blob: 24a417a849709c5154479dcd64c03bc72b180358 [file] [log] [blame]
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/**
* This file provides additional API on top of the default one for making
* API calls, which come from embedder C++ functions. The functions are being
* called directly from optimized code, doing all the necessary typechecks
* in the compiler itself, instead of on the embedder side. Hence the "fast"
* in the name. Example usage might look like:
*
* \code
* void FastMethod(int param, bool another_param);
*
* v8::FunctionTemplate::New(isolate, SlowCallback, data,
* signature, length, constructor_behavior
* side_effect_type,
* &v8::CFunction::Make(FastMethod));
* \endcode
*
* An example for custom embedder type support might employ a way to wrap/
* unwrap various C++ types in JSObject instances, e.g:
*
* \code
*
* // Represents the way this type system maps C++ and JS values.
* struct WrapperTypeInfo {
* // Store e.g. a method to map from exposed C++ types to the already
* // created v8::FunctionTemplate's for instantiating them.
* };
*
* // Helper method with a sanity check.
* template <typename T, int offset>
* inline T* GetInternalField(v8::Local<v8::Object> wrapper) {
* assert(offset < wrapper->InternalFieldCount());
* return reinterpret_cast<T*>(
* wrapper->GetAlignedPointerFromInternalField(offset));
* }
*
* // Returns the type info from a wrapper JS object.
* inline const WrapperTypeInfo* ToWrapperTypeInfo(
* v8::Local<v8::Object> wrapper) {
* return GetInternalField<WrapperTypeInfo,
* kV8EmbedderWrapperTypeIndex>(wrapper);
* }
*
* class CustomEmbedderType {
* public:
* static constexpr const WrapperTypeInfo* GetWrapperTypeInfo() {
* return &custom_type_wrapper_type_info;
* }
* // Returns the raw C object from a wrapper JS object.
* static CustomEmbedderType* Unwrap(v8::Local<v8::Object> wrapper) {
* return GetInternalField<CustomEmbedderType,
* kV8EmbedderWrapperObjectIndex>(wrapper);
* }
* static void FastMethod(CustomEmbedderType* receiver, int param) {
* assert(receiver != nullptr);
* // Type checks are already done by the optimized code.
* // Then call some performance-critical method like:
* // receiver->Method(param);
* }
*
* static void SlowMethod(
* const v8::FunctionCallbackInfo<v8::Value>& info) {
* v8::Local<v8::Object> instance =
* v8::Local<v8::Object>::Cast(info.Holder());
* CustomEmbedderType* receiver = Unwrap(instance);
* // TODO: Do type checks and extract {param}.
* FastMethod(receiver, param);
* }
*
* private:
* static const WrapperTypeInfo custom_type_wrapper_type_info;
* };
*
* // Support for custom embedder types via specialization of WrapperTraits.
* namespace v8 {
* template <>
* class WrapperTraits<CustomEmbedderType> {
* public:
* static const void* GetTypeInfo() {
* // We use the already defined machinery for the custom type.
* return CustomEmbedderType::GetWrapperTypeInfo();
* }
* };
* } // namespace v8
*
* // The constants kV8EmbedderWrapperTypeIndex and
* // kV8EmbedderWrapperObjectIndex describe the offsets for the type info
* // struct (the one returned by WrapperTraits::GetTypeInfo) and the
* // native object, when expressed as internal field indices within a
* // JSObject. The existance of this helper function assumes that all
* // embedder objects have their JSObject-side type info at the same
* // offset, but this is not a limitation of the API itself. For a detailed
* // use case, see the third example.
* static constexpr int kV8EmbedderWrapperTypeIndex = 0;
* static constexpr int kV8EmbedderWrapperObjectIndex = 1;
*
* // The following setup function can be templatized based on
* // the {embedder_object} argument.
* void SetupCustomEmbedderObject(v8::Isolate* isolate,
* v8::Local<v8::Context> context,
* CustomEmbedderType* embedder_object) {
* isolate->set_embedder_wrapper_type_index(
* kV8EmbedderWrapperTypeIndex);
* isolate->set_embedder_wrapper_object_index(
* kV8EmbedderWrapperObjectIndex);
*
* v8::CFunction c_func =
* MakeV8CFunction(CustomEmbedderType::FastMethod);
*
* Local<v8::FunctionTemplate> method_template =
* v8::FunctionTemplate::New(
* isolate, CustomEmbedderType::SlowMethod, v8::Local<v8::Value>(),
* v8::Local<v8::Signature>(), 1, v8::ConstructorBehavior::kAllow,
* v8::SideEffectType::kHasSideEffect, &c_func);
*
* v8::Local<v8::ObjectTemplate> object_template =
* v8::ObjectTemplate::New(isolate);
* object_template->SetInternalFieldCount(
* kV8EmbedderWrapperObjectIndex + 1);
* object_template->Set(v8::String::NewFromUtf8(isolate, "method",
* v8::NewStringType::kNormal)
* .ToLocalChecked(), method_template);
*
* // Instantiate the wrapper JS object.
* v8::Local<v8::Object> object =
* object_template->NewInstance(context).ToLocalChecked();
* object->SetAlignedPointerInInternalField(
* kV8EmbedderWrapperObjectIndex,
* reinterpret_cast<void*>(embedder_object));
*
* // TODO: Expose {object} where it's necessary.
* }
* \endcode
*
* For instance if {object} is exposed via a global "obj" variable,
* one could write in JS:
* function hot_func() {
* obj.method(42);
* }
* and once {hot_func} gets optimized, CustomEmbedderType::FastMethod
* will be called instead of the slow version, with the following arguments:
* receiver := the {embedder_object} from above
* param := 42
*
* Currently only void return types are supported.
* Currently supported argument types:
* - pointer to an embedder type
* - bool
* - int32_t
* - uint32_t
* To be supported types:
* - int64_t
* - uint64_t
* - float32_t
* - float64_t
* - arrays of C types
* - arrays of embedder types
*/
#ifndef INCLUDE_V8_FAST_API_CALLS_H_
#define INCLUDE_V8_FAST_API_CALLS_H_
#include <stddef.h>
#include <stdint.h>
#include "v8config.h" // NOLINT(build/include)
namespace v8 {
class CTypeInfo {
public:
enum class Type : char {
kVoid,
kBool,
kInt32,
kUint32,
kInt64,
kUint64,
kFloat32,
kFloat64,
kUnwrappedApiObject,
};
enum ArgFlags : char {
None = 0,
IsArrayBit = 1 << 0, // This argument is first in an array of values.
};
static CTypeInfo FromWrapperType(const void* wrapper_type_info,
ArgFlags flags = ArgFlags::None) {
uintptr_t wrapper_type_info_ptr =
reinterpret_cast<uintptr_t>(wrapper_type_info);
// Check that the lower kIsWrapperTypeBit bits are 0's.
CHECK_EQ(
wrapper_type_info_ptr & ~(static_cast<uintptr_t>(~0)
<< static_cast<uintptr_t>(kIsWrapperTypeBit)),
0);
// TODO(mslekova): Refactor the manual bit manipulations to use
// PointerWithPayload instead.
return CTypeInfo(wrapper_type_info_ptr | flags | kIsWrapperTypeBit);
}
static constexpr CTypeInfo FromCType(Type ctype,
ArgFlags flags = ArgFlags::None) {
// ctype cannot be Type::kUnwrappedApiObject.
return CTypeInfo(
((static_cast<uintptr_t>(ctype) << kTypeOffset) & kTypeMask) | flags);
}
const void* GetWrapperInfo() const;
constexpr Type GetType() const {
if (payload_ & kIsWrapperTypeBit) {
return Type::kUnwrappedApiObject;
}
return static_cast<Type>((payload_ & kTypeMask) >> kTypeOffset);
}
constexpr bool IsArray() const { return payload_ & ArgFlags::IsArrayBit; }
private:
explicit constexpr CTypeInfo(uintptr_t payload) : payload_(payload) {}
// That must be the last bit after ArgFlags.
static constexpr uintptr_t kIsWrapperTypeBit = 1 << 1;
static constexpr uintptr_t kWrapperTypeInfoMask = static_cast<uintptr_t>(~0)
<< 2;
static constexpr unsigned int kTypeOffset = kIsWrapperTypeBit;
static constexpr unsigned int kTypeSize = 8 - kTypeOffset;
static constexpr uintptr_t kTypeMask =
(~(static_cast<uintptr_t>(~0) << kTypeSize)) << kTypeOffset;
const uintptr_t payload_;
};
class CFunctionInfo {
public:
virtual const CTypeInfo& ReturnInfo() const = 0;
virtual unsigned int ArgumentCount() const = 0;
virtual const CTypeInfo* ArgumentInfo() const = 0;
};
template <typename T>
class WrapperTraits {
public:
static const void* GetTypeInfo() {
static_assert(sizeof(T) != sizeof(T),
"WrapperTraits must be specialized for this type.");
return nullptr;
}
};
namespace internal {
template <typename T>
struct GetCType {
static_assert(sizeof(T) != sizeof(T), "Unsupported CType");
};
#define SPECIALIZE_GET_C_TYPE_FOR(ctype, ctypeinfo) \
template <> \
struct GetCType<ctype> { \
static constexpr CTypeInfo Get() { \
return CTypeInfo::FromCType(CTypeInfo::Type::ctypeinfo); \
} \
};
#define SUPPORTED_C_TYPES(V) \
V(void, kVoid) \
V(bool, kBool) \
V(int32_t, kInt32) \
V(uint32_t, kUint32) \
V(int64_t, kInt64) \
V(uint64_t, kUint64) \
V(float, kFloat32) \
V(double, kFloat64)
SUPPORTED_C_TYPES(SPECIALIZE_GET_C_TYPE_FOR)
template <typename T, typename = void>
struct EnableIfHasWrapperTypeInfo {};
template <>
struct EnableIfHasWrapperTypeInfo<void> {};
template <typename T>
struct EnableIfHasWrapperTypeInfo<T, decltype(WrapperTraits<T>::GetTypeInfo(),
void())> {
typedef void type;
};
// T* where T is a primitive (array of primitives).
template <typename T, typename = void>
struct GetCTypePointerImpl {
static constexpr CTypeInfo Get() {
return CTypeInfo::FromCType(GetCType<T>::Get().GetType(),
CTypeInfo::IsArrayBit);
}
};
// T* where T is an API object.
template <typename T>
struct GetCTypePointerImpl<T, typename EnableIfHasWrapperTypeInfo<T>::type> {
static constexpr CTypeInfo Get() {
return CTypeInfo::FromWrapperType(WrapperTraits<T>::GetTypeInfo());
}
};
// T** where T is a primitive. Not allowed.
template <typename T, typename = void>
struct GetCTypePointerPointerImpl {
static_assert(sizeof(T**) != sizeof(T**), "Unsupported type");
};
// T** where T is an API object (array of API objects).
template <typename T>
struct GetCTypePointerPointerImpl<
T, typename EnableIfHasWrapperTypeInfo<T>::type> {
static constexpr CTypeInfo Get() {
return CTypeInfo::FromWrapperType(WrapperTraits<T>::GetTypeInfo(),
CTypeInfo::IsArrayBit);
}
};
template <typename T>
struct GetCType<T**> : public GetCTypePointerPointerImpl<T> {};
template <typename T>
struct GetCType<T*> : public GetCTypePointerImpl<T> {};
template <typename R, typename... Args>
class CFunctionInfoImpl : public CFunctionInfo {
public:
CFunctionInfoImpl()
: return_info_(i::GetCType<R>::Get()),
arg_count_(sizeof...(Args)),
arg_info_{i::GetCType<Args>::Get()...} {
static_assert(i::GetCType<R>::Get().GetType() == CTypeInfo::Type::kVoid,
"Only void return types are currently supported.");
}
const CTypeInfo& ReturnInfo() const override { return return_info_; }
unsigned int ArgumentCount() const override { return arg_count_; }
const CTypeInfo* ArgumentInfo() const override { return arg_info_; }
private:
CTypeInfo return_info_;
const unsigned int arg_count_;
CTypeInfo arg_info_[sizeof...(Args)];
};
} // namespace internal
class V8_EXPORT CFunction {
public:
const CTypeInfo& ReturnInfo() const { return type_info_->ReturnInfo(); }
const CTypeInfo* ArgumentInfo() const { return type_info_->ArgumentInfo(); }
unsigned int ArgumentCount() const { return type_info_->ArgumentCount(); }
const void* GetAddress() const { return address_; }
const CFunctionInfo* GetTypeInfo() const { return type_info_; }
template <typename F>
static CFunction Make(F* func) {
return ArgUnwrap<F*>::Make(func);
}
private:
const void* address_;
const CFunctionInfo* type_info_;
CFunction(const void* address, const CFunctionInfo* type_info);
template <typename R, typename... Args>
static CFunctionInfo* GetCFunctionInfo() {
static internal::CFunctionInfoImpl<R, Args...> instance;
return &instance;
}
template <typename F>
class ArgUnwrap {
static_assert(sizeof(F) != sizeof(F),
"CFunction must be created from a function pointer.");
};
template <typename R, typename... Args>
class ArgUnwrap<R (*)(Args...)> {
public:
static CFunction Make(R (*func)(Args...)) {
return CFunction(reinterpret_cast<const void*>(func),
GetCFunctionInfo<R, Args...>());
}
};
};
} // namespace v8
#endif // INCLUDE_V8_FAST_API_CALLS_H_