blob: c1f59808d37cbac90a22bafa9f04351d9498e81e [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Parts of the implementation below:
// Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1]
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file [2].
//
// [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS
// [2] https://github.com/dart-lang/sdk/blob/master/LICENSE
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file [3].
//
// [3] https://golang.org/LICENSE
#include "src/objects/bigint.h"
#include <atomic>
#include "src/base/numbers/double.h"
#include "src/bigint/bigint.h"
#include "src/execution/isolate-inl.h"
#include "src/execution/isolate-utils-inl.h"
#include "src/heap/factory.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/heap.h"
#include "src/numbers/conversions.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/instance-type-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/smi.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
// The MutableBigInt class is an implementation detail designed to prevent
// accidental mutation of a BigInt after its construction. Step-by-step
// construction of a BigInt must happen in terms of MutableBigInt, the
// final result is then passed through MutableBigInt::MakeImmutable and not
// modified further afterwards.
// Many of the functions in this class use arguments of type {BigIntBase},
// indicating that they will be used in a read-only capacity, and both
// {BigInt} and {MutableBigInt} objects can be passed in.
V8_OBJECT class MutableBigInt : public FreshlyAllocatedBigInt {
public:
// Bottleneck for converting MutableBigInts to BigInts.
static MaybeHandle<BigInt> MakeImmutable(MaybeHandle<MutableBigInt> maybe);
template <typename Isolate = v8::internal::Isolate>
static Handle<BigInt> MakeImmutable(Handle<MutableBigInt> result);
static void Canonicalize(Tagged<MutableBigInt> result);
// Allocation helpers.
template <typename IsolateT>
static MaybeHandle<MutableBigInt> New(
IsolateT* isolate, int length,
AllocationType allocation = AllocationType::kYoung);
static Handle<BigInt> NewFromInt(Isolate* isolate, int value);
static Handle<BigInt> NewFromDouble(Isolate* isolate, double value);
void InitializeDigits(int length, uint8_t value = 0);
static Handle<MutableBigInt> Copy(Isolate* isolate,
Handle<BigIntBase> source);
template <typename IsolateT>
static Handle<BigInt> Zero(
IsolateT* isolate, AllocationType allocation = AllocationType::kYoung) {
// TODO(jkummerow): Consider caching a canonical zero-BigInt.
return MakeImmutable<IsolateT>(
New(isolate, 0, allocation).ToHandleChecked());
}
static Handle<MutableBigInt> Cast(Handle<FreshlyAllocatedBigInt> bigint) {
SLOW_DCHECK(IsBigInt(*bigint));
return Handle<MutableBigInt>::cast(bigint);
}
static Tagged<MutableBigInt> cast(Tagged<Object> o) {
SLOW_DCHECK(IsBigInt(o));
return MutableBigInt::unchecked_cast(o);
}
static Tagged<MutableBigInt> unchecked_cast(Tagged<Object> o) {
return Tagged<MutableBigInt>::unchecked_cast(o);
}
// Internal helpers.
static MaybeHandle<MutableBigInt> AbsoluteAddOne(
Isolate* isolate, Handle<BigIntBase> x, bool sign,
Tagged<MutableBigInt> result_storage = {});
static Handle<MutableBigInt> AbsoluteSubOne(Isolate* isolate,
Handle<BigIntBase> x);
// Specialized helpers for shift operations.
static MaybeHandle<BigInt> LeftShiftByAbsolute(Isolate* isolate,
Handle<BigIntBase> x,
Handle<BigIntBase> y);
static Handle<BigInt> RightShiftByAbsolute(Isolate* isolate,
Handle<BigIntBase> x,
Handle<BigIntBase> y);
static Handle<BigInt> RightShiftByMaximum(Isolate* isolate, bool sign);
static Maybe<digit_t> ToShiftAmount(Handle<BigIntBase> x);
static double ToDouble(Handle<BigIntBase> x);
enum Rounding { kRoundDown, kTie, kRoundUp };
static Rounding DecideRounding(Handle<BigIntBase> x, int mantissa_bits_unset,
int digit_index, uint64_t current_digit);
// Returns the least significant 64 bits, simulating two's complement
// representation.
static uint64_t GetRawBits(BigIntBase* x, bool* lossless);
static inline bool digit_ismax(digit_t x) {
return static_cast<digit_t>(~x) == 0;
}
bigint::RWDigits rw_digits();
inline void set_sign(bool new_sign) {
bitfield_.store(
SignBits::update(bitfield_.load(std::memory_order_relaxed), new_sign),
std::memory_order_relaxed);
}
inline void set_length(int new_length, ReleaseStoreTag) {
bitfield_.store(LengthBits::update(
bitfield_.load(std::memory_order_relaxed), new_length),
std::memory_order_relaxed);
}
inline void initialize_bitfield(bool sign, int length) {
bitfield_.store(LengthBits::encode(length) | SignBits::encode(sign),
std::memory_order_relaxed);
}
inline void set_digit(int n, digit_t value) {
SLOW_DCHECK(0 <= n && n < length());
raw_digits()[n].set_value(value);
}
void set_64_bits(uint64_t bits);
static bool IsMutableBigInt(Tagged<MutableBigInt> o) { return IsBigInt(o); }
static_assert(std::is_same<bigint::digit_t, BigIntBase::digit_t>::value,
"We must be able to call BigInt library functions");
NEVER_READ_ONLY_SPACE
} V8_OBJECT_END;
NEVER_READ_ONLY_SPACE_IMPL(MutableBigInt)
bigint::Digits BigIntBase::digits() const {
return bigint::Digits(reinterpret_cast<const digit_t*>(raw_digits()),
length());
}
bigint::RWDigits MutableBigInt::rw_digits() {
return bigint::RWDigits(reinterpret_cast<digit_t*>(raw_digits()), length());
}
template <typename T, typename Isolate>
MaybeHandle<T> ThrowBigIntTooBig(Isolate* isolate) {
// If the result of a BigInt computation is truncated to 64 bit, Turbofan
// can sometimes truncate intermediate results already, which can prevent
// those from exceeding the maximum length, effectively preventing a
// RangeError from being thrown. As this is a performance optimization, this
// behavior is accepted. To prevent the correctness fuzzer from detecting this
// difference, we crash the program.
if (v8_flags.correctness_fuzzer_suppressions) {
FATAL("Aborting on invalid BigInt length");
}
THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), T);
}
template <typename IsolateT>
MaybeHandle<MutableBigInt> MutableBigInt::New(IsolateT* isolate, int length,
AllocationType allocation) {
if (length > BigInt::kMaxLength) {
return ThrowBigIntTooBig<MutableBigInt>(isolate);
}
Handle<MutableBigInt> result =
Cast(isolate->factory()->NewBigInt(length, allocation));
result->initialize_bitfield(false, length);
#if DEBUG
result->InitializeDigits(length, 0xBF);
#endif
return result;
}
Handle<BigInt> MutableBigInt::NewFromInt(Isolate* isolate, int value) {
if (value == 0) return Zero(isolate);
Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(1));
bool sign = value < 0;
result->initialize_bitfield(sign, 1);
if (!sign) {
result->set_digit(0, value);
} else {
if (value == kMinInt) {
static_assert(kMinInt == -kMaxInt - 1);
result->set_digit(0, static_cast<BigInt::digit_t>(kMaxInt) + 1);
} else {
result->set_digit(0, -value);
}
}
return MakeImmutable(result);
}
Handle<BigInt> MutableBigInt::NewFromDouble(Isolate* isolate, double value) {
DCHECK_EQ(value, std::floor(value));
if (value == 0) return Zero(isolate);
bool sign = value < 0; // -0 was already handled above.
uint64_t double_bits = base::bit_cast<uint64_t>(value);
int raw_exponent =
static_cast<int>(double_bits >> base::Double::kPhysicalSignificandSize) &
0x7FF;
DCHECK_NE(raw_exponent, 0x7FF);
DCHECK_GE(raw_exponent, 0x3FF);
int exponent = raw_exponent - 0x3FF;
int digits = exponent / kDigitBits + 1;
Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(digits));
result->initialize_bitfield(sign, digits);
// We construct a BigInt from the double {value} by shifting its mantissa
// according to its exponent and mapping the bit pattern onto digits.
//
// <----------- bitlength = exponent + 1 ----------->
// <----- 52 ------> <------ trailing zeroes ------>
// mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
// digits: 0001xxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
// <--> <------>
// msd_topbit kDigitBits
//
uint64_t mantissa =
(double_bits & base::Double::kSignificandMask) | base::Double::kHiddenBit;
const int kMantissaTopBit = base::Double::kSignificandSize - 1; // 0-indexed.
// 0-indexed position of most significant bit in the most significant digit.
int msd_topbit = exponent % kDigitBits;
// Number of unused bits in {mantissa}. We'll keep them shifted to the
// left (i.e. most significant part) of the underlying uint64_t.
int remaining_mantissa_bits = 0;
// Next digit under construction.
digit_t digit;
// First, build the MSD by shifting the mantissa appropriately.
if (msd_topbit < kMantissaTopBit) {
remaining_mantissa_bits = kMantissaTopBit - msd_topbit;
digit = mantissa >> remaining_mantissa_bits;
mantissa = mantissa << (64 - remaining_mantissa_bits);
} else {
DCHECK_GE(msd_topbit, kMantissaTopBit);
digit = mantissa << (msd_topbit - kMantissaTopBit);
mantissa = 0;
}
result->set_digit(digits - 1, digit);
// Then fill in the rest of the digits.
for (int digit_index = digits - 2; digit_index >= 0; digit_index--) {
if (remaining_mantissa_bits > 0) {
remaining_mantissa_bits -= kDigitBits;
if (sizeof(digit) == 4) {
digit = mantissa >> 32;
mantissa = mantissa << 32;
} else {
DCHECK_EQ(sizeof(digit), 8);
digit = mantissa;
mantissa = 0;
}
} else {
digit = 0;
}
result->set_digit(digit_index, digit);
}
return MakeImmutable(result);
}
Handle<MutableBigInt> MutableBigInt::Copy(Isolate* isolate,
Handle<BigIntBase> source) {
int length = source->length();
// Allocating a BigInt of the same length as an existing BigInt cannot throw.
Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked();
memcpy(result->raw_digits(), source->raw_digits(), length * kDigitSize);
return result;
}
void MutableBigInt::InitializeDigits(int length, uint8_t value) {
memset(raw_digits(), value, length * kDigitSize);
}
MaybeHandle<BigInt> MutableBigInt::MakeImmutable(
MaybeHandle<MutableBigInt> maybe) {
Handle<MutableBigInt> result;
if (!maybe.ToHandle(&result)) return MaybeHandle<BigInt>();
return MakeImmutable(result);
}
template <typename IsolateT>
Handle<BigInt> MutableBigInt::MakeImmutable(Handle<MutableBigInt> result) {
MutableBigInt::Canonicalize(*result);
return Handle<BigInt>::cast(result);
}
void MutableBigInt::Canonicalize(Tagged<MutableBigInt> result) {
// Check if we need to right-trim any leading zero-digits.
int old_length = result->length();
int new_length = old_length;
while (new_length > 0 && result->digit(new_length - 1) == 0) new_length--;
int to_trim = old_length - new_length;
if (to_trim != 0) {
Heap* heap = result->GetHeap();
if (!heap->IsLargeObject(result)) {
int old_size = ALIGN_TO_ALLOCATION_ALIGNMENT(BigInt::SizeFor(old_length));
int new_size = ALIGN_TO_ALLOCATION_ALIGNMENT(BigInt::SizeFor(new_length));
heap->NotifyObjectSizeChange(result, old_size, new_size,
ClearRecordedSlots::kNo);
}
result->set_length(new_length, kReleaseStore);
// Canonicalize -0n.
if (new_length == 0) {
result->set_sign(false);
// TODO(jkummerow): If we cache a canonical 0n, return that here.
}
}
DCHECK_IMPLIES(result->length() > 0,
result->digit(result->length() - 1) != 0); // MSD is non-zero.
// Callers that don't require trimming must ensure this themselves.
DCHECK_IMPLIES(result->length() == 0, result->sign() == false);
}
template <typename IsolateT>
Handle<BigInt> BigInt::Zero(IsolateT* isolate, AllocationType allocation) {
return MutableBigInt::Zero(isolate, allocation);
}
template Handle<BigInt> BigInt::Zero(Isolate* isolate,
AllocationType allocation);
template Handle<BigInt> BigInt::Zero(LocalIsolate* isolate,
AllocationType allocation);
Handle<BigInt> BigInt::UnaryMinus(Isolate* isolate, Handle<BigInt> x) {
// Special case: There is no -0n.
if (x->is_zero()) {
return x;
}
Handle<MutableBigInt> result = MutableBigInt::Copy(isolate, x);
result->set_sign(!x->sign());
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::BitwiseNot(Isolate* isolate, Handle<BigInt> x) {
MaybeHandle<MutableBigInt> result;
if (x->sign()) {
// ~(-x) == ~(~(x-1)) == x-1
result = MutableBigInt::AbsoluteSubOne(isolate, x);
} else {
// ~x == -x-1 == -(x+1)
result = MutableBigInt::AbsoluteAddOne(isolate, x, true);
}
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::Exponentiate(Isolate* isolate, Handle<BigInt> base,
Handle<BigInt> exponent) {
// 1. If exponent is < 0, throw a RangeError exception.
if (exponent->sign()) {
THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kMustBePositive),
BigInt);
}
// 2. If base is 0n and exponent is 0n, return 1n.
if (exponent->is_zero()) {
return MutableBigInt::NewFromInt(isolate, 1);
}
// 3. Return a BigInt representing the mathematical value of base raised
// to the power exponent.
if (base->is_zero()) return base;
if (base->length() == 1 && base->digit(0) == 1) {
// (-1) ** even_number == 1.
if (base->sign() && (exponent->digit(0) & 1) == 0) {
return UnaryMinus(isolate, base);
}
// (-1) ** odd_number == -1; 1 ** anything == 1.
return base;
}
// For all bases >= 2, very large exponents would lead to unrepresentable
// results.
static_assert(kMaxLengthBits < std::numeric_limits<digit_t>::max());
if (exponent->length() > 1) {
return ThrowBigIntTooBig<BigInt>(isolate);
}
digit_t exp_value = exponent->digit(0);
if (exp_value == 1) return base;
if (exp_value >= kMaxLengthBits) {
return ThrowBigIntTooBig<BigInt>(isolate);
}
static_assert(kMaxLengthBits <= kMaxInt);
int n = static_cast<int>(exp_value);
if (base->length() == 1 && base->digit(0) == 2) {
// Fast path for 2^n.
int needed_digits = 1 + (n / kDigitBits);
Handle<MutableBigInt> result;
if (!MutableBigInt::New(isolate, needed_digits).ToHandle(&result)) {
return MaybeHandle<BigInt>();
}
result->InitializeDigits(needed_digits);
// All bits are zero. Now set the n-th bit.
digit_t msd = static_cast<digit_t>(1) << (n % kDigitBits);
result->set_digit(needed_digits - 1, msd);
// Result is negative for odd powers of -2n.
if (base->sign()) result->set_sign((n & 1) != 0);
return MutableBigInt::MakeImmutable(result);
}
Handle<BigInt> result;
Handle<BigInt> running_square = base;
// This implicitly sets the result's sign correctly.
if (n & 1) result = base;
n >>= 1;
for (; n != 0; n >>= 1) {
MaybeHandle<BigInt> maybe_result =
Multiply(isolate, running_square, running_square);
if (!maybe_result.ToHandle(&running_square)) return maybe_result;
if (n & 1) {
if (result.is_null()) {
result = running_square;
} else {
maybe_result = Multiply(isolate, result, running_square);
if (!maybe_result.ToHandle(&result)) return maybe_result;
}
}
}
return result;
}
MaybeHandle<BigInt> BigInt::Multiply(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
if (x->is_zero()) return x;
if (y->is_zero()) return y;
int result_length = bigint::MultiplyResultLength(x->digits(), y->digits());
Handle<MutableBigInt> result;
if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
return MaybeHandle<BigInt>();
}
DisallowGarbageCollection no_gc;
bigint::Status status = isolate->bigint_processor()->Multiply(
result->rw_digits(), x->digits(), y->digits());
if (status == bigint::Status::kInterrupted) {
AllowGarbageCollection terminating_anyway;
isolate->TerminateExecution();
return {};
}
result->set_sign(x->sign() != y->sign());
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::Divide(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
// 1. If y is 0n, throw a RangeError exception.
if (y->is_zero()) {
THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero),
BigInt);
}
// 2. Let quotient be the mathematical value of x divided by y.
// 3. Return a BigInt representing quotient rounded towards 0 to the next
// integral value.
if (bigint::Compare(x->digits(), y->digits()) < 0) {
return Zero(isolate);
}
bool result_sign = x->sign() != y->sign();
if (y->length() == 1 && y->digit(0) == 1) {
return result_sign == x->sign() ? x : UnaryMinus(isolate, x);
}
Handle<MutableBigInt> quotient;
int result_length = bigint::DivideResultLength(x->digits(), y->digits());
if (!MutableBigInt::New(isolate, result_length).ToHandle(&quotient)) {
return {};
}
DisallowGarbageCollection no_gc;
bigint::Status status = isolate->bigint_processor()->Divide(
quotient->rw_digits(), x->digits(), y->digits());
if (status == bigint::Status::kInterrupted) {
AllowGarbageCollection terminating_anyway;
isolate->TerminateExecution();
return {};
}
quotient->set_sign(result_sign);
return MutableBigInt::MakeImmutable(quotient);
}
MaybeHandle<BigInt> BigInt::Remainder(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
// 1. If y is 0n, throw a RangeError exception.
if (y->is_zero()) {
THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero),
BigInt);
}
// 2. Return the BigInt representing x modulo y.
// See https://github.com/tc39/proposal-bigint/issues/84 though.
if (bigint::Compare(x->digits(), y->digits()) < 0) return x;
if (y->length() == 1 && y->digit(0) == 1) return Zero(isolate);
Handle<MutableBigInt> remainder;
int result_length = bigint::ModuloResultLength(y->digits());
if (!MutableBigInt::New(isolate, result_length).ToHandle(&remainder)) {
return {};
}
DisallowGarbageCollection no_gc;
bigint::Status status = isolate->bigint_processor()->Modulo(
remainder->rw_digits(), x->digits(), y->digits());
if (status == bigint::Status::kInterrupted) {
AllowGarbageCollection terminating_anyway;
isolate->TerminateExecution();
return {};
}
remainder->set_sign(x->sign());
return MutableBigInt::MakeImmutable(remainder);
}
MaybeHandle<BigInt> BigInt::Add(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
if (x->is_zero()) return y;
if (y->is_zero()) return x;
bool xsign = x->sign();
bool ysign = y->sign();
int result_length =
bigint::AddSignedResultLength(x->length(), y->length(), xsign == ysign);
Handle<MutableBigInt> result;
if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
// Allocation fails when {result_length} exceeds the max BigInt size.
return {};
}
DisallowGarbageCollection no_gc;
bool result_sign = bigint::AddSigned(result->rw_digits(), x->digits(), xsign,
y->digits(), ysign);
result->set_sign(result_sign);
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::Subtract(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
if (y->is_zero()) return x;
if (x->is_zero()) return UnaryMinus(isolate, y);
bool xsign = x->sign();
bool ysign = y->sign();
int result_length = bigint::SubtractSignedResultLength(
x->length(), y->length(), xsign == ysign);
Handle<MutableBigInt> result;
if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
// Allocation fails when {result_length} exceeds the max BigInt size.
return {};
}
DisallowGarbageCollection no_gc;
bool result_sign = bigint::SubtractSigned(result->rw_digits(), x->digits(),
xsign, y->digits(), ysign);
result->set_sign(result_sign);
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::LeftShift(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
if (y->is_zero() || x->is_zero()) return x;
if (y->sign()) return MutableBigInt::RightShiftByAbsolute(isolate, x, y);
return MutableBigInt::LeftShiftByAbsolute(isolate, x, y);
}
MaybeHandle<BigInt> BigInt::SignedRightShift(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
if (y->is_zero() || x->is_zero()) return x;
if (y->sign()) return MutableBigInt::LeftShiftByAbsolute(isolate, x, y);
return MutableBigInt::RightShiftByAbsolute(isolate, x, y);
}
MaybeHandle<BigInt> BigInt::UnsignedRightShift(Isolate* isolate,
Handle<BigInt> x,
Handle<BigInt> y) {
THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kBigIntShr), BigInt);
}
namespace {
// Produces comparison result for {left_negative} == sign(x) != sign(y).
ComparisonResult UnequalSign(bool left_negative) {
return left_negative ? ComparisonResult::kLessThan
: ComparisonResult::kGreaterThan;
}
// Produces result for |x| > |y|, with {both_negative} == sign(x) == sign(y);
ComparisonResult AbsoluteGreater(bool both_negative) {
return both_negative ? ComparisonResult::kLessThan
: ComparisonResult::kGreaterThan;
}
// Produces result for |x| < |y|, with {both_negative} == sign(x) == sign(y).
ComparisonResult AbsoluteLess(bool both_negative) {
return both_negative ? ComparisonResult::kGreaterThan
: ComparisonResult::kLessThan;
}
} // namespace
// (Never returns kUndefined.)
ComparisonResult BigInt::CompareToBigInt(Handle<BigInt> x, Handle<BigInt> y) {
bool x_sign = x->sign();
if (x_sign != y->sign()) return UnequalSign(x_sign);
int result = bigint::Compare(x->digits(), y->digits());
if (result > 0) return AbsoluteGreater(x_sign);
if (result < 0) return AbsoluteLess(x_sign);
return ComparisonResult::kEqual;
}
bool BigInt::EqualToBigInt(Tagged<BigInt> x, Tagged<BigInt> y) {
if (x->sign() != y->sign()) return false;
if (x->length() != y->length()) return false;
for (int i = 0; i < x->length(); i++) {
if (x->digit(i) != y->digit(i)) return false;
}
return true;
}
MaybeHandle<BigInt> BigInt::BitwiseAnd(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
bool x_sign = x->sign();
bool y_sign = y->sign();
Handle<MutableBigInt> result;
if (!x_sign && !y_sign) {
int result_length =
bigint::BitwiseAnd_PosPos_ResultLength(x->length(), y->length());
result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
bigint::BitwiseAnd_PosPos(result->rw_digits(), x->digits(), y->digits());
DCHECK(!result->sign());
} else if (x_sign && y_sign) {
int result_length =
bigint::BitwiseAnd_NegNeg_ResultLength(x->length(), y->length());
if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
return {};
}
bigint::BitwiseAnd_NegNeg(result->rw_digits(), x->digits(), y->digits());
result->set_sign(true);
} else {
if (x_sign) std::swap(x, y);
int result_length = bigint::BitwiseAnd_PosNeg_ResultLength(x->length());
result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
bigint::BitwiseAnd_PosNeg(result->rw_digits(), x->digits(), y->digits());
DCHECK(!result->sign());
}
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::BitwiseXor(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
bool x_sign = x->sign();
bool y_sign = y->sign();
Handle<MutableBigInt> result;
if (!x_sign && !y_sign) {
int result_length =
bigint::BitwiseXor_PosPos_ResultLength(x->length(), y->length());
result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
bigint::BitwiseXor_PosPos(result->rw_digits(), x->digits(), y->digits());
DCHECK(!result->sign());
} else if (x_sign && y_sign) {
int result_length =
bigint::BitwiseXor_NegNeg_ResultLength(x->length(), y->length());
result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
bigint::BitwiseXor_NegNeg(result->rw_digits(), x->digits(), y->digits());
DCHECK(!result->sign());
} else {
if (x_sign) std::swap(x, y);
int result_length =
bigint::BitwiseXor_PosNeg_ResultLength(x->length(), y->length());
if (!MutableBigInt::New(isolate, result_length).ToHandle(&result)) {
return {};
}
bigint::BitwiseXor_PosNeg(result->rw_digits(), x->digits(), y->digits());
result->set_sign(true);
}
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::BitwiseOr(Isolate* isolate, Handle<BigInt> x,
Handle<BigInt> y) {
bool x_sign = x->sign();
bool y_sign = y->sign();
int result_length = bigint::BitwiseOrResultLength(x->length(), y->length());
Handle<MutableBigInt> result =
MutableBigInt::New(isolate, result_length).ToHandleChecked();
if (!x_sign && !y_sign) {
bigint::BitwiseOr_PosPos(result->rw_digits(), x->digits(), y->digits());
DCHECK(!result->sign());
} else if (x_sign && y_sign) {
bigint::BitwiseOr_NegNeg(result->rw_digits(), x->digits(), y->digits());
result->set_sign(true);
} else {
if (x_sign) std::swap(x, y);
bigint::BitwiseOr_PosNeg(result->rw_digits(), x->digits(), y->digits());
result->set_sign(true);
}
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::Increment(Isolate* isolate, Handle<BigInt> x) {
if (x->sign()) {
Handle<MutableBigInt> result = MutableBigInt::AbsoluteSubOne(isolate, x);
result->set_sign(true);
return MutableBigInt::MakeImmutable(result);
} else {
return MutableBigInt::MakeImmutable(
MutableBigInt::AbsoluteAddOne(isolate, x, false));
}
}
MaybeHandle<BigInt> BigInt::Decrement(Isolate* isolate, Handle<BigInt> x) {
MaybeHandle<MutableBigInt> result;
if (x->sign()) {
result = MutableBigInt::AbsoluteAddOne(isolate, x, true);
} else if (x->is_zero()) {
// TODO(jkummerow): Consider caching a canonical -1n BigInt.
return MutableBigInt::NewFromInt(isolate, -1);
} else {
result = MutableBigInt::AbsoluteSubOne(isolate, x);
}
return MutableBigInt::MakeImmutable(result);
}
Maybe<ComparisonResult> BigInt::CompareToString(Isolate* isolate,
Handle<BigInt> x,
Handle<String> y) {
// a. Let ny be StringToBigInt(y);
MaybeHandle<BigInt> maybe_ny = StringToBigInt(isolate, y);
// b. If ny is NaN, return undefined.
Handle<BigInt> ny;
if (!maybe_ny.ToHandle(&ny)) {
if (isolate->has_exception()) {
return Nothing<ComparisonResult>();
} else {
return Just(ComparisonResult::kUndefined);
}
}
// c. Return BigInt::lessThan(x, ny).
return Just(CompareToBigInt(x, ny));
}
Maybe<bool> BigInt::EqualToString(Isolate* isolate, Handle<BigInt> x,
Handle<String> y) {
// a. Let n be StringToBigInt(y).
MaybeHandle<BigInt> maybe_n = StringToBigInt(isolate, y);
// b. If n is NaN, return false.
Handle<BigInt> n;
if (!maybe_n.ToHandle(&n)) {
if (isolate->has_exception()) {
return Nothing<bool>();
} else {
return Just(false);
}
}
// c. Return the result of x == n.
return Just(EqualToBigInt(*x, *n));
}
bool BigInt::EqualToNumber(Handle<BigInt> x, Handle<Object> y) {
DCHECK(IsNumber(*y));
// a. If x or y are any of NaN, +∞, or -∞, return false.
// b. If the mathematical value of x is equal to the mathematical value of y,
// return true, otherwise return false.
if (IsSmi(*y)) {
int value = Smi::ToInt(*y);
if (value == 0) return x->is_zero();
// Any multi-digit BigInt is bigger than a Smi.
static_assert(sizeof(digit_t) >= sizeof(value));
return (x->length() == 1) && (x->sign() == (value < 0)) &&
(x->digit(0) ==
static_cast<digit_t>(std::abs(static_cast<int64_t>(value))));
}
DCHECK(IsHeapNumber(*y));
double value = Handle<HeapNumber>::cast(y)->value();
return CompareToDouble(x, value) == ComparisonResult::kEqual;
}
ComparisonResult BigInt::CompareToNumber(Handle<BigInt> x, Handle<Object> y) {
DCHECK(IsNumber(*y));
if (IsSmi(*y)) {
bool x_sign = x->sign();
int y_value = Smi::ToInt(*y);
bool y_sign = (y_value < 0);
if (x_sign != y_sign) return UnequalSign(x_sign);
if (x->is_zero()) {
DCHECK(!y_sign);
return y_value == 0 ? ComparisonResult::kEqual
: ComparisonResult::kLessThan;
}
// Any multi-digit BigInt is bigger than a Smi.
static_assert(sizeof(digit_t) >= sizeof(y_value));
if (x->length() > 1) return AbsoluteGreater(x_sign);
digit_t abs_value = std::abs(static_cast<int64_t>(y_value));
digit_t x_digit = x->digit(0);
if (x_digit > abs_value) return AbsoluteGreater(x_sign);
if (x_digit < abs_value) return AbsoluteLess(x_sign);
return ComparisonResult::kEqual;
}
DCHECK(IsHeapNumber(*y));
double value = Handle<HeapNumber>::cast(y)->value();
return CompareToDouble(x, value);
}
ComparisonResult BigInt::CompareToDouble(Handle<BigInt> x, double y) {
if (std::isnan(y)) return ComparisonResult::kUndefined;
if (y == V8_INFINITY) return ComparisonResult::kLessThan;
if (y == -V8_INFINITY) return ComparisonResult::kGreaterThan;
bool x_sign = x->sign();
// Note that this is different from the double's sign bit for -0. That's
// intentional because -0 must be treated like 0.
bool y_sign = (y < 0);
if (x_sign != y_sign) return UnequalSign(x_sign);
if (y == 0) {
DCHECK(!x_sign);
return x->is_zero() ? ComparisonResult::kEqual
: ComparisonResult::kGreaterThan;
}
if (x->is_zero()) {
DCHECK(!y_sign);
return ComparisonResult::kLessThan;
}
uint64_t double_bits = base::bit_cast<uint64_t>(y);
int raw_exponent =
static_cast<int>(double_bits >> base::Double::kPhysicalSignificandSize) &
0x7FF;
uint64_t mantissa = double_bits & base::Double::kSignificandMask;
// Non-finite doubles are handled above.
DCHECK_NE(raw_exponent, 0x7FF);
int exponent = raw_exponent - 0x3FF;
if (exponent < 0) {
// The absolute value of the double is less than 1. Only 0n has an
// absolute value smaller than that, but we've already covered that case.
DCHECK(!x->is_zero());
return AbsoluteGreater(x_sign);
}
int x_length = x->length();
digit_t x_msd = x->digit(x_length - 1);
int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd);
int x_bitlength = x_length * kDigitBits - msd_leading_zeros;
int y_bitlength = exponent + 1;
if (x_bitlength < y_bitlength) return AbsoluteLess(x_sign);
if (x_bitlength > y_bitlength) return AbsoluteGreater(x_sign);
// At this point, we know that signs and bit lengths (i.e. position of
// the most significant bit in exponent-free representation) are identical.
// {x} is not zero, {y} is finite and not denormal.
// Now we virtually convert the double to an integer by shifting its
// mantissa according to its exponent, so it will align with the BigInt {x},
// and then we compare them bit for bit until we find a difference or the
// least significant bit.
// <----- 52 ------> <-- virtual trailing zeroes -->
// y / mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000
// x / digits: 0001xxxx xxxxxxxx xxxxxxxx ...
// <--> <------>
// msd_topbit kDigitBits
//
mantissa |= base::Double::kHiddenBit;
const int kMantissaTopBit = 52; // 0-indexed.
// 0-indexed position of {x}'s most significant bit within the {msd}.
int msd_topbit = kDigitBits - 1 - msd_leading_zeros;
DCHECK_EQ(msd_topbit, (x_bitlength - 1) % kDigitBits);
// Shifted chunk of {mantissa} for comparing with {digit}.
digit_t compare_mantissa;
// Number of unprocessed bits in {mantissa}. We'll keep them shifted to
// the left (i.e. most significant part) of the underlying uint64_t.
int remaining_mantissa_bits = 0;
// First, compare the most significant digit against the beginning of
// the mantissa.
if (msd_topbit < kMantissaTopBit) {
remaining_mantissa_bits = (kMantissaTopBit - msd_topbit);
compare_mantissa = mantissa >> remaining_mantissa_bits;
mantissa = mantissa << (64 - remaining_mantissa_bits);
} else {
DCHECK_GE(msd_topbit, kMantissaTopBit);
compare_mantissa = mantissa << (msd_topbit - kMantissaTopBit);
mantissa = 0;
}
if (x_msd > compare_mantissa) return AbsoluteGreater(x_sign);
if (x_msd < compare_mantissa) return AbsoluteLess(x_sign);
// Then, compare additional digits against any remaining mantissa bits.
for (int digit_index = x_length - 2; digit_index >= 0; digit_index--) {
if (remaining_mantissa_bits > 0) {
remaining_mantissa_bits -= kDigitBits;
if (sizeof(mantissa) != sizeof(x_msd)) {
compare_mantissa = mantissa >> (64 - kDigitBits);
// "& 63" to appease compilers. kDigitBits is 32 here anyway.
mantissa = mantissa << (kDigitBits & 63);
} else {
compare_mantissa = mantissa;
mantissa = 0;
}
} else {
compare_mantissa = 0;
}
digit_t digit = x->digit(digit_index);
if (digit > compare_mantissa) return AbsoluteGreater(x_sign);
if (digit < compare_mantissa) return AbsoluteLess(x_sign);
}
// Integer parts are equal; check whether {y} has a fractional part.
if (mantissa != 0) {
DCHECK_GT(remaining_mantissa_bits, 0);
return AbsoluteLess(x_sign);
}
return ComparisonResult::kEqual;
}
namespace {
void RightTrimString(Isolate* isolate, Handle<SeqOneByteString> string,
int chars_allocated, int chars_written) {
DCHECK_LE(chars_written, chars_allocated);
if (chars_written == chars_allocated) return;
int string_size =
ALIGN_TO_ALLOCATION_ALIGNMENT(SeqOneByteString::SizeFor(chars_allocated));
int needed_size =
ALIGN_TO_ALLOCATION_ALIGNMENT(SeqOneByteString::SizeFor(chars_written));
if (needed_size < string_size && !isolate->heap()->IsLargeObject(*string)) {
isolate->heap()->NotifyObjectSizeChange(*string, string_size, needed_size,
ClearRecordedSlots::kNo);
}
string->set_length(chars_written, kReleaseStore);
}
} // namespace
MaybeHandle<String> BigInt::ToString(Isolate* isolate, Handle<BigInt> bigint,
int radix, ShouldThrow should_throw) {
if (bigint->is_zero()) {
return isolate->factory()->zero_string();
}
const bool sign = bigint->sign();
int chars_allocated;
int chars_written;
Handle<SeqOneByteString> result;
if (bigint->length() == 1 && radix == 10) {
// Fast path for the most common case, to avoid call/dispatch overhead.
// The logic is the same as what the full implementation does below,
// just inlined and specialized for the preconditions.
// Microbenchmarks rejoice!
digit_t digit = bigint->digit(0);
int bit_length = kDigitBits - base::bits::CountLeadingZeros(digit);
constexpr int kShift = 7;
// This is Math.log2(10) * (1 << kShift), scaled just far enough to
// make the computations below always precise (after rounding).
constexpr int kShiftedBitsPerChar = 425;
chars_allocated = (bit_length << kShift) / kShiftedBitsPerChar + 1 + sign;
result = isolate->factory()
->NewRawOneByteString(chars_allocated)
.ToHandleChecked();
DisallowGarbageCollection no_gc;
uint8_t* start = result->GetChars(no_gc);
uint8_t* out = start + chars_allocated;
while (digit != 0) {
*(--out) = '0' + (digit % 10);
digit /= 10;
}
if (sign) *(--out) = '-';
if (out == start) {
chars_written = chars_allocated;
} else {
DCHECK_LT(start, out);
// The result is one character shorter than predicted. This is
// unavoidable, e.g. a 4-bit BigInt can be as big as "10" or as small as
// "9", so we must allocate 2 characters for it, and will only later find
// out whether all characters were used.
chars_written = chars_allocated - static_cast<int>(out - start);
std::memmove(start, out, chars_written);
memset(start + chars_written, 0, chars_allocated - chars_written);
}
} else {
// Generic path, handles anything.
DCHECK(radix >= 2 && radix <= 36);
chars_allocated =
bigint::ToStringResultLength(bigint->digits(), radix, sign);
if (chars_allocated > String::kMaxLength) {
if (should_throw == kThrowOnError) {
THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String);
} else {
return {};
}
}
result = isolate->factory()
->NewRawOneByteString(chars_allocated)
.ToHandleChecked();
chars_written = chars_allocated;
DisallowGarbageCollection no_gc;
char* characters = reinterpret_cast<char*>(result->GetChars(no_gc));
bigint::Status status = isolate->bigint_processor()->ToString(
characters, &chars_written, bigint->digits(), radix, sign);
if (status == bigint::Status::kInterrupted) {
AllowGarbageCollection terminating_anyway;
isolate->TerminateExecution();
return {};
}
}
// Right-trim any over-allocation (which can happen due to conservative
// estimates).
RightTrimString(isolate, result, chars_allocated, chars_written);
#if DEBUG
// Verify that all characters have been written.
DCHECK(result->length() == chars_written);
DisallowGarbageCollection no_gc;
uint8_t* chars = result->GetChars(no_gc);
for (int i = 0; i < chars_written; i++) {
DCHECK_NE(chars[i], bigint::kStringZapValue);
}
#endif
return result;
}
Handle<String> BigInt::NoSideEffectsToString(Isolate* isolate,
Handle<BigInt> bigint) {
if (bigint->is_zero()) {
return isolate->factory()->zero_string();
}
// The threshold is chosen such that the operation will be fast enough to
// not need interrupt checks. This function is meant for producing human-
// readable error messages, so super-long results aren't useful anyway.
if (bigint->length() > 100) {
return isolate->factory()->NewStringFromStaticChars(
"<a very large BigInt>");
}
int chars_allocated =
bigint::ToStringResultLength(bigint->digits(), 10, bigint->sign());
DCHECK_LE(chars_allocated, String::kMaxLength);
Handle<SeqOneByteString> result = isolate->factory()
->NewRawOneByteString(chars_allocated)
.ToHandleChecked();
int chars_written = chars_allocated;
DisallowGarbageCollection no_gc;
char* characters = reinterpret_cast<char*>(result->GetChars(no_gc));
std::unique_ptr<bigint::Processor, bigint::Processor::Destroyer>
non_interruptible_processor(
bigint::Processor::New(new bigint::Platform()));
non_interruptible_processor->ToString(characters, &chars_written,
bigint->digits(), 10, bigint->sign());
RightTrimString(isolate, result, chars_allocated, chars_written);
return result;
}
MaybeHandle<BigInt> BigInt::FromNumber(Isolate* isolate,
Handle<Object> number) {
DCHECK(IsNumber(*number));
if (IsSmi(*number)) {
return MutableBigInt::NewFromInt(isolate, Smi::ToInt(*number));
}
double value = HeapNumber::cast(*number)->value();
if (!std::isfinite(value) || (DoubleToInteger(value) != value)) {
THROW_NEW_ERROR(isolate,
NewRangeError(MessageTemplate::kBigIntFromNumber, number),
BigInt);
}
return MutableBigInt::NewFromDouble(isolate, value);
}
MaybeHandle<BigInt> BigInt::FromObject(Isolate* isolate, Handle<Object> obj) {
if (IsJSReceiver(*obj)) {
ASSIGN_RETURN_ON_EXCEPTION(
isolate, obj,
JSReceiver::ToPrimitive(isolate, Handle<JSReceiver>::cast(obj),
ToPrimitiveHint::kNumber),
BigInt);
}
if (IsBoolean(*obj)) {
return MutableBigInt::NewFromInt(isolate,
Object::BooleanValue(*obj, isolate));
}
if (IsBigInt(*obj)) {
return Handle<BigInt>::cast(obj);
}
if (IsString(*obj)) {
Handle<BigInt> n;
if (!StringToBigInt(isolate, Handle<String>::cast(obj)).ToHandle(&n)) {
if (isolate->has_exception()) {
return MaybeHandle<BigInt>();
} else {
Handle<String> str = Handle<String>::cast(obj);
constexpr int kMaxRenderedLength = 1000;
if (str->length() > kMaxRenderedLength) {
Factory* factory = isolate->factory();
Handle<String> prefix =
factory->NewProperSubString(str, 0, kMaxRenderedLength);
Handle<SeqTwoByteString> ellipsis =
factory->NewRawTwoByteString(1).ToHandleChecked();
ellipsis->SeqTwoByteStringSet(0, 0x2026);
str = factory->NewConsString(prefix, ellipsis).ToHandleChecked();
}
THROW_NEW_ERROR(isolate,
NewSyntaxError(MessageTemplate::kBigIntFromObject, str),
BigInt);
}
}
return n;
}
THROW_NEW_ERROR(
isolate, NewTypeError(MessageTemplate::kBigIntFromObject, obj), BigInt);
}
Handle<Object> BigInt::ToNumber(Isolate* isolate, Handle<BigInt> x) {
if (x->is_zero()) return Handle<Smi>(Smi::zero(), isolate);
if (x->length() == 1 && x->digit(0) < Smi::kMaxValue) {
int value = static_cast<int>(x->digit(0));
if (x->sign()) value = -value;
return Handle<Smi>(Smi::FromInt(value), isolate);
}
double result = MutableBigInt::ToDouble(x);
return isolate->factory()->NewHeapNumber(result);
}
double MutableBigInt::ToDouble(Handle<BigIntBase> x) {
if (x->is_zero()) return 0.0;
int x_length = x->length();
digit_t x_msd = x->digit(x_length - 1);
int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd);
int x_bitlength = x_length * kDigitBits - msd_leading_zeros;
if (x_bitlength > 1024) return x->sign() ? -V8_INFINITY : V8_INFINITY;
uint64_t exponent = x_bitlength - 1;
// We need the most significant bit shifted to the position of a double's
// "hidden bit". We also need to hide that MSB, so we shift it out.
uint64_t current_digit = x_msd;
int digit_index = x_length - 1;
int shift = msd_leading_zeros + 1 + (64 - kDigitBits);
DCHECK_LE(1, shift);
DCHECK_LE(shift, 64);
uint64_t mantissa = (shift == 64) ? 0 : current_digit << shift;
mantissa >>= 12;
int mantissa_bits_unset = shift - 12;
// If not all mantissa bits are defined yet, get more digits as needed.
if (mantissa_bits_unset >= kDigitBits && digit_index > 0) {
digit_index--;
current_digit = static_cast<uint64_t>(x->digit(digit_index));
mantissa |= (current_digit << (mantissa_bits_unset - kDigitBits));
mantissa_bits_unset -= kDigitBits;
}
if (mantissa_bits_unset > 0 && digit_index > 0) {
DCHECK_LT(mantissa_bits_unset, kDigitBits);
digit_index--;
current_digit = static_cast<uint64_t>(x->digit(digit_index));
mantissa |= (current_digit >> (kDigitBits - mantissa_bits_unset));
mantissa_bits_unset -= kDigitBits;
}
// If there are unconsumed digits left, we may have to round.
Rounding rounding =
DecideRounding(x, mantissa_bits_unset, digit_index, current_digit);
if (rounding == kRoundUp || (rounding == kTie && (mantissa & 1) == 1)) {
mantissa++;
// Incrementing the mantissa can overflow the mantissa bits. In that case
// the new mantissa will be all zero (plus hidden bit).
if ((mantissa >> base::Double::kPhysicalSignificandSize) != 0) {
mantissa = 0;
exponent++;
// Incrementing the exponent can overflow too.
if (exponent > 1023) {
return x->sign() ? -V8_INFINITY : V8_INFINITY;
}
}
}
// Assemble the result.
uint64_t sign_bit = x->sign() ? (static_cast<uint64_t>(1) << 63) : 0;
exponent = (exponent + 0x3FF) << base::Double::kPhysicalSignificandSize;
uint64_t double_bits = sign_bit | exponent | mantissa;
return base::bit_cast<double>(double_bits);
}
// This is its own function to simplify control flow. The meaning of the
// parameters is defined by {ToDouble}'s local variable usage.
MutableBigInt::Rounding MutableBigInt::DecideRounding(Handle<BigIntBase> x,
int mantissa_bits_unset,
int digit_index,
uint64_t current_digit) {
if (mantissa_bits_unset > 0) return kRoundDown;
int top_unconsumed_bit;
if (mantissa_bits_unset < 0) {
// There are unconsumed bits in {current_digit}.
top_unconsumed_bit = -mantissa_bits_unset - 1;
} else {
DCHECK_EQ(mantissa_bits_unset, 0);
// {current_digit} fit the mantissa exactly; look at the next digit.
if (digit_index == 0) return kRoundDown;
digit_index--;
current_digit = static_cast<uint64_t>(x->digit(digit_index));
top_unconsumed_bit = kDigitBits - 1;
}
// If the most significant remaining bit is 0, round down.
uint64_t bitmask = static_cast<uint64_t>(1) << top_unconsumed_bit;
if ((current_digit & bitmask) == 0) {
return kRoundDown;
}
// If any other remaining bit is set, round up.
bitmask -= 1;
if ((current_digit & bitmask) != 0) return kRoundUp;
while (digit_index > 0) {
digit_index--;
if (x->digit(digit_index) != 0) return kRoundUp;
}
return kTie;
}
void BigInt::BigIntShortPrint(std::ostream& os) {
if (sign()) os << "-";
int len = length();
if (len == 0) {
os << "0";
return;
}
if (len > 1) os << "...";
os << digit(0);
}
// Internal helpers.
// Adds 1 to the absolute value of {x} and sets the result's sign to {sign}.
// {result_storage} is optional; if present, it will be used to store the
// result, otherwise a new BigInt will be allocated for the result.
// {result_storage} and {x} may refer to the same BigInt for in-place
// modification.
MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteAddOne(
Isolate* isolate, Handle<BigIntBase> x, bool sign,
Tagged<MutableBigInt> result_storage) {
int input_length = x->length();
// The addition will overflow into a new digit if all existing digits are
// at maximum.
bool will_overflow = true;
for (int i = 0; i < input_length; i++) {
if (!digit_ismax(x->digit(i))) {
will_overflow = false;
break;
}
}
int result_length = input_length + will_overflow;
Handle<MutableBigInt> result(result_storage, isolate);
if (result_storage.is_null()) {
if (!New(isolate, result_length).ToHandle(&result)) {
return MaybeHandle<MutableBigInt>();
}
} else {
DCHECK(result->length() == result_length);
}
if (input_length == 0) {
result->set_digit(0, 1);
} else if (input_length == 1 && !will_overflow) {
result->set_digit(0, x->digit(0) + 1);
} else {
bigint::AddOne(result->rw_digits(), x->digits());
}
result->set_sign(sign);
return result;
}
// Subtracts 1 from the absolute value of {x}. {x} must not be zero.
Handle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Isolate* isolate,
Handle<BigIntBase> x) {
DCHECK(!x->is_zero());
int length = x->length();
Handle<MutableBigInt> result = New(isolate, length).ToHandleChecked();
if (length == 1) {
result->set_digit(0, x->digit(0) - 1);
} else {
bigint::SubtractOne(result->rw_digits(), x->digits());
}
return result;
}
MaybeHandle<BigInt> MutableBigInt::LeftShiftByAbsolute(Isolate* isolate,
Handle<BigIntBase> x,
Handle<BigIntBase> y) {
Maybe<digit_t> maybe_shift = ToShiftAmount(y);
if (maybe_shift.IsNothing()) {
return ThrowBigIntTooBig<BigInt>(isolate);
}
digit_t shift = maybe_shift.FromJust();
const int result_length = bigint::LeftShift_ResultLength(
x->length(), x->digit(x->length() - 1), shift);
if (result_length > kMaxLength) {
return ThrowBigIntTooBig<BigInt>(isolate);
}
Handle<MutableBigInt> result;
if (!New(isolate, result_length).ToHandle(&result)) {
return MaybeHandle<BigInt>();
}
bigint::LeftShift(result->rw_digits(), x->digits(), shift);
result->set_sign(x->sign());
return MakeImmutable(result);
}
Handle<BigInt> MutableBigInt::RightShiftByAbsolute(Isolate* isolate,
Handle<BigIntBase> x,
Handle<BigIntBase> y) {
const bool sign = x->sign();
Maybe<digit_t> maybe_shift = ToShiftAmount(y);
if (maybe_shift.IsNothing()) {
return RightShiftByMaximum(isolate, sign);
}
const digit_t shift = maybe_shift.FromJust();
bigint::RightShiftState state;
const int result_length =
bigint::RightShift_ResultLength(x->digits(), sign, shift, &state);
DCHECK_LE(result_length, x->length());
if (result_length <= 0) {
return RightShiftByMaximum(isolate, sign);
}
Handle<MutableBigInt> result = New(isolate, result_length).ToHandleChecked();
bigint::RightShift(result->rw_digits(), x->digits(), shift, state);
if (sign) result->set_sign(true);
return MakeImmutable(result);
}
Handle<BigInt> MutableBigInt::RightShiftByMaximum(Isolate* isolate, bool sign) {
if (sign) {
// TODO(jkummerow): Consider caching a canonical -1n BigInt.
return NewFromInt(isolate, -1);
} else {
return Zero(isolate);
}
}
// Returns the value of {x} if it is less than the maximum bit length of
// a BigInt, or Nothing otherwise.
Maybe<BigInt::digit_t> MutableBigInt::ToShiftAmount(Handle<BigIntBase> x) {
if (x->length() > 1) return Nothing<digit_t>();
digit_t value = x->digit(0);
// The Torque builtin also depends on the assertion.
static_assert(kMaxLengthBits < std::numeric_limits<digit_t>::max());
if (value > kMaxLengthBits) return Nothing<digit_t>();
return Just(value);
}
void Terminate(Isolate* isolate) { isolate->TerminateExecution(); }
// {LocalIsolate} doesn't support interruption or termination.
void Terminate(LocalIsolate* isolate) { UNREACHABLE(); }
template <typename IsolateT>
MaybeHandle<BigInt> BigInt::Allocate(IsolateT* isolate,
bigint::FromStringAccumulator* accumulator,
bool negative, AllocationType allocation) {
int digits = accumulator->ResultLength();
DCHECK_LE(digits, kMaxLength);
Handle<MutableBigInt> result =
MutableBigInt::New(isolate, digits, allocation).ToHandleChecked();
bigint::Status status =
isolate->bigint_processor()->FromString(result->rw_digits(), accumulator);
if (status == bigint::Status::kInterrupted) {
Terminate(isolate);
return {};
}
if (digits > 0) result->set_sign(negative);
return MutableBigInt::MakeImmutable(result);
}
template MaybeHandle<BigInt> BigInt::Allocate(Isolate*,
bigint::FromStringAccumulator*,
bool, AllocationType);
template MaybeHandle<BigInt> BigInt::Allocate(LocalIsolate*,
bigint::FromStringAccumulator*,
bool, AllocationType);
// The serialization format MUST NOT CHANGE without updating the format
// version in value-serializer.cc!
uint32_t BigInt::GetBitfieldForSerialization() const {
// In order to make the serialization format the same on 32/64 bit builds,
// we convert the length-in-digits to length-in-bytes for serialization.
// Being able to do this depends on having enough LengthBits:
static_assert(kMaxLength * kDigitSize <= LengthBits::kMax);
int bytelength = length() * kDigitSize;
return SignBits::encode(sign()) | LengthBits::encode(bytelength);
}
int BigInt::DigitsByteLengthForBitfield(uint32_t bitfield) {
return LengthBits::decode(bitfield);
}
// The serialization format MUST NOT CHANGE without updating the format
// version in value-serializer.cc!
void BigInt::SerializeDigits(uint8_t* storage) {
#if defined(V8_TARGET_LITTLE_ENDIAN)
int bytelength = length() * kDigitSize;
memcpy(storage, raw_digits(), bytelength);
#elif defined(V8_TARGET_BIG_ENDIAN)
digit_t* digit_storage = reinterpret_cast<digit_t*>(storage);
const digit_t* digit = reinterpret_cast<const digit_t*>(raw_digits());
for (int i = 0; i < length(); i++) {
*digit_storage = ByteReverse(*digit);
digit_storage++;
digit++;
}
#endif // V8_TARGET_BIG_ENDIAN
}
// The serialization format MUST NOT CHANGE without updating the format
// version in value-serializer.cc!
MaybeHandle<BigInt> BigInt::FromSerializedDigits(
Isolate* isolate, uint32_t bitfield,
base::Vector<const uint8_t> digits_storage) {
int bytelength = LengthBits::decode(bitfield);
DCHECK(digits_storage.length() == bytelength);
bool sign = SignBits::decode(bitfield);
int length = (bytelength + kDigitSize - 1) / kDigitSize; // Round up.
// There is no -0n. Reject corrupted serialized data.
if (length == 0 && sign == true) return {};
Handle<MutableBigInt> result =
MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
result->initialize_bitfield(sign, length);
UnalignedValueMember<digit_t>* digits = result->raw_digits();
#if defined(V8_TARGET_LITTLE_ENDIAN)
memcpy(digits, digits_storage.begin(), bytelength);
void* padding_start =
reinterpret_cast<void*>(reinterpret_cast<Address>(digits) + bytelength);
memset(padding_start, 0, length * kDigitSize - bytelength);
#elif defined(V8_TARGET_BIG_ENDIAN)
digit_t* digit = reinterpret_cast<digit_t*>(digits);
const digit_t* digit_storage =
reinterpret_cast<const digit_t*>(digits_storage.begin());
for (int i = 0; i < bytelength / kDigitSize; i++) {
*digit = ByteReverse(*digit_storage);
digit_storage++;
digit++;
}
if (bytelength % kDigitSize) {
*digit = 0;
uint8_t* digit_byte = reinterpret_cast<uint8_t*>(digit);
digit_byte += sizeof(*digit) - 1;
const uint8_t* digit_storage_byte =
reinterpret_cast<const uint8_t*>(digit_storage);
for (int i = 0; i < bytelength % kDigitSize; i++) {
*digit_byte = *digit_storage_byte;
digit_byte--;
digit_storage_byte++;
}
}
#endif // V8_TARGET_BIG_ENDIAN
return MutableBigInt::MakeImmutable(result);
}
Handle<BigInt> BigInt::AsIntN(Isolate* isolate, uint64_t n, Handle<BigInt> x) {
if (x->is_zero() || n > kMaxLengthBits) return x;
if (n == 0) return MutableBigInt::Zero(isolate);
int needed_length =
bigint::AsIntNResultLength(x->digits(), x->sign(), static_cast<int>(n));
if (needed_length == -1) return x;
Handle<MutableBigInt> result =
MutableBigInt::New(isolate, needed_length).ToHandleChecked();
bool negative = bigint::AsIntN(result->rw_digits(), x->digits(), x->sign(),
static_cast<int>(n));
result->set_sign(negative);
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::AsUintN(Isolate* isolate, uint64_t n,
Handle<BigInt> x) {
if (x->is_zero()) return x;
if (n == 0) return MutableBigInt::Zero(isolate);
Handle<MutableBigInt> result;
if (x->sign()) {
if (n > kMaxLengthBits) {
return ThrowBigIntTooBig<BigInt>(isolate);
}
int result_length = bigint::AsUintN_Neg_ResultLength(static_cast<int>(n));
result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
bigint::AsUintN_Neg(result->rw_digits(), x->digits(), static_cast<int>(n));
} else {
if (n >= kMaxLengthBits) return x;
int result_length =
bigint::AsUintN_Pos_ResultLength(x->digits(), static_cast<int>(n));
if (result_length < 0) return x;
result = MutableBigInt::New(isolate, result_length).ToHandleChecked();
bigint::AsUintN_Pos(result->rw_digits(), x->digits(), static_cast<int>(n));
}
DCHECK(!result->sign());
return MutableBigInt::MakeImmutable(result);
}
Handle<BigInt> BigInt::FromInt64(Isolate* isolate, int64_t n) {
if (n == 0) return MutableBigInt::Zero(isolate);
static_assert(kDigitBits == 64 || kDigitBits == 32);
int length = 64 / kDigitBits;
Handle<MutableBigInt> result =
MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
bool sign = n < 0;
result->initialize_bitfield(sign, length);
uint64_t absolute;
if (!sign) {
absolute = static_cast<uint64_t>(n);
} else {
if (n == std::numeric_limits<int64_t>::min()) {
absolute = static_cast<uint64_t>(std::numeric_limits<int64_t>::max()) + 1;
} else {
absolute = static_cast<uint64_t>(-n);
}
}
result->set_64_bits(absolute);
return MutableBigInt::MakeImmutable(result);
}
Handle<BigInt> BigInt::FromUint64(Isolate* isolate, uint64_t n) {
if (n == 0) return MutableBigInt::Zero(isolate);
static_assert(kDigitBits == 64 || kDigitBits == 32);
int length = 64 / kDigitBits;
Handle<MutableBigInt> result =
MutableBigInt::Cast(isolate->factory()->NewBigInt(length));
result->initialize_bitfield(false, length);
result->set_64_bits(n);
return MutableBigInt::MakeImmutable(result);
}
MaybeHandle<BigInt> BigInt::FromWords64(Isolate* isolate, int sign_bit,
int words64_count,
const uint64_t* words) {
if (words64_count < 0 || words64_count > kMaxLength / (64 / kDigitBits)) {
return ThrowBigIntTooBig<BigInt>(isolate);
}
if (words64_count == 0) return MutableBigInt::Zero(isolate);
static_assert(kDigitBits == 64 || kDigitBits == 32);
int length = (64 / kDigitBits) * words64_count;
DCHECK_GT(length, 0);
if (kDigitBits == 32 && words[words64_count - 1] <= (1ULL << 32)) length--;
Handle<MutableBigInt> result;
if (!MutableBigInt::New(isolate, length).ToHandle(&result)) {
return MaybeHandle<BigInt>();
}
result->set_sign(sign_bit);
if (kDigitBits == 64) {
for (int i = 0; i < length; ++i) {
result->set_digit(i, static_cast<digit_t>(words[i]));
}
} else {
for (int i = 0; i < length; i += 2) {
digit_t lo = static_cast<digit_t>(words[i / 2]);
digit_t hi = static_cast<digit_t>(words[i / 2] >> 32);
result->set_digit(i, lo);
if (i + 1 < length) result->set_digit(i + 1, hi);
}
}
return MutableBigInt::MakeImmutable(result);
}
int BigInt::Words64Count() {
static_assert(kDigitBits == 64 || kDigitBits == 32);
return length() / (64 / kDigitBits) +
(kDigitBits == 32 && length() % 2 == 1 ? 1 : 0);
}
void BigInt::ToWordsArray64(int* sign_bit, int* words64_count,
uint64_t* words) {
DCHECK_NE(sign_bit, nullptr);
DCHECK_NE(words64_count, nullptr);
*sign_bit = sign();
int available_words = *words64_count;
*words64_count = Words64Count();
if (available_words == 0) return;
DCHECK_NE(words, nullptr);
int len = length();
if (kDigitBits == 64) {
for (int i = 0; i < len && i < available_words; ++i) words[i] = digit(i);
} else {
for (int i = 0; i < len && available_words > 0; i += 2) {
uint64_t lo = digit(i);
uint64_t hi = (i + 1) < len ? digit(i + 1) : 0;
words[i / 2] = lo | (hi << 32);
available_words--;
}
}
}
uint64_t MutableBigInt::GetRawBits(BigIntBase* x, bool* lossless) {
if (lossless != nullptr) *lossless = true;
if (x->is_zero()) return 0;
int len = x->length();
static_assert(kDigitBits == 64 || kDigitBits == 32);
if (lossless != nullptr && len > 64 / kDigitBits) *lossless = false;
uint64_t raw = static_cast<uint64_t>(x->digit(0));
if (kDigitBits == 32 && len > 1) {
raw |= static_cast<uint64_t>(x->digit(1)) << 32;
}
// Simulate two's complement. MSVC dislikes "-raw".
return x->sign() ? ((~raw) + 1u) : raw;
}
int64_t BigInt::AsInt64(bool* lossless) {
uint64_t raw = MutableBigInt::GetRawBits(this, lossless);
int64_t result = static_cast<int64_t>(raw);
if (lossless != nullptr && (result < 0) != sign()) *lossless = false;
return result;
}
uint64_t BigInt::AsUint64(bool* lossless) {
uint64_t result = MutableBigInt::GetRawBits(this, lossless);
if (lossless != nullptr && sign()) *lossless = false;
return result;
}
void MutableBigInt::set_64_bits(uint64_t bits) {
static_assert(kDigitBits == 64 || kDigitBits == 32);
if (kDigitBits == 64) {
set_digit(0, static_cast<digit_t>(bits));
} else {
set_digit(0, static_cast<digit_t>(bits & 0xFFFFFFFFu));
set_digit(1, static_cast<digit_t>(bits >> 32));
}
}
#ifdef OBJECT_PRINT
void BigIntBase::BigIntBasePrint(std::ostream& os) {
DisallowGarbageCollection no_gc;
PrintHeader(os, "BigInt");
int len = length();
os << "\n- length: " << len;
os << "\n- sign: " << sign();
if (len > 0) {
os << "\n- digits:";
for (int i = 0; i < len; i++) {
os << "\n 0x" << std::hex << digit(i);
}
}
os << std::dec << "\n";
}
#endif // OBJECT_PRINT
void MutableBigInt_AbsoluteAddAndCanonicalize(Address result_addr,
Address x_addr, Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::Add(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
int32_t MutableBigInt_AbsoluteCompare(Address x_addr, Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
return bigint::Compare(x->digits(), y->digits());
}
void MutableBigInt_AbsoluteSubAndCanonicalize(Address result_addr,
Address x_addr, Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::Subtract(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
// Returns 0 if it succeeded to obtain the result of multiplication.
// Returns 1 if the computation is interrupted.
int32_t MutableBigInt_AbsoluteMulAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
Isolate* isolate;
if (!GetIsolateFromHeapObject(x, &isolate)) {
// We should always get the isolate from the BigInt.
UNREACHABLE();
}
bigint::Status status = isolate->bigint_processor()->Multiply(
result->rw_digits(), x->digits(), y->digits());
if (status == bigint::Status::kInterrupted) {
return 1;
}
MutableBigInt::Canonicalize(result);
return 0;
}
int32_t MutableBigInt_AbsoluteDivAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
DCHECK_GE(result->length(),
bigint::DivideResultLength(x->digits(), y->digits()));
Isolate* isolate;
if (!GetIsolateFromHeapObject(x, &isolate)) {
// We should always get the isolate from the BigInt.
UNREACHABLE();
}
bigint::Status status = isolate->bigint_processor()->Divide(
result->rw_digits(), x->digits(), y->digits());
if (status == bigint::Status::kInterrupted) {
return 1;
}
MutableBigInt::Canonicalize(result);
return 0;
}
int32_t MutableBigInt_AbsoluteModAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
Isolate* isolate;
if (!GetIsolateFromHeapObject(x, &isolate)) {
// We should always get the isolate from the BigInt.
UNREACHABLE();
}
bigint::Status status = isolate->bigint_processor()->Modulo(
result->rw_digits(), x->digits(), y->digits());
if (status == bigint::Status::kInterrupted) {
return 1;
}
MutableBigInt::Canonicalize(result);
return 0;
}
void MutableBigInt_BitwiseAndPosPosAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseAnd_PosPos(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_BitwiseAndNegNegAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseAnd_NegNeg(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_BitwiseAndPosNegAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseAnd_PosNeg(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_BitwiseOrPosPosAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseOr_PosPos(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_BitwiseOrNegNegAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseOr_NegNeg(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_BitwiseOrPosNegAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseOr_PosNeg(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_BitwiseXorPosPosAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseXor_PosPos(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_BitwiseXorNegNegAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseXor_NegNeg(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_BitwiseXorPosNegAndCanonicalize(Address result_addr,
Address x_addr,
Address y_addr) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<BigInt> y = BigInt::cast(Tagged<Object>(y_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::BitwiseXor_PosNeg(result->rw_digits(), x->digits(), y->digits());
MutableBigInt::Canonicalize(result);
}
void MutableBigInt_LeftShiftAndCanonicalize(Address result_addr, Address x_addr,
intptr_t shift) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::LeftShift(result->rw_digits(), x->digits(), shift);
MutableBigInt::Canonicalize(result);
}
uint32_t RightShiftResultLength(Address x_addr, uint32_t x_sign,
intptr_t shift) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
bigint::RightShiftState state;
int length =
bigint::RightShift_ResultLength(x->digits(), x_sign, shift, &state);
// {length} should be non-negative and fit in 30 bits.
DCHECK_EQ(length >> BigInt::kLengthFieldBits, 0);
return (static_cast<uint32_t>(state.must_round_down)
<< BigInt::kLengthFieldBits) |
length;
}
void MutableBigInt_RightShiftAndCanonicalize(Address result_addr,
Address x_addr, intptr_t shift,
uint32_t must_round_down) {
Tagged<BigInt> x = BigInt::cast(Tagged<Object>(x_addr));
Tagged<MutableBigInt> result =
MutableBigInt::cast(Tagged<Object>(result_addr));
bigint::RightShiftState state{must_round_down == 1};
bigint::RightShift(result->rw_digits(), x->digits(), shift, state);
MutableBigInt::Canonicalize(result);
}
#include "src/objects/object-macros-undef.h"
} // namespace internal
} // namespace v8