blob: 49ad4b4e7c689819bd5eee16ed707db87460c807 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api/api.h"
#include "src/baseline/baseline.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/codegen/code-stub-assembler.h"
#include "src/codegen/interface-descriptors-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/common/globals.h"
#include "src/execution/frame-constants.h"
#include "src/heap/memory-chunk.h"
#include "src/ic/accessor-assembler.h"
#include "src/ic/keyed-store-generic.h"
#include "src/logging/counters.h"
#include "src/objects/debug-objects.h"
#include "src/objects/shared-function-info.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Stack checks.
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard);
}
// -----------------------------------------------------------------------------
// TurboFan support builtins.
TF_BUILTIN(CopyFastSmiOrObjectElements, CodeStubAssembler) {
auto js_object = Parameter<JSObject>(Descriptor::kObject);
// Load the {object}s elements.
TNode<FixedArrayBase> source =
CAST(LoadObjectField(js_object, JSObject::kElementsOffset));
TNode<FixedArrayBase> target =
CloneFixedArray(source, ExtractFixedArrayFlag::kFixedArrays);
StoreObjectField(js_object, JSObject::kElementsOffset, target);
Return(target);
}
TF_BUILTIN(GrowFastDoubleElements, CodeStubAssembler) {
auto object = Parameter<JSObject>(Descriptor::kObject);
auto key = Parameter<Smi>(Descriptor::kKey);
Label runtime(this, Label::kDeferred);
TNode<FixedArrayBase> elements = LoadElements(object);
elements = TryGrowElementsCapacity(object, elements, PACKED_DOUBLE_ELEMENTS,
key, &runtime);
Return(elements);
BIND(&runtime);
TailCallRuntime(Runtime::kGrowArrayElements, NoContextConstant(), object,
key);
}
TF_BUILTIN(GrowFastSmiOrObjectElements, CodeStubAssembler) {
auto object = Parameter<JSObject>(Descriptor::kObject);
auto key = Parameter<Smi>(Descriptor::kKey);
Label runtime(this, Label::kDeferred);
TNode<FixedArrayBase> elements = LoadElements(object);
elements =
TryGrowElementsCapacity(object, elements, PACKED_ELEMENTS, key, &runtime);
Return(elements);
BIND(&runtime);
TailCallRuntime(Runtime::kGrowArrayElements, NoContextConstant(), object,
key);
}
TF_BUILTIN(ReturnReceiver, CodeStubAssembler) {
auto receiver = Parameter<Object>(Descriptor::kReceiver);
Return(receiver);
}
TF_BUILTIN(DebugBreakTrampoline, CodeStubAssembler) {
Label tailcall_to_shared(this);
auto context = Parameter<Context>(Descriptor::kContext);
auto new_target = Parameter<Object>(Descriptor::kJSNewTarget);
auto arg_count =
UncheckedParameter<Int32T>(Descriptor::kJSActualArgumentsCount);
auto function = Parameter<JSFunction>(Descriptor::kJSTarget);
// Check break-at-entry flag on the debug info.
TNode<SharedFunctionInfo> shared =
CAST(LoadObjectField(function, JSFunction::kSharedFunctionInfoOffset));
TNode<Object> maybe_heap_object_or_smi =
LoadObjectField(shared, SharedFunctionInfo::kScriptOrDebugInfoOffset);
TNode<HeapObject> maybe_debug_info =
TaggedToHeapObject(maybe_heap_object_or_smi, &tailcall_to_shared);
GotoIfNot(HasInstanceType(maybe_debug_info, InstanceType::DEBUG_INFO_TYPE),
&tailcall_to_shared);
{
TNode<DebugInfo> debug_info = CAST(maybe_debug_info);
TNode<Smi> flags =
CAST(LoadObjectField(debug_info, DebugInfo::kFlagsOffset));
GotoIfNot(SmiToInt32(SmiAnd(flags, SmiConstant(DebugInfo::kBreakAtEntry))),
&tailcall_to_shared);
CallRuntime(Runtime::kDebugBreakAtEntry, context, function);
Goto(&tailcall_to_shared);
}
BIND(&tailcall_to_shared);
// Tail call into code object on the SharedFunctionInfo.
TNode<Code> code = GetSharedFunctionInfoCode(shared);
TailCallJSCode(code, context, function, new_target, arg_count);
}
class WriteBarrierCodeStubAssembler : public CodeStubAssembler {
public:
explicit WriteBarrierCodeStubAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
TNode<BoolT> IsMarking() {
TNode<ExternalReference> is_marking_addr = ExternalConstant(
ExternalReference::heap_is_marking_flag_address(this->isolate()));
return Word32NotEqual(Load<Uint8T>(is_marking_addr), Int32Constant(0));
}
TNode<BoolT> IsPageFlagSet(TNode<IntPtrT> object, int mask) {
TNode<IntPtrT> page = PageFromAddress(object);
TNode<IntPtrT> flags = UncheckedCast<IntPtrT>(
Load(MachineType::Pointer(), page,
IntPtrConstant(BasicMemoryChunk::kFlagsOffset)));
return WordNotEqual(WordAnd(flags, IntPtrConstant(mask)),
IntPtrConstant(0));
}
TNode<BoolT> IsWhite(TNode<IntPtrT> object) {
DCHECK_EQ(strcmp(Marking::kWhiteBitPattern, "00"), 0);
TNode<IntPtrT> cell;
TNode<IntPtrT> mask;
GetMarkBit(object, &cell, &mask);
TNode<Int32T> mask32 = TruncateIntPtrToInt32(mask);
// Non-white has 1 for the first bit, so we only need to check for the first
// bit.
return Word32Equal(Word32And(Load<Int32T>(cell), mask32), Int32Constant(0));
}
void GetMarkBit(TNode<IntPtrT> object, TNode<IntPtrT>* cell,
TNode<IntPtrT>* mask) {
TNode<IntPtrT> page = PageFromAddress(object);
TNode<IntPtrT> bitmap =
IntPtrAdd(page, IntPtrConstant(MemoryChunk::kMarkingBitmapOffset));
{
// Temp variable to calculate cell offset in bitmap.
TNode<WordT> r0;
int shift = Bitmap::kBitsPerCellLog2 + kTaggedSizeLog2 -
Bitmap::kBytesPerCellLog2;
r0 = WordShr(object, IntPtrConstant(shift));
r0 = WordAnd(r0, IntPtrConstant((kPageAlignmentMask >> shift) &
~(Bitmap::kBytesPerCell - 1)));
*cell = IntPtrAdd(bitmap, Signed(r0));
}
{
// Temp variable to calculate bit offset in cell.
TNode<WordT> r1;
r1 = WordShr(object, IntPtrConstant(kTaggedSizeLog2));
r1 = WordAnd(r1, IntPtrConstant((1 << Bitmap::kBitsPerCellLog2) - 1));
// It seems that LSB(e.g. cl) is automatically used, so no manual masking
// is needed. Uncomment the following line otherwise.
// WordAnd(r1, IntPtrConstant((1 << kBitsPerByte) - 1)));
*mask = WordShl(IntPtrConstant(1), r1);
}
}
void InsertIntoRememberedSet(TNode<IntPtrT> object, TNode<IntPtrT> slot,
SaveFPRegsMode fp_mode) {
Label slow_path(this), next(this);
TNode<IntPtrT> page = PageFromAddress(object);
// Load address of SlotSet
TNode<IntPtrT> slot_set = LoadSlotSet(page, &slow_path);
TNode<IntPtrT> slot_offset = IntPtrSub(slot, page);
// Load bucket
TNode<IntPtrT> bucket = LoadBucket(slot_set, slot_offset, &slow_path);
// Update cell
SetBitInCell(bucket, slot_offset);
Goto(&next);
BIND(&slow_path);
{
TNode<ExternalReference> function =
ExternalConstant(ExternalReference::insert_remembered_set_function());
CallCFunctionWithCallerSavedRegisters(
function, MachineTypeOf<Int32T>::value, fp_mode,
std::make_pair(MachineTypeOf<IntPtrT>::value, page),
std::make_pair(MachineTypeOf<IntPtrT>::value, slot));
Goto(&next);
}
BIND(&next);
}
TNode<IntPtrT> LoadSlotSet(TNode<IntPtrT> page, Label* slow_path) {
TNode<IntPtrT> slot_set = UncheckedCast<IntPtrT>(
Load(MachineType::Pointer(), page,
IntPtrConstant(MemoryChunk::kOldToNewSlotSetOffset)));
GotoIf(WordEqual(slot_set, IntPtrConstant(0)), slow_path);
return slot_set;
}
TNode<IntPtrT> LoadBucket(TNode<IntPtrT> slot_set, TNode<WordT> slot_offset,
Label* slow_path) {
TNode<WordT> bucket_index =
WordShr(slot_offset, SlotSet::kBitsPerBucketLog2 + kTaggedSizeLog2);
TNode<IntPtrT> bucket = UncheckedCast<IntPtrT>(
Load(MachineType::Pointer(), slot_set,
WordShl(bucket_index, kSystemPointerSizeLog2)));
GotoIf(WordEqual(bucket, IntPtrConstant(0)), slow_path);
return bucket;
}
void SetBitInCell(TNode<IntPtrT> bucket, TNode<WordT> slot_offset) {
// Load cell value
TNode<WordT> cell_offset = WordAnd(
WordShr(slot_offset, SlotSet::kBitsPerCellLog2 + kTaggedSizeLog2 -
SlotSet::kCellSizeBytesLog2),
IntPtrConstant((SlotSet::kCellsPerBucket - 1)
<< SlotSet::kCellSizeBytesLog2));
TNode<IntPtrT> cell_address =
UncheckedCast<IntPtrT>(IntPtrAdd(bucket, cell_offset));
TNode<IntPtrT> old_cell_value =
ChangeInt32ToIntPtr(Load<Int32T>(cell_address));
// Calculate new cell value
TNode<WordT> bit_index = WordAnd(WordShr(slot_offset, kTaggedSizeLog2),
IntPtrConstant(SlotSet::kBitsPerCell - 1));
TNode<IntPtrT> new_cell_value = UncheckedCast<IntPtrT>(
WordOr(old_cell_value, WordShl(IntPtrConstant(1), bit_index)));
// Update cell value
StoreNoWriteBarrier(MachineRepresentation::kWord32, cell_address,
TruncateIntPtrToInt32(new_cell_value));
}
void GenerationalWriteBarrier(SaveFPRegsMode fp_mode) {
Label incremental_wb(this), test_old_to_young_flags(this),
store_buffer_exit(this), store_buffer_incremental_wb(this), next(this);
// When incremental marking is not on, we skip cross generation pointer
// checking here, because there are checks for
// `kPointersFromHereAreInterestingMask` and
// `kPointersToHereAreInterestingMask` in
// `src/compiler/<arch>/code-generator-<arch>.cc` before calling this
// stub, which serves as the cross generation checking.
auto slot =
UncheckedParameter<IntPtrT>(WriteBarrierDescriptor::kSlotAddress);
Branch(IsMarking(), &test_old_to_young_flags, &store_buffer_exit);
BIND(&test_old_to_young_flags);
{
// TODO(ishell): do a new-space range check instead.
TNode<IntPtrT> value = BitcastTaggedToWord(Load<HeapObject>(slot));
// TODO(albertnetymk): Try to cache the page flag for value and
// object, instead of calling IsPageFlagSet each time.
TNode<BoolT> value_is_young =
IsPageFlagSet(value, MemoryChunk::kIsInYoungGenerationMask);
GotoIfNot(value_is_young, &incremental_wb);
TNode<IntPtrT> object = BitcastTaggedToWord(
UncheckedParameter<Object>(WriteBarrierDescriptor::kObject));
TNode<BoolT> object_is_young =
IsPageFlagSet(object, MemoryChunk::kIsInYoungGenerationMask);
Branch(object_is_young, &incremental_wb, &store_buffer_incremental_wb);
}
BIND(&store_buffer_exit);
{
TNode<IntPtrT> object = BitcastTaggedToWord(
UncheckedParameter<Object>(WriteBarrierDescriptor::kObject));
InsertIntoRememberedSet(object, slot, fp_mode);
Goto(&next);
}
BIND(&store_buffer_incremental_wb);
{
TNode<IntPtrT> object = BitcastTaggedToWord(
UncheckedParameter<Object>(WriteBarrierDescriptor::kObject));
InsertIntoRememberedSet(object, slot, fp_mode);
Goto(&incremental_wb);
}
BIND(&incremental_wb);
{
TNode<IntPtrT> value = BitcastTaggedToWord(Load<HeapObject>(slot));
IncrementalWriteBarrier(slot, value, fp_mode);
Goto(&next);
}
BIND(&next);
}
void IncrementalWriteBarrier(SaveFPRegsMode fp_mode) {
auto slot =
UncheckedParameter<IntPtrT>(WriteBarrierDescriptor::kSlotAddress);
TNode<IntPtrT> value = BitcastTaggedToWord(Load<HeapObject>(slot));
IncrementalWriteBarrier(slot, value, fp_mode);
}
void IncrementalWriteBarrier(TNode<IntPtrT> slot, TNode<IntPtrT> value,
SaveFPRegsMode fp_mode) {
Label call_incremental_wb(this), next(this);
// There are two cases we need to call incremental write barrier.
// 1) value_is_white
GotoIf(IsWhite(value), &call_incremental_wb);
// 2) is_compacting && value_in_EC && obj_isnt_skip
// is_compacting = true when is_marking = true
GotoIfNot(IsPageFlagSet(value, MemoryChunk::kEvacuationCandidateMask),
&next);
TNode<IntPtrT> object = BitcastTaggedToWord(
UncheckedParameter<Object>(WriteBarrierDescriptor::kObject));
Branch(
IsPageFlagSet(object, MemoryChunk::kSkipEvacuationSlotsRecordingMask),
&next, &call_incremental_wb);
BIND(&call_incremental_wb);
{
TNode<ExternalReference> function = ExternalConstant(
ExternalReference::write_barrier_marking_from_code_function());
TNode<IntPtrT> object = BitcastTaggedToWord(
UncheckedParameter<Object>(WriteBarrierDescriptor::kObject));
CallCFunctionWithCallerSavedRegisters(
function, MachineTypeOf<Int32T>::value, fp_mode,
std::make_pair(MachineTypeOf<IntPtrT>::value, object),
std::make_pair(MachineTypeOf<IntPtrT>::value, slot));
Goto(&next);
}
BIND(&next);
}
void GenerateRecordWrite(RememberedSetAction rs_mode,
SaveFPRegsMode fp_mode) {
if (V8_DISABLE_WRITE_BARRIERS_BOOL) {
Return(TrueConstant());
return;
}
switch (rs_mode) {
case RememberedSetAction::kEmit:
GenerationalWriteBarrier(fp_mode);
break;
case RememberedSetAction::kOmit:
IncrementalWriteBarrier(fp_mode);
break;
}
IncrementCounter(isolate()->counters()->write_barriers(), 1);
Return(TrueConstant());
}
void GenerateEphemeronKeyBarrier(SaveFPRegsMode fp_mode) {
TNode<ExternalReference> function = ExternalConstant(
ExternalReference::ephemeron_key_write_barrier_function());
TNode<ExternalReference> isolate_constant =
ExternalConstant(ExternalReference::isolate_address(isolate()));
// In this method we limit the allocatable registers so we have to use
// UncheckedParameter. Parameter does not work because the checked cast
// needs more registers.
auto address =
UncheckedParameter<IntPtrT>(WriteBarrierDescriptor::kSlotAddress);
TNode<IntPtrT> object = BitcastTaggedToWord(
UncheckedParameter<Object>(WriteBarrierDescriptor::kObject));
CallCFunctionWithCallerSavedRegisters(
function, MachineTypeOf<Int32T>::value, fp_mode,
std::make_pair(MachineTypeOf<IntPtrT>::value, object),
std::make_pair(MachineTypeOf<IntPtrT>::value, address),
std::make_pair(MachineTypeOf<ExternalReference>::value,
isolate_constant));
IncrementCounter(isolate()->counters()->write_barriers(), 1);
Return(TrueConstant());
}
};
TF_BUILTIN(RecordWriteEmitRememberedSetSaveFP, WriteBarrierCodeStubAssembler) {
GenerateRecordWrite(RememberedSetAction::kEmit, SaveFPRegsMode::kSave);
}
TF_BUILTIN(RecordWriteOmitRememberedSetSaveFP, WriteBarrierCodeStubAssembler) {
GenerateRecordWrite(RememberedSetAction::kOmit, SaveFPRegsMode::kSave);
}
TF_BUILTIN(RecordWriteEmitRememberedSetIgnoreFP,
WriteBarrierCodeStubAssembler) {
GenerateRecordWrite(RememberedSetAction::kEmit, SaveFPRegsMode::kIgnore);
}
TF_BUILTIN(RecordWriteOmitRememberedSetIgnoreFP,
WriteBarrierCodeStubAssembler) {
GenerateRecordWrite(RememberedSetAction::kOmit, SaveFPRegsMode::kIgnore);
}
TF_BUILTIN(EphemeronKeyBarrierSaveFP, WriteBarrierCodeStubAssembler) {
GenerateEphemeronKeyBarrier(SaveFPRegsMode::kSave);
}
TF_BUILTIN(EphemeronKeyBarrierIgnoreFP, WriteBarrierCodeStubAssembler) {
GenerateEphemeronKeyBarrier(SaveFPRegsMode::kIgnore);
}
#ifdef V8_IS_TSAN
class TSANRelaxedStoreCodeStubAssembler : public CodeStubAssembler {
public:
explicit TSANRelaxedStoreCodeStubAssembler(
compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
TNode<ExternalReference> GetExternalReference(int size) {
if (size == kInt8Size) {
return ExternalConstant(
ExternalReference::tsan_relaxed_store_function_8_bits());
} else if (size == kInt16Size) {
return ExternalConstant(
ExternalReference::tsan_relaxed_store_function_16_bits());
} else if (size == kInt32Size) {
return ExternalConstant(
ExternalReference::tsan_relaxed_store_function_32_bits());
} else {
CHECK_EQ(size, kInt64Size);
return ExternalConstant(
ExternalReference::tsan_relaxed_store_function_64_bits());
}
}
void GenerateTSANRelaxedStore(SaveFPRegsMode fp_mode, int size) {
TNode<ExternalReference> function = GetExternalReference(size);
auto address =
UncheckedParameter<IntPtrT>(TSANRelaxedStoreDescriptor::kAddress);
TNode<IntPtrT> value = BitcastTaggedToWord(
UncheckedParameter<Object>(TSANRelaxedStoreDescriptor::kValue));
CallCFunctionWithCallerSavedRegisters(
function, MachineType::Int32(), fp_mode,
std::make_pair(MachineType::IntPtr(), address),
std::make_pair(MachineType::IntPtr(), value));
Return(UndefinedConstant());
}
};
TF_BUILTIN(TSANRelaxedStore8IgnoreFP, TSANRelaxedStoreCodeStubAssembler) {
GenerateTSANRelaxedStore(SaveFPRegsMode::kIgnore, kInt8Size);
}
TF_BUILTIN(TSANRelaxedStore8SaveFP, TSANRelaxedStoreCodeStubAssembler) {
GenerateTSANRelaxedStore(SaveFPRegsMode::kSave, kInt8Size);
}
TF_BUILTIN(TSANRelaxedStore16IgnoreFP, TSANRelaxedStoreCodeStubAssembler) {
GenerateTSANRelaxedStore(SaveFPRegsMode::kIgnore, kInt16Size);
}
TF_BUILTIN(TSANRelaxedStore16SaveFP, TSANRelaxedStoreCodeStubAssembler) {
GenerateTSANRelaxedStore(SaveFPRegsMode::kSave, kInt16Size);
}
TF_BUILTIN(TSANRelaxedStore32IgnoreFP, TSANRelaxedStoreCodeStubAssembler) {
GenerateTSANRelaxedStore(SaveFPRegsMode::kIgnore, kInt32Size);
}
TF_BUILTIN(TSANRelaxedStore32SaveFP, TSANRelaxedStoreCodeStubAssembler) {
GenerateTSANRelaxedStore(SaveFPRegsMode::kSave, kInt32Size);
}
TF_BUILTIN(TSANRelaxedStore64IgnoreFP, TSANRelaxedStoreCodeStubAssembler) {
GenerateTSANRelaxedStore(SaveFPRegsMode::kIgnore, kInt64Size);
}
TF_BUILTIN(TSANRelaxedStore64SaveFP, TSANRelaxedStoreCodeStubAssembler) {
GenerateTSANRelaxedStore(SaveFPRegsMode::kSave, kInt64Size);
}
class TSANRelaxedLoadCodeStubAssembler : public CodeStubAssembler {
public:
explicit TSANRelaxedLoadCodeStubAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
TNode<ExternalReference> GetExternalReference(int size) {
if (size == kInt32Size) {
return ExternalConstant(
ExternalReference::tsan_relaxed_load_function_32_bits());
} else {
CHECK_EQ(size, kInt64Size);
return ExternalConstant(
ExternalReference::tsan_relaxed_load_function_64_bits());
}
}
void GenerateTSANRelaxedLoad(SaveFPRegsMode fp_mode, int size) {
TNode<ExternalReference> function = GetExternalReference(size);
auto address =
UncheckedParameter<IntPtrT>(TSANRelaxedLoadDescriptor::kAddress);
CallCFunctionWithCallerSavedRegisters(
function, MachineType::Int32(), fp_mode,
std::make_pair(MachineType::IntPtr(), address));
Return(UndefinedConstant());
}
};
TF_BUILTIN(TSANRelaxedLoad32IgnoreFP, TSANRelaxedLoadCodeStubAssembler) {
GenerateTSANRelaxedLoad(SaveFPRegsMode::kIgnore, kInt32Size);
}
TF_BUILTIN(TSANRelaxedLoad32SaveFP, TSANRelaxedLoadCodeStubAssembler) {
GenerateTSANRelaxedLoad(SaveFPRegsMode::kSave, kInt32Size);
}
TF_BUILTIN(TSANRelaxedLoad64IgnoreFP, TSANRelaxedLoadCodeStubAssembler) {
GenerateTSANRelaxedLoad(SaveFPRegsMode::kIgnore, kInt64Size);
}
TF_BUILTIN(TSANRelaxedLoad64SaveFP, TSANRelaxedLoadCodeStubAssembler) {
GenerateTSANRelaxedLoad(SaveFPRegsMode::kSave, kInt64Size);
}
#endif // V8_IS_TSAN
class DeletePropertyBaseAssembler : public AccessorAssembler {
public:
explicit DeletePropertyBaseAssembler(compiler::CodeAssemblerState* state)
: AccessorAssembler(state) {}
void DictionarySpecificDelete(TNode<JSReceiver> receiver,
TNode<NameDictionary> properties,
TNode<IntPtrT> key_index,
TNode<Context> context) {
// Overwrite the entry itself (see NameDictionary::SetEntry).
TNode<Oddball> filler = TheHoleConstant();
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kTheHoleValue));
StoreFixedArrayElement(properties, key_index, filler, SKIP_WRITE_BARRIER);
StoreValueByKeyIndex<NameDictionary>(properties, key_index, filler,
SKIP_WRITE_BARRIER);
StoreDetailsByKeyIndex<NameDictionary>(properties, key_index,
SmiConstant(0));
// Update bookkeeping information (see NameDictionary::ElementRemoved).
TNode<Smi> nof = GetNumberOfElements<NameDictionary>(properties);
TNode<Smi> new_nof = SmiSub(nof, SmiConstant(1));
SetNumberOfElements<NameDictionary>(properties, new_nof);
TNode<Smi> num_deleted =
GetNumberOfDeletedElements<NameDictionary>(properties);
TNode<Smi> new_deleted = SmiAdd(num_deleted, SmiConstant(1));
SetNumberOfDeletedElements<NameDictionary>(properties, new_deleted);
// Shrink the dictionary if necessary (see NameDictionary::Shrink).
Label shrinking_done(this);
TNode<Smi> capacity = GetCapacity<NameDictionary>(properties);
GotoIf(SmiGreaterThan(new_nof, SmiShr(capacity, 2)), &shrinking_done);
GotoIf(SmiLessThan(new_nof, SmiConstant(16)), &shrinking_done);
TNode<NameDictionary> new_properties =
CAST(CallRuntime(Runtime::kShrinkNameDictionary, context, properties));
StoreJSReceiverPropertiesOrHash(receiver, new_properties);
Goto(&shrinking_done);
BIND(&shrinking_done);
}
void DictionarySpecificDelete(TNode<JSReceiver> receiver,
TNode<SwissNameDictionary> properties,
TNode<IntPtrT> key_index,
TNode<Context> context) {
Label shrunk(this), done(this);
TVARIABLE(SwissNameDictionary, shrunk_table);
SwissNameDictionaryDelete(properties, key_index, &shrunk, &shrunk_table);
Goto(&done);
BIND(&shrunk);
StoreJSReceiverPropertiesOrHash(receiver, shrunk_table.value());
Goto(&done);
BIND(&done);
}
template <typename Dictionary>
void DeleteDictionaryProperty(TNode<JSReceiver> receiver,
TNode<Dictionary> properties, TNode<Name> name,
TNode<Context> context, Label* dont_delete,
Label* notfound) {
TVARIABLE(IntPtrT, var_name_index);
Label dictionary_found(this, &var_name_index);
NameDictionaryLookup<Dictionary>(properties, name, &dictionary_found,
&var_name_index, notfound);
BIND(&dictionary_found);
TNode<IntPtrT> key_index = var_name_index.value();
TNode<Uint32T> details = LoadDetailsByKeyIndex(properties, key_index);
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesDontDeleteMask),
dont_delete);
DictionarySpecificDelete(receiver, properties, key_index, context);
Return(TrueConstant());
}
};
TF_BUILTIN(DeleteProperty, DeletePropertyBaseAssembler) {
auto receiver = Parameter<Object>(Descriptor::kObject);
auto key = Parameter<Object>(Descriptor::kKey);
auto language_mode = Parameter<Smi>(Descriptor::kLanguageMode);
auto context = Parameter<Context>(Descriptor::kContext);
TVARIABLE(IntPtrT, var_index);
TVARIABLE(Name, var_unique);
Label if_index(this, &var_index), if_unique_name(this), if_notunique(this),
if_notfound(this), slow(this), if_proxy(this);
GotoIf(TaggedIsSmi(receiver), &slow);
TNode<Map> receiver_map = LoadMap(CAST(receiver));
TNode<Uint16T> instance_type = LoadMapInstanceType(receiver_map);
GotoIf(InstanceTypeEqual(instance_type, JS_PROXY_TYPE), &if_proxy);
GotoIf(IsCustomElementsReceiverInstanceType(instance_type), &slow);
TryToName(key, &if_index, &var_index, &if_unique_name, &var_unique, &slow,
&if_notunique);
BIND(&if_index);
{
Comment("integer index");
Goto(&slow); // TODO(jkummerow): Implement more smarts here.
}
BIND(&if_unique_name);
{
Comment("key is unique name");
CheckForAssociatedProtector(var_unique.value(), &slow);
Label dictionary(this), dont_delete(this);
GotoIf(IsDictionaryMap(receiver_map), &dictionary);
// Fast properties need to clear recorded slots and mark the deleted
// property as mutable, which can only be done in C++.
Goto(&slow);
BIND(&dictionary);
{
InvalidateValidityCellIfPrototype(receiver_map);
TNode<PropertyDictionary> properties =
CAST(LoadSlowProperties(CAST(receiver)));
DeleteDictionaryProperty(CAST(receiver), properties, var_unique.value(),
context, &dont_delete, &if_notfound);
}
BIND(&dont_delete);
{
STATIC_ASSERT(LanguageModeSize == 2);
GotoIf(SmiNotEqual(language_mode, SmiConstant(LanguageMode::kSloppy)),
&slow);
Return(FalseConstant());
}
}
BIND(&if_notunique);
{
// If the string was not found in the string table, then no object can
// have a property with that name.
TryInternalizeString(CAST(key), &if_index, &var_index, &if_unique_name,
&var_unique, &if_notfound, &slow);
}
BIND(&if_notfound);
Return(TrueConstant());
BIND(&if_proxy);
{
TNode<Name> name = CAST(CallBuiltin(Builtin::kToName, context, key));
GotoIf(IsPrivateSymbol(name), &slow);
TailCallBuiltin(Builtin::kProxyDeleteProperty, context, receiver, name,
language_mode);
}
BIND(&slow);
{
TailCallRuntime(Runtime::kDeleteProperty, context, receiver, key,
language_mode);
}
}
namespace {
class SetOrCopyDataPropertiesAssembler : public CodeStubAssembler {
public:
explicit SetOrCopyDataPropertiesAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
protected:
TNode<Object> SetOrCopyDataProperties(TNode<Context> context,
TNode<JSReceiver> target,
TNode<Object> source, Label* if_runtime,
bool use_set = true) {
Label if_done(this), if_noelements(this),
if_sourcenotjsobject(this, Label::kDeferred);
// JSPrimitiveWrapper wrappers for numbers don't have any enumerable own
// properties, so we can immediately skip the whole operation if {source} is
// a Smi.
GotoIf(TaggedIsSmi(source), &if_done);
// Otherwise check if {source} is a proper JSObject, and if not, defer
// to testing for non-empty strings below.
TNode<Map> source_map = LoadMap(CAST(source));
TNode<Uint16T> source_instance_type = LoadMapInstanceType(source_map);
GotoIfNot(IsJSObjectInstanceType(source_instance_type),
&if_sourcenotjsobject);
TNode<FixedArrayBase> source_elements = LoadElements(CAST(source));
GotoIf(IsEmptyFixedArray(source_elements), &if_noelements);
Branch(IsEmptySlowElementDictionary(source_elements), &if_noelements,
if_runtime);
BIND(&if_noelements);
{
// If the target is deprecated, the object will be updated on first store.
// If the source for that store equals the target, this will invalidate
// the cached representation of the source. Handle this case in runtime.
TNode<Map> target_map = LoadMap(target);
GotoIf(IsDeprecatedMap(target_map), if_runtime);
if (use_set) {
TNode<BoolT> target_is_simple_receiver = IsSimpleObjectMap(target_map);
ForEachEnumerableOwnProperty(
context, source_map, CAST(source), kEnumerationOrder,
[=](TNode<Name> key, TNode<Object> value) {
KeyedStoreGenericGenerator::SetProperty(
state(), context, target, target_is_simple_receiver, key,
value, LanguageMode::kStrict);
},
if_runtime);
} else {
ForEachEnumerableOwnProperty(
context, source_map, CAST(source), kEnumerationOrder,
[=](TNode<Name> key, TNode<Object> value) {
CallBuiltin(Builtin::kSetPropertyInLiteral, context, target, key,
value);
},
if_runtime);
}
Goto(&if_done);
}
BIND(&if_sourcenotjsobject);
{
// Handle other JSReceivers in the runtime.
GotoIf(IsJSReceiverInstanceType(source_instance_type), if_runtime);
// Non-empty strings are the only non-JSReceivers that need to be
// handled explicitly by Object.assign() and CopyDataProperties.
GotoIfNot(IsStringInstanceType(source_instance_type), &if_done);
TNode<IntPtrT> source_length = LoadStringLengthAsWord(CAST(source));
Branch(IntPtrEqual(source_length, IntPtrConstant(0)), &if_done,
if_runtime);
}
BIND(&if_done);
return UndefinedConstant();
}
};
} // namespace
// ES #sec-copydataproperties
TF_BUILTIN(CopyDataProperties, SetOrCopyDataPropertiesAssembler) {
auto target = Parameter<JSObject>(Descriptor::kTarget);
auto source = Parameter<Object>(Descriptor::kSource);
auto context = Parameter<Context>(Descriptor::kContext);
CSA_ASSERT(this, TaggedNotEqual(target, source));
Label if_runtime(this, Label::kDeferred);
Return(SetOrCopyDataProperties(context, target, source, &if_runtime, false));
BIND(&if_runtime);
TailCallRuntime(Runtime::kCopyDataProperties, context, target, source);
}
TF_BUILTIN(SetDataProperties, SetOrCopyDataPropertiesAssembler) {
auto target = Parameter<JSReceiver>(Descriptor::kTarget);
auto source = Parameter<Object>(Descriptor::kSource);
auto context = Parameter<Context>(Descriptor::kContext);
Label if_runtime(this, Label::kDeferred);
GotoIfForceSlowPath(&if_runtime);
Return(SetOrCopyDataProperties(context, target, source, &if_runtime, true));
BIND(&if_runtime);
TailCallRuntime(Runtime::kSetDataProperties, context, target, source);
}
TF_BUILTIN(ForInEnumerate, CodeStubAssembler) {
auto receiver = Parameter<JSReceiver>(Descriptor::kReceiver);
auto context = Parameter<Context>(Descriptor::kContext);
Label if_empty(this), if_runtime(this, Label::kDeferred);
TNode<Map> receiver_map = CheckEnumCache(receiver, &if_empty, &if_runtime);
Return(receiver_map);
BIND(&if_empty);
Return(EmptyFixedArrayConstant());
BIND(&if_runtime);
TailCallRuntime(Runtime::kForInEnumerate, context, receiver);
}
TF_BUILTIN(ForInPrepare, CodeStubAssembler) {
// The {enumerator} is either a Map or a FixedArray.
auto enumerator = Parameter<HeapObject>(Descriptor::kEnumerator);
auto index = Parameter<TaggedIndex>(Descriptor::kVectorIndex);
auto feedback_vector = Parameter<FeedbackVector>(Descriptor::kFeedbackVector);
TNode<UintPtrT> vector_index = Unsigned(TaggedIndexToIntPtr(index));
TNode<FixedArray> cache_array;
TNode<Smi> cache_length;
ForInPrepare(enumerator, vector_index, feedback_vector, &cache_array,
&cache_length, UpdateFeedbackMode::kGuaranteedFeedback);
Return(cache_array, cache_length);
}
TF_BUILTIN(ForInFilter, CodeStubAssembler) {
auto key = Parameter<String>(Descriptor::kKey);
auto object = Parameter<HeapObject>(Descriptor::kObject);
auto context = Parameter<Context>(Descriptor::kContext);
Label if_true(this), if_false(this);
TNode<Oddball> result = HasProperty(context, object, key, kForInHasProperty);
Branch(IsTrue(result), &if_true, &if_false);
BIND(&if_true);
Return(key);
BIND(&if_false);
Return(UndefinedConstant());
}
TF_BUILTIN(SameValue, CodeStubAssembler) {
auto lhs = Parameter<Object>(Descriptor::kLeft);
auto rhs = Parameter<Object>(Descriptor::kRight);
Label if_true(this), if_false(this);
BranchIfSameValue(lhs, rhs, &if_true, &if_false);
BIND(&if_true);
Return(TrueConstant());
BIND(&if_false);
Return(FalseConstant());
}
TF_BUILTIN(SameValueNumbersOnly, CodeStubAssembler) {
auto lhs = Parameter<Object>(Descriptor::kLeft);
auto rhs = Parameter<Object>(Descriptor::kRight);
Label if_true(this), if_false(this);
BranchIfSameValue(lhs, rhs, &if_true, &if_false, SameValueMode::kNumbersOnly);
BIND(&if_true);
Return(TrueConstant());
BIND(&if_false);
Return(FalseConstant());
}
TF_BUILTIN(AdaptorWithBuiltinExitFrame, CodeStubAssembler) {
auto target = Parameter<JSFunction>(Descriptor::kTarget);
auto new_target = Parameter<Object>(Descriptor::kNewTarget);
auto c_function = UncheckedParameter<WordT>(Descriptor::kCFunction);
// The logic contained here is mirrored for TurboFan inlining in
// JSTypedLowering::ReduceJSCall{Function,Construct}. Keep these in sync.
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
TNode<Context> context = LoadJSFunctionContext(target);
auto actual_argc =
UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
TVARIABLE(Int32T, pushed_argc, actual_argc);
TNode<SharedFunctionInfo> shared = LoadJSFunctionSharedFunctionInfo(target);
TNode<Int32T> formal_count =
UncheckedCast<Int32T>(LoadSharedFunctionInfoFormalParameterCount(shared));
// The number of arguments pushed is the maximum of actual arguments count
// and formal parameters count. Except when the formal parameters count is
// the sentinel.
Label check_argc(this), update_argc(this), done_argc(this);
Branch(Word32Equal(formal_count, Int32Constant(kDontAdaptArgumentsSentinel)),
&done_argc, &check_argc);
BIND(&check_argc);
Branch(Int32GreaterThan(formal_count, pushed_argc.value()), &update_argc,
&done_argc);
BIND(&update_argc);
pushed_argc = formal_count;
Goto(&done_argc);
BIND(&done_argc);
// Update arguments count for CEntry to contain the number of arguments
// including the receiver and the extra arguments.
TNode<Int32T> argc = Int32Add(
pushed_argc.value(),
Int32Constant(BuiltinExitFrameConstants::kNumExtraArgsWithReceiver));
const bool builtin_exit_frame = true;
TNode<Code> code =
HeapConstant(CodeFactory::CEntry(isolate(), 1, SaveFPRegsMode::kIgnore,
ArgvMode::kStack, builtin_exit_frame));
// Unconditionally push argc, target and new target as extra stack arguments.
// They will be used by stack frame iterators when constructing stack trace.
TailCallStub(CEntry1ArgvOnStackDescriptor{}, // descriptor
code, context, // standard arguments for TailCallStub
argc, c_function, // register arguments
TheHoleConstant(), // additional stack argument 1 (padding)
SmiFromInt32(argc), // additional stack argument 2
target, // additional stack argument 3
new_target); // additional stack argument 4
}
TF_BUILTIN(AllocateInYoungGeneration, CodeStubAssembler) {
auto requested_size = UncheckedParameter<IntPtrT>(Descriptor::kRequestedSize);
CSA_CHECK(this, IsValidPositiveSmi(requested_size));
TNode<Smi> allocation_flags =
SmiConstant(Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllowLargeObjectAllocationFlag::encode(true)));
TailCallRuntime(Runtime::kAllocateInYoungGeneration, NoContextConstant(),
SmiFromIntPtr(requested_size), allocation_flags);
}
TF_BUILTIN(AllocateRegularInYoungGeneration, CodeStubAssembler) {
auto requested_size = UncheckedParameter<IntPtrT>(Descriptor::kRequestedSize);
CSA_CHECK(this, IsValidPositiveSmi(requested_size));
TNode<Smi> allocation_flags =
SmiConstant(Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllowLargeObjectAllocationFlag::encode(false)));
TailCallRuntime(Runtime::kAllocateInYoungGeneration, NoContextConstant(),
SmiFromIntPtr(requested_size), allocation_flags);
}
TF_BUILTIN(AllocateInOldGeneration, CodeStubAssembler) {
auto requested_size = UncheckedParameter<IntPtrT>(Descriptor::kRequestedSize);
CSA_CHECK(this, IsValidPositiveSmi(requested_size));
TNode<Smi> runtime_flags =
SmiConstant(Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllowLargeObjectAllocationFlag::encode(true)));
TailCallRuntime(Runtime::kAllocateInOldGeneration, NoContextConstant(),
SmiFromIntPtr(requested_size), runtime_flags);
}
TF_BUILTIN(AllocateRegularInOldGeneration, CodeStubAssembler) {
auto requested_size = UncheckedParameter<IntPtrT>(Descriptor::kRequestedSize);
CSA_CHECK(this, IsValidPositiveSmi(requested_size));
TNode<Smi> runtime_flags =
SmiConstant(Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllowLargeObjectAllocationFlag::encode(false)));
TailCallRuntime(Runtime::kAllocateInOldGeneration, NoContextConstant(),
SmiFromIntPtr(requested_size), runtime_flags);
}
TF_BUILTIN(Abort, CodeStubAssembler) {
auto message_id = Parameter<Smi>(Descriptor::kMessageOrMessageId);
TailCallRuntime(Runtime::kAbort, NoContextConstant(), message_id);
}
TF_BUILTIN(AbortCSAAssert, CodeStubAssembler) {
auto message = Parameter<String>(Descriptor::kMessageOrMessageId);
TailCallRuntime(Runtime::kAbortCSAAssert, NoContextConstant(), message);
}
void Builtins::Generate_CEntry_Return1_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, SaveFPRegsMode::kIgnore, ArgvMode::kStack, false);
}
void Builtins::Generate_CEntry_Return1_DontSaveFPRegs_ArgvOnStack_BuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, SaveFPRegsMode::kIgnore, ArgvMode::kStack, true);
}
void Builtins::
Generate_CEntry_Return1_DontSaveFPRegs_ArgvInRegister_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, SaveFPRegsMode::kIgnore, ArgvMode::kRegister, false);
}
void Builtins::Generate_CEntry_Return1_SaveFPRegs_ArgvOnStack_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, SaveFPRegsMode::kSave, ArgvMode::kStack, false);
}
void Builtins::Generate_CEntry_Return1_SaveFPRegs_ArgvOnStack_BuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, SaveFPRegsMode::kSave, ArgvMode::kStack, true);
}
void Builtins::Generate_CEntry_Return2_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, SaveFPRegsMode::kIgnore, ArgvMode::kStack, false);
}
void Builtins::Generate_CEntry_Return2_DontSaveFPRegs_ArgvOnStack_BuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, SaveFPRegsMode::kIgnore, ArgvMode::kStack, true);
}
void Builtins::
Generate_CEntry_Return2_DontSaveFPRegs_ArgvInRegister_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, SaveFPRegsMode::kIgnore, ArgvMode::kRegister, false);
}
void Builtins::Generate_CEntry_Return2_SaveFPRegs_ArgvOnStack_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, SaveFPRegsMode::kSave, ArgvMode::kStack, false);
}
void Builtins::Generate_CEntry_Return2_SaveFPRegs_ArgvOnStack_BuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, SaveFPRegsMode::kSave, ArgvMode::kStack, true);
}
#if !defined(V8_TARGET_ARCH_ARM) && !defined(V8_TARGET_ARCH_MIPS)
void Builtins::Generate_MemCopyUint8Uint8(MacroAssembler* masm) {
masm->Call(BUILTIN_CODE(masm->isolate(), Illegal), RelocInfo::CODE_TARGET);
}
#endif // !defined(V8_TARGET_ARCH_ARM) && !defined(V8_TARGET_ARCH_MIPS)
#ifndef V8_TARGET_ARCH_IA32
void Builtins::Generate_MemMove(MacroAssembler* masm) {
masm->Call(BUILTIN_CODE(masm->isolate(), Illegal), RelocInfo::CODE_TARGET);
}
#endif // V8_TARGET_ARCH_IA32
// TODO(v8:11421): Remove #if once baseline compiler is ported to other
// architectures.
#if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || \
V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_RISCV64 || V8_TARGET_ARCH_MIPS64 || \
V8_TARGET_ARCH_MIPS
void Builtins::Generate_BaselineLeaveFrame(MacroAssembler* masm) {
EmitReturnBaseline(masm);
}
#else
// Stub out implementations of arch-specific baseline builtins.
void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) {
masm->Trap();
}
void Builtins::Generate_BaselineLeaveFrame(MacroAssembler* masm) {
masm->Trap();
}
void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) {
masm->Trap();
}
#endif
// ES6 [[Get]] operation.
TF_BUILTIN(GetProperty, CodeStubAssembler) {
auto object = Parameter<Object>(Descriptor::kObject);
auto key = Parameter<Object>(Descriptor::kKey);
auto context = Parameter<Context>(Descriptor::kContext);
// TODO(duongn): consider tailcalling to GetPropertyWithReceiver(object,
// object, key, OnNonExistent::kReturnUndefined).
Label if_notfound(this), if_proxy(this, Label::kDeferred),
if_slow(this, Label::kDeferred);
CodeStubAssembler::LookupPropertyInHolder lookup_property_in_holder =
[=](TNode<HeapObject> receiver, TNode<HeapObject> holder,
TNode<Map> holder_map, TNode<Int32T> holder_instance_type,
TNode<Name> unique_name, Label* next_holder, Label* if_bailout) {
TVARIABLE(Object, var_value);
Label if_found(this);
TryGetOwnProperty(context, receiver, CAST(holder), holder_map,
holder_instance_type, unique_name, &if_found,
&var_value, next_holder, if_bailout);
BIND(&if_found);
Return(var_value.value());
};
CodeStubAssembler::LookupElementInHolder lookup_element_in_holder =
[=](TNode<HeapObject> receiver, TNode<HeapObject> holder,
TNode<Map> holder_map, TNode<Int32T> holder_instance_type,
TNode<IntPtrT> index, Label* next_holder, Label* if_bailout) {
// Not supported yet.
Use(next_holder);
Goto(if_bailout);
};
TryPrototypeChainLookup(object, object, key, lookup_property_in_holder,
lookup_element_in_holder, &if_notfound, &if_slow,
&if_proxy);
BIND(&if_notfound);
Return(UndefinedConstant());
BIND(&if_slow);
TailCallRuntime(Runtime::kGetProperty, context, object, key);
BIND(&if_proxy);
{
// Convert the {key} to a Name first.
TNode<Object> name = CallBuiltin(Builtin::kToName, context, key);
// The {object} is a JSProxy instance, look up the {name} on it, passing
// {object} both as receiver and holder. If {name} is absent we can safely
// return undefined from here.
TailCallBuiltin(Builtin::kProxyGetProperty, context, object, name, object,
SmiConstant(OnNonExistent::kReturnUndefined));
}
}
// ES6 [[Get]] operation with Receiver.
TF_BUILTIN(GetPropertyWithReceiver, CodeStubAssembler) {
auto object = Parameter<Object>(Descriptor::kObject);
auto key = Parameter<Object>(Descriptor::kKey);
auto context = Parameter<Context>(Descriptor::kContext);
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto on_non_existent = Parameter<Object>(Descriptor::kOnNonExistent);
Label if_notfound(this), if_proxy(this, Label::kDeferred),
if_slow(this, Label::kDeferred);
CodeStubAssembler::LookupPropertyInHolder lookup_property_in_holder =
[=](TNode<HeapObject> receiver, TNode<HeapObject> holder,
TNode<Map> holder_map, TNode<Int32T> holder_instance_type,
TNode<Name> unique_name, Label* next_holder, Label* if_bailout) {
TVARIABLE(Object, var_value);
Label if_found(this);
TryGetOwnProperty(context, receiver, CAST(holder), holder_map,
holder_instance_type, unique_name, &if_found,
&var_value, next_holder, if_bailout);
BIND(&if_found);
Return(var_value.value());
};
CodeStubAssembler::LookupElementInHolder lookup_element_in_holder =
[=](TNode<HeapObject> receiver, TNode<HeapObject> holder,
TNode<Map> holder_map, TNode<Int32T> holder_instance_type,
TNode<IntPtrT> index, Label* next_holder, Label* if_bailout) {
// Not supported yet.
Use(next_holder);
Goto(if_bailout);
};
TryPrototypeChainLookup(receiver, object, key, lookup_property_in_holder,
lookup_element_in_holder, &if_notfound, &if_slow,
&if_proxy);
BIND(&if_notfound);
Label throw_reference_error(this);
GotoIf(TaggedEqual(on_non_existent,
SmiConstant(OnNonExistent::kThrowReferenceError)),
&throw_reference_error);
CSA_ASSERT(this, TaggedEqual(on_non_existent,
SmiConstant(OnNonExistent::kReturnUndefined)));
Return(UndefinedConstant());
BIND(&throw_reference_error);
Return(CallRuntime(Runtime::kThrowReferenceError, context, key));
BIND(&if_slow);
TailCallRuntime(Runtime::kGetPropertyWithReceiver, context, object, key,
receiver, on_non_existent);
BIND(&if_proxy);
{
// Convert the {key} to a Name first.
TNode<Name> name = CAST(CallBuiltin(Builtin::kToName, context, key));
// Proxy cannot handle private symbol so bailout.
GotoIf(IsPrivateSymbol(name), &if_slow);
// The {object} is a JSProxy instance, look up the {name} on it, passing
// {object} both as receiver and holder. If {name} is absent we can safely
// return undefined from here.
TailCallBuiltin(Builtin::kProxyGetProperty, context, object, name, receiver,
on_non_existent);
}
}
// ES6 [[Set]] operation.
TF_BUILTIN(SetProperty, CodeStubAssembler) {
auto context = Parameter<Context>(Descriptor::kContext);
auto receiver = Parameter<Object>(Descriptor::kReceiver);
auto key = Parameter<Object>(Descriptor::kKey);
auto value = Parameter<Object>(Descriptor::kValue);
KeyedStoreGenericGenerator::SetProperty(state(), context, receiver, key,
value, LanguageMode::kStrict);
}
// ES6 CreateDataProperty(), specialized for the case where objects are still
// being initialized, and have not yet been made accessible to the user. Thus,
// any operation here should be unobservable until after the object has been
// returned.
TF_BUILTIN(SetPropertyInLiteral, CodeStubAssembler) {
auto context = Parameter<Context>(Descriptor::kContext);
auto receiver = Parameter<JSObject>(Descriptor::kReceiver);
auto key = Parameter<Object>(Descriptor::kKey);
auto value = Parameter<Object>(Descriptor::kValue);
KeyedStoreGenericGenerator::SetPropertyInLiteral(state(), context, receiver,
key, value);
}
TF_BUILTIN(InstantiateAsmJs, CodeStubAssembler) {
Label tailcall_to_function(this);
auto context = Parameter<Context>(Descriptor::kContext);
auto new_target = Parameter<Object>(Descriptor::kNewTarget);
auto arg_count =
UncheckedParameter<Int32T>(Descriptor::kActualArgumentsCount);
auto function = Parameter<JSFunction>(Descriptor::kTarget);
// Retrieve arguments from caller (stdlib, foreign, heap).
CodeStubArguments args(this, arg_count);
TNode<Object> stdlib = args.GetOptionalArgumentValue(0);
TNode<Object> foreign = args.GetOptionalArgumentValue(1);
TNode<Object> heap = args.GetOptionalArgumentValue(2);
// Call runtime, on success just pass the result to the caller and pop all
// arguments. A smi 0 is returned on failure, an object on success.
TNode<Object> maybe_result_or_smi_zero = CallRuntime(
Runtime::kInstantiateAsmJs, context, function, stdlib, foreign, heap);
GotoIf(TaggedIsSmi(maybe_result_or_smi_zero), &tailcall_to_function);
TNode<SharedFunctionInfo> shared = LoadJSFunctionSharedFunctionInfo(function);
TNode<Int32T> parameter_count =
UncheckedCast<Int32T>(LoadSharedFunctionInfoFormalParameterCount(shared));
// This builtin intercepts a call to {function}, where the number of arguments
// pushed is the maximum of actual arguments count and formal parameters
// count.
Label argc_lt_param_count(this), argc_ge_param_count(this);
Branch(IntPtrLessThan(args.GetLength(), ChangeInt32ToIntPtr(parameter_count)),
&argc_lt_param_count, &argc_ge_param_count);
BIND(&argc_lt_param_count);
PopAndReturn(Int32Add(parameter_count, Int32Constant(1)),
maybe_result_or_smi_zero);
BIND(&argc_ge_param_count);
args.PopAndReturn(maybe_result_or_smi_zero);
BIND(&tailcall_to_function);
// On failure, tail call back to regular JavaScript by re-calling the given
// function which has been reset to the compile lazy builtin.
// TODO(v8:11880): call CodeT instead.
TNode<Code> code = FromCodeT(LoadJSFunctionCode(function));
TailCallJSCode(code, context, function, new_target, arg_count);
}
} // namespace internal
} // namespace v8