| // Copyright 2017 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Parts of the implementation below: |
| |
| // Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1] |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file [2]. |
| // |
| // [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS |
| // [2] https://github.com/dart-lang/sdk/blob/master/LICENSE |
| |
| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file [3]. |
| // |
| // [3] https://golang.org/LICENSE |
| |
| #include "src/objects/bigint.h" |
| |
| #include <atomic> |
| |
| #include "src/base/numbers/double.h" |
| #include "src/bigint/bigint.h" |
| #include "src/execution/isolate-inl.h" |
| #include "src/execution/isolate-utils-inl.h" |
| #include "src/heap/factory.h" |
| #include "src/heap/heap-write-barrier-inl.h" |
| #include "src/heap/heap.h" |
| #include "src/numbers/conversions.h" |
| #include "src/objects/casting.h" |
| #include "src/objects/heap-number-inl.h" |
| #include "src/objects/instance-type-inl.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| |
| // Has to be the last include (doesn't have include guards): |
| #include "src/objects/object-macros.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // The MutableBigInt class is an implementation detail designed to prevent |
| // accidental mutation of a BigInt after its construction. Step-by-step |
| // construction of a BigInt must happen in terms of MutableBigInt, the |
| // final result is then passed through MutableBigInt::MakeImmutable and not |
| // modified further afterwards. |
| // Many of the functions in this class use arguments of type {BigIntBase}, |
| // indicating that they will be used in a read-only capacity, and both |
| // {BigInt} and {MutableBigInt} objects can be passed in. |
| V8_OBJECT class MutableBigInt : public FreshlyAllocatedBigInt { |
| public: |
| // Bottleneck for converting MutableBigInts to BigInts. |
| static MaybeHandle<BigInt> MakeImmutable(MaybeHandle<MutableBigInt> maybe); |
| template <typename Isolate = v8::internal::Isolate> |
| static Handle<BigInt> MakeImmutable(Handle<MutableBigInt> result); |
| |
| static void Canonicalize(Tagged<MutableBigInt> result); |
| |
| // Allocation helpers. |
| template <typename IsolateT> |
| static MaybeHandle<MutableBigInt> New( |
| IsolateT* isolate, uint32_t length, |
| AllocationType allocation = AllocationType::kYoung); |
| static Handle<BigInt> NewFromInt(Isolate* isolate, int value); |
| static Handle<BigInt> NewFromDouble(Isolate* isolate, double value); |
| void InitializeDigits(uint32_t length, uint8_t value = 0); |
| static Handle<MutableBigInt> Copy(Isolate* isolate, |
| DirectHandle<BigIntBase> source); |
| template <typename IsolateT> |
| static Handle<BigInt> Zero( |
| IsolateT* isolate, AllocationType allocation = AllocationType::kYoung) { |
| // TODO(jkummerow): Consider caching a canonical zero-BigInt. |
| return MakeImmutable<IsolateT>( |
| New(isolate, 0, allocation).ToHandleChecked()); |
| } |
| |
| // Internal helpers. |
| static MaybeHandle<MutableBigInt> AbsoluteAddOne( |
| Isolate* isolate, DirectHandle<BigIntBase> x, bool sign, |
| Tagged<MutableBigInt> result_storage = {}); |
| static Handle<MutableBigInt> AbsoluteSubOne(Isolate* isolate, |
| DirectHandle<BigIntBase> x); |
| |
| // Specialized helpers for shift operations. |
| static MaybeDirectHandle<BigInt> LeftShiftByAbsolute(Isolate* isolate, |
| Handle<BigIntBase> x, |
| Handle<BigIntBase> y); |
| static DirectHandle<BigInt> RightShiftByAbsolute(Isolate* isolate, |
| Handle<BigIntBase> x, |
| Handle<BigIntBase> y); |
| static DirectHandle<BigInt> RightShiftByMaximum(Isolate* isolate, bool sign); |
| static Maybe<digit_t> ToShiftAmount(Handle<BigIntBase> x); |
| |
| static double ToDouble(DirectHandle<BigIntBase> x); |
| enum Rounding { kRoundDown, kTie, kRoundUp }; |
| static Rounding DecideRounding(DirectHandle<BigIntBase> x, |
| int mantissa_bits_unset, int digit_index, |
| uint64_t current_digit); |
| |
| // Returns the least significant 64 bits, simulating two's complement |
| // representation. |
| static uint64_t GetRawBits(BigIntBase* x, bool* lossless); |
| |
| static inline bool digit_ismax(digit_t x) { |
| return static_cast<digit_t>(~x) == 0; |
| } |
| |
| bigint::RWDigits rw_digits(); |
| |
| inline void set_sign(bool new_sign) { |
| bitfield_.store( |
| SignBits::update(bitfield_.load(std::memory_order_relaxed), new_sign), |
| std::memory_order_relaxed); |
| } |
| inline void set_length(uint32_t new_length, ReleaseStoreTag) { |
| bitfield_.store(LengthBits::update( |
| bitfield_.load(std::memory_order_relaxed), new_length), |
| std::memory_order_relaxed); |
| } |
| inline void initialize_bitfield(bool sign, uint32_t length) { |
| bitfield_.store(LengthBits::encode(length) | SignBits::encode(sign), |
| std::memory_order_relaxed); |
| } |
| inline void set_digit(uint32_t n, digit_t value) { |
| SLOW_DCHECK(n < length()); |
| raw_digits()[n].set_value(value); |
| } |
| |
| void set_64_bits(uint64_t bits); |
| |
| static bool IsMutableBigInt(Tagged<MutableBigInt> o) { return IsBigInt(o); } |
| |
| static_assert(std::is_same_v<bigint::digit_t, BigIntBase::digit_t>, |
| "We must be able to call BigInt library functions"); |
| |
| NEVER_READ_ONLY_SPACE |
| } V8_OBJECT_END; |
| |
| NEVER_READ_ONLY_SPACE_IMPL(MutableBigInt) |
| |
| template <> |
| struct CastTraits<MutableBigInt> : public CastTraits<BigInt> {}; |
| |
| bigint::Digits BigIntBase::digits() const { |
| return bigint::Digits(reinterpret_cast<const digit_t*>(raw_digits()), |
| length()); |
| } |
| |
| bigint::RWDigits MutableBigInt::rw_digits() { |
| return bigint::RWDigits(reinterpret_cast<digit_t*>(raw_digits()), length()); |
| } |
| |
| template <typename T, typename Isolate> |
| MaybeHandle<T> ThrowBigIntTooBig(Isolate* isolate) { |
| // If the result of a BigInt computation is truncated to 64 bit, Turbofan |
| // can sometimes truncate intermediate results already, which can prevent |
| // those from exceeding the maximum length, effectively preventing a |
| // RangeError from being thrown. As this is a performance optimization, this |
| // behavior is accepted. To prevent the correctness fuzzer from detecting this |
| // difference, we crash the program. |
| if (v8_flags.correctness_fuzzer_suppressions) { |
| FATAL("Aborting on invalid BigInt length"); |
| } |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig)); |
| } |
| |
| template <typename IsolateT> |
| MaybeHandle<MutableBigInt> MutableBigInt::New(IsolateT* isolate, |
| uint32_t length, |
| AllocationType allocation) { |
| if (length > BigInt::kMaxLength) { |
| return ThrowBigIntTooBig<MutableBigInt>(isolate); |
| } |
| Handle<MutableBigInt> result = |
| Cast<MutableBigInt>(isolate->factory()->NewBigInt(length, allocation)); |
| result->initialize_bitfield(false, length); |
| #if DEBUG |
| result->InitializeDigits(length, 0xBF); |
| #endif |
| return result; |
| } |
| |
| Handle<BigInt> MutableBigInt::NewFromInt(Isolate* isolate, int value) { |
| if (value == 0) return Zero(isolate); |
| Handle<MutableBigInt> result = |
| Cast<MutableBigInt>(isolate->factory()->NewBigInt(1)); |
| bool sign = value < 0; |
| result->initialize_bitfield(sign, 1); |
| if (!sign) { |
| result->set_digit(0, value); |
| } else { |
| if (value == kMinInt) { |
| static_assert(kMinInt == -kMaxInt - 1); |
| result->set_digit(0, static_cast<BigInt::digit_t>(kMaxInt) + 1); |
| } else { |
| result->set_digit(0, -value); |
| } |
| } |
| return MakeImmutable(result); |
| } |
| |
| Handle<BigInt> MutableBigInt::NewFromDouble(Isolate* isolate, double value) { |
| DCHECK_EQ(value, std::floor(value)); |
| if (value == 0) return Zero(isolate); |
| |
| bool sign = value < 0; // -0 was already handled above. |
| uint64_t double_bits = base::bit_cast<uint64_t>(value); |
| int32_t raw_exponent = |
| static_cast<int32_t>(double_bits >> |
| base::Double::kPhysicalSignificandSize) & |
| 0x7FF; |
| DCHECK_NE(raw_exponent, 0x7FF); |
| DCHECK_GE(raw_exponent, 0x3FF); |
| uint32_t exponent = raw_exponent - 0x3FF; |
| uint32_t digits = exponent / kDigitBits + 1; |
| Handle<MutableBigInt> result = |
| Cast<MutableBigInt>(isolate->factory()->NewBigInt(digits)); |
| result->initialize_bitfield(sign, digits); |
| |
| // We construct a BigInt from the double {value} by shifting its mantissa |
| // according to its exponent and mapping the bit pattern onto digits. |
| // |
| // <----------- bitlength = exponent + 1 -----------> |
| // <----- 52 ------> <------ trailing zeroes ------> |
| // mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 |
| // digits: 0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx |
| // <--> <------> |
| // msd_topbit kDigitBits |
| // |
| uint64_t mantissa = |
| (double_bits & base::Double::kSignificandMask) | base::Double::kHiddenBit; |
| const uint32_t kMantissaTopBit = |
| base::Double::kSignificandSize - 1; // 0-indexed. |
| // 0-indexed position of most significant bit in the most significant digit. |
| uint32_t msd_topbit = exponent % kDigitBits; |
| // Number of unused bits in {mantissa}. We'll keep them shifted to the |
| // left (i.e. most significant part) of the underlying uint64_t. |
| uint32_t remaining_mantissa_bits = 0; |
| // Next digit under construction. |
| digit_t digit; |
| |
| // First, build the MSD by shifting the mantissa appropriately. |
| if (msd_topbit < kMantissaTopBit) { |
| remaining_mantissa_bits = kMantissaTopBit - msd_topbit; |
| digit = mantissa >> remaining_mantissa_bits; |
| mantissa = mantissa << (64 - remaining_mantissa_bits); |
| } else { |
| DCHECK_GE(msd_topbit, kMantissaTopBit); |
| digit = mantissa << (msd_topbit - kMantissaTopBit); |
| mantissa = 0; |
| } |
| result->set_digit(digits - 1, digit); |
| // Then fill in the rest of the digits. |
| static_assert(BigInt::kMaxLength < kMaxInt); |
| for (int32_t digit_index = digits - 2; digit_index >= 0; digit_index--) { |
| if (remaining_mantissa_bits > 0) { |
| remaining_mantissa_bits -= kDigitBits; |
| if (sizeof(digit) == 4) { |
| digit = mantissa >> 32; |
| mantissa = mantissa << 32; |
| } else { |
| DCHECK_EQ(sizeof(digit), 8); |
| digit = mantissa; |
| mantissa = 0; |
| } |
| } else { |
| digit = 0; |
| } |
| result->set_digit(digit_index, digit); |
| } |
| return MakeImmutable(result); |
| } |
| |
| Handle<MutableBigInt> MutableBigInt::Copy(Isolate* isolate, |
| DirectHandle<BigIntBase> source) { |
| uint32_t length = source->length(); |
| // Allocating a BigInt of the same length as an existing BigInt cannot throw. |
| Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked(); |
| memcpy(result->raw_digits(), source->raw_digits(), length * kDigitSize); |
| return result; |
| } |
| |
| void MutableBigInt::InitializeDigits(uint32_t length, uint8_t value) { |
| memset(raw_digits(), value, length * kDigitSize); |
| } |
| |
| MaybeHandle<BigInt> MutableBigInt::MakeImmutable( |
| MaybeHandle<MutableBigInt> maybe) { |
| Handle<MutableBigInt> result; |
| if (!maybe.ToHandle(&result)) return {}; |
| return MakeImmutable(result); |
| } |
| |
| template <typename IsolateT> |
| Handle<BigInt> MutableBigInt::MakeImmutable(Handle<MutableBigInt> result) { |
| MutableBigInt::Canonicalize(*result); |
| return Cast<BigInt>(result); |
| } |
| |
| void MutableBigInt::Canonicalize(Tagged<MutableBigInt> result) { |
| // Check if we need to right-trim any leading zero-digits. |
| uint32_t old_length = result->length(); |
| uint32_t new_length = old_length; |
| while (new_length > 0 && result->digit(new_length - 1) == 0) new_length--; |
| uint32_t to_trim = old_length - new_length; |
| if (to_trim != 0) { |
| Heap* heap = result->GetHeap(); |
| if (!heap->IsLargeObject(result)) { |
| uint32_t old_size = |
| ALIGN_TO_ALLOCATION_ALIGNMENT(BigInt::SizeFor(old_length)); |
| uint32_t new_size = |
| ALIGN_TO_ALLOCATION_ALIGNMENT(BigInt::SizeFor(new_length)); |
| heap->NotifyObjectSizeChange(result, old_size, new_size, |
| ClearRecordedSlots::kNo); |
| } |
| result->set_length(new_length, kReleaseStore); |
| |
| // Canonicalize -0n. |
| if (new_length == 0) { |
| result->set_sign(false); |
| // TODO(jkummerow): If we cache a canonical 0n, return that here. |
| } |
| } |
| DCHECK_IMPLIES(result->length() > 0, |
| result->digit(result->length() - 1) != 0); // MSD is non-zero. |
| // Callers that don't require trimming must ensure this themselves. |
| DCHECK_IMPLIES(result->length() == 0, result->sign() == false); |
| } |
| |
| template <typename IsolateT> |
| Handle<BigInt> BigInt::Zero(IsolateT* isolate, AllocationType allocation) { |
| return MutableBigInt::Zero(isolate, allocation); |
| } |
| template Handle<BigInt> BigInt::Zero(Isolate* isolate, |
| AllocationType allocation); |
| template Handle<BigInt> BigInt::Zero(LocalIsolate* isolate, |
| AllocationType allocation); |
| |
| Handle<BigInt> BigInt::UnaryMinus(Isolate* isolate, DirectHandle<BigInt> x) { |
| // Special case: There is no -0n. |
| if (x->is_zero()) return indirect_handle(x, isolate); |
| Handle<MutableBigInt> result = MutableBigInt::Copy(isolate, x); |
| result->set_sign(!x->sign()); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeDirectHandle<BigInt> BigInt::BitwiseNot(Isolate* isolate, |
| DirectHandle<BigInt> x) { |
| MaybeHandle<MutableBigInt> result; |
| if (x->sign()) { |
| // ~(-x) == ~(~(x-1)) == x-1 |
| result = MutableBigInt::AbsoluteSubOne(isolate, x); |
| } else { |
| // ~x == -x-1 == -(x+1) |
| result = MutableBigInt::AbsoluteAddOne(isolate, x, true); |
| } |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeDirectHandle<BigInt> BigInt::Exponentiate(Isolate* isolate, |
| DirectHandle<BigInt> base, |
| DirectHandle<BigInt> exponent) { |
| // 1. If exponent is < 0, throw a RangeError exception. |
| if (exponent->sign()) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kMustBePositive)); |
| } |
| // 2. If base is 0n and exponent is 0n, return 1n. |
| if (exponent->is_zero()) { |
| return MutableBigInt::NewFromInt(isolate, 1); |
| } |
| // 3. Return a BigInt representing the mathematical value of base raised |
| // to the power exponent. |
| if (base->is_zero()) return base; |
| if (base->length() == 1 && base->digit(0) == 1) { |
| // (-1) ** even_number == 1. |
| if (base->sign() && (exponent->digit(0) & 1) == 0) { |
| return UnaryMinus(isolate, base); |
| } |
| // (-1) ** odd_number == -1; 1 ** anything == 1. |
| return base; |
| } |
| // For all bases >= 2, very large exponents would lead to unrepresentable |
| // results. |
| static_assert(kMaxLengthBits < std::numeric_limits<digit_t>::max()); |
| if (exponent->length() > 1) { |
| return ThrowBigIntTooBig<BigInt>(isolate); |
| } |
| digit_t exp_value = exponent->digit(0); |
| if (exp_value == 1) return base; |
| if (exp_value >= kMaxLengthBits) { |
| return ThrowBigIntTooBig<BigInt>(isolate); |
| } |
| static_assert(kMaxLengthBits <= kMaxInt); |
| int n = static_cast<int>(exp_value); |
| if (base->length() == 1 && base->digit(0) == 2) { |
| // Fast path for 2^n. |
| int needed_digits = 1 + (n / kDigitBits); |
| Handle<MutableBigInt> result; |
| if (!MutableBigInt::New(isolate, needed_digits).ToHandle(&result)) |
| return {}; |
| result->InitializeDigits(needed_digits); |
| // All bits are zero. Now set the n-th bit. |
| digit_t msd = static_cast<digit_t>(1) << (n % kDigitBits); |
| result->set_digit(needed_digits - 1, msd); |
| // Result is negative for odd powers of -2n. |
| if (base->sign()) result->set_sign((n & 1) != 0); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| DirectHandle<BigInt> result; |
| DirectHandle<BigInt> running_square = base; |
| // This implicitly sets the result's sign correctly. |
| if (n & 1) result = base; |
| n >>= 1; |
| for (; n != 0; n >>= 1) { |
| MaybeDirectHandle<BigInt> maybe_result = |
| Multiply(isolate, running_square, running_square); |
| if (!maybe_result.ToHandle(&running_square)) return maybe_result; |
| if (n & 1) { |
| if (result.is_null()) { |
| result = running_square; |
| } else { |
| maybe_result = Multiply(isolate, result, running_square); |
| if (!maybe_result.ToHandle(&result)) return maybe_result; |
| } |
| } |
| } |
| return result; |
| } |
| |
| MaybeHandle<BigInt> BigInt::Multiply(Isolate* isolate, DirectHandle<BigInt> x, |
| DirectHandle<BigInt> y) { |
| if (x->is_zero()) return indirect_handle(x, isolate); |
| if (y->is_zero()) return indirect_handle(y, isolate); |
| uint32_t result_length = |
| bigint::MultiplyResultLength(x->digits(), y->digits()); |
| Handle<MutableBigInt> result; |
| if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) { |
| return {}; |
| } |
| DisallowGarbageCollection no_gc; |
| bigint::Status status = isolate->bigint_processor()->Multiply( |
| result->rw_digits(), x->digits(), y->digits()); |
| if (status == bigint::Status::kInterrupted) { |
| AllowGarbageCollection terminating_anyway; |
| isolate->TerminateExecution(); |
| return {}; |
| } |
| result->set_sign(x->sign() != y->sign()); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Divide(Isolate* isolate, DirectHandle<BigInt> x, |
| DirectHandle<BigInt> y) { |
| // 1. If y is 0n, throw a RangeError exception. |
| if (y->is_zero()) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero)); |
| } |
| // 2. Let quotient be the mathematical value of x divided by y. |
| // 3. Return a BigInt representing quotient rounded towards 0 to the next |
| // integral value. |
| if (bigint::Compare(x->digits(), y->digits()) < 0) { |
| return Zero(isolate); |
| } |
| bool result_sign = x->sign() != y->sign(); |
| if (y->length() == 1 && y->digit(0) == 1) { |
| return result_sign == x->sign() ? indirect_handle(x, isolate) |
| : UnaryMinus(isolate, x); |
| } |
| Handle<MutableBigInt> quotient; |
| uint32_t result_length = bigint::DivideResultLength(x->digits(), y->digits()); |
| if (!MutableBigInt::New(isolate, result_length).ToHandle("ient)) { |
| return {}; |
| } |
| DisallowGarbageCollection no_gc; |
| bigint::Status status = isolate->bigint_processor()->Divide( |
| quotient->rw_digits(), x->digits(), y->digits()); |
| if (status == bigint::Status::kInterrupted) { |
| AllowGarbageCollection terminating_anyway; |
| isolate->TerminateExecution(); |
| return {}; |
| } |
| quotient->set_sign(result_sign); |
| return MutableBigInt::MakeImmutable(quotient); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Remainder(Isolate* isolate, DirectHandle<BigInt> x, |
| DirectHandle<BigInt> y) { |
| // 1. If y is 0n, throw a RangeError exception. |
| if (y->is_zero()) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero)); |
| } |
| // 2. Return the BigInt representing x modulo y. |
| // See https://github.com/tc39/proposal-bigint/issues/84 though. |
| if (bigint::Compare(x->digits(), y->digits()) < 0) |
| return indirect_handle(x, isolate); |
| if (y->length() == 1 && y->digit(0) == 1) return Zero(isolate); |
| Handle<MutableBigInt> remainder; |
| uint32_t result_length = bigint::ModuloResultLength(y->digits()); |
| if (!MutableBigInt::New(isolate, result_length).ToHandle(&remainder)) { |
| return {}; |
| } |
| DisallowGarbageCollection no_gc; |
| bigint::Status status = isolate->bigint_processor()->Modulo( |
| remainder->rw_digits(), x->digits(), y->digits()); |
| if (status == bigint::Status::kInterrupted) { |
| AllowGarbageCollection terminating_anyway; |
| isolate->TerminateExecution(); |
| return {}; |
| } |
| remainder->set_sign(x->sign()); |
| return MutableBigInt::MakeImmutable(remainder); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Add(Isolate* isolate, DirectHandle<BigInt> x, |
| DirectHandle<BigInt> y) { |
| if (x->is_zero()) return indirect_handle(y, isolate); |
| if (y->is_zero()) return indirect_handle(x, isolate); |
| bool xsign = x->sign(); |
| bool ysign = y->sign(); |
| uint32_t result_length = |
| bigint::AddSignedResultLength(x->length(), y->length(), xsign == ysign); |
| Handle<MutableBigInt> result; |
| if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) { |
| // Allocation fails when {result_length} exceeds the max BigInt size. |
| return {}; |
| } |
| DisallowGarbageCollection no_gc; |
| bool result_sign = bigint::AddSigned(result->rw_digits(), x->digits(), xsign, |
| y->digits(), ysign); |
| result->set_sign(result_sign); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Subtract(Isolate* isolate, DirectHandle<BigInt> x, |
| DirectHandle<BigInt> y) { |
| if (y->is_zero()) return indirect_handle(x, isolate); |
| if (x->is_zero()) return UnaryMinus(isolate, y); |
| bool xsign = x->sign(); |
| bool ysign = y->sign(); |
| uint32_t result_length = bigint::SubtractSignedResultLength( |
| x->length(), y->length(), xsign == ysign); |
| Handle<MutableBigInt> result; |
| if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) { |
| // Allocation fails when {result_length} exceeds the max BigInt size. |
| return {}; |
| } |
| DisallowGarbageCollection no_gc; |
| bool result_sign = bigint::SubtractSigned(result->rw_digits(), x->digits(), |
| xsign, y->digits(), ysign); |
| result->set_sign(result_sign); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| namespace { |
| |
| // Produces comparison result for {left_negative} == sign(x) != sign(y). |
| ComparisonResult UnequalSign(bool left_negative) { |
| return left_negative ? ComparisonResult::kLessThan |
| : ComparisonResult::kGreaterThan; |
| } |
| |
| // Produces result for |x| > |y|, with {both_negative} == sign(x) == sign(y); |
| ComparisonResult AbsoluteGreater(bool both_negative) { |
| return both_negative ? ComparisonResult::kLessThan |
| : ComparisonResult::kGreaterThan; |
| } |
| |
| // Produces result for |x| < |y|, with {both_negative} == sign(x) == sign(y). |
| ComparisonResult AbsoluteLess(bool both_negative) { |
| return both_negative ? ComparisonResult::kGreaterThan |
| : ComparisonResult::kLessThan; |
| } |
| |
| } // namespace |
| |
| // (Never returns kUndefined.) |
| ComparisonResult BigInt::CompareToBigInt(DirectHandle<BigInt> x, |
| DirectHandle<BigInt> y) { |
| bool x_sign = x->sign(); |
| if (x_sign != y->sign()) return UnequalSign(x_sign); |
| |
| int result = bigint::Compare(x->digits(), y->digits()); |
| if (result > 0) return AbsoluteGreater(x_sign); |
| if (result < 0) return AbsoluteLess(x_sign); |
| return ComparisonResult::kEqual; |
| } |
| |
| bool BigInt::EqualToBigInt(Tagged<BigInt> x, Tagged<BigInt> y) { |
| if (x->sign() != y->sign()) return false; |
| if (x->length() != y->length()) return false; |
| for (uint32_t i = 0; i < x->length(); i++) { |
| if (x->digit(i) != y->digit(i)) return false; |
| } |
| return true; |
| } |
| |
| MaybeHandle<BigInt> BigInt::Increment(Isolate* isolate, |
| DirectHandle<BigInt> x) { |
| if (x->sign()) { |
| Handle<MutableBigInt> result = MutableBigInt::AbsoluteSubOne(isolate, x); |
| result->set_sign(true); |
| return MutableBigInt::MakeImmutable(result); |
| } else { |
| return MutableBigInt::MakeImmutable( |
| MutableBigInt::AbsoluteAddOne(isolate, x, false)); |
| } |
| } |
| |
| MaybeHandle<BigInt> BigInt::Decrement(Isolate* isolate, |
| DirectHandle<BigInt> x) { |
| MaybeHandle<MutableBigInt> result; |
| if (x->sign()) { |
| result = MutableBigInt::AbsoluteAddOne(isolate, x, true); |
| } else if (x->is_zero()) { |
| // TODO(jkummerow): Consider caching a canonical -1n BigInt. |
| return MutableBigInt::NewFromInt(isolate, -1); |
| } else { |
| result = MutableBigInt::AbsoluteSubOne(isolate, x); |
| } |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| Maybe<ComparisonResult> BigInt::CompareToString(Isolate* isolate, |
| DirectHandle<BigInt> x, |
| DirectHandle<String> y) { |
| // a. Let ny be StringToBigInt(y); |
| MaybeDirectHandle<BigInt> maybe_ny = StringToBigInt(isolate, y); |
| // b. If ny is NaN, return undefined. |
| DirectHandle<BigInt> ny; |
| if (!maybe_ny.ToHandle(&ny)) { |
| if (isolate->has_exception()) { |
| return Nothing<ComparisonResult>(); |
| } else { |
| return Just(ComparisonResult::kUndefined); |
| } |
| } |
| // c. Return BigInt::lessThan(x, ny). |
| return Just(CompareToBigInt(x, ny)); |
| } |
| |
| Maybe<bool> BigInt::EqualToString(Isolate* isolate, DirectHandle<BigInt> x, |
| DirectHandle<String> y) { |
| // a. Let n be StringToBigInt(y). |
| MaybeDirectHandle<BigInt> maybe_n = StringToBigInt(isolate, y); |
| // b. If n is NaN, return false. |
| DirectHandle<BigInt> n; |
| if (!maybe_n.ToHandle(&n)) { |
| if (isolate->has_exception()) { |
| return Nothing<bool>(); |
| } else { |
| return Just(false); |
| } |
| } |
| // c. Return the result of x == n. |
| return Just(EqualToBigInt(*x, *n)); |
| } |
| |
| bool BigInt::EqualToNumber(DirectHandle<BigInt> x, DirectHandle<Object> y) { |
| DCHECK(IsNumber(*y)); |
| // a. If x or y are any of NaN, +∞, or -∞, return false. |
| // b. If the mathematical value of x is equal to the mathematical value of y, |
| // return true, otherwise return false. |
| if (IsSmi(*y)) { |
| int value = Smi::ToInt(*y); |
| if (value == 0) return x->is_zero(); |
| // Any multi-digit BigInt is bigger than a Smi. |
| static_assert(sizeof(digit_t) >= sizeof(value)); |
| return (x->length() == 1) && (x->sign() == (value < 0)) && |
| (x->digit(0) == |
| static_cast<digit_t>(std::abs(static_cast<int64_t>(value)))); |
| } |
| DCHECK(IsHeapNumber(*y)); |
| double value = Cast<HeapNumber>(y)->value(); |
| return CompareToDouble(x, value) == ComparisonResult::kEqual; |
| } |
| |
| ComparisonResult BigInt::CompareToNumber(DirectHandle<BigInt> x, |
| DirectHandle<Object> y) { |
| DCHECK(IsNumber(*y)); |
| if (IsSmi(*y)) { |
| bool x_sign = x->sign(); |
| int y_value = Smi::ToInt(*y); |
| bool y_sign = (y_value < 0); |
| if (x_sign != y_sign) return UnequalSign(x_sign); |
| |
| if (x->is_zero()) { |
| DCHECK(!y_sign); |
| return y_value == 0 ? ComparisonResult::kEqual |
| : ComparisonResult::kLessThan; |
| } |
| // Any multi-digit BigInt is bigger than a Smi. |
| static_assert(sizeof(digit_t) >= sizeof(y_value)); |
| if (x->length() > 1) return AbsoluteGreater(x_sign); |
| |
| digit_t abs_value = std::abs(static_cast<int64_t>(y_value)); |
| digit_t x_digit = x->digit(0); |
| if (x_digit > abs_value) return AbsoluteGreater(x_sign); |
| if (x_digit < abs_value) return AbsoluteLess(x_sign); |
| return ComparisonResult::kEqual; |
| } |
| DCHECK(IsHeapNumber(*y)); |
| double value = Cast<HeapNumber>(y)->value(); |
| return CompareToDouble(x, value); |
| } |
| |
| ComparisonResult BigInt::CompareToDouble(DirectHandle<BigInt> x, double y) { |
| if (std::isnan(y)) return ComparisonResult::kUndefined; |
| if (y == V8_INFINITY) return ComparisonResult::kLessThan; |
| if (y == -V8_INFINITY) return ComparisonResult::kGreaterThan; |
| bool x_sign = x->sign(); |
| // Note that this is different from the double's sign bit for -0. That's |
| // intentional because -0 must be treated like 0. |
| bool y_sign = (y < 0); |
| if (x_sign != y_sign) return UnequalSign(x_sign); |
| if (y == 0) { |
| DCHECK(!x_sign); |
| return x->is_zero() ? ComparisonResult::kEqual |
| : ComparisonResult::kGreaterThan; |
| } |
| if (x->is_zero()) { |
| DCHECK(!y_sign); |
| return ComparisonResult::kLessThan; |
| } |
| uint64_t double_bits = base::bit_cast<uint64_t>(y); |
| int32_t raw_exponent = |
| static_cast<int32_t>(double_bits >> |
| base::Double::kPhysicalSignificandSize) & |
| 0x7FF; |
| uint64_t mantissa = double_bits & base::Double::kSignificandMask; |
| // Non-finite doubles are handled above. |
| DCHECK_NE(raw_exponent, 0x7FF); |
| int32_t exponent = raw_exponent - 0x3FF; |
| if (exponent < 0) { |
| // The absolute value of the double is less than 1. Only 0n has an |
| // absolute value smaller than that, but we've already covered that case. |
| DCHECK(!x->is_zero()); |
| return AbsoluteGreater(x_sign); |
| } |
| uint32_t x_length = x->length(); |
| digit_t x_msd = x->digit(x_length - 1); |
| uint32_t msd_leading_zeros = base::bits::CountLeadingZeros(x_msd); |
| uint32_t x_bitlength = x_length * kDigitBits - msd_leading_zeros; |
| uint32_t y_bitlength = exponent + 1; |
| if (x_bitlength < y_bitlength) return AbsoluteLess(x_sign); |
| if (x_bitlength > y_bitlength) return AbsoluteGreater(x_sign); |
| |
| // At this point, we know that signs and bit lengths (i.e. position of |
| // the most significant bit in exponent-free representation) are identical. |
| // {x} is not zero, {y} is finite and not denormal. |
| // Now we virtually convert the double to an integer by shifting its |
| // mantissa according to its exponent, so it will align with the BigInt {x}, |
| // and then we compare them bit for bit until we find a difference or the |
| // least significant bit. |
| // <----- 52 ------> <-- virtual trailing zeroes --> |
| // y / mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 |
| // x / digits: 0001xxxx xxxxxxxx xxxxxxxx ... |
| // <--> <------> |
| // msd_topbit kDigitBits |
| // |
| mantissa |= base::Double::kHiddenBit; |
| const uint32_t kMantissaTopBit = 52; // 0-indexed. |
| // 0-indexed position of {x}'s most significant bit within the {msd}. |
| uint32_t msd_topbit = kDigitBits - 1 - msd_leading_zeros; |
| DCHECK_EQ(msd_topbit, (x_bitlength - 1) % kDigitBits); |
| // Shifted chunk of {mantissa} for comparing with {digit}. |
| digit_t compare_mantissa; |
| // Number of unprocessed bits in {mantissa}. We'll keep them shifted to |
| // the left (i.e. most significant part) of the underlying uint64_t. |
| uint32_t remaining_mantissa_bits = 0; |
| |
| // First, compare the most significant digit against the beginning of |
| // the mantissa. |
| if (msd_topbit < kMantissaTopBit) { |
| remaining_mantissa_bits = (kMantissaTopBit - msd_topbit); |
| compare_mantissa = mantissa >> remaining_mantissa_bits; |
| mantissa = mantissa << (64 - remaining_mantissa_bits); |
| } else { |
| DCHECK_GE(msd_topbit, kMantissaTopBit); |
| compare_mantissa = mantissa << (msd_topbit - kMantissaTopBit); |
| mantissa = 0; |
| } |
| if (x_msd > compare_mantissa) return AbsoluteGreater(x_sign); |
| if (x_msd < compare_mantissa) return AbsoluteLess(x_sign); |
| |
| // Then, compare additional digits against any remaining mantissa bits. |
| static_assert(BigInt::kMaxLength < kMaxInt); |
| for (int32_t digit_index = x_length - 2; digit_index >= 0; digit_index--) { |
| if (remaining_mantissa_bits > 0) { |
| remaining_mantissa_bits -= kDigitBits; |
| if (sizeof(mantissa) != sizeof(x_msd)) { |
| compare_mantissa = mantissa >> (64 - kDigitBits); |
| // "& 63" to appease compilers. kDigitBits is 32 here anyway. |
| mantissa = mantissa << (kDigitBits & 63); |
| } else { |
| compare_mantissa = mantissa; |
| mantissa = 0; |
| } |
| } else { |
| compare_mantissa = 0; |
| } |
| digit_t digit = x->digit(digit_index); |
| if (digit > compare_mantissa) return AbsoluteGreater(x_sign); |
| if (digit < compare_mantissa) return AbsoluteLess(x_sign); |
| } |
| |
| // Integer parts are equal; check whether {y} has a fractional part. |
| if (mantissa != 0) { |
| DCHECK_GT(remaining_mantissa_bits, 0); |
| return AbsoluteLess(x_sign); |
| } |
| return ComparisonResult::kEqual; |
| } |
| |
| namespace { |
| |
| void RightTrimString(Isolate* isolate, DirectHandle<SeqOneByteString> string, |
| int chars_allocated, int chars_written) { |
| DCHECK_LE(chars_written, chars_allocated); |
| if (chars_written == chars_allocated) return; |
| int string_size = |
| ALIGN_TO_ALLOCATION_ALIGNMENT(SeqOneByteString::SizeFor(chars_allocated)); |
| int needed_size = |
| ALIGN_TO_ALLOCATION_ALIGNMENT(SeqOneByteString::SizeFor(chars_written)); |
| if (needed_size < string_size && !isolate->heap()->IsLargeObject(*string)) { |
| isolate->heap()->NotifyObjectSizeChange(*string, string_size, needed_size, |
| ClearRecordedSlots::kNo); |
| } |
| string->set_length(chars_written, kReleaseStore); |
| } |
| |
| } // namespace |
| |
| MaybeHandle<String> BigInt::ToString(Isolate* isolate, |
| DirectHandle<BigInt> bigint, int radix, |
| ShouldThrow should_throw) { |
| if (bigint->is_zero()) { |
| return isolate->factory()->zero_string(); |
| } |
| const bool sign = bigint->sign(); |
| uint32_t chars_allocated; |
| uint32_t chars_written; |
| Handle<SeqOneByteString> result; |
| if (bigint->length() == 1 && radix == 10) { |
| // Fast path for the most common case, to avoid call/dispatch overhead. |
| // The logic is the same as what the full implementation does below, |
| // just inlined and specialized for the preconditions. |
| // Microbenchmarks rejoice! |
| digit_t digit = bigint->digit(0); |
| uint32_t bit_length = kDigitBits - base::bits::CountLeadingZeros(digit); |
| constexpr uint32_t kShift = 7; |
| // This is Math.log2(10) * (1 << kShift), scaled just far enough to |
| // make the computations below always precise (after rounding). |
| constexpr uint32_t kShiftedBitsPerChar = 425; |
| chars_allocated = (bit_length << kShift) / kShiftedBitsPerChar + 1 + sign; |
| result = isolate->factory() |
| ->NewRawOneByteString(chars_allocated) |
| .ToHandleChecked(); |
| DisallowGarbageCollection no_gc; |
| uint8_t* start = result->GetChars(no_gc); |
| uint8_t* out = start + chars_allocated; |
| while (digit != 0) { |
| *(--out) = '0' + (digit % 10); |
| digit /= 10; |
| } |
| if (sign) *(--out) = '-'; |
| if (out == start) { |
| chars_written = chars_allocated; |
| } else { |
| DCHECK_LT(start, out); |
| // The result is one character shorter than predicted. This is |
| // unavoidable, e.g. a 4-bit BigInt can be as big as "10" or as small as |
| // "9", so we must allocate 2 characters for it, and will only later find |
| // out whether all characters were used. |
| chars_written = chars_allocated - static_cast<uint32_t>(out - start); |
| std::memmove(start, out, chars_written); |
| memset(start + chars_written, 0, chars_allocated - chars_written); |
| } |
| } else { |
| // Generic path, handles anything. |
| DCHECK(radix >= 2 && radix <= 36); |
| chars_allocated = |
| bigint::ToStringResultLength(bigint->digits(), radix, sign); |
| if (chars_allocated > String::kMaxLength) { |
| if (should_throw == kThrowOnError) { |
| THROW_NEW_ERROR(isolate, NewInvalidStringLengthError()); |
| } else { |
| return {}; |
| } |
| } |
| result = isolate->factory() |
| ->NewRawOneByteString(chars_allocated) |
| .ToHandleChecked(); |
| chars_written = chars_allocated; |
| DisallowGarbageCollection no_gc; |
| char* characters = reinterpret_cast<char*>(result->GetChars(no_gc)); |
| bigint::Status status = isolate->bigint_processor()->ToString( |
| characters, &chars_written, bigint->digits(), radix, sign); |
| if (status == bigint::Status::kInterrupted) { |
| AllowGarbageCollection terminating_anyway; |
| isolate->TerminateExecution(); |
| return {}; |
| } |
| } |
| |
| // Right-trim any over-allocation (which can happen due to conservative |
| // estimates). |
| RightTrimString(isolate, result, chars_allocated, chars_written); |
| #if DEBUG |
| // Verify that all characters have been written. |
| DCHECK(result->length() == chars_written); |
| DisallowGarbageCollection no_gc; |
| uint8_t* chars = result->GetChars(no_gc); |
| for (uint32_t i = 0; i < chars_written; i++) { |
| DCHECK_NE(chars[i], bigint::kStringZapValue); |
| } |
| #endif |
| return result; |
| } |
| |
| DirectHandle<String> BigInt::NoSideEffectsToString( |
| Isolate* isolate, DirectHandle<BigInt> bigint) { |
| if (bigint->is_zero()) { |
| return isolate->factory()->zero_string(); |
| } |
| // The threshold is chosen such that the operation will be fast enough to |
| // not need interrupt checks. This function is meant for producing human- |
| // readable error messages, so super-long results aren't useful anyway. |
| if (bigint->length() > 100) { |
| return isolate->factory()->NewStringFromStaticChars( |
| "<a very large BigInt>"); |
| } |
| |
| uint32_t chars_allocated = |
| bigint::ToStringResultLength(bigint->digits(), 10, bigint->sign()); |
| DCHECK_LE(chars_allocated, String::kMaxLength); |
| DirectHandle<SeqOneByteString> result = |
| isolate->factory() |
| ->NewRawOneByteString(chars_allocated) |
| .ToHandleChecked(); |
| uint32_t chars_written = chars_allocated; |
| DisallowGarbageCollection no_gc; |
| char* characters = reinterpret_cast<char*>(result->GetChars(no_gc)); |
| std::unique_ptr<bigint::Processor, bigint::Processor::Destroyer> |
| non_interruptible_processor( |
| bigint::Processor::New(new bigint::Platform())); |
| non_interruptible_processor->ToString(characters, &chars_written, |
| bigint->digits(), 10, bigint->sign()); |
| RightTrimString(isolate, result, chars_allocated, chars_written); |
| return result; |
| } |
| |
| MaybeHandle<BigInt> BigInt::FromNumber(Isolate* isolate, |
| DirectHandle<Object> number) { |
| DCHECK(IsNumber(*number)); |
| if (IsSmi(*number)) { |
| return MutableBigInt::NewFromInt(isolate, Smi::ToInt(*number)); |
| } |
| double value = Cast<HeapNumber>(*number)->value(); |
| if (!std::isfinite(value) || (DoubleToInteger(value) != value)) { |
| THROW_NEW_ERROR(isolate, |
| NewRangeError(MessageTemplate::kBigIntFromNumber, number)); |
| } |
| return MutableBigInt::NewFromDouble(isolate, value); |
| } |
| |
| template <template <typename> typename HandleType> |
| requires(std::is_convertible_v<HandleType<Object>, DirectHandle<Object>>) |
| typename HandleType<BigInt>::MaybeType BigInt::FromObject( |
| Isolate* isolate, HandleType<Object> obj) { |
| if (IsJSReceiver(*obj)) { |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate, obj, |
| JSReceiver::ToPrimitive(isolate, Cast<JSReceiver>(obj), |
| ToPrimitiveHint::kNumber)); |
| } |
| |
| if (IsBoolean(*obj)) { |
| return MutableBigInt::NewFromInt(isolate, |
| Object::BooleanValue(*obj, isolate)); |
| } |
| if (IsBigInt(*obj)) { |
| return Cast<BigInt>(obj); |
| } |
| if (IsString(*obj)) { |
| HandleType<BigInt> n; |
| if (!StringToBigInt(isolate, Cast<String>(obj)).ToHandle(&n)) { |
| if (isolate->has_exception()) { |
| return {}; |
| } else { |
| DirectHandle<String> str = Cast<String>(obj); |
| constexpr uint32_t kMaxRenderedLength = 1000; |
| if (str->length() > kMaxRenderedLength) { |
| Factory* factory = isolate->factory(); |
| DirectHandle<String> prefix = |
| factory->NewProperSubString(str, 0, kMaxRenderedLength); |
| DirectHandle<SeqTwoByteString> ellipsis = |
| factory->NewRawTwoByteString(1).ToHandleChecked(); |
| ellipsis->SeqTwoByteStringSet(0, 0x2026); |
| // TODO(42203211): The cast below should not be necessary. Let's |
| // remove it, when NewConsString is not templatized by the handle |
| // type. |
| str = factory->NewConsString(prefix, Cast<String>(ellipsis)) |
| .ToHandleChecked(); |
| } |
| THROW_NEW_ERROR( |
| isolate, NewSyntaxError(MessageTemplate::kBigIntFromObject, str)); |
| } |
| } |
| return n; |
| } |
| |
| THROW_NEW_ERROR(isolate, |
| NewTypeError(MessageTemplate::kBigIntFromObject, obj)); |
| } |
| |
| template V8_EXPORT_PRIVATE MaybeDirectHandle<BigInt> BigInt::FromObject( |
| Isolate* isolate, DirectHandle<Object> obj); |
| template V8_EXPORT_PRIVATE MaybeIndirectHandle<BigInt> BigInt::FromObject( |
| Isolate* isolate, IndirectHandle<Object> obj); |
| |
| DirectHandle<Number> BigInt::ToNumber(Isolate* isolate, |
| DirectHandle<BigInt> x) { |
| if (x->is_zero()) return direct_handle(Smi::zero(), isolate); |
| if (x->length() == 1 && x->digit(0) < Smi::kMaxValue) { |
| int value = static_cast<int>(x->digit(0)); |
| if (x->sign()) value = -value; |
| return direct_handle(Smi::FromInt(value), isolate); |
| } |
| double result = MutableBigInt::ToDouble(x); |
| return isolate->factory()->NewHeapNumber(result); |
| } |
| |
| double MutableBigInt::ToDouble(DirectHandle<BigIntBase> x) { |
| if (x->is_zero()) return 0.0; |
| uint32_t x_length = x->length(); |
| digit_t x_msd = x->digit(x_length - 1); |
| uint32_t msd_leading_zeros = base::bits::CountLeadingZeros(x_msd); |
| uint32_t x_bitlength = x_length * kDigitBits - msd_leading_zeros; |
| if (x_bitlength > 1024) return x->sign() ? -V8_INFINITY : V8_INFINITY; |
| uint64_t exponent = x_bitlength - 1; |
| // We need the most significant bit shifted to the position of a double's |
| // "hidden bit". We also need to hide that MSB, so we shift it out. |
| uint64_t current_digit = x_msd; |
| uint32_t digit_index = x_length - 1; |
| uint32_t shift = msd_leading_zeros + 1 + (64 - kDigitBits); |
| DCHECK_LE(1, shift); |
| DCHECK_LE(shift, 64); |
| uint64_t mantissa = (shift == 64) ? 0 : current_digit << shift; |
| mantissa >>= 12; |
| int32_t mantissa_bits_unset = shift - 12; |
| // If not all mantissa bits are defined yet, get more digits as needed. |
| if (mantissa_bits_unset >= static_cast<int32_t>(kDigitBits) && |
| digit_index > 0) { |
| digit_index--; |
| current_digit = static_cast<uint64_t>(x->digit(digit_index)); |
| mantissa |= (current_digit << (mantissa_bits_unset - kDigitBits)); |
| mantissa_bits_unset -= kDigitBits; |
| } |
| if (mantissa_bits_unset > 0 && digit_index > 0) { |
| DCHECK_LT(mantissa_bits_unset, kDigitBits); |
| digit_index--; |
| current_digit = static_cast<uint64_t>(x->digit(digit_index)); |
| mantissa |= (current_digit >> (kDigitBits - mantissa_bits_unset)); |
| mantissa_bits_unset -= kDigitBits; |
| } |
| // If there are unconsumed digits left, we may have to round. |
| Rounding rounding = |
| DecideRounding(x, mantissa_bits_unset, digit_index, current_digit); |
| if (rounding == kRoundUp || (rounding == kTie && (mantissa & 1) == 1)) { |
| mantissa++; |
| // Incrementing the mantissa can overflow the mantissa bits. In that case |
| // the new mantissa will be all zero (plus hidden bit). |
| if ((mantissa >> base::Double::kPhysicalSignificandSize) != 0) { |
| mantissa = 0; |
| exponent++; |
| // Incrementing the exponent can overflow too. |
| if (exponent > 1023) { |
| return x->sign() ? -V8_INFINITY : V8_INFINITY; |
| } |
| } |
| } |
| // Assemble the result. |
| uint64_t sign_bit = x->sign() ? (static_cast<uint64_t>(1) << 63) : 0; |
| exponent = (exponent + 0x3FF) << base::Double::kPhysicalSignificandSize; |
| uint64_t double_bits = sign_bit | exponent | mantissa; |
| return base::bit_cast<double>(double_bits); |
| } |
| |
| // This is its own function to simplify control flow. The meaning of the |
| // parameters is defined by {ToDouble}'s local variable usage. |
| MutableBigInt::Rounding MutableBigInt::DecideRounding( |
| DirectHandle<BigIntBase> x, int mantissa_bits_unset, int digit_index, |
| uint64_t current_digit) { |
| if (mantissa_bits_unset > 0) return kRoundDown; |
| int top_unconsumed_bit; |
| if (mantissa_bits_unset < 0) { |
| // There are unconsumed bits in {current_digit}. |
| top_unconsumed_bit = -mantissa_bits_unset - 1; |
| } else { |
| DCHECK_EQ(mantissa_bits_unset, 0); |
| // {current_digit} fit the mantissa exactly; look at the next digit. |
| if (digit_index == 0) return kRoundDown; |
| digit_index--; |
| current_digit = static_cast<uint64_t>(x->digit(digit_index)); |
| top_unconsumed_bit = kDigitBits - 1; |
| } |
| // If the most significant remaining bit is 0, round down. |
| uint64_t bitmask = static_cast<uint64_t>(1) << top_unconsumed_bit; |
| if ((current_digit & bitmask) == 0) { |
| return kRoundDown; |
| } |
| // If any other remaining bit is set, round up. |
| bitmask -= 1; |
| if ((current_digit & bitmask) != 0) return kRoundUp; |
| while (digit_index > 0) { |
| digit_index--; |
| if (x->digit(digit_index) != 0) return kRoundUp; |
| } |
| return kTie; |
| } |
| |
| void BigInt::BigIntShortPrint(std::ostream& os) { |
| if (sign()) os << "-"; |
| uint32_t len = length(); |
| if (len == 0) { |
| os << "0"; |
| return; |
| } |
| if (len > 1) os << "..."; |
| os << digit(0); |
| } |
| |
| // Internal helpers. |
| |
| // Adds 1 to the absolute value of {x} and sets the result's sign to {sign}. |
| // {result_storage} is optional; if present, it will be used to store the |
| // result, otherwise a new BigInt will be allocated for the result. |
| // {result_storage} and {x} may refer to the same BigInt for in-place |
| // modification. |
| MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteAddOne( |
| Isolate* isolate, DirectHandle<BigIntBase> x, bool sign, |
| Tagged<MutableBigInt> result_storage) { |
| uint32_t input_length = x->length(); |
| // The addition will overflow into a new digit if all existing digits are |
| // at maximum. |
| bool will_overflow = true; |
| for (uint32_t i = 0; i < input_length; i++) { |
| if (!digit_ismax(x->digit(i))) { |
| will_overflow = false; |
| break; |
| } |
| } |
| uint32_t result_length = input_length + will_overflow; |
| Handle<MutableBigInt> result(result_storage, isolate); |
| if (result_storage.is_null()) { |
| if (!New(isolate, result_length).ToHandle(&result)) return {}; |
| } else { |
| DCHECK(result->length() == result_length); |
| } |
| if (input_length == 0) { |
| result->set_digit(0, 1); |
| } else if (input_length == 1 && !will_overflow) { |
| result->set_digit(0, x->digit(0) + 1); |
| } else { |
| bigint::AddOne(result->rw_digits(), x->digits()); |
| } |
| result->set_sign(sign); |
| return result; |
| } |
| |
| // Subtracts 1 from the absolute value of {x}. {x} must not be zero. |
| Handle<MutableBigInt> MutableBigInt::AbsoluteSubOne( |
| Isolate* isolate, DirectHandle<BigIntBase> x) { |
| DCHECK(!x->is_zero()); |
| uint32_t length = x->length(); |
| Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked(); |
| if (length == 1) { |
| result->set_digit(0, x->digit(0) - 1); |
| } else { |
| bigint::SubtractOne(result->rw_digits(), x->digits()); |
| } |
| return result; |
| } |
| |
| void Terminate(Isolate* isolate) { isolate->TerminateExecution(); } |
| // {LocalIsolate} doesn't support interruption or termination. |
| void Terminate(LocalIsolate* isolate) { UNREACHABLE(); } |
| |
| template <typename IsolateT> |
| MaybeHandle<BigInt> BigInt::Allocate(IsolateT* isolate, |
| bigint::FromStringAccumulator* accumulator, |
| bool negative, AllocationType allocation) { |
| uint32_t digits = accumulator->ResultLength(); |
| DCHECK_LE(digits, kMaxLength); |
| Handle<MutableBigInt> result = |
| MutableBigInt::New(isolate, digits, allocation).ToHandleChecked(); |
| bigint::Status status = |
| isolate->bigint_processor()->FromString(result->rw_digits(), accumulator); |
| if (status == bigint::Status::kInterrupted) { |
| Terminate(isolate); |
| return {}; |
| } |
| if (digits > 0) result->set_sign(negative); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| template MaybeHandle<BigInt> BigInt::Allocate(Isolate*, |
| bigint::FromStringAccumulator*, |
| bool, AllocationType); |
| template MaybeHandle<BigInt> BigInt::Allocate(LocalIsolate*, |
| bigint::FromStringAccumulator*, |
| bool, AllocationType); |
| |
| // The serialization format MUST NOT CHANGE without updating the format |
| // version in value-serializer.cc! |
| uint32_t BigInt::GetBitfieldForSerialization() const { |
| // In order to make the serialization format the same on 32/64 bit builds, |
| // we convert the length-in-digits to length-in-bytes for serialization. |
| // Being able to do this depends on having enough LengthBits: |
| static_assert(kMaxLength * kDigitSize <= LengthBits::kMax); |
| uint32_t bytelength = length() * kDigitSize; |
| return SignBits::encode(sign()) | LengthBits::encode(bytelength); |
| } |
| |
| size_t BigInt::DigitsByteLengthForBitfield(uint32_t bitfield) { |
| return LengthBits::decode(bitfield); |
| } |
| |
| // The serialization format MUST NOT CHANGE without updating the format |
| // version in value-serializer.cc! |
| void BigInt::SerializeDigits(uint8_t* storage, size_t storage_length) { |
| size_t num_digits_to_write = storage_length / kDigitSize; |
| // {storage_length} should have been computed from {length()}. |
| DCHECK_EQ(num_digits_to_write, length()); |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| memcpy(storage, raw_digits(), num_digits_to_write * kDigitSize); |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| digit_t* digit_storage = reinterpret_cast<digit_t*>(storage); |
| const digit_t* digit = reinterpret_cast<const digit_t*>(raw_digits()); |
| for (size_t i = 0; i < num_digits_to_write; i++) { |
| *digit_storage = ByteReverse(*digit); |
| digit_storage++; |
| digit++; |
| } |
| #endif // V8_TARGET_BIG_ENDIAN |
| } |
| |
| // The serialization format MUST NOT CHANGE without updating the format |
| // version in value-serializer.cc! |
| MaybeDirectHandle<BigInt> BigInt::FromSerializedDigits( |
| Isolate* isolate, uint32_t bitfield, |
| base::Vector<const uint8_t> digits_storage) { |
| uint32_t bytelength = LengthBits::decode(bitfield); |
| DCHECK_EQ(static_cast<uint32_t>(digits_storage.length()), bytelength); |
| bool sign = SignBits::decode(bitfield); |
| uint32_t length = (bytelength + kDigitSize - 1) / kDigitSize; // Round up. |
| // There is no -0n. Reject corrupted serialized data. |
| if (length == 0 && sign == true) return {}; |
| Handle<MutableBigInt> result = |
| Cast<MutableBigInt>(isolate->factory()->NewBigInt(length)); |
| result->initialize_bitfield(sign, length); |
| UnalignedValueMember<digit_t>* digits = result->raw_digits(); |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| memcpy(digits, digits_storage.begin(), bytelength); |
| void* padding_start = |
| reinterpret_cast<void*>(reinterpret_cast<Address>(digits) + bytelength); |
| memset(padding_start, 0, length * kDigitSize - bytelength); |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| digit_t* digit = reinterpret_cast<digit_t*>(digits); |
| const digit_t* digit_storage = |
| reinterpret_cast<const digit_t*>(digits_storage.begin()); |
| for (uint32_t i = 0; i < bytelength / kDigitSize; i++) { |
| *digit = ByteReverse(*digit_storage); |
| digit_storage++; |
| digit++; |
| } |
| if (bytelength % kDigitSize) { |
| *digit = 0; |
| uint8_t* digit_byte = reinterpret_cast<uint8_t*>(digit); |
| digit_byte += sizeof(*digit) - 1; |
| const uint8_t* digit_storage_byte = |
| reinterpret_cast<const uint8_t*>(digit_storage); |
| for (uint32_t i = 0; i < bytelength % kDigitSize; i++) { |
| *digit_byte = *digit_storage_byte; |
| digit_byte--; |
| digit_storage_byte++; |
| } |
| } |
| #endif // V8_TARGET_BIG_ENDIAN |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| DirectHandle<BigInt> BigInt::AsIntN(Isolate* isolate, uint64_t n, |
| DirectHandle<BigInt> x) { |
| if (x->is_zero() || n > kMaxLengthBits) return x; |
| if (n == 0) return MutableBigInt::Zero(isolate); |
| int needed_length = |
| bigint::AsIntNResultLength(x->digits(), x->sign(), static_cast<int>(n)); |
| if (needed_length == -1) return x; |
| Handle<MutableBigInt> result = |
| MutableBigInt::New(isolate, needed_length).ToHandleChecked(); |
| bool negative = bigint::AsIntN(result->rw_digits(), x->digits(), x->sign(), |
| static_cast<int>(n)); |
| result->set_sign(negative); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeDirectHandle<BigInt> BigInt::AsUintN(Isolate* isolate, uint64_t n, |
| DirectHandle<BigInt> x) { |
| if (x->is_zero()) return x; |
| if (n == 0) return MutableBigInt::Zero(isolate); |
| Handle<MutableBigInt> result; |
| if (x->sign()) { |
| if (n > kMaxLengthBits) { |
| return ThrowBigIntTooBig<BigInt>(isolate); |
| } |
| int result_length = bigint::AsUintN_Neg_ResultLength(static_cast<int>(n)); |
| result = MutableBigInt::New(isolate, result_length).ToHandleChecked(); |
| bigint::AsUintN_Neg(result->rw_digits(), x->digits(), static_cast<int>(n)); |
| } else { |
| if (n >= kMaxLengthBits) return x; |
| int result_length = |
| bigint::AsUintN_Pos_ResultLength(x->digits(), static_cast<int>(n)); |
| if (result_length < 0) return x; |
| result = MutableBigInt::New(isolate, result_length).ToHandleChecked(); |
| bigint::AsUintN_Pos(result->rw_digits(), x->digits(), static_cast<int>(n)); |
| } |
| DCHECK(!result->sign()); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| Handle<BigInt> BigInt::FromInt64(Isolate* isolate, int64_t n) { |
| if (n == 0) return MutableBigInt::Zero(isolate); |
| static_assert(kDigitBits == 64 || kDigitBits == 32); |
| uint32_t length = 64 / kDigitBits; |
| Handle<MutableBigInt> result = |
| Cast<MutableBigInt>(isolate->factory()->NewBigInt(length)); |
| bool sign = n < 0; |
| result->initialize_bitfield(sign, length); |
| uint64_t absolute; |
| if (!sign) { |
| absolute = static_cast<uint64_t>(n); |
| } else { |
| if (n == std::numeric_limits<int64_t>::min()) { |
| absolute = static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1; |
| } else { |
| absolute = static_cast<uint64_t>(-n); |
| } |
| } |
| result->set_64_bits(absolute); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| Handle<BigInt> BigInt::FromUint64(Isolate* isolate, uint64_t n) { |
| if (n == 0) return MutableBigInt::Zero(isolate); |
| static_assert(kDigitBits == 64 || kDigitBits == 32); |
| uint32_t length = 64 / kDigitBits; |
| Handle<MutableBigInt> result = |
| Cast<MutableBigInt>(isolate->factory()->NewBigInt(length)); |
| result->initialize_bitfield(false, length); |
| result->set_64_bits(n); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeDirectHandle<BigInt> BigInt::FromWords64(Isolate* isolate, int sign_bit, |
| uint32_t words64_count, |
| const uint64_t* words) { |
| if (words64_count > kMaxLength / (64 / kDigitBits)) { |
| return ThrowBigIntTooBig<BigInt>(isolate); |
| } |
| if (words64_count == 0) return MutableBigInt::Zero(isolate); |
| static_assert(kDigitBits == 64 || kDigitBits == 32); |
| uint32_t length = (64 / kDigitBits) * words64_count; |
| DCHECK_GT(length, 0); |
| if (kDigitBits == 32 && words[words64_count - 1] < (1ULL << 32)) length--; |
| |
| Handle<MutableBigInt> result; |
| if (!MutableBigInt::New(isolate, length).ToHandle(&result)) return {}; |
| |
| result->set_sign(sign_bit); |
| if (kDigitBits == 64) { |
| for (uint32_t i = 0; i < length; ++i) { |
| result->set_digit(i, static_cast<digit_t>(words[i])); |
| } |
| } else { |
| for (uint32_t i = 0; i < length; i += 2) { |
| digit_t lo = static_cast<digit_t>(words[i / 2]); |
| digit_t hi = static_cast<digit_t>(words[i / 2] >> 32); |
| result->set_digit(i, lo); |
| if (i + 1 < length) result->set_digit(i + 1, hi); |
| } |
| } |
| |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| uint32_t BigInt::Words64Count() { |
| static_assert(kDigitBits == 64 || kDigitBits == 32); |
| return length() / (64 / kDigitBits) + |
| (kDigitBits == 32 && length() % 2 == 1 ? 1 : 0); |
| } |
| |
| void BigInt::ToWordsArray64(int* sign_bit, uint32_t* words64_count, |
| uint64_t* words) { |
| DCHECK_NE(sign_bit, nullptr); |
| DCHECK_NE(words64_count, nullptr); |
| *sign_bit = sign(); |
| uint32_t available_words = *words64_count; |
| *words64_count = Words64Count(); |
| if (available_words == 0) return; |
| DCHECK_NE(words, nullptr); |
| |
| uint32_t len = length(); |
| if (kDigitBits == 64) { |
| for (uint32_t i = 0; i < len && i < available_words; ++i) |
| words[i] = digit(i); |
| } else { |
| for (uint32_t i = 0; i < len && available_words > 0; i += 2) { |
| uint64_t lo = digit(i); |
| uint64_t hi = (i + 1) < len ? digit(i + 1) : 0; |
| words[i / 2] = lo | (hi << 32); |
| available_words--; |
| } |
| } |
| } |
| |
| uint64_t MutableBigInt::GetRawBits(BigIntBase* x, bool* lossless) { |
| if (lossless != nullptr) *lossless = true; |
| if (x->is_zero()) return 0; |
| uint32_t len = x->length(); |
| static_assert(kDigitBits == 64 || kDigitBits == 32); |
| if (lossless != nullptr && len > 64 / kDigitBits) *lossless = false; |
| uint64_t raw = static_cast<uint64_t>(x->digit(0)); |
| if (kDigitBits == 32 && len > 1) { |
| raw |= static_cast<uint64_t>(x->digit(1)) << 32; |
| } |
| // Simulate two's complement. MSVC dislikes "-raw". |
| return x->sign() ? ((~raw) + 1u) : raw; |
| } |
| |
| int64_t BigInt::AsInt64(bool* lossless) { |
| uint64_t raw = MutableBigInt::GetRawBits(this, lossless); |
| int64_t result = static_cast<int64_t>(raw); |
| if (lossless != nullptr && (result < 0) != sign()) *lossless = false; |
| return result; |
| } |
| |
| uint64_t BigInt::AsUint64(bool* lossless) { |
| uint64_t result = MutableBigInt::GetRawBits(this, lossless); |
| if (lossless != nullptr && sign()) *lossless = false; |
| return result; |
| } |
| |
| void MutableBigInt::set_64_bits(uint64_t bits) { |
| static_assert(kDigitBits == 64 || kDigitBits == 32); |
| if (kDigitBits == 64) { |
| set_digit(0, static_cast<digit_t>(bits)); |
| } else { |
| set_digit(0, static_cast<digit_t>(bits & 0xFFFFFFFFu)); |
| set_digit(1, static_cast<digit_t>(bits >> 32)); |
| } |
| } |
| |
| #ifdef OBJECT_PRINT |
| void BigIntBase::BigIntBasePrint(std::ostream& os) { |
| DisallowGarbageCollection no_gc; |
| PrintHeader(os, "BigInt"); |
| uint32_t len = length(); |
| os << "\n- length: " << len; |
| os << "\n- sign: " << sign(); |
| if (len > 0) { |
| os << "\n- digits:"; |
| for (uint32_t i = 0; i < len; i++) { |
| os << "\n 0x" << std::hex << digit(i); |
| } |
| } |
| os << std::dec << "\n"; |
| } |
| #endif // OBJECT_PRINT |
| |
| void MutableBigInt_AbsoluteAddAndCanonicalize(Address result_addr, |
| Address x_addr, Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::Add(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| int32_t MutableBigInt_AbsoluteCompare(Address x_addr, Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| |
| return bigint::Compare(x->digits(), y->digits()); |
| } |
| |
| void MutableBigInt_AbsoluteSubAndCanonicalize(Address result_addr, |
| Address x_addr, Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::Subtract(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| // Returns 0 if it succeeded to obtain the result of multiplication. |
| // Returns 1 if the computation is interrupted. |
| int32_t MutableBigInt_AbsoluteMulAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| Isolate* isolate; |
| if (!GetIsolateFromHeapObject(x, &isolate)) { |
| // We should always get the isolate from the BigInt. |
| UNREACHABLE(); |
| } |
| |
| bigint::Status status = isolate->bigint_processor()->Multiply( |
| result->rw_digits(), x->digits(), y->digits()); |
| if (status == bigint::Status::kInterrupted) { |
| return 1; |
| } |
| |
| MutableBigInt::Canonicalize(result); |
| return 0; |
| } |
| |
| int32_t MutableBigInt_AbsoluteDivAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| DCHECK_GE(result->length(), |
| bigint::DivideResultLength(x->digits(), y->digits())); |
| |
| Isolate* isolate; |
| if (!GetIsolateFromHeapObject(x, &isolate)) { |
| // We should always get the isolate from the BigInt. |
| UNREACHABLE(); |
| } |
| |
| bigint::Status status = isolate->bigint_processor()->Divide( |
| result->rw_digits(), x->digits(), y->digits()); |
| if (status == bigint::Status::kInterrupted) { |
| return 1; |
| } |
| |
| MutableBigInt::Canonicalize(result); |
| return 0; |
| } |
| |
| int32_t MutableBigInt_AbsoluteModAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| Isolate* isolate; |
| if (!GetIsolateFromHeapObject(x, &isolate)) { |
| // We should always get the isolate from the BigInt. |
| UNREACHABLE(); |
| } |
| |
| bigint::Status status = isolate->bigint_processor()->Modulo( |
| result->rw_digits(), x->digits(), y->digits()); |
| if (status == bigint::Status::kInterrupted) { |
| return 1; |
| } |
| |
| MutableBigInt::Canonicalize(result); |
| return 0; |
| } |
| |
| void MutableBigInt_BitwiseAndPosPosAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseAnd_PosPos(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_BitwiseAndNegNegAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseAnd_NegNeg(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_BitwiseAndPosNegAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseAnd_PosNeg(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_BitwiseOrPosPosAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseOr_PosPos(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_BitwiseOrNegNegAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseOr_NegNeg(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_BitwiseOrPosNegAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseOr_PosNeg(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_BitwiseXorPosPosAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseXor_PosPos(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_BitwiseXorNegNegAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseXor_NegNeg(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_BitwiseXorPosNegAndCanonicalize(Address result_addr, |
| Address x_addr, |
| Address y_addr) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<BigInt> y = Cast<BigInt>(Tagged<Object>(y_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::BitwiseXor_PosNeg(result->rw_digits(), x->digits(), y->digits()); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| void MutableBigInt_LeftShiftAndCanonicalize(Address result_addr, Address x_addr, |
| intptr_t shift) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| |
| bigint::LeftShift(result->rw_digits(), x->digits(), shift); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| uint32_t RightShiftResultLength(Address x_addr, uint32_t x_sign, |
| intptr_t shift) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| bigint::RightShiftState state; |
| uint32_t length = |
| bigint::RightShift_ResultLength(x->digits(), x_sign, shift, &state); |
| // {length} should be non-negative and fit in 30 bits. |
| DCHECK_EQ(length >> BigInt::kLengthFieldBits, 0); |
| return (static_cast<uint32_t>(state.must_round_down) |
| << BigInt::kLengthFieldBits) | |
| length; |
| } |
| |
| void MutableBigInt_RightShiftAndCanonicalize(Address result_addr, |
| Address x_addr, intptr_t shift, |
| uint32_t must_round_down) { |
| Tagged<BigInt> x = Cast<BigInt>(Tagged<Object>(x_addr)); |
| Tagged<MutableBigInt> result = |
| Cast<MutableBigInt>(Tagged<Object>(result_addr)); |
| bigint::RightShiftState state{must_round_down == 1}; |
| bigint::RightShift(result->rw_digits(), x->digits(), shift, state); |
| MutableBigInt::Canonicalize(result); |
| } |
| |
| #include "src/objects/object-macros-undef.h" |
| |
| } // namespace internal |
| } // namespace v8 |