmp(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
b(gt, fail);
}
void MacroAssembler::IsObjectJSStringType(Register object,
Register scratch,
Label* fail) {
DCHECK(kNotStringTag != 0);
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
tst(scratch, Operand(kIsNotStringMask));
b(ne, fail);
}
void MacroAssembler::IsObjectNameType(Register object,
Register scratch,
Label* fail) {
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
cmp(scratch, Operand(LAST_NAME_TYPE));
b(hi, fail);
}
void MacroAssembler::DebugBreak() {
mov(r0, Operand::Zero());
mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
CEntryStub ces(isolate(), 1);
DCHECK(AllowThisStubCall(&ces));
Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
int handler_index) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// For the JSEntry handler, we must preserve r0-r4, r5-r6 are available.
// We will build up the handler from the bottom by pushing on the stack.
// Set up the code object (r5) and the state (r6) for pushing.
unsigned state =
StackHandler::IndexField::encode(handler_index) |
StackHandler::KindField::encode(kind);
mov(r5, Operand(CodeObject()));
mov(r6, Operand(state));
// Push the frame pointer, context, state, and code object.
if (kind == StackHandler::JS_ENTRY) {
mov(cp, Operand(Smi::FromInt(0))); // Indicates no context.
mov(ip, Operand::Zero()); // NULL frame pointer.
stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | ip.bit());
} else {
stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | fp.bit());
}
// Link the current handler as the next handler.
mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(r5, MemOperand(r6));
push(r5);
// Set this new handler as the current one.
str(sp, MemOperand(r6));
}
void MacroAssembler::PopTryHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
pop(r1);
mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
str(r1, MemOperand(ip));
}
void MacroAssembler::JumpToHandlerEntry() {
// Compute the handler entry address and jump to it. The handler table is
// a fixed array of (smi-tagged) code offsets.
// r0 = exception, r1 = code object, r2 = state.
ConstantPoolUnavailableScope constant_pool_unavailable(this);
if (FLAG_enable_ool_constant_pool) {
ldr(pp, FieldMemOperand(r1, Code::kConstantPoolOffset)); // Constant pool.
}
ldr(r3, FieldMemOperand(r1, Code::kHandlerTableOffset)); // Handler table.
add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
mov(r2, Operand(r2, LSR, StackHandler::kKindWidth)); // Handler index.
ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2)); // Smi-tagged offset.
add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start.
add(pc, r1, Operand::SmiUntag(r2)); // Jump
}
void MacroAssembler::Throw(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in r0.
if (!value.is(r0)) {
mov(r0, value);
}
// Drop the stack pointer to the top of the top handler.
mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(sp, MemOperand(r3));
// Restore the next handler.
pop(r2);
str(r2, MemOperand(r3));
// Get the code object (r1) and state (r2). Restore the context and frame
// pointer.
ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
// If the handler is a JS frame, restore the context to the frame.
// (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
// or cp.
tst(cp, cp);
str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
JumpToHandlerEntry();
}
void MacroAssembler::ThrowUncatchable(Register value) {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
// The exception is expected in r0.
if (!value.is(r0)) {
mov(r0, value);
}
// Drop the stack pointer to the top of the top stack handler.
mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
ldr(sp, MemOperand(r3));
// Unwind the handlers until the ENTRY handler is found.
Label fetch_next, check_kind;
jmp(&check_kind);
bind(&fetch_next);
ldr(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
bind(&check_kind);
STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
ldr(r2, MemOperand(sp, StackHandlerConstants::kStateOffset));
tst(r2, Operand(StackHandler::KindField::kMask));
b(ne, &fetch_next);
// Set the top handler address to next handler past the top ENTRY handler.
pop(r2);
str(r2, MemOperand(r3));
// Get the code object (r1) and state (r2). Clear the context and frame
// pointer (0 was saved in the handler).
ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit());
JumpToHandlerEntry();
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
DCHECK(!holder_reg.is(scratch));
DCHECK(!holder_reg.is(ip));
DCHECK(!scratch.is(ip));
// Load current lexical context from the stack frame.
ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
// In debug mode, make sure the lexical context is set.
#ifdef DEBUG
cmp(scratch, Operand::Zero());
Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
#endif
// Load the native context of the current context.
int offset =
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
ldr(scratch, FieldMemOperand(scratch, offset));
ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
// Check the context is a native context.
if (emit_debug_code()) {
// Cannot use ip as a temporary in this verification code. Due to the fact
// that ip is clobbered as part of cmp with an object Operand.
push(holder_reg); // Temporarily save holder on the stack.
// Read the first word and compare to the native_context_map.
ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kNativeContextMapRootIndex);
cmp(holder_reg, ip);
Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
pop(holder_reg); // Restore holder.
}
// Check if both contexts are the same.
ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
cmp(scratch, Operand(ip));
b(eq, &same_contexts);
// Check the context is a native context.
if (emit_debug_code()) {
// Cannot use ip as a temporary in this verification code. Due to the fact
// that ip is clobbered as part of cmp with an object Operand.
push(holder_reg); // Temporarily save holder on the stack.
mov(holder_reg, ip); // Move ip to its holding place.
LoadRoot(ip, Heap::kNullValueRootIndex);
cmp(holder_reg, ip);
Check(ne, kJSGlobalProxyContextShouldNotBeNull);
ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kNativeContextMapRootIndex);
cmp(holder_reg, ip);
Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
// Restore ip is not needed. ip is reloaded below.
pop(holder_reg); // Restore holder.
// Restore ip to holder's context.
ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
}
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
ldr(scratch, FieldMemOperand(scratch, token_offset));
ldr(ip, FieldMemOperand(ip, token_offset));
cmp(scratch, Operand(ip));
b(ne, miss);
bind(&same_contexts);
}
// Compute the hash code from the untagged key. This must be kept in sync with
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
// code-stub-hydrogen.cc
void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiUntag(scratch);
// Xor original key with a seed.
eor(t0, t0, Operand(scratch));
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
mvn(scratch, Operand(t0));
add(t0, scratch, Operand(t0, LSL, 15));
// hash = hash ^ (hash >> 12);
eor(t0, t0, Operand(t0, LSR, 12));
// hash = hash + (hash << 2);
add(t0, t0, Operand(t0, LSL, 2));
// hash = hash ^ (hash >> 4);
eor(t0, t0, Operand(t0, LSR, 4));
// hash = hash * 2057;
mov(scratch, Operand(t0, LSL, 11));
add(t0, t0, Operand(t0, LSL, 3));
add(t0, t0, scratch);
// hash = hash ^ (hash >> 16);
eor(t0, t0, Operand(t0, LSR, 16));
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register result,
Register t0,
Register t1,
Register t2) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
//
// Scratch registers:
//
// t0 - holds the untagged key on entry and holds the hash once computed.
//
// t1 - used to hold the capacity mask of the dictionary
//
// t2 - used for the index into the dictionary.
Label done;
GetNumberHash(t0, t1);
// Compute the capacity mask.
ldr(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
SmiUntag(t1);
sub(t1, t1, Operand(1));
// Generate an unrolled loop that performs a few probes before giving up.
for (int i = 0; i < kNumberDictionaryProbes; i++) {
// Use t2 for index calculations and keep the hash intact in t0.
mov(t2, t0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
add(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
}
and_(t2, t2, Operand(t1));
// Scale the index by multiplying by the element size.
DCHECK(SeededNumberDictionary::kEntrySize == 3);
add(t2, t2, Operand(t2, LSL, 1)); // t2 = t2 * 3
// Check if the key is identical to the name.
add(t2, elements, Operand(t2, LSL, kPointerSizeLog2));
ldr(ip, FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset));
cmp(key, Operand(ip));
if (i != kNumberDictionaryProbes - 1) {
b(eq, &done);
} else {
b(ne, miss);
}
}
bind(&done);
// Check that the value is a normal property.
// t2: elements + (index * kPointerSize)
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
ldr(t1, FieldMemOperand(t2, kDetailsOffset));
tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
b(ne, miss);
// Get the value at the masked, scaled index and return.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
ldr(result, FieldMemOperand(t2, kValueOffset));
}
void MacroAssembler::Allocate(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Operand(0x7091));
mov(scratch1, Operand(0x7191));
mov(scratch2, Operand(0x7291));
}
jmp(gc_required);
return;
}
DCHECK(!result.is(scratch1));
DCHECK(!result.is(scratch2));
DCHECK(!scratch1.is(scratch2));
DCHECK(!scratch1.is(ip));
DCHECK(!scratch2.is(ip));
// Make object size into bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
object_size *= kPointerSize;
}
DCHECK_EQ(0, object_size & kObjectAlignmentMask);
// Check relative positions of allocation top and limit addresses.
// The values must be adjacent in memory to allow the use of LDM.
// Also, assert that the registers are numbered such that the values
// are loaded in the correct order.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top =
reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(allocation_limit.address());
DCHECK((limit - top) == kPointerSize);
DCHECK(result.code() < ip.code());
// Set up allocation top address register.
Register topaddr = scratch1;
mov(topaddr, Operand(allocation_top));
// This code stores a temporary value in ip. This is OK, as the code below
// does not need ip for implicit literal generation.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into ip.
ldm(ia, topaddr, result.bit() | ip.bit());
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry. ip is used
// immediately below so this use of ip does not cause difference with
// respect to register content between debug and release mode.
ldr(ip, MemOperand(topaddr));
cmp(result, ip);
Check(eq, kUnexpectedAllocationTop);
}
// Load allocation limit into ip. Result already contains allocation top.
ldr(ip, MemOperand(topaddr, limit - top));
}
if ((flags & DOUBLE_ALIGNMENT) != 0) {
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
and_(scratch2, result, Operand(kDoubleAlignmentMask), SetCC);
Label aligned;
b(eq, &aligned);
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
cmp(result, Operand(ip));
b(hs, gc_required);
}
mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
str(scratch2, MemOperand(result, kDoubleSize / 2, PostIndex));
bind(&aligned);
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top. We must preserve the ip register at this
// point, so we cannot just use add().
DCHECK(object_size > 0);
Register source = result;
Condition cond = al;
int shift = 0;
while (object_size != 0) {
if (((object_size >> shift) & 0x03) == 0) {
shift += 2;
} else {
int bits = object_size & (0xff << shift);
object_size -= bits;
shift += 8;
Operand bits_operand(bits);
DCHECK(bits_operand.instructions_required(this) == 1);
add(scratch2, source, bits_operand, SetCC, cond);
source = scratch2;
cond = cc;
}
}
b(cs, gc_required);
cmp(scratch2, Operand(ip));
b(hi, gc_required);
str(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
add(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::Allocate(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags) {
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
mov(result, Operand(0x7091));
mov(scratch1, Operand(0x7191));
mov(scratch2, Operand(0x7291));
}
jmp(gc_required);
return;
}
// Assert that the register arguments are different and that none of
// them are ip. ip is used explicitly in the code generated below.
DCHECK(!result.is(scratch1));
DCHECK(!result.is(scratch2));
DCHECK(!scratch1.is(scratch2));
DCHECK(!object_size.is(ip));
DCHECK(!result.is(ip));
DCHECK(!scratch1.is(ip));
DCHECK(!scratch2.is(ip));
// Check relative positions of allocation top and limit addresses.
// The values must be adjacent in memory to allow the use of LDM.
// Also, assert that the registers are numbered such that the values
// are loaded in the correct order.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top =
reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit =
reinterpret_cast<intptr_t>(allocation_limit.address());
DCHECK((limit - top) == kPointerSize);
DCHECK(result.code() < ip.code());
// Set up allocation top address.
Register topaddr = scratch1;
mov(topaddr, Operand(allocation_top));
// This code stores a temporary value in ip. This is OK, as the code below
// does not need ip for implicit literal generation.
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into ip.
ldm(ia, topaddr, result.bit() | ip.bit());
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry. ip is used
// immediately below so this use of ip does not cause difference with
// respect to register content between debug and release mode.
ldr(ip, MemOperand(topaddr));
cmp(result, ip);
Check(eq, kUnexpectedAllocationTop);
}
// Load allocation limit into ip. Result already contains allocation top.
ldr(ip, MemOperand(topaddr, limit - top));
}
if ((flags & DOUBLE_ALIGNMENT) != 0) {
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
and_(scratch2, result, Operand(kDoubleAlignmentMask), SetCC);
Label aligned;
b(eq, &aligned);
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
cmp(result, Operand(ip));
b(hs, gc_required);
}
mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
str(scratch2, MemOperand(result, kDoubleSize / 2, PostIndex));
bind(&aligned);
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top. Object size may be in words so a shift is
// required to get the number of bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC);
} else {
add(scratch2, result, Operand(object_size), SetCC);
}
b(cs, gc_required);
cmp(scratch2, Operand(ip));
b(hi, gc_required);
// Update allocation top. result temporarily holds the new top.
if (emit_debug_code()) {
tst(scratch2, Operand(kObjectAlignmentMask));
Check(eq, kUnalignedAllocationInNewSpace);
}
str(scratch2, MemOperand(topaddr));
// Tag object if requested.
if ((flags & TAG_OBJECT) != 0) {
add(result, result, Operand(kHeapObjectTag));
}
}
void MacroAssembler::UndoAllocationInNewSpace(Register object,
Register scratch) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
// Make sure the object has no tag before resetting top.
and_(object, object, Operand(~kHeapObjectTagMask));
#ifdef DEBUG
// Check that the object un-allocated is below the current top.
mov(scratch, Operand(new_space_allocation_top));
ldr(scratch, MemOperand(scratch));
cmp(object, scratch);
Check(lt, kUndoAllocationOfNonAllocatedMemory);
#endif
// Write the address of the object to un-allocate as the current top.
mov(scratch, Operand(new_space_allocation_top));
str(object, MemOperand(scratch));
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars.
add(scratch1, scratch1,
Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate two-byte string in new space.
Allocate(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result,
length,
Heap::kStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
DCHECK(kCharSize == 1);
add(scratch1, length,
Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize));
and_(scratch1, scratch1, Operand(~kObjectAlignmentMask));
// Allocate one-byte string in new space.
Allocate(scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kConsStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result,
length,
Heap::kSlicedStringMapRootIndex,
scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
TAG_OBJECT);
InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::CompareObjectType(Register object,
Register map,
Register type_reg,
InstanceType type) {
const Register temp = type_reg.is(no_reg) ? ip : type_reg;
ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(map, temp, type);
}
void MacroAssembler::CheckObjectTypeRange(Register object,
Register map,
InstanceType min_type,
InstanceType max_type,
Label* false_label) {
STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
STATIC_ASSERT(LAST_TYPE < 256);
ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
ldrb(ip, FieldMemOperand(map, Map::kInstanceTypeOffset));
sub(ip, ip, Operand(min_type));
cmp(ip, Operand(max_type - min_type));
b(hi, false_label);
}
void MacroAssembler::CompareInstanceType(Register map,
Register type_reg,
InstanceType type) {
// Registers map and type_reg can be ip. These two lines assert
// that ip can be used with the two instructions (the constants
// will never need ip).
STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
STATIC_ASSERT(LAST_TYPE < 256);
ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
cmp(type_reg, Operand(type));
}
void MacroAssembler::CompareRoot(Register obj,
Heap::RootListIndex index) {
DCHECK(!obj.is(ip));
LoadRoot(ip, index);
cmp(obj, ip);
}
void MacroAssembler::CheckFastElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
b(hi, fail);
}
void MacroAssembler::CheckFastObjectElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
b(ls, fail);
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
b(hi, fail);
}
void MacroAssembler::CheckFastSmiElements(Register map,
Register scratch,
Label* fail) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
b(hi, fail);
}
void MacroAssembler::StoreNumberToDoubleElements(
Register value_reg,
Register key_reg,
Register elements_reg,
Register scratch1,
LowDwVfpRegister double_scratch,
Label* fail,
int elements_offset) {
Label smi_value, store;
// Handle smi values specially.
JumpIfSmi(value_reg, &smi_value);
// Ensure that the object is a heap number
CheckMap(value_reg,
scratch1,
isolate()->factory()->heap_number_map(),
fail,
DONT_DO_SMI_CHECK);
vldr(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
// Force a canonical NaN.
if (emit_debug_code()) {
vmrs(ip);
tst(ip, Operand(kVFPDefaultNaNModeControlBit));
Assert(ne, kDefaultNaNModeNotSet);
}
VFPCanonicalizeNaN(double_scratch);
b(&store);
bind(&smi_value);
SmiToDouble(double_scratch, value_reg);
bind(&store);
add(scratch1, elements_reg, Operand::DoubleOffsetFromSmiKey(key_reg));
vstr(double_scratch,
FieldMemOperand(scratch1,
FixedDoubleArray::kHeaderSize - elements_offset));
}
void MacroAssembler::CompareMap(Register obj,
Register scratch,
Handle<Map> map,
Label* early_success) {
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
CompareMap(scratch, map, early_success);
}
void MacroAssembler::CompareMap(Register obj_map,
Handle<Map> map,
Label* early_success) {
cmp(obj_map, Operand(map));
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
Label success;
CompareMap(obj, scratch, map, &success);
b(ne, fail);
bind(&success);
}
void MacroAssembler::CheckMap(Register obj,
Register scratch,
Heap::RootListIndex index,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
LoadRoot(ip, index);
cmp(scratch, ip);
b(ne, fail);
}
void MacroAssembler::DispatchMap(Register obj,
Register scratch,
Handle<Map> map,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
mov(ip, Operand(map));
cmp(scratch, ip);
Jump(success, RelocInfo::CODE_TARGET, eq);
bind(&fail);
}
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss,
bool miss_on_bound_function) {
Label non_instance;
if (miss_on_bound_function) {
// Check that the receiver isn't a smi.
JumpIfSmi(function, miss);
// Check that the function really is a function. Load map into result reg.
CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
b(ne, miss);
ldr(scratch,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
ldr(scratch,
FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
tst(scratch,
Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction)));
b(ne, miss);
// Make sure that the function has an instance prototype.
ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
b(ne, &non_instance);
}
// Get the prototype or initial map from the function.
ldr(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
LoadRoot(ip, Heap::kTheHoleValueRootIndex);
cmp(result, ip);
b(eq, miss);
// If the function does not have an initial map, we're done.
Label done;
CompareObjectType(result, scratch, scratch, MAP_TYPE);
b(ne, &done);
// Get the prototype from the initial map.
ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
if (miss_on_bound_function) {
jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
}
// All done.
bind(&done);
}
void MacroAssembler::CallStub(CodeStub* stub,
TypeFeedbackId ast_id,
Condition cond) {
DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
}
void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
void MacroAssembler::CallApiFunctionAndReturn(
Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand return_value_operand,
MemOperand* context_restore_operand) {
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate());
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate()),
next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate()),
next_address);
DCHECK(function_address.is(r1) || function_address.is(r2));
Label profiler_disabled;
Label end_profiler_check;
mov(r9, Operand(ExternalReference::is_profiling_address(isolate())));
ldrb(r9, MemOperand(r9, 0));
cmp(r9, Operand(0));
b(eq, &profiler_disabled);
// Additional parameter is the address of the actual callback.
mov(r3, Operand(thunk_ref));
jmp(&end_profiler_check);
bind(&profiler_disabled);
Move(r3, function_address);
bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
mov(r9, Operand(next_address));
ldr(r4, MemOperand(r9, kNextOffset));
ldr(r5, MemOperand(r9, kLimitOffset));
ldr(r6, MemOperand(r9, kLevelOffset));
add(r6, r6, Operand(1));
str(r6, MemOperand(r9, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1, r0);
mov(r0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate());
stub.GenerateCall(this, r3);
if (FLAG_log_timer_events) {
FrameScope frame(this, StackFrame::MANUAL);
PushSafepointRegisters();
PrepareCallCFunction(1, r0);
mov(r0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label exception_handled;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// load value from ReturnValue
ldr(r0, return_value_operand);
bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
str(r4, MemOperand(r9, kNextOffset));
if (emit_debug_code()) {
ldr(r1, MemOperand(r9, kLevelOffset));
cmp(r1, r6);
Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
}
sub(r6, r6, Operand(1));
str(r6, MemOperand(r9, kLevelOffset));
ldr(ip, MemOperand(r9, kLimitOffset));
cmp(r5, ip);
b(ne, &delete_allocated_handles);
// Check if the function scheduled an exception.
bind(&leave_exit_frame);
LoadRoot(r4, Heap::kTheHoleValueRootIndex);
mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate())));
ldr(r5, MemOperand(ip));
cmp(r4, r5);
b(ne, &promote_scheduled_exception);
bind(&exception_handled);
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
ldr(cp, *context_restore_operand);
}
// LeaveExitFrame expects unwind space to be in a register.
mov(r4, Operand(stack_space));
LeaveExitFrame(false, r4, !restore_context);
mov(pc, lr);
bind(&promote_scheduled_exception);
{
FrameScope frame(this, StackFrame::INTERNAL);
CallExternalReference(
ExternalReference(Runtime::kPromoteScheduledException, isolate()),
0);
}
jmp(&exception_handled);
// HandleScope limit has changed. Delete allocated extensions.
bind(&delete_allocated_handles);
str(r5, MemOperand(r9, kLimitOffset));
mov(r4, r0);
PrepareCallCFunction(1, r5);
mov(r0, Operand(ExternalReference::isolate_address(isolate())));
CallCFunction(
ExternalReference::delete_handle_scope_extensions(isolate()), 1);
mov(r0, r4);
jmp(&leave_exit_frame);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame_ || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::IndexFromHash(Register hash, Register index) {
// If the hash field contains an array index pick it out. The assert checks
// that the constants for the maximum number of digits for an array index
// cached in the hash field and the number of bits reserved for it does not
// conflict.
DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
}
void MacroAssembler::SmiToDouble(LowDwVfpRegister value, Register smi) {
if (CpuFeatures::IsSupported(VFP3)) {
vmov(value.low(), smi);
vcvt_f64_s32(value, 1);
} else {
SmiUntag(ip, smi);
vmov(value.low(), ip);
vcvt_f64_s32(value, value.low());
}
}
void MacroAssembler::TestDoubleIsInt32(DwVfpRegister double_input,
LowDwVfpRegister double_scratch) {
DCHECK(!double_input.is(double_scratch));
vcvt_s32_f64(double_scratch.low(), double_input);
vcvt_f64_s32(double_scratch, double_scratch.low());
VFPCompareAndSetFlags(double_input, double_scratch);
}
void MacroAssembler::TryDoubleToInt32Exact(Register result,
DwVfpRegister double_input,
LowDwVfpRegister double_scratch) {
DCHECK(!double_input.is(double_scratch));
vcvt_s32_f64(double_scratch.low(), double_input);
vmov(result, double_scratch.low());
vcvt_f64_s32(double_scratch, double_scratch.low());
VFPCompareAndSetFlags(double_input, double_scratch);
}
void MacroAssembler::TryInt32Floor(Register result,
DwVfpRegister double_input,
Register input_high,
LowDwVfpRegister double_scratch,
Label* done,
Label* exact) {
DCHECK(!result.is(input_high));
DCHECK(!double_input.is(double_scratch));
Label negative, exception;
VmovHigh(input_high, double_input);
// Test for NaN and infinities.
Sbfx(result, input_high,
HeapNumber::kExponentShift, HeapNumber::kExponentBits);
cmp(result, Operand(-1));
b(eq, &exception);
// Test for values that can be exactly represented as a
// signed 32-bit integer.
TryDoubleToInt32Exact(result, double_input, double_scratch);
// If exact, return (result already fetched).
b(eq, exact);
cmp(input_high, Operand::Zero());
b(mi, &negative);
// Input is in ]+0, +inf[.
// If result equals 0x7fffffff input was out of range or
// in ]0x7fffffff, 0x80000000[. We ignore this last case which
// could fits into an int32, that means we always think input was
// out of range and always go to exception.
// If result < 0x7fffffff, go to done, result fetched.
cmn(result, Operand(1));
b(mi, &exception);
b(done);
// Input is in ]-inf, -0[.
// If x is a non integer negative number,
// floor(x) <=> round_to_zero(x) - 1.
bind(&negative);
sub(result, result, Operand(1), SetCC);
// If result is still negative, go to done, result fetched.
// Else, we had an overflow and we fall through exception.
b(mi, done);
bind(&exception);
}
void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
DwVfpRegister double_input,
Label* done) {
LowDwVfpRegister double_scratch = kScratchDoubleReg;
vcvt_s32_f64(double_scratch.low(), double_input);
vmov(result, double_scratch.low());
// If result is not saturated (0x7fffffff or 0x80000000), we are done.
sub(ip, result, Operand(1));
cmp(ip, Operand(0x7ffffffe));
b(lt, done);
}
void MacroAssembler::TruncateDoubleToI(Register result,
DwVfpRegister double_input) {
Label done;
TryInlineTruncateDoubleToI(result, double_input, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(lr);
sub(sp, sp, Operand(kDoubleSize)); // Put input on stack.
vstr(double_input, MemOperand(sp, 0));
DoubleToIStub stub(isolate(), sp, result, 0, true, true);
CallStub(&stub);
add(sp, sp, Operand(kDoubleSize));
pop(lr);
bind(&done);
}
void MacroAssembler::TruncateHeapNumberToI(Register result,
Register object) {
Label done;
LowDwVfpRegister double_scratch = kScratchDoubleReg;
DCHECK(!result.is(object));
vldr(double_scratch,
MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag));
TryInlineTruncateDoubleToI(result, double_scratch, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(lr);
DoubleToIStub stub(isolate(),
object,
result,
HeapNumber::kValueOffset - kHeapObjectTag,
true,
true);
CallStub(&stub);
pop(lr);
bind(&done);
}
void MacroAssembler::TruncateNumberToI(Register object,
Register result,
Register heap_number_map,
Register scratch1,
Label* not_number) {
Label done;
DCHECK(!result.is(object));
UntagAndJumpIfSmi(result, object, &done);
JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
TruncateHeapNumberToI(result, object);
bind(&done);
}
void MacroAssembler::GetLeastBitsFromSmi(Register dst,
Register src,
int num_least_bits) {
if (CpuFeatures::IsSupported(ARMv7) && !predictable_code_size()) {
ubfx(dst, src, kSmiTagSize, num_least_bits);
} else {
SmiUntag(dst, src);
and_(dst, dst, Operand((1 << num_least_bits) - 1));
}
}
void MacroAssembler::GetLeastBitsFromInt32(Register dst,
Register src,
int num_least_bits) {
and_(dst, src, Operand((1 << num_least_bits) - 1));
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles) {
// All parameters are on the stack. r0 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r0, Operand(num_arguments));
mov(r1, Operand(ExternalReference(f, isolate())));
CEntryStub stub(isolate(), 1, save_doubles);
CallStub(&stub);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
mov(r0, Operand(num_arguments));
mov(r1, Operand(ext));
CEntryStub stub(isolate(), 1);
CallStub(&stub);
}
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r0, Operand(num_arguments));
JumpToExternalReference(ext);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size) {
TailCallExternalReference(ExternalReference(fid, isolate()),
num_arguments,
result_size);
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
#if defined(__thumb__)
// Thumb mode builtin.
DCHECK((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
#endif
mov(r1, Operand(builtin));
CEntryStub stub(isolate(), 1);
Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a builtin without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
GetBuiltinEntry(r2, id);
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(r2));
Call(r2);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
Jump(r2);
}
}
void MacroAssembler::GetBuiltinFunction(Register target,
Builtins::JavaScript id) {
// Load the builtins object into target register.
ldr(target,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
// Load the JavaScript builtin function from the builtins object.
ldr(target, FieldMemOperand(target,
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
DCHECK(!target.is(r1));
GetBuiltinFunction(r1, id);
// Load the code entry point from the builtins object.
ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch1, Operand(value));
mov(scratch2, Operand(ExternalReference(counter)));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch2, Operand(ExternalReference(counter)));
ldr(scratch1, MemOperand(scratch2));
add(scratch1, scratch1, Operand(value));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch2, Operand(ExternalReference(counter)));
ldr(scratch1, MemOperand(scratch2));
sub(scratch1, scratch1, Operand(value));
str(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
if (emit_debug_code())
Check(cond, reason);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
DCHECK(!elements.is(ip));
Label ok;
push(elements);
ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
LoadRoot(ip, Heap::kFixedDoubleArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
cmp(elements, ip);
b(eq, &ok);
Abort(kJSObjectWithFastElementsMapHasSlowElements);
bind(&ok);
pop(elements);
}
}
void MacroAssembler::Check(Condition cond, BailoutReason reason) {
Label L;
b(cond, &L);
Abort(reason);
// will not return here
bind(&L);
}
void MacroAssembler::Abort(BailoutReason reason) {
Label abort_start;
bind(&abort_start);
#ifdef DEBUG
const char* msg = GetBailoutReason(reason);
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
if (FLAG_trap_on_abort) {
stop(msg);
return;
}
#endif
mov(r0, Operand(Smi::FromInt(reason)));
push(r0);
// Disable stub call restrictions to always allow calls to abort.
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
CallRuntime(Runtime::kAbort, 1);
} else {
CallRuntime(Runtime::kAbort, 1);
}
// will not return here
if (is_const_pool_blocked()) {
// If the calling code cares about the exact number of
// instructions generated, we insert padding here to keep the size
// of the Abort macro constant.
static const int kExpectedAbortInstructions = 7;
int abort_instructions = InstructionsGeneratedSince(&abort_start);
DCHECK(abort_instructions <= kExpectedAbortInstructions);
while (abort_instructions++ < kExpectedAbortInstructions) {
nop();
}
}
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in esi).
mov(dst, cp);
}
}
void MacroAssembler::LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match) {
// Load the global or builtins object from the current context.
ldr(scratch,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
// Check that the function's map is the same as the expected cached map.
ldr(scratch,
MemOperand(scratch,
Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
size_t offset = expected_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
ldr(ip, FieldMemOperand(scratch, offset));
cmp(map_in_out, ip);
b(ne, no_map_match);
// Use the transitioned cached map.
offset = transitioned_kind * kPointerSize +
FixedArrayBase::kHeaderSize;
ldr(map_in_out, FieldMemOperand(scratch, offset));
}
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
// Load the global or builtins object from the current context.
ldr(function,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
// Load the native context from the global or builtins object.
ldr(function, FieldMemOperand(function,
GlobalObject::kNativeContextOffset));
// Load the function from the native context.
ldr(function, MemOperand(function, Context::SlotOffset(index)));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch) {
// Load the initial map. The global functions all have initial maps.
ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
b(&ok);
bind(&fail);
Abort(kGlobalFunctionsMustHaveInitialMap);
bind(&ok);
}
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
Register reg,
Register scratch,
Label* not_power_of_two_or_zero) {
sub(scratch, reg, Operand(1), SetCC);
b(mi, not_power_of_two_or_zero);
tst(scratch, reg);
b(ne, not_power_of_two_or_zero);
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(
Register reg,
Register scratch,
Label* zero_and_neg,
Label* not_power_of_two) {
sub(scratch, reg, Operand(1), SetCC);
b(mi, zero_and_neg);
tst(scratch, reg);
b(ne, not_power_of_two);
}
void MacroAssembler::JumpIfNotBothSmi(Register reg1,
Register reg2,
Label* on_not_both_smi) {
STATIC_ASSERT(kSmiTag == 0);
tst(reg1, Operand(kSmiTagMask));
tst(reg2, Operand(kSmiTagMask), eq);
b(ne, on_not_both_smi);
}
void MacroAssembler::UntagAndJumpIfSmi(
Register dst, Register src, Label* smi_case) {
STATIC_ASSERT(kSmiTag == 0);
SmiUntag(dst, src, SetCC);
b(cc, smi_case); // Shifter carry is not set for a smi.
}
void MacroAssembler::UntagAndJumpIfNotSmi(
Register dst, Register src, Label* non_smi_case) {
STATIC_ASSERT(kSmiTag == 0);
SmiUntag(dst, src, SetCC);
b(cs, non_smi_case); // Shifter carry is set for a non-smi.
}
void MacroAssembler::JumpIfEitherSmi(Register reg1,
Register reg2,
Label* on_either_smi) {
STATIC_ASSERT(kSmiTag == 0);
tst(reg1, Operand(kSmiTagMask));
tst(reg2, Operand(kSmiTagMask), ne);
b(eq, on_either_smi);
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Check(ne, kOperandIsASmi);
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Check(eq, kOperandIsNotSmi);
}
}
void MacroAssembler::AssertString(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Check(ne, kOperandIsASmiAndNotAString);
push(object);
ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
pop(object);
Check(lo, kOperandIsNotAString);
}
}
void MacroAssembler::AssertName(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
tst(object, Operand(kSmiTagMask));
Check(ne, kOperandIsASmiAndNotAName);
push(object);
ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(object, object, LAST_NAME_TYPE);
pop(object);
Check(le, kOperandIsNotAName);
}
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
Register scratch) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
CompareRoot(object, Heap::kUndefinedValueRootIndex);
b(eq, &done_checking);
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
Assert(eq, kExpectedUndefinedOrCell);
bind(&done_checking);
}
}
void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
if (emit_debug_code()) {
CompareRoot(reg, index);
Check(eq, kHeapNumberMapRegisterClobbered);
}
}
void MacroAssembler::JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number) {
ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
cmp(scratch, heap_number_map);
b(ne, on_not_heap_number);
}
void MacroAssembler::LookupNumberStringCache(Register object,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch3;
// Load the number string cache.
LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
// Divide length by two (length is a smi).
mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
sub(mask, mask, Operand(1)); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Label is_smi;
Label load_result_from_cache;
JumpIfSmi(object, &is_smi);
CheckMap(object,
scratch1,
Heap::kHeapNumberMapRootIndex,
not_found,
DONT_DO_SMI_CHECK);
STATIC_ASSERT(8 == kDoubleSize);
add(scratch1,
object,
Operand(HeapNumber::kValueOffset - kHeapObjectTag));
ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
eor(scratch1, scratch1, Operand(scratch2));
and_(scratch1, scratch1, Operand(mask));
// Calculate address of entry in string cache: each entry consists
// of two pointer sized fields.
add(scratch1,
number_string_cache,
Operand(scratch1, LSL, kPointerSizeLog2 + 1));
Register probe = mask;
ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
JumpIfSmi(probe, not_found);
sub(scratch2, object, Operand(kHeapObjectTag));
vldr(d0, scratch2, HeapNumber::kValueOffset);
sub(probe, probe, Operand(kHeapObjectTag));
vldr(d1, probe, HeapNumber::kValueOffset);
VFPCompareAndSetFlags(d0, d1);
b(ne, not_found); // The cache did not contain this value.
b(&load_result_from_cache);
bind(&is_smi);
Register scratch = scratch1;
and_(scratch, mask, Operand(object, ASR, 1));
// Calculate address of entry in string cache: each entry consists
// of two pointer sized fields.
add(scratch,
number_string_cache,
Operand(scratch, LSL, kPointerSizeLog2 + 1));
// Check if the entry is the smi we are looking for.
ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
cmp(object, probe);
b(ne, not_found);
// Get the result from the cache.
bind(&load_result_from_cache);
ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
IncrementCounter(isolate()->counters()->number_to_string_native(),
1,
scratch1,
scratch2);
}
void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure) {
// Test that both first and second are sequential one-byte strings.
// Assume that they are non-smis.
ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
scratch2, failure);
}
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that neither is a smi.
and_(scratch1, first, Operand(second));
JumpIfSmi(scratch1, failure);
JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
scratch2, failure);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
Label* not_unique_name) {
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
Label succeed;
tst(reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
b(eq, &succeed);
cmp(reg, Operand(SYMBOL_TYPE));
b(ne, not_unique_name);
bind(&succeed);
}
// Allocates a heap number or jumps to the need_gc label if the young space
// is full and a scavenge is needed.
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required,
TaggingMode tagging_mode,
MutableMode mode) {
// Allocate an object in the heap for the heap number and tag it as a heap
// object.
Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
Heap::RootListIndex map_index = mode == MUTABLE
? Heap::kMutableHeapNumberMapRootIndex
: Heap::kHeapNumberMapRootIndex;
AssertIsRoot(heap_number_map, map_index);
// Store heap number map in the allocated object.
if (tagging_mode == TAG_RESULT) {
str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
} else {
str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
}
}
void MacroAssembler::AllocateHeapNumberWithValue(Register result,
DwVfpRegister value,
Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required) {
AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
sub(scratch1, result, Operand(kHeapObjectTag));
vstr(value, scratch1, HeapNumber::kValueOffset);
}
// Copies a fixed number of fields of heap objects from src to dst.
void MacroAssembler::CopyFields(Register dst,
Register src,
LowDwVfpRegister double_scratch,
int field_count) {
int double_count = field_count / (DwVfpRegister::kSizeInBytes / kPointerSize);
for (int i = 0; i < double_count; i++) {
vldr(double_scratch, FieldMemOperand(src, i * DwVfpRegister::kSizeInBytes));
vstr(double_scratch, FieldMemOperand(dst, i * DwVfpRegister::kSizeInBytes));
}
STATIC_ASSERT(SwVfpRegister::kSizeInBytes == kPointerSize);
STATIC_ASSERT(2 * SwVfpRegister::kSizeInBytes == DwVfpRegister::kSizeInBytes);
int remain = field_count % (DwVfpRegister::kSizeInBytes / kPointerSize);
if (remain != 0) {
vldr(double_scratch.low(),
FieldMemOperand(src, (field_count - 1) * kPointerSize));
vstr(double_scratch.low(),
FieldMemOperand(dst, (field_count - 1) * kPointerSize));
}
}
void MacroAssembler::CopyBytes(Register src,
Register dst,
Register length,
Register scratch) {
Label align_loop_1, word_loop, byte_loop, byte_loop_1, done;
// Align src before copying in word size chunks.
cmp(length, Operand(kPointerSize));
b(le, &byte_loop);
bind(&align_loop_1);
tst(src, Operand(kPointerSize - 1));
b(eq, &word_loop);
ldrb(scratch, MemOperand(src, 1, PostIndex));
strb(scratch, MemOperand(dst, 1, PostIndex));
sub(length, length, Operand(1), SetCC);
b(&align_loop_1);
// Copy bytes in word size chunks.
bind(&word_loop);
if (emit_debug_code()) {
tst(src, Operand(kPointerSize - 1));
Assert(eq, kExpectingAlignmentForCopyBytes);
}
cmp(length, Operand(kPointerSize));
b(lt, &byte_loop);
ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
if (CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) {
str(scratch, MemOperand(dst, kPointerSize, PostIndex));
} else {
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
mov(scratch, Operand(scratch, LSR, 8));
strb(scratch, MemOperand(dst, 1, PostIndex));
}
sub(length, length, Operand(kPointerSize));
b(&word_loop);
// Copy the last bytes if any left.
bind(&byte_loop);
cmp(length, Operand::Zero());
b(eq, &done);
bind(&byte_loop_1);
ldrb(scratch, MemOperand(src, 1, PostIndex));
strb(scratch, MemOperand(dst, 1, PostIndex));
sub(length, length, Operand(1), SetCC);
b(ne, &byte_loop_1);
bind(&done);
}
void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
Register end_offset,
Register filler) {
Label loop, entry;
b(&entry);
bind(&loop);
str(filler, MemOperand(start_offset, kPointerSize, PostIndex));
bind(&entry);
cmp(start_offset, end_offset);
b(lt, &loop);
}
void MacroAssembler::CheckFor32DRegs(Register scratch) {
mov(scratch, Operand(ExternalReference::cpu_features()));
ldr(scratch, MemOperand(scratch));
tst(scratch, Operand(1u << VFP32DREGS));
}
void MacroAssembler::SaveFPRegs(Register location, Register scratch) {
CheckFor32DRegs(scratch);
vstm(db_w, location, d16, d31, ne);
sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
vstm(db_w, location, d0, d15);
}
void MacroAssembler::RestoreFPRegs(Register location, Register scratch) {
CheckFor32DRegs(scratch);
vldm(ia_w, location, d0, d15);
vldm(ia_w, location, d16, d31, ne);
add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure) {
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
and_(scratch1, first, Operand(kFlatOneByteStringMask));
and_(scratch2, second, Operand(kFlatOneByteStringMask));
cmp(scratch1, Operand(kFlatOneByteStringTag));
// Ignore second test if first test failed.
cmp(scratch2, Operand(kFlatOneByteStringTag), eq);
b(ne, failure);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
Register scratch,
Label* failure) {
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
and_(scratch, type, Operand(kFlatOneByteStringMask));
cmp(scratch, Operand(kFlatOneByteStringTag));
b(ne, failure);
}
static const int kRegisterPassedArguments = 4;
int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments) {
int stack_passed_words = 0;
if (use_eabi_hardfloat()) {
// In the hard floating point calling convention, we can use
// all double registers to pass doubles.
if (num_double_arguments > DoubleRegister::NumRegisters()) {
stack_passed_words +=
2 * (num_double_arguments - DoubleRegister::NumRegisters());
}
} else {
// In the soft floating point calling convention, every double
// argument is passed using two registers.
num_reg_arguments += 2 * num_double_arguments;
}
// Up to four simple arguments are passed in registers r0..r3.
if (num_reg_arguments > kRegisterPassedArguments) {
stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
}
return stack_passed_words;
}
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
uint32_t encoding_mask) {
Label is_object;
SmiTst(string);
Check(ne, kNonObject);
ldr(ip, FieldMemOperand(string, HeapObject::kMapOffset));
ldrb(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset));
and_(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask));
cmp(ip, Operand(encoding_mask));
Check(eq, kUnexpectedStringType);
// The index is assumed to be untagged coming in, tag it to compare with the
// string length without using a temp register, it is restored at the end of
// this function.
Label index_tag_ok, index_tag_bad;
TrySmiTag(index, index, &index_tag_bad);
b(&index_tag_ok);
bind(&index_tag_bad);
Abort(kIndexIsTooLarge);
bind(&index_tag_ok);
ldr(ip, FieldMemOperand(string, String::kLengthOffset));
cmp(index, ip);
Check(lt, kIndexIsTooLarge);
cmp(index, Operand(Smi::FromInt(0)));
Check(ge, kIndexIsNegative);
SmiUntag(index, index);
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
int num_double_arguments,
Register scratch) {
int frame_alignment = ActivationFrameAlignment();
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (frame_alignment > kPointerSize) {
// Make stack end at alignment and make room for num_arguments - 4 words
// and the original value of sp.
mov(scratch, sp);
sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
and_(sp, sp, Operand(-frame_alignment));
str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
sub(sp, sp, Operand(stack_passed_arguments * kPointerSize));
}
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
Register scratch) {
PrepareCallCFunction(num_reg_arguments, 0, scratch);
}
void MacroAssembler::MovToFloatParameter(DwVfpRegister src) {
DCHECK(src.is(d0));
if (!use_eabi_hardfloat()) {
vmov(r0, r1, src);
}
}
// On ARM this is just a synonym to make the purpose clear.
void MacroAssembler::MovToFloatResult(DwVfpRegister src) {
MovToFloatParameter(src);
}
void MacroAssembler::MovToFloatParameters(DwVfpRegister src1,
DwVfpRegister src2) {
DCHECK(src1.is(d0));
DCHECK(src2.is(d1));
if (!use_eabi_hardfloat()) {
vmov(r0, r1, src1);
vmov(r2, r3, src2);
}
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments) {
mov(ip, Operand(function));
CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(Register function,
int num_reg_arguments,
int num_double_arguments) {
CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunction(Register function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments) {
DCHECK(has_frame());
// Make sure that the stack is aligned before calling a C function unless
// running in the simulator. The simulator has its own alignment check which
// provides more information.
#if V8_HOST_ARCH_ARM
if (emit_debug_code()) {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
Label alignment_as_expected;
tst(sp, Operand(frame_alignment_mask));
b(eq, &alignment_as_expected);
// Don't use Check here, as it will call Runtime_Abort possibly
// re-entering here.
stop("Unexpected alignment");
bind(&alignment_as_expected);
}
}
#endif
// Just call directly. The function called cannot cause a GC, or
// allow preemption, so the return address in the link register
// stays correct.
Call(function);
int stack_passed_arguments = CalculateStackPassedWords(
num_reg_arguments, num_double_arguments);
if (ActivationFrameAlignment() > kPointerSize) {
ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
} else {
add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
}
}
void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
Register result,
Register scratch) {
Label small_constant_pool_load, load_result;
ldr(result, MemOperand(ldr_location));
if (FLAG_enable_ool_constant_pool) {
// Check if this is an extended constant pool load.
and_(scratch, result, Operand(GetConsantPoolLoadMask()));
teq(scratch, Operand(GetConsantPoolLoadPattern()));
b(eq, &small_constant_pool_load);
if (emit_debug_code()) {
// Check that the instruction sequence is:
// movw reg, #offset_low
// movt reg, #offset_high
// ldr reg, [pp, reg]
Instr patterns[] = {GetMovWPattern(), GetMovTPattern(),
GetLdrPpRegOffsetPattern()};
for (int i = 0; i < 3; i++) {
ldr(result, MemOperand(ldr_location, i * kInstrSize));
and_(result, result, Operand(patterns[i]));
cmp(result, Operand(patterns[i]));
Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool);
}
// Result was clobbered. Restore it.
ldr(result, MemOperand(ldr_location));
}
// Get the offset into the constant pool. First extract movw immediate into
// result.
and_(scratch, result, Operand(0xfff));
mov(ip, Operand(result, LSR, 4));
and_(ip, ip, Operand(0xf000));
orr(result, scratch, Operand(ip));
// Then extract movt immediate and or into result.
ldr(scratch, MemOperand(ldr_location, kInstrSize));
and_(ip, scratch, Operand(0xf0000));
orr(result, result, Operand(ip, LSL, 12));
and_(scratch, scratch, Operand(0xfff));
orr(result, result, Operand(scratch, LSL, 16));
b(&load_result);
}
bind(&small_constant_pool_load);
if (emit_debug_code()) {
// Check that the instruction is a ldr reg, [<pc or pp> + offset] .
and_(result, result, Operand(GetConsantPoolLoadPattern()));
cmp(result, Operand(GetConsantPoolLoadPattern()));
Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool);
// Result was clobbered. Restore it.
ldr(result, MemOperand(ldr_location));
}
// Get the offset into the constant pool.
const uint32_t kLdrOffsetMask = (1 << 12) - 1;
and_(result, result, Operand(kLdrOffsetMask));
bind(&load_result);
// Get the address of the constant.
if (FLAG_enable_ool_constant_pool) {
add(result, pp, Operand(result));
} else {
add(result, ldr_location, Operand(result));
add(result, result, Operand(Instruction::kPCReadOffset));
}
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met) {
Bfc(scratch, object, 0, kPageSizeBits);
ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
tst(scratch, Operand(mask));
b(cc, condition_met);
}
void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
Register scratch,
Label* if_deprecated) {
if (map->CanBeDeprecated()) {
mov(scratch, Operand(map));
ldr(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
tst(scratch, Operand(Map::Deprecated::kMask));
b(ne, if_deprecated);
}
}
void MacroAssembler::JumpIfBlack(Register object,
Register scratch0,
Register scratch1,
Label* on_black) {
HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
}
void MacroAssembler::HasColor(Register object,
Register bitmap_scratch,
Register mask_scratch,
Label* has_color,
int first_bit,
int second_bit) {
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
GetMarkBits(object, bitmap_scratch, mask_scratch);
Label other_color, word_boundary;
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
tst(ip, Operand(mask_scratch));
b(first_bit == 1 ? eq : ne, &other_color);
// Shift left 1 by adding.
add(mask_scratch, mask_scratch, Operand(mask_scratch), SetCC);
b(eq, &word_boundary);
tst(ip, Operand(mask_scratch));
b(second_bit == 1 ? ne : eq, has_color);
jmp(&other_color);
bind(&word_boundary);
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize));
tst(ip, Operand(1));
b(second_bit == 1 ? ne : eq, has_color);
bind(&other_color);
}
// Detect some, but not all, common pointer-free objects. This is used by the
// incremental write barrier which doesn't care about oddballs (they are always
// marked black immediately so this code is not hit).
void MacroAssembler::JumpIfDataObject(Register value,
Register scratch,
Label* not_data_object) {
Label is_data_object;
ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
b(eq, &is_data_object);
DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
tst(scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
b(ne, not_data_object);
bind(&is_data_object);
}
void MacroAssembler::GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg) {
DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
and_(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
Ubfx(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
Ubfx(ip, addr_reg, kLowBits, kPageSizeBits - kLowBits);
add(bitmap_reg, bitmap_reg, Operand(ip, LSL, kPointerSizeLog2));
mov(ip, Operand(1));
mov(mask_reg, Operand(ip, LSL, mask_reg));
}
void MacroAssembler::EnsureNotWhite(
Register value,
Register bitmap_scratch,
Register mask_scratch,
Register load_scratch,
Label* value_is_white_and_not_data) {
DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
Label done;
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
tst(mask_scratch, load_scratch);
b(ne, &done);
if (emit_debug_code()) {
// Check for impossible bit pattern.
Label ok;
// LSL may overflow, making the check conservative.
tst(load_scratch, Operand(mask_scratch, LSL, 1));
b(eq, &ok);
stop("Impossible marking bit pattern");
bind(&ok);
}
// Value is white. We check whether it is data that doesn't need scanning.
// Currently only checks for HeapNumber and non-cons strings.
Register map = load_scratch; // Holds map while checking type.
Register length = load_scratch; // Holds length of object after testing type.
Label is_data_object;
// Check for heap-number
ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
CompareRoot(map, Heap::kHeapNumberMapRootIndex);
mov(length, Operand(HeapNumber::kSize), LeaveCC, eq);
b(eq, &is_data_object);
// Check for strings.
DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
// If it's a string and it's not a cons string then it's an object containing
// no GC pointers.
Register instance_type = load_scratch;
ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
tst(instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
b(ne, value_is_white_and_not_data);
// It's a non-indirect (non-cons and non-slice) string.
// If it's external, the length is just ExternalString::kSize.
// Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
// External strings are the only ones with the kExternalStringTag bit
// set.
DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
tst(instance_type, Operand(kExternalStringTag));
mov(length, Operand(ExternalString::kSize), LeaveCC, ne);
b(ne, &is_data_object);
// Sequential string, either Latin1 or UC16.
// For Latin1 (char-size of 1) we shift the smi tag away to get the length.
// For UC16 (char-size of 2) we just leave the smi tag in place, thereby
// getting the length multiplied by 2.
DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
DCHECK(kSmiTag == 0 && kSmiTagSize == 1);
ldr(ip, FieldMemOperand(value, String::kLengthOffset));
tst(instance_type, Operand(kStringEncodingMask));
mov(ip, Operand(ip, LSR, 1), LeaveCC, ne);
add(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
and_(length, length, Operand(~kObjectAlignmentMask));
bind(&is_data_object);
// Value is a data object, and it is white. Mark it black. Since we know
// that the object is white we can make it black by flipping one bit.
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
orr(ip, ip, Operand(mask_scratch));
str(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
and_(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
add(ip, ip, Operand(length));
str(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
bind(&done);
}
void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
Usat(output_reg, 8, Operand(input_reg));
}
void MacroAssembler::ClampDoubleToUint8(Register result_reg,
DwVfpRegister input_reg,
LowDwVfpRegister double_scratch) {
Label done;
// Handle inputs >= 255 (including +infinity).
Vmov(double_scratch, 255.0, result_reg);
mov(result_reg, Operand(255));
VFPCompareAndSetFlags(input_reg, double_scratch);
b(ge, &done);
// For inputs < 255 (including negative) vcvt_u32_f64 with round-to-nearest
// rounding mode will provide the correct result.
vcvt_u32_f64(double_scratch.low(), input_reg, kFPSCRRounding);
vmov(result_reg, double_scratch.low());
bind(&done);
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
}
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}
void MacroAssembler::EnumLength(Register dst, Register map) {
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
and_(dst, dst, Operand(Map::EnumLengthBits::kMask));
SmiTag(dst);
}
void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
Register empty_fixed_array_value = r6;
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
Label next, start;
mov(r2, r0);
// Check if the enum length field is properly initialized, indicating that
// there is an enum cache.
ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
EnumLength(r3, r1);
cmp(r3, Operand(Smi::FromInt(kInvalidEnumCacheSentinel)));
b(eq, call_runtime);
jmp(&start);
bind(&next);
ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset));
// For all objects but the receiver, check that the cache is empty.
EnumLength(r3, r1);
cmp(r3, Operand(Smi::FromInt(0)));
b(ne, call_runtime);
bind(&start);
// Check that there are no elements. Register r2 contains the current JS
// object we've reached through the prototype chain.
Label no_elements;
ldr(r2, FieldMemOperand(r2, JSObject::kElementsOffset));
cmp(r2, empty_fixed_array_value);
b(eq, &no_elements);
// Second chance, the object may be using the empty slow element dictionary.
CompareRoot(r2, Heap::kEmptySlowElementDictionaryRootIndex);
b(ne, call_runtime);
bind(&no_elements);
ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset));
cmp(r2, null_value);
b(ne, &next);
}
void MacroAssembler::TestJSArrayForAllocationMemento(
Register receiver_reg,
Register scratch_reg,
Label* no_memento_found) {
ExternalReference new_space_start =
ExternalReference::new_space_start(isolate());
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
add(scratch_reg, receiver_reg,
Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
cmp(scratch_reg, Operand(new_space_start));
b(lt, no_memento_found);
mov(ip, Operand(new_space_allocation_top));
ldr(ip, MemOperand(ip));
cmp(scratch_reg, ip);
b(gt, no_memento_found);
ldr(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
cmp(scratch_reg,
Operand(isolate()->factory()->allocation_memento_map()));
}
Register GetRegisterThatIsNotOneOf(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6) {
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
Register candidate = Register::FromAllocationIndex(i);
if (regs & candidate.bit()) continue;
return candidate;
}
UNREACHABLE();
return no_reg;
}
void MacroAssembler::JumpIfDictionaryInPrototypeChain(
Register object,
Register scratch0,
Register scratch1,
Label* found) {
DCHECK(!scratch1.is(scratch0));
Factory* factory = isolate()->factory();
Register current = scratch0;
Label loop_again;
// scratch contained elements pointer.
mov(current, object);
// Loop based on the map going up the prototype chain.
bind(&loop_again);
ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
ldr(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
DecodeField<Map::ElementsKindBits>(scratch1);
cmp(scratch1, Operand(DICTIONARY_ELEMENTS));
b(eq, found);
ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
cmp(current, Operand(factory->null_value()));
b(ne, &loop_again);
}
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6,
Register reg7,
Register reg8) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
reg7.is_valid() + reg8.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
if (reg7.is_valid()) regs |= reg7.bit();
if (reg8.is_valid()) regs |= reg8.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
#endif
CodePatcher::CodePatcher(byte* address,
int instructions,
FlushICache flush_cache)
: address_(address),
size_(instructions * Assembler::kInstrSize),
masm_(NULL, address, size_ + Assembler::kGap),
flush_cache_(flush_cache) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
if (flush_cache_ == FLUSH) {
CpuFeatures::FlushICache(address_, size_);
}
// Check that the code was patched as expected.
DCHECK(masm_.pc_ == address_ + size_);
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void CodePatcher::Emit(Instr instr) {
masm()->emit(instr);
}
void CodePatcher::Emit(Address addr) {
masm()->emit(reinterpret_cast<Instr>(addr));
}
void CodePatcher::EmitCondition(Condition cond) {
Instr instr = Assembler::instr_at(masm_.pc_);
instr = (instr & ~kCondMask) | cond;
masm_.emit(instr);
}
void MacroAssembler::TruncatingDiv(Register result,
Register dividend,
int32_t divisor) {
DCHECK(!dividend.is(result));
DCHECK(!dividend.is(ip));
DCHECK(!result.is(ip));
base::MagicNumbersForDivision<uint32_t> mag =
base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
mov(ip, Operand(mag.multiplier));
smull(ip, result, dividend, ip);
bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
if (divisor > 0 && neg) {
add(result, result, Operand(dividend));
}
if (divisor < 0 && !neg && mag.multiplier > 0) {
sub(result, result, Operand(dividend));
}
if (mag.shift > 0) mov(result, Operand(result, ASR, mag.shift));
add(result, result, Operand(dividend, LSR, 31));
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM